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Quark and Colour Confinement through Dynamical Higgs Mechanism 

G. Mack 

II. Institut flir Theoretische Physik der Universitat Hamburg 

Abstract: We suggest that quarks and colour can be confined 

through a dynamical Higgs mechanism. Two possibilities can be 

thought of. J. Quarks may combine to scalar diquark Cooper pairs 

which then condense into the vacuum. Quarks and gluons may 

then screen their colour by combining with the Cooper pairs to 

form physical particles. 2. Instead of quarks, the Higgs scalars 

may form out of gluons, and screen the colour charge of gluons 

(and anything with zero triality) by a "local Higgs mechanism". 

In this case, long range forces between quarks are expected to 

persist. 

Sect. 2-4 are based on a lecture presented at the topical conference 

on Quantum Chromodynamics at Chania (Crete) . June 1977. 
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1. Introduction 

It seems attractive to believe that strong interaction dynamics is 

described by a nonabelian gauge theory of quarks and gluons with colour 

g;roup SU(_J) [1 }. The colour group extends to a gauge group of the 

2nd kind due to minimal coupling of an octet of flavorless gluons, 

while the quarks are colour triplets with an unspecified number of 

flavors. The Lagrangean density 

,[."' -J: fr ~Yr;f'Y_,:qi.~/"'":D~'q~- MLjCj~qj 

where 

'j.v '~Av-dv~ -if[A).,A"J- D/' , ~- <f'). A~.!..)..CAC 
? 2 ? 

It is hoped that the Lagrangean (I. I) leads to quark and colour 

confinement, so that all physical states are colour singlets. If so, 

(I. I) 

there should exist an effective Lagrangean which describes the interaction 

of the low mass physical states at not too high energies, and which involves 

only colour singlet fields, (It would have an UV-cutoff and could be 

quite complicated but local to the extent that the cutoff permits). The 

problem is to derive it from (1, 1), More generally, the question arises 

how one can produce a Lagrangean involving only colour singlet fields from 

a gauge field theory such as e.g. (l,J) 

Notation: We use letters a, b (== 1,2,3), c ("' 1 ... 8) for colour 

indices, i.j, for flavor indices, C:L, (3 · for spinor indices, and 

~,v for Lorentz-vector indices. Minkowski space metric is -+++, Quark 

fields 9i""'(9;i) while A;. are the glu~n potentials. Summation convention 

is understood; often we use vector notation in ]-dimensional colour space. 

The bracket [a,bJ will stand for antisymmetrization in indices a,b. ).,care 

Gell Mann's 3x3 matrices, fthe coupling constant. For references to the 

IJiggs-mechanism see ref. [21. 
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In this paper we call attention to the fact that a "complete Higgs 

mechanism" with no surviving massless vector mesons achieves just that, 

at least if a further condition is met which guarantees that the charges 

of the Higgs scalars in the theory match with the charges of the other 

fields. We demonstrate this in Sec. 2 at the example of an SU(2)-gauge 

theory with a quark doublet and a complex doublet of Higgs scalars on 

a lattice. This model possesses a global SU(2) flavor symmetry in 

addition to the colour SU(2) symmetry, a fact which apprears to have been 

overlooked in previous discussions lzl. 

We present heuristic arguments that there is quark and colour confinement 

in this model if the Higgs mechanism takes place. All states are colour-

less, and none of them has the quantum numbers of a quark, even apart from 

colour, In particular, the "quark field in the unitary gauge" creates 

states which do not have the quantum numbers of a quark. Intuitively it is 

easy to understand what happens: The quarks screen their colour by 

combining with Higgs scalars. But since the Higgs scalars carry flavor, 

also the falvor will be changed in the process, 

The lesson from the model cannot be carried over in a straightforward 

fashion to the QCD Lagrangean (1, 1) because that I.agrangean has no Higgs 

scalars in it. The next simple possiblity is then to imagine that Higgs 

scalars are formed dynamically, 

As a first possibility we imagine the formation of scalar diquark Cooper 

pairs [3] in a colour • 3 - state. They could be bound by Coulomb forces. 

tbese are attractive because the diquark consists of quarks of different 

c.olours, The Higgs mechanism would then provide for condensation of such 

diquarks and antidiquarks into the vHcuum. Quarks could screen their colour 
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for instance by combining with a diquark Cooper pair to a physical 
. . I . . . . *) thus so far no explanat~on of l1near y r1s1ng Regge traJectorteS. 

baryon. Similarly the gluons (or string bits) could screen their A mildly encouraging sign is that the SU(2) model appears to 
charges to form a flavor SU(J) octet of gluonoids, presumably they are show signs of Reggeization in the I I channel [41. 
all multiparticle states since at least four quarks are involved. 

Assuming that baryon number conservation is not spontaneously broken Also \ife have no natural explanation of the absence of exotics, 
in the process one will again have quark and colour confinement in the Why are exotic objects which involve more than one Cooper pair 
same sense as for the earlier model. multiparticle configurations and not resonances? Besides one might fear 

strong violation of SU(6) for baryons: The octet can be made from a 
Note that it is essential that the colourgroup is SU(3). The mechanism quark and a Cooper pair, but to make a decuplet requires flip of spin and 
would not work with SU(2) or U(l) colour group because the charges of flavor (UVW)-isospin inside the Cooper pair. We can only hope that this 
the Cooper palrs would not match then with the charges of the quarks will not cost too much energy given that the gluon forces are flavor 
in such a way that a local screening of colours is possible. In other independent. 
words, the Kronecker product of 3 ® 3 ® 3 of three fundamental 

representations of SU(3) contains the singlet, but the analogous In conclusion we have not arrived at a fully satisfactory picture in 
statement is not true for SU(2) or U(l). It is also essential that there this way. But the considerations show that the Higgs mechanism has 
are at least three flavors, otherwise there are not enough Higgs scalars potentialities that h3ve not been recognized before. 
to prevent surviving massless gluons. 

One may hope that the Higgs mechanism is capable of generalizations that 
The condition of no spontaneous baryon number nonconservation turns out have not been found and explored yet. In particular, colour confinement 
not to be trivial though. may always be thought of as a Higgs phenomenon in the very wide sense 

alluded to at the beginning of this section. 
There are further problems with this scheme in that it does apparently 

not explain some outstanding features of the real world in a natural In the last section we present some speculations what the hoped for 
and obvious way: 

generalization of the Higgs mechanism could look like. It is suggested 

to make coloured Higgs scalars out of gluons instead of quarks and to 
We do not know whether there are strings hidden somewhere, and there is have the gluons screen their colour and acquire a mass through a 

~)The matter is complicated by the fact that the response to static 

and time dependent external electric fields may be very different as 

in superconductors. 
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"local Higgs mechanism", which bears some resemblance to the local 

phase transitions proposed by Nambu [5) , Such Higgs scalars cannot 

screen the charges of quarks locally, therefore one may speculate that 

long range forces between quarks persist, as is known to happen in the 

abelian 2-dimensional Higgs model for nonintegral external cha-r.:ges l61. 

2. The SU(2) - gauge theory with Higgs doublet on a Euclidean lattice. 

The theory lives on a Euclidean cubic lattice with lattice spacing a , 

vertices x and bonds b "' (x,f'-) joining nearest neighbor vertices x and x+f 

It involves the Euclidean fields (: random variables) for the 

gluons: u (b) u(x,!')' SU(2) 

(2. I) 

quarks: q (x) (
q,(x)) 
91 (x) 

Higgs scalars <j>(x) < (</>,(xl,<J>,(x)) , (
</>*(x)) 

q/(x) ~ ~'*(x) 

Quarks and Higgs scalars are both colour doublets. The string bit 

variables are used in place of vector potentials in the continuum theory 

U(x,/')- <-xp cjJb.l'~.(h) 1 + La.A!'- (x)+ r t.q_ " 
, ~= 7Z-,::A,u 

with Pauli matrices 'l"". 

Under space time dependent gauge transformations V(x) E: SU(2) 

Ll(x.F) ,_..,.. V(x)U(x,/ ... )V(x+1~r
1 

'i (x) ~ V(xlq(x) 

<:}(x) ,.____,,. 4>(x)V(xft 

( 2. 2) 

( 2. 3) 
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The gauge invariant Euclidean Lagrangean density is 

£G(x)~ -M~(xlq(x)•KJ' <j(x)(H-~f']u(x,f')q(x'fl 

- p: { </> (x) U (x,F J<Pt (x.;) > he}+ .j,q/(x) - V ( </></>+(xl) 
? 

- p/o.9u."'He -l:errn '1:, (x)-V(<j>.j,+(xl) 

The plaquette term is the lattice version of 

it has the usual -lv-[uuuu] form [14- J. 

Observables are functions 

F < F (f<J>(xJ.q(x), U(b)) 

..L p a. p"' 
4 )'-" ?'Y 

of the random variables. Their expectation values 

,F-,, z-'JTJd<fo(xld<J>'(x)di(xldqVJydu(b) 

e({ })'-"pfls(x) 
X 

J = 
X 

at,..Z 
X 

dU is Haar measure on SU(2) and Z is determined by < l)"' !. 

!"C. ail.§ ~o_r~<l t_ i ~JI!_ _ t ~J _g~n:_g<;- j n_v': r_i~c~ t _ ~ i_e _19 _ y~ t:_i!l_!?! e_s _.__ 

(2.4) 

( 2. 5) 

(2. 6) 

Vie may \.Jrite (cp. the early papers on Higgs mecbdnism cited in [2}) 

<j>(xJ = </>cnL[</>(xl] 
(2.7) 

w;lh L[ ]c Su(2), 4>cxl~ (~(xl,O), p(xho 

Thic, tkfim·s L l<PcxJ] uni'l!:!.~_!:x_ for gene-ric cj:>(x) C~nd 

ddcrmines ~(x), [rpc:p+-(x)]'h. . lltliqueness bolds hec.luse the 

liltll' group of cp in SU(~~) is trivi_,·;\ , 

,j,v <P VE $L!(2) tmp)oe"- 1/= 11 ·I <1> + o (2,il) 
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We may therefore define 

\J(x,j')" L[<}(xl( u(x,f')L[</>(x•fl] 

1£'(x) ~ L [<}(xlr' ~(x) 

Under gauge transformations, L[cP(x)}-V(x)L[<}(xl] 

definition (2. 7), therefore ly./ (x,_?) , 'IY(x), f(X) 

invariant. 

(2,9) 

by 

are gauge 

~: hi, Y are often referred to as gluon and quark fields in 

a particular (unitary gauge). We prefer to consider them as new, gauge 

invariant objects. There is no contradiction between both views: Also 

the ~•ss is equal to the energy in a particular Lorentz frame and is at 

the same time a Lorentz invariant. Consistency comes from trivial 

transformation law under the little group in both cases. I 

Explicitly, one finds 

' ( q,•-1>,) L [ </>] " ~- q,~ ,P 
' ' 

"¥(<)- ( (.Pq ) 
,J,+ ' 

"' 'q 

_,(q,uq,+ 
w(x,?)~ [p(xlp(x';;<l] q,•, uq,+ 

We have omitted arguments x and x+;! J for instance 

<j>uq,+. o/(xJU(x,,u).P(nJ</ ek. 

(2' 10) 

.pu,-•q,+ ) 

<P+t u t-'4> ... 

E is the antisymmetric tensor in two dimensions, it transforms 

column vectors into row vectors.JNobody can object to making the (singular) 

transformation of variables U , q , <j.> .._,.. \...,!,'tv, p , L un'ler the 

integral in (2.5), this is just like going from cartesian to polar 

coordiantes under an integral sign, 
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Doing so we find that .IE is a function of the local gauge invariants 

hi,,,? only. 

l, (xl as (2.4). with 0,'4-',(f>,O) substituted for U,Cj,4>.(2.11) 

The L-integration may be performed. Taking account of the 

Jacobian yields 

<>> z-'J 7J dpdv-d'> T[ d>/ >"" ([ f '<Y}) exp ~ (l,- ~•ff) (2.12a) 

where lJeff (I? 1.) 1) (~1.)- t a-'>.&_ 1?1. .), , ( ~ 0) 

with 

>Me ( {<J>(xl,q(xl,U(x,f')l) average of F over (2.!2b) 

gauge group 

"J lJ Jv(x) > (!~ (<JV(<f', V(< )q (x l , V(<)U (x ,f') V(<>f r' l ) 

!-lore precisely, suppose that we are dealing with a finite lattice 

to begin with. 

We admit arbitrary boundary conditions (except that they should 

preserve the Markov property to the extent that it is needed to have 

Osterwalder Schrader positivity [7])in order not to rule out propagating 

colour charged states a priori. The bow1dary conditions are allowed to 

break gauge invariance, in particular there may be charges at the boundary. 

Eqs. (2.12) are correct as they stand ifF does not depend on fields with 

arguments x, resp. b = (x,f<) in resp. touching the boundary of the lattice. 

Otherwise, they are true with the following modifications; Averaging in 

(2.12b) is only over V(x) for x not on the boundary (put V(x)-"'1 on the 

boundary), ~=""ewe will continue to depend on L[<i>(x)] '= L(x) for x 

on the boundary, and there will be extra integrations over l (x) for x 
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on the boundary in (2. 12a). 

!!~~ _m~~h§n_i~m__;_ 

For purposes of illustration it will suffice to consider a semiclassical 

approximation. Suppose v(q,cP+) = V(\':l.) has its absolute minimum 

at ~L=:\2 4-0 Then the action J .lr;. (x) 

" 
has an isolated 

ab.<;olute maximum at 

f(x)''). • w(x,f') '1 '!' (x) 0 (2. J 3) 

Expanding around the maximum up to quadratic terms (semiclassical 

approximation) gives a free field Lagrangean which would in the 

continuum limit on Minkowski space describe 

particles with interpolating fields 

3 massive vector mesons [W(x,f')-<],- ~' <P{xl\d,u+c~"(xljq,+(x) ek 

2 fermions Y(x)- ).'' (<j>q (xl , q,+,9 (x) )' (2. 14) 

massive scalar f(x)-:\ (1\)-'' q,q,+(x)' 

There is freedom in the c.hoice of interpolating fields, we have used 

this to approximate ~(x) by ). in the denominators. 'means hanspose. 

All these particles are colourless since they are created by local 

gauge invariant. fields. It is also interesting to note that they all 

admit composite interpolating fields. This matches with the results 

of refs. [41 that the model seems to rcggeize in the I= I cl1annel 

(about I see below). 

To avoid misunderstanding, let us make it clear what the issue is, 

We have worked with a Lagrangean without a gauge fixing 
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term (except possibly on the boundary). In such circumstances, the 

Hilbert space of phys£cal states is positive definite and colour 

charged particles,if they exist, cannot be created by local operators. 

Therefore it does not suffice to inspect the fields in the theory, 

one must determine the particle content. If all the particles that there 

are can be created by gauge invariant fields, then none of them is 

., l . 1 . 1 . . . . 
coloured. In t 1e semtc ass~ca approxunfttlon, the part"Lcle content ~s 

clear, Note,however, that without Higgs mechanism there would be no 

gluonoid mass term in (2. II) and hence no isolated absolute maximum 

of j.Cf(x) semiclassical approximation would then be unjustified. 

' 

Remark: In view of (2. 12a) it would seem equally natural to expand 

around the absolute minimum of -vef( (~l) veff always has its minimum 

at f>f. 0 . Hence in this approximation, the Higgs mechanism always 

takes place (for lattice spacing a> 0) independent of how V looks. 

lt is however costumary to use integral representations (15] 

p ( x) ~ J d' (x )d' '(x) exp - j; r,• ~ >; (x) ,S scalar Fermi field 

and to treat the effect of the functional determinant lT p(x)1 as 

radiative corrections which are neglected in the semiclassical 

approximation. 

I~ . .<"!Y!?E ~ 

The model has an SU(2) flavor symmetry group besides the colour group, i.e. 

*)This is our definition o.f a colourless particle, and it should be true 

in any reasonable definition of a colourless particle. It implies that 

Its physical states are invariant under global, space time independent, 

gauge transformations. 
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the global symmetry group of the Lag<angcan (2. 4) is SU(2) x SU(2) 

Only the Higgs sca'lars are flavored, while quarks and gluons carry no 

flavor. This symmetry is present already if we omit the gauge fields: 

Consider 4:> as a real 4-component field, then global S0(4) - symnR,try 

is obvious since only bilinears cp(x)4>('JJ+ appear in be Lagrangean. 

Since SU{2) x SU(2) is a covering of S0(4) \-'e may consider it as 

the symmetry group just as well. Adding the flavorless gluons makes 

one of the SU(2)-ideals into a gauge symmetry of the 2nd kind (colour) 

while the second SU(2)-ideal is preserved as a global symmetry group. 

To exhibit the transformation law, let us ('ollect the Higgs fields 

in a 2 x 2 matrix 

p • ("': -4>,\ 
4>, 4>, ) ( 2. IS) 

1.1ith this notation, L [ cP(nl = p(x)_, P (x) p. [t~<<l'f+lh 
The transformation laws under (V 

1 
,V

2
) t SU(2) x SU(2) read then 

colour SU(2) p (x)- V, f (x), u(b)- v; u(bll(, q(xl~ v; q(x) 

flavor SU(2) p(Xl- p(x)v;', u(b)~U(b), q(xl~q(x) 
(2. 16) 

The colour transformation la~<' of~ agrees with (2.3) since V:,"'Vn ,v;l=-V
21 

forany V=(v"'6 )€SU(2). 

From this we deduce the transformation law of the gauge i.nvariant 

fields under flavor SU(2), 

\./(bl~V,IV(b)v;', 'f(xl~V,'I<(x), p(xl~p(x) 
(2. 17) 
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Tl:tis gives us the flavor isospin 1 of the physical p.:trlicles 

vector mesons: l 
. I 

I, fcrnuons: 1 = 2' scalar 1 0. ( 2. 18) 

\~e emphasize that despite the formal similarity of Eq. (2.17) with 

(2. 3) the remaining global SU(2)-symmetry has nothing Lo do with 

colour but is a f1,1vor sytrmetry \o.'hich was there from the beginning 

in a<!_cJition lo colour symmetry. 

We see from Eq. (2. 18) that the physical particles have acquired flavor 

[;·om the Higgs scalars, since they screened their colour by combining 

with Higgscs, compare Eq. (2.14) for the i.nterpolating fields. 

Let us supp 1 y tlw demons t t:ill ion that the Lagrangean (2. li) is indeed 

flavor symmetric. Since 1,..,/(b) E. SU(1) 

with :B having isospin I "' I . Then 

we may write W{x;?) ~ exp ~of t':~-~Jx) 

1: 4>(x)U(x.jl)o/+(x+})+h.c "'-!?{x)f(X+;)[W(x.,u)+W(x:/-')+)~1 
""' p (x) p (x+f) co~ af [if' (x) 1 j'l:t 

since(-t'E')t= :B'·.1l . The 11- k s 
~, 

only depends onE and is 

ti1erefore invariant. Altenlatively,[W'+ W'+]~, =-h-W', cp. after Eq. (2. 16) 

~9:2~l_u~ i_!J!!~= 

Lesson No. J. The physical particles are colourless: Colour confinement 

Lesson No. 2. The physical particles carry flavor acquired from the 

Higgses, There are no states with the quantum numbers of the quark 

(spin}, I-= 0), since according to (2.18) half integral spin goes with 

half integral isospin: Quark confin~El~ The physical particles 

are created by composi.Lc i1lterpolati.ng fields (2,14). 
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~<:._n~-r:a~i~a_!:i_o~ _ ~f- ~h~ _ ~o~e_l_. 

With an SU(2) gauge theory one cannot mimick the real world completely 

because it is not possible to make a colour singlet out of three quarks 

in the fundamental representation of colour SU(2). It is nevertheless 

instructive to consider the generalization of the model which is 

obtained by giving flavor to the quarks; the model then resembles the 

real world a little more. Thus, instead of one quark colour doublet we 

introduce two of them, q
1 

and q
2

. We group them into a 2 x 2 matrix 

9 " ( ' ) 9. L"' 1, 1 ( flavor) a "' 1, 1 ( co!o<.lr) 

and we continue to describe the scalars by the 2 x 2 matrix introduced in 

(2. 15)' 

p " ( :,: -:,) ' ( g; "') 
' 'Y, 

In addition we have the strlng bit variables u(b) E: Su(2.) 

before, The symmetry transformation laws are now 

colour-SU(2) 

flavor-SU(2) 

;J?(xl- v, g; (x), u(b)- v,u(b)V, 

p (x) ~ p (xlv;', U (b)-> U (b) 

The Euclidean action may be taken to be 

q(x)_,. v;g(x) 

q(x)--+q(x)V
1

-
1 

<, (x) " - M j, q (x) 9 (x) + K ~ j, q (x )[I+ ~I' 1 U (x •/') 9 (>+} ) 

a' 

-t j, ~~ q;+(x)U(x.f')p(x+?)- p•(x)f(x)}-V(y+.-q;+<!;(xl) 

- 'A I< ( 9" ;p+) j., (if 9,) 

it is cleary invariant. The last term is included to break still higher 

symmetry, The analysis of this model proceeds in the same fashion as before 

and is left to the reader. One finds that the physical fermions will have 

integral flavor isospin while the quarks had half-integral isospin. 

Otherwise the conclusions are the same as before. 
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3. Higgs models with special features. 

The model of Sec. 2 had properties 

@ No massless vector mesons survive the Higgs mechanism. 

® The Lagrangean could be rewritten in terms of local gauge 

invariants. 

He note that it is always possible to rewrite gauge theories in terms 

of gauge invariants, as has been shown by }ffindelstam, but usually 

this introduces nonlocalities through the appearance of variables 
X 

like [<>p cjA,.(,ldy?]'!o(x) [18 l . 
~ 

The criterium for validity of @ is well known: Combine all Higgs 

scalars into one row vector .p and let H the connected component of the 

stability group of ¢ in the gauge group G , Tlien. the surviving massless 

vector mesons transform according to the adjoint representation of H . 

There are none if H is trivial, i.e. if cpv = 4:> implies V"" 1 £or 

inf_i.ntesimal gauge transformations V and generic 4>. 

To have ® , one must be able to define L[<P(xll uniquely through 

Eq. (2. 7), with ¢ a suitable gauge invariant depending on <P, This 

requires that ,P V""' <P implies V "' J for arbitrary finite gauge 

transformations V, and generic o/. 

Condition @ is stronge.r than ® , it requires that the charges of 

the Higgses match so that they can screen all colour charges locally. 

Example: Lattice QED (gauge group U(I)) with spinor fields of electric 
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charge Q "' plus Higgs scalars of charge 2 satisfies ® but violates @ 

since cf> V = .p for • 1/"' exp i.l!Q . 

We shall append some conunents on the physical meaning of the Higgs 

mechanism. IT IS SAID THAT Higgs mechanism means spontaneous breakdown 

of colour symmetry; if @ holds one has complete breaking. We only 

consider this case here. 

THIS IS TRUE in the sense that no nontrivial symmetry is left to act on 

the physical state space. 

BUT breaking is very different from e.g. ferromagnets at T <Tc: 

There are no Goldstone particles -no long range correlations (mass gap!) 

- no degeneracy of the 
•) 

vacuum . 

In a FERROMAGNET at T < T c one may compute a state w through 

w(A)!i<A'>"" Z- 1 TI" Ae-flH with symmetric Hamiltonian H (no ext. 

magnetic field ,free boundary conditions), this gives w ( "t)"' 0 

for the spin variables S , But the state w is impure (" degeneracy of the 

vacuum"): w = Jd.nit we
magnetization) and 

we- (.S) rrr.< 

(~ labels possible directions of the 

m = m"jne.-h":ze~.-h"o.., f 0 (3 I) 

The pun. sfa..-les w~ ca.n 61!.. cons-h-u.d·v:J 

.fit.!~ J.€. o. .... ol ~e.lf./.,3 'le- 0 

~ o.dcl(.,d o,,.., exJ.u .. no.l fna.Jne.+.·c. 

In a HIGGS ·model with free boundary conditions on~ also obtains 

<<P'>"'" <<Pa.ve '> '"' 0 from (2.12). But adding J 'Jeo/(x) 
' 

to.[£ 

*~B: We are talking about the statistical mechanical system defined by [E 

without a gauge fixing term in a lattice gauge theory. 
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and letting 'J(-o. o still gives <<P> = o in contrast with (3. I). 

This has recently been shown by Liischer [8J and independently the 

authors of ref. [9}. 

In view of all this one. would better speak of colour confinement instead 

of colour symmetry breaking. This view is also supported by a result of 

Swieca [10], He shm.;ed that absence of massless photons implies absence 

of charged particles in an abelian gauge theory. 

It \.;auld be extremely important to extend this result to the non-abelian 

case, even from a phenomenological point of view. While one is not so sure 

about quarks, it is certain that there are no massless strongly interacting 

gluons as real particles in nature. If the non-abelian version of Swiecas 

theorem were true, this would leave a clear-cut alternative: Either coloured 

quarks do not exist as free particles, or QCD is wrong. 

Now it may not be clear how to observe colour, since there is no gauge 

invariant local colour charge density. However, absence of colour also rules 

out the existence of quarks with non integral baryon number: Under a baryon 

number transformation a field or state of baryon number B transforms as 

"'£" _,. 'l:elni.O(B , In particular, for quarks q- q e 2.m0</3 . If ex 

is integer, then this is identical to the action of a transformation in the 

center Z3 of colour-SU(3), i.e. it is a gauge transformation. [In other words, 

the global symmetry group is -~_o_t the direct product of colour and flavor 

symmetry groups, even though the same is true for the Lie algebras! J 
Thus ;B must be integer if "Y:' is gauge invariant. Similarly the flavor 

group SU(3) x U(l)charm contains a subgroup ;f3 in common with the gauge group. 

This leads to f!avor-SU(J) triality zero for uncharmed particles in the 

same way, and so on. 

These considerations also show that one only need consider the action 

of the center of the gauge group to see whether there is quark confinement. 
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We have seen that condition® is somewhat stronger than@ 

What happens if @ is true but B is not? Local screening of charges 

is then impossible. On the other hand, if the non abelian generalization 

of Swiecas theorem were true, one would expect that colour confinement 

still takes place. 'W~ will com~ ba.ck lo +h~t io Sed.s. 

4. Cooper patrs in quantum chromodynamics. 

We now turn to the consideration of quantum chromodynamics (QCD) with 

Euclidean Lagrangean (1.1) in continuous space time. 

We note that the Coulomb force (1 gluon exchange) is attractive between 

two quarks qi, qj in a relative 3* colour state. This is so because 

3* is the antisymmetric 1-sp{nor representation of SU(J), the pair consists 

therefore of two quarks with different colour a+ b , and the sign of the 

Born term is given by Fig. 1 

·H· 
0. l b ;1 

11 c ). c 
r. \Od. bb ,., 

Fig. 1 

-t (o~b) . ( 4. 1) 

We~ that this leads to the formation of diquark and anti-diquark 

Cooper pairs, and that the physical vacuum(= groundstate of the 

Hamiltonian) contains a finite and equal density of them. They are colour 

triplets transforming according to 3~ resp. 3 representation of colour SU(J). 

Ef~.::_c_t i ~~ ~-a~~'!.n_g~~n::. 

According to the renormalization group philosophy {11 1 one may(in principle) 
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compute from {I. I) UV-cutoff effective Lagrangeans fe"which describe the 

same physics at distances ~>a. . The UV-cutoff may be introduced through 

a lattice, with lattice constant a. 

As a consequence of Cooper pair formation, we may expect that corresponding 

scalar fields <f appear in .{tff. 

.p 'i I t. )( ~ 
c,~ g" ql' ' . (' 0 ) C " I C" "' Q" o e·' 

(4.2) 

tn o bosLs where ~s i.s d;a.jo"a! 

f. = antisymmetric tensor in two 'dimensions, X is the vector product 

in 3-dimensional colour space, «,jl are spinor indices. Because of 

Fermi statistics 

</> 'i , - <P'' 
( 4. 3) 

Because of gauge invariance of the 2nd kind,~ must appear coupled 

to the gluons. The effective Lagrangean might look something like 

£,11 (x) ~ -M:i <fqi + "_7; <J'cxJ[l+!j.Iu(x.rJg'("'fl 

• <): <P'(x) L<(x,)'J<i>j(x+J./- V (<P'<J,i*} 
I" 

( 4. 4) 

- ~fz -pfo.~,w.Ue_ .f-erm 
, I , , l 

· f c,f' g." qfl <P 'i I, 
Herein U(x,/') < SU(3),olouo ' .p'i' q' are row-3-vectors in 

colour space, k'. 1t f, f 1 depend on a with ;e ...,. o , f 1- oo as a__.., o 

The last term in the Lagrangean incorporates the information that the 
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Cooper pairs are made of two quarks. The effective La?rangean could be 

much more complicated, but its precise form is not crucial for what 

follows. 

!:~a~~~o!~_ti~n _ ~ _g~~g_: _i~-:.a_rJ-:'~ ~ _fi~lj _ ~a~~a_!J !:s_ 

The model (4.4) has properties ® and ®of Sect. 3 provided 

i) there are at least three flavors 

ii) the colour group is SU(3). 

If there were less than three flavors, there would be at most one 

Higgs triplett because of Fermi statistics. But then cP "'cPV would be 

true for at least an SU(2) subgroup of colour -SU(3), and so the criterium 

for @ would not be satisfied. 

If on the other hand, the colour group were SU(2) or U(l), then @ 

would be violated because the Higgs scalars cannot locally screen the 

colour of quarks. The trivial representation of SU(3) is contained in the 

Kronecker product 3 ® 3 ® 3 , but the trivial representation of SU(2) 

is not contained in the Kronecker product of any odd number of fundamental 

representations of SU(2). This follows by considering the center of the 

gauge group. Similar statements hold for U(l). 

For simplicity we consider first the model with three flavors i o:] ,2,3. 

There,are then three colour tripletts of Higgs scalars, and thrQe colour 

tripletts of quarks. We write cp~.,. e<j~cpjk and introduce 3 x 3 matrices • • 

p ( q,+ ') ' g;* = (<P' ) 
a o q ( q.') q ('l' J (4. f) 

The transformation laws under colour and flavour transformations are then 
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colour SU(J) 

flavor SU(J) 

p (x) ~ >; (xlp (<J, q (x)-1:; (xlq(xl, U ('.f)_, ~ (x)U(<,f )~(xf<f' (a J 

p(x)- .f(x)V,'' q(xJ-q(xJV,'. u(x,t)-> u(x.f) (4.5) (b) 

baryon U(l) p (x)- e~M<f(x), q(xl ~ e'\(x), L( (x.f)- U(x.f) (') 

v.' 
' 

stands for the transpose of v, eX= -lr. rr 

For gene ric .P , the 3 x 3 matrix g; will be non degenerate, dd g;; ~ 0 

Any such matrix can be uniquely factorized in the form 

P (x) S(xlo-(x) S unitary, 0"" .. cr*-,. 0 (4. 6a) 

The unitary matrix S may be used to define L[<f,(x)] nniquely by 

$ (X) L [if(xl1 ei<p/3 (~rr<<p<rr, L[<f(xl]< SU(3)) (4. 6b) 

Under a gauge transformation 

L [if(xl] _,· V, (xl L [p(xl] 

Therefore we may define new gauge invariant variables by 

p (x) L [op(xl( p(x) ~ e~i<p/3 o-(x) (-lf<::ip/Tr,o-(x)~o) (
4 .1) 

~ (x) ~ L[<J?(xlf'q(x) 

W(x,/,) ~ L [p(xl]'' U(x.;")L [p(x+fl] 

All of them are 3 x 3 matrices. Since the change from old to new 

variables may be viewed as a gauge transformation, the Lagrangean 

retains its form when rewritten in terms of the gauge invariant 

variables 
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[</! (x) as(4.4)with p.~,'w' substituted for f,q,U.(4.9) 

Let us now determine the transformation law of the new gauge invariant 

variables under flavor-SU(J). From (4.6) and (4.5b) we see that 

S(x)- s(x)~
1 '-< I o-(x)- v2 ,..(x) v~ (4. 10) 

hence 

L[p(xl] ~ Ll<P<•>lv,' 

From this one find' the transformation law of F, ~ \J 

p(x) ·-' -v, p(x) v2' ~(x) ---3> <-< ~(:..lvl' w'(x;./"') ___,. v:-l \-/(x,/') v~' 

Thus p and ~ contain singlets and octets, while W contain only an 

octel because de-l: \.J = e.xp-t,..f....._w"" i . This is as expected 

intuitively, considering that the Higgs scalars carry flavor, and the 

screening will there fore alter the flavor of quarks and gl uons. 

Up to this point, the discussion of the model (4.4) runs exactly as in 

the SU(2) model of Sect. 2. Assuming t1 is such that the Higgs mechanism 

takes place with no surviving massless vector 1)articles, 

v;z. <(oo*) ;.S .. \ 
~ r '-l 'J 

with A 7 0 the same conclusions 

are reached as in Sect. 2, viz. quark and colour confinement. 

A nc1.-1 problem appears however when we consider baryon number. 

lt might appear from (4.6) that the transformation law under baryon 

group (4.5c} is 

L [<j>(xl]- L[.,l,>] cp....,. (p+Jd 0 '" "''~~J;(xl-e ~(<) (4 II) 
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i.e. the ~-field carries the same baryon number as the quark field. 

This contradicts the statement made at tl1e end of Sect. 3 that gauge 

invariant fields would have to transform trivially if <Xj21r = J3 , ~ 

assuming they are covariant under baryon U(J). In fact , (4. 11} is 

incorrect because it violates the constraint (4.6b) on <p 
1 

-lf< (p ~a 

if cl. "'- - Tf' "" . This constraint is necessary in order that 

l.[o/(xl] is uniquely defined. He conclude that variables r, (and 

also p, 'w' do not transform covariant ly under baryon U ( J). 

There is a related problem. Suppose we start with a configuration 

of variables ;E (x) q(x),U(x.f') 1vhich is smoolh in the sense that 

the variables change very little from one lattice site x to a neighboring 

one. The new variables may then still be very discontinuous because tp may 

• -it.p/3 ' ( :r:_ Ji .:t y2. Jump by br, ande 'appears 111 t,.]), whereas CJ'" ('±' '±') .. is smooth. 

This suggests that expectation values of products of these variables will 

blow up when Ll1e coutinuum limit a --+0 is taken, and so they have no 

correspondence yet with interpolating fields of physical particles. 

Objects which can be expected to have a continuum limit are functions 

of the variables (!L7} that can be written as monomials in the original 

gauge variant variables, this is in accord with the conventional 

•...risdom that normal products are the only functions of fields that can 

be given me;:ming in the absence of cutoffs (in> 2 dimensions). ~uch objects 

are for instance 

~lx;*W(,..,ulp(x) <f(xt Lt(x,f<) <[l(x~ (gluonoids) 

(J(x)""lj(XJ ,f>(x\'9(x·) (baryons) 

~(x\* p(') ~ (x)* q; (x) (scalars) 

ef:c . 
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All of these expressions are matrices with entries indexed by 

flavor indices i 1 j, so they are flavor SU(3) singlets and octets; 

moreover they all have integer baryon numbers. In particular the 

fields k * k "iC (xl~lri[>(x)'j(x)\ create the baryon octet. 

The real nature of the problem of baryon number becomes apparent when 

we notice that the Lagrangean (4.9) is expressed in terms of variables 

{4. ?)which satisfy a constraint. The dangerous constraint is the one on if/ 

it says that e L(f' takes values in the circle S 1
• It is rotated around 

the circle by baryon U(l). Such a situation is familiar from the 

nonlinear 0" -model, it brings about a danger of spontaneous breaking 

of baryon number conservation (corresponding to spontaneous magnetization 

in the XY-model = nonlinear S0(2)- c;- model), Spontaneous symmetry 

breaking is not inevitable, as is shown by the example of the 2-dimensional 

XY-model. Hhether it takes place could only be answered by computation of 

the effective potential as a function of the variable conjugate to 

an appropriate external source carrying baryon number [121 , The present 

state of the art does not allow to perform such calculation. Quasiclassical 

approximations in (4.4) or (4.9) are useless because they are inconsistent 

with the composite nature of the Higgs scalar (they would approximate 

q% 0 'f*p % <<f•ot >~\~ ,< 0 while <jo ~ 19 ) or, equivalently 

with a ~arge value of f' in (4.4). 

Of course, in order to decide whether a Higgs mechanism takes place at 

all one would have to compute appropriate effective potentials also, 

starting from the Lagrangean (I. 1) with source term J(x) kcP*(x)<:j>(x): 

1? given by (4.2). Such computations are nnfortunately equally unfeasable. 
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So far we have considered three flavors. A fourth flavor charm can be 

added without difficulty, there will then be an extra quark 1.nd another 

triplett of scalars X l. [<f J is computed as before in terms of the 

uncharmed scalars~,there is then no problem \.,rith charm conservation. 

A problem would arise if we would insist on exact SU(4). However, if 

SU(4) symmetry is broken sufficiently strongly in the QCD Lagrangean 

(1.1) already, the question of spontaneous breaking cf SU(4) will not 

pose itself. 

5. Local Higgs mechanism in non abelian pure Yang Mills theories. 

I.Je hope to have convinced the reader through the study of the SU(2)~modcl 

in Sec. 2 that a Higgs mechanism is a natural way to confine colour. 

111e have studied the possibility of making Higgs scalars from two quarks. 

Now we will ask ourselves whether one could instead make the Higgs scalars 

from gluons rather than quarks. 

Let us consider a pure Yang Mills theory with colour group SU(3). 

The Euclidean Lagrange an is 

[E (x) -t Jr > F j-'V pv ).." d A 
? " 

d"A? _,f [~,A" l (5. I) 

Of course the Lagrangean is to be considered as a function not of the 

field strengths ~ but of the potentials A , We would like to rewrite )·" !-' 

this Lagrangean in terms of gauge invariant variables without detroying 

locality. For this one needs scalar fieLds ~ to fix a gauge frame. 

However, since J' (x) 0 when !j...v (x)"" 0 , we do not need 
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<P(x) + o everywhere, but only in regions of space time where juv (x) + o 

Therefore one can abandon the requirement that the vacuum expectation 

value of <f> (or better <P* 4> ) b"e non zero. This leads to the concept 

of a "local Higgs mechanism", which is a variant of ~he idea of local 

phase transitions introduced by Nambu. 

Colour carrying scalar fields can be made from field strengths, e.g. 

<P'(xl d"'bc Fa(xl~h (x) 
!-'"' '1' , mJ p .z:q,'~' J::" F --+race 

/-'~' IJ' 

Xc (x) -f -j..- x(x)Ac L>iM X F
1

w Fvfl Frf - -!-race 

and so on. 

For a given x let us call the field strength tensor ~Y (x) 

" 
Uop(xlu·'. 'f(xl, ux(xlu·•. X(<) U E:. SU("3) 

lmplies Ue :l'3 =center of SU(3) 

(5.2a) 

(5.2b) 

generic 

(5. 3) 

So long as we restrict attention to the pure Yang Mills theory without 

fermions, we may consider G = SU(3)/.Z3 as our gauge group, 

Eq. (5.3) say then that the little group of (<}(xl 1 'X(x)) i' 

trivial, 

There is an important special case of a field strength tensor which is 

not generic~ viz 

" ' 1-'"(x) o{f'" (x) he (x) for oe~ /'",v (5.4) 
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so that the field is abelian at x. In this case the 3 x 3 matrices <J?(x) 

and x(x) can be simultaneously diagonalized by the action of a gauge 

transformation , and the condition (5.3) is fullfilled for the 

diagonalized matrices cf,>, X for u < s(u(<)xu(•)xu(n) = subgroup 

of diagonal matrices. 

It follows that generic field strengths do not exist in two dimensions, 

because (5.4) is always true there with ()(/'" (x) = €/'v 

A sufficient condition for genericity of lj..v (x) is that ':f (x) ha' 

distinct eigenvalues and none of the off diagonal entries of 'X(x) 

vanish in the basis where ~ is diagonal. We call a field configuration 

generic if fj..v (x) is generic for all x except on some lower 

dimensional subset. of spoce-·hm€ It seems reasonable to expect that 

in more than two space time dimensions the measure in the Euclidean 

path integral is concentrated on generic field configurations. In other words, 

nongeneric field configurations have negative infinite entropy-

The further procedure is now the same as for any Higgs model satisfying 

conditions @ and@ of Sec. 3. The space of pairs (4i(x), X(xl) 

is decomposed into orbits under the gauge group, and one selects once and 

for all one representative (,f.,):) out of every orbit. It follows that 

there is a gauge transformation L (x) such that 

If 

q; (x) L(x) ~ (xlL(xl·' 'X(x). L(x)X(xlL(xf' (S.S) 

F (x) is generic, then L(x) represents a unique element of 
!-'' 
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. ) 
and we may define 

J3 (x) = L(x)-
1
A (xlL(x~ + i_ L(xf

1
d-'-' L(x) 

~ p f I 

G..,,.. (x)"' J .... ·B - dv B,_..- If [B,u, B" l 
( I y ( ' 

(5.6} 

These quantities are gauge invariant. /_£ can now be expressed in t~rms 

of these new gauge invariant variables as promised, viz. 

[E (x) -):+r~"Gf>Y (5. 7) 

The potentials -u wust satisfy certain constraints, e.g. G G - 1-r."' f for ~ r ~· 
some <{) • If we are only interested in classical solutions of the field 

equations in Binkowski space, we may impose almost all of tl1csc constraints 

through introducing Lagrangean multi.pliers. For instance, to define P, X 

we may require that <P is diagonal and the off diagonal entries x12 x, 
are real. (This determines L(x) up to elements of a discrete subgroup of G.) 

To impose the first constraint, we may add a term 

n: 
o;.b 

"•s(') (G ('l G ('l) I ' J-'Y 'j'-' bo.. (5.8) 

to the Lagrangean with multipliers /lob(x) , and similarly for the second 

constraint. Validity of this multiplier method in Euclidean QFT uould require 

a spec.ial investigation. 

Higgs mechanisms can be pictured as screening mechanism in which coloured 

gluons combine with coloured Higgs scalars to form colourless massive 

.jO);~;e-~s-~-p~~b-l~;,~ere coming from the fact that L(x) need not be continuous 

(and differentiable) even if ~.X are. We will not discuss the topological aspects 

o-f---galige- -t-hee-r-ies -which are- ·conrrected- -wit:IT-rliis- fact.ittl 
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V<'ctor particles (possible V('J'Y unsl<!blc onu;). For this one does 

not really nec"d <1 finite density of Higgs scalars in the vacuum, i.e. 

ev(•r:n<hen", but one needs them only where the gluons <lrc, i.e. in 

space time regi<Jns \,•here ~"'" (x)-f- 0 . This is consistent with a 

composite n<lture of lliggs scalars as described in Eqs. (5.2). lt is 

therefon• tempting to speculate that gluons in non-abelian gauge theories 

can screen t:heir colour and acqui.re wass through such a "local Higgs 

mechanism". 

g~~r:_k_s _ 

Suppose this is so, what will then happen when '"e add quarks to 

the theory? Standard lore [ 131 suggests the following speculations. 

Higgs scalars rr.adeo(sit.wns have triality zero, and so they cannot screen 

the colour charge of the quarks locally. Tn other \wrds, condition @ 

of Sec. 3 is vi.olated while (f;) still holds for the complete theory. 

If the generalization of S1viecas theorem mentioned in Sec. 3 is u·ue we 

must expect that colour confinement will still occur under these 

circumstances. On the other hand, since the colour charges of quarks cannot 

be locally screened, it is suggested that there remain long range forces 

bet\o.•een these quarks. This view is supported by recent results of Callan, 

Dashen and Gross [61 for the 2-dimensional abelian Higgs ntodel where 

it is sho1vn that long range forces between external charges persist 

in the presence of the Higgs mechanism,for external charges that are not 

Lntegral multiples of the Higgs charge. Nm~ a force field mediated by 

gluons cannot enter far into a space region where there is a finite 

density of (sufficiently many kinds of) Higgs scalars. On the other hand, 

extended areas 1vith nongeneric 'Pv will cost a lot of entropy according 
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to our previous hypotheses because ~pv is forced into a lmver 

dimensional subset of the field manifold. This leaves us with the 

possibility of a string joining the two quarks, with a line in the middle 

along which I="?" is large but non generic - for instance abelian~) 

The field configuration might then look something like Fig. 2. 

trn Wilsons Carg€:se lectures [141 an alternative argument is given why 

finite coherence length (gluonoid mass) leads to formation of strings} 

X 
Gluon-String 

//';/.//////.I' .1'/ ///// 
/"/.; /. /;:.)Y.~j./." // /•// "~""' '/7Y ~/. · · · ... / /./.?.!/'/ "/, / 

3§~t:?DLLdf~~~ 
";;:; :-; "-' :,j';:;:;:-:::;; :X 

n 

8 

~ 

[<l>,xl 

/ -:..-- .. 

' 
' ' ...... ····-=- -;"'-

H 
~ 

[<f.r 1 'Higg's field, B, Gluon field,l<W, Uuark density 
. ------ ............ )()()(.)(.')()(.)/.)( 

In contrast with individual quarks, the colour of any object with 

triality zero (e.g. quark - antiquark, three-quark) can re locally 

screened by the Higgs scalars. This may be responsible. for saturation of 

forces and absence of exotics. 

*' The situation resembles magnetic monopoles in a supercondl'ctor 

and the "dielectric model" of Susskind and t'Hooft [161. A list of 

references to string and bag models is found in [17}. 
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