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Preface

The present thesis entitled “Octonion Electrodynamics and Physics

Beyond Standard Model” (Particle Physics) Comprises the investigations

carried by the author over the period of three and half years under the su-

pervision of Prof. O. P. S. Negi. Department of Physics, Kumaun university,

Soban Singh Jeena campus, Almora. The present thesis embodies the inves-

tigations towards the study of various field associated with dyons (particle

carrying simultaneously electric and magnetic charges) and the electrody-

namics, chiral media, quantum chromodynamics in octonion algebra.

The whole work is divided into Six chapters.

Chapter-1 is based on the historical development with reviewed literature

of standard model, physics beyond the standard model, quaternions, octo-

nions, monopoles and dyons.

Chapter-2 describes the solutions of wave equation and other field equations

of monopoles and dyons interms of physical octonion variables. Starting with

the definition of quaternions and octonions, we have discussed the asymme-

try of Maxwell’s equations, need of magnetic monopoles, ’t Hooft-Polyakov

monopoles and fields associated with dyons and it is emphasized that the

BPS mass formula of dyons is universal and is also invariant under duality
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and conformal transformations. The octonion electrodynamics has been an-

alyzed from octonion wave equations of potential and currents to obtain the

octonionic form of Generalized Dirac-Maxwell’s equations and other quantum

equations of dyons in simple, compact, consistent and manifestly covariant

manner. It is shown that the octonion electrodynamics reproduces the dy-

namics of electric (magnetic) charge yielding to the usual form of Maxwell’s

equations in the absence of magnetic (electric charge) in compact, simpler

and consistent way.

In chapter-3, we have made an attempt to investigate the generalized split

octonion electrodynamics for dyons. Starting with the usual definition of

split octonions along with their multiplication rules, we have established the

inter relationship of split octonions with their convenient matrix realization

in terms of 2×2 Zorn vector matrices in order to obtain the split octonions

wave equation analogous to the potential wave equation of generalized elec-

tromagnetic fields of dyons. Consequently, the split octonion field equation in

compact and simpler form has been developed and it is shown that the corre-

sponding wave equation represents the generalized Dirac Maxwell’s equations

of dyons in the case of split octonion electrodynamics. Accordingly, we have

made an attempt to investigate the work energy theorem or “Poynting The-

orem”, Maxwell stress tensor and Lorentz invariant for generalized fields of

dyons in split octonion electrodynamics.

In chapter-4, we have discussed the octonion electrodynamics in homoge-

neous (isotropic) and chiral medium. Keeping in view the consequences of the

present theory of dyons in isotropic medium, we have undertaken the study

of the octonion analysis of time dependent Generalized Dirac - Maxwell’s

equations of dyons in chiral medium. Consequently, the octonionic forms of

potential, field and current equation are developed in simple and compact

vi



PREFACE

manners in the case of homogeneous (isotropic) medium and it is emphasized

that the corresponding quantum equations derived in terms of octonions are

invariant under Lorentz and duality transformations. Accordingly, the gen-

eralized electrodynamics in chiral medium has been developed in terms of

compact and simpler forms of octonion representations in presence of elec-

tric and magnetic charges of dyons.

In chapter-5, we have made an attempt to study the abelian and non-

Abelian gauge theory of dyons has been made to discuss the U(1)e × U(1)m
abelian gauge theory, U(1) × SU(2) electroweak gauge theory and also the

SU(2)e × SU(2)m non-Abelian gauge theories of in term of 2×2 Zorn vector

matrix realization of split octonions. It is shown that SU(2)e characterizes

the usual theory of the Yang Mill’s field (isospin or weak interactions) due

to presence of electric charge while the gauge group SU(2)m predicts the

existence of t-Hooft-Polyakov monopole in non-Abelian Gauge theory. Ac-

cordingly, we have established the relations between octonion basis elements

and Gell-Mann λ matrices of SU(3) symmetry on comparing the multiplica-

tion tables of these two. Consequently, the quantum chromodynamics (QCD)

has been reformulated and it is shown that the theory of strong interactions

could be explained better in terms of non-associative octonion algebra.

In chapter-6, we have made an attempt to discuss the role of octonions in

physics beyond standard model. Thus, we have discussed the role of octo-

nions in grand unified theories (GUTs) gauge group of which is describe is

SU(3) × SU(2) × U(1) followed by the role of octonions in supersymmetry.

Further more, we have analyzed the role of octonions in gravity and dark

matter where, we have described the octonion space as the combination of

two quaternionic spaces namely gravitational G-space and electromagnetic

EM-space. It is shown that octonionic hot dark matter contains the photon

vii



and graviton (i.e. massless particles) while the octonionic cold dark matter is

associated with theW±, Z0 (massive) bosons. At last, we have described the

role of octonion consistently in superstring theory (i.e. a theory of everything

to describe the unification of all four types of forces namely gravitational,

electromagnetic, weak and strong).
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CHAPTER 1

General Introduction



ABSTRACT

Historical developments of standard model and physics
beyond the standard model are summarized in this chap-
ter to understand the behavior of monopoles and dyons
in current grand unified theories and quark confine-
ment problems relevant for their production and de-
tection. On the other hand, the various roles of four
division algebras (namely the algebras of real numbers,
complex numbers, quaternions and octonions) in dif-
ferent branches of physics and mathematics are also
summarized followed by the summery of the work done
in different chapters of present thesis.



Chapter 1

General Introduction

1.1 Introduction

Physics is a natural science that involves [1] the study of matter and its

motion through space and time, along with related concepts such as energy

and force. The search for unity and simplicity has been the theme of physics

ever since Newton first showed that celestial and terrestrial mechanics could

be unified . The 20th century has been a time for tremendous format and

change in our understanding new phenomena or adding new features to the

existing theories [2]. Particle physics [1,2] is the branch of physics which

deals with the study of matter, energy, space and time. Its objectives are

to identify the most simple objects out of which all matter is composed and

to understand theï¿œforcesï¿œwhich cause them to interact and combine to

make more complex things. Now a days particle physics is popularly known

as high energy physics [1-3], which is the theory of basic structure of matter

and its forces. The physics of elementary particles is currently described

in terms of very successful theory called standard model [1,4]. It describes

all known elementary particles and their interactions except gravitational
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interactions. The standard model accommodates the quarks and the leptons,

which are constituents of matter, the vector particles that mediate the strong

and electroweak forces and Higgs bosons, which is expected to account for

the masses of particles. The standard model (SM) also describes [5] the

unified picture of strong and electro-weak interactions within the framework

of a SU(3)× SU(2)× U(1) non-Abelian gauge theory.

Despite the full agreement with experimental data there are various motiva-

tions for believing that the SM cannot be a truly fundamental theory though

it is a beautiful theory which describes well all known particle physics phe-

nomena and their fundamental interactions up to energies of order 100 GeV.

However, there are many open problems with the standard model partic-

ularly the theories beyond the energies above 100 GeV. Big Science experi-

ments have unified three forces, but physicists now believe the energy required

to unify gravity (the Grand Unification Energy) is beyond anything which

could be produced on earth. Physics is now turning to Cosmology, hop-

ing to see clues to the Grand Unification in high energy processes involving

black holes, quasars or even the afterglow of the beginning of the universe.

We have already seen in grand unified theories [6-12] that there should be

a symmetry which relates quarks and leptons. How can we go even farther

than that? We recall that the electroweak symmetry relates certain leptons

to each other (such as electrons and electron neutrinos), and does the same

for quarks (such as up and down quarks). The relevant equations involving

these particles are invariant under this symmetry. That is, the equations are

still valid if the related particles are interchanged. In the same way, grand

unified theories, which unify the electroweak and strong forces, postulate an

analogous symmetry between leptons and quarks. In theories of this sort, the

equations are invariant under the symmetry even if leptons and quarks are

4
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interchanged. This is a kind of obvious thing to look for, but it has turned

out that there are different forms this symmetry can take. There have been a

number of difficulties, both experimental and theoretical, in establishing this

kind of theory. Nevertheless, it’s still an interesting possibility. Can we go

even further? The answer seems to be yes, and in fact the resulting theory is

in many ways easier to work with than what has been tried with grand uni-

fied theories. It comes from postulating a symmetry which can interchange

fermions and bosons (i.e. the symmetry between forces and matter) is called

supersymmetry [13-15]. In fact, there are several remarkable, physical rea-

sons for believing that supersymmetry plays a fundamental role in particle

physics:

• It is fully compatible with all the postulates of quantum field the-

ory. There are many highly non-trivial constraints that any successful

quantum field theory must satisfy (e.g., unitarity, Lorentz invariance,

locality, etc.) and supersymmetry is compatible with all of them.

• It yields non-renormalization theorems, which make the theory much

better behaved in the ultraviolet region. (This is because many di-

vergences between fermion loops and bosonic loops cancel in Feynman

diagrams.) These non-renormalization theorems work to all orders in

perturbation theory. Moreover, they are easy to calculate, and show

that supersymmetry is fundamentally intertwined with quantum field

theory.

• It solves the hierarchy problem. In any grand unified field theory [16] of

the strong, weak, and electromagnetic interactions, one encounters the

fact that re-normalizations mix the low and high energy mass scales,

making it impossible to maintain the hierarchy between these two mass

5
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scales. Supersymmetry, because of the non-renormalization theorems,

prevents this mixing. Thus, without supersymmetry, GUT theories are

inherently unphysical.

• It allows one to have a convergence of running coupling constants at

the grand unified scale, so the coupling constant for the strong, weak,

and electromagnetic interactions all meet at the GUT scale. (With-

out supersymmetry, the running coupling constants do not converge as

well).

• It requires the presence of gravity when it is gauged. Although gravity

is the most difficult force to describe in terms of quantum field theory

(because quantum gravity is divergent by all power counting methods)

we find that supersymmetry demands the existence of gravity once

we make the symmetry a local one, and makes the theory much less

divergent.

• Because it is a symmetry which mixes fermions and bosons, it provides

a symmetry which may yield a truly unified field theory of all interac-

tions. For example, all the elementary particles may lie within a single

multiple of supersymmetry.

• It is easily generalized to the case of superstring and super membranes.

(In fact, these extended objects require the existence of supersymmetry

to make them finite or at least mathematically consistent).

• It accommodates the existence of non-perturbative dualities found in

M-theory, which have revolutionized string theory. The existence of

various D-brane states in different dimensions can also be seen if we

reduce the algebra to lower dimensions.

6
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Anyhow, if supersymmetry is correct, the universe must contain at least

twice as many kinds of fundamental particles as those already known. Al-

though this is rather a dramatic and daring prediction, it also means that

supersymmetry is readily falsifiable, and hence much more than just an idle

metaphysical speculation. Of course, the fact that no evidence has yet ap-

peared for supersymmetry means it is also a theory in some peril of disproof.

Since at least some of the super partners should be light enough to put them

in a range accessible with accelerators that will be in operation within the

next decade, we shouldn’t have to wait very long to get some indications

whether supersymmetry is a viable theory.

The asymmetry between electricity and magnetism became very clear at

the end of the 20th century with the formulation of Maxwell’s equations

for electromagnetism. Magnetic monopoles were advocated [17] to size the

equations in a manifest way. But the precise checks of the consequences

of Maxwell’s equations, in the formulation without magnetic charges, deny

any role of magnetic monopoles. In 1931, Dirac [17,18] gave the idea of

magnetic monopoles as the natural generalization of usual electrodynamics.

The idea is that magnetic monopoles stable particles, which carry magnetic

charges, ought to exist has proved to be remarkably durable. The mere ex-

istence of particles with a magnetic charge (monopole) [17,18] implies that

electric charge must be integer multiples of a fundamental units. Such a

quantization of electric charges is actually observed in nature and no other

explanation for this deep phenomenon was known. The numerous theoret-

ical investigations following those of Dirac have confirmed the constancy of

quantum physics with Dirac relation particularly in solving the difficulties

associated with the string singularity introduced by Dirac [17-19]. Thus,

monopole would symmeterize in terms of Maxwell’s equations, but there

7
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would be a numerical asymmetry. These types of reasoning were the ba-

sis for the introduction of what we may now call the ’classical magnetic

monopole’. In this formulation there was no prediction for the monopole

mass. A kind of rule of thumb was established, assuming that the classical

electron radius be equal to the classical monopole radius from which one has

M = g2
dme/e2 ≈ 4700me ≈ 2.4GeV. This ingenious suggestion in connection

with the existence of magnetic monopole gave rise to considerable literature

[19-26] on the subject to predict the mass, size, spin and quantum properties

of monopoles.

Eighth decades of twentieth century particularly last seven years after the re-

port of Price et al [12] about the so-called experimental evidence of monopoles,

witnessed the rapid development of group theory, gauge theory and quan-

tum field theory to explain their group properties and symmetries. Due to

the failure of number of attempts [27-29] to verify magnetic monopole ex-

perimentally sound compelling theoretical reasons were put forward against

their existence. It was accepted as strong as that for any other undiscov-

ered particles. But in view of lack of experimental evidence the literature

partially turned to negative casting doubts on the existence of monopole in

the attempts to construct a classical theory of electrodynamics in presence

of both electric and magnetic charges. Rosenbaum [30], arguing against the

existence of monopole, proved that it is impossible to formulate an action

principle for a classical electrodynamics field [31] of such charges unless an

extra restriction, contradicting Lorentz force law, is imposed on the path of

magnetic charge. Similarly, it was suggested by Zwanziger [32] and Golda-

haber [33] that the conjectured properties of relativistic S-matrix are violated

for magnetic monopoles and Hagen [34] argued against the existence of these

particles in view of the impossibility to formulate their Lorentz invariant

8
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field theory. Schwinger [35-38], as an exception to the argument against the

existence of monopole, formulated a relativistically covariant quantum field

theory of magnetic charges which maintained complete symmetry between

electric and magnetic fields and sharpened Dirac’s quantization condition

by restricting the product of electric and magnetic charge to integer values.

Schwinger [35-38] name the particles carrying simultaneous existence of elec-

tric and magnetic charges as Dyons. So, the theories of Schwinger [35-38]

and Zwanziger [32] is the theory of particles named dyons. This quantization,

though explains to some extent the negative experimental results in search

of monopole, required to maintain the rotational symmetry which was vio-

lated due to existence of singular lines in the solution of the vector potential

around a monopole. Peres [39] pointed out the controversial nature [40] of

these singular lines [17-19,41] and derived the charged quantization +con-

dition in purely group theoretical manner without using them. Attempts

[42-44] were also made to develop the theories related to the possibility of

formulating an action integral in presence of electric and magnetic charges.

Inspite of the enormous potential importance of monopole and the fact that

these particles have been extensively studied, there has been presented no

reliable theory which is conceptually transparent and practically tractable as

the usual electrodynamics and the formalism necessary to describe them has

been clumsy and not manifestly covariant. Schwinger’s [35-38] gave relativis-

tically invariant quantum field theory of spin half magnetic charges and its

extension described by Nigerian [45-47] to the particle carrying electric and

magnetic charges (namely dyons), though provided a natural generalization

of electrodynamics, suffered due to the fact that the in the former the basic

variable were not canonically conjugate while the latter admitted the duality

of the number of variables to maintain locality.

9
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On the other hand, the Lagrangian theory of monopole developed by Ezawa

and Tze [48] in terms of non-Abelian gauge symmetry lacks in action prin-

ciple in the presence of both electrically and magnetically charged fields. In

the meantime, it become clear [45-48] that the monopole and dyons can be

understood better in non-Abelian gauge theories and that the reasons for

not seeing these particles so far with certainty lies elsewhere than in their

inconsistencies with relativistic quantum field theory.

Fresh interest in the subject of monopoles has been enhanced by ’t Hooft [49]

and Polyakov [50] by demonstrating that the spontaneously broken gauge

theories with compact U(1) gauge group guarantee the existence of smooth,

topologically stable finite energy solutions with quantized magnetic charge.

Such non-Abelian monopoles are known to arise as classical solutions in field

theoretical models like the Georgi-Glassow model [51] and also in pure Yang-

Mills theories where the role of fundamental Higgs scalars could eventually be

played by some composite fields. In any case these non-Abelian monopoles

can be understood, in the frame work of these models, as defects in space-time

of U(1) gauge fields which arise once the unitary gauge is chosen [52,53]. It is

notoriously difficult to describe such defects in terms of quantum fields. The

’t Hooft-Polyakov monopole is not an elementary particle like that of Dirac

but a complicated extended object having a definite mass and finite size inside

of which massive fields play a role in providing a smooth structure and outside

it they vanish rapidly leaving the field configuration identical to abelian Dirac

monopole.The ’t Hooft-Polyakov monopole was known numerically but there

is simplified model introduced by Prasad and Sommerfield [54,55], which

has an explicit stable monopole solutions. Such solution satisfying Bogo-

molny’s condition [56] are named as Bogomolny-Prasad-Sommerfield (BPS)

monopoles. Julia and Zee [57] extended the idea of ’t Hooft-Polyakov and

10
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constructed classical solutions for non-Abelian dyons which arise as quantum

mechanical excitations of fundamental monopoles. They come automatically

from the semi classical quantization of global charge rotation degree of free-

dom of monopoles. In the attempts to explain CP-violation in weak interac-

tions in terms of non-zero θ- angle of vacuum, Witten [58] showed that the

non-Abelian monopoles are necessarily dyons with fractional electric charge

and magnetic charge of one Dirac unit. Now it is widely recognized [59] that

SU(5) grand unified model [51] is a gauge theory that contains monopole and

dyon solutions. Consequently, monopoles and dyons have become intrinsic

part of all current grand unified theories.

The existence of magnetic monopoles and dyons is a very general conse-

quence of the unification of fundamental interactions but due to their heavy

mass of the order of 1017GeV , there is no much hope of producing monopole

and dyons by accelerators in the foreseeable future. The traditional searches

for monopole have relied either on strong ionization power of a relativistic

monopole [54-59], or on the assumption that it is trapped in the earth crust

[60,61]. But a super heavy monopole may be expected to be slowly moving

with such penetrating power. It need not ionize heavily or stop in the earth

[62,63]. If a monopole is ever discovered and controlled, it will be momen-

tous occasion with many fascinating implications confirming a fundamental

prediction of grand unified theories, which could provide a unique window

on new physics at incredibly short distances.

The two fundamental mathematical structures (division algebras) a physicist

uses in his everyday life are the real R and the complex C numbers. As we

well know, complex numbers can be treated as pairs of real numbers with a

specific multiplication law. One can however go even further and build two

other sets of numbers, known in mathematics as quaternions H [64-68] and

11
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octonions O [65,67]. The quaternions, formed as pairs of complex numbers

are non-commutative whereas the octonions, formed as pairs of quaternion

numbers are both non-commutative and non-associative. The four sets of

numbers are mathematically known as division algebras. The octonions are

the last division algebra, no further generalization being consistent with the

laws of mathematics. There are exactly four normed division algebras [66]:

the real numbers (R), complex numbers (C), quaternions (H) [64,67], and

octonions (O) [65,68]. Octonions are a super set of quaternions in the same

way that quaternions are a super set of complex numbers. We might expect

this sequence to continue with an element consisting of 16 numbers, but such

algebra does not exist, and the sequence ends with octonions. There are

algebras, such as matrices and multi vectors, which can have more than 8

dimensions but these don’t have the same properties that division always

exists and norms preserved by multiplication. Soon after quaternions were

discovered by Hamilton [64] then octonions were discovered separately by

John Graves and Arthur Cayley [65,68]. Octonions are sometimes known

as Cayley numbers. When we move from Complex numbers to Quaternions

and then Octonions the system obeys fewer algebraic laws. When we go from

Complex numbers to Quaternions we loose commutativity and when we go

from Quaternions to Octonions we loose associatively. Hamilton’s quater-

nions [64] play an important role in understanding the fundamental laws

of physics. This number system was the very first examples of hyper com-

plex numbers of algebra. Quaternions are extensively used in the connection

of relativity [69], quantum mechanics [70], superluminal [71] and sublumi-

nal [72] Lorentz transformations and gauge theories [73]. Left-right handed

Weinberg-Salam theory of electromagnetic interaction with gauge structure

has been explained better in terms of quaternion [74].
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On the other hand, “Physics beyond the standard model” [75,76] refers to the

theoretical developments needed to explain the deficiencies of the Standard

Model, such as the origin of mass, the strong CP problem, neutrino oscil-

lations, matter–antimatter asymmetry, and the nature of dark matter and

dark energy. Another problem lies within the mathematical framework of

the Standard Model itself – the Standard Model is inconsistent with that of

general relativity to the point that one or both theories break down in their

descriptions under certain conditions (for example within known space-time

singularities like the Big Bang and black hole event horizons). Theories that

lie beyond the Standard Model include various extensions of the standard

model through supersymmetry, such as the Minimal Supersymmetric Stan-

dard Model (MSSM) and Next-to-Minimal Supersymmetric Standard Model

(NMSSM), or entirely novel explanations, such as string theory, M-theory

and extra dimensions. As these theories tend to reproduce the entirety of

current phenomena, the question of which theory is the right one, or at least

the "best step" towards a “Theory of Everything”, can only be settled via ex-

periments and is one of the most active areas of research in both theoretical

and experimental physics.

As such, the grand unified theories (GUTs) [16] based on group later than

SU(5) offer other possibilities for magnetic monopole charges and masses

for their experimental detections [77-79], in particular one may have lighter

monopoles (mM ≈ 1010GeV ) which may be multiply charges. If gravity is

also brought into unifying picture, for instance in the form of Kaluza-Klein

theories, then monopole could be much more massive (mM ≥ 1019GeV ).

The smallest simple Lie group which contains the standard model, and upon

which the first Grand Unified Theory was based, is SU(5) ⊃ SU(3)×SU(2)×

U(1) [16]. Such group symmetries allow the reinterpretation of several known
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particles as different states of a single particle field. However, it is not obvious

that the simplest possible choices for the extended "Grand Unified" symme-

try should yield the correct inventory of elementary particles. The fact that

all matter particles fit nicely into three copies of the smallest group repre-

sentations of SU(5) and immediately carry the correct observed charges, is

one of the first and most important reasons why people believe that a Grand

Unified Theory might actually be realized in nature.Larger masses are also

obtained in super symmetric theories. The simplest GUT theories yield too

many monopoles while inflationary scenarios may lead to a very small num-

ber of monopoles. Magnetic monopoles of lower mass are expected to be

stable since magnetic charge should be conserved like electric charge. There-

fore, the original monopoles produced in the early universe should still be

around as cosmic relics, whose kinetic energy has been strongly affected by

their travel history through galactic magnetic fields [80-82].

Although dark matter [83] had historically been inferred by many astronom-

ical observations, its composition long remained speculative. Early theories

of dark matter concentrated on hidden heavy normal objects, such as black

holes, neutron stars, faint old white dwarfs, as the possible candidates for

dark matter. Furthermore, data from a number of lines of other evidence,

including galaxy rotation curves, gravitational lensing, structure formation,

and the fraction of baryons in clusters and the cluster abundance combined

with independent evidence for the baryon density, indicated that 85-90%

of the mass in the universe does not interact with the electromagnetic force.

This nonbaryonic dark matter is evident through its gravitational effect. Con-

sequently, the most commonly held view was that dark matter is primarily

non-baryonic, made of one or more elementary particles other than the usual

electrons, protons, neutrons and known neutrinos. Only about 4.6% of the
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mass-energy of the Universe is ordinary matter while about 23% is thought

to be composed of dark matter [83]. The remaining 72% is thought to consist

of dark energy, an even stranger component, distributed almost uniformly in

space and with energy density non-evolving or slowly envoling with time.

In order to avoid the use of string singularities of monopoles and keeping in

view, the formalism necessary to describe them has been clumsy and not man-

ifestly covariant. Rajput et.al [84-92] have undertaken the study of second

quantization and interaction of generalized electromagnetic fields associated

with spin-1 and spin 1/2 particles carrying electric and magnetic charges.

Throughout the work generalized fields, generalized charge, generalized cur-

rent and generalized potential associated with these doubly charge particles

have been taken as complex quantities with their electric and magnetic con-

stituents real and imaginary parts. Undertaking the study of rotationally

symmetric and gauge invariant angular momentum operators of dyons, it

has already been shown that the presence of magnetic charge on dyons di-

rectly leads to a residual angular momentum and chirality dependent mul-

tiplicity in eigen values of third component of angular momentum operator

[87]. The quaternionic formulation of generalized field equations, generalized

potential, generalized current and Lorentz force equation of dyons has been

investigated [88,89] in a unique, consistent and simple manner. Bi quaternion

formulation of generalized field equation of dyons has been shown [90,91] in

simple, unique, self consistent and manifestly covariant one. Instead of of real

quaternions, complex quaternions (bi quaternions) method of description of

generalized electromagnetic fields of dyons has been adopted and the corre-

sponding physical quantities respectively. The generalized equations of dyons

are described in simple and compact bi quaternion forms [92,93]. The Dirac -

Maxwell equations, equation of motion, potential fields and Lagrangian den-
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sity associated with generalized filed of dyons [94] and gravito dyons [95] for

their manifestly covariant theory and self contained structure of dyons has

been reformulated. Non - Abelian gauge theory of dyons and gravito dyons

has been developed in terms of quaternions [96] and octonions [97,98] gauge

group and it is shown that the gauge structure characterize Abelian U(1)

and non - Abelian SU(2) gauge structures.

Accordingly, from dual symmetry, generalized electrodynamics and Maxwell’s

equation are discussed in the presence of monopole while the electric charge

has been shown to be absent therein. Bisht et al [99] have also developed

the quaternionic formulation of dual electrodynamics in simple, compact and

consistent manner. Superluminal electromagnetic fields of dyons have been

described in R4 and T 4-spaces and their quaternion equivalents are analyzed

accordingly. It is shown that on passing from subluminal to superluminal

realm via quaternion, the theory of dyons becomes the tachyonic dyons.

Correspondingly, the quaternionic field equations of bradyonic and tachyonic

dyons are derived [100] in R4 and T 4-spaces respectively. Generalized Dirac-

Maxwell (GDM) equations have also been derived in presence of electric and

magnetic sources in an isotropic (homogenous) medium. Bisht et al have

also derived [101] other quantum equations of dyons in consistent and man-

ifest covariant way. This theory has been shown to remain invariant under

the duality transformations in isotropic homogeneous medium. Quaternion

analysis of time dependent Maxwell’s equations has been developed [102] in

presence of electric and magnetic charges and the solution for the classical

problem of moving charge (electric and magnetic) are obtained consistently.

The time dependent generalized Dirac-Maxwell’s (GDM) equations of dyons

have also been discussed [103] in Chiral and inhomogeneous media and the so-

lutions for the classical problem are obtained. The quaternion reformulation
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of generalized electromagnetic fields of dyons in chiral and inhomogeneous

media has also been analyzed [104]. Bisht et al. have also discussed [105]

the monochromatic fields of generalized electromagnetic fields of dyons in

slowly changing media in a consistent manner. Application of quaternions

and to Supersymmetry quantum mechanics are explored [106] while the be-

havior of tachyons in Supersymmetry has also been analyzed [107,108]. The

quaternionic octonion gauge analyticity of dyons has also been studied [109]

in simpler and consistent manner.

1.2 Summary of the present work

Keeping in view the recent updates of standard model, use of quaternions

and octonions in various branches of physics and mathematics and also the

fact that the formulation necessary to describe the theory relevant for the

protection and detection of magnetic monopoles and dyons has been clumsy

and manifestly non-covariant, in the present thesis we have made an attempt

to developed the consistent octonion reformulation for generalized electrody-

namics of dyons and their possible role in order to understand the physics

beyond the standard model.

The entire work done in the present thesis is divided in six chapters.

Chapter-1 is based on the historical development with reviewed literature of

standard model, physics beyond the standard model, quaternions, octonions,

monopoles and dyons.

Chapter-2 describes the solutions of wave equation and other field equations

of monopoles and dyons interms of physical octonion variables. In section

(2.2), we have reviewed the earlier literature on quaternion, octonion and
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Fano plane. Here in section (2.3), the asymmetry of Maxwell’s equations,

need of magnetic monopoles, ’t Hooft-Polyakov monopoles and fields associ-

ated with dyons are discussed in the context to the utility and advantages of

monopoles and dyons. It is emphasized that the BPS mass formula of dyons is

universal and is also invariant under duality and conformal transformations.

In section (2.4), we have discussed the octonion wave equation from left and

right regularity conditions of octonions. It is shown that the homogeneous

octonion wave equation provides no place for electric and magnetic charges,

while the inhomogeneous octonion wave equation deals with the charge and

current source which may have important role in order to understand the

existence of monopoles and dyons. The octonion wave equation thus can

be interpreted as the classical wave (field) equation of physical variables. In

section (2.5), the octonion electrodynamics has been analyzed interms of

compact simple and manifestly covariant way of octonion wave equations of

potential and currents. Here, we have obtained the octonionic form of Gen-

eralized Dirac-Maxwell’s equations and other quantum equations of dyons

in simple, compact and consistent way incorporating the non-associativity

of octonion variables. Section (2.6) provides the discussion and conclusion

of the whole work done in this chapter. It is concluded that the presents

octonion reformulation of generalized fields of dyons represents well the in-

variance of field equations under the Lorentz and duality transformations.

It also discussed the dynamics of electric (magnetic) charge yielding to the

usual form of Maxwell’s equations in the absence of magnetic (electric charge)

in compact, simpler and consistent way.

In chapter-3, we have made an attempt to investigate the generalized split

octonion electrodynamics for dyons. Starting with the usual definition of

split octonions along with their multiplication rules, in section (3.2), we
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have reconnected the split octonion with their convenient matrix realization

in terms of 2×2 Zorn vector matrices. The multiplication rules and other

properties of split octonion are analyzed in terms of 2×2 Zorn vector matrix

realization and accordingly the differential operator has been rewritten in

terms of 2×2 Zorn vector matrix realization of split octonions. Using the

definitions of split octonions and their connection with Zorn vector matrix

realization, we have developed the split octonionic form of generalized four

potential of dyons (section - 3.3 ) and thus obtained the split octonion wave

equation which is analogous to the potential wave equation giving rise to

generalized electromagnetic fields of dyons. Consequently, the split octo-

nion field equation in compact and simpler form has been developed and it

is shown that the split octonion wave equation represents the generalized

Dirac Maxwell’s equations of dyons in the case of split octonion electrody-

namics. Another quantum equations for generalized potential, fields, cur-

rent and other physical variables are also developed in compact and similar

form of split octonion electrodynamics in section (3.4). As such, in sec-

tion (3.5), we have analyzed the laws associated with energy momentum

conservation in split octonion electrodynamics. Accordingly, we have in-

vestigated the work energy theorem or “Poynting Theorem” to the case of

generalized electromagnetic fields of dyons in split octonion formulation and

their Zorn vector matrix realization in consistent manner. The Poynting

theorem has been discussed for the conservation of energy associated with

generalized fields of dyons in split octonion electrodynamics. Furthermore,

the Maxwell stress tensor for generalized fields of dyons has also been refor-

mulated for split octonion electrodynamics it is shown that the divergence

of Maxwell’s stress tensor represents the “generalized electromagnetic force”

of dyons. More over it is shown that a part of Maxwell’s stress tensor rep-
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resents the generalized Dirac Maxwell’s equations of dyons in split octonion

electrodynamics. In section (3.6), we have made an attempt to analyze the

split octonion reformulation of Lorentz invariant of generalized split octonion

electrodynamics of dyons and we have thus obtained the Lorentz invariants

like
(
~E2 − ~H2

)
,
(−→
E .
−→
H
)
,
−→
∇
(
~E2 − ~H2

)
, and−→∇

(−→
E .
−→
H
)
and it is shown that

the reformulation of classical electrodynamics in terms of split octonion for-

mulation in compact, simpler, manifestly covariant and consistent manner.

Consequently, it is concluded that the split octonion electrodynamics repro-

duces the electrodynamics of electric (magnetic) charge in the absence of

magnetic (electric) charge of dyons and vice-versa.

In chapter-4, we have discussed the octonion electrodynamics in homoge-

neous (isotropic) and chiral medium. In section (4.2), we have discussed

the definition of chiral medium. The chiral media are isotropic birefringent

substances that responses to either electric or magnetic excitation with both

electric and magnetic polarizations. In section (4.3), we have obtained the

generalized electromagnetic fields equations of dyons in isotropic medium.

Thus, we have derived the generalized Dirac-Maxwell’s equations and other

various quantum equations in the homogeneous (isotropic) medium. It has

been shown that the field equations of dyons remain invariant under the du-

ality transformations in isotropic homogeneous medium and the equation of

motion reproduces the rotationally symmetric gauge invariant angular mo-

mentum of dyons. Keeping in view the consequences of the present theory

of dyons in isotropic medium, we have also undertaken the study of the oc-

tonion analysis of time dependent Maxwell’s equations in chiral medium for

dyons in presence of electric and magnetic charges (sources) are obtained in

unique, simpler and consistent manner.Thus, in section (4.4), we have dis-

cussed the generalized octonion Maxwell’s equations in the case of isotropic
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medium. Accordingly, the octonionic forms of potential, field and current

equation are developed in simple and compact manners in the case of ho-

mogeneous (isotropic) medium and it is emphasized that the corresponding

quantum equations derived in terms of octonions are invariant under Lorentz

and duality transformations. Accordingly, we have discussed the generalized

octonion electrodynamics in chiral medium (section 4.5). It provides the

field equations, wave equations and other quantum equations of dyons in the

case of chiral medium by means of octonionic eight dimensional representa-

tions. As such, we have described the chiral parameter and pairing constant

in terms of octonionic representation of Drude-Born-Fedorov constitutive re-

lations. Hence, we have derived the generalized theory of Dirac-Maxwell’s

equations in presence of electric and magnetic charges of dyons in the case

of chiral media in simple, compact and consistent manner.

In Chapter-5, we have made an attempt to study the abelian and non-

Abelian gauge theory of dyons with the application of split octonions and

their Zorn vector matrix realization. In section (5.2) we have discussed the

U(1)×U(1) abelian gauge theory of dyons from the invariance principles of

Lagrangian formulation in order to obtain the dyonic field equations. It has

been shown that this formalism provides better understanding to explain

the duality conjunctive for the justification of existence of monopoles and

dyons. In section (5.3), we have discussed the U(1)×U(1) octonion gauge

formulation in terms of 2×2 Zorn vector matrix realization of split octonion

in compact and consistent manner. As such, we have developed the octonion

covariant derivative for U(1)×U(1) gauge theory of dyons in terms of 2×2

Zorn matrix realization of split octonions. It is shown that the commutation

relation between the octonion covariant derivative leads to two types of gauge

field strength of generalized electromagnetic fields of dyons responsible for
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the simultaneous existence of electric charge and magnetic monopole. It is

also shown that the generalized Dirac Maxwell’s equations of dyons leads to

two types of two photon in terms of two four currents associated with elec-

tric charge and magnetic monopole. In section (5.4), we have discussed the

octonion gauge fields as the combination of two quaternion gauge fields. The

covariant derivative, abelian and non-Abelian gauge structure and the gauge

current equation are described in split octonion formulation of gauge theory.

As such, we have investigated the U(1)×SU(2) octonionic gauge formulation

in simpler and compact manner. Our U(1)×SU(2) theory of weak interac-

tion describes two fold symmetry of electroweak interactions. The first fold

describes the gauge boson of standard electroweak theory while the second

one has be investigated to describe the structure of alternative electroweak

interaction to the presence of magnetic monopole. In section (5.5), we have

extended U(1)×SU(2) to the non-Abelian SU(2)e × SU(2)m gauge formu-

lation in terms of 2×2 Zorn vector matrix of split octonions. Accordingly,

the octonion gauge theory has been reconnected to the ’t Hooft Polyakov

magnetic monopole theory (section 5.6 ) in order to satisfy the existence of

magnetic monopole in Grand Unified Theories (GUTs). In section (5.7), we

have discussed the SU(3) generators (Gell-Mann matrices) and their multi-

plication properties and accordingly the resemblance between the octonion

basis elements and the SU(3) generators are discussed in section (5.8), where

a proper mapping between two has been investigated. Accordingly, the SU(3)

symmetry as been developed interms of non-associativity of octonion basis

elements which does not effect the invariance of SU(2) spin (i-spin) multi-

plets. Further more, it is concluded that the algebra of strong interactions

correspond to SU(3) automorphism of octonion algebra and supports ear-

lier results of Gï¿œnaydin [69,70]. In section (5.9), we have discussed the
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relationship of octonions and the parameters of quantum chromodynamics

(QCD). Consequently, the exact SU(3) symmetry of colors has been investi-

gated in terms of octonion algebra in order to describe quantum chromody-

namics (QCD). Hence, we have reformulated the theory of strong interaction

(i.e. the quantum chromodynamics (QCD)) based on colors SU(3)c whose

generators satisfy the non-associative algebra of octonions. It is shown that

in this theory the gluonic field strength tensor of QCD behaves like to the

electromagnetic field strength tensor of QED. More over, the SU(3) gauge

theory of strong interactions and the invariant Lagrangian formulation has

been suitably handled in terms of non-associativity of octonion in section

(5.10), where gauge transformations are octonionic, and the octonion affin-

ity describes the Yang-Mill’s field. It is concluded that octonionic colored

quarks are dyons where the generalized field of dyons are discussed as the

two fold gauge symmetries of SU(3) non-Abelian gauge group associated re-

spectively with electric and magnetic charges.

Chapter-6 describes the role of octonions in physics beyond standard model.

In section (6.2), we have discussed the role of octonions in grand unified

theory (GUT) gauge group of which is describes SU(3) × SU(2) × U(1).

Here we have extended SU(2) × U(1) (electroweak) gauge theory to the

SU(3)×SU(2)×U(1) gauge theory in terms of 2×2 Zorn vector matrix real-

ization of split octonions. Thus, we have established the covariant derivative,

gauge field strength and field equation for the case of grand unified theory in

terms of 2×2 Zorn vector matrix realization of split octonion. As such, the

octonionic formulation regardless a generalization of GUTs for the mixing of

gauge current used for U(1), SU(2) and SU(3) sectors associated respectively

with the electromagnetic, weak and strong interactions in presence of dyons.

In section (6.3), we have undertake the study of role of octonions in supersym-
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metry and features of octonions realization of supersymmetry. Accordingly,

we have discussed the supersymmetry algebra and their properties in terms of

2×2 split octonionic valued matrices in simple, compact and consistent man-

ner. In section (6.4), we have analyzed the role of octonions in gravity and

dark matter. Here, we have described the octonion space as the combination

of two quaternionic spaces namely gravitational G-space and electromagnetic

EM-space. As such, the octonionic differential operator, octonionic valued

potential, octonionic field equation and other quantum equations have been

reformulated in gravitational - electromagnetic space of octonion represen-

tation in simpler and consistent way. Consequently, we have discussed the

radius vector, velocity representation and generalized charge and generalized

mass of the particle in terms of octonion representations. It is shown that

the gravitational - electromagnetic fields has been divided in terms of four

type of sub-fields namely G-G, EM-G, EM-EM and G-EM subfields. Further

more in subsection (6.4.1), we have reformulated the theory dark matter in

terms of octonion variables. It is emphasized that the dark matter neither

emits nor absorbs light or electromagnetic radiation at any significant level.

Instead, its existence and properties have been analyzed from its gravita-

tional effects on visible matter, radiation and large scale structure of the

universe. Here the dark matter (nonbaryonic) has been investigated in terms

of octonion hot-dark matter and octonion cold-matter. As such, we have

derived the various quantum equations for octonionic hot dark matter and

cold dark matter. It is shown that octonionic hot dark matter contains the

photon and graviton (i.e. massless particles) while the octonionic cold dark

matter is associated with the W±, Z0 (massive) bosons. At last in section

(6.5), we have discussed the role of octonion in superstring theory (i.e. a

theory of everything to describe the unification of all four types of forces

24



1.2 Summary of the present work

namely gravitational, electromagnetic, weak and strong). The octonionic

differential operator, octonionic valued potential wave equation, octonionic

field equation and other various quantum equations has been discussed the

framework of superstring theory in simpler, compact and consistent manner.

Consequently, the generalized Dirac-Maxwell’s equations are studied with

the preview of superstring theory by means of octonions.
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ABSTRACT

Starting with the definition of quaternions and octonions, we
have discussed the asymmetry of Maxwell’s equations, need of
magnetic monopoles, ’t Hooft-Polyakov monopoles and fields as-
sociated with dyons and it is emphasized that the BPS mass for-
mula of dyons is universal and is also invariant under duality
and conformal transformations. The octonion electrodynamics
has been analyzed from octonion wave equations of potential and
currents to obtain the octonionic form of Generalized Dirac-
Maxwell’s equations and other quantum equations of dyons in
simple, compact, consistent and manifestly covariant manner.
It is shown that the octonion electrodynamics reproduces the dy-
namics of electric (magnetic) charge yielding to the usual form of
Maxwell’s equations in the absence of magnetic (electric charge)
in compact, simpler and consistent way.



Chapter 2

Generalized Octonion

Electrodynamics

2.1 Introduction

The two fundamental mathematical structures (division algebras) a physicist

uses in his everyday life are the real R and the complex C numbers. Complex

numbers are described as pairs of real numbers with a specific multiplication

laws. One can however go even further and build two other sets of numbers,

known in mathematics as quaternions H [1] and octonions O [2]. The quater-

nions, formed as pairs of complex numbers are non-commutative whereas the

octonions, formed as pairs of quaternion numbers are both non-commutative

and non-associative. The four sets of numbers are mathematically known as

division algebras. The octonions are the last division algebra, no further gen-

eralization being consistent with the laws of mathematics. So, there exists

four normed division algebras [3]: the real numbers (R), complex numbers

(C), quaternions (H) [1, 4], and octonions (O) [2, 5] . Thus octonions are

regarded as a super-set of quaternions in the same way that quaternions are
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a super-set of complex numbers, i.e.

• Scalars are represented by 1 number.

• Complex numbers are represented by 2 numbers (1 real and 1 imagi-

nary).

• Quaternions are represented by 4 numbers (1 real and 3 imaginary).

• Octonions are represented by 8 numbers (1 real and 7 imaginary).

We might expect this sequence to continue with an element consisting of 16

numbers, but such algebra does not exist as it losses the properties of division

algebra and the sequence ends with octonions. Octonions are also known as

Cayley numbers. When we move from Complex numbers to Quaternions and

then Octonions the system obeys fewer algebraic laws. Going from Complex

numbers to Quaternions we loose commutativity and from Quaternions to

Octonions there is loss of associatively. Quaternions are extensively used in

the connection of relativity [6], quantum mechanics [7], superluminal [8] and

subluminal [9] Lorentz transformations and gauge theories [10]. Left-right

handed Weinberg-Salam theory of electromagnetic interaction with gauge

structure has been explained better in terms of quaternion [11].

In recent years, it has also drawn interests of many authors [12-15] towards

the developments of wave equation [16] and octonion form of Maxwell’s equa-

tions [17]. Octonion electrodynamics [17], dyonic field equation [18] and oc-

tonion gauge analyticity of dyons [19] have been further studied consistently

in order to obtain the corresponding field equations (Maxwell’s equations)

and equation of motion [16-18] in compact and simpler notations. In 1961

Pais [20] pointed out a striking similarity between the algebra of interactions
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and the split octonion algebra. Some work [21, 22] has been done to relate

octonions for extending (3+1) dimension of space time to eight dimensional

theory to accommodate the ever increasing quantum numbers and internal

symmetric assigned to elementary particles and gauge fields. The ingenious

work regarding the octonion applications in high energy physics were done

by Gunaydin et. al [23, 24] to formulate quark models and color gauge theory

in terms of split octonion algebras and the related groups SO(8), SO(7) and

SU(3). The SU(3) symmetry group appears as the automorphism group of

octonion representation leaving the complex subspace and the scalar product

invariant. The approach of Gunaydin et. al [23, 24] has been followed by

Domokos et.al [25, 26] and Morita [27] to the algebraic color gauge theory

and quarks confinement problem. Further octonions were used by Buoncris-

tiani [28] in writing Yang-Mill’s and the Maxwell’s field equation in a simple

form and showed that octonion algebras accommodates both space time sym-

metry. The extension of quaternionic matrices to octonions as interpreting

non-Riemannian geometry has been described by Morques and Oliveira [29].

On the other hand magnetic monopoles were advocated [30, 31] to symme-

terize Maxwell’s equations in a manifest way that the existence of an isolated

magnetic charge implies the quantization of electric charge. The fresh inter-

ests on monopoles have been enhanced by pt Hooft [32] and Polyakov [33]

with the idea that the classical solutions having the properties of magnetic

monopoles [30, 31] may be found in Yang - Mills gauge theories. Now, it has

become clear that monopoles are better understood in grand unified theories

[34] and supersymmetric gauge theories [35]. Magnetic monopoles are also

predicted by some theories [36, 37] that seek to unify the electroweak and

strong interactions. It was challenging aspect of grand unified theories that

their conventional structure [38, 39] is just such that they possess classical
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particle like solutions with the interpretation of magnetic monopoles. How-

ever, the monopole masses that are predicted so called grand unified theories

[34] are much too large abut 1016 Gev to be detected in experiments. Julia

and Zee [40] extended the pt Hooft-Polyakov theory of monopoles and con-

structed the theory of non- Abelian dyons (particles carrying simultaneously

electric and magnetic charges). The quantum mechanical excitation of fun-

damental monopoles include dyons [41] which are automatically arisen from

the semi-classical quantization of global charge rotation degree of freedom of

monopoles.

Despite of this much literature and the fact that the formalism necessary to

describe magnetic monopoles (dyons) has been clumsy and manifestly non-

covariant, in this chapter, we have made an attempt to obtain the solution

of wave equation and other field equations of monopoles and dyons interms

of physical octonion variables. In section (2.2), we have reviewed the ear-

lier literature on quaternion, octonion and Fano plane. In section (2.3) the

asymmetry of Maxwell’s equations, need of magnetic monopoles, ’t Hooft-

Polyakov monopoles and fields associated with dyons are discussed in context

to the utility and advantages of monopoles and dyons. It is emphasized that

the BPS mass formula of dyons is universal and is also invariant under du-

ality and conformal transformations. In section (2.4), we have discussed the

octonion wave equation from left and right regularity conditions of octonions.

It is shown that the homogeneous octonion wave equation provides no place

for electric and magnetic charges, while the inhomogeneous octonion wave

equation deals with the charge and current source which may have impor-

tant role in order to understand the existence of monopoles and dyons. The

octonion wave equation thus can be interpreted as the classical wave (field)

equation of physical variables. In section (2.5) the octonion electrodynam-
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ics has been analyzed interms of compact simple and manifestly covariant

way of octonion wave equations of potential and currents. Here we have

obtained the octonionic form of Generalized Dirac-Maxwell’s equations and

other quantum equations of dyons in simple, compact and consistent way

incorporating the non-associativity of octonion variables. Section (2.6) pro-

vides the discussion and conclusion of the whole work done in this chapter. It

is concluded that the presents octonion reformulation of generalized fields of

dyons represents well the invariance of field equations under the Lorentz and

duality transformations. It also discussed the dynamics of electric (magnetic)

charge yielding to the usual form of Maxwell’s equations in the absence of

magnetic (electric charge) in compact, simpler and consistent way.

2.2 Mathematical Preliminaries

2.2.1 Quaternions

The algebra of quaternion H is a four - dimensional algebra over the field

of real numbers R and a quaternion φ is expressed in terms of its four base

elements [1, 2] as

φ = φµeµ =φ0 + e1φ1 + e2φ2 + e3φ3, (µ = 0, 1, 2, 3) (2.1)

where φ0, φ1, φ2, φ3 are the real quarterate of a quaternion and e0, e1, e2, e3

are known as quaternion unit (basis elements). A quaternion is also expressed

as the combination of scalar and vector parts i.e.

φ =
(
φ0,
−→
φ
)

; (2.2)
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here −→φ = e1φ1 + e2φ2 + e3φ3 is vector part and φ0 is scalar part. The

quaternion units eA, (∀A = 0, 1, 2, 3) satisfy the following relations

e0eA = eAe0 = eA;

eAeB = −δABe0 + fABCeC . (∀A,B,C = 1, 2, 3) (2.3)

Where δAB is the delta symbol and fABC is the Levi Civita three index

symbol having value (fABC = +1) for cyclic permutation, (fABC = −1) for

anti cyclic permutation and (fABC = 0) for any two repeated indices. As

such we may write the following relations among quaternion basis elements

[eA, eB] = 2 fABC eC ;

{eA, eB} = −2 δABe0;

eA( eB eC) = (eA eB ) eC . (2.4)

The brackets [ , ] and { , } are used respectively for commutation and the

anti commutation relations while δAB is the usual Kronecker Dirac - Delta

symbol. H is an associative but non commutative algebra. Alternatively, a

quaternion is defined as a two dimensional algebra over the field of complex

numbers C as

φ = (φ0 + e1φ1) + e2 (φ2 − e1φ3) (2.5)

The quaternion conjugate φ is defined as

φ = φµeµ =φ0 − e1φ1 − e2φ2 − e3φ3 (2.6)
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In practice φ is often represented as a 2× 2 matrix where e0 = I, ej = −iσj
(j=1, 2, 3) and σj are the usual Pauli spin matrices. Hence a quaternion can

be decomposed in terms of its scalar (Sc(x)) and vector (V ec(x)) parts as

Sc(φ) = 1
2(φ + φ );

V ec(x) = 1
2(φ − φ ). (2.7)

The norm of a quaternion is expressed as

N (φ) =φφ = φφ =| φ |2= φ2
0 + φ2

1 + φ2
2 + φ2

3. (2.8)

Since there exists the norm of a quaternion, we have a division i.e. every φ

has an inverse of a quaternion and is described as

φ−1 = φ

| φ |
. (2.9)

Rather the quaternion conjugation satisfies the following property

φ1φ2 =φ1 φ2. (2.10)

The norm of the quaternion is positive definite and obey the composition law

N (φ1φ2) =N (φ1)N (φ2) . (2.11)

The sum and product of two quaternions are described as

(α0,
−→α ) +

(
β0,
−→
β
)

=
(
α0 + β0,

−→α +−→β
)
,

(α0,
−→α ) .

(
β0,
−→
β
)

=
(
α0β0 −−→α .

−→
β , α0

−→
β + β0.

−→α
)
. (2.12)
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Quaternion elements are non-Abelian in nature and thus represent a non

commutative division ring.

2.2.2 Octonions

An octonion x is expressed [42, 43] as a set of eight real numbers

x =e0x0 + e1x1 + e2x2 + e3x3 + e4x4 + e5x5 + e6x6 + e7x7

=e0x0 +
7∑

A=1
eAxA (2.13)

where eA(A = 1, 2, ..., 7) are imaginary octonion units and e0 is the multi-

plicative unit element. Set of octets (e0, e1, e2, e3, e4, e5, e6, e7) are known as

the octonion basis elements and satisfy the following multiplication rules

e0 = 1; e0eA = eAe0 = eA;

eAeB = −δABe0 + fABCeC . (A,B,C = 1, 2, ....., 7). (2.14)

The structure constants fABC is completely antisymmetric and takes the

value 1 for following combinations,

fABC = +1;∀(ABC) = (123), (471), (257), (165), (624), (543),(736). (2.15)

It is to be noted that the summation convention is used for repeated indices.

Here the octonion algebra O is described over the algebra of real numbers

having the vector space of dimension 8. Octonion algebra is non associative

and multiplication rules for its basis elements given by equations (2.14) and

(2.15) are then generalized in the following table:
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· e1 e2 e3 e4 e5 e6 e7
e1 −1 e3 −e2 e7 −e6 e5 −e4
e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e2 −e1 −1 −e5 e4 e7 −e6
e4 −e7 −e6 e5 −1 −e3 e2 e1
e5 e6 −e7 −e4 e3 −1 −e1 e2
e6 −e5 e4 −e7 −e2 e1 −1 e3
e7 e4 e5 e6 −e1 −e2 −e3 −1

Table 2.1: Octonion Multiplication table

As such we may write the following relations among octonion basis elements

[eA, eB] = 2 fABC eC ;

{eA, eB} = −2 δABe0;

eA( eB eC) 6= (eA eB ) eC . (2.16)

Octonion conjugate is defined as

x =e0x0 − e1x1 − e2x2 − e3x3 − e4x4 − e5x5 − e6x6 − e7x7

=e0x0 −
7∑

A=1
eAxA (2.17)

where we have used the conjugates of basis elements as e0 = e0 and eA = −eA.

Hence an octonion can be decomposed in terms of its scalar (Sc(x)) and

vector (V ec(x)) parts as

Sc(x) = 1
2(x + x );

V ec(x) = 1
2(x − x ) =

7∑
A=1

eAxA. (2.18)
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Conjugates of product of two octonions and its own are described as

(x y) = y x; (x) = x. (2.19)

while the scalar product of two octonions is defined as

〈x , y〉 = 1
2(x y + y x) = 1

2(x y + y x) =
7∑

α=0
xα yα. (2.20)

The norm N(x) and inverse x−1(for a nonzero x) of an octonion are respec-

tively defined as

N(x) = xx = x x =
7∑

α=0
x2
α.e0;

x−1 = x

N(x) =⇒x x−1 = x−1 x = 1. (2.21)

The norm N(x) of an octonion x is zero if x = 0, and is always positive

otherwise. It also satisfies the following property of normed algebra

N(x y) = N(x)N(y) = N(y)N(x). (2.22)

Equation (2.16) shows that octonions are not associative in nature and thus

do not form the group in their usual form. Non - associativity of octonion

algebra O is provided by the associator

(x, y, z) = (xy)z − x(yz) ∀x, y, z ∈ O

defined for any three octonions. If the associator is totally antisymmetric

for exchanges of any three variables, i.e. (x, y, z) = −(z, y, x) = −(y, x, z) =

−(x, z, y), then the algebra is called alternative.
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2.2.3 The Fano plane

Let us use the fig. (2.1) in order to remember how to multiply octonions:

Figure 2.1: The Fano plane

This is the Fano plane [42], a little gadget with 7 points and 7 lines. The

‘lines are the sides of the triangle, its altitudes, and the circle containing all

the midpoints of the sides. Each pair of distinct points lies on a unique line.

Each line contains three points, and each of these triples has has a cyclic

ordering shown by the arrows. If ei , ej and ek are cyclically ordered in this

way then we get

eiej = ek, ejei = −ek. (2.23)
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Together with these rules:

• 1 is the multiplicative identity.

• e1, e2, ........, e7 are square roots of −1.

The Fano plane completely describes the algebra structure of the octonions.

Each of the seven lines generates a sub algebra of O isomorphic to the quater-

nions H.

2.3 Monopoles, Dyons and their Fields Equa-

tions

2.3.1 Asymmetry of Maxwell’s equations

The asymmetry between electricity and magnetism is clear from the following

differential form of the Maxwell’s equation for electromagnetic fields as,

−→
∇ .
−→
E = ρe;

−→
∇ .
−→
H = 0;

−→
∇ ×

−→
E = ∂

−→
H

∂t
; −→

∇ ×
−→
H = ∂

−→
E

∂t
+−→je ; (2.24)

where the vector fields −→E and −→H , respectively, denote the electric and mag-

netic fields, ρe is the electric charge density while the electric current density

has been denoted by −→je and use of natural units c = ~ = 1 has been made

throughout the notations. Maxwell’s equations (2.24) in free space ( i.e for

ρ = 0, j = 0) are symmetric and dual invariant. Thus, in the presence of
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sources, Maxwell’s equation (2.24) are neither symmetric nor dual invariant.

The electric and magnetic fields in terms of the components of electric four

- potential {Aµ} =
{
φ,
−→
A
}
are expressed in the following manner as ;

−→
E =−−→∇φ− ∂

−→
A

∂t
;

−→
H =−→∇ ×−→A. (2.25)

In covariant notation, these electric and magnetic fields are the components

of electromagnetic field tensor as;

Fµν =∂νAµ − ∂νAµ; µ, ν = 0, 1, 2, 3 (2.26)

where F0i = Ei (∀i = 1, 2, 3) and Fij = εijkH
k (∀i, j, k = 1, 2, 3). Covariant

forms of Maxwell’s equations (2.24) may then be written as,

Fµν,ν =∂νFµν = jµ; (2.27)

F d
µν,ν =∂νF d

µν = 0. (2.28)

Here {jµ} =
{
ρe,
−→
j
}
is a four current density. The dual part of electromag-

netic field tensor F d
µν is defined as,

F d
µν =1

2εµνσλF
σλ (2.29)

where εµνσλ is completely antisymmetric Ricci tensor of rank four. Equations

(2.27) and (2.28) are obviously asymmetrical in Fµν and F d
µν and do not re-

main invariant under the duality transformation Fµν 7−→F d
µν and F d

µν 7−→

−Fµν .

The lack of symmetries in Maxwell’s equations may be visualized in connec-
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tion with the following points,

• There is no magnetic charge analogy of electric charge and current

source densities.

• The magnetic field appears is produced by the motion of electric charge

but there is no similar contribution of magnetic charge in producing

electric field.

• In terms of four potential {Aµ}, the equation (2.25) demands the differ-

ent nature of relations, which show that the magnetic field is the effect

for the rotation of the spatial part of potential while such interpretation

cannot be given to the electric field.

• The symmetry is also explicitly revealed in the equation (2.26) for elec-

tromagnetic field tensor.

• Equation (2.24) gives no evidence for magnetic sources.

2.3.2 Dirac Magnetic Monopoles

Postulating the existence of magnetic monopoles, the generalized Dirac Maxwell’s

(GDM) equations [44, 45] are expressed (in SI units (c = ~ = 1)) in the fol-

lowing differential form as

−→
∇ .
−→
E = ρe;

−→
∇ .
−→
H = ρm;

−→
∇ ×

−→
E = −∂

−→
H

∂t
−−→jm; −→

∇ ×
−→
H = ∂

−→
E

∂t
+−→je ; (2.30)
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where ρe and ρm are respectively the electric and magnetic charge densities,
−→
je and −→jm are the corresponding current densities. GDM equations (2.30)

are invariant not only under Lorentz and conformal transformations but also

invariant under the following duality transformations [46, 47],

−→
E = −→E cos θ +−→H sin θ;
−→
H = −−→E sin θ +−→H cos θ. (2.31)

For a particular value of θ=π
2 , equation (2.31) reduces to

−→
E →

−→
H,

−→
H → −

−→
E ; (2.32)

which can be written as
 −→E−→
H

⇒
 0 1

−1 0


 −→E−→
H

 ; (2.33)

together with

je → jm, jm → −je ⇐⇒

 je

jm

⇒
 0 1

−1 0


 je

jm

 . (2.34)

Accordingly, the covariant form of GDM equations be written as

Fµν,ν =∂νFµν = jµ;

F d
µν,ν =∂νF d

µν = kµ. (2.35)

Here {kµ} =
{
ρm,
−→
k
}
is the four magnetic current density due to the pres-

ence of magnetic monopole. Consequently, the Lorentz force equation of
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motion may be written in following form as

m
d−→v
dt

=e
(−→
E +−→u ×−→H

)
+ g

(−→
H −−→u ×

−→
E
)

(2.36)

where m is the mass of the particle, e is the electric charge, {uν} is four

- velocity of particle, space - time four vector is defined as {xµ}≡ {t,−→x }

and g is magnetic charge. Electric and magnetic four - current are related as

jµ = euµ and kµ = guµ. As such the duality invariance is an intrinsic property

of Maxwell’s Lorentz theory of electrodynamics in presence of monopole.

Thus, the existence of magnetic monopoles provides an explanation for the

quantization of electric charge and maintains symmetries in the Maxwell’s

equations. Dirac gives an interesting result is that the product of a magnetic

monopole charge (g) with the electron electric charge (e) must be quantized

[45] i.e.,

eg =1
2n, n = 1, 2, 3, .... (2.37)

where e and g are respectively the electric and magnetic charges and n is the

principle quantum number. This condition implies that in the presence of

magnetic monopole, electric charge must be integral multiple of a fundamen-

tal unit. This quantization condition demands the existence of free magnetic

pole having the pole strength;

g = e

2α ; (2.38)

where α is fine structure constant. In deriving this condition it was assumed

that a particle has either electric charge or magnetic charge (not both). This

is also called Abelian magnetic monopole.
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In spite of many good points, Dirac theory encounters with many difficulties.

In this theory if the magnetic field,

−→
H =gr̂

r2 (2.39)

produced by magnetic charge g located at the origin is described by vector

potential −→A (r) , then obviously

−→
H 6=−→∇ ×−→A (2.40)

along the line going for monopole to infinity. Such a line may be curved or

planer is referred as Dirac string in literature [41]. For the straight string,

S(n) we may write

A(n)(r) =g
r
.
−→r × n̂

r − (−→r .n̂)

=g
r
.
[−→r × n̂ (−→r .n̂)][
r2 − (−→r .n̂)2] . (2.41)

For these vector potentials and −→H 6= −→∇×−→A along the singular line −→r = cn̂,

| An |= ∝ (2.42)

and hence in Dirac theory,

• a string of arbitrary shape ends at each monopole.

• −→A (r) is singular along string from monopole location to a infinity

• Charged particles can never pass through string.
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2.3.3 pt Hooft - Polyakov Monopoles

In contrast to Dirac’s demonstration of the consistency of magnetic monopoles

with quantum electrodynamics, the t’ Hooft [32] and Polyakov [33] demon-

strated the necessity of monopoles in grand unified gauge theories associated

with the unification of three fundamental interactions namely. electromag-

netic, weak and strong whereas the properties of the monopole are calculable

therein. Thus, the pt Hooft – Polyakov monopole is free from singularities

and is considered as a topological soliton. The pt Hooft – Polyakov was in-

dependently discovered that the bosonic part of the Georgi-Glashow model

admits finite energy solutions that from far away look like Dirac monopoles.

We will be concerned here only with the bosonic part of the model which

consists of an SO(3) Yang-Mills field theory coupled to a Higgs field in the

adjoint representation. The Lagrangian density is given by [48],

L =− 1
4G

µν ·Gµν + 1
2D

µ−→φ ·Dµ

−→
φ − V

(−→
φ
)
. (2.43)

Here
• the gauge field-strength Gµν is defined by

Gµν =∂µWν − ∂νWµ − eWµ ×Wν (2.44)

whereWµ are gauge potentials associated with the Lie algebra of SO(3).

• the Higgs field−→φ is a vector in the (three-dimensional) adjoint represen-

tation of SO(3), with components φa = (φ1, φ2, φ3) which is minimally

coupled to the gauge field; the gauge-covariant derivative is defined as

Dµ

−→
φ =∂µ

−→
φ − eWµ ×

−→
φ (2.45)
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• the Higgs potential V
(−→
φ
)
is given by

V
(−→
φ
)

=λ4
(
φ2 − a2

)2
(2.46)

where φ2 = −→φ · −→φ and λ is assumed to be non-negative.

The Lagrangian density (2.43) is invariant under the following SO(3) gauge

transformations

−→
φ 7→

−→
φ ′ =g(x)−→φ ;

Wµ 7→ W ′
µ =g(x)Wµg(x)−1 + 1

e
∂µg(x)g(x)−1; (2.47)

where g(x) is a possibly x- dependent 3 × 3 orthogonal matrix with unit

determinant.

The classical dynamics of the fields Wµ and −→φ are determined from the

following equations of motion

DνG
µν =− e−→φ ×Dµ−→φ ,

DµDµ

−→
φ =− λ

(
φ2 − a2

)−→
φ (2.48)

and by the Bianchi identity

DµG
dµν =0; (2.49)

where Gdµν = 1
2ε
µνλρGλρ.
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The canonically conjugate momenta to the gauge fieldWµ and the Higgs field
−→
φ are described as

~Ei =− ~G0i, ~Π = D0
−→
φ ; (2.50)

~Gij =− εijk ~Bk; (2.51)

The energy density may be written as

H =1
2
~Ei. ~Ei + 1

2
~Π.~Π + 1

2
~Bi · ~Bi + 1

2Di

−→
φ ·Di

−→
φ + V

(−→
φ
)
. (2.52)

Here, one can define a vacuum configuration to be one for which the energy

density vanishes, i.e.

~Gµν =0, Dµ−→φ = 0, V
(−→
φ
)

= 0. (2.53)

It should be noticed that the Higgs field obeys φ2 = (φ2
1 + φ2

2 + φ2
3) = a2 in

the Higgs vacuum. Such vacuum configuration is no more invariant under

the transformations of SO(3), but only under an SO(2) ∼= U(1) subgroup.

Thus this model exhibits spontaneous symmetry breaking mechanism.

On the other hand, Olive [49] obtained the resultant masses of gauge particles

as,

M(e, 0) =a | e |; (2.54)

where e is the eigen value of electric charge of a massive eigenstate and a spec-

ifies the the magnitude of the vacuum expectation value of scalar Higgs field.

In ’ t Hooft-Polyakov model, after symmetry breaking, we have the U(1)

gauge theory which has all the characteristics of Maxwell’s electromagnetic
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theory. The pt Hooft - Polyakov monopole carries one Dirac unit of magnetic

charge. These monopoles are not elementary particles like Dirac’s monopoles

but complicated extended objects having a definite size inside of which mas-

sive fields play a role in providing a smooth structure and outside they rapidly

vanish leaving the field configuration identical to Dirac’s monopoles. The pt

Hooft -Polyakov monopole was known numerically but there is simplified

model introduced by Prasad and Sommerfield [51] which has an explicit sta-

ble monopole solution. Such solution satisfying Bogomonly condition [50]

are named as Bogomonly - Prasad - Sommerfield (BPS) monopoles. These

static monopoles in R3 - space have been extensively studied in recent years

and it became clear that they have remarkable properties which are best un-

derstood as a special case of self-duality equations in four space for solutions

independent of one of the variables. The mass of monopole solution with a

smooth internal structure is calculable to have the following lower limit of

Prasad and Sommerfield,

M(0, g) ≥a | g | . (2.55)

Which is possible in Prasad-Sommerfield limit [51] , where the the ’ t
Hooft- Polyakov monopole solutions are generalized to vanish the self
interaction of Higgs field.

2.3.4 Field Associated with dyons

The name ’dyons’ was coined by Schwinger [31] for the particles carrying

simultaneously the existence of electric and magnetic charges. Dyons are

not strictly static, although they are stationary in certain gauges, and they

have non - zero kinetic energy. A dyon with a zero electric charge is usually
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referred to as a magnetic monopole. Schwinger [31, 46] extended the Dirac

quantization condition (2.37) to the dyon as

e1g2 − e2g1 = 1
2n (2.56)

for the interaction of two particles with electric and magnetic charges (e1, g1)

and (e2, g2). In view of Witten effect [52] the monopole are automatically

dyons when it carries electric charge in addition to magnetic charge. Like

Schwinger [31, 46] and Zwanziger [47, 53, 54] , Julia and Zee [58] extended

the ’t Hooft Polyakov monopole for the dyons with extended structure to

obeying the quantization condition (2.56). It has been pointed out that a

dyon is energetically not allowed to decay into magnetic monopole emitting

charge vector mesons. At classical level the charge of dyon is not quantized

and the dyons are not much massive then magnetic monopole.

Now it has become clear that a theory, which describes electromagnetic fields

in terms of single potential, can not avoid controversial Dirac string variables.

String singularities are discarded by means of two four-potential [55, 56]. So

the theory of dyons have been developed [60, 61, 69] on assuming the gener-

alized charge, generalized current and generalized four-potential of dyons as

a complex quantity with their real and imaginary parts. Let us define the

generalized charge on dyons as,

q =e− ig (i =
√
−1), (2.57)

where e and g are respectively electric and magnetic charges. Generalized

four - potential ({Vµ} = {φ, ~V }) associated with dyons is defined as,

{Vµ} ={Aµ} − i{Bµ}. (2.58)
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Here {Aµ} = {φe, ~A} and {Bµ} = {φm, ~B} are respectively electric and

magnetic four potentials, and generalized four - current {Jµ} of dyons may

be written as

{Jµ} ={jµ} − i{kµ} (2.59)

where {jµ} = (ρe,~j) and {kµ} = (ρm, ~k) are respectively electric and mag-

netic four current densities.

So the electric and magnetic fields associated with GDM equations (2.30)

must be symmetric in terms of components of two- four potential and are

thus described [60, 61] as

−→
E = −−→∇φe −

∂
−→
A

∂t
−
−→
∇ ×

−→
B ; (2.60)

−→
H = −−→∇φm −

∂
−→
B

∂t
+−→∇ ×−→A ; (2.61)

Accordingly the GDM equations (2.30) are considered as the field equation

for dyons and the electric ( ~E) and magnetic field ( ~H) are described as the

generalized electromagnetic fields of dyons. The relation between generalized

field and the components of the generalized four - potential (2.58) of dyons

as,

−→
ψ = −→E − i−→H = −∂

−→
V

∂t
−
−→
∇φ− i

−→
∇ ×

−→
V . (2.62)

The duality transformation [62] for two four - potentials respectively associ-

ated with electric and magnetic charges of dyons are discussed as
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−→
A →

−→
B ,
−→
B → −

−→
A ⇒

 −→A−→
B

 =

 0 1

−1 0


 −→A−→
B

 ; (2.63)

φe → φm, φe → −φm ⇒

 φe

φm

 =

 0 1

−1 0


 φe

φm

 . (2.64)

So, we may express the GDM equations (2.30) of dyon in the following co-

variant notation,

Fµν,ν = ∂νFµν = jeµ; (2.65)

F d
µν,ν = ∂νF d

µν = jmµ ; (2.66)

where

Fµν = (Aµ,ν − Aν,µ)− 1
2εµνσρ (Bρ,σ −Bσ,ρ) ;

F d
µν = (Bµ,ν −Bν,µ) + 1

2εµνσρ (Aρ,σ − Aσ,ρ) . (2.67)

Generalized fields of dyons given in equation (2.67) may directly be obtained

from field tensors Fµν and F d
µν as,

F0i = Ei; F d
0i = εijkH

k;

F d
0i = −H i; F d

ij = −εijkEk. (2.68)

Accordingly, we obtain a new parameter −→S i.e.

−→
S = �

−→
ψ = −∂

−→
J

∂t
−
−→
∇ρ− i(−→∇ ×−→J ); (2.69)
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where � is the D’ Alembertian operator expressed as

� = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 − ∂2

∂t2
= ∇2 − ∂2

∂t2
. (2.70)

Defining generalized field tensor as

Gµν =Fµν − iF d
µν , (2.71)

we can obtain the following generalized field equation of dyons

Gµν,ν =∂νGµν = Jµ;

Gd
µν,ν =∂νGd

µν = 0; (2.72)

where Gµν = Vµ,ν − Vν,µ is called the generalized electromagnetic field tensor

of dyons. Equation (2.72) may also written as follows like second order Klein

- Gorden equation for dyon fields,

�Vµ =Jµ (Lorentz gauge) (2.73)

Equation (2.65), (2.66) and (2.72) are invariant under duality transformation;

(
Fµν , F

d
µν

)
=
(
Fµν cos θ + F d

µν sin θ , Fµν sin θ − F d
µν cos θ

)
; (2.74)

(je, jm) = (je cos θ + jm sin θ , je sin θ − jm cos θ) ; (2.75)

where

g

e
= Bµ

Aµ
= jm

je
=− tan θ (2.76)

65



Generalized Octonion Electrodynamics

is described as constancy condition. Consequently, the generalized charge of

dyon may be written as,

q = | q | e−iθ. (2.77)

The suitable manifestly covariant Lagrangian density, which yields the field

equation (2.72) under the variation of field parameters i.e. potential only

without changing the trajectory of particle, may be written as follows;

L =m0 −
1
4GµνG

?
µν + V ?

µ Jµ; (2.78)

where m0 is the rest mass of particle, ? denotes the complex conjugate and

Gµν =1
2εµνσρG

ρσ. (2.79)

Lagrangian density given in equation (2.78) directly follows the following

form of Lorentz four - force equation of motion (2.36) for dyons i.e.

fµ = m0ẍµ = Re q∗(Gµνu
ν); (2.80)

where ’Re’ denotes the real part, {ẍµ} is the four - acceleration and {uν} is

the four - velocity of the particle.

So, according to Bogomolny bound [50] the mass of a dyon is expressed as

M(e, g) =a | q |= a | e− ig |= a
√

(e2 + g2). (2.81)

Which is known as BPS mass formula. This mass formula (2.56) does not

distinguish between the fundamental quantum particles and the magnetic

monopoles, being applicable to all of them, like meson-Solitons democracy
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in Sine Gorden Model [57]. The BPS mass formula is universal and is also

invariant under electromagnetic duality transformations.

2.4 Octonion Wave Equation

Keeping in view the properties of octonions [63-67] and its eight dimensional

connection, we may now write the octonion differential operator D [67, 68]

as

D =e0D0 + e1D1 + e2D2 + e3D3 + e4D4 + e5D5 + e6D6 + e7D7

=
7∑

µ=0
eµDµ, (µ = 0, 1, 2, 3, ......, 7) (2.82)

where Dµ are described as the components of a differential operator in an

eight dimensional representation. Here we may consider the eight dimen-

sional space as the combination of two ( external and internal ) four dimen-

sional spaces. As such, a function of an octonion variable may be described

as

F(X) = ∑7
µ=0 eµfµ(X) = f0 + e1f1 + e2f2 + .....+ e7f7, (2.83)

where fµ are scalar functions. Since octonions are neither commutative nor

associative, one has to be very careful to multiply the octonion either from

left or from right in terms of regularity conditions [65]. As such, a function

F(X) of an octonion variable X =
7∑

µ=0
eµXµ is left regular at X if and only

if F(X) satisfies the condition

DF(X) = 0. (2.84)
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Similarly, a function G(X) is a right regular if and only if

G(X)D = 0, (2.85)

where G(X) = g0 + g1e1 + g2e2 + .....+ g7e7. Then we get

DF = I = I0 + I1e1 + I2e2 + I3e3 + I4e4 + I5e5 + I6e6 + I7e7, (2.86)

where

I0 = ∂0f0 − ∂1f1 − ∂2f2 − ∂3f3 − ∂4f4 − ∂5f5 − ∂6f6 − ∂7f7;

I1 = ∂0f1 + ∂1f0 + ∂2f3 − ∂3f2 + ∂6f5 − ∂5f6 − ∂7f4 + ∂4f7;

I2 = ∂0f2 + ∂2f0 + ∂3f1 − ∂1f3 + ∂4f6 − ∂6f4 − ∂7f5 + ∂5f7;

I3 = ∂0f3 + ∂3f0 + ∂1f2 − ∂2f1 + ∂6f7 − ∂7f6 + ∂5f4 − ∂4f5;

I4 = ∂0f4 + ∂4f0 + ∂3f5 − ∂5f3 − ∂2f6 + ∂6f2 − ∂1f7 + ∂7f1;

I5 = ∂0f5 + ∂5f0 + ∂1f6 − ∂6f1 + ∂7f2 − ∂2f7 − ∂3f4 + ∂4f3;

I6 = ∂0f6 + ∂6f0 − ∂1f5 + ∂5f1 + ∂2f4 − ∂4f2 − ∂3f7 + ∂7f3;

I7 = ∂0f7 + ∂7f0 + ∂1f4 − ∂4f1 + ∂2f5 − ∂5f2 − ∂6f3 + ∂3f6. (2.87)

The regularity condition (2.84) may now be considered as a homogeneous

octonion wave equation for octonion variables without sources. On the other

hand, equation (2.86) is considered as the inhomogeneous wave equation as

DF =I. (2.88)

where I is also an octonion. Similarly, we may also write the homogeneous as

well as inhomogeneous octonion wave equations on using the right regularity

condition (2.85). We may now interpret these octonion wave equations as the
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classical wave (field) equations of physical variables. Thus, one dimensional

octonion representation is identical to eight dimensional spaces over the field

of real numbers. It is isomorphic to four-dimensional space representation

over the field of complex variables which is equivalent to two-dimensional

space representation over quaternion field variables. Similarly, one dimen-

sional quaternion space is isomorphic to four-dimensional space over the field

of real numbers which is identical to two-dimensional space over the field of

complex numbers.

2.5 Octonion Electrodynamics

In order to consider the generalized electromagnetic fields of dyon, we may

write the various quantum equations of dyons in octonion formulation. Thus

the octonion valued potential, in eight dimensional formalism as the combi-

nations of two four dimensional spaces, is defined as

V = e0V0 + e1V1 + e2V2 + e3V3 + e4V4 + e5V5 + e6V6 + e7V7. (2.89)

We may now identify the components of generalized potential of dyons as

(V0, V1, V2, V3, V4, V5, V6, V7) =⇒ (ϕ, Ax, Ay, Az, iBx, iBy, iBz, iφ) (i =
√
−1)

(2.90)

where (φ, Ax, Ay, Az) = (φ,−→A ) ≡ {Aµ} and (ϕ, Bx, By, Bz) = (ϕ,−→B ) ≡

{Bµ} are respectively described as the components of electric {Aµ} and mag-

netic {Bµ} four potentials of dyons. Equation (2.89) may then be written

as

V =e1(Ax + ie7Bx) + e2(Ay + ie7By) + e3(Az + ie7Bz) + (ϕ+ ie7φ), (2.91)
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which may be reduced in term of quaternionic potential as

V =e1Vx + e2Vy + e3Vz + ie7∅, (2.92)

where (∅,Vx,Vy,Vz) = (∅,−→V ) = {Vµ} are then be described as the compo-

nents of generalized four potential {Vµ} associated with generalized charge

(q = e− i g) of dyons [69]. Here we have used the procedure to make a octo-

nion as the order pair of quaternions. In order to obtain the generalized field

equations of dyons in four dimensional space time, we may identify differen-

tial operator (2.82) to be four dimensional, so that the differential operator

(2.82) be written as

D 7−→ � = e1
∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
− ie7

∂

∂t
, (2.93)

where we have replaced ∂7 = −i ∂
∂t

(i =
√
−1), ∂j = ∂

∂xj
(j = 1, 2, 3)

in equation (2.82), other components may be taken vanishing as we are con-

cerned with classical electrodynamics of dyons in four dimensional space-time

world. Accordingly we have taken other components like ∂0, ∂4, ∂5, ∂6 of equa-

tion (2.93) vanishing though some authors [63-68] explored the possibility of

taking the rest components of differential operator (2.82) in terms of quater-

nion values mass, i.e. mass has also four-dimensional structure, but we have

ignored this possibility.

Octonion conjugate of equation (2.93) may then be written as

� = −e1
∂

∂x
− e2

∂

∂y
− e3

∂

∂z
+ ie7

∂

∂t
. (2.94)
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2.5 Octonion Electrodynamics

Now operating� given by equation (2.94) to octonion potential V of equation

(2.91) for the octonionic potential wave equations, we get

�V =− e0(−→∇ · −→A + ∂φ

∂t
)

+e1(−∂ϕ
∂x

+ ∂Az
∂y
− ∂Ay

∂z
− ∂Bx

∂t
)

+e2(−∂ϕ
∂y

+ ∂Ax
∂z
− ∂Az
∂zx
− ∂By

∂t
)

+e3(−∂ϕ
∂z

+ ∂Ay
∂x
− ∂Ax

∂y
− ∂Bz

∂t
)

−ie4(−∂φ
∂x
− ∂Bz

∂y
+ ∂By

∂z
− ∂Ax

∂t
)

−ie5(−∂φ
∂y
− ∂Bx

∂z
+ ∂Bz

∂x
− ∂Ay

∂t
)

−ie6(−∂φ
∂z
− ∂By

∂x
+ ∂Bx

∂y
− ∂Az

∂t
)

+ie7(−→∇ · −→B + ∂ϕ

∂t
). (2.95)

On applying the Lorentz gauge conditions, respectively for the dynamics of

electric and magnetic charges of dyons as

−→
∇ ·
−→
A + ∂φ

∂t
= 0; −→

∇ ·
−→
B + ∂ϕ

∂t
= 0, (2.96)

we [70] get the following octonionic form of equation (2.95) i.e.

�V = F (2.97)

where F is again an octonion reproduces the generalized electromagnetic

fields of dyons. Thus the generalized electromagnetic field of dyons is de-
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scribed as

F = e0F0 + e1F1 + e2F2 + e3F3 + e4F4 + e5F5 + e6F6 + e7F7 (2.98)

where

F0 = −(−→∇ · −→A + ∂φ

∂t
) = 0;

F1 = (−∂ϕ
∂x

+ ∂Az
∂y
− ∂Ay

∂z
− ∂Bx

∂t
) = Hx;

F2 = (−∂ϕ
∂y

+ ∂Ax
∂z
− ∂Az

∂x
− ∂By

∂t
) = Hy;

F3 = (−∂ϕ
∂z

+ ∂Ay
∂x
− ∂Ax

∂y
− ∂Bz

∂t
) = Hz;

F4 = −i (−∂φ
∂x
− ∂Bz

∂y
+ ∂By

∂z
− ∂Ax

∂t
) = −i Ex;

F5 = −i (−∂φ
∂y
− ∂Bx

∂z
+ ∂Bz

∂x
− ∂Ay

∂t
) = −i Ey;

F6 = −i (−∂φ
∂z
− ∂By

∂x
+ ∂Bx

∂y
− ∂Az

∂t
) = −i Ez;

F7 = i (−→∇ · −→B + ∂ϕ

∂t
) = 0. (2.99)

where the generalized electric (−→E ) and magnetic (−→H ) fields of dyons, in terms

of components of electric and magnetic four potentials, are already defined

in the equations (2.53) and (2.54).

We may now write equation (2.98) as

F =e1(Hx + ie7Ex) + e2(Hy + ie7Ey) + e3(Hz + ie7Ez), (2.100)

were can also be written to the following quaternionic form

F =
3∑

µ=1
eµ(Hµ + ie7Eµ), (2.101)
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where {Hµ} = (0, ~H) and {Eµ} = (0, ~E), so we may write the equation

(2.100) as

F =e1Ψx + e2Ψy + e3Ψz, (2.102)

where

−→Ψ =−→H + i e7
−→
E , (2.103)

which is expressed in terms of the components of generalized four-potential

{Vµ} as

−→Ψ =− ∂
−→V
∂t
−∇∅ − i

(
∇×

−→V
)
. (2.104)

Now applying the differential operator (2.93) to equation (2.100), we get

�F =− e0(∂Hx

∂x
+ ∂Hy

∂y
+ ∂Hz

∂z
)

+e1(∂Hz

∂y
− ∂Hy

∂z
− ∂Ex

∂t
)

+e2(∂Hx

∂z
− ∂Hz

∂x
− ∂Ey

∂t
)

+e3(∂Hy

∂x
− ∂Hx

∂y
− ∂Ez

∂t
)

+ie4(∂Ey
∂z
− ∂Ez

∂y
− ∂Hx

∂t
)

+ie5(∂Ez
∂x
− ∂Ex

∂z
− ∂Hy

∂t
)

+ie6(∂Ex
∂y
− ∂Ey

∂x
− ∂Hz

∂t
)

+ie7(∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

). (2.105)
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which reduces to

�F =− e0(−→∇ .−→H )

+e1[(−→∇ ×−→H )x −
∂Ex
∂t

]

+e2[(−→∇ ×−→H )y −
∂Ey
∂t

]

+e3[(−→∇ ×−→H )z −
∂Ez
∂t

]

+ie4[(−→∇ ×−→E )x −
∂Hx

∂t
]

+ie5[(−→∇ ×−→E )y −
∂Hy

∂t
]

+ie6[(−→∇ ×−→E )z −
∂Hz

∂t
]

+ie7(−→∇ .−→E ). (2.106)

Equations (2.105) and (2.106) may then be written [70] in following compact

notation in terms of an octonion i.e.

� F = J; (2.107)

where J is also an octonion described the octonion form of generalized current

given by

J =− e0%+e1jx + e2jy + e3jz − ie4kx − ie5ky − ie6kz + ie7ρ

=(e1jx + e2jy + e3jz − e0%) + i(e1kx + e2ky + e3kz − ρ)e7

=e1(jx + ie7kx) + e2(jy + ie7kz) + e3(jz + kz)− (ρ+ ie7%)

=e1Jx + e2Jy + e3Jz + e0J0. (2.108)

Here (ρ, −→j ) = {jµ}, (%, −→j ) = {kµ} and (J0,
−→
J ) = {Jµ} are respectively the

four currents associated with electric charge, magnetic monopole and gener-
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alized fields of dyons.

2.5.1 Octonion form of Generalized Dirac-Maxwell’s

(GDM) equations

Generalized Dirac-Maxwell’s equations represent one of the most

elegant and concise ways to state the fundamentals of electricity and mag-

netism. Thus, equations (2.107) and (2.108) thus lead to following differential

equations,

(−→∇ · −→H ) = %;

(−→∇ ×−→H )x = ∂Ex
∂t

+ jx;

(−→∇ ×−→H )y = ∂Ey
∂t

+ jy;

(−→∇ ×−→H )z = ∂Ez
∂t

+ jz;

(−→∇ ×−→E )x = −∂Hx

∂t
− kx;

(−→∇ ×−→E )y = −∂Hy

∂t
− ky;

(−→∇ ×−→E )z = −∂Hz

∂t
− kz;

(−→∇ · −→E ) = ρ. (2.109)

Equation (2.109) may then be written in simplest form as

(−→∇ · −→E ) = ρ;

(−→∇ ×−→E ) = −∂
−→
H

∂t
−
−→
k ;

(−→∇ ×−→H ) = ∂
−→
E

∂t
+−→j ;

(−→∇ · −→H ) = %; (2.110)
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which are the generalized Dirac-Maxwell’s (GDM) equations of generalized

fields of dyons. Like quaternion formulation of generalized electromagnetic

fields of dyons. Octonion formulation is compact and simpler. Since e7 is

coupling two quaternions into one octonion and also reverses its sign in its

combination with quaternion units.

2.5.2 Generalized Octonion Potential wave Equation

In the case of generalized octonion potential wave equation, we operate ��̄

to the octonion potential V given by equation (2.91) as,

��̄V =J

=e0(∂
2ϕ

∂x2 + ∂2ϕ

∂y2 + ∂2ϕ

∂z2 + ∂2Bx

∂x∂t
+ ∂2By

∂y∂t
+ ∂2Bz

∂z∂t
)

−e1(∂
2Ax
∂y2 + ∂2Ax

∂z2 −
∂2Ax
∂t2

− ∂2Az
∂x∂z

− ∂2Ay
∂y∂x

− ∂2φ

∂x∂t
)

−e2(∂
2Ay
∂x2 + ∂2Ay

∂z2 −
∂2Ay
∂t2

− ∂2Ax
∂y∂x

− ∂2Az
∂y∂z

− ∂2φ

∂y∂t
)

−e3(∂
2Az
∂z2 + ∂2Az

∂y2 −
∂2Az
∂t2

− ∂2Ay
∂z∂y

− ∂2Ax
∂z∂x

− ∂2φ

∂z∂t
)

+ie4(−∂
2Bx

∂y2 −
∂2Bx

∂z2 + ∂2Bx

∂t2
+ ∂2By

∂x∂y
+ ∂2Bz

∂z∂x
+ ∂2ϕ

∂x∂t
)

+ie5(−∂
2By

∂x2 −
∂2By

∂z2 + ∂2By

∂t2
+ ∂2Bz

∂z∂y
+ ∂2Bx

∂y∂x
+ ∂2ϕ

∂y∂t
)

+ie6(−∂
2Bz

∂x2 −
∂2Bz

∂y2 + ∂2Bz

∂t2
+ ∂2Bx

∂x∂z
+ ∂2By

∂z∂y
+ ∂2ϕ

∂z∂t
)

−ie7(∂
2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 + ∂2Ax
∂x∂t

+ ∂2Ay
∂t∂y

+ ∂2Az
∂z∂t

). (2.111)

Equation (2.111) then reduces to

¯�� V = �̄ � V= J, (2.112)
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where J is described as the octonion form of generalized current associated

with dyon is given by equation (2.108). Equation (2.112) may also be written

as

¯�� V = �̄ � V =e0[∇2ϕ+ ∂

∂t
(−→∇ · −→B )]

−e1[�Ax −
∂

∂x
(−→∇ · −→A + ∂φ

∂t
)]

−e2[�Ay −
∂

∂y
(−→∇ · −→A + ∂φ

∂t
)]

−e3[�Az −
∂

∂z
(−→∇ · −→A + ∂φ

∂t
)]

−ie4[�Bx −
∂

∂x
(−→∇ · −→B + ∂ϕ

∂t
)]

−ie5[�By −
∂

∂y
(−→∇ · −→B + ∂ϕ

∂t
)]

−ie6[�Bz −
∂

∂z
(−→∇ · −→B + ∂ϕ

∂t
)]

−ie7[∇2φ+ ∂

∂t
(−→∇ · −→A )], (2.113)

where

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , (2.114)

and

�̄� = �̄� = � = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −
∂2

∂t2
= ∇2 − ∂2

∂t2
. (2.115)

Here � is D’ Alembertian operator. Using the Lorentz gauge conditions

(2.96) and the definition of octonion valued generalized current of dyon given

by equation (2.108), we get

�φ = ρ; �ϕ = %; �Aµ = jµ; �Bµ = kµ. (2.116)
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As such, we have obtained consistently the generalized Dirac Maxwell’s

(GDM) equations from octonion wave equations on considering the non as-

sociativity of octonion variables. The advantages of present formalism are

discussed in terms of compact and simpler notations of octonion valued po-

tential, field and currents of dyons despite of non associativity of octonions.

The present octonion reformulation of generalized fields of dyons represents

well the invariance of field equations under Lorentz and duality transforma-

tions. It also reproduces the dynamics of electric (magnetic) charge yielding

to the usual form of Maxwell’s equations in the absence of magnetic (electric

charge) in compact, simpler and consistent way.

2.6 Discussion and Conclusion

The mathematical background of quaternions and octonions has been given

in sections (2.2). In section (2.3), we have taken the Maxwell’s equations and

their asymmetry. Postulating the existence of magnetic monopole, we have

discussed the Dirac Maxwell’s equations to maintain the electromagnetic du-

ality and Lorentz invariance. The necessity of magnetic monopole in grand

unified theory associated with the unification of three fundamental interac-

tions namely electromagnetic, weak and strong has also been explored. In

subsection (2.3.4), we have extended the theory of monopoles to the case of

dyons and accordingly obtained the field equation and equation of motion

therein.

In section (2.4), octonion wave equation has been discussed from the octo-

nion differential operator in terms of eight dimensional representation given

by equation (2.82). It consists of an eight dimensional space as the combina-
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tion of two four- dimensional spaces associated with quaternions. As such, a

function of octonions variable has been defined by equation (2.83). Accord-

ingly, the left and right regularity homogeneous wave equation respectively

given by equations (2.84) and (2.85) are described. On the other hand, the

in-homogeneous wave equation for octonion variables in presence of sources

has been explored by equation (2.86), whose components are provided by

equation (2.87). The difference between compact equations (2.84) and (2.87)

is that the former is homogeneous octonion wave equation without source

while the later describes the in-homogeneity in terms of sources which are

also the octonion variables. We interpret these octonion wave equation as

the classical wave (field) equations of physical variables where the one dimen-

sional octonion representation may be visualized to eight dimensional spaces

over the field of real numbers. It is isomorphic to four-dimensional space

representation over the field of complex variables which is equivalent to two-

dimensional space representation over quaternion field variables. Similarly,

one dimensional quaternion space is isomorphic to four-dimensional space

over the field of real numbers which is identical to two-dimensional space

over the field of complex numbers.

We have used the usual electrodynamics by means of octonions in eight

dimensions by maintaining the usual form of Euclidean four space-time in

section (2.5). In this section, equation (2.89) describes the octonion val-

ued potential in eight dimensional formulation, which is the combination

of four dimensional external space followed by four - dimensional internal

space. The electric four potential Aµ and magnetic four potentials Bµ are re-

spectively associated with the electric and magnetic charges in external and

internal spaces. As such, we have considered the electric four-potential in

usual four-dimensional external space while the magnetic four-potential has
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been considered in internal four dimensional space. So, the magnetic charge

in internal space plays the role of electric charge in external space or vice -

versa. The octonionic potential of dyons in terms of electric and magnetic

four potential is described by equation (2.91). Equation (2.92) describes the

reduced form of dyonic potential in terms of quaternions where the procedure

to make a octonion as the order pair of quaternions has been made. In order

to obtain the generalized field equations of dyons in four dimensional space

time, we have replaced the differential operator (2.82) by the equation (2.93).

It is shown that the octonion unit e7 playing the role of imaginary quantity is

no more invariant scalar as it does not commute with other quaternion units

e1, e2, e3. So, it has not been taken as a ordinary imaginary quantity i =
√

1.

Other four components of equation (2.82) (i.e. ∂0, ∂4, ∂5, ∂6) have been taken

vanishing as we are concerned only with classical electrodynamics of dyons in

four dimensional space-time world. Accordingly, the components ∂0, ∂4, ∂5, ∂6

of equation (2.93) are also vanishing. Equation (2.94) represent the conju-

gate of octonion differential operator (2.93). Equation (2.95) describes the

octonion potential wave equation in terms of the components of octonion

valued potential. The Lorentz gauge conditions (2.96) thus represents the

dynamics of electric and magnetic potential of dyons. As such, the equation

(2.97) may be visualized as the octonion wave equation for dyons (particle

carrying simultaneously electric and magnetic charge) in compact form. It

should be noticed that the octonion wave equation (2.97) in not only compact

but is also simpler, manifestly covariant and consistent. It also reproduced

the dynamics of electric (magnetic) energy in the absence of magnetic (elec-

tric) charge of dyons or vice - versa. The generalized electromagnetic fields

of dyons in the eight dimensional octonionic form is described by equation

(2.98), where the components F0, F1, F2, F3, F4, F5, F6, F7 are discussed by
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equation (2.99), in terms of components of generalized electromagnetic fields

of dyons.

Since octonion violates the associativity, we have decomposed them in terms

of two quaternions, each of which is associated with physical four dimensional

space time. Accordingly, the quaternionic nature of generalized octonion

electromagnetic fields of dyons in terms of generalized electric and magnetic

fields of dyons has been described by equation (2.100) and (2.101). Similarly,

equation (2.102) describes the quaternionic form of generalized electromag-

netic field in terms of generalized electromagnetic fields vector (~ψ) given by

equation (2.103). Equation (2.104) represents the generalized electromag-

netic field in terms of the components of generalized four potential whereas

equation (2.105) and (2.106) provide the components of octonion variables

in terms of generalized electromagnetic fields of dyons. Hence we have ob-

tained equation (2.107) in compact notation of octonionic current in eight

dimensional representation whose components are described as generalized

current given by equation (2.108). Equation (2.107) is the compact form of

generalized Dirac-Maxwell’s (GDM) equations of dyons. As such, the beauty

of octonion is that instead of writing the eight different differential Maxwell’s

types equations. We have obtained one compact equation which is under-

stood to be manifestly covariant, dual invariant, simpler and consistent. It

reproduced the dynamics of electric (magnetic) energy in the absence of mag-

netic (electric) charge of dyons or vice - versa.

In section (2.51), we have obtained the components of octonion wave equation

(2.108) responsible for the generalized Dirac-Maxwell’s (GDM) equations.

Equation (2.109) represent the eight different GDM equations associated with

electric and magnetic charge charges which are compactified interms of equa-

tion (2.110). It is most elegant and concise ways to state the fundamentals
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of the dynamics of electric and magnetic fields. So, the octonion formulation

is compact and simpler. Accordingly, the octonionic potential wave equation

of dyon are described by equations (2.111) and (2.112). Hence, the equa-

tion (2.113) shows the expression of octonionic wave equation in terms of

octonion variables for electric and magnetic four potential. Equation (2.116)

thus represents the generalized Dirac-Maxwell’s (GDM) equations of dyons

in terms of generalized four current.

As such, we have obtained consistently the generalized Dirac Maxwell’s

(GDM) equations from octonion wave equations on considering the non as-

sociativity of octonion variables. The advantage of presents formalism are

discussed in terms of compact and simpler notations of octonion valued po-

tentials, fields and currents of dyons despite of non associativity of octonions.

The presents octonion reformulation of generalized fields of dyons represents

well the invariance of field equations under the Lorentz and duality transfor-

mations. It also discussed the dynamics of electric (magnetic) charge yielding

to the usual form of Maxwell’s equations in the absence of magnetic (electric

charge) in compact, simpler and consistent way.
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ABSTRACT

Starting with the usual definition of split octonions along with
their multiplication rules, we have established the inter relation-
ship of split octonions with their convenient matrix realization
in terms of 2×2 Zorn vector matrices in order to obtain the split
octonions wave equation analogous to the potential wave equation
of generalized electromagnetic fields of dyons. Consequently, the
split octonion field equation in compact and simpler form has been
developed and it is shown that the corresponding wave equation
represents the generalized Dirac Maxwell’s equations of dyons
in the case of split octonion electrodynamics. Accordingly, we
have made an attempt to investigate the work energy theorem or
“Poynting Theorem”, Maxwell stress tensor and Lorentz invari-
ant for generalized fields of dyons in split octonion electrodynam-
ics.



Chapter 3

Generalized Split-Octonion

Electrodynamics

3.1 Introduction

The relationship between mathematics and physics has long been an

area of interest and speculation. Magnetic monopoles [1] where advocated to

symmeterize Maxwell’s equations in a manifest way that the mere existence

of an isolated magnetic charge implies the quantization of electric charge

and accordingly the considerable literature [2-7] has come in force. The fresh

interests are enhanced with idea of ’t Hooft [8] and Polyakov [9] that the

classical solutions having the properties of magnetic monopoles may be found

in Yang-Mills gauge theories. Julia and Zee [10] extended it to construct the

theory of non-Abelian dyons (particles [2, 3] carrying simultaneously electric

and magnetic charge). In view of the explanation of CP-violation in terms of

non-zero vacuum angle of world [11], the monopole are necessary dyons and

Dirac quantization condition permits dyons to have analogous electric charge.

The quantum mechanical excitation of fundamental monopoles include dyons
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which are automatically arisen [5, 7] from the semi-classical quantization

of global charge rotation degree of freedom of monopoles. Accordingly, the

self-consistent and manifestly covariant theory of generalized electromagnetic

fields associated with dyons (particle carrying electric and magnetic charge)

has been discussed [12, 13].

The close analogy between Newton’s gravitation law and Coulomb’s law of

electricity led many authors to investigate further similarities, such as the

possibility that the motion of mass-charge could generate the analogous of

a magnetic field which is produced by the motion of electric-charge, i.e. the

electric current. So, there should be the mass current would produced a

magnetic type field namely ’gravitomagnetic’ field. Maxwell [14] in one of

his fundamental works on electromagnetism , turned his attention to the pos-

sibility of formulating the theory of gravitation in a form corresponding to the

electromagnetic equations. In 1893 Heaviside [15] investigated the analogy

between gravitation and electromagnetism where he explained the propaga-

tion of energy in a gravitational field, in terms of a gravito-electromagnetic

Poynting vector, even though he (just as Maxwell did) considered the nature

of gravitational energy a mystery. The analogy has also been explored by

Einstein [16], in the framework of General Relativity, and then by Thirring

[17] and Lense and Thirring [18], that a rotating mass generates a gravito

magnetic field causing a precession of planetary orbits. Exploding the ba-

sics of the gravito electromagnetic form of the Einstein equations, theory of

gravitomagnetism has also been reviewed by Ruggiero-Tartaglia [19].

Decomposition of four algebras, in view of celebrated Hurwitz theorem, has

been characterized from Cayley Dickson process over the field of real num-

bers of dimensions N=1, N=2, N=4 and N=8 respectively for real, complex,

quaternion and octonion algebras. Split octonion electrodynamics [20] has
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been developed interms of Zorn’s vector matrix realization and correspond-

ing field equation. Split octonion formulation of dyon field has has been

carried out to reformulate the generalized four-potential, current equations,

field equations, and electro-magnetic fields of dyons. So, there has been a re-

vival in the formulation of natural laws so that there exists [21] four-division

algebras consisting the algebra of real numbers (R), complex numbers (C),

quaternions (H) and Octonions (O). All four algebra’s are alternative with

totally anti symmetric associators. Quaternions [22, 23] were very first ex-

ample of hyper complex numbers have been widely used [24-30] to the vari-

ous applications of mathematics and physics. Since octonions [31] share with

complex numbers and quaternions, many attractive mathematical properties,

one might except that they would be equally as useful as others. Octonion

[31] analysis has been widely discussed by Baez [32]. It has also played an

important role in the context of various physical problems [33-36] of higher

dimensional supersymmetry, super gravity and super strings etc. In recent

years, it has also drawn interests of many [37-40] towards the developments

of wave equation and octonion form of Maxwell’s equations. Bisht et al.

[41, 42] have also studied octonion electrodynamics, dyonic field equation

and octonion gauge analyticity of dyons consistently and obtained the cor-

responding field equations (Maxwell’s equations) and equation of motion in

compact and simpler formulation.

Keeping in view the recent interests on the existence of monopoles and

dyons at one end and quaternion-octonion formulation of generalized Dirac-

Maxwell’s (GDM) equations at other end, the generalized Dirac-Maxwell’s of

dyons have been reformulated [43] by means of octonion variables in compact

and consistent manner. So, in this chapter we have made an attempt to in-

vestigate the generalized split octonion electrodynamics for dyons. Starting
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with the usual definition of split octonions along with their multiplication

rules, in section (3.2), we have reconnected the split octonion with their

convenient matrix realization in terms of 2×2 Zorn vector matrices. The

multiplication rules and other properties of split octonion are analyzed in

terms of 2×2 Zorn vector matrix realization and accordingly the differential

operator has been rewritten in terms of 2×2 Zorn vector matrix realization of

split octonions. Using the definitions of split octonions and their connection

with Zorn vector matrix realization, we have developed the split octonionic

form of generalized four potential of dyons (section - 3.3) and thus obtained

the split octonion wave equation which is analogous to the potential wave

equation giving rise to generalized electromagnetic fields of dyons. Conse-

quently, the split octonion field equation in compact and simpler form has

been developed and it is shown that the split octonion wave equation rep-

resents the generalized Dirac Maxwell’s equations of dyons in the case of

split octonion electrodynamics. Another quantum equations for generalized

potential, fields, current and other physical variables are also developed in

compact and similar form of split octonion electrodynamics in section (3.4).

In section (3.5), we have analyzed the laws associated with energy momen-

tum conservation in split octonion electrodynamics. Accordingly, we have

investigated the work energy theorem or “Poynting Theorem” to the case

of generalized electromagnetic fields of dyons in split octonion formulation

and their Zorn vector matrix realization in consistent manner. The Poynting

theorem has been discussed for the conservation of energy associated with

generalized fields of dyons in split octonion electrodynamics. Furthermore,

the Maxwell stress tensor for generalized fields of dyons has also been refor-

mulated for split octonion electrodynamics it is shown that the divergence

of Maxwell’s stress tensor represents the “generalized electromagnetic force”
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of dyons. More over it is shown that a part of Maxwell’s stress tensor rep-

resents the generalized Dirac Maxwell’s equations of dyons in split octonion

electrodynamics. In section (3.6), we have made an attempt to analyze the

split octonion reformulation of Lorentz invariant of generalized split octonion

electrodynamics of dyons and we have thus obtained the Lorentz invariants

like
(
~E2 − ~H2

)
,
(−→
E .
−→
H
)
,
−→
∇
(
~E2 − ~H2

)
, and−→∇

(−→
E .
−→
H
)
and it is shown that

the reformulation of classical electrodynamics in terms of split octonion for-

mulation in compact, simpler, manifestly covariant and consistent manner.

Consequently, it is concluded that the split octonion electrodynamics repro-

duces the electrodynamics of electric (magnetic) charge in the absence of

magnetic (electric) charge of dyons and vice-versa.

3.2 Split-Octonions Definitions
The split octonions are the non associative extension of quaternions

(or the split quaternions). They differ form the octonion in the signature

of quadratic form. The split octonions have a signature (4,4) whereas the

octonions have positive signature (8,0). The Caylay algebra of octonions over

the field of complex numbers CC = C⊗C is visualized as the algebra of split

octonions with its following basis elements.

u0 = 1
2 (e0 + ie7) , u∗0 = 1

2 (e0 − ie7) ;

u1 = 1
2 (e1 + ie4) , u∗1 = 1

2 (e1 − ie4) ;

u2 = 1
2 (e2 + ie5) , u∗2 = 1

2 (e2 − ie5) ;

u3 = 1
2 (e3 + ie6) , u∗3 = 1

2 (e3 − ie6) ; (3.1)

where (?) is used for complex conjugation and (i =
√

1) commutes with all

seven octonion imaginary unit eA (A = 1, 2, ......, 7) whose properties are
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illustrated in chapter-2. The automorphism group of the octonion algebra

is the 14-parameter exceptional group G2. The imaginary octonion units

eA (A = 1, 2, ......, 7) fall into its 7-dimensional representation. Under the

SU(3)c subgroup of G2 that leaves e7 invariant, u0 and u∗0 transform like

singlets, while uj and u∗j (∀ j = 1, 2, 3) transform like a triplet and anti-

triplet respectively.

The split octonion basis element satisfy the following multiplication rule

uiuj = εijku
∗
k, uiu

∗
j = −δiju0, uiu0 = 0,

u∗iuj = −δiju0, uiu
∗
0 = u0, u

∗
iu
∗
0 = 0,

u0ui = ui, u
∗
iu0 = u∗i , u

∗
0u
∗
i = ui,

u2
0 = u0, u

∗2
0 = u∗0,u0u

∗
0 = u∗0u0 = 0. (∀i, j, k = 1, 2, 3) (3.2)

The multiplication table [33] can now be written in a manifestly SU(3)c
invariant manner as

· u∗0 u∗1 u∗2 u∗3 u0 u1 u2 u3

u∗0 u∗0 u∗1 u∗2 u∗3 0 0 0 0
u∗1 0 0 u3 −u2 u∗1 −u∗0 0 0
u∗2 0 −u3 0 u1 u∗2 0 −u∗0 0
u∗3 0 u2 −u1 0 u∗3 0 0 −u∗0
u0 0 0 0 0 u0 u1 u2 u3

u1 u1 −u0 0 0 0 0 u∗3 −u∗2
u2 u2 0 −u0 0 0 −u∗3 0 u∗1
u3 u3 0 0 −u0 0 u∗2 −u∗1 0

Table 3.1: Split-Octonion Multiplication Table
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From the multiplication rules (3.2), we may obtain

(uiuj)uk =− εijku∗0, (3.3)

so that, we may put together the compactified multiplication table for the

split octonion units as [33]

. u0 u∗0 uk u∗k

u0 u0 0 uk 0
u∗0 0 u∗0 0 u∗k

uj 0 uj εjkiu
∗
i −δjku0

u∗j u∗j 0 −δjku
∗
0 εjkiui

Table 3.2: Compactified Split-Octonion Multiplication Table

Thus, one can relate uj and u∗j with fermionic annihilation and creation

operators as

{ui, uj} ={u∗i , u∗j} = 0, {ui, u∗k} = −δij. (3.4)

This fermionic Heisenberg algebra shows the three split unit ui to be Grass-

mann numbers. Being non-associative, these split units give rise to an excep-

tional Grassmann algebra. Operators ui, unlike ordinary fermion operators,

are non associative. We also have

1
2[ui, uj] = εijku

∗
k. (3.5)

The Jacobi identity does not hold since

[ui, [ui, uk]] =− ie7 6= 0; (3.6)
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where e7, anti commute with ui and u∗i . It is to be noticed that, like the

imaginary units eA, the split units cannot be represented by matrices. Unlike

the octonion algebra, the split octonion algebra contains zero divisors and is

therefore not a division algebra.

The associators of split octonion units are given below:

[ui, uj, uk] =εijk(u∗0 − u0),[
u∗i , u

∗
j , u
∗
k

]
=εijk(u0 − u∗0),

[ui, uj, u0] =− εijku∗k,

[ui, uj, u∗0] =εijku∗k,

[ui, uj, u∗k] =δjkui − δikuj,[
ui, u

∗
j , u
∗
k

]
=δiku∗j − δiju∗k,[

u∗i , u
∗
j , u0

]
=εijkuk,[

u∗i , u
∗
j , u
∗
0

]
=− εijkuk,[

ui, u
∗
j , u0

]
=0,[

ui, u
∗
j , u
∗
0

]
=0. (3.7)

The Hermitian conjugation for split octonion basis elements can now be

defined in terms of both complex and octonion conjugation as

u†i =ū∗i = −u∗i , u†0 = ū∗0 = u0. (3.8)

Following new definition for split octonions may also be made as

uµν =1
2(u†µuν − u†νuµ), (3.9)
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and

u′µν =1
2(uµu†ν − uνu†µ), (3.10)

while leads the left handed product [33];

u′µν =0 (3.11)

and in the component form the right handed product uµν survives only as

u0i = 1
2ei, i.e.

uij =0; (3.12)

with

u0i =1
2(ui + u∗i ) = 1

2ei (3.13)

thereby reducing the octonions to purely vectorial quaternions.

So, the convenient realization for the basis elements (u0, uj, u
∗
0, u
∗
j) in term

of Pauli spin matrices may now be introduced as

u0 =

 0 0

0 1

 ; u∗0 =

 1 0

0 0

 ;

uj =

 0 0

ej 0

 ; u∗j =

 0 −ej
0 0

 ; (∀j = 1, 2, 3) (3.14)

The split Cayley (octonion) algebra is thus expressed in terms of 2×2 Zorn’s

vector matrices components of which are scalar and vector parts of a quater-

nion i.e.
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O = {

 m ~p

~q n

 ; m,n ∈ Sc(H); & ~p,~q ∈ V ec(H) }. (3.15)

As such, we may write an arbitrary split octonion A in terms of following

2×2 Zorn’s vector matrix realization as

A = au∗0 + bu0 + xiu
∗
i + yiui =

 a −−→x
−→y b

 , (3.16)

where a and b are scalars and ~x and ~y are three vectors. Thus the product

of two octonions in terms of following 2×2 Zorn’s vector matrix realization

is expressed as

 a −→x
−→y b

 ∗
 c −→u

~v d

 =

 ac+ (−→x .−→v ) a~u+ d~x+ (−→y × ~v)

c−→y + b~v − (~x×−→u ) bd+ (−→y .−→u )


(3.17)

where (×) denotes the usual vector product, ej (j = 1, 2, 3) with ej × ek =

εjklel and ejek = −δjk.

Octonion conjugate of equation (3.16) in terms of 2×2 Zorn’s vector matrix

realizations is now defined as

A = au0 + bu?0 − xiu?i − yiui =

 b −→x

−−→y a

 . (3.18)

The norm of A is defined as

N(A) =AA = AA = (ab+−→x .−→y )1̂ = n(A)~1, (3.19)
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where 1̂ is the identity elements of matrix order 2 × 2, and the expression

n(A) = (ab+−→x .−→y ) defines the quadratic form which admits the composition

as

n( ~A · ~B) = n( ~A)n( ~B), (∀ ~A, ~B ∈ O) (3.20)

As such, we may easily express the Euclidean or Minkowski four vector in

split octonion formulation in terms of 2×2 Zorn’s vector matrix realizations.

So, any four - vector Aµ (complex or real) can equivalently be written in

terms of the following Zorn matrix realization as

Z(A) =

 x4 −−→x
−→y y4

 ; Z(A) =

 x4
−→x

−−→y y4

 . (3.21)

Hence, we may define the split octonion equivalent of space - time four dif-

ferential operator � may be written in terms of 2×2 Zorn’s vector matrix as

[44]

� =∂tu∗0 − ∂tu0 +−→∇u∗i +−→∇ui

∼=

 ∂t −
−→
∇

−→
∇ −∂t

 ; (3.22)

where ∂t = ∂
∂t
, we have taken other components like ∂0, ∂4, ∂5, ∂6 of equa-

tion vanishing. Accordingly, split octonion conjugate � of four differential

operator may be written in terms of 2×2 Zorn’s vector matrix as

� =− ∂tu∗0 + ∂tu0 −
−→
∇u∗i −

−→
∇ui

∼=

 −∂t −→∇
−
−→
∇ ∂t

 ; (3.23)
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As such , we get

�� = �� =

 ∇2 − ∂2

∂t2
0

0 ∇2 − ∂2

∂t2

 , (3.24)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and � = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 − ∂2

∂t2
= ∇2 − ∂2

∂t2
(d’

Alembert operator).

3.3 Generalized Split Octonion Electrodynam-

ics

In order to write the various quantum equations of dyons in split octonion

formulation, we start with octonion form of generalized potential [42] of

dyons, which is given in chapter-2. Using the definitions of split octonions

and their connection with Zorn’s vector matrix realization, it is easy to write

the split octonion form of generalized four potential given by equations (2.89

- 2.92) as [44],

V =

 ï¿œ− −
−−→ï¿œ+

−−→ï¿œ− ï¿œ+

 =

 (ϕ− φ) −
(−→
A +−→B

)
(−→
A −

−→
B
)

(ϕ+ φ)

 . (3.25)

Here
[
ï¿œ− → (ϕ− φ) , ï¿œ+ → (ϕ+ φ) , −−→ï¿œ− →

(−→
A −

−→
B
) −−→ï¿œ+ →

(−→
A +−→B

)]
.

Now operating � given by the equation (3.23) to octonion potential V (3.25),

we get [44];

�V =

 ∂
∂t
−
−→
∇

−→
∇ − ∂

∂t

 ∗
 (ϕ− φ) −

(−→
A +−→B

)
(−→
A −

−→
B
)

(ϕ+ φ)


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=



−∂ϕ
∂t

+ ∂φ
∂t

+−→∇ · −→A −−→∇ · −→B ∂
−→
A
∂t

+ ∂
−→
B
∂t

+−→∇ϕ+−→∇φ

−
−→
∇ ×

−→
A +−→∇ ×−→B

−
−→
∇ϕ+−→∇φ+ ∂

−→
A
∂t
− ∂

−→
B
∂t

+−→∇ ×−→A +−→∇ ×−→B −→
∇ ·
−→
A +−→∇ · −→B + ∂ϕ

∂t
+ ∂φ

∂t


. (3.26)

It is to be noted that we have used S.I. system of natural units (c = ~ = 1)

through out the text. On applying the Lorentz gauge conditions, respectively

for the dynamics of electric and magnetic charges of dyons as

−→
∇ ·
−→
A + ∂φ

∂t
= 0, −→

∇ ·
−→
B + ∂ϕ

∂t
= 0; (3.27)

We get the reduced form of equation (3.26) as

�V = F; (3.28)

where F is also an octonion describing the generalized electromagnetic fields

of dyons given by equations (2.100 - 2.102) whereas the split octonion equiv-

alent in terms of 2×2 Zorn’s vector matrix realization may be written as

[44]

F =

 0 −−→z+
−→z− 0

 =

 0 −
(−→zg +−→ze

)
(−→zg −

−→ze

)
0

 , (3.29)

where −→z+ →
−→zg +−→ze , −→z− →

−→zg −
−→ze ; and

−→zg =− ∂
−→
B

∂t
−
−→
∇ϕ+−→∇ ×−→A. −→ −→H ;

−→ze =− ∂
−→
A

∂t
−
−→
∇φ−

−→
∇ ×

−→
B ; −→ −→E . (3.30)
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Here −→E and −→H are respectively denoted as generalized electric and magnetic

fields of dyons described in chapter-2. As such, we may write the generalized

electromagnetic field vector F of dyons in term of following split octonionic

representation as

F =

 0 −
(−→
H +−→E

)
−→
H −

−→
E 0

 =

 0 −
−→
ψ+

−→
ψ− 0

 , (3.31)

where −→ψ+ = −→H +−→E and −→ψ− = −→H −−→E are the generalized electromagnetic

vector fields of dyons. Now applying the differential operator � given by

(3.22) to equation (3.29) for generalized fields of dyon, we get

�F =

 ∂t −
−→
∇

−→
∇ −∂t

 ∗
 0 −−→z+
−→z− 0



=

 ∂
∂t
−
−→
∇

−→
∇ − ∂

∂t

 ∗
 0 −

(−→zg +−→ze

)
(−→zg −

−→ze

)
0



=

 −→
∇ · −→zg −

−→
∇ · −→ze

∂
−→zg

∂t
+ ∂

−→ze

∂t
−
−→
∇ ×−→zg +−→∇ ×−→ze

∂
−→zg

∂t
− ∂

−→ze

∂t
+−→∇ ×−→zg +−→∇ ×−→ze

−→
∇ · −→zg +−→∇ · −→ze

 ,
(3.32)

which is further reduced to the following wave equation in split octonion form

as

�F = −J. (3.33)

Here J is the split octonion equivalent of generalized four current of dyons

and may be written in terms of 2×2 Zorn’s vector matrix realization as [44],
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J =

 (%− ρ) −
(−→
j +−→k

)
(−→
j −
−→
k
)

(%+ ρ)

 =

 − −~+
~− +

 ; (3.34)

where − → (%− ρ) , ~− →
(−→
j −
−→
k
)
, + → (%+ ρ) , ~+ →

(−→
j +−→k

)
.

Here (ρ, −→j ) = {jµ}, (%, −→j ) = {kµ} and (J0,
−→
J ) = {Jµ} are respectively the

four currents associated with electric charge, magnetic monopole and gen-

eralized fields of dyons. Equations (3.33) contains the following differential

equations

(−→∇ · −→ze) = ρ;

(−→∇ ×−→ze) = −∂
−→
H

∂t
−
−→
k ;

(−→∇ ×−→zg) = ∂
−→
E

∂t
+−→j ;

(−→∇ · −→zg) = %. (3.35)

Replacing −→ze −→
−→
E ,

−→zg −→
−→
H , equation (3.35) is changed to following

form of Maxwell’s equations

(−→∇ · −→E ) = ρ;

(−→∇ ×−→E ) = −∂
−→
H

∂t
−
−→
k ;

(−→∇ ×−→H ) = ∂
−→
E

∂t
+−→j ;

(−→∇ · −→H ) = %. (3.36)

Which are the Generalized Dirac-Maxwell’s (GDM) equations of dyons dis-

cussed in chapter-2.
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3.4 Generalized Split Octonion Wave Equa-

tions

In this section we consider the case of generalized electromagnetic fields of

dyons (particles carrying simultaneous existence of electric and magnetic

charge) for which we may now define generalized octonion valued potential

wave equations, generalized octonion current wave equations and generalized

octonion fields wave equations in eight dimensional formalism as the combi-

nations of two four-dimensional spaces. Let us divide this section to following

subsections.

3.4.1 Generalized Split-Octonion Potential Wave Equa-

tions

In order to write the split-octonion form of potential wave equations, let us

use the equations (3.24) and (3.25) and we get

��V =�� V = −J; (3.37)

which can be visualized in term of 2×2 Zorn’s vector matrix as

��V =

 ∂
∂t
−
−→
∇

−→
∇ − ∂

∂t

 ∗
 − ∂

∂t

−→
∇

−
−→
∇ ∂

∂t

 ∗
 ï¿œ− −

−−→ï¿œ+
−−→ï¿œ− ï¿œ+



=

 ∇2 − ∂2

∂t2
0

0 ∇2 − ∂2

∂t2

 ∗
 (ϕ− φ) −

(−→
A +−→B

)
(−→
A −

−→
B
)

(ϕ+ φ)


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=

 (�ϕ−�φ) −
(
�
−→
A + �

−→
B
)

(
�
−→
A −�

−→
B
)

(�ϕ+ �φ)



=⇒−

 − −~+
~− +

 = −

 (%− ρ) −
(−→
j +−→k

)
(−→
j −
−→
k
)

(%+ ρ)

 . (3.38)

This can further be reduced to following form of wave equations

�φ = −ρ, �ϕ = −%,

�Aµ = −jµ, �Bµ = −kµ. (3.39)

Using the definitions (3.24) , we get the following expanded form of equation

(3.39) as

∂2φ

∂t2
−∇2φ = ρ,

∂2ϕ

∂t2
−∇2ϕ = %,

∂2Aµ
∂t2

−∇2Aµ = jµ,

∂2Bµ

∂t2
−∇2Bµ = kµ; (3.40)

which are the potential wave equations for generalized fields of dyons.

3.4.2 Generalized Split-Octonion Current Wave Equa-

tions

The electromagnetic wave equation is a second-order partial differential equa-

tion that describes the propagation of electromagnetic waves through a medium

or in a vacuum. Thus, in the case of split-octonion current wave equations,
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we operate � given by equation (3.23) to split octonion current J (3.34) in

term of 2×2 Zorn’s vector matrix as [44]

� J =

 − ∂
∂t

−→
∇

−
−→
∇ ∂

∂t

 ∗
 (%− ρ) −

(−→
j +−→k

)
(−→
j −
−→
k
)

(%+ ρ)



=



−∂%
∂t

+ ∂ρ
∂t

+−→∇ · −→j −−→∇ · −→k ∂
−→
j
∂t

+ ∂
−→
k
∂t

+−→∇%+−→∇ρ

−
−→
∇ ×~j +−→∇ ×−→k

−
−→
∇%+−→∇ρ+ ∂

−→
j
∂t
− ∂

−→
k
∂t

+−→∇ ×~j +−→∇ ×−→k −→
∇ · −→j +−→∇ · −→k + ∂%

∂t
+ ∂ρ

∂t


;

(3.41)

which can be compactified as

� J = S, (3.42)

where

S = (=m −=e)u∗0 + (=m + =e)u0 + (−→r −−→s )u∗i + (−→r +−→s )ui

=

 (=m −=e) − (−→r +−→s )

(−→r −−→s ) (=m + =e)

 7−→
 =− −→

S+
−→
S− =+

 . (3.43)

Here =− → (=m −=e) ,
−→
S− → (−→r −−→s ) , =+ → (=m + =e) ,

−→
S+ →

(−→r +−→s ) . So, equation (3.42) leads to following four equations

=m = −→∇ · −→k + ∂%

∂t
; =e = −→∇ · −→j + ∂ρ

∂t
;

−→r = −−→∇ρ− ∂
−→
j

∂t
−
−→
∇ ×

−→
k ; −→s = −−→∇%− ∂

−→
k

∂t
+−→∇ ×−→j ; (3.44)
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which are the split octonion current wave equations for the components of

generalized fields of dyons. In equation (3.44) =m and =e are vanishing due

to Lorentz gauge conditions applied for the cases of electric and magnetic

charges.

3.4.3 Generalized Split-Octonion Field Equations (Con-

tinuity Equation)

A continuity equation in physics is an equation that describes the trans-

port of a conserved quantity. Since mass, energy, momentum, electric charge

and other natural quantities are conserved under their respective appropriate

conditions, a variety of physical phenomena may be described using conti-

nuity equations. A continuity equation is a special case of the more general

transport equation. In the case of split-octonion field equations, we operate

� both sides to the equation (3.33) as

� (�F) =
(
��

)
F =−�J −→ −S, (3.45)

where F, J, and S are defined in equations (3.31),(3.34) and (3.43). So, in

terms of 2×2 Zorn’s vector matrix, the left hand side of equation (3.45) can

be written as

(
��

)
F =

 � 0

0 �

 ∗
 0 −

(−→
H +−→E

)
−→
H −

−→
E 0



=

 0 −
(
�
−→
H + �

−→
E
)

(
�
−→
H −�

−→
E
)

0

 ; (3.46)
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whereas the right hand side of equation (3.45) is expressed as

�J =



−∂%
∂t

+ ∂ρ
∂t

+−→∇ · −→j −−→∇ · −→k ∂
−→
j
∂t

+ ∂
−→
k
∂t

+−→∇%+−→∇ρ

−
−→
∇ ×~j +−→∇ ×−→k

−
−→
∇%+−→∇ρ+ ∂

−→
j
∂t
− ∂

−→
k
∂t

+−→∇ ×~j +−→∇ ×−→k −→
∇ · −→j +−→∇ · −→k + ∂%

∂t
+ ∂ρ

∂t


. (3.47)

So equation (3.45) thus leads to following differential equations

=m −→
−→
∇ ·
−→
k + ∂%

∂t
⇒ 0,

=e −→
−→
∇ · −→j + ∂ρ

∂t
⇒ 0; (3.48)

which are the “Continuity equations” of generalized fields of dyons in split

octonion formulation for moving dyons. Accordingly, from equation (3.44),

we get

−→r −→−
−→
∇ρ− ∂

−→
j

∂t
−
−→
∇ ×

−→
k = �

−→
E ;

−→s −→−
−→
∇%− ∂

−→
k

∂t
+−→∇ ×−→j = �

−→
H ; (3.49)

which may be reduced to

∇2−→H − ∂2−→H
∂t2

= −→∇%+ ∂
−→
k

∂t
−
−→
∇ ×−→j −→ −→s

∇2−→E − ∂2−→E
∂t2

= −→∇ρ+ ∂
−→
j

∂t
+−→∇ ×−→k −→ −→r (3.50)

These are generalized wave equations of dyons in split octonions.
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3.5 Energy-Momentum Conservation in Split

Octonion Electrodynamics

The laws of energy and momentum conservation [45] are probably the most

frequently quoted laws in physics. The law of conservation of energy is a

law of physics, i.e. the total amount of energy in an isolated system remains

constant over time. The total energy is said to be conserved over time. For an

isolated system, this law means that energy can change its location within the

system, and that it can change form within the system, for instance chemical

energy can become kinetic energy, but that energy can be neither created

nor destroyed. And the other hand the law of conservation of momentum

is a fundamental law of nature, and it states that if no external force acts

on a closed system of objects, the momentum of the closed system remains

constant. Conservation of momentum is a mathematical consequence of the

homogeneity (shift symmetry) of space (position in space is the canonical

conjugate quantity to momentum). That is, conservation of momentum is

equivalent to the fact that the physical laws do not depend on position.

In the case of split octonion electrodynamics, we have used the equation

(3.33). Operating F on both sides of equation (3.33) as

F (�F) = −F J, (3.51)

where the left hand side of equation (3.51) , i.e. F (�F) may now be expressed

in terms of 2×2 Zorn’s vector matrix as
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F (�F) =

 0 −→
H −

−→
E

−
−→
H −

−→
E 0

 ∗


−
−→
∇.
−→
H +−→∇.−→E −∂

−→
H
∂t
− ∂

−→
E
∂t

+−→∇ ×−→H −−→∇ ×−→E

−∂
−→
H
∂t

+ ∂
−→
E
∂t

−
−→
∇ ×

−→
H −

−→
∇ ×

−→
E −

−→
∇.
−→
H −

−→
∇.
−→
E



=

 B − A − (C +D)

C −D B + A

 . (3.52)

Here A,B,C,D, the reduced forms of the matrix multiplication are described

as

A =−→H.∂
−→
H

∂t
+−→E .∂

−→
E

∂t
+−→H.

(−→
∇ ×

−→
E
)
−
−→
E .

(−→
∇ ×

−→
H
)

;

B =−→H.∂
−→
E

∂t
+−→E .∂

−→
H

∂t
−
−→
H.

(−→
∇ ×

−→
H
)

+−→E .
(−→
∇ ×

−→
E
)

;

C =−→H × ∂
−→
E

∂t
−
−→
E × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
H
)
−
−→
E ×

(−→
∇ ×

−→
E
)

+−→H
(−→
∇ .
−→
H
)

+−→E
(−→
∇ .
−→
E
)

;

D =−→E × ∂
−→
E

∂t
−
−→
H × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
E
)
−
−→
E ×

(−→
∇ ×

−→
H
)

+−→H
(−→
∇ .
−→
E
)

+−→E
(−→
∇ .
−→
H
)

; (3.53)

whereas the right hand side of the equation (3.51) may also be expressed as

−FJ =−

 0
(−→
H −

−→
E
)

−
(−→
H +−→E

)
0

 ∗
 (%− ρ) −

(−→
j +−→k

)
(−→
j −
−→
k
)

(%+ ρ)



=

 B′ − A′ − (C ′ +D′)

C ′ −D′ B′ + A′

 , (3.54)

where A′, B′, C ′, D′, again the reduced forms, are described as
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A′ =−−→H.−→k −−→E .−→j ;

B′ =−−→H.−→j −−→E .−→k ;

C ′ =− %−→H − ρ−→E +
(−→
H ×−→j

)
−
(−→
E ×

−→
k
)

;

D′ =− ρ−→H + %
−→
E −

(−→
H ×

−→
k
)

+
(−→
E ×−→j

)
. (3.55)

The above analysis shows that the left hand and right sides of equations

(3.51) resemble to one another if the coefficients A,B,C,D and A′, B′, C ′, D′

coincide to each other (i.e. A ∼= A′, B ∼= B′, C ∼= C ′, D ∼= D′). Let us discuss

the various consequences of the above analysis in following subsections.

3.5.1 Conservation of Energy of the Octonion Electro-

dynamics

In order to discuss the conservation of energy of the octonion electrodynam-

ics, let us use equations (3.53) and (3.55) for A and A′. So, we get

−→
H.

∂
−→
H

∂t
+−→E .∂

−→
E

∂t
+−→H.

(−→
∇ ×

−→
E
)
−
−→
E .

(−→
∇ ×

−→
H
)

=−−→H.−→k −−→E .−→j ,

(3.56)

which reduces to

1
2
∂H2

∂t
+ 1

2
∂E2

∂t
+−→∇ .

(−→
E ×

−→
H
)

= −−→H.−→k −−→E .−→j . (3.57)

This expression (3.57) may be visualized as the “work-energy theorem” or

“Poynting Theorem” [45] to the case generalized octonion electrodynamics.
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Poynting’s theorem is analogous to the work-energy theorem of classical me-

chanics reproducing the continuity equation, so that it relates the energy

stored in generalized electromagnetic field to the work done on a charge dis-

tribution , through energy flux. It should be noted that the Poynting theorem

is not valid in electrostatics and magnetostatics, since electric and magnetic

fields change with time when electromagnetic energy flows. Equation (3.57)

may then be reduced to

1
2
∂

∂t

(
E2 +H2

)
+−→∇ .

(−→
E ×

−→
H
)

+
(−→
H.
−→
k +−→E .−→j

)
= 0, (3.58)

where the energy due to electric field is given by

We = 1
2

ˆ
E2dτ, (3.59)

whereas the energy due to magnetic field is discussed as

Wm =1
2

ˆ
H2dτ, (3.60)

So, the total energy stored in generalized electromagnetic fields of dyons is

Wem =1
2

ˆ (
E2 +H2

)
dτ. (3.61)

As such, the energy density i.e. the energy per unit time, per unit area,

transported by the fields is called the Poynting vector (−→S ) given by

−→
S =

(−→
E ×

−→
H
)
, (3.62)

which represents the directional energy flux density (the rate of energy trans-

fer per unit area, in W/m2) of an electromagnetic field. Thus, the Poynting
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Theorem also may be generalized as the conservation of energy i.e.

dW

dt
= −∂Wem

∂t
−
−→
∇ .
−→
S −

(−→
H.
−→
k +−→E .−→j

)
. (3.63)

Similarly equating the coefficients B and B′ of the equations (3.53) and

(3.55), we get

−→
H.

∂
−→
E

∂t
+−→E .∂

−→
H

∂t
−
−→
H.

(−→
∇ ×

−→
H
)

+−→E .
(−→
∇ ×

−→
E
)

=−−→H.−→j −−→E .−→k ,

(3.64)

which is reduced to the following generalized Dirac-Maxwell’s Equations

(GDM) of dyons from octonion electrodynamics, i.e.

∂
−→
H

∂t
+ (−→∇ ×−→E ) = −−→k 7−→ (−→∇ ×−→E ) = −∂

−→
H

∂t
−
−→
k ;

∂
−→
E

∂t
− (−→∇ ×−→H ) = −−→j 7−→ −→∇ ×−→H ) = ∂

−→
E

∂t
+−→j . (3.65)

3.5.2 Conservation of Momentum for Octonion Elec-

trodynamics

The conservation of momentum is a fundamental concept of physics along

with the conservation of energy and the conservation of mass. In order to

understand the conservation of momentum for octonion electrodynamics, let

us equate C and C ′ of the equations (3.53) and (3.55). So, we get

−→
H × ∂

−→
E

∂t
−
−→
E × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
H
)
−
−→
E ×

(−→
∇ ×

−→
E
)

+−→H
(−→
∇ .
−→
H
)

+−→E
(−→
∇ .
−→
E
)

= −%−→H − ρ−→E +
(−→
H ×−→j

)
−
(−→
E ×

−→
k
)
. (3.66)
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Now using the following identities

−→
H × ∂

−→
E

∂t
−
−→
E × ∂

−→
H

∂t
=− ∂

∂t

(−→
E ×

−→
H
)

=⇒ −∂
−→
S

∂t
;

−→
H ×

(−→
∇ ×

−→
H
)

=1
2∇

(
H2
)
−
(−→
H.
−→
∇
)−→
H ;

−→
E ×

(−→
∇ ×

−→
E
)

=1
2∇

(
E2
)
−
(−→
E .
−→
∇
)−→
E ; (3.67)

we get the following reduced form of equation (3.66), i.e.

∂
−→
S

∂t
+ 1

2∇
(
E2 +H2

)
−
(−→
H.
−→
∇
)−→
H −

(−→
E .
−→
∇
)−→
E −

−→
H
(−→
∇ .
−→
H
)
−
−→
E
(−→
∇ .
−→
E
)

= %
−→
H + ρ

−→
E −

(−→
H ×−→j

)
+
(−→
E ×

−→
k
)
,

(3.68)

which gives rise the connection between electromagnetic energy and the force

due to presence of electric and magnetic energy of dyons in the following

manner

−→
F =− ∂

−→
S

∂t
− 1

2∇
(
E2 +H2

)
+
(−→
H.
−→
∇
)−→
H +

(−→
E .
−→
∇
)−→
E +−→H

(−→
∇ .
−→
H
)

+−→E
(−→
∇ .
−→
E
)

+ %
−→
H + ρ

−→
E −

(−→
H ×−→j

)
+
(−→
E ×

−→
k
)
. (3.69)

3.5.3 Maxwell Stress Tensor

The Maxwell Stress Tensor [45] is a second rank tensor used in classical elec-

tromagnetism to represent the interaction between electromagnetic forces

and mechanical momentum. So, in order to get the solution for the elec-

tromagnetic force discussed by equation (3.69), we start with the following
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expression of Maxwell Stress Tensor Tij for generalized electromagnetic

field as [45]

Tij =
(
EiEj −

1
2δijE

2
)

+
(
HiHj −

1
2δijH

2
)
, (3.70)

where the indices i and j refer to the coordinates x, y and z. So the

stress tensor (3.70) has a total of nine components. Thus, we may also write

(3.70) in terms of its following components

Txx =1
2
(
E2
x − E2

y − E2
z

)
+ 1

2
(
H2
x −H2

y −H2
z

)
,

Txy =ExEy +HxHy, (3.71)

and so on. Maxwell Stress Tensor is usually denoted by a double arrow
←→
T

to carry out two indices (i & j) where one of the indices represent vector.

So, the divergence of
←→
T is associated with its jth component as [45]

(
∇.
←→
T

)
j

=
[(−→
∇ .
−→
E
)
Ej +

(−→
E .
−→
∇
)
Ej −

1
2∇jE

2
]

+
[(−→
∇ .
−→
H
)
Hj +

(−→
H.
−→
∇
)
Hj −

1
2∇jH

2
]
. (3.72)

Hence the total octonionic representation of electromagnetic field given by

(3.69) may be written as

−→
F =

(
∇.
←→
T

)
− ∂
−→
S

∂t
+−→f , (3.73)

where −→f is given by
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−→
f =%−→H + ρ

−→
E −

(−→
H ×−→j

)
+
(−→
E ×

−→
k
)

=
(
ρ
−→
E +−→j ×−→H

)
+
(
%
−→
H −

−→
k ×
−→
E
)
. (3.74)

Thus, equation (3.74) may be identified as an expression of “generalized elec-

tromagnetic force” of dyons. Let us use here the Newton’s second law

−→
F =∂

−−−→
Pmech
∂t

and −→
f = ∂

−−−→
Pdyons
∂t

, (3.75)

where −−−→Pmech and −−−→Pdyons are the mechanical and dyonic momentum respec-

tively. So, the expression (3.75) describes the conservation of momentum in

the following manner, i.e.

∂
−−−→
Pmech
∂t

=
(
∇.
←→
T

)
− ∂
−→
S

∂t
+ ∂
−−−→
Pdyons
∂t

=
(
∇.
←→
T

)
−
∂
(−→
S −

−−−→
Pdyons

)
∂t

, (3.76)

which can further be reduced in the following form of continuity equation as

∂

∂t

(−−−→
Pmech +−−−→PGem

)
=∇.
←→
T ; (3.77)

where −−−→PGem 7−→
(−→
S −

−−−→
Pdyons

)
is the total generalized electromagnetic mo-

mentum. Comparing the coefficients D and D′ of equations (3.53) and (3.55)

respectively, we get

−→
E × ∂

−→
E

∂t
−
−→
H × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
E
)
−
−→
E ×

(−→
∇ ×

−→
H
)

+−→H
(−→
∇ .
−→
E
)

+−→E
(−→
∇ .
−→
H
)

= −ρ−→H + %
−→
E −

(−→
H ×

−→
k
)

+
(−→
E ×−→j

)
, (3.78)
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which can further be reduced to the complete set of Generalized Dirac Maxwell

equations (2.30) of dyons.

3.6 Split-Octonionic realization for Lorentz

invariants

Now instead of operating equation (3.33) by F from the left, let us operate

it both sides from the left by F. Accordingly, we get

F (�F) = − F (J) . (3.79)

The left hand side of the equation (3.79) may be written as

F (�F) =

 0 −
(−→
H +−→E

)
−→
H −

−→
E 0

 ∗


−→
∇.
−→
H −

−→
∇.
−→
E ∂

−→
H
∂t

+ ∂
−→
E
∂t

−
−→
∇ ×

−→
H +−→∇ ×−→E

∂
−→
H
∂t
− ∂

−→
E
∂t

+−→∇ ×−→H +−→∇ ×−→E −→
∇.
−→
H +−→∇.−→E



=

 β − α − (γ + ζ)

γ − ζ β + α

 ; (3.80)

where the coefficients of the equation (3.80) expressed as

α =−→H.∂
−→
E

∂t
−
−→
E .
∂
−→
H

∂t
+−→H.

(−→
∇ ×

−→
H
)

+−→E .
(−→
∇ ×

−→
E
)

;

β =−→H.∂
−→
E

∂t
+−→E .∂

−→
H

∂t
−
−→
H.

(−→
∇ ×

−→
H
)
−
−→
E .

(−→
∇ ×

−→
E
)

;

γ =−→H × ∂
−→
E

∂t
+−→E × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
H
)

+−→E ×
(−→
∇ ×

−→
E
)

−
−→
H
(−→
∇ .
−→
H
)

+−→E
(−→
∇ .
−→
E
)

;
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ζ =−−→E × ∂
−→
E

∂t
−
−→
H × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
E
)

+−→E ×
(−→
∇ ×

−→
H
)

−
−→
H
(−→
∇ .
−→
E
)

+−→E
(−→
∇ .
−→
H
)

; (3.81)

Similarly, the right hand side of the equation (3.79) expressed as

−F (J) =−

 0 −
(−→
H +−→E

)
−→
H −

−→
E 0

 ∗
 (%− ρ) −

(−→
j +−→k

)
(−→
j −
−→
k
)

(%+ ρ)



=

 β′ − α′ − (γ′ + ζ ′)

γ′ − ζ ′ β′ + α′

 , (3.82)

where

α′ =−→H.−→k −−→E .−→j ;

β′ =−→H.−→j −−→E .−→k ;

γ′ =− %−→H − ρ−→E +
(−→
H ×−→j

)
+
(−→
E ×

−→
k
)

;

ζ ′ =− ρ−→H − %−→E −
(−→
H ×

−→
k
)
−
(−→
E ×−→j

)
. (3.83)

Using equations (3.81) and (3.83) for α and α′, we get

−→
H.

∂
−→
E

∂t
−
−→
E .
∂
−→
H

∂t
+−→H.

(−→
∇ ×

−→
H
)

+−→E .
(−→
∇ ×

−→
E
)

=−→H.−→k −−→E .−→j ; (3.84)

which is further reduced to

∂

∂t

(
~E2 − ~H2

)
=−→H.

(−→
∇ ×

−→
H
)

+−→E .
(−→
∇ ×

−→
E
)
−
−→
H.
−→
k +−→E .−→j . (3.85)

This expression leads to the relation for first Lorentz invariant [46] of
(
~E2 − ~H2

)
.

Similarly equating coefficients β and β′ from equations (3.81) and (3.83), we

get
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−→
H.

∂
−→
E

∂t
+−→E .∂

−→
H

∂t
−
−→
H.

(−→
∇ ×

−→
H
)
−
−→
E .

(−→
∇ ×

−→
E
)

=−→H.−→j −−→E .−→k ; (3.86)

which is reduced to

∂

∂t

(−→
E .
−→
H
)

=−→H.
(−→
∇ ×

−→
H
)

+−→E .
(−→
∇ ×

−→
E
)

+−→H.−→j −−→E .−→k . (3.87)

This expression leads to the relation for second Lorentz invariant [46] of(−→
E .
−→
H
)
. Accordingly equating the coefficients γ and γ′ from equations

(3.81) and (3.83), we get

−→
H × ∂

−→
E

∂t
+−→E × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
H
)

+−→E ×
(−→
∇ ×

−→
E
)

−
−→
H
(−→
∇ .
−→
H
)

+−→E
(−→
∇ .
−→
E
)

= −%−→H − ρ−→E +
(−→
H ×−→j

)
+
(−→
E ×

−→
k
)
, (3.88)

which is further reduced to

1
2
−→
∇
(
~E2 − ~H2

)
=
(−→
E .
−→
∇
)−→
E −

(−→
H.
−→
∇
)−→
H +−→H

(−→
∇ .
−→
H
)
−
−→
E
(−→
∇ .
−→
E
)

−
−→
H × ∂

−→
E

∂t
−
−→
E × ∂

−→
H

∂t
− %
−→
H − ρ

−→
E +

(−→
H ×−→j

)
+
(−→
E ×

−→
k
)
.

(3.89)

This expression leads to the relation for the gradient of first Lorentz invariant

[46] i.e. −→∇
(
~E2 − ~H2

)
. Consequently equating the coefficients ζ and ζ ′ from

equations (3.81) and (3.83), we get,
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−
−→
E × ∂

−→
E

∂t
−
−→
H × ∂

−→
H

∂t
−
−→
H ×

(−→
∇ ×

−→
E
)

+−→E ×
(−→
∇ ×

−→
H
)

−
−→
H
(−→
∇ .
−→
E
)

+−→E
(−→
∇ .
−→
H
)

= −ρ−→H − %−→E −
(−→
H ×

−→
k
)
−
(−→
E ×−→j

)
, (3.90)

which is further simplified to

−→
∇
(−→
E ·
−→
H
)

=
(−→
E .
−→
∇
)−→
H −

(−→
H.
−→
∇
)−→
E +−→H

(−→
∇ .
−→
E
)

−
−→
E
(−→
∇ .
−→
H
)

+−→E × ∂
−→
E

∂t
+−→H × ∂

−→
H

∂t

− ρ
−→
H − %

−→
E −

(−→
H ×

−→
k
)
−
(−→
E ×−→j

)
. (3.91)

These expression leads to the relation for the gradient of second Lorentz

invariant [46] i.e. −→∇
(−→
E ·
−→
H
)
.

3.7 Discussion and Conclusion

The lack of associativity in octonion formulation of dyons forbids their group

theoretical study in terms of abelian and non-Abelian gauge structure. How-

ever, split octonion basis of octonions presented in section-3.2, gives rise to

their isomorphic matrix representation associated with 2×2 Zorn’s vector

matrices. As such, any four dimensional relativistic four vector may be re-

produced in terms of split octonion as its bi-valued representation of Zorn’s

vector matrices by taking scalar component along principle diagonal and vec-

tor component as off-diagonal elements. Split basis of octonions is related to

Pauli-spin matrices by equation (3.14). Split octonion conjugate is defined by
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equation (3.18), while the norm of split octonion is given by equation (3.19).

Equation (3.21) is the representation of Euclidean four-dimensional space-

time vector in terms of split octonion or Zorn’s vector realization. Equation

(3.22) and (3.23) are the split octonion equivalent of four differential oper-

ator and its conjugate respectively giving rise to invariant D’ Alembertian

operator (3.24).

In section-3.3 , we have discussed the various quantum equation of dyons

in split octonion formulation. Equation (3.25) represent the split octonion

form of generalized four - potential of dyons and equation (3.26) describes

the field equation of dyons in split octonion formalism. The Lorentz gauge

condition for the dynamics of electric and magnetic charges of dyon is ex-

pressed by equation (3.27) and the equation (3.28) is the reduced form of field

equation (3.26). The split octonion equivalent of generalized electromagnetic

fields of dyons in terms of 2×2 Zorn’s vector matrix realization is given by

equation (3.29). Equation (3.30) may be visualized the generalized electric

and magnetic fields associated with dyons. The split octonion representation

of generalized electromagnetic field vector F of dyons is defined in equation

(3.31) in terms of 2×2 Zorn’s vector matrix realization. Equation (3.32)

represents the wave equation of dyons in split octonion realization, while

equation (3.33) is the reduced form of equation (3.32). The split octonion

equivalent of generalized four - current of dyons J in terms of 2×2 Zorn’s

vector matrix realization has been given by equation (3.34). Equation (3.35)

and (3.36) are the split octonion equivalents of generalized Dirac-Maxwell’s

equations of dyons.

In section-3.4, we have described the case of generalized electromagnetic fields

of dyons (particles carrying simultaneous existence of electric and magnetic

charge) for which we may define generalized octonion valued potential wave
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equations, generalized octonion current wave equations and generalized octo-

nion fields wave equations in eight dimensional formalism by combining two

four-dimensional spaces. Equation (3.37) is the split octonion form of poten-

tial wave equation, whereas equation (3.38) is the expended form of equation

(3.37) in terms of 2×2 Zorn’s vector matrix. Equation (3.39) is the reduced

compect form of potential wave equation (3.37) for generalized fields of dyons,

while the equation (3.40) is usual and known form of equation (3.39). It is

is shown that the electromagnetic wave equation is a second-order partial

differential equation that describes the propagation of electromagnetic waves

through a medium or in a vacuum. Accordingly, equation (3.41) has been

derived as the split octonion current wave equation in terms of 2×2 Zorn’s

vector matrix realization. The compect form of equation (3.41) is derived by

equation (3.42). Equation (3.44) are the split octonion current wave equation

for the components of generalized fields of dyons after applying the Lorentz

gauge condition for the case of electric and magnetic charges.

A continuity equation in physics is an equation that describes the trans-

port of a conserved quantity. Since mass, energy, momentum, electric charge

and other natural quantities are conserved under their respective appropriate

conditions, a variety of physical phenomena may be described using conti-

nuity equations. Thus, the continuity equation is regarded as a special case

of the more general transport equation. Equation (3.45) thus describes the

split octonion field equation in compact form, whereas equation (3.46) and

(3.47) are the field equation of dyons in terms of 2×2 Zorn’s vector matrix.

Equation (3.48) thus represents the continuity equation of generalized fields

of dyons in split octonion formulation. The continuity equation says that

if charge is moving out of a differential volume (i.e. divergence of current

density is positive) then the amount of charge within that volume is going
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to decrease, so the rate of charge density is negative. Accordingly, equation

(3.49) and (3.50) are investigated as the generalized wave equation of dyons

in split octonion.

In section-3.5, we have briefly discussed the energy momentum conservation

for the case of split octonion electrodynamics. Operating the generalized

conjugate electromagnetic field of dyons F on both sides of equation (3.33),

we have derived the equation (3.51), whose left hand side part is expressed

in terms of 2×2 Zorn’s vector matrix realization and has been expended as

equation (3.52) with its components are given in (3.53). Consequently, the

right hand side part of equation (3.51) has been expended in terms of 2×2

Zorn’s vector matrix realization ant thus expressed by equation (3.54) whose

components are described in equation (3.55). The above analysis shows that

the left and right hand sides of equations (3.51) resemble to one another only

if the coefficients A,B,C,D and A′, B′, C ′, D′ coincide to each other. As

such, the equivalence of A and A′ gives rise to equations (3.56) and (3.57).

Hence, the expression (3.57) may be visualized as the “work-energy theorem”

or “Poynting Theorem” to the case of generalized octonion electrodynam-

ics. Poynting’s theorem is analogous to the work-energy theorem of classical

mechanics reproducing the continuity equation, so that it relates the energy

stored in generalized electromagnetic field to the work done on a charge dis-

tribution , through energy flux. It should be noted that the Poynting theorem

is not valid in electrostatics and magnetostatics, since electric and magnetic

fields change with time when electromagnetic energy flows. Accordingly, the

equation (3.58) is obtained for “work-energy theorem” or “Poynting Theo-

rem”. Equation (3.59) defines the energy due to electric field while equation

(3.60) reproduced the energy due to magnetic field of dyons. As such, the

total energy stored in generalized electromagnetic fields of dyons is expressed
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by equation (3.61). Hence, the energy density i.e. the energy per unit time

per unit area transported by the field is called “Poynting vector” has been

investigated by equation (3.62). It represents the directional energy flux den-

sity (the rate of energy transfer per unit area, inW/m2) of an electromagnetic

field. Furthermore, the Poynting theorem has been generalized as the con-

servation of energy by equation (3.63). On the other hand, equivalence of B

and B′ of equation (3.53) and (3.55) provides equation (3.64) which has been

investigated to the generalized Dirac-Maxwell’s (GDM) equations of dyons

given by equation (3.65). In order to develop the conservation of momen-

tum and generalized electrodynamics, we have equated C and C ′ of equation

(3.53) and accordingly obtained equation (3.66) which on using the identi-

ties (3.67) provides equation (3.59). It is emphasized that the equation (3.69)

gives rise the connection between electromagnetic energy and the force due to

presence of electric and magnetic energy of dyons. The Maxwell stress tensor

is a second rank tensor which provides the force in classical electromagnetism

to represent the interaction between electromagnetic forces and mechanical

momentum. The Maxwell stress tensor for generalized electromagnetic field

has been developed in terms of total nine components expressed by equation

(3.71). The divergence of Maxwell stress tensor has been obtained as equation

(3.72). Equation (3.74) gives rise the expression of “generalized electromag-

netic force” of dyons. Equation (3.76) and (3.77) respectively describe the

conservation of momentum and continuity equation. Like wise comparison of

D and D′ of equations (3.53) and (3.55) also gives the equation (3.78) which

can be further be reduced to generalized Dirac Maxwell’s (GDM) equations.

In section-3.6, we have discussed the split octonion realization for Lorentz in-

variants of generalized electromagnetic fields of dyons. Here we have operated

equation (3.33) by F from the left instead of right and accordingly derived
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equation (3.79). Following the previous method of equating the coefficients

we have derived equations (3.80) - (3.91). Accordingly, we have obtained

the first Lorentz invariant of
(
~E2 − ~H2

)
in terms of equation (3.85), second

Lorentz invariant of
(−→
E .
−→
H
)
in terms of equation (3.87). Hence, the gradient

of first Lorentz invariant i.e. −→∇
(
~E2 − ~H2

)
has been derived by equation

(3.89) while the gradient of second Lorentz invariant i.e. −→∇
(−→
E .
−→
H
)
has been

investigated by equation (3.91). It should be noted that the theory of classi-

cal electrodynamics has been generalized consistently to the case of dyons by

means of split octonions and it is shown that fore going analysis is compact,

simpler and manifestly covariant.
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ABSTRACT

Keeping in view the consequences of the present theory of dyons
in isotropic medium, we have undertaken the study of the octo-
nion analysis of time dependent Generalized Dirac - Maxwell’s
equations of dyons in chiral medium. Consequently, the octo-
nionic forms of potential, field and current equation are devel-
oped in simple and compact manners in the case of homogeneous
(isotropic) medium and it is emphasized that the corresponding
quantum equations derived in terms of octonions are invariant
under Lorentz and duality transformations. Accordingly, the gen-
eralized electrodynamics in chiral medium has been developed in
terms of compact and simpler forms of octonion representations
in presence of electric and magnetic charges of dyons.



Chapter 4

Octonion Electrodynamics in

chiral medium

4.1 Introduction

There has been a revival in the formulation of natural laws so that there

exists [1] four division algebras consisting the algebra of real numbers, com-

plex numbers, quaternions and octonions. Octonion analysis has been widely

discussed by Baez [2]. It has also played an important role in the context of

various physical problems of higher dimensional supersymmetry, supergrav-

ity and super strings etc. Few interest in the subject of monopoles and dyons

was enhanced by the work of t’ Hooft [3] and polyakov [4] and its extension

by Julia and Zee [5]. The work of the Schwinger [6] was the first excep-

tion to the argument against the existence of monopoles. At the same time

so many paradoxes were related to the theory of pure Abelian monopoles,

as Dirac’s veto [7, 8], wrong spin-statistics connection [9] and many oth-
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ers [10, 11]. Several problems were soon resolved by the invention of dyons

[12, 13, 14] particles carrying simultaneous existence of electric and magnetic

charge. Fresh interest in this subject was enhanced by the idea given by t’

Hooft [15] and Polyakov [16] showing that monopoles are the intrinsic parts

of grand unified theories. The Dirac monopoles is an elementary particle but

the t’ Hooft - Polyakov monopoles [15, 16] is complicated extended object

having a definite mass and finite size inside of which massive fields plays a

role in providing a smooth structure and outside it they vanish rapidly leav-

ing the field configuration identical to abelian Dirac monopole. Julia and

Zee [17] have extended the idea of t’ Hooft [15] and polyakov [16] to con-

struct the classical solutions for non-Abelian dyons. Consequently, Prasad

and Sommerfield [18, 19] have derive the analytic stable solutions for the

non-Abelian monopoles and dyons of finite mass by keeping the symmetry

of vacuum broken but letting the self-interaction of Higgs field approaching

zero. Such solutions, satisfying the Bogomonlys condition [20] are described

as Bogomolnys-Prasad-Sommerfield (BPS) monopoles. On the other hand,

quaternions were invented by Hamilton [21] to extend the theory of com-

plex numbers to three dimensions. The quaternion formalism has been re-

discovered at regular intervals and the Maxwell’s differential equations are

rewritten as one quaternion equations [22, 23]. Finklestein et al [24] devel-

oped quaternionic quantum mechanics and Adler [25] described the theory

of the algebraic structure of quantum chromo dynamics for strong interac-

tions. Naturally, although quaternions from noncommutative but associa-
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tive algebra in four dimensions, octonions [2] passes eight components and

their algebra is both non commutative and non associative. Sedenions also

carry noncommutative and nonassociative algebra in sixteen dimensions in

the same way as complex octonions [26]. Quaternions and octonions are

defined with different dimensions and structures, be it real, complex, split,

dual, and hyperbolic. These algebras are successfully used in many fields and

represent the problems found in physics. In physics Clifford algebra [27] fea-

tures highly in various studies, also quaternions and octonions. Kravchenko

and co-authers [28, 29] discussed the Maxwell’s equations in homogeneous

media and accordingly developed [30] the quaternionic reformulation of the

time-dependent Maxwell’s equations along with the classical solution of a

moving source i.e. electron. Kravchenko et. al [31] have also demonstrated

the electromagnetic fields in chiral media and their quaternionic form in a

simple and consistent manner. The potential importance of monopole and

the results of Witten [32] that monopoles are necessarily dyon, Bisht et. al

[33] have constructed a self-consistent co-variant theory of generalized elec-

tromagnetic fields associated with dyons each carrying the generalized charge

as complex quantity with its real and imaginary part as electric and mag-

netic constituents. Recently, the generalized Dirac Maxwell’s equations in

homogeneous (isotropic) medium [34, 35] and their quaternionic forms have

been discussed in a unique and consistent way. The solution of time inde-

pendent generalized Dirac Maxwell’s (GDM) equations in presence of electric

and magnetic sources have been discussed [35, 36] in chiral media and inho-
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mogeneous media.

In this chapter, we have discussed the octonion electrodynamics in homo-

geneous (isotropic) and chiral medium. In section (4.2), we have discussed

the definition of chiral medium. The chiral media are isotropic birefringent

substances that responses to either electric or magnetic excitation with both

electric and magnetic polarizations. In section (4.3), we have obtained the

generalized electromagnetic fields equations of dyons in isotropic medium.

Thus, we have derived the generalized Dirac-Maxwell’s equations and other

various quantum equations in the homogeneous (isotropic) medium. It has

been shown that the field equations of dyons remain invariant under the du-

ality transformations in isotropic homogeneous medium and the equation of

motion reproduces the rotationally symmetric gauge invariant angular mo-

mentum of dyons. Keeping in view the consequences of the present theory

of dyons in isotropic medium, we have also undertaken the study of the oc-

tonion analysis of time dependent Maxwell’s equations in chiral medium for

dyons in presence of electric and magnetic charges (sources) are obtained in

unique, simpler and consistent manner. Thus, in section (4.4), we have dis-

cussed the generalized octonion Maxwell’s equations in the case of isotropic

medium. Accordingly, the octonionic forms of potential, field and current

equation are developed in simple and compact manners in the case of ho-

mogeneous (isotropic) medium and it is emphasized that the corresponding

quantum equations derived in terms of octonions are invariant under Lorentz

and duality transformations. Thus, we have discussed the generalized octo-
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nion electrodynamics in chiral medium (section 4.5). It provides the field

equations, wave equations and other quantum equations of dyons in the case

of chiral medium by means of octonionic eight dimensional representations.

As such, we have described the chiral parameter and pairing constant in

terms of octonionic representation of Drude-Born-Fedorov constitutive re-

lations. Hence, we have derived the generalized theory of Dirac-Maxwell’s

equations in presence of electric and magnetic charges of dyons in the case

of chiral media in simple, compact and consistent manner.

4.2 Chiral Media

Chiral media [37, 38] are isotropic birefringent substances that respond to

either electric or magnetic excitation with both electric and magnetic po-

larizations. The understanding of the properties of such media, the differ-

ences from ordinary dielectrics, and their possible applications require de-

tailed mathematical modeling. The mathematical modeling of chiral media

is done [37, 38] through the modification of the constitutive relations for

normal dielectrics. For a normal dielectric material the electric displacement

~D depends solely on the electric field ~E, and the magnetic field ~B depends

on the magnetic induction ~H, while in a chiral medium, ~D and ~B depend

on a combination of ~E and ~H [39, 40]. In many cases of interest these con-

stitutive laws describe non-local relations containing ~E and ~H. This is a
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common model for time-dispersive chiral media. Also these constitutive laws

may be either linear or nonlinear relations of the fields corresponding to the

modeling of linear or nonlinear chiral media respectively. Let us discuss the

octonion reformulation of generalized fields of dyons in normal (isotropic /

homogeneous) and chiral medium.

4.3 Generalized Electromagnetic Fields of Dyons

in Isotropic Medium

In order to write the various quantum equations of dyons in isotropic
medium, we start with the definition of homogeneous (isotropic) medium
[41] in the generalized electromagnetic fields as,

~D =ε−→E (ε = ε0εr), (4.1)

and

−→
B =µ ~H (µ = µ0µr); (4.2)

where ~D and −→B are respectively the electric and magnetic induction vectors

while −→E and ~H are generalized electromagnetic fields, described in chapter-2.

Here ε0 is the free space permittivity, µ0 is the permeability of free space,

εr and µr are defined respectively as relative permittivity and permeability

associated with electric and magnetic fields. So the following identity be used
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[34] as

µε = 1
v2 , (4.3)

which leads to

v = 1
√
µε

= c
√
µrεr

, (4.4)

where

c = 1
√
µ0ε0

, (4.5)

is the velocity of light in free space (vacuum) and v is considered as the speed

of electromagnetic wave in homogeneous (isotropic) medium. On using the

equations (4.1) and (4.2), the Maxwell’s equations (2.30), given in chapter-2

take the following differential form,

−→
∇ ·
−→
E = ρ

ε
;

−→
∇ ·
−→
B =µ%;

−→
∇ ×

−→
E =− ∂

−→
B
∂t
− k̃
ε

;

−→
∇ ×

−→
B = 1

v2
∂ ~E
∂t

+ µ~j. (4.6)

Differential equations (4.6) are thus referred as the generalized field equations

of dyons in homogeneous (isotropic) medium and the corresponding electric

and magnetic fields are accordingly referred as the generalized electromag-

netic fields of dyons in isotropic medium. These electric and magnetic fields

of dyons in homogeneous (isotropic) medium may then be written in terms
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of two potentials [34] as

−→
E = − ∂

−→
A

∂t
−
−→
∇φ−

−→
∇ ×

−→
B ; (4.7)

−→
B = − 1

v2
∂
−→
B

∂t
−
−→
∇ϕ+−→∇ ×−→A. (4.8)

Here in the equations (4.7) and (4.8) {Aµ} =
{
φ, v ~A

}
and {Bµ} =

{
vϕ, ~B

}
are the potentials respectively associated with electric and magnetic charges,

consisting of two vector potentials ( ~A, ~B) and two scalar potentials (φ, ϕ)

due to the presence of electric and magnetic charges.

So, the electric and magnetic fields are symmetrically invariant under
the following transformations as

−→
E → v

−→
B ;

−→
B → −

−→
E
v

;

φ→ vϕ;

ϕ→ −φ
v

;

~j→ v~k;

~k → −
~j
v

;

ρ→ %

v
;

%→ −vρ. (4.9)

Maxwell’s equations (4.6) are thus invariant under the generalized
continuous linear transformations [34];

−→
E =−→E cos θ +−→B v sin θ; (4.10)
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and

−→
B v =−−→E sin θ +−→B v cos θ. (4.11)

which reduces to equation −→E → v
−→
B and −→B → −

−→
E
v for θ = π

2 and
thus are recalled as duality transformations. Consequently, these two
equations (4.10) and (4.11) are also expressed as duality transforma-
tions between electric and magnetic constituents of dyons. As such,
the generalized Dirac-Maxwell’s (GDM) equations given by equations
(4.6) automatically be considered as manifestly covariant and dual
invariant field equations of dyons moving in isotropic (homogeneous)
medium. Defining the complex vector field ~ψ as

~ψ =−→E − iv−→B , (4.12)

and using the equations (4.7) and (4.8), we get the following relations
between generalized field ~ψ and the components of four-potential as

~ψ =− ∂~V

∂t
− ~∇Φ− iv

(
~∇× ~V

)
, (4.13)

where {Vµ} is the generalized four-potential of dyons in homogeneous
medium with its constituents as,

Vµ =
{
Φ, ~V

}
; (4.14)

where

Φ =φ− ivϕ. (4.15)
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As such we may write the Maxwell’s field (GDM) equations in terms
of generalized field ~ψ (4.13) as follows,

~∇ · ~ψ =ρ
ε

;

~∇× ~ψ =− iv
µ~J + 1

v2
∂ ~ψ

∂t

 . (4.16)

Here ρ and ~J are the generalized charge and current source densities
of dyons in homogeneous medium described as

ρ =
(
ρ− i%

v

)
;

~J =
(
~j − iv~k

)
. (4.17)

So, the new parameter ~S be expressed in the following form in terms
of source densities [34] as

~S = �~ψ = −µ∂
~J

∂t
− 1
ε
~∇ρ− ivµ

(
~∇× ~J

)
(4.18)

where � is the D’ Alembertian operator. Thus, the Generalized Dirac-
Maxwell’s (GDM) equations are expressed as the wave equations in
terms of generalized four potential of dyon [34] as

�Φ =vµρ;

�~V =µ~J. (4.19)

148



4.4 Generalized Octonion Maxwell’s Equations for Isotropic Medium

4.4 Generalized Octonion Maxwell’s Equa-

tions for Isotropic Medium

In order to write the quantum equations of dyons in isotropic media in terms

of compact notations of octonions, let us start with the four dimensional

representation of differential operator [42, 43] expressed in terms of octonion

units as

� = e1
∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
− i

v
e7
∂

∂t
, (4.20)

whereas the consequent octonion conjugate differential operator is defined as

� = −e1
∂

∂x
− e2

∂

∂y
− e3

∂

∂z
+ i

v
e7
∂

∂t
. (4.21)

So, the octonionic potential V (2.91) may now be expressed in isotropic

medium as

V =e1(Ax + ie7
Bx

v
) + e2(Ay + ie7

By

v
) + e3(Az + ie7

Bz

v
) + (ϕ+ ie7

φ

v
)

=e1Vx + e2Vy + e3Vz + ie7∅ (4.22)

where (∅,Vx,Vy,Vz) = (∅,−→V ) = {Vµ} are the components of generalized

four potential {Vµ} associated with generalized charge (q = e − i g) (where

e and g are respectively known as electric and magnetic charges) of dyons.

Now operating � of the equation (4.21) to octonion potential V (4.22), we
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get

�V =e1(−∂ϕ
∂x

+ ∂Az
∂y
− ∂Ay

∂z
− 1
v2
∂Bx

∂t
)

+e2(−∂ϕ
∂y

+ ∂Ax
∂z
− ∂Az
∂zx
− 1
v2
∂By

∂t
)

+e3(−∂ϕ
∂z

+ ∂Ay
∂x
− ∂Ax

∂y
− 1
v2
∂Bz

∂t
)

−ie4
1
v

(−∂φ
∂x
− ∂Bz

∂y
+ ∂By

∂z
− ∂Ax

∂t
)

−ie5
1
v

(−∂φ
∂y
− ∂Bx

∂z
+ ∂Bz

∂x
− ∂Ay

∂t
)

−ie6
1
v

(−∂φ
∂z
− ∂By

∂x
+ ∂Bx

∂y
− ∂Az

∂t
). (4.23)

which on the application of following Lorentz Gauge condition ,

−→
∇ ·
−→
A + 1

v2
∂φ

∂t
=0;

−→
∇ ·
−→
B + 1

v2
∂ϕ

∂t
=0; (4.24)

reduces to the following octonion form as

�V =F; (4.25)

Here the generalized electromagnetic field F is discussed in chapter-2. The

components of the generalized electromagnetic field F may then be written

as

F0 =F7 = 0;

F1 =(−∂ϕ
∂x

+ ∂Az
∂y
− ∂Ay

∂z
− 1
v2
∂Bx

∂t
);

F2 =(−∂ϕ
∂y

+ ∂Ax
∂z
− ∂Az
∂zx
− 1
v2
∂By

∂t
);
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F3 =(−∂ϕ
∂z

+ ∂Ay
∂x
− ∂Ax

∂y
− 1
v2
∂Bz

∂t
);

F4 =− i

v
(−∂φ
∂x
− ∂Bz

∂y
+ ∂By

∂z
− ∂Ax

∂t
);

F5 =− i

v
(−∂φ

∂y
− ∂Bx

∂z
+ ∂Bz

∂x
− ∂Ay

∂t
);

F6 =− i

v
(−∂φ

∂z
− ∂By

∂x
+ ∂Bx

∂y
− ∂Az

∂t
); (4.26)

which gives rise the connection with generalized electromagnetic fields as

F1 7−→Bx, F4 7−→ −i
Ex
v

;

F2 7−→By, F5 7−→ −i
Ey
v

;

F3 7−→Bz, F6 7−→ −i
Ez
v
. (4.27)

Thus, the generalized electromagnetic field of dyons F (2.98) may now be

expressed in the following octonionic form in isotropic medium i.e.

F =e1(Bx + ie7
Ex
v

) + e2(By + ie7
Ey
v

) + e3(Bz + ie7
Ez
v

)

=e1Ψx + e2Ψy + e3Ψz (4.28)

where −→Ψ = −→B + i e7
−→
E
v
is the generalized vector field of dyons. Now applying

the differential operator � to the equation (4.20) , we get

�F =−e0(−→∇ .−→B ) + e1[(−→∇ ×−→B )x −
1
v2
∂Ex
∂t

]

+e2[(−→∇ ×−→B )y −
1
v2
∂Ey
∂t

] + e3[(−→∇ ×−→B )z −
1
v2
∂Ez
∂t

]

−ie4
1
v

[(−→∇ ×−→E )x −
∂Bx
∂t

]− ie5
1
v

[(−→∇ ×−→E )y −
∂By
∂t

]

−ie6
1
v

[(−→∇ ×−→E )z −
∂Bz
∂t

] + ie7
1
v

(−→∇ .−→E ). (4.29)
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So, the wave equation in isotropic medium of generalized octonion may be

written as

�F = J; (4.30)

where J, the generalized octonion current discussed in chapter-2, may be

written in the following manner in isotropic (chiral) medium, i.e.

J = µ(e0%+ e1jx + e2jy + e3jz)−
1
ε
· i

v(e4kx + e5ky + e6kz + e7ρ), (4.31)

where (ρ, −→j ) = {jµ}, (%, −→j ) = {kµ} and (J0,
−→
J ) = {Jµ} are respectively the

four currents associated with electric charge, magnetic monopole and gener-

alized fields of dyons. Thus, the equation (4.30) lead to following differential

equations

(−→∇ · −→B ) =µ%;

(−→∇ · −→E ) = ρ

ε
;

(−→∇ ×−→B )x = 1
v2
∂Ex
∂t

+ jx;

(−→∇ ×−→E )x =− ∂Bx
∂t
− kx

ε
;

(−→∇ ×−→B )y = 1
v2
∂Ey
∂t

+ jy;

(−→∇ ×−→E )y =− ∂By
∂t
− ky

ε
;

(−→∇ ×−→B )z = 1
v2
∂Ez
∂t

+ jz;

(−→∇ ×−→E )z =− ∂Bz
∂t
− kz

ε
; (4.32)

which may further be generalized as
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−→
∇ ·
−→
B =µ%;

−→
∇ ·
−→
E = ρ

ε
;

−→
∇ ×

−→
B = 1

v2
∂ ~E
∂t

+ µ~j;

−→
∇ ×

−→
E =− ∂

−→
B
∂t
− k̃
ε

; (4.33)

These differential equations are analogous to the Generalized Maxwell’s Equa-

tions (GDM) of dyons in isotropic medium given by equation (4.6).

4.5 Generalized Octonion Electrodynamic in

Chiral Medium

In chiral medium [36-38], the electric and magnetic fields are paired with

each other. As such the constitutive relations ~D = ε~E and ~B = µ ~H will be

written in paired form as

~D =ε~E + ε′ ~H =⇒ ~D = ε
(
~E + β

(
∇× ~E

))
~B =µ ~H + µ′~E =⇒ ~B = µ

(
~H + β

(
∇× ~H

))
(4.34)

where β is chiral parameter and ε′, µ′ are pairing constant, and these relation

are known as Drude-Born-Fedorov constitutive relations [37, 38], which are

expressed as

~B =
(
~Bx, ~By, ~Bz

)
,

~D =
(
~Dx, ~Dy, ~Dz

)
; (4.35)
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where ~B, in the equation (4.35) is describes the octonion basis vectors as

~Bx =µHxe1 − e7µβ (∇×H)x · e4;

~By =µHye2 − e7µβ (∇×H)y · e5;

~Bz =µHze3 − e7µβ (∇×H)z · e6. (4.36)

Thus, equation (4.36) may now be written as

~B =µ ~Hej − e7µβ (∇×H) · ej+3; (j = 1, 2, 3) . (4.37)

Which represents the generalized magnetic field in chiral medium in terms of

octonion. Similarly, the electric induction vector ~D form the equation (4.35)

expressed in octonionic form as

~Dx =εExe1 − e7εβ (∇× E)x · e4;

~Dy =εEye2 − e7εβ (∇× E)y · e5;

~Dz =εEze3 − e7εβ (∇× E)z · e6; (4.38)

which may also be expressed as

~D =ε~Eej − e7εβ (∇× E) · ej+3; (j = 1, 2, 3) . (4.39)

So, the generalized electromagnetic field of dyons ~F of octonion in chiral

medium may then be expressed as

~F = ~B + ie7 ~D. (4.40)
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Substituting ~B and ~D from the equations (4.37) and (4.39) into equation

(4.40), we get

~F =
(
µ ~Hej − e7µβ (∇×H) · ej+3

)
+ ie7

(
ε~Eej − e7εβ (∇× E) · ej+3

)
.

(4.41)

which may further be elaborated as

~F = (µHx + ie7εEx) · e1

+ (µHy + ie7εEy) · e2

+ (µHz + ie7εEz) · e3

−e7β (µ(∇×H)x

+ie7ε (∇× E)x) · e4

−e7β (µ(∇×H)y

+ie7ε (∇× E)y) · e5

−e7β (µ(∇×H)z

+ie7ε (∇× E)z) · e6. (4.42)

We may also write the equation (4.42) in the following manner

~F = {µHx + µβ (∇×H)x} · e1+
{
µHy + µβ (∇×H)y

}
· e2

+ {µHz + µβ (∇×H)z} · e3+ {εEx + εβ (∇× E)x} · e4

+
{
εEy + εβ (∇× E)y

}
· e5+ {εEz + εβ (∇× E)z} · e6. (4.43)

Now operating � from equation (4.20) to the chiral octonion field ~F of the

equation (4.43) , we get
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�F =

−{µ ∂

∂x
Hx + µβ

∂

∂x
(∇×H)x + µ

∂

∂y
Hy + µβ

∂

∂y
(∇×H)y + µ

∂

∂z
Hz

+ µβ
∂

∂z
(∇×H)z} · e0

+{µ ∂
∂y
Hz + µβ

∂

∂y
(∇×H)z − µ

∂

∂z
Hy − µβ

∂

∂z
(∇×H)y − ε

∂

∂t
Ex

− εβ ∂
∂t

(∇× E)x} · e1

+{µ ∂
∂z
Hx + µβ

∂

∂z
(∇×H)x − µ

∂

∂x
Hz − µβ

∂

∂x
(∇×H)z − ε

∂

∂t
Ey

− εβ ∂
∂t

(∇× E)y} · e2

+{µ ∂

∂x
Hy + µβ

∂

∂x
(∇×H)y − µ

∂

∂y
Hx − µβ

∂

∂y
(∇×H)x − ε

∂

∂t
Ez

− εβ ∂
∂t

(∇× E)z} · e3

+i{ε ∂
∂z
Ey + εβ

∂

∂z
(∇× E)y − ε

∂

∂y
Ez − εβ

∂

∂y
(∇× E)z − µ

∂

∂t
Hx

− µβ ∂
∂t

(∇×H)x} · e4

+i{ε ∂
∂x
Ez + εβ

∂

∂x
(∇× E)z − ε

∂

∂z
Ex − εβ

∂

∂z
(∇× E)x − µ

∂

∂t
Hy

− µβ ∂
∂t

(∇×H)y} · e5

+i{ε ∂
∂y
Ex + εβ

∂

∂y
(∇× E)x − ε

∂

∂x
Ey − εβ

∂

∂x
(∇× E)y − µ

∂

∂t
Hz

− µβ ∂
∂t

(∇×H)z} · e6

+i{ε ∂
∂x
Ex + εβ (∇× E)x + ε

∂

∂y
Ey + εβ (∇× E)y + ε

∂

∂z
Ez + εβ (∇× E)z} · e7

(4.44)

which may further be reduced to
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�F = −{µ(−→∇ · −→H ) + µβ
−→
∇ · (−→∇ ×−→H )}.e1

+{µ(−→∇ ×−→H )− ε ∂
∂t
~E + µβ

−→
∇ · (−→∇ ×−→H )− εβ ∂

∂t

(−→
∇ × ~E

)
− µβ

−→
∇ · (−→∇ ×−→H )} · ej

+i{ − ε
(−→
∇ × ~E

)
+ εβ
−→
∇ ·

(−→
∇ × ~E

)
− µ ∂

∂t
~H − µβ ∂

∂t
(−→∇ ×−→H )

− εβ
−→
∇ ·

(−→
∇ × ~E

)
} · ej+3

+i{ε
(−→
∇ · ~E

)
+ εβ
−→
∇ ·

(−→
∇ × ~E

)
} · e7 (4.45)

It leads to the octonion GDM wave equation in Chiral medium of dyons as

�F =J ; (4.46)

where octonion current source density J of dyons be expressed as

J =e0J0 + e1J1 + e2J2 + e3J3 + e4J4 + e5J5 + e6J6 + e7J7

=− e0%+ ej~j − iej+3~k + ie7ρ. (4.47)

Here, we may obtain the following relations from equation (4.46) as

µ(−→∇ · −→H ) =%;

µ(−→∇ ×−→H ) =ε ∂
∂t
~E + εβ

∂

∂t

(−→
∇ × ~E

)
+~j;

ε
(−→
∇ × ~E

)
=− µ ∂

∂t
~H − µβ ∂

∂t
(−→∇ ×−→H )− ~k;

ε
(−→
∇ · ~E

)
=ρ. (4.48)
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These are octonionic GDM equations of dyons in Chiral medium. Us-
ing the following relations for generalized electromagnetic field as

∂

∂t
~D =ε ∂

∂t

(
~E + β

(−→
∇ × ~E

))
= ε

∂

∂t
~E + εβ

∂

∂t

(−→
∇ × ~E

)
∂

∂t
~B =µ ∂

∂t

(
~H + β(−→∇ ×−→H )

)
= µ

∂

∂t
~H + µβ

∂

∂t
(−→∇ ×−→H )

−→
∇ ·
−→
D =ε−→∇ ·

(
~E + β

(−→
∇ × ~E

))
= ε

(−→
∇ · ~E

)
−→
∇ ·
−→
B =µ−→∇ ·

(
~H + β(−→∇ ×−→H )

)
= µ(−→∇ · −→H ) (4.49)

we get

µ(−→∇ · −→H ) =%;

µ(−→∇ ×−→H ) = ∂

∂t
~D +~j;

ε
(−→
∇ × ~E

)
=− ∂

∂t
~B − ~k;

ε
(−→
∇ · ~E

)
=ρ; (4.50)

which is the alternative form of generalized Dirac-Maxwell’s equations
of dyon in Chiral medium in terms of generalized octonion electrody-
namics.

4.6 Discussion and Conclusion

The generalized Dirac Maxwell’s equations associated with dyons in isotropic

(chiral) medium are obtained consistently in section (4.3). Equations (4.1)

and (4.2) describe the relationship between the electric field and electric

induction as well as the magnetic field and magnetic induction with the

introduction of isotropic medium. These relations describe the rich vari-
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ety of physical phenomenon representing the properties and response of the

medium in order to find out the application of generalized electromagnetic

field of dyons. The relation between the velocity of electromagnetic wave

and medium parameter is established in equation (4.3) which are further

explained in equation (4.4) and (4.5). So, the generalized field equations

of dyons in homogeneous (isotropic) medium are obtained in equation (4.6)

where the electric and magnetic fields are recalled as the generalized electro-

magnetic fields of dyons in isotropic medium. As such, the equations (4.7)

and (4.8) are expressions for electric and magnetic fields of dyons in ho-

mogeneous (isotropic) medium with their relationship to the corresponding

potential. It is shown that the generalized electric and magnetic field (4.7)

and (4.8) are symmetric and dual invariant. Equations (4.9) describe dual-

ity relations (transformations) between electric and magnetic constituents of

dyons which are responsible in order to check the duality invariance for field

equations and other quantum equation of dyons. So, it is emphasized that the

generalized Dirac-Maxwell’s equations (4.6) are invariant under the general-

ized continuous linear transformations given by equations (4.10) and (4.11)

which are reduced to the duality transformations for θ = π
2 and thus recalls as

duality transformations. Here, −→E → v
−→
B and −→B → −

−→
E
v
are described as the

duality transformations between electric and magnetic constituents of dyons.

Equations (4.12) represents the generalized field vector in terms electric and

magnetic fields of dyons and may then be related with the components of

generalized four potential of dyons by equations (4.13-4.15). As such, the

four different generalized Dirac-Maxwell’s equation (4.6) are reduced to two

complex linear differential equation (4.16) in which the generalized charge

and current source densities of dyons in homogeneous medium is described

by equation (4.17). Accordingly, we have established the relationship be-
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tween the components of generalized four current and a new parameter ~S

given by equation (4.18). Hence, the GDM equations are expressed in terms

of components of generalized potential and current by equation (4.19).

In the section (4.4), we have discussed the octonionic formulation of general-

ized field equations of dyons for isotropic medium. The octonion differential

operator is given by equation (4.20) and its conjugate has been defined by

equation (4.21) for the case of homogeneous isotropic medium. Accordingly,

equation (4.22) represents the octonionic representation of the generalized

four potential. Octonion wave equation (4.23) provides the connection be-

tween the conjugate differential operator and the electric and magnetic four

potentials. so, the Lorentz Gauge condition are discussed by equation (4.24).

The octonion wave equation (4.24) has been reduced to its compact form by

equation (4.25) which is further been expanded by equation (4.26) in terms of

the connection between the components of generalized field and potentials.

Equation (4.28) thus establishes the relation of generalized field vector of

dyons in isotropic medium, which has further been expended into equation

(4.29). As such, we have established the homogeneous octonion wave equa-

tion given by (4.30), which is octonionic form of generalized Dirac Maxwell’s

equation in compact, simpler and consistent manner. Accordingly, we have

obtained the usual differential form of generalized Dirac Maxwell’s equation

in terms of equation (4.32) and (4.33) for generalized field of dyons in homo-

geneous isotropic medium.

In section (4.5), we have under taken the study of generalized electromagnetic

fields in chiral media form the definition of the generalized Dirac Maxwell’s

equation of dyons. We have defined the connection between the generalized

electromagnetic fields and induction vector in terms of chiral parameters from

Drude-Born-Fedorov constitutive equation. Here it should be noted that the
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electric and magnetic fields are paired with each other given by the equa-

tions(4.34). It is shown that in the absence of chiral parameter the electric

displacement and magnetic induction vectors are reduced to equations (4.1)

and (4.2) in homogeneous (isotropic) medium. Chirality is described as the

asymmetry in the molecular structure where a molecule is assumed to be a

chiral if it can not be superimposed onto its mirror image. We have writ-

ten the components of chirality dependent electric displacement vector and

magnetic induction vector in terms of Cartesian coordinate for an isotropic

medium given in equation (4.35), whereas the octonion representations of

the parameters −→B and ~D are provided by the equations (4.36) - (4.39). The

octonion reformulation of the generalized electromagnetic field of dyons in

chiral media has been investigated by equations (4.40) and (4.41) whereas its

components associated with electric and magnetic vectors in the presence of

chiral parameter are discussed by equation (4.42) and (4.43). Accordingly,

the octonions wave equation has been solved to describe the components of

generalized electromagnetic fields equations (4.44) and (4.45). Thus, the oc-

tonionic wave equation (4.46) is regarded as the octonionic representation of

generalized Dirac Maxwell’s (GDM) equation of dyons in chiral medium. It

is compact, simpler, manifestly covariant and consistent as well. It reduces

to the octonionic wave equation for generalized fields of dyons in isotropic

medium in the absence of chiral parameter. It can further reproduces the field

equation of moving charged particle like electron (monopole) in the absence

of monopole (electron) in vacuum if we consider neither chiral nor isotropic

medium parameters. Accordingly, the time derivative and divergence of field

equations in chiral medium are obtained equations (4.49) and (4.50) which

is also supports the above conclusion.
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CHAPTER 5

Octonion Gauge Formulation

And Quantum

Chromodynamics

A part of this chapter has been published in Int. J. Thoer. Phys., 51, (2012) 3410



ABSTRACT

An attempt to describe the octonionic reformulation of Abelian
and non-Abelian gauge theory of dyons has been made to discuss
the U(1)e × U(1)m abelian gauge theory, U(1) × SU(2) electroweak
gauge theory and also the SU(2)e×SU(2)m non-Abelian gauge the-
ories of in term of 2×2 Zorn vector matrix realization of split
octonions. It is shown that SU(2)e characterizes the usual the-
ory of the Yang Mill’s field (isospin or weak interactions) due
to presence of electric charge while the gauge group SU(2)m pre-
dicts the existence of t-Hooft-Polyakov monopole in non-Abelian
Gauge theory. Accordingly, we have established the relations be-
tween octonion basis elements and Gell-Mann λ matrices of SU(3)

symmetry on comparing the multiplication tables of these two.
Consequently, the quantum chromodynamics (QCD) has been re-
formulated and it is shown that the theory of strong interactions
could be explained better in terms of non-associative octonion al-
gebra.



Chapter 5

Octonion Gauge Formulation

And Quantum Chromodynamic

5.1 Introduction

In spite of the symmetry, conservation laws and gauge fields describe elemen-

tary particle in terms of their field quanta and interactions. Nevertheless,

the role of number system (hyper complex numbers) has been an important

factor in understanding the various theories of physics from macroscopic to

microscopic level. In fact , there has been a revival in the formulation of

natural laws in terms of numbers. So, according to celebrated Hurwitz the-

orem there exists [1] four division algebra consisting of R (real numbers), C

(complex numbers), H (quaternions) [2, 3] and O (octonions) [4-6]. All these

four algebra’s are alternative with totally anti symmetric associators. Real

number explains will the classical Newtonian mechanics, complex number

plays an important role for the explanation beyond the framework of quan-

tum theory and relativity. The division algebras are by no means new to

physics; in most theories, both classical mechanics and quantum mechanics
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are described already in terms of the real numbers R and complex numbers

C. Real and complex numbers are limited only up to two dimensions, quater-

nions are extended to four dimensions (one real and three imaginaries) while

octonions represent eight dimensions ( one real and seven imaginaries). Real

and complex numbers are commutative and associative. Furthermore, the

group SU(2) is everywhere in physics [7], and its connection to the quater-

nions H is well known. Quaternions are having relations with Pauli matrices

which explain non Abelian gauge theory. Quaternions were very first exam-

ple of hyper complex numbers having the significant impacts on Mathematics

and Physics. Because of their beautiful and unique properties, quaternions

attracted many to study the laws of nature over the field of these numbers.

Quaternions naturally unify [8, 9] electromagnetism and weak force, produc-

ing the electroweak SU(2)× U(1) sector of standard model. Quaternion are

associative but not commutative while its next generalization to octonions is

neither commutative nor associative. Rather, the laws of alternatively and

distributivity are obeyed by octonions. Quaternions and octonions are exten-

sively used in the various branches of physics and mathematics. The octonion

analysis has also played an important role in the context of various physical

problems [10-17] higher dimensional supersymmetry, super gravity and su-

per strings etc while the quaternions have an important role to unify [7-9]

electromagnetism and weak forces to represent the electroweak SU(2)×U(1)

sector of standard model. Octonion is a last member of the normed division

algebra, which its sequence consists of R 7−→C7−→ H 7−→O. Octonions are

used for unification program of strong interaction with successful gauge the-

ory of fundamental interaction i.e. octonions naturally unify [13-15] strong,

electromagnetism and weak force, producing SU(3)c × SU(2)w × U (1)Y . A

theoretical description of the leptons and quark structure of hadrons has been
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proposed by Gunaydin and Gursey [18] in the context of octonionic quan-

tum mechanics and considered the possibility of constructing an octonionic

Hilbert space. They identified a natural decomposition of space with the

representation of leptons and quarks. Likewise, the octonions are extensively

studied [18, 19] for the description of color quarks and played an impor-

tant role for unification programme of fundamental interactions in terms

of successful gauge theories. Furthermore, the quaternionic formulation of

Yang–Mill’s field equations and octonion reformulation of quantum chromo

dynamics (QCD) has also been developed [20] by taking magnetic monopoles

[21-23] and dyons (particles carrying electric and magnetic charges) [24-27]

into account. It is shown that the three quaternion units explain the struc-

ture of Yang-Mill’s field while the seven octonion units provide the consistent

structure of SU(3)c gauge symmetry of quantum chromo dynamics.

The remarkable success of division algebra prompted us for this chapter to

reformulate the abelian and non-Abelian gauge theory of dyons with the ap-

plication of split octonions and their Zorn vector matrix realization. In sec-

tion (5.2) we have discussed the U(1)×U(1) abelian gauge theory of dyons

from the invariance principles of Lagrangian formulation in order to obtain

the dyonic field equations. It has been shown that this formalism provides

better understanding to explain the duality conjunctive for the justification

of existence of monopoles and dyons. In section (5.3), we have discussed the

U(1)×U(1) octonion gauge formulation in terms of 2×2 Zorn vector matrix

realization of split octonion in compact and consistent manner. As such,

we have developed the octonion covariant derivative for U(1)×U(1) gauge

theory of dyons in terms of 2×2 Zorn matrix realization of split octonions.

It is shown that the commutation relation between the octonion covariant

derivative leads to two types of gauge field strength of generalized electro-
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magnetic fields of dyons responsible for the simultaneous existence of electric

charge and magnetic monopole. It is also shown that the generalized Dirac

Maxwell’s equations of dyons leads to two types of two photon in terms of

two four currents associated with electric charge and magnetic monopole. In

section (5.4), we have discussed the octonion gauge fields as the combina-

tion of two quaternion gauge fields. The covariant derivative, abelian and

non-Abelian gauge structure and the gauge current equation are described

in split octonion formulation of gauge theory. As such, we have investi-

gated the U(1)×SU(2) octonionic gauge formulation in simpler and compact

manner. Our U(1)×SU(2) theory of weak interaction describes two fold sym-

metry of electroweak interactions. The first fold describes the gauge boson

of standard electroweak theory while the second one has be investigated to

describe the structure of alternative electroweak interaction to the presence

of magnetic monopole. In section (5.5), we have extended U(1)×SU(2) to

the non-Abelian SU(2)e × SU(2)m gauge formulation in terms of 2×2 Zorn

vector matrix of split octonions. Accordingly, the octonion gauge theory has

been reconnected to the ’t Hooft Polyakov magnetic monopole theory (section

5.6) in order to satisfy the existence of magnetic monopole in Grand Unified

Theories (GUTs). In section (5.7), we have discussed the SU(3) generators

(Gell-Mann matrices) and their multiplication properties and accordingly the

resemblance between the octonion basis elements and the SU(3) generators

are discussed in section (5.8), where a proper mapping between two has been

investigated. Accordingly, the SU(3) symmetry as been developed interms of

non-associativity of octonion basis elements which does not effect the invari-

ance of SU(2) spin (i-spin) multiplets. Further more, it is concluded that the

algebra of strong interactions correspond to SU(3) automorphism of octonion

algebra and supports earlier results of Gï¿œnaydin [19]. In section (5.9), we
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have discussed the relationship of octonions and the parameters of quantum

chromodynamics (QCD). Consequently, the exact SU(3) symmetry of col-

ors has been investigated in terms of octonion algebra in order to describe

quantum chromodynamics (QCD). Hence, we have reformulated the theory

of strong interaction (i.e. the quantum chromodynamics (QCD)) based on

colors SU(3)c whose generators satisfy the non-associative algebra of octo-

nions. It is shown that in this theory the gluonic field strength tensor of

QCD behaves like to the electromagnetic field strength tensor of QED. More

over, the SU(3) gauge theory of strong interactions and the invariant La-

grangian formulation has been suitably handled in terms of non-associativity

of octonion in section (5.10), where gauge transformations are octonionic,

and the octonion affinity describes the Yang-Mill’s field. It is concluded

that octonionic colored quarks are dyons where the generalized field of dyons

are discussed as the two fold gauge symmetries of SU(3) non-Abelian gauge

group associated respectively with electric and magnetic charges.

5.2 U(1)×U(1) Gauge Formulation of Dyons

Let us introduce the following two four component spinor [27] as,

Ψ =

 Ψ1

Ψ2

 (5.1)

where Ψ1 and Ψ2 are four component spinors. Negi-Dehnen [27] identified

Ψ1 as the Dirac spinor for a electric charge ( like electron) while the other

spinor Ψ2 has been identified as the Dirac iso-spinors acting on the magnetic

monopole. Thus the Ψ may be visualized as the bi-spinor for dyons in terms
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of its electric and magnetic constituents. Each spinor Ψ1 and Ψ2 satisfy the

free particle Dirac equation [27]

L0 =Ψ(iγµ∂µ +m) 1̂Ψ

=
(
Ψ1,Ψ2

)  (iγµ∂µ +m) 0

0 (iγµ∂µ +m)


 Ψ1

Ψ2


=

a=2∑
a=1

Ψa(iγµ∂µ +m)Ψa 1̂ (5.2)

where 1̂ is 2×2 unit matrix. So, the Unitary transformations taking part

for the invariance of free particle Dirac equation for bi-spinor are the global

U = U (e)(1) × U (m)(1) two component spinors Ψ1 and Ψ2 . In this case Ψ1

acts on unitary gauge group U (e)(1) whereas the iso-spinor Ψ2 acts on the

other unitary group U (m)(1) with the symbols (e) and (m) are used for the

electric and magnetic charges. Thus equation (5.2) is invariant under global

gauge transformation

U =U (e) × U (m) = exp
(
iΛjτ

j b
a

)
(5.3)

where

τ j ba = τ 1 b
a =

 1 0

0 0

 and τ j ba = τ 2 =

 0 0

0 1

 (5.4)

and

[
τ j ba , τ

k b
a

]
=εjkl τ j ba = 0 (5.5)
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because we have j, k, l = 1, 2. Accordingly the spinor transforms [27] as

Ψ1 7−→ Ψ′1 7−→
[
U (e)

]
Ψ1 = exp{iΛ1}Ψ1

Ψ2 7−→ Ψ′2 7−→
[
U (m)

]
Ψ2 = exp{iΛ2}Ψ2

Ψ1 7−→ Ψ′1 7−→ Ψ1
[
U (e)

]−1
=Ψ1 exp{iΛ1}

Ψ2 7−→ Ψ′2 7−→ Ψ2
[
U (m)

]−1
=Ψ2 exp{iΛ2}

Ψ 7−→ Ψ′ 7−→ UΨ =

 exp{iΛ1} 0

0 exp{iΛ2}


 Ψ1

Ψ2



Ψ 7−→ Ψ′ 7−→ ΨU−1 =
(
Ψ1,Ψ2

) exp{iΛ1} 0

0 exp{iΛ2}

 (5.6)

In equations (5.3) and (5.5) Λj(∀ j = 1, 2) are independent of space and

time for global gauge transformations. If we extend this symmetry to invari-

ance under local gauge transformations where Λj =⇒ Λj(x) (∀ j = 1, 2) in

equations (5.3) and (5.5), the Lagrangian (5.2) transforms as

Ψ(iγµ∂µ +m) 1̂Ψ 7−→Ψ(iγµDµ +m) 1̂Ψ (5.7)

where partial derivative ∂µ has been replaced by the covariant derivative Dµ

[27] as

Dµ = D b
µa =∂µδba + βµjτ

j b
a (5.8)

and τ j ba are given by equation (5.4) along with

βµj 7−→βµ1 = Aµ (5.9)

βµj 7−→βµ2 = Cµ. (5.10)
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These are the gauge potentials respectively associated with the dynamics of

electric and magnetic charges with the following gauge transformations [27]

βµ1 = Aµ 7−→ A′µ 7−→
[
U (e)

]
Aµ

[
U (e)

]−1
+ 1
e

[
U (e)

]
∂µ
[
U (e)

]−1
(5.11)

βµ2 = Cµ 7−→ C ′µ 7−→
[
U (m)

]
Cµ

[
U (m)

]−1
+ 1
g

[
U (m)

]
∂µ
[
U (m)

]−1
(5.12)

where [
U (e)

]
=⇒ exp{iΛ1(x)} (5.13)[

U (m)
]

=⇒ exp{iΛ2(x)}. (5.14)

As such, we may write [27] the co-variant derivative Dµ (5.8) as

DµΨ =

 ∂µ − ieAµ 0

0 ∂µ − igCµ


 Ψ1

Ψ2

 (5.15)

which transforms as

DµΨ 7−→ D′µΨ′ 7−→

 exp{iΛ1(x)} 0

0 exp{iΛ2(x)}


 (∂µ − ieAµ)Ψ1

(∂µ − igCµ)Ψ2


=U (DµΨ) . (5.16)

Hence, we get

[Dµ, Dν ]Ψ(x) =

 −ieFµν 0

0 −igFµν


 Ψ1

Ψ2

 (5.17)

and it leads to the Jacobi identity

[Dµ,[Dν , Dλ]] + [Dν,[Dλ, Dµ]] + [Dλ,[Dµ, Dν ]] =0 (5.18)
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along with the Bianchi identities

DµFνλ +DνFλµ +DλFµν =0 (5.19)

DµFνλ +DνFλµ +DλFµν =0 (5.20)

As such, the total Lagrangian for generalized fields of dyons is described [27]

as

L =− 1
4FµνF

µν − 1
4FµνF

µν + Ψ(iγµ∂µ +m)Ψ− Aµjµ − Cµkµ (5.21)

where

jµ =eΨ1γ
µΨ1 (5.22)

and

kµ =gΨ2γ
µΨ2 (5.23)

are the the four currents associated respectively with electric and magnetic

charges on dyons. These four- currents obtained from the Dirac spinor Ψ1

and the Dirac iso-spinor Ψ2 satisfy the following conserved relations

∂µj
µ =jµ, µ = 0

∂µk
µ =kµ, µ = 0. (5.24)
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5.3 U(1)×U(1) Octonion Gauge Formulation

Let us write [32] the split octonion valued space time vector Zµ (µ = 0, 1, 2, 3)

in terms of the 4× 4 (space time vector-valued) Zorn matrix Zµab as

Zµ =xµ0u∗0 + yµ0u0 + xµj u
∗
j + yµj uj

=

 xµ0e0 −xµj ej
yµj ej yµ0 e0

 , (∀ j = 1, 2, 3) (5.25)

where (µ = 0, 1, 2, 3) represent the internal four dimensional space with (µ =

0) representing U(1) abelian gauge structure while µ = j (∀ j = 1, 2, 3) may

be used for non-Abelian gauge structure. Here xµ0 , xµj , y
µ
0 , y

µ
j are real valued

variables for abelian and non-Abelian gauge fields. When the space time

metric is ηµν 1̂4×4, the bi linear term

1
4Trace[ηµνZ

µ.Zν ] =1
4ηµν [x

µ
0x

ν
0 + yµ0 y

ν
0 + xµj x

ν
j + yµj y

ν
j ]Trace[1̂2×2]

=1
2ηµν [x

µ
0x

ν
0 + yµ0 y

ν
0 + xµj x

ν
j + yµj y

ν
j ] (5.26)

describe the inner product. The octonion conjugation is accordingly defined

as

Zµ =xµ0u0 + yµ0u
∗
0 − x

µ
j u
∗
j − y

µ
j uj =

 yµ0 e0 xµj ej

−yµj ej xµ0e0

 , (5.27)

while the Hermitian conjugation is described [32] as

(Zµ)† =(xµ0)∗u0 + (yµ0 )∗u∗0 − (xµj )∗u∗j − (yµj )∗uj

=

 (yµ0 )∗e0 (xµj )∗ej
−(yµj )∗ej (xµ0)∗e0

 . (5.28)
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So, we may write xµj = yµj = (xµj )∗ = (yµj )∗ = 0 for Abelian gauge fields.

Thus, the split octonion differential operator is written as,

� =u∗0∂µ + u0∂µ 7−→ ∂µe01̂, (5.29)

where u0 = 1
2 (e0 + ie7) , u∗0 = 1

2 (e0 − ie7) are split octonion basis given by

equation (3.1). Thus, the equation (5.29) in term of 2×2 Zorn matrix may

be written as

� =

 ∂µ 0

0 ∂µ

 ≈ ∂µ

 1 0

0 1

 ≈ ∂µ1̂2×2. (5.30)

Hence, the covariant derivative for U(1)×U(1) gauge theory of dyons defined

by (5.8) and (5.15) may be written as split octonion valued in terms of 2×2

Zorn vector matrix realization as

Dµ =

 ∂µ + Aµ 0

0 ∂µ +Bµ

 ; (5.31)

which yields

DµDν =

 ∂µ∂ν + ∂µAν + Aµ∂ν + AµAν 0

0 ∂µ∂ν + ∂µBν +Bµ∂ν +BµBν

 ,
(5.32)

and

DνDµ =

 ∂ν∂µ + ∂νAµ + Aν∂µ + AνAµ 0

0 ∂ν∂µ + ∂νBµ +Bν∂µ +BνBµ

 .
(5.33)
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On subtraction, i.e. [Dµ, Dν ] = DµDν −DνDµ, these equations reduce to

[Dµ, Dν ] =

 ∂µAν − ∂νAµ + AµAν − AνAµ 0

0 ∂µBν − ∂νBµ +BµBν −BνBµ

 ,
(5.34)

which reproduces

[Dµ, Dν ] =

 Fµν 0

0 Fµν

 7−→ Fµν ; (5.35)

where

Fµν =∂µAν − ∂νAµ + AµAν − AνAµ 7−→ Eµν ;

Fµν =∂µBν − ∂νBµ +BµBν −BνBµ 7−→ Hµν ; (5.36)

Here Eµν and Hµν represent the octonionic forms of generalized field tensors

of electromagnetic fields of dyons. Now operating Dµ given by the equation

(5.31) to the generalized four electromagnetic fields Fµν (5.35), we get

DµFµν =

 ∂µ + Aµ 0

0 ∂µ +Bµ

 ∗
 Eµν 0

0 Hµν



=

 ∂µEµν 0

0 ∂µHµν

 7−→
 jν 0

0 kν

 =⇒ Jν ; (5.37)

where

jν = ∂µEµν ; kν = ∂µHµν ; (5.38)
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are respectively the four currents associated with electric charge and magnetic

monopole (i.e. the constituents of dyons) in the case of U(1)×U(1) octonion

gauge formalism. Thus, we have obtained the justification of U(1) × U(1)

gauge theory of dyons in terms of split octonions and their correspondence

with 2×2 Zorn vector matrix realization. Here we may infer that the U(1)×

U(1) gauge theory is described well by split octonion formulation where the

spinor and iso spinor take part together.

5.4 U(1)× SU(2) Octonion Gauge Formula-

tion

So, by virtue of split octonion formulation we may extend U(1) gauge theory

to the U(1)× SU(2) gauge theory. Accordingly, we write an octonion as the

combination of two gauge fields expanded in terms of quaternions i.e.

Aµ 7→A0
µ + Aaµea,

Bµ 7→B0
µ +Ba

µea, (∀a = 1, 2, 3.) (5.39)

So, the co-variant derivative in case of U(1)× SU(2) octonion gauge field in

the split octonion form may be expressed as

Dµ =

 ∂µ + A0
µ + Aaµea 0

0 ∂µ +B0
µ +Ba

µea

 , (5.40)

where the components of electric A0
µ and magnetic B0

µ are the four potentials

of dyons in case of U(1) while Aaµ and Ba
µ describe of the SU(2) gauge field
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theory. Similarly

Dν =

 ∂ν + A0
ν + Aaνea 0

0 ∂ν +B0
ν +Ba

νea

 , (5.41)

and

[Dµ, Dν ] =

 G0
µν +Ga

µνea 0

0 G0
µν + Ga

µνea

 7−→ Gµν ; (5.42)

which is U(1)× SU(2) octonion gauge field strength for dyons in 2×2 Zorn

matrix realization. where

G0
µν =∂µA0

ν − ∂νA0
µ +

[
A0
µ, A

0
ν

]
7−→ E0

µν ,

Ga
µν =∂µAaν − ∂νAaµ + ea

[
Aaµ, A

a
ν

]
7−→ Ea

µν , (5.43)

which are respectively abelian and non-Abelian U(1)e×SU(2)e gauge struc-

tures in presence of electric charge. Similarly

G0
µν =∂µB0

ν − ∂νB0
µ +

[
B0
µ, B

0
ν

]
7−→ H0

µν ,

Ga
µν =∂µBa

ν − ∂νBa
µ + ea

[
Ba
µ, B

a
ν

]
7−→ Ha

µν , (5.44)

is U(1)m×SU(2)m gauge structure associated with the presence of magnetic

monopole. Accordingly, we get

DµGµν =

 ∂µ + A0
µ + Aaµea 0

0 ∂µ +B0
µ +Ba

µea

 ∗
 G0

µν +Ga
µνea 0

0 G0
µν + Ga

µνea



=

 ∂µG
0
µν + ∂µG

a
µνea 0

0 ∂µG0
µν + ∂µGa

µνea

 , (5.45)
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which may further be reduced in terms of compect notation of split octonion

formulation i.e.

DµGµν =Jν . (5.46)

Here Jν is U(1)×SU(2) form of octonion gauge current for dyons which may

be expressed in term of 2×2 Zorn matrix as

Jν =

 j0
ν + jaνea 0

0 k0
ν + kaνea

 , (5.47)

where

j0
ν =∂µG0

µν ;

jaν =∂µGa
µν ;

k0
ν =∂µG0

µν ;

kaν =∂µGa
µν . (5.48)

Here j0
ν and jaν are generalized octonion current for U(1)e × SU(2)e (electric

case) and k0
ν and kaν for U(1)m × SU(2)m (magnetic case). The analogous

continuity equation then changes to be

DµJµ =

 ∂µj
0
µ + ∂µj

a
µea 0

0 ∂µk
0
ν + ∂µk

a
νea

 =0. (5.49)
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5.5 Non-Abelian SU(2)e × SU(2)m Gauge For-

mulation

In order to describe SU(2)e × SU(2)m gauge formulation, let us write the

covariant derivative Dµ as

Dµ =∂µ + Vµ; (5.50)

where Vµ is the octonion form of generalized four potential expressed as

Vµ = e0
(
Aτµeτ

)
+ ie7

(
Bτ
µeτ

)
. (5.51)

Here τ 7→ 1, 2, 3 denotes SU(2) generator. Thus, the covariant derivative

(5.50) may be expressed as

Dµ =∂µ + e0
(
Aτµeτ

)
+ ie7

(
Bτ
µeτ

)
=u∗0

(
∂µ + Aτµeτ +Bτ

µeτ
)

+ u0
(
∂µ + Aτµeτ −Bτ

µeτ
)
. (5.52)

The split octonion equivalent of equation (5.52) in term of 2×2 Zorn’s vector

matrix realization may be expressed as

Dµ =

 ∂µ +
(
Aτµ +Bτ

µ

)
eτ 0

0 ∂µ +
(
Aτµ −Bτ

µ

)
eτ

 . (5.53)

Similarly

Dν =

 ∂ν + (Aτν +Bτ
ν ) eτ 0

0 ∂ν + (Aτν −Bτ
ν ) eτ

 ; (5.54)
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which gives rise to

[Dµ, Dν ] =

 (Gτ
µν + Gτ

µν)eτ 0

0 (Gτ
µν − Gτ

µν)eτ

 7−→ Gτ
µν ; (5.55)

where

Gτ
µν =∂µAτν − ∂νAτµ + eτ

[
Aτµ, A

τ
ν

]
7−→ Eτ

µν ;

Gτ
µν =∂µBτ

ν − ∂νBτ
µ + eτ

[
Bτ
µ, B

τ
ν

]
7−→ Hτ

µν ; (5.56)

respectively represent SU(2) non-Abelian gauge structure associated with

electric charge and magnetic monopole.

So, we may write

DµGτ
µν =


(
∂µG

τ
µν + ∂µGτ

µν

)
eτ 0

0
(
∂µG

τ
µν − ∂µGτ

µν

)
eτ

 , (5.57)

which may further be reduced to the following compact notation of an octo-

nion formulation as

DµGτ
µν =Jτν ; (5.58)

where Jτν (∀ τ = 1, 2, 3), the octonion gauge current in terms of 2×2 Zorn’s

matrix realization of SU(2)e × SU(2)m, may be expressed as

Jτν =

 (jτν + kτν ) eτ 0

0 (jτν − kτν ) eτ

 , (5.59)
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from which we may write following field equations for non-Abelian gauge

fields of dyons

jτν = ∂µG
τ
µν ;

kτν = ∂µGτ
µν ; (5.60)

Here jτν and kτν are octonion non-Abelian currents respectively used for elec-

tric charge and magnetic monopole for the case of SU(2)e × SU(2)m gauge

field theory. Accordingly the continuity equation generalizes as

DνJτν =

 (∂νjτν + ∂νk
τ
ν ) eτ 0

0 (∂νjτν − ∂νkτν ) eτ

 = 0. (5.61)

5.6 Condition of ’t Hooft Polyakov Monopole

From the fore going analysis, we may easily obtain the case of ’t Hooft

Polyakov [22, 23] theory of magnetic monopoles. Let us write the complex

conjugate of differential operator (5.53) as

D∗µ =∂µ + e0
(
Aτµeτ

)
− ie7

(
Bτ
µeτ

)
, (5.62)

which may further be reduced to 2×2 vector matrix realization of split octo-

nion as

D∗µ =

 ∂µ +
(
Aτµ −Bτ

µ

)
eτ 0

0 ∂µ +
(
Aτµ +Bτ

µ

)
eτ

 . (5.63)
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Equation (5.53) and (5.62) gives rise to

Dµ =1
2
(
Dµ +D∗µ

)

=

 ∂µ + Aτµeτ 0

0 ∂µ + Aτµeτ


=
(
∂µ + Aτµeτ

)
1̂, (5.64)

which describes the covariant derivative of Yang-Mill’s field of SU(2) gauge

theory.

We may now use the covariant derivative (5.62) in order to discuss Lagrangian

used in the Georgi-Glashow model for the description of the SO(3) ∼ SU(2)

Yang Mills field theory coupled to a Higgs field [22] as

L =− 1
4FµνF

µν + 1
2
(
Dµ

~φ
)
·
(
Dµ~φ

)
− V (φ), (5.65)

where

Fµν =∂µCν − ∂νCµ + efabcC
µ
b C

ν
c , (5.66)

and

Cµ =Aτµeτ ; Fµν = F τ
µνeτ ; (5.67)

with

F τ
µν =∂µAτν − ∂νAτµ + eτ

[
Aτµ, A

τ
ν

]
. (5.68)
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Here Cµ is gauge potential of SO(3), and ~φ is Higgs field in three dimension

of SO(3). Thus, the gauge covariant derivative may be written as

Dµ
~φ = (∂µ + eCµ) ~φ, (5.69)

and Higgs potential V (φ) 7→ 1
4λ (φ2 − a2). As such, we may develop accord-

ingly the theory of extended (Soliton like) monopole given by ’t - Hooft and

Polyakov. The equation of motion and other mathematical formulation has

already been given in chapter-2 section (2.3.3).

5.7 SU(3) Generators (Gell-Mann Matrices)

The Gell-Mann λ matrices are the representations of the infinitesimal gener-

ators of the special unitary group called SU(3). This group has eight dimen-

sion, and therefore it has some set with eight linearly independent generators,

which can be written as GA, with A taking values from 1,2,3,..........,8. They

obey the following commutation relations as

[GA , GB] =iFABCGC ; (5.70)

where FABC is the structure constants, and it is completely antisymmetric.

i.e. F 123 = +1; F 147 = F 165 = F 246 = F 257 = F 354 = F 367 = 1
2 and

F 458 = F 678 =
√

3
2 .

Independent generators GA (∀A = 1, 2, 3, .........., 8) of SU(3) symmetry

group are related with the 3×3 Gell-Mann matrices as

GA =λA2 ; (5.71)
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where λA (∀A = 1, 2, 3, .........., 8) are defined as

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 ;

λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ;

λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ;

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

1 0 −2

 ; (5.72)

which satisfy the following properties

(λA)† = λA;

Tr(λA) = 0;

Tr(λAλB) = 2δAB;

[λA, λB] = 2iFABCλC . (5.73)

where A,B,C = 1, 2, 3, ............, 8. As such, we may summarize the multipli-

cation rules for the generators (in terms of l matrices) of SU(3) symmetry

in the following table [35] as;
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· λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

λ1 Λ1 iλ3 −iλ2
i
2λ7 − i

2λ6
i
2λ5 − i

2λ4
1√
3λ1

λ2 −iλ3 Λ2 iλ1
i
2λ6

i
2λ7 − i

2λ4 − i
2λ5

1√
3λ2

λ3 iλ2 −iλ1 Λ3 − i
2λ5

i
2λ4

i
2λ7 − i

2λ6
1√
3λ3

λ4 − i
2λ7 − i

2λ6
i
2λ5 Λ4 − i

2λ3
i
2λ2

i
2λ1 −

√
3

2 iλ5

λ5
i
2λ6 − i

2λ7 − i
2λ4

i
2λ3 Λ5 − i

2λ1
i
2λ2

√
3

2 iλ4

λ6 − i
2λ5

i
2λ4 − i

2λ7 − i
2λ2

i
2λ1 Λ6

i
2λ3 −

√
3

2 iλ7

λ7
i
2λ4

i
2λ5

i
2λ6 − i

2λ1 − i
2λ2 − i

2λ3 Λ7
√

3
2 iλ6

λ8 − 1√
3λ1 − 1√

3λ2 − 1√
3λ3

√
3

2 iλ5 −
√

3
2 iλ4

√
3

2 iλ7 −
√

3
2 iλ6 Λ8

Table 5.1: Multiplication table for Gell-Mann λ matrices of SU(3)
symmetry

Here the value of Λ1,Λ2,Λ3,Λ4,Λ5,Λ6,Λ7,Λ8 are described [35] in terms of

3× 3 matrices as

Λ1 = Λ2 = Λ3 = Λ123 =


1 0 0

0 1 0

0 0 0

 =⇒ (λ1)2 = (λ2)2 = (λ3)2 = Λ123;

Λ4 = Λ5 = Λ45 =


1 0 0

0 0 0

0 0 1

 =⇒ (λ4)2 = (λ5)2 = Λ45;

Λ6 = Λ7 = Λ67 =


0 0 0

0 1 0

0 0 1

 =⇒ (λ6)2 = (λ7)2 = Λ67;
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Λ8 = 4
3


1 0 0

0 1 0

0 0 1

 =⇒ (λ8)2 = 4
3I. (5.74)

where 1̂ is 3× 3 unit matrix.

5.8 Relation between Octonions basis and

SU(3) Generators

Comparing Table-2.1 and Table-5.1, we may observe a resemblance between

the octonions and the Gell-Mann l matrices of SU(3) symmetry on using

simultaneously the relations (2.14) and (5.74) in the following table [35] as

Octonions basis SU(3) generators
e1 7−→ iλ1

e2 7−→ iλ2

e3 7−→ iλ3

e4 7−→ i
2λ4

e5 7−→ i
2λ5

e6 7−→ - i
2λ6

e7 7−→ - i
2λ7

e0 7−→
√

3
2 λ8

Table 5.2: Relation between Octonion basis and SU(3) generators

As such, we have the freedom to establish [20, 35] a connection between the

octonion basis elements eA and 3×3 Gell-Mann λ matrices of SU(3) in the
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following manner i.e.

e1 =iλ1, e2 = iλ2, e3 = iλ3 =⇒ eA ⇐⇒ iλA; (∀ A = 1, 2, 3.)

e4 = i

2λ4, e5 = i

2λ5,=⇒ eA ⇐⇒
i

2λA; (∀ A = 4, 5);

e6 =− i

2λ6, e7 = − i2λ7 =⇒ eA ⇐⇒ −
i

2λA; (∀ A = 6, 7);

e0 =
√

3
2 λ8. (5.75)

Theses results are similar to the those derived earlier by Gunaydin Gursey

[18] for octonion units and λ matrices of SU(3) symmetry. Equation (5.75)

satisfies the Cayley algebra followed by the octonion multiplication rule eA ·

eB = −δAB + fABCeC . So, we may establish the following relations among

structure constants of octonions and SU(3) symmetry [35] as

FABC =fABC ; (∀ ABC = 123)

FABC = 1
2f

ABC ; (∀ ABC = 147, 246, 257, 435, 516, 673)

FABC =
√

3
2 fABC . (∀ ABC = 458, 678) (5.76)

Hence, we get

[eA, eB] =i [λA, λB] (ec = iλc); (∀ ABC = 123)

[eA, eB] = i

2 [λA, λB] (ec = i

2λc); (∀ ABC = 147, 246, 257, 435, 516, 673)

[eA, eB] =
√

3
2 i [λA, λB] (ec =

√
3

2 iλc). (∀ ABC = 458, 678) (5.77)

which are the commutation relations among octonions basis elements and

Gell-Mann λ matrices of SU(3) symmetry the so called Eight fold way. The

benefit to write the octonions in terms of Gell-Mann λ matrices of SU(3)
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symmetry may be described [35] as

• Non-associativity of octonions does not effect the invariance of the sym-

metry group SU(2) spin (or isospin) multiplets for the given values of

structure constants fABC .

• It is better to describe the SU(3) symmetry in terms of compact nota-

tions of octonions. Accordingly, the theory of strong interactions could

be described better in terms of non associative Cayley algebra.

• The eight Gell-Mann λ matrix could be designated in terms of hyper

charge which may have the direct link with the scalar octonion unit e0.

• It may be concluded that the algebra of strong interactions corresponds

to the SU(3) automorphisms of the octonion algebra which is in support

of the results obtained earlier by Gï¿œnaydin [19].

5.9 Octonions and QCD

The color group SU(3) corresponds to the local symmetry whose gauging

gives rise to Quantum Chromodynamics (QCD). There are two different

types of SU(3) symmetry. The first one is the symmetry that acts on the

different colors of quarks. This symmetry is an exact gauge symmetry me-

diated by the gluons. Other SU(3) symmetry is a flavor symmetry which

rotates different flavors of quarks to each other, or flavor SU(3). Flavor

SU(3) is an approximate symmetry of the vacuum of QCD, and is not a

fundamental symmetry at all. It is an accidental consequence of the small

mass of the three lightest quarks. Here, we are interested in exact SU(3)
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symmetry of colors in terms of octonion algebra, so as to describe quantum

chromodynamics (QCD). For this, let us substitute the values of octonion

units eA in terms of λA so that we may express an octonion x [35] as

x =x0

(√
3

2 λ8

)
+ x1 (iλ1) + x2 (iλ2) + x3 (iλ3) + x4

(
i

2λ4

)
+ x5

(
i

2λ5

)
+x6

(
− i2λ6

)
+ x7

(
− i2λ7

)
(5.78)

which can further be reduced as

x =x0O0 + x1O1 + x2O2 + x3O3 + x4O4 + x5O5 + x6O6 + x7O7. (5.79)

where O0 →
√

3
2 λ8,O1 → iλ1,O2 → iλ2,O3 → iλ3,O4 → i

2λ4,O5 →
i
2λ5,O6 → − i

2λ6,O7 → − i
2λ7.

Thus the octonion conjugate be written as

x = x0O0 − x1O1 − x2O2 − x3O3 − x4O4 − x5O5 − x6O6 − x7O7. (5.80)

Here the new octonion units OA associated with the SU(3) symmetry satisfy

the octonion algebra [35], i.e.

OA · OB = −δAB + fABCOC . (5.81)

As such, we may reformulate the theory of strong interactions, the quantum

Chromodynamics (QCD) based on colour SU(3)C whose generators satisfy

the non-associative algebra of octonions. Let us consider the triplet (u, d, s)

(i.e. the up, down, and strange) flavors of quarks as the three objects of the

group namely the SU(3) group of flavor symmetry. Each quark has been de-

scribed in terms of three colors namely the red, blue and green. The dynamics
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of the quarks and gluons are controlled by the quantum Chromodynamics

Lagrangian. The gauge invariant QCD Lagrangian [35] is described as

L =ψj(iγµ(Dµ)jk −mδjk)ψk −
1
4G

a
µνG

µν
a

=ψj(iγµ∂µ −m)ψj − gGa
µψjγ

µT ajkψk −
1
4G

a
µνG

µν
a , (5.82)

where j, k (= 1, 2, 3) are labeled for three quark fields associated with three

colors (namely the red, blue and green) so that we have

ψj =


ψR

ψB

ψG

 ; ψ̄j =
(
ψ̄R, ψ̄B, ψ̄G

)
. (5.83)

which is a dynamical function of space-time, in the fundamental represen-

tation of the SU(3) gauge group, indexed by (j, k = 1, 2, 3). In equation

(5.82), Ga
µ is the octet of gluon fields which is also a dynamical function of

space-time in the adjoint representation of the SU(3) gauge group, indexed

by a, b, ... = 1, 2, ...., 8; the γµ are the Dirac matrices connecting the spinor

representation to the vector representation of the Lorentz group; and T ajk

are the generators connecting the fundamental, anti-fundamental and ad-

joint representations of the SU(3) gauge group. In our case, the octonion

units connecting to Gell-Mann λ matrices provide one such representation

for the generators of SU(3) gauge group. In equation (5.82), the symbol Ga
µν

represents the gauge invariant gluon field strength tensor, analogous to the

electromagnetic field strength tensor Fµν in electrodynamics. It is described

by

Ga
µν =∂µGa

ν − ∂νGa
µ − g fabcGb

µG
c
µ (∀ a, b, c = 1, 2, 3, ..., 8) (5.84)
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where fabc are the structure constants of SU(3) groups as described above

in terms of octonions. In equation (5.82), the constants m and g control the

quark mass and coupling constants of the theory, subject to renormalization

in the full quantum theory. Here we may introduce a local phase trans-

formation in color space. Under SU(3) symmetry the spinor ψ transforms

as

ψ −→ ψ
′ =Uψ = exp{iλ.α(x)}ψ; (λ = 1, 2, ....., 8) (5.85)

where

λ.α(x) =λ1α1 + λ2α2 + λ3α3 + λ4α4 + λ5α5 + λ6α6 + λ7α7 + λ8α8 (5.86)

which on using Table-5.2, may directly be written in the in the following

form in terms of octonions [35] i.e.

λ.α(x) = −ie1α1 − ie2α2 − ie3α3 − 2ie4α4

− 2ie5α5 − 2ie6α6 − 2ie7α7 + 2√
3e0α8 (5.87)

As such, the the quantum Chromodynamics (QCD) may be reformulated

in terms of octonions and non-associative algebra in order to explain its

interesting consequences like

• Quarks confinement

• Color blindness of nature

• Asymptotic freedom

• Calculation for the masses of mesons and baryons etc.
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5.10 Split-Octonions SU(3) Gauge Theory

The automorphism group of the Octonion algebra is the 14-dimensional ex-

ceptional G2 group that admits a SU(3) subgroup leaving invariant the idem-

potents u0 and u∗0 described by chapter-3 equation (3.1). This SU(3)C was

identified as the color group acting on the quark and anti-quark triplets

[19,32]. As such, the automorphism group SU(3) of the quantum mechanical

Hilbert space should be considered as an exact symmetry and can not be

identified as the symmetry of broken unitary spin gauge group. It is like the

SU(3)C color gauge group of quantum chromo-dynamics (QCD). Therefore,

in order to describe the SU(3) gauge theory suitably handled with split oc-

tonions, let us start with the split octonion equivalent of any four vector Aµ
and its conjugate in terms of 2 × 2 Zorn matrix realization (3.21) which is

given in chapter-3. The Octonion covariant derivative or O- derivative of an

octonion K is defined [32-34] as

K‖µ =K,µ + [=µ, K], (5.88)

where =µ is the Octonion affinity. It is the object that makes K‖µ transform

like an octonion under O transformations i.e.

K ′ =UKU−1

K ′‖µ =UK‖µU−1

=′µ =U=µU−1 − ∂U

∂xµ
U−1, (5.89)

where the U(x) are octonions which define local (Octonion) unitary trans-

formations and are isomorphic to the rotation group O(3). Thus, equation
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(5.89) describes SU(2) nature of octonion O transformations resulting to

the octonion affinity (gauge potential) =µ of Yang-Mill’s type field and is

expressed [34] as,

=µ =− Lµju∗j −Kµjuj =

 02 Lµjej

−Kµjej 02

 (∀ j = 1, 2, 3) (5.90)

where the quaternion units ej = −iσj are suitably handled [31] with Pauli

spin matrices σj. Now, we have the freedom to extend SU(2) gauge theory

to the case of SU(3) Yang Mills gauge theory of colored quarks by replacing

the Pauli spin matrices to Gellmann λ matrices. So, from equation (5.90),

it is clear that octonion covariant derivative (5.90) is subjected by two real

(or one complex) gauge potential transformations. Hence, Ga
µ the octet of

gluon fields describing Lagrangian (5.82) is either a complex gauge field or

comprises the order pair of two real gauge fields. So, we may write [35] the

covariant derivative Dµ for SU(3) Lagrangian (5.82) as

Dµ =∂µ + Vµ; (5.91)

where Vµ is the octonion form of generalized four potential [35] described as

Vµ = e0
(
Aαµeα

)
+ ie7

(
Bα
µgα

)
. (∀µ = 0, 1, 2, 3; α = 1, 2, ......, 8.) (5.92)

The beauty of the equation (5.92) reinforces the SU(3) symmetry of colored

quarks with two gauge potentials as the consequence of automorphism group

of split octonions in terms of 2 × 2 Zorn vector matrix realization. Here

the two gauge potentials Aαµ and Bα
µ (∀µ = 0, 1, 2, 3; α = 1, 2, ......, 8.) may

be identified as the gauge potentials for two chromo charges supposed to

be responsible for the existence of electric and magnetic chromo-charges. It
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may, therefore, be concluded that octonion colored quarks are dyons i.e. the

particles which carry the simultaneous existence of electric and magnetic

charges [24-27]. Substituting the value of SU(3)C octonion gauge potential

Vµ (5.92) in to the equation (5.91), we may write the covariant derivative

Dµ [35] as

Dµ =∂µ + e0
(
Aαµeα

)
+ ie7

(
Bα
µgα

)
=u∗0

(
∂µ + Aαµeα +Bα

µgα
)

+ u0
(
∂µ + Aαµeα −Bα

µgα
)
, (5.93)

which may be written in term of 2×2 Zorn matrix realization [34, 35] as

Dµ =

 ∂µ +
(
eαA

α
µ + gαB

α
µ

)
0

0 ∂µ +
(
eαA

α
µ − gαBα

µ

)
 . (5.94)

It yields to

[Dµ, Dν ] =



∂µA
α
ν − ∂νAαµ + eα

[
Aαµ, A

α
ν

]
0

+∂µBα
ν − ∂νBα

µ + gα
[
Bα
µ , B

α
ν

]
∂µA

α
ν − ∂νAαµ + eα

[
Aαµ, A

α
ν

]
0 −∂µBα

ν + ∂νB
α
µ − gα

[
Bα
µ , B

α
ν

]


.

(5.95)

Equation (5.95) may be reduced as

[Dµ, Dν ] =

 Gα
µνeα + Gα

µνgα 0

0 Gα
µνeα − Gα

µνgα

 7−→ Gα
µν ; (5.96)

where
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Gα
µν =∂µAαν − ∂νAαµ + eα

[
Aαµ, A

α
ν

]
7−→ Eα

µν ; (5.97)

Gα
µν =∂µBα

ν − ∂νBα
µ + gα

[
Bα
µ , B

α
ν

]
7−→ Hα

µν ; (5.98)

are two SU(3) non-Abelian gauge field strengths in term of electric (Eα
µν)

and magnetic field (Hα
µν) field strengths obtained respectively from electric

(Aαµ) and magnetic (Bα
µ ) gauge potentials, i.e.

Gα
µν =

 Eα
µνeα +Hα

µνgα 0

0 Eα
µνeα −Hα

µνgα

 . (5.99)

Operating the covariant derivative Dµ (5.94) to the the generalized field

strength Gα
µν of dyons (5.99), we get [35]

DµGα
µν =

 ∂µG
α
µνeα + ∂µGα

µνgα 0

0 ∂µG
α
µνeα − ∂µGα

µνgα

 =⇒ Jαν ; (5.100)

where Jαν is the generalized octonion gauge current in term of 2×2 Zorn

realization of split octonion SU(3) gauge theory. It also comprises the electric

and magnetic four currents of dyons as

Jαν =

 Jαν eα +Kα
ν gα 0

0 Jαν eα −Kα
ν gα

 . (5.101)

Here Jαν = ∂µG
α
µν and Kα

ν = ∂µGα
µν are the four currents respectively associ-

ated with the presence of electric and magnetic charges. So, it is concluded

that split octonion SU(3) gauge theory of colored quarks describes dyons

which are the particles carrying the simultaneous existence of electric and

magnetic monopoles.
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5.11 Discussion and Conclusion

In the this chapter, we have applied the method of split octonion (i.e. Zorn’s

vector matrix realization) to reformulate the gauge field equations of dyons as

the direct extension of split octonion formulation of electrodynamics. Since,

for the case of split-octonion we have the freedom to write the components

of Zorn’s vector matrices either real or complex. It should be noted that the

dyons are considered as the particles carrying generalized fields and charge as

complex quantity whose real part is identified to discuss the usual electrody-

namics while the imaginary part is concerned with the existence of monopole

and their fields. The lack of associativity in octonion formulation of dyons de-

veloped in previous chapter forbids their group theoretical study in terms of

abelian and non-Abelian group structures. The advantages of split octonion

formalism are discussed here in terms of compact and simpler notations of

split octonion valued potential, field and currents of dyons free from the non

associativity. So, in the section (5.2), we have started with the U(1)×U(1)

gauge theory of dyons in terms of the Lagrangian equation, global gauge

transformation, spinor transformation, covariant derivative, field equations

and other quantum equations in compact, simpler and consistent manner.

In section (5.3), we have investigated the U(1)×U(1) octonion gauge formu-

lation in terms of 2×2 Zorn vector matrix realization of split octonion. Here,

the split octonion valued space time vector has been defined by equation

(5.25) in terms of 4×4 matrix representation. Equation (5.26) expressed as

the space time metric has been obtained as bi linear in order to described
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the inner product. The octonion conjugate of space time vector has been

obtained in equation (5.27), while the split octonion Hermitian conjugate

has been established by equation (5.28) followed by the split octonion differ-

ential operator in equation (5.29). The octonion differential operator (5.29)

has been investigate in terms of 2×2 Zorn vector matrix realization given by

equation (5.30). Hence, we have developed the octonion covariant derivative

for U(1)×U(1) gauge theory of dyons in terms of 2×2 Zorn vector matrix

realization. It is shown that the commutation relation between the octonion

covariant derivative leads to two types of gauge field strength of generalized

electromagnetic fields of dyons. The two gauge field strengths are present

due to the existence of electric and magnetic charges in dyons. So, these

are named as the electromagnetic field tensors associated respectively with

electric and magnetic charges. Equation (5.37) has been investigated as the

octonionic representation of generalized Dirac Maxwell’s equations of dyons.

It leads to two photons whose currents are defined as jµ (associated with

electric charge) and the kµ (associated with magnetic charge). Therefore,

the two photons group are associated with two U(1) groups in terms of two

four-currents given by equation (5.38) of octonion gauge theory. So, it is

the octonion gauge theory which provides simultaneously the existence of

U(1)×U(1) group of generalized electromagnetic fields of dyons. Thus, it is

clear that the octonion gauge theory leads two types of gauge fields which

are supposed to be the existence of magnetic monopole (dyon).

Accordingly, we have constructed the octonion gauge fields as the combi-

nation of two quaternion gauge fields by equation (5.39). The covariant
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derivative of U(1)×SU(2) octonion gauge field in terms of 2×2 Zorn’s vec-

tor matrix realization has been constructed in equations (5.40) and (5.41).

It is shown that the commutation relation of the octonion covariant deriva-

tive leads to U(1)×SU(2) generalized fields vector given by equation (5.42)

in terms of 2×2 Zorn vector realization of split octonions. Thus, equation

(5.42) leads to the abelian and non-Abelian gauge structures in the pres-

ence of electric charge and magnetic monopole. Equations (5.43) provides

the expressions for U(1)×SU(2) gauge field strengths associated with electric

charge. Thus in U(1)×SU(2) gauge theory of electroweak interaction. On

the other hand, equation (5.44) provides the U(1)×SU(2) gauge theory due

to the presence of magnetic monopole. Equation (5.44) has been designated

as the U(1)m×SU(2)m gauge theory while the subscript m denotes the mag-

netic monopole. It behaves like dual electroweak theory where the massive

gauge particles are taking part due to the presence of magnetic monopole. An

current has been obtain in equation (5.46) which shows that the U(1)×SU(2)

gauge theory of dyons leads to the conservation of U(1)×SU(2) current. As

such, we have two fold symmetry whose first fold exhibit due to presence of

the electric charge while the second field gives rise the presence of magnetic

monopole. Hence, we get the two U(1) and two SU(2) currents given by

equation (5.48) and the analogous continuity equation has been investigated

by equation (5.49).

In section (5.5), we have extended U(1)×SU(2) to the split octonionic non-

Abelian SU(2)e × SU(2)m gauge formulation in terms of 2×2 Zorn vector

matrix. Accordingly, in order to described SU(2)e× SU(2)m gauge formula-
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tion, we have obtained the covariant derivative in equation (5.50) which are

further explained in equations (5.52) and (5.54), while the octonionic repre-

sentation of generalized four potential has been expressed in equation (5.51).

As such, we have obtained the two fold SU(2) non-Abelian gauge structure

in equation (5.55) whose electric and magnetic components are expressed by

equation (5.56). So, equation (5.57) represents the non-Abelian extension of

GDM equation which has been written by equation (5.58) in simple, com-

pact and consistent notation. The octonion gauge current in terms of 2×2

Zorn’s matrix realization of SU(2)e×SU(2)m has been obtained in equation

(5.59) while the electric and magnetic currents are investigated by equation

(5.60). Analogous continuity equation has been obtained by equation (5.61).

So, we can correlated our theory to the ’t Hooft Polyakov theory of magnetic

monopoles. Defining the complex conjugate of covariant differential operator

by equation (5.62), we have established the covariant derivative of octonion

gauge theory in terms 2×2 Zorn vector matrix realization given equation

(5.63). As such, the covariant derivative has been obtained by equation

(5.64) as the covariant of Yang-Mill’s field SU(2) gauge theory. Hence, it is

emphasized that there is the inter relationship between the octonion gauge

theory and the ’t-Hooft-Polyakov monopole theory. So, we may describe the

Lagrangian formulation in terms of equations (5.65) - (5.69). Thus, we have

correlated the Lagrangian formulation of ’t-Hooft-Polyakov theory to our oc-

tonion gauge theory and reestablished the covariant derivative by equation

(5.69). It is concluded that our theory established the existence of soliton

like magnetic monopole provided by ’t-Hooft Polyakov theory.
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In section (5.7), we have discussed the Gell-Mann λ- matrices which repre-

sents the infinitesimal generators of the special unitary group SU(3). The

properties of eight linearly independent generator has been defined by equa-

tions (5.70) and (5.71). The generators of SU(3) symmetry group are defined

in terms of 3×3 Gell-Mann λ- matrices equation (5.72) with their properties

by equation (5.73). As such, we may summarize the multiplication properties

of SU(3) generators in terms of multiplication table (5.1) whose parameters

are defined by equation (5.74). In section (5.8), we have established the rela-

tion between the octonions basis elements and the SU(3) generators. In table

(5.2), we have shown the isomorphism between the octonion basis elements

and the Gell-Mann λmatrices of SU(3) group. As such, we has been estab-

lished the a proper mapping between the octonion basis elements eA and the

generators of SU(3) symmetry in equation (5.75). Accordingly, the structure

constants of octonions and SU(3) generators are related by equation (5.76)

while the commutation relations among octonion basis elements and SU(3)

generators are related by equation (5.77). The benefit to write the SU(3)

generators in terms of octonion basis elements are

• Non-associativity of octonions does not effect the invariance of the sym-

metry group SU(2) spin (or isospin) multiplets for the given values of

structure constants fABC .

• It is better to describe the SU(3) symmetry in terms of compact nota-

tions of octonions. Accordingly, the theory of strong interactions could

be described better in terms of non associative Cayley algebra.

• The eighth Gell-Mann λ matrix could be designated in terms of hyper
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charge which may have the direct link with the scalar octonion unit e0.

• It may be concluded that the algebra of strong interactions corresponds

to the SU(3) automorphisms of the octonion algebra which is in support

of the results obtained earlier by Gï¿œnaydin [19].

In section (5.9), we have discussed the relationship of octonions and the

parameters of Quantum Chromodynamics (QCD). The color group SU(3)

corresponds to the local symmetry whose gauging gives rise to Quantum

Chromodynamics (QCD). As such, the values of octonion basis elements in

terms of Gell-Mann λ- matrices has been established in equations (5.78) and

(5.79). Here, we are concerned with the exact SU(3) symmetry of colors in

terms of octonion algebra as to describe quantum chromodynamics (QCD).

The octonions conjugate of equation (5.79) has been obtained by equation

(5.80), which is further be expressed by equation (5.81). As such, we have re-

formulated the theory of strong interactions, the quantum Chromodynamics

(QCD), based on colour SU(3)C whose generators satisfy the non-associative

algebra of octonions. The dynamics of the quarks and gluons are controlled

by the quantum chromodynamics Lagrangian, which is given by equation

(5.82). In our case, the octonion units connecting to Gell-Mann λ matrices

provide one such representation for the generators of SU(3) gauge group.

So, in equation (5.82), the symbol Ga
µν represents the gauge invariant gluon

field strength tensor, analogous to the electromagnetic field strength tensor

Fµν in electrodynamics. Equation (5.83) represents the dynamic function of

space time in the SU(3) gauge group. The gluonic field strength tensor which
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is analogous to the electromagnetic field strength tensor has been obtained

by equation (5.84). The local phase transformation in color space has been

expressed by equation (5.85) while the equation (5.86) and (5.87) represent

the octonionic multiplication with the λ- matrices. As such, the the quan-

tum Chromodynamics (QCD) may be reformulated in terms of octonions

and non-associative algebra in order to explain its interesting consequences

like

• Quarks confinement

• Color blindness of nature

• Asymptotic freedom

• Calculation for the masses of mesons and baryons etc.

The automorphism group of the Octonion algebra is the 14-dimensional ex-

ceptional G2 group that admits a SU(3) subgroup leaving invariant the idem-

potents u0 and u∗0. This SU(3)C was identified as the color group acting on

the quark and anti-quark triplets. As such, the automorphism group SU(3)

of the quantum mechanical Hilbert space should be considered as an exact

symmetry and can not be identified as the symmetry of broken unitary spin

gauge group. It is like the SU(3)C color gauge group of quantum chromo-

dynamics (QCD). Therefore, we have investigated the SU(3) gauge theory

suitably handled with split octonions in section (5.10). So, the octonion

covariant derivative of an octonion representation has been written in equa-

tion (5.88), while the octonionic transformations are represented by equation
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(5.89). Equation (5.89) describes SU(2) nature of octonion O transforma-

tions resulting to the octonion affinity (gauge potential) =µ of Yang-Mill’s

type field given by equation (5.90). Accordingly, the covariant derivative for

SU(3) Lagrangian has been established in equation (5.91). Equation (5.92)

defines the octonion form of generalized four potential in the case of SU(3)

gauge theory. It is emphasized that the beauty of the equation (5.92) rein-

forces the SU(3) symmetry of colored quarks with two gauge potentials as

the consequence of automorphism group of split octonions in terms of 2 ×

2 Zorn vector matrix realization. From the foregoing analysis one can draw

conclusion that octonion colored quarks behave as dyons (i.e. the particles

which carry the simultaneous existence of electric and magnetic charges).

Accordingly, the covariant derivative in terms of SU(3)c octonion gauge po-

tential has been written in equation (5.93)-(5.95). As such, the generalized

field strengths of dyons has been developed in equation (5.96), as the combi-

nation of two SU(3) non-Abelian gauge field strengths respectively known as

electric and magnetic field strength given equations (5.97)-(5.99). We have

established the generalized octonion gauge current equation (5.100) in terms

of 2×2 Zorn realization of split octonion SU(3) gauge theory. It also com-

prises the electric and magnetic four currents of dyons in equation (5.101).

So, it is concluded that split octonion SU(3) gauge theory of colored quarks

describes dyons saying that the quarks are dyons.
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CHAPTER 6

Role of Octonions in Physics

Beyond Standard Model

(BSM)
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ABSTRACT

In this chapter, we have made an attempt to discuss the role
of octonions in physics beyond standard model. Thus, we have
discussed the role of octonions in grand unified theories (GUTs)
gauge group of which is describe is SU(3)× SU(2)× U(1) followed
by the role of octonions in supersymmetry. Further more, we
have analyzed the role of octonions in gravity and dark mat-
ter where, we have described the octonion space as the combi-
nation of two quaternionic spaces namely gravitational G-space
and electromagnetic EM-space. It is shown that octonionic hot
dark matter contains the photon and graviton (i.e. massless par-
ticles) while the octonionic cold dark matter is associated with
the W±, Z0 (massive) bosons. At last, we have described the role
of octonion consistently in superstring theory (i.e. a theory of
everything to describe the unification of all four types of forces
namely gravitational, electromagnetic, weak and strong).



Chapter 6

Role of Octonions in Physics

Beyond Standard Model (BSM)

6.1 Introduction:- The Standard Model

The Standard Model (SM) [1-5] of particle physics summarizes all [6-11] we

know about the fundamental forces of electromagnetism, as well as the weak

and strong interactions [12] (without gravity). The Standard Model consists

of elementary particles grouped into two classes: bosons [12] (particles that

transmit forces) and fermions [12] (particles that make up matter). The

bosons have particle spin that is either 0, 1 or 2. The fermions have spin

1/2. On the other hand, particle physics strives to identify the building

blocks of matter and describe the interactions that bind them: the set of

instructions needed to create a universe. Our most succinct and (we believe)

accurate set of instructions is encapsulated in a quantum field theory [1,3,4]

called the Standard Model, which describes a universe [13] made up of six

types of quarks and six types of leptons, bound together by three funda-

mental forces: strong, weak, and electromagnetic. The standard model is a
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relativistic quantum field theory [1-3] that incorporates the basic principles

of quantum mechanics and special relativity. Like quantum electrodynam-

ics (QED) the standard model is a gauge theory [14]. However, with the

non-Abelian gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y instead of the simple

Abelian U(1)em gauge group of QED. The gauge bosons are the photons

mediating the electromagnetic interactions, the W- and Z-bosons mediating

the weak interactions [12], as well as the gluons mediating the strong inter-

actions [2,3,12]. Gauge theories can exist in several phases: in the Coulomb

phase with massless gauge bosons (like in QED), in the Higgs-phase with

spontaneously broken gauge symmetry [14] and with massive gauge bosons

(e.g. the W- and Z-bosons), and in the confinement phase, in which the

gauge bosons do not appear in the spectrum (like the gluons in quantum

chromodynamics (QCD)). On the other hand, The Standard Model was for-

mulated in the 1970s and tentatively established by experiments in the early

1980s. Nearly three decades of exacting experiments have tested and verified

the theory in meticulous detail, confirming all of its predictions. Thus, the

Standard Model of particle physics is the most successful theory of nature in

history, but increasingly there are signs that it must be extended by adding

new particles that play roles in high-energy reactions.
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Figure 6.1: The SM particle content

The main ingredients of the SM are shown in Fig. 6.1. The particles in-

volved are characterized by their spin, their mass, and the quantum num-

bers (charges). In the Standard Model Fig. 6.1, includes 12-elementary

particles of spin known as fermions and 4-gauge bosons. According to the

spin-statistics theorem [12], fermions respect the Pauli exclusion principle.

Each fermion has a corresponding antiparticle. The fermions of the Stan-

dard Model are classified according to how they interact (or equivalently, by

what charges they carry). There are six quarks (up, down, charm, strange,

top, bottom), and six leptons (electron, electron neutrino, muon, muon neu-
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trino, tau, tau neutrino). The gauge bosons are defined as force carriers that

mediate the strong, weak, and electromagnetic fundamental interactions. All

the Standard Model particles given in Fig. 6.1 have been detected by exper-

iment already [12,15], except the Higgs boson which remained the mystery

and challenge to the physicists. Thanks god, on July 4, 2012, the Compact

Muon Solenoid (CMS) and the Argonne Tandem Linear Accelerator System

(ATLAS) experimental teams at the Large Hadron Collider (LHC) indepen-

dently announced that they each confirmed the formal discovery of a Higgs

boson of mass between 125 and 127 GeV/c2 [16]. So, the Higgs model is

completely tested and verified by the experiment.

6.1.1 Problems with the Standard Model

Despite being the most successful theory of particle physics to date, the

Standard Model is not perfect [17,18]. The deficiencies of the Standard Model

on the bans of experimental observations which are not yet explain, are

described as

• Gravity: The standard model does not provide an explanation of grav-

ity [19]. Moreover it is incompatible with the most successful theory of

gravity to date, general relativity.

• Dark matter and dark energy: Cosmological observations tell us

that the standard model is able to explain only about 4% of the energy

present in the universe. Of the missing 96%, about 24% should be dark

matter [20], i.e. matter that behaves just like the other matter we know,

but which interacts only weakly with the standard model fields. The

rest should be dark energy, a constant energy density for the vacuum.
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Attempts to explain the dark energy in terms of vacuum energy of the

standard model lead to a mismatch of 120 orders of magnitude.

• Neutrino masses: According to the standard model the neutrinos

are massless particles [21]. However, neutrino oscillation experiments

have shown that neutrinos do have mass. Mass terms for the neutrinos

can be added to the standard model by hand, but these lead to new

theoretical problems [21]. (For example, the mass terms need to be

extraordinarily small).

• Matter/antimatter asymmetry: The universe is made out of mostly

matter. However, the standard model predicts that matter and anti-

matter [22] should have been created in (almost) equal amounts, which

would have annihilated each other as the universe cooled.

On the other hand the standard model is incomplete with respect to theo-

retical problems associated with

• Hierarchy problem – the standard model introduces particle masses

through a process known as spontaneous symmetry breaking caused

by the Higgs field. Within the standard model, the mass of the Higgs

gets some very large quantum corrections due to the presence of virtual

particles (mostly virtual top quarks) [23]. These corrections are much

larger than the actual mass of the Higgs. This means that the bare

mass parameter of the Higgs in the standard model must be fine tuned

in such a way that almost completely cancels the quantum corrections.

This level of fine tuning is deemed unnatural by many theorists.
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• Strong CP problem – theoretically it can be argued that the stan-

dard model should contain a term that breaks CP symmetry [24] —re-

lating matter to antimatter— in the strong interaction sector. Experi-

mentally, however, no such violation has been found, implying that the

coefficient of this term is very close to zero. This fine tuning is also

considered unnatural.

• Number of parameters – the standard model depends on 19 nu-

merical parameters. Their values are known from experiment, but the

origin of the values is unknown. Some theorists have tried to find re-

lations between different parameters, for example, between the masses

of particles in different generations.

6.1.2 Physics Beyond the Standard Model

Physics beyond the Standard Model [25,26] refers to the theoretical devel-

opments needed to explain the deficiencies of the Standard Model, such

as the origin of mass, the strong CP problem, neutrino oscillations, mat-

ter–antimatter asymmetry, and the nature of dark matter and dark energy

[22,26]. Another problem lies within the mathematical framework of the

Standard Model itself. The Standard Model is inconsistent with that of gen-

eral relativity to the point that one or both theories break down in their

descriptions under certain conditions (for example within known space-time

singularities like the Big Bang and black hole event horizons). Theories that

lie beyond the Standard Model include various extensions of the standard

model are given in following subsections.
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6.1.2.1 Grand Unified theories

A Grand Unified Theory (GUT) [12,26,27], is a model in particle physics in

which at high energy, the three gauge interactions of the Standard Model

which define the electromagnetic, weak, and strong interactions, are merged

into one single interaction characterized by one larger gauge symmetry and

thus one unified coupling constant. In contrast, the experimentally verified

Standard Model of particle physics is based on three independent interac-

tions, symmetries and coupling constants.

The standard model has three gauge symmetries [12]; the colour SU(3), the

weak isospin SU(2), and the hypercharge U(1) symmetry, corresponding to

the three fundamental forces. Due to renormalization the coupling constants

of each of these symmetries vary with the energy at which they are measured.

Around 1016 GeV these couplings become approximately equal. This has

led to speculation that above this energy the three gauge symmetries of

the standard model are unified in one single gauge symmetry with a simple

group gauge group, and just one coupling constant. Below this energy the

symmetry is spontaneously broken to the standard model symmetries [28].

Unifying gravity with the other three interactions would provide a theory of

everything (TOE), rather than a GUT. Nevertheless, GUTs are often seen as

an intermediate step towards a TOE. The new particles predicted by models

of grand unification cannot be observed directly at particle colliders because

their masses are expected to be of the order of the so-called GUT scale, which

is predicted to be just a few orders of magnitude below the Planck scale and

thus far beyond the reach of currently foreseen collision experiments. Instead,

effects of grand unification might be detected through indirect observations

such as proton decay, electric dipole moments of elementary particles, or the
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properties of neutrinos [29]. Some grand unified theories predict the existence

of magnetic monopoles. Popular choices for the unifying group are the special

unitary group in five dimensions SU(5) and the special orthogonal group in

ten dimensions SO(10) [30].

• SU(5): SU(5) [31] is the simplest GUT. The smallest simple Lie group

which contains the standard model, and upon which the first Grand

Unified Theory was based, is SU(5) ⊃ SU(3)×SU(2)×U(1) [12]. Such

group symmetries allow the reinterpretation of several known particles

as different states of a single particle field. However, it is not obvi-

ous that the simplest possible choices for the extended "Grand Unified"

symmetry [29] should yield the correct inventory of elementary parti-

cles. The fact that all matter particles fit nicely into three copies of

the smallest group representations of SU(5) and immediately carry the

correct observed charges, is one of the first and most important reasons

why people believe that a Grand Unified Theory might actually be re-

alized in nature. The two smallest irreducible representations [12,29]

of SU(5) are 5 and 10. In the standard assignment, the 5 contains the

charge conjugates of the right-handed down-type quark color triplet

and a left-handed lepton isospin doublet, while the 10 contains the

six up-type quark components, the left-handed down-type quark color

triplet, and the right-handed electron. This scheme has to be replicated

for each of the three known generations of matter. It is notable that

the theory is anomaly free with this matter content.

• SO(10): The next simple Lie group which contains the standard model

is SO(10) ⊃ SU(5) ⊃ SU(3) × SU(2) × U(1) [32]. The unification of

matter is even more complete, since the irreducible spinor representa-

tion 16 contains both the and 10 of SU(5) and a right-handed neu-
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trino, and thus the complete particle content of one generation of the

extended standard model with neutrino masses [12]. This is already

the largest simple group which achieves the unification of matter in a

scheme involving only the already known matter particles (apart from

the Higgs sector). Since different standard model fermions are grouped

together in larger representations, GUTs specifically predict relations

[28-32] among the fermion masses, such as between the electron and

the down quark, the muon and the strange quark, and the tau lepton

and the bottom quark for SU(5) and SO(10).

6.1.2.2 Supersymmetry

Supersymmetry (SUSY) [2,3,28,33] is a theory beyond the Standard Model

which introduces a new symmetry between fermions and bosons. In this

theory, each known particle of the Standard Model is associated with a yet

to discover supersymmetric particle. Each fermion is associated to a new

boson, or "sfermion" (selectron, sneutrino, etc.) [33], and each boson is as-

sociated with a new fermion, or "bosino" (gluino, higgsino, etc.), all other

quantum numbers being identical. No supersymmetric particle has been dis-

covered so far: supersymmetry must hence be a broken symmetry to allow

the superparticles to be more massive than their Standard Model partner.

This theory has many attractive features, such as:

• It can solve the so-called hierarchy problem which is related to the

extreme fine-tuning needed in the Standard Model to stabilize the Higgs

mass at the electroweak scale.
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• It allows a unification of the forces at high energy.

• It can provide a good candidate to explain the cold non-baryonic dark

matter found in the universe.

If supersymmetry exists close to the TeV energy scale, it allows for a solu-

tion of the hierarchy problem of the Standard Model [28,29,33], i.e., the fact

that the Higgs boson mass is subject to quantum corrections which barring

extremely fine-tuned cancellations among independent contributions would

make it so large as to undermine the internal consistency of the theory. In

supersymmetric theories [33], on the other hand, the contributions to the

quantum corrections coming from Standard Model are naturally canceled

by the contributions of the corresponding superpartners. Other attractive

features of TeV-scale supersymmetry are the fact that it allows for the high-

energy unification of the weak interactions, the strong interactions and elec-

tromagnetism, and the fact that it provides a candidate for dark matter and

a natural mechanism for electroweak symmetry breaking.

6.1.2.3 Neutrinos

In the standard model neutrinos have exactly zero mass [21]. This is a

consequence of the standard model containing only left-handed neutrinos.

With no suitable right-handed partner it is impossible to add a renormalizible

mass term to the standard model [12]. Measurements however indicated that

neutrinos spontaneously change flavor, which implies that neutrinos have a

mass. These measurements only give the relative masses of the different

flavors. The best constraint on the absolute mass of the neutrinos comes
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from precision measurements of tritium decay, providing an upper limit 2

eV, which makes them at least five orders of magnitude lighter than the

other particles in the standard model [28]. This necessitates an extension of

the standard model, which not only needs to explain how neutrinos get their

mass, but also why the mass is so tiny [34].

6.1.2.4 String theory

Extensions, revisions, replacements, and reorganizations of the Standard

Model exist in attempt to correct for these and other issues. String the-

ory [35] is one such reinvention, and many theoretical physicists think that

such theories are the next theoretical step toward a true Theory of Every-

thing. Theories of quantum gravity such as loop quantum gravity and others

are thought by some to be promising candidates to the mathematical unifi-

cation of quantum field theory and general relativity, requiring less drastic

changes to existing theories [36]. However recent work places stringent limits

on the putative effects of quantum gravity on the speed of light, and dis-

favors some current models of quantum gravity [37]. Among the numerous

variants of String Theory, M-theory, whose mathematical existence was first

proposed at a String Conference in 1995, is believed by many to be a proper

"ToE" candidate, notably by physicists Brian Greene and Stephen Hawking.

Though a full mathematical description is not yet known, solutions to the

theory exist for specific cases [38]. Recent works have also proposed alternate

string models, some of which lack the various harder-to-test features of M-

theory (e.g. the existence of Calabi–Yau manifolds, many extra dimensions,

etc.) including works done by Lisa Randall et. al [39,40].

So, keeping in view the above facts in mind, in this chapter we have made an

attempt to discuss the role of octonions in physics beyond standard model.
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In section (6.2), we have discussed the role of octonions in grand unified

theory (GUT) gauge group of which is describes SU(3) × SU(2) × U(1).

Here we have extended SU(2) × U(1) (electroweak) gauge theory to the

SU(3)×SU(2)×U(1) gauge theory in terms of 2×2 Zorn vector matrix real-

ization of split octonions. Thus, we have established the covariant derivative,

gauge field strength and field equation for the case of grand unified theory in

terms of 2×2 Zorn vector matrix realization of split octonion. As such, the

octonionic formulation regardless a generalization of GUTs for the mixing of

gauge current used for U(1), SU(2) and SU(3) sectors associated respectively

with the electromagnetic, weak and strong interactions in presence of dyons.

In section (6.3), we have undertake the study of role of octonions in supersym-

metry and features of octonions realization of supersymmetry. Accordingly,

we have discussed the supersymmetry algebra and their properties in terms of

2×2 split octonionic valued matrices in simple, compact and consistent man-

ner. In section (6.4), we have analyzed the role of octonions in gravity and

dark matter. Here, we have described the octonion space as the combination

of two quaternionic spaces namely gravitational G-space and electromagnetic

EM-space. As such, the octonionic differential operator, octonionic valued

potential, octonionic field equation and other quantum equations have been

reformulated in gravitational - electromagnetic space of octonion represen-

tation in simpler and consistent way. Consequently, we have discussed the

radius vector, velocity representation and generalized charge and generalized

mass of the particle in terms of octonion representations. It is shown that

the gravitational - electromagnetic fields has been divided in terms of four

type of sub-fields namely G-G, EM-G, EM-EM and G-EM subfields. Further

more in subsection (6.4.1), we have reformulated the theory dark matter in

terms of octonion variables. It is emphasized that the dark matter neither
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emits nor absorbs light or electromagnetic radiation at any significant level.

Instead, its existence and properties have been analyzed from its gravita-

tional effects on visible matter, radiation and large scale structure of the

universe. Here the dark matter (nonbaryonic) has been investigated in terms

of octonion hot-dark matter and octonion cold-matter. As such, we have

derived the various quantum equations for octonionic hot dark matter and

cold dark matter. It is shown that octonionic hot dark matter contains the

photon and graviton (i.e. massless particles) while the octonionic cold dark

matter is associated with the W±, Z0 (massive) bosons. At last in section

(6.5), we have discussed the role of octonion in superstring theory (i.e. a

theory of everything to describe the unification of all four types of forces

namely gravitational, electromagnetic, weak and strong). The octonionic

differential operator, octonionic valued potential wave equation, octonionic

field equation and other various quantum equations has been discussed the

framework of superstring theory in simpler, compact and consistent manner.

Consequently, the generalized Dirac-Maxwell’s equations are studied with

the preview of superstring theory by means of octonions.

6.2 Role of Octonions in GUTs

Let us start with the local SU(3)× SU(2)× U(1) gauge symmetry which is

an internal symmetry that Standard Model. The smallest simple Lie group

which contains the standard model, and upon which the first Grand Unified

Theory was based, is SU(5) ⊃ SU(3)× SU(2)× U(1). Here we may extend

SU(2)×U(1) gauge theory given by chapter-5 to the SU(3)×SU(2)×U(1)

gauge theory in terms of split octonion formulation [41,42]. We may described

229



Role of Octonions in Physics Beyond Standard Model (BSM)

the SU(3)× SU(2)× U(1) gauge field as

Aµ 7→A0
µ + Aaµea + Aαµeα,

Bµ 7→B0
µ +Ba

µea +Bα
µeα, (∀µ = 0, 1, 2, 3; a = 1, 2, 3; α = 1, 2, ......, 8.)

(6.1)

where the components of electric A0
µ and magnetic B0

µ are the four potentials

of dyons in case of U(1) while respectively the Aaµ,Ba
µ and Aαµ,Bα

µ describe of

the SU(2) and SU(3) gauge field theory. So, the covariant derivative in the

case of SU(3)×SU(2)×U(1) octonion gauge field in the split octonion form

(2×2 Zorn’s matrix) may be expressed as

Dµ =

 ∂µ + A0
µ + Aaµea + Aαµeα 0

0 ∂µ +B0
µ +Ba

µea +Bα
µeα

 . (6.2)

Similarly

Dν =

 ∂ν + A0
ν + Aaνea + Aαν eα 0

0 ∂ν +B0
ν +Ba

νea +Bα
ν eα

 , (6.3)

On subtraction, i.e. [Dµ, Dν ] = DµDν −DνDµ, these equations reduce to

[Dµ, Dν ] =

 G0
µν +Ga

µνea +Gα
µνeα 0

0 G0
µν + Ga

µνea + Gα
µνeα

 7−→ Gα
µν ;

(6.4)

which is SU(3) × SU(2) × U(1) octonion gauge field strength for dyons in

2×2 Zorn matrix realization.
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In equation (6.4),

G0
µν =∂µA0

ν − ∂νA0
µ +

[
A0
µ, A

0
ν

]
7−→ E0

µν , (U(1)e gauge)

Ga
µν =∂µAaν − ∂νAaµ + ea

[
Aaµ, A

a
ν

]
7−→ Ea

µν , (SU(2)e gauge)

Gα
µν =∂µAαν − ∂νAαµ + ea

[
Aαµ, A

α
ν

]
7−→ Eα

µν , (SU(3)e gauge) (6.5)

are the constituents of U(1)e×SU(2)e×SU(3)e gauge structures in presence

of electric charge.

Similarly

G0
µν =∂µB0

ν − ∂νB0
µ +

[
B0
µ, B

0
ν

]
7−→ H0

µν , (U(1)m gauge)

Ga
µν =∂µBa

ν − ∂νBa
µ + ea

[
Ba
µ, B

a
ν

]
7−→ Ha

µν , (SU(2)m gauge)

Gα
µν =∂µBα

ν − ∂νBα
µ + ea

[
Bα
µ , B

α
ν

]
7−→ Hα

µν , (SU(3)m gauge) (6.6)

are the constituents of U(1)m×SU(2)m×SU(3)m gauge structure in presence

of magnetic monopole. Now operating Dµ given by the equation (6.2) to the

octonion gauge field strength Gα
µν (6.4), we get

DµGα
µν =

 ∂µ + A0
µ + Aaµea + Aαµeα 0

0 ∂µ +B0
µ +Ba

µea +Bα
µeα



∗

 G0
µν +Ga

µνea +Gα
µνeα 0

0 G0
µν + Ga

µνea + Gα
µνeα



=

 ∂µG
0
µν + ∂µG

a
µνea + ∂µG

α
µνeα 0

0 ∂µG0
µν + ∂µGa

µνea + ∂µGα
µνeα

 ,
(6.7)
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which may further be reduced in terms of compect notation of split octonion

formulation i.e.

DµGα
µν =Jαν . (6.8)

Here Jαν is U(1)× SU(2)× SU(3) form of octonion gauge current for dyons

which may be expressed in term of 2×2 Zorn matrix as

Jαν =

 j0
ν + jaνea + jαν eα 0

0 k0
ν + kaνea + kαν eα

 , (6.9)

from which we may get following field equations of dyons

j0
ν =∂µG0

µν ; (∀µ, ν = 0, 1, 2, 3)

jaν =∂µGa
µν ; (∀ a = 1, 2, 3)

jαν =∂µGα
µν ; (∀α = 1, 2, 3, ...., 8)

k0
ν =∂µG0

µν ; (∀µ, ν = 0, 1, 2, 3)

kaν =∂µGa
µν ; (∀ a = 1, 2, 3)

kαν =∂µGα
µν . (∀α = 1, 2, 3, ...., 8) (6.10)

were j0
ν is the U(1) current for electric charge, jaν is the SU(2)week current

associated with electric charge and jαν is the current associated with SU(3)c
used for chromo electric charge. On the other hand k0

ν is U(1) the counter-

part of the four current, kaν is the SU(2) weak current while the kαν is SU(3)c
gluonic current due to the presence of magnetic monopole. As such, the oc-

tonionic formulation regardless a generalization of GUTs for the mixing of

gauge currents used for U(1), SU(2) and SU(3)c sectors associated respec-

tively with the electromagnetic, weak and strong interactions in presence of
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dyons showing the duality invariance as well. Consequently, the continuity

equation is generalized as

DµJαµ =

 ∂µj
0
µ + ∂µj

a
µea + ∂µj

α
µeα 0

0 ∂µk
0
ν + ∂µk

a
νea + ∂µk

α
ν eα

 = 0. (6.11)

6.3 Role of Octonions in SUSY

We start with the following features of octonion realization of supersymmetry

[43-45]:

• Supercharges are realized as multiplication by octonion units.

• Super space is an octonionic space spanned by these octonion units.

• Rotation group acts as an algebraic automorphism of this super space.

• Lorentz transformations acting an octonion units belong to the gauge

group that leaves octonionic norm.

For a theory to be supersymmetric, it is necessary that its particle con-

tent form a representation of the supersymmetry algebra. Using the gamma

matrices representation, we may describe the representation of the super-

symmetry algebra in d = 3, 4, 6, 10. Thus, the supersymmetry algebra may

be written [44] as

{Qa, Qb} =2(Γ)ab∂µ = −2(Γ)abPµ (6.12)

where Qa, Qb are the supersymmetry generators and transform as spin-half

operators under the angular momentum algebra (Pµ). The supersymmetry
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generator commute with momentum operator. The Γ- represent gamma ma-

trices representation [43,44] as

Γa =

 0 σa

σ̃a 0

 (6.13)

The split octonion realizations are recovered by setting σa, σ̃aas matrices with

octonion-valued entries, instead of being real matrices. The one-to-one corre-

spondence exists of 1D extended supersymmetry [43,44] and Weyl type real

- valued Clifford algebras [46] is obtained by expressing the supersymmetry

generator Qa satisfying the supersymmetry algebra [44],

{Qa, Qb} =ηabH, (6.14)

for the generalized pseudo-Euclidean metric ηab of (p, q) signature. So,

Qa = 1√
2

 0 σa

σ̃aH 0

 (6.15)

where H is the Hamiltonian. Thus, the octonionic realization of an one

dimensional supersymmetry is given by following 2×2 split octonionic valued

matrices [44] as

Q0 = 1√
2

 0 1

H 0

 ; Qa = 1√
2

 0 ea

eaH 0

 . (6.16)
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Here Q0 and Qa(a = 1, 2, 3......, 7) are eight supersymmetry generators. So,

we may written as

Q0 = 1√
2

 0 e0

e0H 0

 ; Q1 = 1√
2

 0 e1

e1H 0

 ;

Q2 = 1√
2

 0 e2

e2H 0

 ; Q3 = 1√
2

 0 e3

e3H 0

 ;

Q4 = 1√
2

 0 e4

e4H 0

 ; Q5 = 1√
2

 0 e5

e5H 0

 ;

Q6 = 1√
2

 0 e6

e6H 0

 ; Q7 = 1√
2

 0 e7

e7H 0

 . (6.17)

Thus, the above supersymmetry can also be expressed in an octonionic rep-

resentation. It corresponds to the simplest (for dimensional D=1) case of a

class of higher - dimensional generalized octonionic super symmetries. So,

we may introduce the octonionic supercharge Q [44] as

Q =e0Q0 + e1Q1 + e2Q2 + e3Q3 + e4Q4 + e5Q5 + e6Q6 + e7Q7

=Q0 +
7∑

a=1
eaQa. (6.18)

The complex conjugate of equation (6.18) may be expressed as

Q =e0Q0 − e1Q1 − e2Q2 − e3Q3 − e4Q4 − e5Q5 − e6Q6 − e7Q7

=Q0 −
7∑

a=1
eaQa. (6.19)

Consequently, the octonionic N = 8 can be written [43,44] as

{Q,Q} = {Q,Q} = 2H; {Q,Q} = 0. (6.20)
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The octonionic N = 8 is an in-equivalent realization of the one dimensional

N = 8 supersymmetry with respect to standardN = 8, obtained by replacing

the seven imaginary octonion basis ea(∀a = 0, 1, 2, ...., 7).

6.4 Role of octonion in Gravity and Dark

Matter

Let us identify the octonion space (eight dimensional) as the combination of

two quaternionic spaces namely associated with the gravitational interaction

(G-space) and electromagnetic interaction (EM-space) [47,48]. So, we may

write the octonionic (gravitational-electromagnetic) space as

O = (Og−space , Oem−space) =⇒ ((e0, e1, e2, e3) , (e4, e5, e6, e7)) , (6.21)

where (Og−space) is octonionic gravitational space consists e0, e1, e2, e3 oc-

tonion basis and (Oem−space) is octonionic electromagnetic space consists

e4, e5, e6, e7. So

O =(e0, e1, e2, e3, e4, e5, e6, e7) = (Og +Oem). (6.22)

Any physical quantity X ∈ O may be written as

X = Xg +Xem =(Xg0e0 +Xg1e1 +Xg2e2 +Xg3e3)

+(Xem0e4 +Xem1e5 +Xem2e6 +Xem3e7)

=
3∑
j=0

Xgj
ej + e7

3∑
j=0

Xemj
ej. (6.23)
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Accordingly, the octonion differential operator � also may be written as the

combination of the two quaternionic space (G-space & EM-space) [48] in the

terms of eight dimensional space as

� = �g + �em =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3)

+(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7)

=
3∑
j=0

∂gj
ej + e7

3∑
j=0

∂emj
ej. (6.24)

Thus, the octonion conjugate of equation (6.24) may then be written as

� = �g + �em =(∂g0e0 − ∂g1e1 − ∂g2e2 − ∂g3e3)

+(−∂em0e4 − ∂em1e5 − ∂em2e6 − ∂em3e7)

=∂g0e0 −
3∑
j=1

∂gj
ej − e7

3∑
j=0

∂emj
ej. (6.25)

Accordingly, the octonion valued potential, in eight dimensional formalism

may also be written as the combinations of two four dimensional quaternionic

spaces (i.e. G-space and EM-space) as

V = (Vg , Vem) = ((V0, V1, V2, V3) , (V4, V5, V6, V7))

= ((Vg0 , Vg1 , Vg2 , Vg3) , (Vem0 , Vem1 , Vem2 , Vem3)) , (6.26)

which can further be reduced to

V =(Vg0e0 + Vg1e1 + Vg2e2 + Vg3e3) + (Vem0e4 + Vem1e5 + Vem2e6 + Vem3e7)

=
3∑
j=0

Vgj
ej + e7

3∑
j=0

Vemj
ej. (6.27)
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As such, we may obtain the octonion potential wave equation for gravitational-
electromagnetic space by operating � given by equation (6.25) to octonion
potential V (6.27) in the following manner,

�V =e0{(∂g0Vg0 + ∂g1Vg1 + ∂g2Vg2 + ∂g3Vg3)

+(∂em0Vem0 + ∂em1Vem1 + ∂em2Vem2 + ∂em3Vem3)}

+e1{(∂g0Vg1 − ∂g1Vg0 − ∂g2Vg3 + ∂g3Vg2)

+(−∂em0Vem3 + ∂em1Vem2 − ∂em2Vem1 + ∂em3Vem0)}

+e2{(∂g0Vg2 − ∂g2Vg0 + ∂g1Vg3 − ∂g3Vg1)

+(−∂em0Vem2 − ∂em1Vem3 + ∂em2Vem0 + ∂em3Vem1)}

+e3{(∂g0Vg3 − ∂g3Vg0 − ∂g1Vg2 + ∂g2Vg1)

+(−∂em1Vem0 + ∂em0Vem1 − ∂em2Vem3 + ∂em3Vem2)}

+e4{(∂g0Vem0 + ∂g1Vem3 + ∂g2Vem2 − ∂g3Vem1)

+(−∂em0Vg0 + ∂em1Vg3 − ∂em2Vg2 − ∂em3Vg1)}

+e5{(∂g0Vem1 − ∂g1Vem2 + ∂g2Vem3 + ∂g3Vem0)

+(−∂em1Vg0 − ∂em0Vg3 + ∂em2Vg1 − ∂em3Vg2)}

+e6{(∂g0Vem2 + ∂g1Vem1 − ∂g2Vem0 + ∂g3Vem3)

+(−∂em2Vg0 + ∂em0Vg2 − ∂em1Vg1 − ∂em3Vg3)}

+e7{(∂g0Vem3 − ∂g1Vem0 − ∂g2Vem1 − ∂g3Vem2)

+(−∂em3Vg0 + ∂em0Vg1 + ∂em1Vg2 + ∂em2Vg3)}. (6.28)

which can further be reduced to

�V = F = ((F0, F1, F2, F3) , (F4, F5, F6, F7)) , (6.29)

where F(F0, F1, F2, F3, F4, F5, F6, F7) is also an octonion reproduces the field

strength of generalized gravitational-electromagnetic fields of dyons. Thus,
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we may be express F as

F = Fg + Fem = ((Fg0 , Fg1 , Fg2 , Fg3) , (Fem0 , Fem1 , Fem2 , Fem3))

=(Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3)

+(Fem0e4 + Fem1e5 + Fem2e6 + Fem3e7), (6.30)

where the component of F (Fg0 , Fg1 , Fg2 , Fg3 , Fem0 , Fem1 , Fem2 , Fem3) are ex-
pressed as

Fg0 ={(∂g0Vg0 + ∂g1Vg1 + ∂g2Vg2 + ∂g3Vg3)

+e7(−∂em3Vg0 + ∂em0Vg1 + ∂em1Vg2 + ∂em2Vg3)}

Fg1 ={(∂g0Vg1 − ∂g1Vg0 − ∂g2Vg3 + ∂g3Vg2)

+e7(−∂em0Vg0 + ∂em1Vg3 − ∂em2Vg2 − ∂em3Vg1)}

Fg2 ={(∂g0Vg2 − ∂g2Vg0 + ∂g1Vg3 − ∂g3Vg1)

+e7(−∂em1Vg0 − ∂em0Vg3 + ∂em2Vg1 − ∂em3Vg2)}

Fg3 ={(∂g0Vg3 − ∂g3Vg0 − ∂g1Vg2 + ∂g2Vg1)

+e7(−∂em2Vg0 + ∂em0Vg2 − ∂em1Vg1 − ∂em3Vg3)}

Fem0 ={(∂g0Vem0 + ∂g1Vem3 + ∂g2Vem2 − ∂g3Vem1)

+e7(−∂em0Vem3 + ∂em1Vem2 − ∂em2Vem1 + ∂em3Vem0)}

Fem1 ={(∂g0Vem1 − ∂g1Vem2 + ∂g2Vem3 + ∂g3Vem0)

+e7(−∂em0Vem2 − ∂em1Vem3 + ∂em2Vem0 + ∂em3Vem1)}

Fem2 ={(∂g0Vem2 + ∂g1Vem1 − ∂g2Vem0 + ∂g3Vem3)

+e7(−∂em1Vem0 + ∂em0Vem1 − ∂em2Vem3 + ∂em3Vem2)}

Fem3 ={(∂g0Vem3 − ∂g1Vem0 − ∂g2Vem1 − ∂g3Vem2)

+e7(∂em0Vem0 + ∂em1Vem1 + ∂em2Vem2 + ∂em3Vem3)} (6.31)

using the Lorentz Gauge conditions in the equation (6.31), i.e. Fg0 = Fem3 =

0. Thus, equation (6.30) may be written as
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F = Fg + Fem =(Fg1e1 + Fg2e2 + Fg3e3) + (Fem0e4 + Fem1e5 + Fem2e6).

(6.32)

Here the first term (Fg = Fg1 , Fg2 , Fg3) is defined as the field strength of the

gravitational interaction in G-space while the second term (Fem = Fem0 , Fem1 , Fem2)

is associated with the field strength of the electromagnetic interaction in EM-

space. Hence, we may obtain the octonionic field equation in gravitational-

electromagnetic space on applying the differential operator (6.24) to equation

(6.32) as

�F =− e0{(∂g1Fg1 + ∂g2Fg2 + ∂g3Fg3) + (∂em0Fem0 + ∂em1Fem1 + ∂em2Fem2)}

+e1{(∂g0Fg1 + ∂g2Fg3 + ∂g3Fg2) + (−∂em1Fem2 + ∂em2Fem1 − ∂em3Fem0)}

+e2{(∂g0Fg2 − ∂g1Fg3 + ∂g3Fg1) + (−∂em2Fem0 + ∂em0Fem2 − ∂em3Fem1)}

+e3{(∂g0Fg3 + ∂g1Fg2 − ∂g2Fg1) + (−∂em0Fem1 + ∂em1Fem0 − ∂em3Fem2)}

+e4{(∂g0Fem0 − ∂g2Fem2 + ∂g3Fem1) + (−∂em1Fg3 + ∂em2Fg2 + ∂em3Fg1)}

+e5{(∂g0Fem1 + ∂g1Fem2 − ∂g3Fem0) + (−∂em2Fg1 + ∂em0Fg3 + ∂em3Fg2)}

+e6{(∂g0Fem2 − ∂g1Fem1 + ∂g2Fem0) + (−∂em0Fg2 + ∂em1Fg1 + ∂em3Fg3)}

+e7{(∂g1Fem0 + ∂g2Fem1 + ∂g3Fem2) + (−∂em0Fg1 − ∂em1Fg2 − ∂em2Fg3)}.

(6.33)

which is further reduced to the compact notation in terms of an octonionic

gravitational-electromagnetic space as

� F = J = ((J0, J1, J2, J3) , (J4, J5, J6, J7)) , (6.34)

where J(J0, J1, J2, J3, J4, J5, J6, J7) is also an octonion reproduces the field

current source of dyons. So, it may be expressed as
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J = (J0, J1, J2, J3, J4, J5, J6, J7)

=(J(g−g)0
+ J(em−em)0

)e0 + (J(g−g)1
+ J(em−em)1

)e1

+(J(g−g)2
+ J(em−em)2

)e2 + (J(g−g)3
+ J(em−em)3

)e3

+{J(em−g)0
+ J(g−em)0

)e4 + (J(em−g)1
+ J(g−em)1

)e5

+(J(em−g)2
+ J(g−em)2

)e6 + (J(em−g)3
+ J(g−em)3

)e7. (6.35)

Here J(g−g), J(em−em), J(em−g), J(g−em) are defined for the octonionic current

source respectively for gravitational-gravitational, electromagnetic-electromagnetic,

electromagnetic-gravitational, gravitational-electromagnetic interaction [47,48].

As such, the components of octonionic current source J are described as

J(g−g)0
=(∂g1Fg1 + ∂g2Fg2 + ∂g3Fg3), J(em−em)0

= (∂em0Fem0 + ∂em1Fem1 + ∂em2Fem2);

J(g−g)1
=(∂g0Fg1 + ∂g2Fg3 + ∂g3Fg2), J(em−em)1

= (−∂em1Fem2 + ∂em2Fem1 − ∂em3Fem0);

J(g−g)2
=(∂g0Fg2 − ∂g1Fg3 + ∂g3Fg1), J(em−em)2

= (−∂em2Fem0 + ∂em0Fem2 − ∂em3Fem1);

J(g−g)3
=(∂g0Fg3 + ∂g1Fg2 − ∂g2Fg1), J(em−em)3

= (−∂em0Fem1 + ∂em1Fem0 − ∂em3Fem2);

J(em−g)0
=(∂g0Fem0 − ∂g2Fem2 + ∂g3Fem1), J(g−em)0

= (−∂em1Fg3 + ∂em2Fg2 + ∂em3Fg1);

J(em−g)1
=(∂g0Fem1 + ∂g1Fem2 − ∂g3Fem0), J(g−em)1

= (−∂em2Fg1 + ∂em0Fg3 + ∂em3Fg2);

J(em−g)2
=(∂g0Fem2 − ∂g1Fem1 + ∂g2Fem0), J(g−em)2

= (−∂em0Fg2 + ∂em1Fg1 + ∂em3Fg3);

J(em−g)3
=(∂g1Fem0 + ∂g2Fem1 + ∂g3Fem2), J(g−em)3

= (−∂em0Fg1 − ∂em1Fg2 − ∂em2Fg3);

(6.36)

which are analogous to the generalized Dirac-Maxwell’s (GDM) equations in

presence of gravitational-gravitational (G-G), electromagnetic-electromagnetic

(EM-EM), electromagnetic-gravitational (EM-G), gravitational-electromagnetic

(G-EM) interaction.

Consequently, the octonionic radius vector (R = R0, R1, R2, R3, R4, R5, R6, R7)
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is defined the combination of two quaternionic space in the following manner,

R =(R0, R1, R2, R3) , (R4, R5, R6, R7)

=(R0e0 +R1e1 +R2e2 +R3e3) + (R4e4 +R5e5 +R6e6 +R7e7). (6.37)

which yields the velocity (v) in the octonionic (gravitational-electromagnetic)

representation as

v =∂R
∂t

= ∂

∂t
{(R0e0 +R1e1 +R2e2 +R3e3) + (R4e4 +R5e5 +R6e6 +R7e7)}

=(v0e0 + v1e1 + v2e2 + v3e3) + (v4e4 + v5e5 + v6e6 + v7e7), (6.38)

we may also described the charge and mass [48] of the particle in octonionic

space as

J(g−g)0
∼= Q(g−g)0

v0, J(em−em)0
∼= Q(em−em)0

v0;

J(g−g)1
∼= Q(g−g)1

v1, J(em−em)1
∼= Q(em−em)1

v1;

J(g−g)2
∼= Q(g−g)2

v2, J(em−em)2
∼= Q(em−em)2

v2;

J(g−g)3
∼= Q(g−g)3

v3, J(em−em)3
∼= Q(em−em)3

v3;

J(em−g)0
∼= Q(em−g)0

v4, J(g−em)0
∼= Q(g−em)0

v4;

J(em−g)1
∼= Q(em−g)1

v5, J(g−em)1
∼= Q(g−em)1

v5;

J(em−g)2
∼= Q(em−g)2

v6, J(g−em)2
∼= Q(g−em)2

v6;

J(em−g)3
∼= Q(em−g)3

v7, J(g−em)3
∼= Q(g−em)3

v7; (6.39)

where Q(g−g), Q(em−g), Q(g−em) are respectively denoted the “Mass” of the

gravitational - gravitational (G-G), electromagnetic - gravitational (EM-G),

gravitational - electromagnetic (G-EM) interactions while Q(em−em) represent

the “Charge” of the electromagnetic - electromagnetic (EM-EM) interaction.
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So, the Q(g−g),Q(em−g), Q(g−em) and Q(em−em) respectively describe the “Gen-

eralized mass” and “Generalized charge” [48]. From the equations (6.35),

(6.36) and (6.39), we may obtain the four-type of subfields in the octonionic

electromagnetic-gravitational fields [47,48] as

• Gravitational-Gravitational (G-G) subfield.

• Electromagnetic-Gravitational (EM-G) subfield.

• Electromagnetic-Electromagnetic (EM-EM) subfield.

• Gravitational-Electromagnetic (G-EM) subfield.

Thus, from above four subfields, we have describe the dark matter in the

following subsections.

6.4.1 The Dark Matter

The Dark Matter [20,22] is a type of matter hypothesized to account for a

large part of the total mass in the universe. Dark matter cannot be seen

directly with telescopes which is neither emits nor absorbs light or other

electromagnetic radiation at any significant level. Instead, its existence and

properties are inferred from its gravitational effects on visible matter, radi-

ation and the large scale structure of the universe. The majority of dark

matter in the universe cannot be baryons, and thus does not form atoms. It

also cannot interact with ordinary matter as electromagnetic forces, i.e. the

dark matter particles do not carry any electric charge. The nonbaryonic dark
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matter may include the photon, graviton, intermediate bosons and neutri-

nos, or supersymmetric particles. Unlike baryonic matter, nonbaryonic dark

matter does not contribute to the formulation of the elements in the universe

as its presence is revealed only via its gravitational attraction. Thus, the

nonbaryonic dark matter [20-22] is evident through its gravitational effect

only. There are two type of nonbaryonic dark matter respectively defined as

hot dark matter and cold dark matter. Here, we have made an attempt to

express the nonbaryonic dark matter in terms of octonion representation in

the following manner.

• Octonions Hot Dark Matter (OHDM): Octonions hot dark matter

assumed to compose of particles that have zero or near-zero mass. The

special theory of relativity requires that massless particles move at the

speed of light while near-zero mass particles move at nearly the speed of

light. Thus, the octonionic hot dark matter may be associated with the

gravitational-gravitational (G-G) and electromagnetic-electromagnetic

(EM-EM) subfields. Thus, the octonionic hot dark matter (OHDM)

includes the photon and graviton. As such, we may write the quantum

equation for octonionic hot dark matter in terms of potential, field and

current equations. So,the potential wave equations from (6.23) and

(6.24), may be written in the quaternionic (G-G) space as

�gXg =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3) · (Xg0e0 +Xg1e1 +Xg2e2 +Xg3e3)

=V(g−g)0e0 + V(g−g)1e1 + V(g−g)2e2 + V(g−g)3e3, (for G-G space)

(6.40)
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which may further be written for EM-EM sector as

�emXem =(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7)

· (Xem0e4 +Xem1e5 +Xem2e6 +Xem3e7)

=V(em−em)0e0 + V(em−em)1e1 + V(em−em)2e2 + V(em−em)3e3,

(for EM-EM space) (6.41)

Thus, equations (6.25) and (6.27) reduces to

�gVg =(∂g0e0 − ∂g1e1 − ∂g2e2 − ∂g3e3) · (Vg0e0 + Vg1e1 + Vg2e2 + Vg3e3)

=F(g−g)0e0 + F(g−g)1e1 + F(g−g)2e2 + F(g−g)3e3, (for G-G space)

(6.42)

and

�emVem =(−∂em0e4 − ∂em1e5 − ∂em2e6 − ∂em3e7)

· (Vem0e4 + Vem1e5 + Vem2e6 + Vem3e7)

=F(em−em)0e0 + F(em−em)1e1 + F(em−em)2e2 + F(em−em)3e3,

(for EM-EM space) (6.43)

Accordingly, the field source equations from (6.23) and (6.32), are re-

spectively described as

�gFg =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3) · (Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3)

=J(g−g)0e0 + J(g−g)1e1 + J(g−g)2e2 + J(g−g)3e3, (for G-G space)

(6.44)

245



Role of Octonions in Physics Beyond Standard Model (BSM)

and

�emFem =(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7)

· (Fem0e4 + Fem1e5 + Fem2e6 + Fem3e7)

=J(em−em)0e0 + J(em−em)1e1 + J(em−em)2e2 + J(em−em)3e3.

(for EM-EM space) (6.45)

These two equations (6.44), (6.45) describe the generalized Dirac-Maxwell’s

equations of dyons in terms of octonionic hot dark matter comparizing

gravitational-gravitational (G-G) and electromagnetic-electromagnetic

(EM-EM) interactions. Hence, we may conclude that the quantum

equations for octonionic hot dark matter (i.e. photon and graviton) are

expressed in the terms of quaternionic representations of octonions.

• Octonions Cold Dark Matter (OCDM): Like wise, the octonions

cold dark matter may be described as the composition of the mas-

sive objects moving at sub-relativistic velocities. So, the difference

between the octonions cold dark matter (OCDM) and the octonions

hot dark matter (OHDM) is significant in the formulation of struc-

ture, because the velocities of octonions hot dark matter cause it to

wipe out structure on small scales. Thus, the octonions cold dark mat-

ter is associated with the electromagnetic-gravitational (EM-G) and

gravitational-electromagnetic (G-EM) subfields. Hence, the octonions

cold dark matter (OCDM) is assumed to include intermediate parti-

cles (i.e. W±, Zo particles). So, we may write the quantum equations

for octonions cold dark matter in terms of potential, field and current

equations. The potential wave equations from (6.23) and (6.24) may

then be written respectively as
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�emXg =(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7)

· (Xg0e0 +Xg1e1 +Xg2e2 +Xg3e3)

=V(em−g)0e4 + V(em−g)1e5 + V(em−g)2e6 + V(em−g)3e7,

(for EM-G space) (6.46)

and

�gXem =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3)

· (Xem0e4 +Xem1e5 +Xem2e6 +Xem3e7)

=V(g−em)0e0 + V(g−em)1e1 + V(g−em)2e2 + V(g−em)3e3

+V(g−em)4e4 + V(g−em)5e5 + V(g−em)6e6 + V(g−em)7e7.

(for G-EM space) (6.47)

Accordingly, the field equations from (6.25) and (6.27) are respectively

described as

�emVg =(∂em0e4 − ∂em1e5 − ∂em2e6 − ∂em3e7)

· (Vg0e0 + Vg1e1 + Vg2e2 + Vg3e3)

=F(em−g)0e4 + F(em−g)1e5 + F(em−g)2e6 + F(em−g)3e7,

(for EM-G space) (6.48)

and

�gVem =(∂g0e0 − ∂g1e1 − ∂g2e2 − ∂g3e3) · (Vem0e4 + Vem1e5 + Vem2e6 + Vem3e7)

=F(g−em)0e0 + F(g−em)1e1 + F(g−em)2e2 + F(g−em)3e3

+F(g−em)4e4 + F(g−em)5e5 + F(g−em)6e6 + F(g−em)7e7.

(for G-EM space) (6.49)
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On the other hand the field source equations (6.23) and (6.32) are

expressed as

�emFg =(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7)

· (Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3)

=J(em−g)0e4 + J(em−g)1e5 + J(em−g)2e6 + J(em−g)3e7,

(for EM-G space) (6.50)

and

�gFem =(∂g0e4 + ∂g1e5 + ∂g2e6 + ∂g3e7) · (Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3)

=J(g−em)0e0 + J(g−em)1e1 + J(g−em)2e2 + J(g−em)3e3

+J(g−em)4e4 + J(g−em)5e5 + J(g−em)6e6 + J(g−em)7e7.

(for G-EM space) (6.51)

These equation on simplification, describe the generalized Dirac-Maxwell’s

equations of dyons for octonionic cold dark matter in the presence of

electromagnetic-gravitational (EM-G) and gravitational-electromagnetic

(G-EM) interactions. So, the quantum equations for octonionic cold

dark matter (i.e. W±, Zo particles) may easily be expressed in the

terms of simpler and compact notation of octonions representations.

6.5 Role of octonion in Superstring Theory

The octonionic representation of the super-string (SS) theory may be consider

as the combination of four complex (C) spaces namely associated with the
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gravitational (G-space), electromagnetic (EM-space), weak (W-space) and

strong (S-space) interactions [48,49], i.e. unification of the four fundamental

forces. So, we may write the octonionic superstring space as

OSS =C⊗ C⊗ C⊗ C

= (Og , Oem , Ow , Os) =⇒ ((e0, e1) , (e2, e3) , (e4, e5) , (e6, e7)) ,

(6.52)

where Og, Oem, Ow, Os are respectively known as gravitational, electromag-

netic, weak and strong spaces in superstring theory related with the octo-

nionic basis (e0, e1), (e2, e3), (e4, e5), (e6, e7). Thus, the octonionic physical

quantity X ∈ OSS is expressed as

X =Xg +Xem +Xw +Xs

=(Xg0e0 +Xg1e1) + (Xem0e2 +Xem1e3) + (Xw0e4 +Xw1e5) + (Xs0e6 +Xs1e7).

(6.53)

The octonionic differential operator in case of superstring theory (i.e. unifi-

cation of four differential operator ) may be written as

�SS = �g + �em + �w +�s

=(∂g0e0 + ∂g1e1) + (∂em0e2 + ∂em1e3) + (∂w0e4 + ∂w1e5) + (∂s0e6 + ∂s1e7).

(6.54)

Octonionic conjugate of equation (6.54) is described as

�SS =(∂g0e0 − ∂g1e1)− (∂em0e2 + ∂em1e3)− (∂w0e4 + ∂w1e5)− (∂s0e6 + ∂s1e7).

(6.55)
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Thus, the octonionic superstring valued potential with the combination of

four potentials may be expressed as

VSS = (Vg , Vem , Vw , Vs) = ((V0, V1) , (V2, V3) , (V4, V5) , (V6, V7))

= ((Vg0 , Vg1) , (Vem0 , Vem1) , (Vw0 , Vw1) , (Vs0 , Vs1)) ,

(6.56)

which is further simplified to

VSS =(Vg0e0 + Vg1e1) + (Vem0e2 + Vem1e3) + (Vw0e4 + Vw1e5) + (Vs0e6 + Vs1e7).

(6.57)

In order to obtain the octonionic potential wave equations of the superstring
space, let us operate �SS given by equation (6.55) to octonion superstring
valued potential VSS of equation (6.57) and we get

�SS VSS =

e0{∂g0Vg0 + ∂g1Vg1 + ∂em0Vem0 + ∂em1Vem1 + ∂w0Vw0 + ∂w1Vw1 + ∂s0Vs0 + ∂s1Vs1}

+e1{∂g0Vg1 − ∂g1Vg0 − ∂em0Vem1 + ∂em1Vem0 − ∂w0Vs1 + ∂w1Vs0 − ∂s0Vw1 + ∂s1Vw0}

+e2{∂g0Vem0 + ∂g1Vem1 − ∂em0Vg0 − ∂em1Vg1 − ∂w0Vs0 − ∂w1Vs1 + ∂s0Vw0 + ∂s1Vw1}

+e3{∂g0Vem1 − ∂g1Vem0 + ∂em0Vg1 − ∂em1Vg0 + ∂w0Vw1 − ∂w1Vw0 − ∂s0Vs1 + ∂s1Vs0}

+e4{∂g0Vw0 + ∂g1Vs1 + ∂em0Vs0 − ∂em1Vw1 − ∂w0Vg0 + ∂w1Vem1 − ∂s0Vem0 − ∂s1Vg1}

+e5{∂g0Vw1 − ∂g1Vs0 + ∂em0Vs1 + ∂em1Vw0 − ∂w0Vem1 − ∂w1Vg0 + ∂s0Vg1 − ∂s1Vem0}

+e6{∂g0Vs0 + ∂g1Vw1 − ∂em0Vw0 + ∂em1Vs1 + ∂w0Vem0 − ∂w1Vg1 − ∂s0Vg0 − ∂s1Vem1}

+e7{∂g0Vs1 − ∂g1Vw0 − ∂em0Vw1 − ∂em1Vs0 + ∂w0Vg1 + ∂w1Vem0 + ∂s0Vem1 − ∂s1Vg0},

(6.58)

which provides the following octonionic analogous of superstring theory as

�SS VSS = FSS = ((F0, F1), (F2, F3), (F4, F5), (F6, F7)) ; (6.59)
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where FSS(F0, F1, F2, F3, F4, F5, F6, F7) is an octonion which reproduces the

superstring field strengths. So, equation (6.59 )may further be expressed as

FSS = Fg + Fem + Fw + Fs = ((Fg0 , Fg1) , (Fem0 , Fem1) , (Fw0 , Fw1) , (Fs0 , Fs1))

=(Fg0e0 + Fg1e1) + (Fem0e2 + Fem1e3)

+ (Fw0e4 + Fw1e5) + (Fs0e6 + Fs1e7), (6.60)

where the first term (Fg = Fg0, Fg1) is defined as the gravitational field
strength in G-space, the second term (Fem = Fem0, Fem1) is described
as the electromagnetic field strength in EM-space, the third term
(Fw = Fw0, Fw1) provides the weak interaction field strength in W-
space and the forth term (Fs = Fs0, Fs1) is responsible for the strong
field strength in S-space. Thus, the component of FSS{(Fg0, Fg1), (Fem0, Fem1),
(Fw0, Fw1), (Fs0, Fs1)} are expressed as the following octonionic repre-
sentation

Fg0e0 = {∂g0Vg0e0 − ∂g1Vg0e1 − ∂em0Vg0e2 − ∂em1Vg0e3

−∂w0Vg0e4 − ∂w1Vg0e5 − ∂s0Vg0e6 − ∂s1Vg0e7}

Fg1e1 = {∂g1Vg1e0 + ∂g0Vg1e1 − ∂em1Vg1e2 + ∂em0Vg1e3

−∂s1Vg1e4 + ∂s0Vg1e5 − ∂w1Vg1e6 + ∂w0Vg1e7}

Fem0e2 = {∂em0Vem0e0 + ∂em1Vem0e1 + ∂g0Vem0e2 − ∂g1Vem0e3

−∂s0Vem0e4 − ∂s1Vem0e5 + ∂w0Vem0e6 + ∂w1Vem0e7}

Fem1e3 = {∂em1Vem1e0 − ∂em0Vem1e1 + ∂g1Vem1e2 + ∂g0Vem1e3

+∂w1Vem1e4 − ∂w0Vem1e5 − ∂s1Vem1e6 + ∂s0Vem1e7}

Fw0e4 = {∂w0Vw0e0 + ∂s1Vw0e1 + ∂s0Vw0e2 − ∂w1Vw0e3

+∂g0Vw0e4 + ∂em1Vw0e5 − ∂em0Vw0e6 − ∂g1Vw0e7}

Fw1e5 = {∂w1Vw1e0 − ∂s0Vw1e1 + ∂s1Vw1e2 + ∂w0Vw1e3

−∂em1Vw1e4 + ∂g0Vw1e5 + ∂g1Vw1e6 − ∂em0Vw1e7}

Fs0e6 = {∂s0Vs0e0 + ∂w1Vs0e1 − ∂w0Vs0e2 + ∂s1Vs0e3

+∂em0Vs0e4 − ∂g1Vs0e5 + ∂g0Vs0e6 − ∂em1Vs0e7}

Fs1e7 = {∂s1Vs1e0 − ∂w0Vs1e1 − ∂w1Vs1e2 − ∂s0Vs1e3

+∂g1Vs1e4 + ∂em0Vs1e5 + ∂em1Vs1e6 + ∂g0Vs1e7}. (6.61)
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So, in order to obtain the octonionic superstring field equations, we apply

the differential operator (6.54) to equation (6.60) as

�SS FSS =

−e0{∂g0Fg0 + ∂g1Fg1 + ∂em0Fem0 + ∂em1Fem1 + ∂w0Fw0 + ∂w1Fw1 + ∂s0Fs0 + ∂s1Fs1}

+e1{∂g0Fg1 + ∂g1Fg0 + ∂em0Fem1 − ∂em1Fem0 + ∂w0Fs1 − ∂w1Fs0 + ∂s0Fw1 − ∂s1Fw0}

+e2{∂g0Fem0 − ∂g1Fem1 + ∂em0Fg0 + ∂em1Fg1 + ∂w0Fs0 + ∂w1Fs1 − ∂s0Fw0 − ∂s1Fw1}

+e3{∂g0Fem1 + ∂g1Fem0 − ∂em0Fg1 + ∂em1Fg0 − ∂w0Fw1 + ∂w1Fw0 + ∂s0Fs1 − ∂s1Fs0}

+e4{∂g0Fw0 − ∂g1Fs1 − ∂em0Fs0 + ∂em1Fw1 + ∂w0Fg0 − ∂w1Fem1 + ∂s0Fem0 + ∂s1Fg1}

+e5{∂g0Fw1 + ∂g1Fs0 − ∂em0Fs1 − ∂em1Fw0 + ∂w0Fem1 + ∂w1Fg0 − ∂s0Fg1 + ∂s1Fem0}

+e6{∂g0Fs0 − ∂g1Fw1 + ∂em0Fw0 − ∂em1Fs1 − ∂w0Fem0 + ∂w1Fg1 + ∂s0Fg0 + ∂s1Fem1}

+e7{∂g0Fs1 + ∂g1Fw0 + ∂em0Fw1 + ∂em1Fs0 − ∂w0Fg1 − ∂w1Fem0 − ∂s0Fem1 + ∂s1Fg0},

(6.62)

which can further be reduced and be written in following compact notation

in terms of an octonionic superstring representation as

�SS FSS = JSS = ((J0, J1) , (J2, J3) , (J4, J5) , (J6, J7)) . (6.63)

Here JSS(J0, J1, J2, J3, J4, J5, J6, J7) is an octonionic superstring current source,
which may be expressed in the following matrix form,


J(g−g) J(g−g) J(g−em) J(g−em) J(g−w−s) J(g−w−s) J(g−s−w) J(g−s−w)

J(em−em) J(em−em) J(em−g) J(em−g) J(em−s−w) J(em−s−w) J(em−w−s) J(em−w−s)

J(w−w) J(w−s) J(w−s) J(w−w) J(w−g−em) J(w−em−g) J(w−em−g) J(w−g−em)

J(s−s) J(s−w) J(s−s) J(s−w) J(s−em−g) J(s−g−em) J(s−g−em) J(s−em−g)





e0

e1

e2

e3

e4

e5

e6

e7


,

=⇒ JSS .

(6.64)
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Here J(g−g), J(em−em), J(em−g), J(g−em) are defined as the octonionic represen-

tation of gravitational - gravitational, electromagnetic - electromagnetic, elec-

tromagnetic - gravitational, gravitational - electromagnetic current source

and J(w−w), J(s−s), J(s−w), J(w−s) sectors of the octonionic current source re-

spectively associated the weak-weak, strong-strong, strong-weak, weak strong

interactions. Consequently, the remaining terms of equation (6.64) are also

denoted as the parts of octonionic current sources for the combination of

different three interactions. Thus, the present formulation may be provides

the superstring theory in the terms of octonionic representations.

6.6 Discussion and Conclusion

In section (6.1), we have seen that the standard model is incomplete and

needs modification in order to explain the problems like the origin of mass, the

strong CP problem, supersymmetry, neutrino oscillations, matter–antimatter

asymmetry, the nature of dark matter and dark energy and the unification

of gravity with strong and electroweak interactions. Accordingly, in section

(6.2), we have described the role of octonions in grand unified theories of

the gauge group is SU(3) × SU(2) × U(1). The smallest simple Lie group

which contains the standard model, and upon which the first Grand Uni-

fied Theory was based, is SU(5) ⊃ SU(3) × SU(2) × U(1). Here, we have

extended SU(2) × U(1) gauge theory to the SU(3) × SU(2) × U(1) gauge

theory in terms of split octonion formulation. Thus, equation (6.1) describes

the two types of SU(3)× SU(2)×U(1) gauge theories for particles carrying

simultaneously electric and magnetic charges namely dyons. Accordingly,

we have established the covariant derivative in equation (6.2) and (6.3) in
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the case of SU(3)× SU(2)× U(1) octonion gauge field in the terms of split

octonion 2×2 Zorn’s vector matrix realization. The commutation relation

of two covariant derivative are obtained by equation (6.4), which defines

the SU(3) × SU(2) × U(1) octonion gauge field strength for dyons in 2×2

Zorn matrix realization. Equations (6.5) and (6.6) represents the gauge field

structures corresponding to U(1), SU(2) and SU(3) gauge groups exhibit the

symmetry of gauge field strength corresponding to U(1), SU(2) and SU(3)

gauge groups in presence of electric charge and magnetic monopole. Hence,

we have obtained the field equation (6.8) for the grand unified theory i.e.

SU(3)×SU(2)×U(1) gauge for the fields associated with dyons. It is rather

the octonion gauge current for dyons in U(1)×SU(2)×SU(3) gauge symme-

try given by equation (6.9) in terms of 2×2 Zorn matrix realization. Equation

(6.10) represents the various gauge currents of GUTs namely the U(1) gauge

current, SU(2) gauge current and SU(3) gauge current in presence of electric

(magnetic) and magnetic (electric) charges. Here the j0
ν describes U(1) gauge

current for electric charge, jaν is the SU(2) week current associated with elec-

tric charge provides W±, Z0 bosons and jαν is the current associated with

SU(3)c used for chromo electric charge. Consequently, k0
ν is U(1) magnetic

the counterpart of the U(1) gauge current, kaν is the SU(2) weak current while

the kαν is SU(3)c gluonic current due to the presence of magnetic monopole.

As such, the octonionic formulation regardless a generalization of GUTs for

the mixing of gauge currents used for U(1), SU(2) and SU(3)c sectors asso-

ciated respectively with the electromagnetic, weak and strong interactions

in presence of dyons showing the duality invariance as well in terms of the

continuity equation obtained in equation (6.11).

In section (6.3), we have discussed the following features of octonion realiza-

tion of supersymmetry:
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• Supercharges are realized as multiplication by octonion units.

• Super space is an octonionic space spanned by these octonion units.

• Rotation group acts as an algebraic automorphism of this super space.

• Lorentz transformations acting an octonion units belong to the gauge

group that leaves octonionic norm.

For a theory to be supersymmetric, it is necessary that its particle content

form a representation of the supersymmetry algebra (6.12), where the super-

symmetry generator commute with momentum operator. Equation (6.13)

describes the explicit representation of gamma matrices representation. The

split octonion realizations have been recovered by setting σa, σ̃aas matrices

with octonion-valued entries, instead of being real matrices. Thus, the su-

persymmetry algebra is defined by equation (6.14), while the supersymmetry

generator Qa has been expressed by equation (6.15)-(6.16) in terms of 2×2

split octonions values matrices. Accordingly, the eight supersymmetry gen-

erators has been investigated in equation (6.17). The octonions supercharge

is defined by equation (6.18), while the complex conjugate of octonionic su-

percharge is expressed by equation (6.19) in terms of eight dimensional rep-

resentation. So, the supersymmetry has been investigated by equation (6.20)

in terms of octonions.

In section (6.4), we have established the role of octonions in gravity and dark

matter. Thus, we have defined the octonion space (eight dimensional) as the

combination of two quaternionic spaces namely associated with the gravi-

tational interaction (G-space) and electromagnetic interaction (EM-space).

Equation (6.21) and (6.22) define the gravitational-electromagnetic space
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in terms of octonionic eight dimension space. Any physical quantity has

been obtained by equation (6.23) in octonionic gravitational-electromagnetic

space. Accordingly, the octonionic differential operator has been written

in equation (6.24) as the combination of gravitational space (G-space) and

electromagnetic space (EM-space). Equation (6.25) represents the octonion

conjugate of equation (6.24). So, the octonion valued potential in eight di-

mensional space has been established in equations (6.26) and (6.27) as the

combination of two four dimensional quaternionic space (i.e. G-space &

EM-space). The octonionic field equation has been investigated in equation

(6.28) which has been compactified by equation (6.29), whose components

are described by equation (6.30). Accordingly, the field strength of octo-

nionic generalized gravitational-electromagnetic fields of dyons has been in-

vestigated in equation (6.30). Equation (6.31) represents the components

of gravitational-electromagnetic fields which are expressed in terms of octo-

nionic representation given by equation (6.31). Thus, we have established

the octonionic field strength due to gravitational interaction (G-space) and

electromagnetic interaction (EM-space) given by equation (6.32). The com-

ponents of octonionic wave equation has been expressed in equation (6.33),

which has been compactified to equation (6.34). Equation (6.34) thus de-

scribes the compactified form of the octonion wave equation representing

the octonionic gravitational-electromagnetic vector space. It shows the ex-

istence of generalized Dirac-Maxwell’s (GDM) equations in terms of gen-

eralized gravitational-electromagnetic fields of dyons. Thus, the octonion

current source has been obtained by equation (6.35) while their components

are expressed by equation (6.36) in terms of gravitational gravitational, elec-

tromagnetic - electromagnetic, electromagnetic - gravitational, gravitational

- electromagnetic interactions. So, equation (6.36) describes as the analogue
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of the generalized Dirac-Maxwell’s (GDM) equations in presence of G-G,

EM-EM, EM-G, G-EM interactions. Equation (6.37) represents the octo-

nionic radius vector as the combination of two quaternionic spaces. The

velocity representation of octonionic eight dimension has been obtained in

equation (6.38). Accordingly, we have established the generalized charge and

generalized mass of the particle given by the equation (6.39) in terms of oc-

tonion representation. So, we have been obtained the four-type of sub-fields

in the octonionic Electromagnetic - Gravitational fields i.e. Gravitational -

Gravitational (G-G) sub-field, Electromagnetic - Gravitational (EM-G) sub-

field, Electromagnetic - Electromagnetic (EM-EM) subfield, Gravitational -

Electromagnetic (G-EM) subfield.

In subsection (6.4.1), we have discussed the dark matter in terms of octo-

nionic representation. The ’Dark Matter ’ has been considered as a type of

matter hypothesized to account for a large part of the total mass in the uni-

verse. Dark matter cannot be seen directly with telescopes which is neither

emits nor absorbs light or other electromagnetic radiation at any significant

level. Instead, its existence and properties are inferred from its gravita-

tional effects on visible matter, radiation and the large scale structure of the

universe. The majority of dark matter in the universe cannot be baryons,

and thus does not form atoms. It also cannot interact with ordinary mat-

ter as electromagnetic forces, i.e. the dark matter particles do not carry

any electric charge. The nonbaryonic dark matter may include the photon,

graviton, intermediate bosons and neutrinos, or supersymmetric particles.

Unlike baryonic matter, nonbaryonic dark matter does not contribute to the

formulation of the elements in the universe as its presence is revealed only via

its gravitational attraction. Thus, the nonbaryonic dark matter is evident

through its gravitational effect only. Octonions hot dark matter is composed
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of particles that have zero or near-zero mass. Thus, the octonionic hot dark

matter (OHDM) includes the photon and graviton. As such, we have estab-

lished the various quantum equation for octonionic hot dark matter in terms

of potential, field and current equations given by equations (6.40)-(6.45). It

is concluded that the quantum equations for octonionic hot dark matter (i.e.

photon and graviton) are expressed in the terms of quaternionic represen-

tations of octonions. Accordingly, the octonions cold dark matter has been

described as the composition of the massive objects moving at sub-relativistic

velocities. Hence, the octonions cold dark matter (OCDM) includes the in-

termediate particles (i.e. W±, Zo particles). So, we have established the

quantum equations for octonions cold dark matter in terms of potential,

field and current equations given by equations (6.46)-(6.51).

In section (6.7), we have described the role of octonion in superstring theory.

As such, the octonionic representation of the super-string (SS) theory has

been established as the combination of four complex (C) spaces namely asso-

ciated with the gravitational (G-space), electromagnetic (EM-space), weak

(W-space) and strong (S-space) interactions, i.e. unification of the four fun-

damental forces. Thus, from equation (6.52) it is clear that the octonionic

superstring spaces can be defined as the combination of gravitational, elec-

tromagnetic, weak and strong spaces and a physical quantity can be written

in octonionic superstring space by equation (6.53). The octonionic differen-

tial operator in the case of superstring theory has been obtained by equation

(6.54). The octonion conjugate of equation (6.54) is described by equation

(6.55). Thus, the octonionic valued superstring potential is investigation in

equation (6.56) and (6.57) as the combination of four potentials. In order to

obtain the octonion valued potential wave equation for superstring theory,

we have operated the covariant derivative to octonionic superstring potential
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by equation (6.58) and thus obtained the octonion wave equation (6.59) for

superstring theory in simple and compact octonion notation. The compo-

nents of octonionic valued superstring potential with octonionic superstring

conjugate differential operator has been expressed in equation (6.58). The

compactified form of equation (6.58) has been defined by equation (6.59).

Equation (6.60) represents the octonion superstring field strength, which is

the combination of four interactions namely gravitational, electromagnetic,

weak and strong interactions. It is shown that the octonion wave equation

for superstring theory contains the various fields namely Fg, Fem, Fw &Fs,

where the first term (Fg = Fg0 , Fg1) defines the gravitational field strength

in G-space, the second term (Fem = Fem0 , Fem1) describes the electromag-

netic field strength in EM-space, the third term (Fw = Fw0 , Fw1) provides the

weak interaction field strength in W-space and the forth term (Fs = Fs0 , Fs1)

is responsible for the strong field strength in S-space. Further more, the

various components of octonionic superstring field are described in equation

(6.61). In order to obtain the octonionic superstring field equation which

has been obtained in equation (6.62) which has been obtained as octonionic

wave equation (6.63) in compactified notation. Accordingly, the general-

ized Dirac-Maxwell’s is visualized in superstring theory by means of octo-

nions and the generalized current has been discussed in terms of matrix

by equation (6.64). The generalized current described the various terms

where J(g−g), J(em−em), J(em−g), J(g−em) defines as the octonionic representa-

tion of gravitational - gravitational, electromagnetic - electromagnetic, elec-

tromagnetic - gravitational, gravitational - electromagnetic current source

and J(w−w), J(s−s), J(s−w), J(w−s) sectors of the octonionic current source re-

spectively associated the weak-weak, strong-strong, strong-weak, weak strong

interactions. Consequently, the remaining terms of equation (6.64) denotes
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as the parts of octonionic current sources for the combination of different

three interactions. Thus, the present formulation has been provides the su-

perstring theory in the terms of octonionic representations.
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