I

throngh Dynamlcal H Ag__? i

A

Ny

AT e T e e G g

v




To be sure that your preprints are promptly included in the
HIGH ENERGY PHYSICS INDEX,
send them to the following address ( if possible by air mail ) :

DESY
Bibliothek

2 Hamburg 52
Notkestieg 1
Germany




Quark and Colour Confinement through Dynamical Higgs Mechanism

G. Mack

IT1. Institut fiir Theoretische Physik der Universitdt Hamburg

Abstract: We suggest that quarks and colour can be confined
through a dynamical Higgs mechanism. Two possibilities can be
thought of. 1. Quarks may combine to scalar diguark Cooper pairs
which then condense into the wvacuum. Quarks and gluons may

then screen their colour by combining with the Cooper pairs to
form physical particles. 2. Instead of quarks, the Higgs scalars
may form out of gluons, and screen the colour charge of gluons
(and anything with zero triality) by a "local Higgs mechanism'.

In this case, long range forces between quarks are expected to

persist.

Sect. 2-4 are based on a lecture presented at the topical conference

on Ruantum Chromodynamics at Chania (Crete) , June 1977.
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1. Introduction
It seems attractive to believe that strong interaction dynamics is
described by a nonabelian gauge theory of quarks and gluons with colour
group SU(3) [1]. The colour group extends to a gauge group of the
2nd kind due to minimal coupling of an cctet of flavorless glucns,
while the quarks are colour triplets with 2n unspecified number of
flavors. The Lagrangean density
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It is hoped that the Lagrangean (l.1) leads to quark and colour
confinement, so that all physical states are colour singlets. If so,

there should exist an effective Lagrangean which describes the interaction
of the low mass physical states at not too high energies, and which involves
only colour singlet fields., (It would have an UV-cutoff and could be

quite complicated but local to the extent that the cutoff permits). The
problem is to derive it from (1.1). More generally, the question arises

how one can produce a Lagtangean involving cnly colour singlet fields from

a gauge field theory such as e.g. (1.1)

Notation: We use letters a, b {=1,2,3}, ¢ (= 1...8) for colour

indices, i.j, ... for flavor indices, Oh/ﬁu. for spinor indices, and
M,v for Lorentz-vector indices, Minkowski space metriec is —+++, Quark
fields qi=(q;£) while A;‘ are the gluon potentials, Summation convention
is understood; often we use vector notation in 3-dimensicnal colour space,
The bracket [a,b} will stand for antisymmetrization in indices a,b., X are

. , .
Gell Mann's 3x3 macrices, fthe coupling constant. For references te the

Higgs-mechanism see ref. [2].

In this paper we call attention to the fact that a "complete Higgs
mechanism” with no surviving massless vector mesens achieves just that,

at least if a further condition is met which guarantees that the charges
of the Higgs scalars in the theery match with the charges of the other
fields. We demonstrate this in Sec. 2 at the exawple of an SU(2)-gauge
theory wifh a quark doublet and a complex doublet of Higgs scalars on

a lattice, This model possesses a global SU(2) flavor symmetry in

addition to the colour SU(2) symmetry, a fact which apprears to have been
overlooked in previous discussions f2l.

We present heuristic arguments that there is quark and colour confinement
in this model if the Higgs mechanism takes place. All states are colour—
less, and none of them has the quantum numbers of a quark, even apart from
colour, In particular, the "quark field in the unitary gauge" creates
étates which do not have the quantum numbers of a quark. Intuitively it is
easy to understand what happens: The quarks screen their colour by
combining with Higgs scalars. But since the Higgs scalars carry flavor,

also the falvor will be changed in the process,

The lesson from the model cannot be carried over in a straightforward
fashion to the QCD Lagrangean (1.1) because that Lagrangean has no Higgs
scalars in it. The next simple pessiblity is then to imagine that Higgs

scalars are formed dynamically,

As a first pessibility we imagine the formation of scalar diquark Cooper
. . *

pairs [3] in a colour 3 - state. They could be bound by Coulomb forces.

these are attractive because the diquark consists of quarks of different

colours. The Higgs mechanism would then provide for condensarion of such

diquarks and antidiquarks into the vacuum. Quarks could screen their colour



for instance by combining with a diquark Cooper pair to a physical
baryon. Similarly the gluons (or string bits) could screen their
charges to form z flavor SU{3) octet of gluonoids, presumably they are
all multiparticle states since at least four quarks are involved.
Assuming that baryon number conservation is not spontaneously broken

in the process one will again have quark and colour confinement in the

same sense as for the earlier model.

Note that it is essential that the colourgreup is SU(3). The mechanism
would not werk with SU(2) or U(1) colour group because the charges of
the Cooper palrs would not match then with the charges of the quarks

in such a way that a local screening of colours is possible. In other
words, the Kronecker product of 3 ® 3 @ 3 of three fundamental
Tepresentations of SU(3) contains the singlet, but the analogous
statement is not true for SU(2) or U(1). It is also essential that there
are at least three flavors, otherwise there are not énough Higgs scalars

te prevent surviving massless gluons.

The condition of no spontaneous baryon number nonconservation turns out

not to be trivial though.
There are further problems with this scheme in that it does apparently
not explain some outstanding features of the real world in a natural

and obvious way:

We de not know whether there are strings hidden somewhere, and there is

- . . %}
thus so far no explanation of linearly rising Regge trajectories.

A mildly encouraging sign is that the SU(2)} model appears to

show signs of Reggeization in the 1 = 1 charnel [4].

Also we have no natural explanation of the absence of exotics,

Why are exotic objects which invelve more than one Cooper pair
multiparticle configurations and not resonances? Besides one might fear
strong violation of SU(6)} for baryons: The octet can be made from a

quark and a Cooper pair, but to make a decuplet requires flip of spin and
fiavor (UVW)-isospin inside the Cooper pair. We can only hope that this
will not cost too much enerpgy given that the gluon forces are flavor

independent.

In conclusion we have not arrived at a fully satisfactory picture in
this way. But the considerations show that the Higgs mechanism has

potentialities that have not been recognized before.

One may hope that the Higgs mechanism is capable of generalizations that
have not been found and explored yet. In particular, colour confinement
may always be thought of as a Higgs phenomenon in the very wide sense

alluded to at the beginning of this section.

In the last section we present some Speculations what the hoped for
generalization of the Higgs mechanism could leook like. It is suggested
to make coloured Higgs scalars out of gluons instead of quarks and to

have the gluons screen their colour and acquire a mass through a

The matter is complicated by the fact that the response to static
and time dependent external electric fields may be very different as

in superconductors,



"iocal Higgs mechanism”, which bears some resemblance to the local
phase transitions proposed by Nambu [S} . Such Higgs scalars cannot
screen the charges of quarks locally, therefore cne may speculate that

long range forces between guarks persist, as is known to happen in the

abelian 2-dimensional Higgs model for nonintegral external chazges [61.

2, The SU(2) - gauge theory with Higgs doublet on a Euclidean lattice.

The theory lives on a Euclidean cubic lattice with lattice spacing a ,
vertices x and bonds b = (x,/u) joining nearest neighbor wertices x and x+/&

It involves the Euclidean fields (= random wariables} for the

gluons: U(EJ = u(x,/,()e su{2)
2.1

qq(xl)

quarks: q(x} = (qi(x)

00 )

Higgs scalars p{x) = (¢1 (X),CPI(X)) , 4;’(*) = (¢>*(x)

Guarks and Higgs scalars are both colour doublets. The string bit

variables are used in place of wector potentials in the continuum theory
. _ . - e
U(x,u) ~ exp Lfa’b’“ﬁ\#(b) = tviaA (Ore AR A L (5.9
with Pauli matrices T*,

Under space time dependent gange transformaticns V{x) ¢ SU@2)

i (X,/u) =5V (x) U(x,/,u)\/(xw}& y*
q (x) = V{=)q(x)
b (x) — DbixIV(x)*

The gauge invariant Fuclidean Lagrangean densicy is

Lo (xy= = MG g+ x/z; 3014y, ] u(x,/u)q(x»f/ﬁ)

{2.
- —Iifz.q {cb(x)u(x,/ujd>+(x+/& )+ 'nr} +q5<{)+(x) - U(¢¢+(x))
- plaguette term 2 L {x)- "}(‘i"f’+(x1)
- . . a a
The plaquette term is the lattice version of 4 F/N F;-w \
it has the usuwal H[uuuu]l - form L4%],
Observables are functions
(2.
£+ F ({é(xyq(ﬂ,uﬂﬂ)
of the random variables. Their expectation values
<> = 7' [T adta detn dg(adg oo T (b)
o
b (7.
(e L0 s [=a2

dU is Haar measure on SU(2) and Z is determined by <1> = I,

Transformation to gauge invariant field variables.

We may write ({ep. the early papers on Higgs mechanism cited in

d(x) = perL{bia]

(2.
with L[ Je su@y, #6d= (pr0,0) , pdzo.
This delines LId] uniguely for gencric ¢p(x) und
delermines P{x): [r:j;:{)*y(x]]‘/1 . Uniqueness holds because the
little group of 4: in 8ULA) is trivial
bV = Ve Sufe) ampll(‘s V=1 i} $z0 (2

4}

5}

6)

.8



We may therefore define

Winpu) = L[] u(xpL [ (xein]

- 2.9
Yo = LIPeT 900 2.9)
Under gauge transformations, L[(x)] — v(x)Lld(x] by
definition (2.7), therefore W, 1), w(x), e{) are gauge

invariant.

Remark: W, are often referred to as gluon and quark fields in

a particular (unitary gauge). We prefer to consider them as new,  pauge
iavariant objects. There is no contradiction betwsen both views: Also
the mass is equal to the energy in a particular Lorentz frame and is at
the same time a Lorentz invariant. Consistency comes from trivial

transformation law under the little group in both cases, |

Explicitly, one finds

- ‘i’:“#’l (2.10)
L[&] =p (¢: ¢1)
PuUdb” buept

~1 4)q -
Wy - g ;W) [pfp (o]
(%) PRI e S

$'eq
We have omitted arguments x and x+}1 , for instance
+ A !
PUPT = dx) Ul ) b(xri)” el

€ is the antisymmetric tensor in two dimensions, it transforms

colum vectors into row vectors. Nobody can object to making the (singular)

transformation of variables u,q. 4) = W, Y, P L under the
integral in f2.5), this is just like going from Ca¥tesian to polar

coordiantes under an integrai sign,

Doing so we find that IE is a function of the local gauge invariants

wW,ow, ¢ only.
LY = as (2.2), with W, %, (p,0) substituted for W,q,4.(2.11)

The L-integration may be performed. Taking account of the

Jacobian yields

<E> = Z-'fgdpd’\"d@ Tl-o‘h/ pnve ({C}‘J ‘l}:,\'v’} ) EXPL(‘C‘- U-'-Fa[ )

(2.12a)
where  Uyp (o'} =0 (p*)-Fadapd | = (p.0).
with
Fave ({100,960, U(x,2)]) - average of F over (2.12b)

gauge proup

= [T dv e (4 0avea™, viag o, viou (o vixe i 1)

More precisely, suppose that we are dealing with a finite lattice

to begin with,

We admit arbitrary boundary conditions {(execept that they should

preserve the Markov preoperty to the extent that it is needed to have
Osterwalder Schrader positivity [7])in order not to rule out propagating
colour charged states a pricri. The boundary conditions are allowed to
break gauge invariance, in particular there may be charges at the boundary.
Egs. (2.12) are correct as they stand if F does not depend on fields with
arguments x, resp. b = (x¢4) in resp. touching the boundary of the lattice.
Otherwise, they are true with the following modifications: Averaging in
(2.12b) is only over V{x) for x not on the boundary (put V(x)=1 on the

boundary}, ¥, will continue to depend on L [#0] = L(x) for x

Ye

on the boundary, and there will be extra integrations over L (x) for x



on the boundary In (Z.12a).

For purposes of illustration it will suffice to consider a semiclassical
approximation. Suppose 1}(4ﬂ$+) = U‘(pl) has its absolute minimum
3 a2 ,
at p = A F 0 . Then the action J IE(X) has an isolated
x

absolure maximum a2t

e(x)1 = , Wluml =1 W(x) <o (2.13)

Expanding around the maximum up to quadratic terms (semiclassical
approximation) gives a free field Tagrangean which would in the

continuum limit on Minkowski space describe

particles with interpolating fields
. 2 A+ <A (O ) et
3 massive vector mesons [W(X./U)‘ﬂ}ﬂ" 3 ‘#’{")1 (VA TR (x) ete.
2 fermions Y(x) ~ At (dpq(x) , d>+£q(x)), (2.14)

! massive scalar e )N~ (any " ¢¢+(x):
There is freedom in the choice of interpclating fields, we have used

this to approximate P@) by A in the denominators. ' meams franspose.

All these particles are colourless since they are created by local
gauge invariant fields, It is also interesting to note that they all
admit composite interpolating fields, This matches with the resulrs
of refs, [4] that the model seems to reggeize in the I = 1 chamnel

(about I see below).

To avoid misunderstanding, let us make it clear what the issue is.

We have worked with 2 Lagrangean without a gauge fixing

term (except possibly on the boundary). In such circumstances, the
Hilbert space of physical states is positive definite and colour

charged particles,if they exist, cannot be created by local operators.
Therefore it does not suffice to inspect the fields in the theory,

one must determine the particle content. If all the particles that there
are can be created by gauge invariant fields, then none of them is
colouredf) In the semiclassical approximation, the particle content is
clear, Note,however, that without Higgs mechanism there would be no
glucnoid mass term in (2.11) and hence no isolated absclute maximum

of J:[E(x) , semiclassical approximation would then be unjustified,.
%

Remark : In view of (2.12a) it would seem equally natural to expand
Pl
around the absclute minimum of UEH (?1)‘ 1}q¥ always has its minimum
at 40 . Hence in this approximation, the Higgs mechanism always
takes place {for lattice spacing a > 0) independent of how V looks.
Lt is however costumary to use integral representations [15)}
* *®
p(x) e [dg (s xyexp - B e % (%)

and to treat the effect of the functiocnal determinant Trp(xf as

o scalar Fermi field

radiative corrections which are neglected in the semiclassieal

approximation.

The model has an 8U{2) flavor symmettry group besides the colour group, i.e

). R .
This is our definition of a colourless particle, and it should be true

in any reasonable definition of a colourless particle, It implies thac
its physical states are invariant under global, space time independent

gauge transformations.
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the global symmetry group of the Lagrangean (2.4) is SU(2) x SU(2)
) This pives us the flavor isespin 1 of the phvsical parlicies
Only the Higgs scalars are flavored, while quarks and gluons carry no

vector mesons: L = 1, f{ermions: I =+, scalar | = (. (2.18)

a1 -

flavor. This symmetry is present already {f we emit the gauge fields:

We emphasizc that despite the formal similarity of Eq. (2.17} with
Consider ¢ as a real 4-component field, then global S0(4) - symmecry P P Y 4

. . I , . 2.3) the remainin lebal SU(2)-symmetry has nothing to do with
is obvicus since only bilinears 4>(x)¢(3-)+ appear in the Lagrangean. ¢ ) €& (2)=sy ’ &

. . \ . . colour but is a flavor symmetry which was there from the beginnin
Sinece SU(2} x SU(2) is a covering of SO{4) we may consider it as ¥ ¥ g &

. . in addition to colour symmetry.
the symmetry group just as well. Adding the flavoriess gluons makes e 7

- . . We see {1 Eq. (2.18) that th hygical particl h quired f1]
: one of the SU(2)-ideals into a gauge symmetry of the ?nd kind (colour) s ae om Eq. < ) 2 ¢ paysic partieles have acquire aver

: , B , from the Higps scalars, since ti screened their colour b mbinin
: while the second SU(2)-ideal is preserved as a global symmetry group. e ggs sea » ey sc err co Yy combining

: with Higgses, compare Eq. (2.14) for the interpolating fields.

To exhibit the transformaticn law, let us collect the Higgs fields

ina?x? matrix Let us supply the demonstration that the Lagrangean (2.4) is indeed

flavor symmetric. Since w‘(b) e SU(2)  we may write w’(xyu )= exp iaf %’1_3;_‘(;‘)

*
& = d)' " with B having isospin I = 1 . Then
d;: ¢1 (2.15) \ ) ) )
T euxue (xria) +hec =?'.—P{X)?(X"'}.‘)[W(X./J)+W(XZI,U) L‘
= o = 2 V.
With this notation, L [¢00]= PHY E () o [%#§§+]’/z = p{x)p {xsu)cos af {Bﬂ(xﬁ v
since (TE - By . The ah.s. only depends on B and is

The transformation laws under (VI,VZ} € SU(2) x 8U{2} read then
therefore invariant. A]ternatively,[\«“ W*]ﬂ:hw ,cp. after Eq. {2.16)
-1
colour 8U(2)  &(x) =V, (), ulB)=v, Ul q()>V q(x)

flavor su(2)  F(0 = SV, , UB)=UB), g{x)» q(x) - e Conclusion:
Lesson No, I. The physical particles are colourless: Colour confinement
The colour transformation law of & agrees with (2.3} since \—,;'gvn ’\,—fa;,\/u Lesson No, 2. The physical particles carry flavor acquired from the
for any V= (qu} e SU{Z). Higgses. There are no states with the quantum nuwbers of the quark
From this we deduce the transformation law of the gauge invariant (spin% » 1 =0), since according to (2.18) half integral spin goes with
fields under flaver SU(2). half integral isospin: Quark confinement. The physical particles

are created by composite interpolating Fields (2,14).

WY > W B Y0 V) L e s p(x) 2.17)



Generalization of the model.

With an SU{2) gauge theory one cannot mimick the real world completely
because it is not possible to make a colour singlet out of three quarks
in the fundamental representation of colour SU(2). It is nevertheless
instructive to consider the generalization of the model which is
obtained by giving flavor to the quarks; the medel then resembles the
real world a little more. Thus, instead of one quark colour doublet we
introduce two of them, qI and q2. We group them into a 2 x 2 matrix

q = (q L) , t=1,2 (flaver) a=1,2 (colour)

and we continue to describe the scalars by the 2 x 2 matrix introduced in

(2.15),
* .
g~ (% M) <2
L *
In addition we have the striag bit variables U ({b) € Su(2) as

before. The symmetry transformation laws are now
colour-8U(2) %(x) -V, P (x) ; U(b) e V{u(b)";_' gy = Yq0) .
Elavor-51(2) & ()= $Ivy 5 U(B) = U() | g0 q(xV,’
The Eucglidean action may bhe taken to be
g (x) = -Mk gx2q060+ K% +r§(x){!+}g'ﬁ'] u(x,/u)q(“/:)
N +
S E ET o Ul B0y - Fe08p0} - (4 EEC)
o
SRR IRIC TR

it is cleary invariant. The last term is included to break still higher

symmetry. The analysis of this model proceeds in the same fashion as before

and is left to the reader. One finds that the physical fermicns will have
integral flavor isospin while the quarks had half-integral iscspin.

Otherwise the conclusiong are the same as before.

3. Higgs models with special features.

The model of Sec. 2 had properties
@ No massless vector mesons survive the Higgs mechanism.
The Lagrangean could be rewritten in terms of local gauge

invariants.

We note that it is always possible to rewrite gauge theories in terms
of gauge invariants, as has been shown by Mandelstam, but usually

this introduces nonlecalities threugh the appearance of variables

X
like [exp L]Af‘(y)djfu]%(x); [r1a].

The criterium for validity of (&) is well known: Combine all Higgs
scalars into one row vector 4>and let H the connected component of the
stability group of ¢ in the gauge group G . Then the surviving masslesgs
vector mesons transform according to the adjeint representation of H .
There are none if H is trivial, i.e. if $V = ¢ implies V = 1 for

infintesimal gauge transformations V and generic ¢ .

To have , one must be able to define L[¢>(x)] uniquely through
Eq. €2.7), with ¢ a suitable gauge invariant depending on ¢ . This
requires that ¢V =<  implies V = 1 for arbitrary finite pauge

transformations ¥, and generic 4)

Condition is stronger than @) , it requires that the charges of

the Higgses match so that they can screen all colour charges locally.

Example: Lattice QED (gauge group U(1)) with spinor fields of electric
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and letting X- o0 still gives <¢>=0 in contrast with (3.1),

This has recently been shown by Liischer [8] and independently the
charge Q = 1 plus Higgs scalars of charge ? satisfies (&) but viclates

i authors of ref., [91].
since 4)\/:4: {ov‘ Vo= exp oy .

In view of all this one would better speak of colour confinement instead
We shall append some comments on the physical meaning of the Higgs :

of colour symmerxy breaking., This view is also supported by a result of
mechanism. IT IS SAID THAT Higgs mechanism means spontanecus breakdown

Swieca [10]. He showed that absence of massless photons implies absence
of colour symmetry; if @ holds one has complete breaking. We only

of charged particles in an abelian gauge theory,
consider this case here.

THIS IS TRUE in the sense that no nontrivial symmetry is left to act on

It would be extremely important to extend this result to the non-abelian
the physical state space.

case, even from a phenomenological point of view., While one is not so sure
BUT breaking is very different from e.g. ferrcmagnets at T <TC:

about quarks, it is certain that there are no massless strongly interacting
There are no Goldstone particies - no long range correlations (mass gap!)

» gluons as real particles in nature. If the non-abelian version of Swiecas
- no degeneracy of the vacuum ,

theorem were true, this would leave a clear-cut alternative: Either coloured

quarks do not exist as free particles, or QCD is wrong.
In a FERROMAGNET at T<TC one may cowmpute a state ¢ through

- . . . . : ¢ . .
w{A)=<AY = Z " AePH with symmetric Hamiltonian B (no ext. Now it may not be clear how to cbserve colour, since there is no gauge

. . s . . i { 1 i CH
magnetic field, free boundary conditions), this gives w(?) - 0 invariant lecal colour charge density, However, absence of colour alsa rules

for the spin variables § . But the state e is impure (" degeneracy of the cut the existence of guarks with non integral baryon number: Under a baryen

. : . t £ i fi
vacoun’} :  w = fdﬂé., ws (F labels possible directions of the number transformation a field or state of baryon number B transforms as

AR .
magnetization) and Y > ge . In particular, for quarks q = qezm“’@' CIf o
op (Fy - mz R manlkzo‘%‘.o" $0 . (3_|} is integer, then this is idemtical ro the action of a transformation in the

The Pure slades o can be consfruchedd %j Gdo{.'v‘g an external mﬁﬂhd—‘\: center 7, of colour-5U(3), i.e. it is a gauge transformaticn. [[“ other words,
<

.F[g!d Y and Edh‘ng W 0, the global symmetry group is not the direct product of colour and flavor

. . ,
In a HIGGS model with free boundary conditions one alsc obtains syametry groups, even though the same is true for the Lie algebras! ]

<bs = <4’ave > = 0 from (2.12). But adding L'chfa(x) tofE Thus B must be integer if ¥ is gauge invariant. Similarly the flavor

group SU(3) x U(l) contains a subgroup Zsin common with the gauge group.

charm

- This leads to flavor=SU(3} triality zero for uncharmed particles in the
*)NB: We are talking about the statistical mechanical system defined by fE

same way, and s¢ on.
without a gauge fixing term in a lattice gauge theocry.

These considerations also show that one only need consider the action

of the center of the gauge group to see whether there is quark confinement,



We have seen that condition is somewhat stronger than (&) .

What happens 1f @ is true but B is not? Leocal screening of charges

is then impossible. On the other hand, if the non abelian generalization
of Swiecas theorem were true, one would expect that colour confinement

still takes place. We will come back o that in Sect.5.

4. Cooper palrs in quantum chromodynamics.

We now turn to the consideration of quantum chromodynamics (QCD) with
Euclidean Lagrangean (1.}) in continucus space time.

We note that the Coulomb force (1 gluon exchange) is attractive between
two quarks qi, qj in a relative 3% colour state. This is so because

3% is the antisymmetric X-spinor representation of SU(3}, the pair consists
therefore of two quarks with different colour 2 # b , and the sign of the

Born term is given by Fig. 1

= % y (Q*‘-b) . ([‘.;)

We assume that this leads to the formation of diquark and anti-diquark

Cooper pairs, and that the physical vacuum (= groundstate of the

Hamiltonian) contains a finite and equal density of them. They are colour
triplets transforming according to 3" resp, 3 representation of colour SU(3).

Effective Lagra

According to the rencrmalization group philosophy [11] one may(in principle)

- 18 -

compute from {1.1) UV-cutoff effective Lagrangeans o[t#which describe the
same physics at distances £ > o . The UV-cutoff may be introduced through

a lattice, with lattice constant a.

As a consequence of Cooper pair formation, we may expect that corresponding

scalar fields ¢ appear in "{‘-ff'

W 14 Y \ ! . £ 0O 4,2
‘i’l = Cot,ﬂ q;xq/‘; H C = iCy = (o 5-') ( )

in o basis where y, it diagonal

£ = antisymmetric tensor in two dimensions, X is the vector product
in 3-dimensional colour space, o(,,/s are spinor indices. Because of

Fermi statistics

$h - -t

(4.3)

Bacause of gauge invariance of the 2nd kind, ¢ must appear coupled

to the gluons. The effective Lagrangean might look scmething like

'ceﬂ’(") = ‘M-:j Eiqj + K/ZQL §L(x}[1+%]u(x_ﬂ)qi(x+/;)
- K/% $*(x) u(x./u)¢f(x+,&)+ -u(¢i¢f*) (4.4)
b st dem - £ ] aixal -]t
sy logecic bom - £yl q) - 9]
Herein u(x.ﬂ) € SU( ) ilour 43ij . §L are row~3-vectors in

colour space, w ¥ §  §’ depend on a with K- 0 , f'— 00 as awo .

The last term in the Lagrangean incorporates the information that the



colour SU) S (x) >V () (x), g &)=V (x)q{x), u(x,/u) =V (x}u(x,,u)l{(x»«/&)q(a)

Cooper pairs are made of two quarks. The effective Lagrangean could be

‘ /
. . : v X )= U(x,
much more complicated, but its precise form is not crucial For what flavor sU(3) §(X)—:' <£(x)\/1 ! Ci(")*‘?(") 2? Ll( /u) L{( /"‘) (4.3) (k)
— el Lol
follows, baryon U({I} é(x)""e ‘5{"} ,q(x)“’e q(x) . u("./‘)"u(x-/u) (<)
Transformacion to gauge invariant field variables
The model (4.4) has properties @ and of Sect. 3 provided vl’ stands for the transpose of Vo o o= T,
J
i) there are at least three flavors For generic ¢, rhe 3 x 3 matrix & will be non degencrate, det S+ 0.
ii) the colour group is SU(3). Any such matrix can be uniquely factorized in the form
If there were less than three flavors, there would be at most one %(x) - S(X)G’(x) S waitary, @ = o* .0 (4.62)
Higgs triplett because of Fermi statistics. But then ¢ =V would be
£ iz £ 1 -5U d th iteri \
true for at least an SU(2) subgroup of colour {3), and sc e criterium The unitary matriz 5 may be used to define L[‘i’(x)] wiquely by
for (&) would not be satisfied,
If on the other hand, the colour group were SU{2) or UG({I), then S(xy =L EIR ei(pn’S (_TN(P‘,,- . Lideale sufad) (4. 6b)
weuld be violated because the Higgs scalars camnot locally screen the
colour of quarks. The trivial representation of SU(3) is contained in the .
Under a gauge transformation
Kronecker product 3@ 3® 3 , but the trivial representation of SU(2) L L@(’”] . v, (x) L [t‘;E(x)]
is not contained in the Kronecker product of any odd number of fundamental . , \ .
Therefore we may define new gauge invariant variables by
representations of SU(2). This follows by considering the center of the
-1 -{p(3

gauge group. Similar statements hold for U{l). P(’() = L[E] $6) = e o (x) ("’“‘?’“", o(x3%0) 4.7y

5 (0 = L[201 g (x)

For simplicity we consider first the model with three flavors i =1,2,3.
— - .
- There are then three colour tripletts of Higgs scalars, and three colour W(X,/A) = LI&E] U(X./U)L. id (¥+IU)]

tripletts of quarks. We write (,‘o;: £ ‘qubl and introduce 3 x 3 matrices
a

All of them are 3 x 3 matrices. Since the change from old to new
. » . . B . . i )
§ - (f’f, ‘) , é!' - (qb" ) , 9= (q ") . q - (q t a) 4.0 variables may be viewed as a gauge transformation, the Lagrangean
a a a .G
' retains its form when rewritten in terms of the gauge invariant

. . variables
The transformation laws under colour and flavour transformations are then
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Ie’# (x) = as (4.4) with p.5, W substituted for b.q,U.(4.9)

Let us now determine the transformation law of the new gauge invariant

variables under flavor-SU(3). From (4.6) and {4.5b) we see that

! r
S(x) —- S(x)\/zr . o(x) Vz"cr(x) v, (4.10)
hence

LIEoo] — Lidoly

From thls one find: the transformation law of p.E, W

Jey —»V;ﬂ p(x)\/z" . E(x) > v, E,(x)\/l’ ; ‘A/(x,/u]*\/;"'\r\ffx,ﬁ)\/l’

Thus p and § contain singlets and octets, while W contain only an
octet because def W = e,xP-}an\ﬂ/ =1 . This is as expected
intuitively, considering that the Higgs scalars carry flavor, and the

screening will therefore alter the flaver of quarks and gluons.

Up to this peint, the discussion of the model (4.4) vuns exactly as in
the 5U(2) model of Sect. 2. Assuwing U is such that the Higgs mechanism

takes place with no surviving massless vector particles,

. * .
viz, < (QQ )L1>=S;J->\ with 27 0 | the sawe conclusions

are reached as in Sect. 2, viz. quark and colour confinement.

A new problem appears however when we consider baryon number.
It might appear from (4.6) that the transformation law under baryon

group (4.5¢) is

LId=T - Libxy] @ > (p+ 3 wﬁwu %(x)—v eidg(x) (h11)
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i.e. the [ -{field carries the same baryon number as the quark field.
This contradicts the statement made at the end of Sect. 3 that gauge

invariant fields would have to transform trivially if o/fom = 4 ,1:3.

assuming they are covariant under baryen U{1). In fact , (4.11) is
incorrect becanse it violates the constraint (4.6b) on @ | -W< e w
it ol=-w .. w . This constraint L5 necessary in order that

LI (0] is uniquely defined. We conclude that variables § (and

also p, w ) do not transform covariantly under baryon U(1}.

There is a related problem. Suppose we start with a configuration

of variables %E(x) C gy, U which is smooth in the sense that
the variables change very little from one lattice site x to a neighboring
one. The new variables may thep still be very discontinuous because ¢ may
jump by 2w, and E".Waappears in (4.7), whereas o= (‘E*‘f’ ):’[l is smooth.
This suggests that expectation values of preoducts of these variables will
blow up when the continuum limic a -0 is taken, and so they have no
correspondence yet with interpolating fields of physical particles.
Objects which can be expected to have a continuum limit are functions

of the variables (4.7) that can be written as monomials in the original
gauge variant variables, this 1s in accord with the conventicnal

wisdom that norma! products are the only functions of fields that can

be given meaning in the absence of cutoffs (in>» 2 dimenslons). Such cbjects

are for instance

P(xf\n"(x,u}?(!) = &(x)* L{(x,ju)f(x) {gluonoids)
P(X)* E(x) = %(’d*qfxﬁ (baryons)
Q(X)* P(x) - @(x)*ci).(x) (sualars)

etc.
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All of these expressions are matrices with entries indexed by
flaver indices i,é, so they are flaver SU(3) singlets and ootets
moreover they all have integer baryon numbers. In particular the

fields ";L’k(x} = 4 §*(x)q (x)')\k create the baryon octet,

The real nature of the problem of baryon number becomes apparent when
we notice that the Lagrangean (4.9) is expressed in terms of variables
(4.7)which satisfy a constraint. The dangerous constraint is the one on ®,
it says that ei@ takes values in the circle §%. It is rotated arcund
the circle by baryon U{l)}. Such a situation is familiar from the
nonlinear ¢ -model, it brings about a danger of spontanecus breaking
of baryon number conservation (corresponding te spontanecus magnetization
in the XY-model = nonlinear S0(2)- ¢— medel}, Spontaneous symmetry
breaking is not inevitable, as is shown by the example of the 2-dimensional
X¥-model. Whether it takes place could only be answered by computation of
the effective potential as a function of the variable conjugate to
an appropriate external source carrying baryon number f121 + The present
state of the art does not allow to perform such calculation, Quasicliassical
approximations in (4.4} or (4,9) are useless because they are inconsistent
with the composite nature of the Higgs scalar (they would approximate

* *T
g=0 % <P Er=ALAE0 while cpr\-qcf ) or, equivalently ,

with a large value of F' in (4.4).

Of course, in order to decide whether a Higgs mechanism takes place at
all onme would have to compute appropriate effective potentials also,
starting from the Lagrangean (1.1) with source term J(x)irxb*(x)¢%x);

iven by (4.2). Such computations are unfortunately equally unfeasable.
g
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So far we have considered three flavors. A fourth flavor charm can be
added without diffieulty, there will then be an extra quark and anclher
triplett of scalars ¥ LIE ] is computed as before in terms of the
uncharmed scalars%,there is then no problem with charm conservation.

A problem would arise if we would insist on exact SU(4). However, if
SU(4) symmetry is broken sufficiently strongly in the QCD Lagrangean
(1.1) already, the question of spontaneous breaking cf SU(4) will not

pose itselfl.

3. Local Higgs mechanism in non abelian pure Yang M{lls theories.

We hope to have convinced the reader through the study of the SU({2)-model
in Sec. Z that a Higgs mechanism is a natural way to confine colour.

We have studied the possibility of making Higgs scalars from two quarks,
Now we will ask ourselves whether one could instead make the Higgs scalars

from gluons rather than quarks.

Let us consider a pure Yang Mills theory with colour group Su(3).
The Euclidean Lagrangean is

,fE(x)=_L2Jﬂ- F o= %}Av—av;\ﬂ_T{[A VAT 5.1

!:;UV F;{AV » #,n;

0f course the Lagrangean is to be considered as a function not of the
field strengths 5;v but of the potentials Aﬂ' We would like to rewrite
this Lagrangean in terms of gauge invariant variables without detroving

locality. For this one needs scalar fields $ to fix a gauge frame,.

However, since JE (x) = o when Eh” (x)=0 , we do not need



$(xy+o0 everywhere, but only in regions of space time where 5hp(x)+ o

Therefore one can abandon the requirement that the vacuum expectation
» - .

value of ¢ (or better $ ¢ ) be mon zero. This leads to the concept

of a "local Higgs mechanism', which is a variant of the idea of local

phase transitioms introduced by Hambu.

Coleur carrying scalar fields can be made from field strengths, e.g.

ab a b . c
$°0 = d ] (IFy () g & SnTA . Fp Fyurace (5.22)
KO0 = e xGX wh oy = F, R Fop - race (5.2b)
and so on.
For a given x let us call the field strength temsor F/‘uy (=} generic
if
(5.3)

udeou ' = e, uxu- x(x) , ue Su@)

implies Ue Z, = center of 3U(3)

So long as we restrict attention to the pure Yang Mills theory without

fermions, we may consider (3 = SU{B)/ZS as our gauge group,
Eq. (5.3) say then that the little group of (§(x),'x(x)) is
trivial,

There is an important special case of a field strength tensor which is

not generic, viz

F/:v (x) = oﬁw(x)],,_c(x) for aft 2 {5.4)
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so that the field is abelian at x. In this case the 3 x 3 matrices &(x)
and %(x) can be simultaneously diagonalized by the action of a gauge
transformation , and the condition (5.3) is fulifilled for the
diagonalized matrices ¢,y for Ue s(u(«)x Wiy = u{n) = subgroup

of diagonal matrices.

It follows that generic field strengths do not exist in two dimensions,

because (5.4} is always true there with o!/w {xy = e/uv

A sufficient condition for genericity of F,, (x) is that ¢ (x) has
distinet eigenvalues and none of the off diagonal entries of % (%)
vanish in the basis where & is diagonal. We call a field configuration
generic if F;‘uv {x) is generic for all x except on some lower
dimensional subsel of space-time. It seems reasonable to expect that

in more than two space time dimensions the measure in the Euclidean

path integral is concentrated on generic field configurations, In other words,

nongeneric field configurations have negative infinite entropy.

The further preocedure is now the same as for any Higgs wodel satisfying
conditions (& and(®) of Sec. 3. The space of pairs (@(x), x{(x1)

is decomposed into orbits under the gauge group, and one selects once and
for all one representative (g}:S,';() out of every orbit. It follows that

there is a gauge transformation L{x) such that

=L E LG0T, (Y= LE oLy (5.5)

If l;w (x) 1is generic, then L(x) represents a unique element of
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G = Su(s)/z, and we may defi“e*} _ vector particles (possible very uastable ones). For this one does
not really need s finite density of Higgs scalars in the vacuum, i.e.

B/“‘ ('x) - L(X)AA/"‘(X)L(XB +i’ L(X)A%“ L(x} (5.0 everywhere, but one needs them only where the gluons are, i.e. in

G{uv (x} = %(ABV —gv B/u -f [B,M,B,,] space time regions where fuv (xY+ ¢ . This is consistent with a

composite nature of Higgs scalars as described in Eqs. (5.2). it is

These quantities are gauge invariant. [p can now be expressed in terms therefore tempting to speculate that gluons in non-abelian gauge theories

of these new gauge invariant variables as promised, viz. can screen their colour and acquire mass Lhrough such a "locat Higgs

mechanism’.

L)

L 60 —5J~G/J a (5.7

Quarks_

The potentials IB/“ must satisfy certain constraints, eg. G/,w wa"'r‘ =d for Suppose this is so, what will then happen whern we add quarks to

some £ - If we are only interested in classical solutions of the field the theory? Standard jore 1137 suggests the following speculations.

equations in Minkowski space, we may impose almost all of these constraints Higgs scalars mod’eo{giuons have triality zero, and so they cannot screen

> By
through introducing Lagrangean mulripliers. For instance, to define ¢ the colour charge of the quarks locally. Tn other words, condition ®

»

A 4
we may require that ¢ is diagonal and the off diagonal entries Xy o Xy of See. 3 is violated while {A) still holds for the complete theory.
are real. (This determines L{Xx) up to elements of a discrete subgroup of G.) I1 the generalization of Swiecas theorem mentioned in Sec. 3 is tLrue we
To impose the first ceonstraint, we may add a term must expect that colour confinement will still cccur under these

circumstances, On the other hand, since the coleur charges of quarks cannot
‘E%Zb /"‘q!_-,(") (G}N (X)G%(X})ba. (5.8) be locally screened, it is supgested that there remain long range forces

between these quarks. This view is supported by recent results of Callan,

te the Lagrangean with multipliers /“ob(") , and similarly for the second Dashen and Gross [6] for the 2-dimensional abelian Higgs model where
" constraiat. Validity of this multiplier methed in Euclidean QFT would require it is shown that long range forces between external charges persist
a special investigation. in the presence of the Higgs mechanism, for external charges that are not

integral multiples of the Higgs charge. Now a force field mediated by
Higps mechanisms can be pictured as screening mechanism in which coloured gluons cannot enter far into a space region where there is a2 finite
gluons combine with coloured Higgs scalars to form colcurless massive density of (sufficiently many kinds of) Higgs scatars, On the other hand,

extended areas with nongeneric 5“ will cost a lot of entropy according

* . . .
)There is a problem here coming from the fact thar L(x) need not be confinuous

(and differentiable) even if %J(' are. We will not discuss the topological aspects

————— - - of-pauge- theories which are connmected with €his face T



_29_

to our previous hypotheses because F/.w is forced into a lower

dimensional subset of the field manifold. This leaves us with the
possibility of a string joining the two quarks, with a line in the middle

. a . . . %
along which F ig large but non generic - for instance abellaﬂ.)

/Uv
The field configuration might then look something like Fig. 2.
{In Wilsons Cargése lectures [14] an alternative argument is given why

finite coherence length (gluoncid mass) leads to formation of strings] .

Fig. 2
Gluon-String BA [4.x)
i f/// AP i
7 ’/ /t/////,g,
PV /’///z/ o
74 %
A ¥
/// - -
- -
/’/ /’ N N
7 l'v \.:‘ -
7 L L AR, o
1=0

[cbx] Higy's field, B: Gluon field N)iz‘uf,ﬂk,dfﬂw

In contrast with individual quarks, the colour of any object with

triality zero (e.g. quark -~ antiquark, threewquark) cam ke locally

screenad by the Higgs scalars. This may be reSponsible'for saturation of

forces and absence of exotics.

*)
The situation resembles magnetic monopoles in a superconduetor

and the "dielectric model" of Susskind and t'Hooft [16]. A list of

references to string and bag models is found in [17].
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