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Abstract

The Casimir effect is widely known as the force between two parallel neutral
plates because of the vacuum energy. In quantum theories, the vacuum is not
empty space, but very nontrivial. Any phenomenon caused by the nontrivial
vacuum state of quantum fields in the presence of boundaries, nontrivial
topology, varying background potentials, spacetime curvature, ect, could be
referred to as a Casimir effect. At a finite temperature, Casimir effects can
be significantly modified by thermal fluctuations. Despite various practical
difficulties, Casimir effects have been observed in experiments. Thus, Casimir
effects may be applied to practical techniques and devices, and have drawn
much attention recently. This dissertation is devoted to the study of Casimir
effects and their thermodynamical properties. We focus on three topics based
on our research, which we will describe below.

In Chapter 1, we briefly depict the history of Casimir physics. The status
of experimental investigations on Casimir physics is also briefly reviewed.
We also outline possible research directions in Casimir physics, which may
broaden our theoretical and technical horizons.

In Chapter 2, we show the influences of geometry and inhomogeneity on
Casimir energies and stresses. Systems with high symmetries, i.e., the planar
and spherical systems, are studied. We explore two media with one common
surface, referred to as a two-media system. Because of the surface, there
are extra divergences in Casimir energy densities and stresses at the sur-
face besides familiar bulk divergences. We also investigate the configurations
with two surfaces present, i.e., parallel configurations for planar systems and
concentric configurations for spherical systems, in which finite Casimir in-
teraction energies and Casimir forces are obtained. For planar systems, the

Casimir energies and stresses are well understood in homogeneous two-media
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backgrounds and parallel configurations. Some general behaviors of surface
divergences in the inhomogeneous two-media background are shown. We also
propose a renormalization scheme for inhomogeneous parallel configurations,
which gives us finite Casimir interaction energies and forces. For spherical
systems, the properties of surface divergences are largely unexplored topic-
s, especially for inhomogeneous cases. We calculate an analytically solvable
model to provide a first glimpse of surface divergences in spherical inhomo-
geneous two-media backgrounds. We also employ a renormalization scheme,
similar to that in inhomogeneous parallel configurations, to figure out finite
Casimir forces in inhomogeneous concentric configurations described by well
chosen models. There is more work remaining to be done in this direction
than that presented in this thesis.

In Chapter 3, we briefly demonstrate the thermal fluctuations in Casimir
effects. We sketch the thermal corrections in Casimir forces. The influ-
ences of inhomogeneity on thermal Casimir forces, which may be significant
in practical applications, has been investigated in a preliminary way. The
Casimir interaction entropy has been intensively investigated for more than
two decades, in which the negativity and consistency with Nernst’s theorem
are two main concerns. There are various sources for negative interaction en-
tropy and we show two cases where the negative interaction entropies stem
from the geometry. Recently, the Casimir self-entropy has attracted much
attention. We pioneered this direction by considering the infinitely thin sheet
and spherical shell, which are illustrated here succinctly. More realistic cases
should be considered to facilitate future experiments.

In Chapter 4, we exhibit some of our thoughts about friction, which, we
hope, could give us profound insights into the relations between quantum
and thermal fluctuations and the irreversibility of time. As a foundation, we
investigate the classical friction when a charged particle or a dipole moves
in front of a dissipative conductor described with the Drude model. We also
studied a two-level particle moving above a Drude conductor and two quan-

tum oscillators in relative motion. Our investigations are still in progress.



Chapter 1

Introduction

1.1 History

Since the discovery of a nonzero attractive force between two neutral per-
fectly conducting plates [1], which is the famous Casimir effect, it is widely
recognized that the vacuum can be highly nontrivial. The word “vacuum”
means the space of no matter literally, which has been a frequently discussed
topic for a long time. Plato felt it hard to accept the idea of vacuum, since he
thought any realistic matter was an instantiation of its corresponding ideal
pattern and the ideal form of vacuum was inconceivable to him. Aristotle
considered the vacuum as logically impossible, because nothing can not be
something. However, the ancient Chinese philosopher Lao Zi embraced the
vacuum as the origin of the world, for example he taught “...everything in the
world originates from existence, existence originates from non-existence...”

Not until Evangelista Torricelli and Blaise Pascal [2] confirmed that the
“vacuum” was at the top of the mercury barometer in the 17th century,
did the vacuum become an experimentally researchable object. Based on
his theory of gravitation, Newton denied the existence of the vacuum by
asserting that the universe was filled with ether as the mediator of gravity
and light. This statement saved Kepler’s hypothesis that the Moon influences
the tides, which made Galileo uncomfortable.

But in 1887, the celebrated Michelson-Morley experiment ruled out the

existence of the ether and showed that the speed of light is the same in



different inertial frames and directions, which was regarded as one of the two
clouds obscuring “the beauty and clearness of the dynamical theory” by Lord
Kelvin [3] and led to Einstein’s relativity. Another of Lord Kelvin’s clouds,
namely the inconsistency between the classical theoretical predictions on the
spectrum of blackbody radiation and experiments, was also closely related
to the evolution of our understanding of the vacuum. To dispel that cloud,
Planck introduced a theory which heralded the upcoming quantum revolution
and implied the possibility for the existence of zero-point energy (ZPE), as
Einstein once stated “The existence of a zero-point energy of size hr//2 (is)
probable” [4]. Unfortunately, Planck thought ZPE would had no physical
consequence, while Einstein did not feel difficulty in taking the ZPE into his
theory [5].

Actually if one compares the vacuum to an iceberg, the ZPE is just its
tip. Nowadays, the vacuum typically refers to the ground state, which has
the lowest possible energy, of a system. Regardless of the significance of
the vacuum illustrated by the widely-known Dirac sea, even Heisenberg’s
uncertainty principle, saying that for any observables A and B the relation
AAAB > | ([A, B])|/2 always holds true, suggests that fluctuations are not
avoidable even in the vacuum state. Or one may roughly say the fluctuations
are the main origin of the non-triviality of the vacuum state. Vacuum fluc-
tuations are responsible for the Lamb shift [6, 7], light-light scattering in the
vacuum [8], vacuum magnetic birefringence [9] and so on. The interaction
with fluctuation-induced virtual particles requires any physically acceptable
quantum field theory (QFT) to be renormalizable.

The modification of the vacuum also provides requisite physical mecha-
nisms. For instance, in the Higgs mechanism, the broken symmetry of the
vacuum state introduces masses to the weak interaction mediators. In 1948,
Casimir [1] proposed to modify the vacuum state by inserting two parallel
perfectly conducting plates so that a visible vacuum phenomenon, i.e., an
attractive force on each plate, occurs. Generally, the phenomena due to the
non-trivial modifications on the vacuum state caused by given boundary con-

ditions, geometries, topologies etc., are all referred to as Casimir effects, on



which I focus here'.

Soon after Casimir’s pioneering work, Lifshitz [10] and Dzyaloshinskii
et al. [11, 12] generalized the original model to a configuration (DLP), in
which two parallel dielectric media are separated by the vacuum or another
homogeneous medium. Van Kampen et al. [13] also considered the Casimir
forces between dielectrics with the zero-point energy approach. The next
natural generalization is to calculate the Casimir forces in the generalized
DLP configuration, in which the media are inhomogeneous. But previous
endeavors [14, 15, 16, 17, 18], though valuable, do not lead to satisfactory
answers. Recently, we [19] proposed a self-consistent and testable scheme
to evaluate the Casimir forces in the parallel configuration comprising of
inhomogeneous media.

Actually Casimir [20] suggested that the Casimir force could be the Poincaré
stress compensating the repulsive electrostatic force in the classical electron
model. However, in 1968 Boyer [21] demonstrated a repulsive Casimir stress
in a infinitely thin perfectly conducting spherical shell, which has further been
confirmed [22, 23, 24]. It rules out the Casimir stress acting as a Poincaré
stress for such a simple model. A more realistic generalization of Boyer’s
spherical shell, i.e., a homogeneous dielectric ball immersed in a homoge-
neous background, was first studied by Milton [25] in 1980. Although, to the
second order of the difference between the permittivities inside and outside
the ball, one can remove the divergences and obtain a finite self-energy, there
are unremovable divergences in higher order terms [26, 27], which obscure
the interpretation on the self-energy. Brevik et al. [28, 29, 30, 31] intro-
duced specific cases (diaphanous or isorefractive), in which the speed of light
inside the ball equals to that outside the ball. In the diaphanous ball prob-
lems, finite well-defined self-energies are achieved. Further researches on the
diaphanous spherical systems are still going on [32]. Also, people have not
given up making sense of the self-energy and Casimir stress on a dielectric
ball. Leonhardt et al. [33] claimed they had found a method to extract

the finite Casimir self-stress on a dielectric ball, which cannot be regard-

!The natural units i = ¢ = g = g = kg = G = 1 will be utilized from now on, unless
noted specifically.



ed as the summation of pair-wise Casimir-Polder interactions. Their results
are inconsistent with some well-established conclusions [34, 26]; the results
of [33] are argued to be erroneous because of their improper regularization
and omission of the transverse contribution to the stress tensor [35]. The
understanding of Casimir energies and forces in the homogeneous spherical
systems are still insufficient, not to mention those effects in a inhomogeneous
spherical system.

As stated above, quantum fluctuations of the vacuum state result in the
Casimir effects. However, the quantum mechanism is not the only source of
fluctuation. Thermal fluctuations are an important component of Casimir
physics as well. The early investigations on finite-temperature corrections
to the Casimir forces dated back to 1950s-60s [10, 36]. The recent con-
troversies on proper theoretical treatments of the thermal corrections have
not reach a consensus yet [37, 38, 39, 40, 41]. The consistency with ther-
modynamics is also involved in these controversies. Nervertheless, the pure
thermodynamical aspects of the Casimir physics are quite enlightening on
their own. The Casimir interaction entropy [42, 43, 44] and Casimir self-
entropy [45, 46, 47, 48, 49] are the focuses in this topic, and the negativity
and consistency with the third law of thermodynamics are the main con-
cerns. The influences of the Casimir free energies, and thus entropies, on the
stability of micro-structures are preliminarily studied recently [50, 51].

Furthermore, the fluctuations, both quantum-mechanical and thermody-
namical, are inextricably linked to irreversible phenomena, amongst which is
the quantum frictional dissipation. Although one can hardly say the quan-
tum friction can have any practical significance [562], it is interesting to un-
derstand how the fluctuations influence or induce the frictional dissipation.
There are three major methods employed in the quantum friction evalua-
tions, i.e., the quantum statistical method [563, 54], the quantum field theory
method [65, 56], and the quantum mechanical perturbation theory [52, 57].
However, there are various deviations among theoretical predictions, since
no experimental trial has been done due to the smallness of the effect and

possible laboratory difficulties. Experimentally testable nano-structures for



quantum friction are badly needed.

Plainly, the depiction above has not covered, even a large part of, the de-
velopments of the quantum and classical fluctuation phenomena, especially
dealing with Casimir physics. There are many more other interesting topics
in Casimir physics, for instance, the Casimir effects in the cylindrical system-
s [68, 59, 60], multi-body Casimir effects [61, 62], Casimir effects out of ther-
mal equilibrium [63, 64, 65], Casimir effects in curved spacetime [66, 67, 68],
and so on. For more comprehensive reviews on Casimir physics, please see

Refs. [69, 70, 71].

1.2 Experiments and applications

The Casimir forces, no matter whether they are between two perfectly con-
ducting plates or two dielectrics, are typically very small, which obstructs
the experimental measurements. There were a few experiments related to
the Casimir force detection up to 1980 [72, 73, 74, 75, 76]. The pioneering
work in Refs. [72, 73] only showed their results “do not contradict Casimir’s
theoretical prediction.” The difficulty in maintaining parallelism was elim-
inated by measuring the force between a sphere and a plate [75, 76]. The
Casimir effect was not, however, established decisively due to the lack of ac-
curacy. The work of Sabisky et al. [74] is thought to be the first convincing
experimental evidence of the Lifshitz theory. In 1997, Lamoreaux [77] per-
formed a Cavendish-type experiment with a torsion balance, which confirmed
the Casimir’s theoretical prediction rather precisely for the first time. Soon
after, Mohideen et al. [78, 79, 80] employed the atomic force microscope
(AFM) system to perform a Casimir force measurement with 1% precision,
as they claimed. Another type of apparatus, namely microelectromechan-
ical systems (MEMSs), was utilized by Chan et al. [81, 82] and Decca et
al. [83] in the Casimir force measurements. Those experimental verifications
attracted attention back to Casimir physics research.

With the development of the experimental investigations of the Casimir

effect, the thermal corrections to Casimir forces calculated theoretically [84]



were compared with the experimental results in Ref. [77, 85]. According to
Ref. [84], the dissipation and finite temperature dependances of the Casimir
force predicted by the theory differ from the experimental results. Since
then, there has been a controversy lasting for two decades involving which
kind of permittivity model £(w) is more appropriate in describing a real met-
al at zero frequency. Many experiments [86, 87, 88] favor the nondissipative
plasma model, but there are also experiments interpreted with the dissipative
Drude model [89, 90]. Most recently, Mohideen et al. [91] performed experi-
ments with more advanced techniques and cast one more vote in favor of the
nondissipative plasma model. As we have mentioned, the dissipation of the
material is also related to the negativity in the interaction entropy and the
consistency with the thermodynamical laws. One can thus fairly state that
the discordances between theories and experiments are still open questions
to be explored. Other efforts to study the effect of dissipation in Casimir
effects are just unfolding. For example, the relaxation of the free electrons
in the nonequilibrium thermal Casimir effect has been considered [92].
Various other, but not all, Casimir effect experiments include the follow-
ing. Researchers are trying to measure the Casimir forces in other geometries,
such as, the Casimir force between two spheres [93], Casimir-Polder forces be-
tween particles and surfaces [94, 95, 96, 97], and so on. In addition, Chan et
al. studied the Casimir forces in a microstructure on a silicon chip [98]. All
those endeavors are bringing the esoteric theoretical issues of Casimir physics
into our daily life as seemingly miraculous applications, though there is still

a long way to go.

1.3 Future prospects

Casimir physics, caused by quantum fluctuations and significantly modified
by thermal fluctuations, is a research area of broad prospects, both theoret-
ically and experimentally.

On the theoretical side, it is still quite meaningful to further explore effect-

s on Casimir energies and stresses due to geometry, such as the divergences



and ambiguities in self-energies as stated above and those divergences due
to nonsmoothness, or due to topology, such as the self-energy of a bisected
sphere. Vacuum fluctuations in curved spacetime is also an intriguing top-
ic. The energy densities and stress tensors, or energy-momentum tensor, of
Casimir apparatuses in the gravitational field [99, 66] are direct generaliza-
tions of those in Minkowski space. There are also works on how to regularize
and renormalize the divergences of the Casimir energy densities and stresses,
which remains a problem even in flat spacetime as shown below, in curved
spaces [67, 68]. The Casimir energy has long been considered as a source
of the dark energy [100, 101]. The Casimir effects in the string [102, 103],
superstring [104] and M-theory [105] have been intensively investigated as
well.

On the experimental side, the Casimir effects in new materials, such as su-
perconductors [106, 107], chiral media [108], topological insulators [109, 110],
have been introduced. Although most of those researches are proposals and
few experiments are reported, a bright future may be now within the reach of
our eyesight. We anticipate contributing to the merging of Casimir physic-
s with the rapidly developing field of new materials and the experimental
techniques.

In this dissertation, we will briefly describe three topics in Casimir physics,
namely, Casimir energies and stresses in systems with high symmetry, ther-
mal corrections and Casimir entropies, and classical and quantum frictions.
The narration is mainly based on our previous researches and partly of pro-
grams under study. For more detailed arguments, the reader is referred to

our future publications.



Chapter 2

Casimir energies and stresses

2.1 Background

As stated above, when a system is in its ground state, the expectation values
of the energy and stress of the system are called the Casimir energy and
Casimir stress, which are named after Hendrik Casimir who pointed out, for
the first time, the existence of a physically measurable force due to zero-
point fluctuations [1]. Generally speaking, the physical phenomena caused
by nontrivial Casimir energies and Casimir stresses are all known as Casimir
effects, but typically Casimir effects are manifested as the forces arising from
the Casimir interaction energy between rigid bodies.

Although the interaction energies are always finite and physically de-
tectable, the Casimir energy calculations are always plagued with two types
of divergences, i.e., the divergent total energies and the divergent local ener-
gy densities (and, of course, stress tensors). Total self-energies are commonly
seen as divergent, even in Casimir’s ideal model. So self-energies are usually
less well-defined and some renormalization schemes are required to extract
the finite and physically observable results from the self-energies. The most
important one of the few unique and finite self-energies, is found in the per-
fectly conducting spherical shell with negligible thickness [21, 22, 23, 24],
which excluded Casimir’s proposal for the semi-classic model of electron. It
could be expected that more valuable would be to extract the self-energy of

a more realistic system, for instance, the self-energy in an inhomogeneous



medium as shown below.

Divergences in local energy densities constantly occur at surfaces and are
relatively independent of the total energies. Since gravity couples to the
energy-momentum tensor locally, the Casimir energy density and stress ten-
sor should act as the sources in Einstein’s equations and have observable
effects. Actually the influence of Casimir energy density and stress on grav-
ity is basically an uncharted territory [111, 112, 113]. As an analogous and
experimentally testable version of curved spacetime, inhomogeneous back-
grounds and their Casimir energy densities and stresses have drawn a lot of
attention. The studies in this direction are mainly focused on the spatially
varing “soft” walls or boundaries, which maybe were first investigated in Re-
f. [114]. Efforts have been devoted to explore the properties of the Casimir
energy densities and stresses [115, 116, 117, 118], and their renormalization
schemes [117, 119, 120, 121] in soft wall systems. A frontier in this direction
lies in computing the Casimir forces in inhomogeneous backgrounds, which

is still in its initial stage.

2.2 General theory

In this chapter, we focus on the electromagnetic field, which is closer to labo-
ratory investigations. The macroscopic Maxwell’s equations, in the Euclidean

space, are

B D P
V-D=-V-P+p, VXE:—ia—, V-B=0, VXH:ia——i-ia——Fj, (2.1)
or or or

where p,j are the free charge density and current density involved, P is
the external polarization source, 7 is the Euclidean time, and the other pa-
rameters are defined as those in Refs. [122, 123]. In terms of the Fourier

transformation, any vector X is expressed in the frequency space as

X(r) = [ =X () = [ =X, (2.2

in which y = (¢,r) and ( is the imaginary frequency. (Similar expressions

apply for any scalars involved.) Then, with no free charge and current, the



macroscopic Maxwell’s equations in frequency space are

V-D=-V-P, VxE=(B, V-B=0, VxH=—(D - (P. (2.3)

The action of the system S multiplied by the imaginary unit ¢ is

2

P(y.) - T(71,40) - P
_ /d4y1d4y2 (1) (1/_12yz) ()

S = /d4xE {E(xE) - D(wp) — Hlzp) - Blzp) +P(zp) - E(zg)

(2.4)

where i = (—(,r) for any y = (¢,r), and with I'"*(y;,9,) written in terms of

the permittivity € and permeability p as

_ Vo x pt -Vsy x 1
T (1, 42) = 61 — 42) {e(yg) 2 B (Cyj) 2 , (2.5a)
2
and Vs acts on ¥, the Green’s dyadic I'(yy, 32) is defined by
/d4y21“‘1(y1,y2)1“(yz,y3) = 10(y1 — y3)- (2.5b)

The relations connecting the electric and magnetic field to the electric dis-
placement and magnetic induction in our case are D(y) = e(y) - E(y), B(y) =
p(y) - H(y), where the permittivity and permeability are both localized and
symmetric in the indices. By simplifying the Green’s dyadic to I'((,r; (', ') =
(¢ —(¢)T¢(r,r'), Eq. (2.5b) in a reduced form is

Vxp! -V x1
{e({, r)+ e <§’2r> . ] Te(r,r’) =10(r — 1'), (2.6a)
which leads to another useful equation
Vxelr) - Vx1 . ,
p(C,r)+ 2 - ®(r,r") = 16(r — 1), (2.6b)

where ® is expressed in terms of I' by

p (¢ r) - V x Te(r,v') x %’ -pu (¢ T)

e . (2.6¢)

D¢(r,r') = p~ (C)o(r — 1) —



On these grounds, when no dissipation is present, the generating functional

Z = f e’ gives us the correlation functions

(TE(z)E(z)) = —/%eig(T_T,)FC(r,r'), (2.72)

(TH(z)H(2")) = — / %eiC(T_T') {@g(r, r) —p (¢ )o(r — 1) |, (2.7b)

where 7 means the operators are time-ordered and = = (7,r) is a spacetime
point.

The energy density and momentum density transferred to the free sources,
described by the free charge density p and free current density j, per unit

time are, respectively,

du oD 0B
jE=—t—=—E-— —-H-— -V .- (ExH 2.8
. Yar e T or V- (E>x H), (2.82)
D x B
T T

where © and p are, respectively, the local energy and momentum density of
the field. When there is no dissipation, the energy density v and the stress

tensor T satisfy the relations

ou oD 0B 1
S-=E-“-+4+H.o- T=2(D-E+B-H)-DE-BH (2.9)

Therefore, the vacuum expectation values of the energy density and stress

tensor of the field are

u(r) = —% / %{tr%g’r)] -Te(r,r) + tr%ﬁ’r)] . @C(r,r)}, (2.10a)

T — —/d—i{%tr{s(g,r)-rg(r,r>+y(g,r)-¢<(r,r)]

—e(¢,r) - Te(r,r) — (¢, r) - Pc(r, r)}, (2.10b)



where the obvious nonphysical J-function terms, which are either bulk con-

stants or only related to the structure of medium, have been omitted.

2.2.1 Planar systems

When the properties of a system varies in only one direction (usually chosen
to be as the z-direction without losing any generality), we refer to this sys-
tem as a planar system. In planar systems varying in the z-direction, the
reduced Green’s functions defined in Eq. (2.6) have the Fourier forms

/ d2k K r I‘
(F<7¢<)(r7r)=/(2ﬂ)26 I (g hese) (2, 21). (2.11)

For any given transverse (ry-directions) wavenumber vector k, set k/k, k =
|k| as the unit vector along the z-axis, then it is convenient to employ the

following ¢g” and g” to express gck and h¢ i when the medium is isotropic,

1 k2 / ,
R A e gox(2,2) = 0(z =2, (2.12)

then g and hg,k, in this special frame, are

10,098, + 257 0. g8
gex(z,2) = —C%g8, . (2.13a)
~£0. gck if/ngJFM
L0098, + X .08,
hey(z,2) = —C2glh ,  (2.13b)
_;;;]j’az'ggk 5M gg,k+ ( /)

which, in a general coordinate system, have the forms

ﬁ 6282’9gk _ _C2 kzky 828z’ggk + kzky C‘Q E ikzazggk
k2 e C k k2 ee! k2 C k ee’
H : H
o kxky 0,0 /gC " kay 9 kz GZBZ/gC " 9 zkyang " 2.1
= Yy _~ 26X Tz > . C
8¢k k2 ee’ C C7 k2 ee’ C gC k ee’ ’ ( 3¢)
B lk'zazlg(yk B ikyaz/gcyk nggk
ee! ee! ee!



ﬁazaz/ggk . ﬁgz H keky azaz’ggk + kzky CQ H ikxazggk
k2 k2 gC:k k2 ! k2 gC:k np!
0.0,1gF kok k2 0,0,,gF k2 iky0,gF
h — kzky 72"k xRy ~2 H 2y zZI¢k _ Ry 2,H Y Gk . 213d
¢k 2 i + 2 ¢ 9ck 2 k2< 9ck g ( )
ko098, _ikyd.198 k298
Ty Ty pp!

By separating the Casimir energy density u(r) into the TE and TM mode

contributions, then u(r) is

u(r) = / % {UE<C, r) + ug(C, r)} , (2.14a)

where the TE energy density per unit frequency is

. 1 ko a(g,u) azaz’ E kQ E 8((8) 2 B
up(C,r) = —5/ (2%)2{ ¢ {NM' g(,k+wgC,k1 e ng}? (2.14b)

and the TM contribution uy((,r) is obtained by making the substitutions

€ <+ p and F ¢ H. Similarly, the ¢j-component of the stress tensor is

Tij(r) = / % [tE;ij(Ca r)+tm;(C, I‘)} , (2.15a)

where the off-diagonal terms 7;;,¢ # j are typically zero in many cases and

put aside here. The reduced diagonal components are

d’k 1 kzz/ _ka% E 2 E 2 _E
tBwa((5T) = — (27)25 12 azaz'gg,k +en gex| T k Jex (> (2.15b)

gy (C1) = — k1 k’%_kzaa B +encgby | + kgf (2.15¢)
Eyy 5 — (27_(_)2 2[[,L kQ z z’ggk lu gg,k gc,k ) .

’k 1
tp.-(Cr) = — / @ an {azazlggk — kg — augzgfk] . (2.154d)

The corresponding TM contribution is obtained by making the substitution
e+ pand £ — H.

Define the functions e. and h. satisfying proper’ boundary conditions

!The proper boundary conditions for e and hy are usually lirﬂ? (e,h)1(z) = 0, but
Z— T 00

not necessarily. We do see some different conditions, for example at the singularity of the



and the equations

]{32
(1;¢€)

0. 0. — (e, u)C? —

(1,€) (ex, h+)(C, ks z) = 0, (2.16)

then gfk and its corresponding Wronskians WgEk are written as

E / e+ (G ks 2> )e— (G ks Z<) e —epel Dey
= wh = +———"— = 2.17
ng(Z,Z) ”rgk ¢k — 1 ) C4 = 82 ( )

and ggk and its corresponding Wronskians ng are obtained by substituting

€ <> i, e = h. The following identities are very useful

el 0 de _10(epc?) Olnu 0 (€e,
o~ = — 2.1
0 ( TS u) Taac vt o o\ Tk ) O

where 0,p = £. A similar identity for i can be obtained by substituting

€ 4> i, e = h. So ug((;r) has another form

k1 [e e e 0 0 e
a / 27‘(‘ 3 2WE |: 7 —+ C;a—ce_ — C€+—;:|, (219&)

and the reduced stress tensors are

k-1 (k=K ) )
tpa(CT) = / (272 QMW£k{ ka |:€,+6, +eu e+e_} +k e+e_}, (2.19b)

2k -1 (K2—k2
By (G r) = / (2r)2 2“W4Ek{ 2 s {6;6/ + €N<2€+e—} + k26+6—}7 (2.19¢)

N d’k -1 9 )
tp..((r) = / 2n)? 2NWgEk [e+e — (k* +euc )e+e_} (2.19d)

The corresponding TM contribution is obtained by making the substitution
€+, e =~ hand £ — H, which we may refer to as EM-substitution.
When the whole space is filled with one medium, then since the responses

of the medium are local, the TE Casimir energy density and stress tensors

potential. Similar argument is applied in the spherical systems discussed later.

— 14 —



are expressed as

[ dedk ¢ [OI(Cp), (e 10(enc?)
“E“ﬂ“_]/m16w3IWZL{: ¢ az( /L ) _'E'_Ei__e+e‘}’ (2:202)

dCd?k ke e_
Tr. =Tg. = — _— 2.20b
E,II(F) E7yy<r) / 1671'3 /LWgE,k’ ( 0 )
PR () e (A, [ Gk Omles(2),e_ (2 )]
Tz (r) _/ 1673 0z, _/ 1673 —0z_ » (2:20¢)

where the notation [,:], is defined as Vf,g, [f,9l, = f'9/ur — 9 f/p, and
zy = Zz_ = z. For any given plane z = a, the total TE Casimir energy per

unit transverse area in the z > ¢ and 2z < a regions satisfy the expression

> < 2 / /
Uz (a) _ _UE(a> _ / d(df 1E 6_+£ e — Ce+£€—_} ,  (2.21a)
A A 167 chk i OC oC .,
where A is the area of the transverse plate and
[teo _ ]F/ dCdk 1 [ele— L0, e Qé} (2.21b)
B 6w WEL n TpaC T p ]l T

are unphysical constants, which we will always ignore in Uz and Uj;, respec-
tively. Therefore, the total TE Casimir energy of any uniform background is
zero. The TM contributions are obtained with the EM-substitution.

Consider two media (1, 1) and (e, p2) filling in half-spaces z < a and
z > a, respectively. Suppose ¢; 1,7 = 1,2 are solutions for Eq. (2.16) satisfying
proper boundary conditions when the medium i is analytically extended to
the whole space, then ey are solved as

ea 1 (2), z > a,
es(C h;2) = 2:+(2) (2.223)

Aeél,-i-(z) + Beél,—(z)7 z<a,



CeA +DeA — ) > b
e_(C ks 2) = €2+ (2) Co-2), 2> a (2.22b)

é1-(2), z < a,
and the coefficients A., B., C, and D, are

g r@a @ o [e(@). (),

o ’ — : (2.22¢)
Wi Wi

o [él,(a)ié;,(a)]u’ D, — [é2,+(a)1éE1,(a)]u. (2.224)
Wy W

The interaction induced TE Casimir energy density and stress tensors, which
are the energy density and stress tensors with the corresponding bulk con-

tributions subtracted, in the z > a region are

Aug(r) :/dCko —(C {81n((p2)82<é’27+é27+) 1 8(52H2C2)A2

- - A ez |, (2.230)
1675 DWE | oC o e 0C

d¢d*k  K*C, .
ATE;xr(r) = ATE‘;yy<r> = —/ (gﬂ_)g ZM D WE 6%7_“ (223b)
27eVV o

ATEzz(r) :/dCd k _[éL ( ) 62*(61)}/1 8[62 +( ) é27+(z,)]ﬂ

. (2.230)
167 [y (a) 60 (LVF 0% -

while in the z < a region they are

[ d¢d*k —¢B. [0In(C) € 61, 1 8(61,u1§“2)
AuE(r)_/ = AeVT/{E{ O\ ) e & |, (2.242)

dCd?k  K*B.
ATE;xw<r) - ATE;yy<r> = —/ C 2

— (2.24b)
(27T) 211 Ac W1 o

ATg,..(r) = / Aok _—[e14(a),ers(@n Oe1-(2): 1= g 5acy
22 1673 (¢, 4 (a), é1,—(a)]WE 0z

The total TE Casimir and interaction energy Up and AUg per unit transverse



area satisfy the expression

Ug AUg(a) + Ug,(a) + Uz 5(a)

A A

[k dCd?k dnléy (), é1,(a)],,
B / 1673 / 1673 aC ’ (2.252)

while the pressure at the surface z = q, i.e., Pg = Tg...(a-) — Tg...(ay), is

(2.25b)

P _/dCkoﬁln[ég,Jr(a),él,_(a)]u
E 1673 da ’

which means the principle of virtual work (PVW) holds true. The corre-
sponding TM contributions are obtained with the EM-substitution. Consider
a medium (e, p) filling the half-space z > a with a perfectly conducting plate
at z = a, which is a special case when (g1, 1) — (00,1) and (g2, o) — (&, ).
In this special case, the total TE Casimir energy per unit transverse area and

the pressure on the surface are

Iné,(a), (2.26a)

Ug . AUE+U,§71+U,§—U,§’1(Q)__/dgd2k<8

“E_ il
A a0 A 1673 > 8¢

(2.26b)

L d¢d*k Olnléy, é, _],(a) [ dCdPkOnéy(a)
Pp = E}l_r)noo 1673 —da ~Tpala) = / 1673  —0a ’

which shows that the contributions to energy and stresses from the perfectly
conductor are zero; following the same arguments, one can show that the

corresponding TM contributions are

A

(2.26¢)

Uy /dgd?k o . I (a) /d(d?k; )
- 1 Py =—

N 9, M (a)
1673 >0¢  e(a) ’ 1673 da  e(a)

Consider the simplest physically significant planar system, i.e., three par-
allel isotropic media (&, ), ¢ = 1,2, 3 filling in the regions z < a, a < z < b
and z > b, respectively. Suppose ¢; 1, ¢ = 1,2, 3 are solutions satisfying prop-

er boundary conditions for Eq. (2.16), when the medium ¢ is analytically

— 17 —



extended to the whole space, then e, are solved as

é3,+<z)7 z > ba
er(Ckiz) =9 Cyéyi(2)+ Diéy_(2), a<z<b, (2.27a)

Aié+(2)+ Biér—(2), z<a,

A_é3(z)+ B_és_(2), z>0b,
e ((kiz) =4 Céy(2)+ D éy (), a<z<b, (2.27b)

é1-(2), z < a,
and the coefficients are

. [65.+(b), €2 (b)]n D+:[é2,+(b)aé3,+(b)]u

_ ! ’ > , (2.27¢)
WE Wy
C. = [61 —(a)iel—(a)]/ﬁ’ D = [62,4‘(@)161,— (‘I)]u. (2.274)
WE Wy
A, = Cyléa(a),é1-(a)l, :" Dy [és, (), éL_(a)]“’ (2.27e)
WE‘
1
B, = Cilé4(a),é4(a)l, :" D [er+(a), é ’(CL)]“, (2.271)
WE
1
A C_lé2,4(b), é3_(D)], :1— D_[éy_(b), é3 —(b)]u7 (2.27g)
WE
3
B = C-léss ()62l + D_[es1 (1), én-(B)lu (2.27h)
WE
3
which means the Wronskian is
WE = BLWE = (C,D_ — D.C_)WEF = A,WE. (2.279)



The TE Casimir energy per unit transverse area is

Us  [dCdk D
e _ _/ T nAs(ab) (2.28a)

and the TE pressure at z = b, i.e, Pg(b) = Tg...(b_) — Tr...(by), is

dCdk
Pulb) = — / fw & InAp(a,) (2.28b)

where the unphysical terms have been ignored and

Ap(a,b) = [é31(b),é2(b)]u[e24(a), é1-(a)l,
—[e34+(]), €2,1(b)]u[é2,-(a), é1,-(a)] .- (2.28¢)

The PVW holds true as well. After subtracting the Casimir energies and
pressures, demonstrated in Eq. (2.25), for the reference configuration as in
Ref. [19], the interaction TE Casimir energy per unit transverse area and

pressure at z = b are

A / 1673 Cag Inog(a,b), APg(b) = / = ablnoE(a b), (2.29a)

where og(a,b) is

op(a,b) =1~ £ (2.29b)

The corresponding TM contributions are obtained with the EM-substitution.

2.2.2 Spherical systems

When the properties of a system varies in the radial direction, we refer to this
system as a spherical system. In spherical systems, the reduced Green’s
functions defined in Eq. (2.6) can be expressed in a simple form with the
vector spherical harmonics. When the permittivity and permeability of the

system are isotropic, the reduced Green’s functions I'¢(r,r’) and ®.(r,r’) are



written simply as

1(1+1) H +6(7‘—r/) Vi(+1) d(ﬂgé’l)

oo} l eerrr 9 er? ee'rr’

Le=> > {Ta“g“ m—— 822‘:;%” 4 8= . (2.302)
e _42951
R M(;l;lf) B (;r;’) Mib(/lj;}) a(ra’flf,,)

=) ), ma(?ﬁ” 1 Plrecy) | sty . (2.30b)
=1 m=-1 _CQle

where the label of the matrix is glven by [1 2,3][1,2,3]", which means I'¢, as

well as @, has the form I'¢(r,r') = Z Z i (r, 7" ) XT3 (2)X7%(€Y'), in which
m=—I1 17‘7_

X{Z(Q), 1 =1,2,3 are defined based on the results in Appendix A.1l as
() = Y7"(Q), X5(Q) = ¥7"(Q), X[5(Q) = ¢"(), (2.300)

and the ggl, ggl are defined with the equations

d_ 1 d I+l ool
{Tdr(u,a)drr (1,€) (e, )¢ 19@ (r,r") =d(r—1").  (2.30d4)

The reduced TE Casimir energy density and stress tensors at r are thus

— v [O(e) o(Cu) [U(1+1) 1 32(7"7“’95)
>:ZE{ ¢ Coci = o¢ | p*r? g§l+u2r2 oror’ , (2.312)

' _ v il(l+1) 4
b0 (C51) = tapp((5T) = — ?:1 T 9 (2.31b)
ZOO v [ 1 P0r'98) g W+1) g
tE;rr(C, I') = — E {WW — 5C gCal — Wgc’l s (231C)

where v = [+ 1/2. The TM contributions are obtained by making the sub-
stitutions € <> 4 and £ — H.

Define the functions e, and h. satisfying proper boundary conditions and



the equations

d 1

4 1(1+1)
dr (u, €)

(1, €)

%T— — (£, w)C*r? | (ex, he) (¢ ) =0, (2.322)

then gfl and ggl are written as

1 (¢, 1 N hi (G Lrs)h (G
gfz(r,?“’)=6+(C TTA)/GE(C T<),g§,(r,r)= +(¢ T;I)/H (¢ T<), (2.32b)

where Wg and Wy are constants, i.e.,
2 2

Wk = %(6;6_ —epel), Wi = %(hﬂrh_ —h h"). (2.32¢)

We further define ¢(r) = re(r) and h(r) = rh(r), which means the Eq. (2.32a)

has the following forms

d 1 d Ii+1)

dr ’ lir)=0 2.33
dr (p.e)dr— (p,e)r? = (&) | (e, b2)(C, 137) =0, (2.332)
which render the Wronskians as
wr = S e e Db Zbeb 2.330)
’ 1 5

The following identity is very useful

0 Jr) o

5 e—L((CC T;) ac (Cular) (C7Z7T)
o 10(epc?) Olnp 0 (¢ e
T oTa o T E( P )

(C,l,r)]]
¢ pu(¢,r)

(2.34)

and a similar identity for ) can be obtained by substituting ¢ <> © and ¢ — .

So, the TE Casimir energy density and stress tensors are

_ . fd¢ ¢ [0l(Cu) O (e 10(epc?)
47TTQZ /27TW€EZ|: aC 8r( 14 )_E oC ere—|, (2.352)

TE;%( ) T, w

> d¢ 1 1(1+1)
47r1”2Z /QWWE pur? e (2.350)
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TE rr

Z /dg 1 [e’i r)e;(r)_ei(r)ﬁe%(”} (2.35¢)

T 4 2r W§, ,u or u

and the TE Casimir energy is

. (2.35Q)
r=0

d¢ 1 [e (r)dCe_(r) d ¢ (r)
Z /%WE[+ O T }

and the TM contributions are obtained by making the EM-substitutions
E4ru,e—>hand £ — H.

Consider a dielectric ball of radius a with permittivity ¢; and permeabil-
ity p;, immersed in a medium (&,, t,). Suppose ¢;+, j = i,0 are solution-
s for Eq. (2.33a) satisfying proper boundary conditions, which are usually
rli_)noz ¢j+(r) =0, ¢;,_(0) < oo, when the medium is analytically extended to
the whole space, then ¢4 are solved as

o (1), r>a,
ey (r) = +7) (2.362)

Ace; 1 (r)+ Beti (1), 0<r<a,

OEEO +De/éo— ) > )
e (r) = +(r) ), r>a (2.36b)

e (1), 0<r<a.
where the coefficients and Wronskians are

[éi,-i-(a)v €O7+(a)]ﬂ

4 on@e@l

2 . : (2.36¢)
C = [ei,—(a)leo,—(a)]u7 D, = [¢0.+(a), ei,—(“)]u’ (2.364)

Wy Wy

WE=DWF=AWF. (2.36e)

Accordingly, the TE contributions to the interaction induced Casimir energy

density and stress tensors, which are defined as in planar cases, in the region



r > a, are

_ > dg C [é@_(a)a%o,—(a')]u
¢

Buelt) = a7 | on e (@) (@)l
OIn(Cuo) O (€ 1o+ 1 I(eoftoC?)
X|: aé_ 87“ 1 m aC 6074’_207_’_ s (237&)

ATpp9(r) = ATppp(r) Z

47rr2

d¢ 1 [e;-(a), e e, e . e,
AZTE rr - 3 / C e a eA : (a>]” |: ot eo,—i-g ax 5 (2.37¢)
471'7’ 2T WE [eo1(a), i —(a)lu | Ho or fio
while in the region 0 < r < a they are
S d¢ ¢ [ei(a), eo(a)]
A — ) 5 H
uelt) = s Z / 21 W (604 (), &, (a)],
1 el _e; 1 (e 2
< a n(§/"t’l) 1, ’ _ (E /’L C )el 721/ _1, (2.38&)
¢ or i i O0C 7

The TE pressure on the surface r = a and TE Casimir energy are

Z / nfe,+(¢, 5 a), e, (C, 1 a),, (2.39a)

= Ana?

Z / %cﬁm Bors (G, 1), &0 (.1 0)) (2.39b)

There are two different half-space cases, i.e., I: r < a, (g, ) = (g, p);7 >



a, (€0, o) = (00,1) and II: r < a, (g4, ;) = (00, 1);7 > a, (g4, o) = (€, ). For
case I, the total TE and TM Casimir energy per unit transverse area and the

pressure on the surface are

dCC 8 R _ o0 —v dC a N
_Z / 27T8C - Ine; (a), Pp(a) —247?&2/%%11&%_(@), (2.40a)

d¢¢ 6 L(a) & v [ A;’_(a)
Z | Sy P =3 s [ ey @ 40w

For case II, the corresponding terms are

Us _x~, [4C0 _OO_V/%QA
1 —ZV/ —on 3¢ Ine,+(a), Pgp(a) = Z47Ta2 — Ine,(a), (2.41a)

d¢¢ 9 | ;,+(a) d¢ 0 . b, (a)
Z / 27?8( e(a) ’ Prla) = 47ra2/27r8a ( a) (2:410)

Consider the concentric configuration, in which a ball of radius a¢ made
of the medium (e1,p;) is covered by a layer of medium (3, 2) with the
outer radius b, and the r > b region space is filled with a medium (e3, u3).
Suppose each of the three media is extended analytically to the whole space,
then denote the solutions of Eq. (2.33a) with proper boundary conditions

imposed as éi7i, hi,j:- Thus, the ¢4 and their Wronskian are

é?)74-(7“)7 r > b)
e (r) =< Cieay(r)+ Dyeo (r), a<r<b, (2.42a)

Ayer i (r) + Bie (1), r<a,

A_e3 (r)+ B_es_(r), r>b,
e (r)=1< C e (r)+D 2 (r), a<r<b, (2.42b)

e1— (1), r<a,
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where the coefficients are expressed with ¢s and their Wronskians W as

R G O S () P R DI O)

B, = S ,
O - [el—(a)iéz,—(a)]u, = [¢2 +(a)ié1,—( )]u’
WE WE
4 = C-leas(b) e (B)], + D_[ea—(b), 85— (D),
- W ,
. — Cltsi(0) & (0]t D_[fs4 (b), & (D),

WP =B_WEF=(C,D_ - D,C)WEF =A,WE.
The TE contributions to the Casimir energy are
Z / = ln Ag(a,b),
where Ag(a,b) is

Ap(a,b) = [e34(b),e2-(b)]ule21(a), 21 (a)],
—[e3,4(b), €24 (b)]u[e2,—(a), &1,— ()],

(2.42¢)

(2.424)

(2.42¢e)

(2.421)

(2.42¢g)

(2.42h)

(2.421)

(2.43a)

(2.43b)



while the TE pressure at r = b, i.e, Pg(b) = Tr.r(b_) — Tr.r(by), is

1 — ¢ o
Pr = T lZ:; V/ %%ln Ag(a,b). (2.43¢)

The interaction TE Casimir energy and pressure at r = b, which correspond
to the counterparts in Ref. [19], are obtained by replacing the Ag(a,b) in
Eq. (2.43) with

(3,1 (0), 82,1 (D)]u[e2, - (@), &1, (@),

[63.4.(b), &2~ (D)]u[e2 1 (@), &1 —(a)], (2.44)

og(a,b) =1—

2.3 Homogeneous systems

In this section, we, for clarity, concentrate on the Casimir energies and stress
tensors in two types of geometries, namely the planar and spherical geome-

tries as before, consisting of nondissipative homogeneous media.

2.3.1 Planar systems

As described above, the Casimir effect research only developed in the planar
geometry in its early days. Though most experiments testing the Casimir
forces are carried out in the plate-sphere structures so that the alignmen-
t difficulty is suppressed, the proximity force approximation (PFA), which
dates back to 1934 [124], based on the results of planar Casimir effects, is
widely employed in the comparison between experiments and theories. Here
we demonstrate some basic properties of the Casimir energy densities and
stresses in three common types of planar configurations, i.e., the uniform

background, two-media background and parallel configuration.

Uniform background

As is well-known, the electromagnetic field, on its own, is not sufficient to
keep a self-consistent stable nontrivial background. In our analysis, we take
the backgrounds as our given constraint conditions. Owur studies on the

background here is only limited to the simplest case, in which the permittivity



and permeability of the background, denoted as ¢ and p, are homogeneous
and nondispersive. Thene,(z) = h (z) = e " ande_(z) = h_(z) = "%, where
= \/k? + €uC?. Regularize the physical parameters with the point-splitting

regulator . When § is temporal, we have

(r) /OO drk? /”dQSiHHCOSQQ 3 (2.452)
u r = — —_—K " = . a
E 0 87T2 /_5,“64 0 e—mcosé’ 27’(’2 /_€M54’

*  drk? T gin®d 1
Tiona(t) = Ty (v) = | — dh——" = . (2.45b
E; (I‘) E,yy(r) /0 1671'2\/@(54/{/0 efmcosa 27-‘-2\/@54 ( )

*  dkk? 7 sin 0 1
Too(r)=— [ —0 do— - : 2.45
E; (I‘) A 877'2 /€N54I{/0 e—mcos@ 271-2 /5,u54 ( C)

where the rapidly oscillating terms are zero. When the regulator ¢ is spatial,

which is chosen the z-direction without losing any generality, then we have

. (r)—/ —dkK> / dg/% sinf cos® -1 (2.462)
E - 0 1671'3\/_54 6 iksin@cosp 27-(-2\/@54’ :

sin® ) cos? o -3
Tg. = do 2.46b
E,w:v(r) /0 167’(’3 /_54 / / e—iksinfcosp 92 /—54’ ( )

*  drk? 2T sin® @sin? @ 1
Tg. = —_— do — = 2.46
E,yy(r) /0v 1671'3\/_(54 / / 6 ik sin 6 cos ¢ A2 /glu54’ ( c)

*  drk? 7 2m sin 0 1
TE.» = — P ——d df d — = . (2.464d
E; (I‘) /0 16%3\/@5‘“{/0 /0 gpeﬂksmecosgo 271—2\/@54 ( )

We claim that the regularization scheme will affect the regularized expression-
s, but the relation ug = Tg.ps +1TE,yy +1E;.. is always true. The corresponding

TM contributions are obtained with the EM-substitution.

— 27 —



Two-media background

Consider two homogenous media (e1,41) and (eg, o) filling in half-spaces

z < a and z > a respectively, i.e.,

€2, Z >0 Mo, Z>a
e(z) = 7 Cop(z) = 7 7 (2.47)
€1, z<a, t, 2 <a.
Then for TE mode, €+, ¢ = 1,2 are solved as ¢, + = e™"*, where Kk; =

Vk? 4+ €;11;¢?. The interaction induced TE Casimir energy density and stress

tensors in the z > a region are

(2.48a)

dCd?k Kopty — Ko, [OIn(Cpo) Oka | _op (s
A _ o2 k2(z—a)
ug(r) / 1673 Kypip + Kopin ¢ " ¢ ‘ ’

dCko’ k?Z(liglul — Iillug)
1673 2ko (K12 + Kopt1)

ATpis(r) = ATpyy(r) = / e 2270 (2.48D)

and ATE;ZZ(r) = 0. The corresponding TM contributions can be obtained
by making the substitution ¢ <+ p. Only in the special case, in which the
media are nondispersive and diaphanous, i.e., €1/, = €api2, we have Au(r) =
Aug(r) + Auy(r) = 0 everywhere.

In the special case where (g1, 1) — (00,1) and (€9, p2) = (&, 1), the inter-

action values in the z > a region are

d¢d’k _[01 0
Aug(r) = _/ 1%73 C[ na(g””nz - aigﬂ e, (2.492)
d¢d?k 1
Aulr) = / = C[a naf% - %_fﬂ e, (2.49b)

Adcd?k  —k?

3273 Kqe2r2(2—a)’ (2.49¢)

ATpa(r) = —ATyu(r) = /

and ATg,,(r) = ATpu(r), ATy (r) = ATy, (r), ATg,..(r) = ATy,..(r) = 0.



When the media are nondispersive, we have

—1

~ 1672, fei(z —a)t

Aug(r) = —Auy(r) = 2ATg..(r), ATg...(r) =0. (2.50)

Parallel configurations

Now consider the interaction in the parallel structures, i.e., the systems con-
sisting of parallel media. In Casimir’s original configuration [1], which is two
perfectly conducting slab filling in half-space separated by the vacuum, the

electromagnetic zero-point energy with transverse area A is

> d?k n2m2
EIL}:A,ZT/(%)2 SR 251

where 2a is the distance between two perfectly conducting slabs, k is the
amplitude of the transverse wave number k, and the polarization of photon
has been counted. With dimensional regularization, the zero-point energy

per unit transverse area £ = F,/A is written as

[ dlk [ s tRntTaet) (g 4 2)T(1 + d/2)
521;/( /0 dt - . (2.52)

27)d r(-1/2) C a1 (9q)dH

which means in the special case we are calculating, £ and hence the Casimir

force per unit transverse area F = —0&/0(2a) are obtained with d — 2 as
1 2 1
= - F-_T 2.53
720 (2a)? 240 (2a)? (2.58)

which are just the results in Ref. [1]. Also, this problem can be solved with

(E,H)
k

the Green’s function method, in which gc in Eq. (2.12) are solved as

sinh k(zs — a) sinh k(z< + a)

96(2,7) = : (2.54a)

ksinh(2ka)

cosh k(zs — a) cosh k(z< + a)

A(z,7) = 2.54b
9c (:7) —r sinh(2ka) ’ ( )



where k£ = /(%2 + k2. So the energy density u(r) and the zz-component of

stress tensor 71,, at z = a_ are

27, -2 2
u(r) = —/C(lg%];%cothQna, T..(a )= —/%Kco’ch%za. (2.55)

By omitting the unphysical background contributions, we get the energy per
unit transverse area between the two plates £ and the force per unit area on

the plate z = a, denoted F,,

2

1 * T
= | drrd(cothr — 1) = ——— 2.56
¢ 4&#¢{A w(coth s =1) = ~ 765 (2.:562)
Fo=To(a) = —— /Ood 3(coth k — 1) ™ (256m)
o =41, (a_)=— RK(COUNl K — = - ) :
32724t 3840a"

both of which are consistent with the results in Eq. (2.53).

In 1956, Lifshitz [10] generalized Casimir’s original model to a more practi-
cal one, consisting of two parallel homogeneous dielectric materials separated
by vacuum. Then, Dzyaloshinskii et al. [11, 12] used another homogeneous
medium as the intervening material, i.e., the DLP model. In a DLP model,

the permittivity ¢ and permeability 1 of the system are typically

€3, z>b 13, z > b7
e(2) =1 e, a<z<b, wz)=q w2, a<z<b, (2.57)
€1, z < a, Hi, z < a,

where ¢;, 1;, © = 1,2,3 are all homogeneous in their regions. The two-body

interaction Casimir energy per unit transverse area of the TE mode is

2
£, — 1/ d¢d ];111 [1 n (Kahty — Kaps)(Kofty — K1N2)62m2(ba)1’ (2.582)
2/) (2nm) (Kaptg + Kapiz) (Kapin + K1piz)

while the pressure on the z = b interface is

0 dCd?k
er = TE;zz(b*) - TE;zz(b+) = _%EE + / (gTP (% - %)7 (2.58b)



where k; = \/m and the last term is the bulk contribution. The
corresponding TM contributions can be obtained by making the substitution
€ <> . When p; = s = pug3 = €9 = 1 and €1,e3 — o0, Eq. (2.58a) is
consistent with the result in Eq. (2.53). When the media are nondispersive
and diaphanous, i.e., €141 = €942 = €33, the pressure on the z = b surface

satisfies the expression

Fp=Fuy —3 Li (12 — p3) (p2 — 1)

1672 /Eafiz(b — a)* " | (piz + ) (11 + p12)

2.3.2 Spherical system

As we know, except for few particular cases [21, 28], there are long-standing
ambiguities in interpreting the Casimir energies and stresses of spherical con-
figurations due to divergences, especially logarithmic ones. Arguments and
works are still going on in this field. Here we briefly give some fundamen-
tal results for Casimir energy densities and stresses in two kind of spherical

configurations, namely two-media backgrounds and concentric cases.

Two-media background

Consider a nondissipative, isotropic and homogeneous (NIH) ball immersed

in a NIH medium. The permittivity ¢ and permeability u are

€9 r>a o r>a
e(r) = 7 ’ p(r) = ’ 7 (2.60)
g1, 0<r<a, wi, 0<r<a.
Then for TE mode, ¢4, ¢ = 1,2 are solved as ¢, = e;(k7), ¢ = S(kir),
where k; = v/¢;11;¢(?>. The TE contributions to the interaction induced Casimir

energy density and stress tensors, in the region r > a, are

sl K1a), 81(Kk2a)],
Aup(r Z 47r? el Koa), Si(K1a)],
01n(Cus) ael(ngr)el(@r) Oky 4
X { o o 2 o e; (kar) |, (2.61a)



ATpp9(r) = ATpp(r) = i A D / & lntma), sl isd)) 612(,{27“), (2.61Db)

— A’ 21 lei(koa), si(kr1a)],  Kor?

ATp (1) = Z v %@ [Sl(/‘vla%sl(“?a)} [612(@70) — ey(kar)e] (kar) |,
1 I

— dmr? | 21 " [e(k2a), si(k1a)

(2.61¢)
while in the region 0 < r < a they are
A Z el K1a), e1(k2a)],
2l 4mr? el Koa), Si(K1a)],
Jln(Cu )83 (k1r)si(kar) Ok
x[ o LA 187“ ML aclsf(/ﬁr) : (2.62a)

ATgpe(r) = Alp,p,(r) = i Ay / & lalma, ol sitar) (2.62b)

21 [e1(koa), si(k1a)], Kkir?

ATp(®) =3 v /%m [ez(ma),ez(mza)L {Sf(/fl?“) = sl ()|

m  lei(kea), si(k1a)
(2.62¢)

The corresponding TM contributions can be obtained by making the substi-
tution € < u.

Consider the half-space background of type I and II as in Sec. (2.2.2),
with homogeneous media (£1, i11) and (ea, pi2), respectively. For type I, in the

region 0 < r < a the parameters in Eq. (2.62) are

d¢C ek OIn(Cur) 9si(kar)si(kar) OK1 4
Aup(r) 47rr2/ 21 s1(k [ a¢ or 2 ¢ si(mr)|
(2.63a)
— Y+ 1) [ d¢ea(ka) s (k)
ATso0(r) = Ao lz:; 472 /27r si(k1a) Kpr? (2.63b)
ATg,(r) = 47T7“2/ {822(/117‘)—sl(mr)sg’(/ﬁr) . (2.630)



When ¢; and p; are nondispersive, we have

drx e(r) [dsy(xd)s;(vd)
IO p— glmz / el [ e 257(wd)|, (2.64)

where v = [+ 1/2 and d = r/a. In the region not far from the spherical center,

or d — 0, the nondispersive Aug(r) is written as

0 2 ! —
Aup(r) ~ / drz3d® e(x) [ZSQ(xd) B dsl(xd)sl(xd)] _ 0.11866. (2.65)
0

8m2rt, /111 s1(x) d(xd) a* /1
Evaluate the Aug(r) with the uniform asymptotic expansion (UAE), detailed
in Appendix A.2, which means in the region 0 < r < a, to the first order, we

have

dﬂ? 621/77(zd —2vn(z) 2
A 1), (2.66
ue(r) = 47T7’4 Ve Z / (\/1 + 2242 * ) (2.662)

where z = /v and 7 are defined as

z

In the limit @ — oo and the substitutions v/a — k, >.,° v/a®> — [ dkk,

Aug(r) is approximated as

Aup(r) — Z = L (N
u
" 47ra4 VELHL V2 + a2

_ —1 (2.66¢)

1672\ /ey (@ — 7“)4

which is consistent with the result of Eq. (2.50). For type II, in the region

r > a the parameters in Eq. (2.61) are

d( si(k 0 In(Cpa) O€)(kar)ey(kar) Oky o
Aup(r Z 47Tr2 27T el(k { ¢ or -2 a¢ i(rar))
(2.67a)
VIl +1) [ d¢ si(koa) €?(kar)
ATpgo(r) = ATppp(r) = = g / o arlmad) Rt (2.67b)

=1



/2—C Slgﬁga; |:€;2(/€27”) — e(Kar)e] (kar)|. (2.67¢)
Similar arguments follow. In the rest of this section, we mainly focus on
the pressure at the interface between two media, which is thought to have
directly measurable physical effects.

Consider a special case, where two media are separated by a infinitely
thin perfectly conducting shell of radius a with (¢, ) inside and (eq, u2)
outside. When the media are not only homogeneous but also diaphanous,

i.e., €141 = €242, then the pressures are

d¢ dlne KJCL)SZ Ka) d¢ 9lne KJCL)SZ(KJCZ)
PE_Z47T6L2/ PH_Z47T6L2/ ’
(2.68)

which means P = Py + Py is consistent with the principle of virtual work
P = —0AU/0a according to Eq. (2.40) and Eq. (2.41). Those are the well
known results [69, 21], which eliminate the validity of the semiclassic model
for the electron proposed by Casimir [21], because of its repulsiveness.
Consider a relatively well-behaved special case, where the media are di-
aphanous (€111 = €32), then V(, k1 = ko = Kk, and the TE and TM pressures

on the surface r = q are written as

o

Pg(a) = Z o Pl(cos 0)=— 5 / d e In [1 + %el(na)si(ma)], (2.69a)
=1

a z(/ﬁla)s;(/{a)}7 (2.69b)

d
Puta) = Y s Rtcoss) - [ e 1 e
1

where the angular point-splitting regulator ¢ and temporal point-splitting
regulator 7 are included. For brevity, we further assume the dielectric ball

is nondispersive and dilute, ie., e9 = s =1, &g =1+¢€¢ — 1. To the second



order of ¢, the pressures are

PP (@) = ~P0) = 3 Lo Plcosd) L [ e edlasiiicla)

2
=1

4uba® — (ut — 12u* + 48)u*r%a* — (3u* + 12u® — 16)7a® — 6(u? — 2)76
“8n2(4a? + m2)2(a2u® + 12)3 /e
—€ 3€ e 1
- = uso0r=0 — - -
" e 3212a*  8m2a? 7%’

592’ u=0,7—0, (2.70a)

where u = /2 —2cosd — §, and Pg)(a) = Pl(f)(a) - EPg)(a), in which

2

= v o [d¢ .. ,
PR = Y £l Rteosd) g [ e (cla)sicla)
=1

2

€ (1 € 5
= _§pg )(a) + STy 0=07-0, (2.70b)

which are consistent with known results [32]. The total pressure P = Pp+ Py

at r = a, when evaluated with UAE to the first order, is

o0

—v o 0 .
P(a) = Z WPI(COS 5)/0 dx COS(ITQ)I% In {1 — éey(z)e)(z)s(z)s)(x)
I=1
3€ 3€ 1
N oy = S (f R - 2.71
oot U 0,7 —0; 10247ra4< u)’ u—0,7=0, (2.71)

where ¢ = ¢%/(e+1) < 1. Except for the ambiguous divergence resulting from
different regulators, we find a unique finite pressure, which starts from the
second order of €. It does not agree with the declaration in Ref. [33], which
has been pointed out [35]. The arguments still remain [125], which makes

this problem lively again.

Concentric configurations

There are not much work on the Casimir effects in concentric spherical sys-
tems done until now [126, 127, 128], as far as we know. We would like to
present some basic results from our point of view here. In a homogeneous

concentric configuration shown schematically in Figure 2.1(a), the permit-
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Figure 2.1: (a) The concentric configuration. (b) The eccentric configuration.

tivity € and permeability y of the system are typically

€3, r>b [z, 1> b,
e(r) =194 ey, a<r<hb, p(r) =94 po, a<r<b, (2.72)
€1, 0<r<a, wi, 0<r<a,
where ¢;, it;, © = 1,2,3 are all homogeneous in their regions. The interaction

induced TE pressure at r = b is

24@2/2 o noe(a.b), (2.73)

where og(a,b) in this case is

ei(ri3b), er(k2b)]ulsi(k2a), si(k1a)],
[ei(r3b), si(kab)]ulei(r2a), si1(k1a)],

og(a,b) =1— (2.74)
The corresponding TM contribution is obtained by making the substitutions
€ <> pand F — H. Consider the limit case, in which a -+ occ and d =b —a
is fixed. In the limit ¢ — oo and the substitutions v/a — k, >, v/a*> —

Ji° dkk, P is

d¢d*k 0 (Rapta — Ropiz)(Rapty — Rifiz)

~— [ = In |1 4 e 2Relbma) 2 - A - ,  (2.75)
E / 1673 Ob [ (Rafto + Ropg)(Ropty + Ripi2)




where i; = \/k% + &;u;(%, i = 1,2,3. This result is consistent with Eq. (2.58).
For the spherical version of Casimir’s original configuration, where ¢; =

€3 =00, 3 = 3 = 1, op and oy are

ei(kab)si(koa)

¢ (r2b)sy(r2a)
si(kab)er(koa)’ '

op(la,b) =1—
s(e.t) SH(Rab)ef(z0)

O'H(CL, b) =1- (2.76)

Then further suppose ¢, 12 are nondispersive for simplicity, the TE and TM

pressures at the spherical shell » = b are, respectively,

Pgp=— 1/\/%82 / dxln[l— (Z) (a)]’ (2.77a)

4r2h2

47r2h2

Py =— 1/\/%82 / dxln[ M} (2.77b)

In the limit @ — 0, the pressures are

3/\/Eapiz O [ e1(xb)sy(za) 2.9823a3
P — deln |1 - ———F |~ ———, (2.78
T 8b/ o [ s1(xb)er(za) 4b7T\[Eafia (2.782)

4.049143
(m)] N B0 s

3 o0 /
s S [* [y clabbten] _aoie
820 Ob sh(xzb)e AmbT, [ea s

—_~|=~

In the limit @ — 0o and d = b — a fixed, they are evaluated with the uniform

asymptotic expansion as

Prg =Py —
E " 480(b — a)*\/Eajin’

(2.79)

which is consistent with the results in Eq. (2.66) and Eq. (2.75). It can be
checked that in the limit d = 0 —a — 0, Pr and Py, to the leading order
of UAE, satisfies Eq. (2.79), which means when the separation is small the
interaction is local and the curvature effects are negligible.

Consider the generalized DLP configuration, in which the three medi-

a are nondispersive and homogeneous. Then, the general form of the TE
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Figure 2.2: The AUg (left, in unit 1073/,/e2b) and AUy (right, in unit 107!/,/22b) as
functions of the scaled permittivities &1 = y/€1/e2 and é3 = /e3/eq.

contribution to the interaction Casimir energy is

N Tdr, [ lalenz), el@)u[si(zd), sicipad)],
AUE—l;mb/o ! {1 [el<c32x>,sl<x>1u[ez<xd>,a(mxdﬂu}’ 280

where ¢;; = \/Eifli/\/E;ltj, © = kob and d = a/b € (0,1). To clarify our analysis,
set (11 = po = pug = 1, then Eq. (2.80) is

o0

AUy = ) v /OOO dﬁ]n{l N [el(fsx)»ez(if)]url(xd)aSl(élxd)]u}, (2.81)

where &; = \/sl/—eg and AUp can be obtained by making the substitution
€ <> p in the brace. For a given d = (0.5, the dependences of AUy and AUy
on (é1,£3) are shown in Figure 2.2.

For the simplest eccentric case shown schematically in Figure 2.1(b), in
which a perfectly conducting ball of radius a is located in a spherical cavity
of radius b inside a huge perfectly conducting bulk and the distance between
the centers of the ball and cavity is ¢, ¢+ a < b. Suppose b —a < 1, then the
Casimir net force on the ball is evaluated with PFA as

™ a  cla+o)t (b —a®+AP) 7 (a + b)ac

b= 90 (a+c)* [(b—a)2— )3 ~ _%W, (2.82)

which is attractive. Obviously, when the system is concentric, i.e., ¢ = 0, the
net force is zero. It is more interesting to study the non-concentric Casimir

force in the dielectric spherical system, where vacuum levitation of the ball



may be obtained. We will proceed in this direction in the future.

2.4 Inhomogeneous media

The understanding of the properties of the Casimir energies and stresses in
inhomogeneous media are actually rare and superficial. The studies in this
field are mainly concentrated on the properties of divergences, the renormal-
ization, and the inhomogeneous Casimir forces. In this section, we briefly
investigate the Casimir energies and stress tensors in the presence of nondis-

sipative, nondispersive and inhomogeneous media.

2.4.1 Planar systems

In this section, we calculate the Casimir energy densities and stress tensors in
inhomogeneous two-media backgrounds. Since we have given a self-consistent
renormalization scheme to get the interaction Casimir energy and forces in an
inhomogeneous parallel configuration above and in Ref. [19], we will evaluate
some specific inhomogeneous parallel configurations, which may lead to some

further insight into the influence of inhomogeneity.

Two-media background

Consider two media (e1, pt1) and (e, y2) filling in half-spaces z < 0 and z > 0,
respectively. To demonstrate the inhomogeneity effects, we assume (1, ;) is
nondispersive and homogeneous, while (&9, 115) is nondispersive but inhomo-
geneous. Then the interaction TE Casimir energy density and stress tensors

in the 2z > 0 region are

dCd?k R,
A = R P 2k? — K2)é2 2.83
us(r) / 1673y, WF [62’++( ") | (2832)

2 2
L f i R; &+, (2.83Db)
167 ,U2W2

ATpa(r) = ATy, (r) = /



ACdPk Re v Oléa 4 (2), €24 (2-))]
ATg...(r) = = : i = 2.83
while in the z < a region they are
dCd’k R [ 2 2\ 52
ATy (r) = ATpy, (1) = / S O (2.84b)
Eixx - Eiyy - 167T3 ILLIW]-E‘ 1,—» .
dCd2kR _8[é1_(2) él_(z_)]
ATy, (1) = : i~ £ 2.84
where R,y = [€2+(0),é1+(0)],/[é2,+(0),€61,-(0)], and é; . are the same as in

Eq. (2.27). The corresponding TM contributions are obtained by making
the substitutions € <> y, e -+ h and £ — H.

Consider the general behaviors of those parameters in Eq. (2.83). To this
end, we further assume (e1,1) = (1,1) and &5 = €y + €12 + €222, s = 1 for
clarity. Thus, é;4 = e™*, Kk = \/m, while é94(2) = eT™*f, 1 (2) are

determined by the equation
02 F 2k0. — 612 — 62C222] fes(z) =0, (2.85)

where kg = \/ k% + €(?. With the boundary conditions satisfied, assume the

zeroth order in €, €y of fe,i are both 1, then to the first order we have

€1C22
B 2 3
4k 4Ky

2 2
(1+koz) F €20 2 <1 + Koz + 511322), (2.86a)

which means, to the first order of €;, €2, €2 + and their Wronskian satisfy

2 2 2
éé,ﬁ: A2 FeTr0? /{0:&641—(2(1:{:/{02—/%(2)22)—#642—%(1:*:I€OZ+I€(2)ZQZF§I€323):|, (2.86Db)
Ko Ko

e WE ~ —2ky — =2, (2.86¢)



Then the reflection parameters 7.+ in Eq. (2.83) and Eq. (2.84) are, to the

first order of €1, €,

R — é/2,—(0) - “é2,—(0) R —Ro n C_Q €1 _ CQ_KJ €2 (2.872)
T e (0) — ke (0) T KAk 2k (K + k)2 263 (K + ko)? '

e, (0) + réa (0 ko — Kk (k€ 2k €
R&_ _ Al27+( ) A2,+( ) ~ 10 + C_2—12 + 4_3—22 (2.87b)
¢, (0) —Kéa i (0)  k+hy 268 (n+ho)? | 263 (K + o)

To illustrate the effects due to €, €5, we set ¢¢ = 1. Then to the first order of

€1, €2, in the z > 0 region we have

Aug(r —(€1 — €22
ATpue(r) = ATp,y,(r) = 5( ) A~ 1(9;O7T223), ATg...(r) =~ 0, (2.88a)

while in the z < 0 region they are

Aug(r —(e1 — €22
ATp.pu(r) = ATy, (r) = §< ) 1521()7T2|;|3), ATp,..(r) = 0. (2.88b)

For TM mode, hy s+ = e¥%, while hy 1 (z) = e¥7 f,, , () are solved with

€1 + 2€92

€0 + €12 + €922

0% F 2ko0. — (0. F ko) — CPerz — ngQZQ] fra(z)=0. (2.89)

With the boundary conditions satisfied, assume the zeroth order in ¢, €y of

fh,j: are both 1, then to the first order we have

9 2 €9 (&) + €1R0 .9 2 €2C2 3
k _— _— 2.90

€1Rg + €9

(1) _
fh,i(z) 450“8

which means, to the first order of €y, €3, iLgd: and their Wronskian satisfy

~ N reoz €1ko T €2, o 2 €2 €2 & €1k 2 2
/27:|: ~ e:F 0 {:FKO+W(KO+I{; )+ {;_m(2ﬁﬁ+€0< ) z
2 2 + 2
- €2</<60 +€0C ) _ & 61"f0€2 52 + 62C 3 : (2.90b)

260%0 4/43() 6

. 260 K2+ K? . 2K0% k% 4+ k2 — 4dki2?

Wi~ - 20 20 ey e W =2k — ¢ 007 ¢, (2.90¢)

€0 2€5Kp €0 2€0K;



Then the reflection parameters [?), + corresponding to those in Eq. (2.83) and

Eq. (2.84) are, to the first order of ¢y, €9,

2 2 2 2
€0k — K € ki + k €k Ky + k
Ry e = 0 _ 1 0 St (2.91a)
€k + Ko 260/4/0 (Eol‘i—i-lio) 2%0 (GUH+/€O)
2 2 2 2
Ko — €0k €K ki+k €k Ko+ k
R, ~-—2 0% “1» T% 2 0 (2.91b)

)

ok + ko 2k2 (eok + Ko)2  2k3 (eok + Ko)?

When ¢ = 1, then to the first order of €;,€;, the parameters in the z > 0

region are

A 3(ep —
ATh 30 (r) = ATy, (r) = u;;(r) ~ ((SZOW;,;:)’ ATy...(r) =0, (2.92a)

while in the z < 0 region they are

Aug(r 3(e1 — €22
AT (r) = ATy, (r) = g< ) ~ é46w2|j|3)’ ATy...(r) =0. (2.92b)

Our results here tally with those in Ref. [118].
Consider the special case where the region z < 0 is filled with a perfect
conductor, while €5 = €y + €2 + 2%, up = 1. Then R, = é3_(0)/é2(0)

satisfies R, ~ 1, while ATg.,, and ATg.,,, to the first order of €, €9, are

1 3
2 (2.932)
32m2ed 24

3 3
3202523 9672 22

AT (r) = ATy, (r) ~ —

3
AT (r) ~ — L2927 (2.93b)

3
192m2e5 23

and the corresponding Aug is obtained with Aug = ATk p + ATp.yy + ATk,
For TM mode, R, = ﬁé_(O)/iL’H(O) satisfies

ke + k?

€1, (2.94)
260:%8 !

Ry~ —1-




while ATy, and ATy, to the first order of €, €y, are

1 3€ €
+ L 2 (2.952)

T 3
32m2ep 2t 320m2elz® A8m2el 22

ATpe(r) = ATy, (r) =

(M1

ATy (r) ~ —M, (2.95b)

3
19272¢5 23

and the corresponding Aug is obtained with Auy = ATy 4p + ATy + AT ...

Parallel configurations

The basic investigations on the inhomogeneous parallel configurations are
given in our work Ref. [19]. We investigate, as a first trial, some more
general behaviors of the inhomogeneous parallel configuration, in which three
nondispersive media (&, 1;), ¢ = 1,2,3 fill in the regions z < a, a < z < b and
z > b, respectively. The Casimir pressure is determined by both the local and
global properties of the media. It is interesting and essential to gain better
understanding of the local and global aspects of Casimir forces, especially in
the inhomogeneous cases.

Consider the generalized Casimir configuration (GCC), where the left and
right media in 2 < —a and 2z > a satisfy yu; = ugr = 1, €r,eg — o0 and the

permittivity and permeability of the intervening medium are

gy, b<z<a, e, b<z<a,
e(z) = p(z) = (2.96)
g1, —a<z<b, y, —a<z<b.

Then é, for the intervening medium are (for all z,z € R, define 2, = 2z — z)

) t‘EQe*’”Z’), z>b,

e (Ck;2) = (2.97a)
e h1% — rfze*“zb, z < b,

. eh2%o rQEle*'“?Zb, z > b,

é_(C,k;2) = ’ (2.97b)

E k1%
ly €7, z < b,



E

where 7, and tfj are defined as
E _ Rillj — Kl E _ E E E __ 2I€ZILLJ
Tig =~ s Tig =T Ly =1—r = ————— (2.97¢)
Kifbj + Kjlb; Killj + Kjp;

The TE interaction Casimir energy is

2 tE —2Kkoay tE —2Kk1b_g
AUp :/Mln (1 12 2,1° ) (2.98)

T 1 _ E _—%kaa _ »E —2Kk1b_
1 r3.€ 20, ] g€ M10-a

By making substitutions £ — H, € <+ 1 and é — I, one obtains the ex-
pressions for the TM counterparts in Eq. (2.98). When €1 = &3, i1 = 42, We
immediately retrieve the result of Eq. (2.566a). When p; = 1,57 — 00, we find
AUg, AUy — 0, which means the interaction between the surfaces z = +a is
blocked by the perfectly conducting layer —a < z < b. For the diaphanous

case €11 = &gk, We have

d¢d?k L—ryy 1475 b+a
16m38(a — b)3\/E1 1 er — 1y e 41y a—>b
v (m WA (2.99)
~ _— = T .
16(2a)3\/e1pur \ ©2 90’ =51 ’
while AUy can be evaluated with rj; = —rj.

Now we extend our analysis to a more complicated case in the general-
ized Casimir configuration, where the intervening medium consists of three

homogeneous slabs, whose permittivity and permeability are of the form

g3, c<z<a, ts, c<z<a,
e(z) = gy, b<z<e, p(z) = e, b<z<ec, (2.100)
g1, —a<z<b, i, —a<z<b.

Then é, for the intervening medium are

E E _kobe
t1,2t2,36 2 e 3%c > c
1+T1EQ7”2E362K2b5 9 Y
ts tors 5”20
5 J— s —K22p s g K22Z2p
e1(2) = —pEp e e — 120287 -, b<z<c, (2101a)
E . E Orobe E .E _2rob 3 )
1+r1’2r2’3e 20¢ 1—‘1—7‘1’27‘2’36 20¢
E E _2k9b
efﬁlzb o 7‘1’2-1-7’2’36 2% efﬂlzb 2 < b
1+TEQT£3€2H2bC ’ ’



E E _—2koc
r3otry e 7 2%

KR3Zc —hKh3Zc
€ - E .F . —2nraq € zZ>c
— 5 )
14rg/ory’ e 2%
tE tE T’E 672H2Cb
5 . 3,2 K2Z, 3,2 2,1 —K2Z
6_(2) =4 —pB2 _emere . BaTaa® U me h o oo
E E _—2K9cC E E _—2Kk9cC 9 Y
1+7‘372’l"271€ 2% 1+7“3727“27le 2%

E 4B _—Kacy
t3,2t2,1e > enlzb 2 < b

E .E _—2kKk9oc 9 ?
1+7‘3727‘2716 2%

which means the TE interacting Casimir energy is
tE3t2E'1672I€QCb

d¢d?k ;
AU = —1 _ 9y
g / 1673 “[ (1= e e (1 — e 2oan)

t1E3672/i3aC t3El€on1b_a

1— 7’516_2”3“6 1— rfge—%lb*a ’

E B E _ E 4B _ E
where 71’3, 73, and {3, = 1 — 13, {13 = 1 — 7’3 are defined as

E E _—2kacy E E _—2kacy
B T3 +7“271€ B T1o +r273e
31— E .E ,—2 v 11,3 = E ,.E ,—2 )
LA rgyryem=race L4 rpyrg ge=race
E _ E _—2kacy E _ E _—2kacy
E t3,2(1 T91€ ) E t1,2(1 T'g3€ )
3,1 = » l13 =

E . E _,—2koc E . E _—2kocy,
1+ T3l € 220 1+ T3y € 220

When €9 = €3, 2 = 3, Eq. (2.102a) is just Eq. (2.98).

(2.101b)

(2.102a)

(2.102b)

(2.102¢)

There are attempts to explore the inhomogeneity with the step poten-

tial [129, 130, 17]. This model may also facilitate the experimental detection

of the inhomogeneous Casimir forces [131]. We would like to deepen our

research into this model in the future.

2.4.2 Spherical system

The current status of research into Casimir energies and stresses of inhomo-

geneous spherical systems is even more primitive. Only a few works [132]

have been done as far as we can see. Here we will try to put forward some

preliminary arguments about this topic.

Two-media background

Consider two media (g;, ¢;) and (&, i4,) filling in regions 0 < r < @ and r >

a, respectively. To demonstrate the inhomogeneous effects, we assume the



media are nondispersive but inhomogeneous. Then the interaction induced

TE Casimir energy density and stress tensors in the region r > q are

dC Ry [, (V2 —1/4
A ot | e — ¢, . (2.103
up(r = A2 Z /27T W { e + o £,(? 0+ ( a)
dC Re 12 —1/4
ATgpp(r) = AT, (1) = Z g / o TE A e, (2.103b)
d¢ Re + éi)2+ v’ — 1/4 2 )42
AT (1) = ot ot . ., (2.103
B (T) 47?7’2 / o WE { " o +eoC” |5 ( c)

where R, = [¢;_(a),¢,_(a)],/[¢0o+(a), ¢ _(a)],, while in the region 0 < r < a

those quantities are

-1 d¢ R, [ V2 —1/4 .
A = e —— =) 2.104
o)~ g v [ i L (S o)), o
dC Re_ 1 — 1/4
ATgpp(r) = AT (r) = z:: g / o T W‘Q i (2.104b)
ATg..(r) i dC Re - [ U2_1/4—|—5§ ¢ (2.104c)
HES = — — |\ —/—/———— i e _|- . C
& — Amr? | 2m WE ;T2 ’
where R._ = [¢; +(a), ¢ +(a)],/[¢o+(a), e, _(a)],. The corresponding TM con-

tribution is obtained by making the substitution ¢ <+ py, ¢ -+ h and £ — H.
Consider a special radial inhomogeneity, i.e., the permittivity (r) = \/r?

and permeability p = 1, to naively illustrate its influences on the vacuum

energy density and stress tensors. For the case I, in which ¢, — oo, i, = 1

and ¢; = )\/7"2,,ui = 1, then the TE interaction stress tensors are e.((,[;r) =

PaFVERC (L) = EVRE

(2.105a)

= —v(v? —1/4) /Ood v
0

ATggo(r) = Al (r) = lz v C—\ [P+



o0 —21ni\/y2—+42<1
2

—v < e
ATg(®) =S — [ dc=———— (= 4+ /1212, (2.105b)
e (r) lz:; 8m2riv/A /0 ‘ VA e )

which means in the vicinity of the surface (r =~ a) they are

-1 a 1
ATEg, = ATjg, ~ - — 2.1
() mioel) 3272/ N(a — r)? {(a —r)? 4a} (21050
-1 1 1
AT (1) ~ — 4 . (2.105d)
ire(r) 32m2v/Na — r)? (2a CL—T)

For the TM mode, the corresponding terms are

ATpe(r) = AT 4,(r)
B i —v(v? —1/4) °°d eIV 1 19, /12 4 2

B ' . (2.106a)
823/ A Jo 242 1=2y/1r?+ (2

=1

ATy (r) = Z v /OO dcw (1 +/12 F Cz) = ATp. (r),
’ — sw2r3v/\ Jo V2 4 2 :

2
(2.106b)
which means in the vicinity of the surface (r =~ a) they are
AT00(t) = ATs.00(r) ! ! ¢ (2.106¢)
90(r) = wo(T) 2 —_— .106¢
H;00 H;pp 3271‘2\/X(a . T)Q 4a (a o T)Q 5

and ATy, (r) = ATg,.(r). For the case II, in which ¢; — oo,u; = 1 and

€, = A\/1%, li, = 1, then the TE stress tensors are expressed as

-1 < 1 r
ATg. = ATg. = 22Kyl 2vin— 2.107
7:00(T) B (T) ECREWsY lzly<y 4) 0( vin a)’ ( a)

—1 1 — r > T
ATg.r = |- Kol 2vIn—- | — 2K 2vIn - 2.107b
)~ i () - Z ()] o

=1

which means in the vicinity of the surface (r =~ a) they are

a4 —i}, (2.107¢)

-1
ATg.09(r) = ATg. (1) &
) = Moolt) = e -

— 47 —



~1 1 1
ATg(r) ~ — . (2.107d)
e (r) 327r2\/X(r—a)2<2a T’—a)

For the TM mode, the corresponding terms are

ATh.p9(r) = AT, 40 (1)
_ iv(ﬂ—w) wdge—mzm{
1=1 8r2r3vA o \/m

, (2.108a)

2
1—
1—1—2\/1/24—(2]

e}

_V oo
M) =325 |

=1

1—2y/v?+

ezlng\/m\/m

which means in the vicinity of the surface (r ~ a) they are

= ATg.,.(r), (2.108b)

-1 a 4 1
ATgee(r) = ATpg,(r) { -

~ 32m2V/\(r — a)? (r—a)? 3(r—a) 4a

_ — )2 _
r-a_ (r—q (8+157E—|—15lnr “)} (2.108¢c)

" 12a2 90a3 a

and ATy, (r) = ATg,,(r). In the limit a — oo, the results above are consis-
tent with those in Eq. (2.50). We recognize that except for the curvature-
dependent parts in ATy, (r) and ATy, (r), the pressures on the inner and
outer sides of a infinitely thin perfectly conducting spherical shell, when it
is immersed in a medium with the permittivity ¢(r) = A\/r? and permeability
@ =1, are both attractive. This phenomenon may facilitate the experimental

detection on the self-stress in spherical systems.

Concentric configurations

The pressure on interfaces of a concentric system can be obtained by us-
ing the results in Eq. (2.43) and Eq. (2.44). As a preliminarily illustration of
inhomogeneous Casimir forces, we just discuss a simple and analytically solv-
able system, i.e., the spherical version of generalized Casimir configuration
(SGCC) with the permittivity and permeability of the intervening medium
being £(r) = A/r?,u = 1 and with inner and outer spherical regions being

perfectly conductors. The TE Casimir pressure at r = b is



pe and py
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Figure 2.3: The d = a/b dependences of ratio pp = UE/U]EJO) and py = UH/U(O), with

.
[

Vi=b=1
1 ¢, (b)e_(a)
Pp = =1 o S o
P 4 abZ / nop(a,b), opa,b) = D) 2109
while the corresponding TM pressure is
b, (D)D" (a)
Py = 1 b) b)=1—- < ~ . (2.109b
4 47rb2abz / nopu(a,b), on(a,b) AOTAT (2.109b)

In our situation, ¢, (r) and h(r) are solved as

ei(C, l7’]"> - T%:F\/ma 6i(C7 l, T) = r_%:':\/m,

(2.110)

which means Pyr and Py are

md2yw/1+<2
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where d = a/b € (0,1). In the limit d — 0, we have

9 K_l(—gllld)
Pr=Py ~ —— " |3K,(—3Ind) — ——\—21Y
B orp o |73 ) nd
2695/ 3
Y 7/6_d om0, d— 0. (2.112)
167203/ X 2359296 |Ind|=

In the limit d — 1, we have

V2 + Cle —d)\/v2+¢?
27r2b3\/_ . wm

b/\/_ > 3 6_%
—_— 2.11
272 (b — a)t /0 drir 1—e28’ (2.113)

which is consistent with the results in Eq. (2.56). It agrees with the PFA
argument and the intuition, of course. To show the general effects of inho-

mogeneity, we briefly compare the interaction energy of the inverse square

SGCC
Up=Uy = Jwﬂwﬂuwwwﬂ (2.114a)

with the TE and TM interaction energies of the vacuum SGCC, in which the

TE interaction energy is
) _ 2{: e(()s z(Cd)}
Ug / d¢In { s(Qalcd)] (2.114b)

and the TM contribution U g)) is obtained by making the substitution X —
X', X = e,s. The results are demonstrated in Figure 2.3, which does not
violate Eq. (2.113), though further numerical calculations are needed for this
case and more complicated cases. Definitely, much more work should be done

in this novel field.

2.5 Summary

In this chapter, we briefly outlined research on Casimir energies and stresses,

which may be the earliest objects studied in the Casimir physics. For pla-



nar systems composed of homogeneous media, even with dispersion includ-
ed, there are widely accepted regularization and renormalization schemes to
obtain physically measurable results, lots of which have been verified ex-
perimentally. However, for spherical systems, there is no well-recognized
method to get renormalized Casimir energies and stresses, except for a few
special cases. We show the basic results for homogeneous planar and spher-
ical systems. We also study the elementary concentric systems and show
that they approach their planar counterparts when curvature effects can be
ignored. When media of a system are inhomogeneous, problems are much
more complicated. We derive our previous results about divergent prop-
erties of the Casimir energy densities and stress tensors in inhomogeneous
two-media backgrounds. The first step toward achieving further insight into
the inhomogeneous parallel configurations is given. We also demonstrate our
first systematic considerations about the inhomogeneous spherical systems.
More thorough investigations are in progress.

Of course, studies on the Casimir energies and stresses are not limit-
ed to the planar and spherical geometries [133, 134, 135], the inhomogeneity
can be in the directions other than the “longitudinal” direction, and even the
anisotropy could be included [136, 137, 138, 139]. Moreover, it is worth while
to consider the microscopic structures of materials explicitly when investi-
gating the Casimir energies and stresses. All those factors merit diversified

possible applications.



Chapter 3

Thermal Casimir effects

3.1 Background

As stated above, the thermal corrections to the Casimir forces are important
and various experiments have resulted in controversies about the properties
of the media in the low-frequency domain at finite temperature. As an issue
related to those debates, the negativity of the Casimir interaction entropies
and its consistency with the third law of thermodynamics have been investi-
gated in detail. Recently, we explored the Casimir self-entropies in some ideal
models. There exist many more unsolved problems about the Casimir self-
entropies than those solved. Originally, the Casimir self-entropies were once
thought to be only a theoretical subject, anticipated to compensate the neg-
ative interaction entropies and render the total entropy positive. However,
the even more fascinating aspect of the Casimir self-entropy is its implica-
tions for realistic phenomena [51]. Since the ground state may be nontrivial
because of constraints, it is not surprising that the corresponding thermody-
namic response of the system, characterized by the Casimir entropy, is highly
nontrivial.

Until now, studies on the thermal Casimir effects are executed for sys-
tems in thermodynamic equilibrium. Some efforts have been put into the
explorations on Casimir effects in nonequilibrium systems [63, 96, 64, 65],

but more needed in this nascent field.



3.2 General theory

As we haven mentioned, the action of the electromagnetic system in the
Euclidean space satisfies

, E-D-H-B 1 § _
oo / Ty =) / d'yd' B (1) T (1,32) - Bly2), B.D)

where at any imaginary frequency-space point y = ((,r) the permittivity e
and permeability p are defined with D =e-E, B = pu- H, and the definition
of the operator I'"!(y;,y») and I'(y;,ys) are given in Eq. (2.5). Therefore,
the corresponding generating functional, or quantum partition function, Z is

expressed as

7z = / DE*(y) DE(y) exp B / d'y1d'yE (1) - T (g1, 42) - E(ya)
= Cyexp {@/dQTﬂnFC(r,r’)}, (3.2)

where C, is an physically irrelevant constant normalization coefficient and
[¢(r,r') is defined in Eq. (2.6a). We also know that ) = [dt = 276(0) and
the partition functional Z at zero temperature can be expressed with the
energy U as Z x e PF which means U, in a static situation, is

s ,
U— —5/%TI'IHFC(I',I'). (33)

On the other hand, the nonzero temperature partition function is obtained,

by taking the periodic condition into account, as

* 1 S 3 * —1
7 = /DEnDEnexp[—5 > /den-rn En}

n=—oo

= Cpgexp (% Z TrlnI‘n), (3.4)

where = 1/T is the inverse of the temperature 7' and, by defining the

Matsubara frequency (, = 27nT, we have I',(r,r’) = I'¢ (r,r’). So the free



energy expressed with the partition function is

0o n

F=-ThZ= —g > Trl, =T 0T ) %/Z—E,F — U, (3.5)

n=—00 n=—00
which is consistent with the law of thermodynamics and the definition of
Helmholtz free energy F' = U — TS, i.e., when the temperature is zero, the
free energy F' is just the energy of the system U as in Eq. (3.3).

From here in this section, we use the integral representation instead of the
summation in Eq. (3.5) as the default setting for simplicity. Suppose I‘gl (r,r’)
could be separated into two parts, i.e., I‘C_l(r, r') = I‘O_;é(r, r')+V¢(r,1r’), which
means I'c = (1 + Ty - V)™ - T and the extra free energy introduced by the

potential V is

1 [dC 1 [d¢
AF = —5/%Trln1‘<(r,r’)+§/§Trlnro;c(r,r/)

1 [ dC

When separating V. into two parts as V. = Vi + Vg, then AF is

1 [d
AF = 5 2—CTI' hl(]. + ]__‘0;( . Vc) = AFl + AFQ + F12, (37)
s

where, by defining I'; - = (14T -Vi;g)*l T, the self-free energies AF; and

interaction free energy [}, are

1 [d
AE = — / —CTI' hl(l -+ ]‘—‘UC . V’LC)7 ), = 1, 2, (388.)
2) 2m ’ ’
1 [d¢
F12 = 5 %TI' ln(l - Fl;C : Vl;( : FQ;C : VQ;C). (38b)

By introducing the scattering matrix T, = V¢ - (1 + Do - V,-;C)_l, Fis can

be written in terms of the famous TGTG formula [140]

1 [d
F12 = 5 / %TI‘ hl(]_ — FO;C . Tl;C : FO;C : T2;<)7 (39)



where T is usually expanded as follows to facilitate the calculation process
Tic = Vie = Vi Lo - Vig + Vi - oo - Vige - Toe - Vig =+ (3.10)

The pure thermodynamical quantity is the entropy, which is derived from
the relation S = —JF/JT. One can obtain other thermodynamical quantities

from the Helmholtz free energy.

3.3 Thermal Casimir forces

Here the thermal corrections to Casimir forces are roughly sketched. Except
for the planar geometry, the thermal Casimir forces in spherical configura-
tions are also considered. The thermal corrections in inhomogeneous systems

are roughly demonstrated.

3.3.1 Parallel configurations

For the simplicity, consider the temperature correction to the Casimir force
in the original Casimir configuration, which means the internal energy per

unit area and pressure at finite temperature 7' # 0 are

AU T ) o~ 4na T - /°° dra?
ZC In(1 ), Fu= (4(3)+Z; 1) (3.11)

327 a? Acna € —

In the low-temperature (low-T) limit 7" — 0, we have

AU —7? ¢(3) 22 1673
~ T3 — —— T + ——T%a 3.12
1 Y5606 T 5.ttt (3.122)
d:cx —1 & (87Ta)*Boy L op
Fo= —— [y (2-2)
2567247 / " / T 25672 at £ o 0
= T f(n) = n (3.12b)
- 3840a4 5 AT Ty '



which agrees well with the results in Eq. (2.53) and the definition of Helmholtz

free energy. In the high-temperature (high-T) limit 7" — oo, they are

AU B

27
T A 387 Ta F, ~ _
e ,

— T — Z=T3e8mal’ 3.13
32ma3 a € ( )

Consider the finite temperature correction to the Casimir force of the
configuration defined in Eq. (2.57), which means for the nondispersive and

diaphanous case, in the low-T limit 7" — 0 we have

-3 (2 — p3)(p2 — 1)

_FT_>O — fT—>O N Li |:
v " 1672 /Eatiz(b — a)* | (2 + pa) (1 + p12)

} , (3.14a)

while in the high-T limit 7" — oo

=T | (2 — p3) (o — Ml)]
FT—oo _ pT—00 L l , (3.14b)
E H 8(b—a) [ (2 + pta) (pir + p12)

in which the exponential decaying corrections are ignored.

Consider one of the analytically solvable inhomogeneous case, where the
medium with the permittivity (2) = \/(c — 2)? and permeability u = 1 is
sandwiched between two perfect conductors. The interfaces areat z =a,z =b
and a < b < c. The TE and TM contributions to the pressure on the interface

z = b at zero-temperature (zero-T) are

Fr(b) = —Inog(a,b), op(a,b) =1— (3.15a)

B / d¢d?k 9 &, (b)é_(a)
1673 b

B dCd?k (DN (a)
Fu(b) = —/ 163 90 Inog(a,b), og(a,b) =1— iz’_(b)ﬁﬁr(ay (3.15b)

where é4(z) and 1 (z) are (v = /A2 + 1/4)

e (z) =Ve—zLk(c—2)], é_(2) = Ve —zK,[k(c— 2)], (3.15¢)

i (2) < ke = 2)] = 2k — DL lk(c— 2] (3.15d)

2+/c — z3
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Figure 3.1: The ration between F7 *°(b) in Eq. (3.17b) and the its inhomogeneous
counterpart in Eq. (3.13), i.e

, e, Rry = FE7°(0)/[—¢(3)T/87(b — a)?], as a function of § =
(c—=b)/(c—a).

i (2) = Ky [k(c — 2)] —22/1(C_;SZ)KL[’€(C —2)] (3.156)

For the nonzero temperature 7' # 0, the Fg(b) and Fg(b) are (2 = A2 +1/4)

T 3 = > 1, (ko) K,, (k)

Ky, (k) = 2K, ()
Fu(b) = 47T(c 0 Z/ dk:k:ln{ -

= L, (k) = 2kI}, (k)
L, (k6) — 2kS1, (k5) }

Kyn(ké) - 2/<:5Kl’,n(k:5)

(3.16b)

where 6 = (c—b)/(c—a) € (0,1). In the high-T limit, they are evaluated with
the uniform asymptotic expansion as

=T
FE(b) -

m/ooodkk’Q{coth [1{(1_5)} _1} —CB)T

m, (3.17a)

T52 401 _ ~2,—2k
Fro(py - L0 / dkk*(1 — 6 + ko)™
0

N C(3)T4?
T a o6tk — (s Tk0)Z © T a

(3.17b)
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The results of Eq. (3.17) are evidently consistent with that in Eq. (3.13).
Figure 3.1 signifies the nontrivial significance of inhomogeneity. More atten-
tion should be paid to the influences of the inhomogeneity on the thermal

corrections.

3.3.2 Concentric configurations

For the finite-temperature situation, consider the TE and TM contributions
to the pressure on the interface r = b in the case of two concentric perfectly

conducting spheres separated by the vacuum studied in Eq. (2.114b), i.e.,

F(E,H) - 4:7Tb2 ab Z Z Ino (E,H), (l b) (318&)

n=—oo

where og(a,b) and oy(a,b) are

er(|Gn|0) s1(|Cn
Sl(lCn|b)€l<|Cn

a)

A (A L (A
ay 7

s1([CnlD)er([Cnla)

opn(a,b)=1-— (3.18b)

In the low-T limit, the temperature-dependent corrections to the zero-T re-
sults are trivial, namely AFg, AFy =~ 0, and do not depend on the tempera-

ture polynomially. In the high-T limit, then Fg and Fy are (d = a/b € (0,1))

FE%FH

Zl/ln —d*) ~ ﬂ d—1, (3.19)

47Tb2 b 81(b—a)?’

which is consistent with the results in Eq. (3.13).
Consider the pressure on the interface r = b of the inhomogeneous SGCC,
as described by Eq. (2.109). Then at finite temperature, the TE and TM

contributions to the pressure are

_ V2GR
i N

n=—oo

which means in the high-T limit 7" — oo, they are approximated as

\/XTZ d47rTﬁ

Ta 0 )
fE:fH ZVhll—d 2b3ln2d

bl ad (1 — 47TV A 1n d). (3.21)



Therefore, the inhomogeneity in this case does not affect the high-T pressure
significantly, since d € (0,1) and the last term of Eq. (3.21) decays exponen-

tially as 7' — oo.

3.4 Casimir self-entropies

The body is usually modeled as a potential, which means in the case of a
dielectric medium, the potential should be V¢(r,r') = [e((,r) — 1]d(r — 1) =

X(¢,r)d(r —1r'). So the single-body induced free energy is
F= Z Trin(1+V-T,,) = Z TrIn [1 +x(Coy 1) -Tg, p(r, 1) |, (3.22)

based on which we, in this section, evaluate the Casimir self-entropies in
two nontrivial configurations, i.e., the planar thin sheet and the spherical

shell [45, 46].

3.4.1 Thin sheet

Suppose there is an infinitely thin planar dielectric sheet located at z =0 in
the vacuum and its potential Xx(({)d(z) is homogeneous, then the free energy

induced by this sheet, expressed with g in Eq. (2.13), is

Z / —gtrin [1 + x(Cn) - e xn(2, z)} : (3.23)

Further assume [141] that x(¢) = diag[x(¢), x(¢),0], then the TE and TM

contributions to the free energy per unit area Fg and Fly is

2
Fp= - Z: ciCnT / dkkJo(k6) In [1+x(cn) in} (3.24a)
Fy = - 2_:00 ginT / dkkJo(kd) In {Hx(cn) } (3.24b)



where K, = \/k? + (2, 7 and 0 are regulators which are set to zero at the end
of the calculation.

Consider the plasma model, in which x({) = 2)\¢/¢?, then Fp is

Fp =

/\(2)T o0 J1<k}) )\%T e—p(5A )\3T 00
- K
47 /0 d k + 0y 219y 1 — e—Pox A7 ; O(npé)\)

LN i (=6)™ i Kizm (npdy)
276 275 [ (mt3)

m=2 n=1 (np6A>

(3.25a)

m—1
—_— 2

2

where p = 27T/X\g, 6» = A0, and 7 is set to zero. To keep the nontrivial
terms with J), — 0, the first three terms of F in Eq. (3.25a)
A3 A3 A3 A, A Inp A In(2m)

P B _ _ Mo me A 3.25b
EUT 0T T 16rs,  32n2’ T a2’ 82’2 a2 , (3.250)

while the last term is

Fgo

A In(pdy) | XS [1 e p po @21 ((3) 3}

4n? 3 2| 3 "8 2 4 P’

A3 3 1 1
+2 {p—d”” ( —-2,1+ —) — p*¢thY ( 11+ —)} ,  (3.250)
dm? | 2 p p

where ((z,y) is Hurwitz zeta function. Then the total TE free energy Fp =

Fpi+ Fgois
)\3 )\3 )\3 )\3
F _ F(O) o 0 1 . 0 1 0 2 0 3 3
£ R ek T T A T T s me S
A [0 o LY _ 2000 L
+ 20 (2 — 2,1+~ | —p¢™ —1,1+—-)|, (3.256d)
472 | 2 p p

where the temperature-independent part is

N Mlns A (1~
FO_ 20 A Ao MO Ao (2 TE ) 3.25
BT 5257 Tomo,  dn? 3 4n?\d 3 (3.25¢)

The TM contribution to the free energy Fl is

F — @ S einpn/oodkkj (k(;)ln 1+¢
= 8m? 0 ORI /K2 + n2p?

r—>0x0

+205> e lim — [ dkkJy(k6y) (K +n?p?)?, (3.262)



where both § and 7 are used, and 7, = A\o7. To keep the nontrivial terms

with d), 7\ — 0, the second term of Fiy in Eq. (3.26a) is

Ny & N NP
Frg=—-"2 K 5y) = ——2. — 20 3.26b
H32 8203 Z InlpoxKi(|n|poy) 8ros  Am? 8m?’ ¢ )

n=—0oo

while the first term is

N oo~ (2UTEEO0CEE) 0 N 2
272 — 5m+4r(_+3) 1671—5:’1\ 27]-253\1 29572
0 p . p CB3) 5 3CO) 5
—|—=1 L _
+87T2[15 DP+8+18 47T2p 51

+20°p 0D (p71) = 10p*0 D (p7h) + 24p" Y (p7h) — 2470V (071 |,

Fp, =

3

(3.26¢)

where ¢(")(m) is the polygamma function. Then the total TM free energy
Fy = Fui+ Fpp is

Ay [ 2 p Pt C(3) 3¢(5)
F, — pO 4 20| 2y PP 3 5 4 9,22 (1
" ot ea| ety g T ol T am P T )
—10p3¢*@<p1)4—24p4¢*“<p1>——24p5w<“(pl)}, (3.26d)

where the temperature-independent term is

o0

4 ™ 1 97 A (—2)™D (20 (2
o _ % - 0 2
b’ =55 463 * 5 883 2 {Z SV ()

)} . (3.26e)

m=2

The corresponding entropies in terms of their reduced forms sy = 4715/ )\8

are expressed as

P 3C3) o 2
- _r 1 il
SE 6 42p+2+ p+3p

+apCO (1,14 p7) + o (=2, 14 p7 1) = 200V (=114 p7h),

3p°¢CE0 (=214 p7h) (3.27a)

2 1 1 303 5 15¢(5) 4 -1 ~2)( -
= - - _ 4 e Ars 2InT — 14ppD(p1

+54p% " (p™h) — 12003 (p71) + 120p 0 (p71). (3.27b)
In the low-temperature or strong-coupling limit, i.e., p — 0, sg and sy behave



as

3 5 7
@) e P, (3.28a)

BT T P T s T 315 T 595

_363) 5 PP IC(5) 4 P P
SH = AT P63 25

471'2 15 W + O(p9>, (3.28b)

while in the high temperature or weak coupling limit, i.e., p — 00, they are

of the forms

p  3—2In2r Ilnp 2 _2
__Pr l 3.29
sE=—gt——F +3p+o(p ) (3.292)

_1500) 4 30)

p 2 _
-~ e e TR ?). (3.29b)

1

oH 8 15p

The third law of thermodynamics is satisfied for both TE and TM mode
according to Eq. (3.28), in that the entropy vanishes as temperature ap-
proaching zero. Although Eq. (3.27a) shows that the sp is negative for any
p, the contribution from the TM mode is always positive, whose absolute
value is larger than that of sg. So the total entropy s = sg + sy of the sin-
gle sheet described by the plasma model is always positive, which is just as
expected. When the Drude model, A((,) = 2X\/(¢2 +7¢,), is used, only the
n = 0 term of Fy is not present, which results in a divergent contribution
to the total entropy for small damping factor v — 0, which may imply some

deficiency of the Drude model.

3.4.2 Spherical shell

Suppose there is an infinitely thin spherical shell in the vacuum with its center
located at r = 0 and radius a, and its potential is x((,r) = A(1 — rT)d(r — a),
then the free energy F' = Fp + Fy induced by this shell could be expressed

with g in Eq. (2.30) in terms of the TE and TM contributions Fr and F},



in which Fr and Fly are

[e.9] o0

Fo = 5 3 @73 (214 DPcosd) n {1—%2@295,&@’@)}
n=-—oo =1
T N
. iCnT
- D3 S e L GG sG] 6200
TE L& *rr' gl (r, 1)
Fu = 5 Y S @ Roso [T D]
n=—oo =1 e
T KN e, —
_ iCnT — / ]
= 3 nzz_ooe ;(2[4— 1)P(cosd)In [1 )\’Cn‘el(Kn‘a>Sl(’Cn‘a>‘|' (3.30Db)

Consider the regularized plasma model, in which x(¢) = A\o/((%a + p?a)

and the regulator u satisfies ¢ — 0, then Fp and Fjy are expressed as

T S . > alnle(alnl)s;(aln
FE:E Z emM“Z(Ql—l—l)Pl(cosd)ln {1—1—)\0 [nfeafn])si(] |>}, (3.31a)

21,2 2
a“n
n=—o00 =1 - Ha

a’n? + 2

n=—oo

T o0 ] o0 / /
Fy = 3 Z et 2(21 + 1)P(cosd) In [1 - )\Oa|n|el(a\n\)sl(a\n\)} , (3.31b)
I=1

where o = 27aT’, 7, = 7/a and p, = pa. In the weak coupling limit Ay — 0,

the free energies are

T 0 ‘ oo
Fgo—ﬂ] _ /\05 Z etnaTa Z(Ql + 1)P[(COS (5) 6l(a|n|)3l(a|n|)
=1

aln|

n=—oo

M [1  In(r,/2) «o* 1, sinh(a)
SR U S P ) 32
ora [uQ LTI R (3.322)
X [4+u? 72 1 In(r,/2u?) 1 4+u*\a
F/\0—)0 — 0 _ a _ 1 _ _
a 27a [ —ud 24 u? i 2 * 2u  dudu? ) 2
Ao [@* 1. sinh(«)
— =4+ =1 3.32b
2ra {36 T ) (3.320)

where u = /2 —2cosd. The first line of Eq. (3.32b) is not consistent with

the third law of thermodynamics, which strongly suggest that it should be
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ignored. To justify this, we can rewrite Eq. (3.32) as

Ao *  Imuw(0,0;ina)
M—0 _ ATE 0 1\Y, Y,
Fpr% = AT - — ;—1 (20 + 1)/0 dn a1 (3.33a)
AoQ o *  Imu(0,0;ina)
A—0 _ ATM 0 1\Y, Y,
Fp=® = AT + o ?:1 (2l + 1)/0 dn 1 (3.33b)
where w; and v; are defined as
ve(2)si(z) vel(@)si(a)
o) = ol ) = , (3.33
wy (7, u; ) = cos(Tx) 2 v (7, ;) = cos(tx) Ea (3.330)

and the Abel-Plana formula is used, the temperature-independent terms are

written as

oo

(TE,T™M) |, A0 >~ ,
A _i%;(2l+l)ﬂ(cosé)/o A, ) (o, js 7). (3.33Q)

Then the temperature-dependent parts of F0 ", i.e., AFR 0 = FRo™" — AT,

are evaluated as

2

A 2 inh A inh
AF0 — ﬁ(o‘_ —m 2 O‘), AFp™ = 2 (‘f—8 +1In W) (3.34)

which means the corresponding entropies in the weak-coupling limit are ob-

tained with S = —0F/0T as

)\0 « 1 )‘0 Q 1
S0 = Y <§ + o cotha), Sy = 3 <§ - + cotha); (3.35)

which are consistent with the third law of thermodynamics and negative.

In the strong-coupling limit Ay — o0, the free energies are F 20%00 =F goné%o
and FpP 7™ = Fp27% + Fp07%, in which
O o= aner(an)s(ay)
Fpomee — — v P(cos §) cos(a,T,) In | g 20T | (3.36a)
E ﬂ_azz l( ) ( na) 0 Oé%"‘,ug

n=1 [=1



oo o ’ ’
F}A{og%o = % Z Z vP(cos d) cos(a,T,) In [ — Ao anel(an)sl(an)} . (3.36Db)

2 2
(@)

where v = + 1/2, o, = |n|a and we have used the fact that the n = 0 term

of I'r and F'y can be written as

= A 1
Frneo =0, Finoo=— 3 vP(cosd)In [1 + 7 <y — —)} (3.36¢)

’ 2ma — 15 4v

It is obvious that Fjy > is
- T X = 1 (7 4
FI;\,;::O = -3 In 2 + le:; vInvP(cosd) — TZ_LF(E’ CcoS 5)
T

—E<6+7ln2—3’m —36lnG>, (3.37)

where G is the Glaisher constant and F'(a,x) is the elliptic integral of the

first kind. The following term

Ao—o0 «@ - [67%
FX?: =5 ; ; vP(cos d) cos(a,7,) In [Agm] , (3.38a)

. . )\Q*)OO )\0*}00 .
is common in F7’ (¢ and Fy° [y and is evaluated as

0] 8}
FP7%° —  — In— 3.38b
Xe Ara TN ( )

but when using analytic regulation method, it is

N e, A 11
Froe =230y m = (3.38¢)

2ra 20,  48ma
=1 n=1

The sensitivity of the coefficient to the regularization method suggests the

FAO*)OO

F ))50: ° term is unphysical and should be ignored. Denote the rest of Xn=0

)\0—>OO _ )\0—>OO o )\0—>OO )\0—>OO _ )\0—>OO )\0—)00 .
as AFX,n>O = FX7n>0 Fx,c , then AF7 = AFE,n>O + AFH,n>0 is

- a oo o0
AFé‘gK = ; vP(cos ) Zl cos(a,7,) In [ —deg(ap)si(an)er(an)si(an) |-
(3.39)

When evaluated with the uniform asymptotic expansion (UAE), the leading



)\0~>OO .
term of AF; 9™ is

=, Py(cosd) 3
AFNgE = = ! = Py(cosd
n>0.0 21a 121: 4dv 64a 121: {(cos 9)
1 [2—e¥(y? —2y+4) — e (y> + 2y — 2) 4ln(l —e7Y)
32a 2(ev —1)3 y
1 %) 0? > dx sin(zy)
— (3 -3y— +1y*—
+64a( y@y Ty 8y2) /0 em™ — 1 cos(zy) — cosh(y)
T
- -7 {ln(aT) + 0.71351] , T'— oo, (3.40)

where y = m/«. This means the leading behavior of the self-entropy in the
strong-coupling high-T limit is S ~ 0.25In7".

In the low-temperature limit 7" — 0, the free energies are

o & s aner(an)s(ay)
FET = g v hileond) ) cosfauh e

n=1
A§_>0(57 Tav:ua) + (ﬂ-a)ST4 )‘0 ’
Ta 15 Ao+ 3

Q

(3.41a)

T—0 Q@ - = aner(an)s)(an)
Py = ﬁguzﬂcow);wsmw)ln {1”0 o+ 12
AT%O 5 o Lla 2
H ( s Tas W ) . —(7TCL)3T4, aT < A()’ (34:1b)
Ta 15

Q

which are consistent with the results in Ref. [46].
For the general case, the free energies Fp and Fy are evaluated with the

Abel-Plana formula as

e}

o M _ i (2l n 1) /oo dnarg[l + /\OfE(l7 ZTL)] (3.423)
E Ta Ta e _ ’ '
=1 0
= M) 1 (20 + 1) /°° a8 = Aofu(bin)] g oy
a Ta Ta 0 | ’ '

=1

where fgr(l,x) = ¢(z)s;(z)/x and fy(l,x) = zej(x)s)(x). Numerically calculate

the self-entropies Sy and Sy derived from the temperature-dependent parts
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Figure 3.2: The TE and TM self-entropies Sg and Sy as functions of a = 2maT evaluated
numerically, based on the results of Eq. (3.42).

AFg and AFy with the properties given in Eq. (A.6), as shown in Figure 3.2.
According to our numerical result, the total self-entropy of the spherical shell
is consistent with the third law of thermodynamics and always positive, while
the TE contribution is always negative. These results are completely similar
to those in the thin sheet case, but disagree with some results, for instance,
in the weak-coupling limit shown in Eq. (3.35) the TM self-entropy is not

positive. Further investigations are indispensable in our future work.

3.5 Casimir interaction entropies

The Casimir interaction entropies were originally investigated as a part of
the arguments about the proper low-frequency model for medium. Some
researchers claimed the Drude model leads to results violating the Nernst’s
theorem [142, 143, 144], while others did not agree with them [38, 145, 89, 90].
On the other hand, the Casimir interaction entropies are interesting on their
own, since there exist parameter intervals allowing for negative interaction
entropies. For a given system, this negativity clearly signifies the abnormal-
ly altered structure of quantum levels of that system, which is commonly
thought to be related to the repulsive Casimir forces. Dissipation may result
in the negative Casimir interaction entropy [146, 147, 142], and the geometry
is also a source [148, 149]. The joint effects of geometry and dissipation were

also investigated [150, 43].
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3.5.1 Interacting particles

As a brief illustration, we consider the electrically polarizable particles for

clarity.! Then the interaction free energy is

dg E E
Fz = 2 / 27TTI In(1— Ty - T N T2;C)’ (3.43)

where T, = V.- (1 + Ty - V,)™', i = 1,2 are the scattering matrices and
I',.c is the Green’s diadic of the vacuum. Vfc, 1 = 1,2 are susceptibilities of
the two particles, which are denoted as V[ (r,r') = a;d(r — R;)d(r —1’), where
R, is the position of particle 7 and o; may be dispersive. In this case, the

scattering matrices are written as
-1
TZ C(I‘ r ) = 5(1‘ — Rl)al : |:1 + FU;C<RZ'7 Rz) . a1:| (5(1', — Ri), (344)

which results in the expression for the interaction free energy of the two

particles as
-1
/ —trln { I‘v;C(RQ, Rl) s QX - |:1 + FU;C(Rh Rl) . a1:|
-1
'FU;§<R1, Rz) c Qg |:1 + I‘v;g(Rg, RQ) : (12:| } (3.45)

Usually the limit |o;| < 1 holds true, so we can keep the leading order to

write the interaction free energy as

d
F12 ~ —5 / %tr |:FU;C<R27 Rl) sy - I‘v;<<R1, Rg) . a2:| . (346)

! Consider two particles in the vacuum which are both electrically and magnetically
polarizable. Then by defining I';,c = (1 + I‘fg - VFC> 1"H7 1 = 1,2, the interaction free
energy Fig is

1 [d¢ H
F12:§ %Trln( Fl( T 1:¢ " I‘QC T )

where ch = Vfc (14 I‘fg . Vfc)_l, i=1,2 and

V x @fc(r,r’) « v/
2

= T+ @y VI (14 Ty - V)T @y, R = —

r(rr) = 15(r—1')— , =1+ Ty Vi)™ Ty

V x FU?C.
¢



We assume R; = (0,0, z;) without losing any generality. With a given finite

temperature 7' > 0, when o; = ZzZq;, the interaction free energy Fi, is

F” _ 12T 418 1 2 _—2zrn 3.47
12 647321 — 2|7 i ;( +amn)e 7 (9.472)

where zp = 27|21 — 23|T; when a; = xxq;, Fis is

Q10221
F =

T6a s — | > (L zrn+ Z%n2)26‘2""} , (3.47b)
17 <2

n=1

when a; = Xy and oy = Zas, then Fijp = 0. In the zero-temperature limit

T — 0, Figs in Eq. (3.472) and Eq. (3.47b) are, respectively,

130[10(2
128732 — 29|

50[1(1/2
Fly = By = — o=, Fjy = By =
3273| 21 — 29|

(3.48)

while the high-T limits of F1H2 and Fj5 are obvious. For the isotropic particle
with a; = a;1, the interaction free energy is [y = F1”2 + 2F1L2, which means

its low-T limit is just the famous result in Ref. [151], i.e.,

230&1 (6]

- 3.49
647('3‘21 — 22’7 ( )

Fig = By =

When one of the particle is anisotropic, say a; = la, o = a(xx+yy) +
(22, then the Casimir interaction entropy is S;» = 257, + 55‘1‘2/04, where S|1|2
and sz are derived according to Eq. (3.47) except for ay = as = a. In the
unit of a? / 327T2|21 — 22|6, the reduced Casimir interaction entropies, in the
low-T limit, are

| 8.5 L 4

: 3
S1g ™~ EZ% S1g ~ —oE A = S12. ™

T — 2. (3.50)

Therefore, although those interaction entropies are always positive with high
enough temperature, there is a region, where the total interaction entropy is

negative, if 5 < a. For more information, please see our Ref. [44].



3.5.2 Concentric spherical shells

Consider two concentric spherical shells with radii a;,7 = 1,2, a1 < aq, per-

meabilities (1 = ps = 1 and susceptibilities

(S(T‘ - ’I“/) - : m mx m mx

Vi;C(rar/> =0(r — ai)TZ Z N QU () + pi @ ()2 ().
=1 m=-1

(3.51)

The interaction free energy of the first order scattering F1(21) can be written

in terms of the sum of TE and TM contributions as Fl(gl) = Fl(Ql)’TE + Fl(zl)’TM

in which Fl(Ql)’TE and Fl(Ql)’TM are

Fip" ™ = —py pQZuT Z ¢2et(Calaz) s} ([Cular ), (3.522)
FO™ —)\1/\QZVT Z Ce(|Calaz) s (|Gl ar). (3.52b)

According to the result of Eq. (A.13c), the TE contribution is evaluated as

> 2
Y™ = et 3G 0% -2l + )] - B2 (02 — )
n=1
e~ 2lenlaz ginh?(|¢u)aq) }, (3.53a)

which means in the low-T and high-T limits, F3""" has the forms

D, 1677 12877
AF1(2,)TTO ~ - 135 ——p1paasa; T® = 512 Tﬁo - 135 prpaoaci T, (3.530)
27° P1P20142 1y am(ay—ar)T
AFH THOO o 2T P1P20102 1y 2—a1 , (3.53C)

Qa2 —

where the temperature-independent parts have been ignored. In principle,
the TM contribution can also be calculated analytically according to the

result in Eq. (A.13b). However, the complexity is unacceptable. In the low-



T limit, Fl(Ql)’TM satisfies

].677'3@%)\1/\2

1), T™
AFI(Q,)THO 135@2

T (1 — o, T? + ¢4T4)
327’(’3&%)\1)\2

1), TM
= S£2?T~>O - 135@2

T3 (2 — 30, T% + 4¢4T4), (3.54a)

in which coefficients ¢, and ¢4, satisfying 993 < 32¢?, are
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while in high-T limit, it is
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where qu(al, sy aps by by x) denotes a generalized hypergeometric func-

tion. The total interaction entropy, in the low-T region, is

(1) o (1), TE (1), T™
SlQ,T—>O - SlQ,T—)O + SlQ,T—>0

327’(’3&%)\1)\2 4p1p2
— T VAT 2 — 3, T 4y — 1a2a? | T*|(3.55
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which means the total interaction entropy Sg) is consistent with the third
law of thermodynamics and it is possible that there is a temperature range
in which Sg) is negative, for instance, if p;py — 0, SS?T_)O can be negative in
the whole low-T region.

Therefore, we see another example where the negative entropy of purely
geometric origin occurs. Looking closely into the details of the quantum state
distribution of the concentric configuration may unveil more properties of the
origin of negative interaction entropy. Also, since the negative interaction
entropy phenomenon is believed to be related the repellency of Casimir force,
the concentric configuration here could be a proper point of penetration into

the geometry-facilitated Casimir levitation, which is typically caused by the



properties of medium.

3.6 Summary

In this chapter, we demonstrate our researches on the Casimir interaction en-
tropies and self-entropies briefly. Although those entropies have been studied
for more than two decades, our understanding is still not profound enough,
especially for the self-entropy. As we have shown, the Casimir self-entropy is
only well-defined for some extremely special cases. Generally, it is not clear
how to interpret the Casimir self-entropy because of the divergences, even
logarithmic ones, depending on the temperature. Nevertheless, we see illu-
minating phenomena in our self-entropy investigations, such as the vanishing
self-entropy of the thin sheet in the strong-coupling limit and the negative
TE and TM self-entropies of the thin spherical shell. Over all, our knowledge
about the Casimir self-entropy is pretty superficial and we are just getting
started. Evidently, any experimentally testable self-entropy effects, such as
the negative specific heat and the modified melting thickness of a hailstone,
will be of great help.

The Casimir interaction entropy is much easier to be detected. However,
experimental results diverge. Since the negative Casimir interaction entropy
almost always means the negative interaction specific heat, a properly de-
signed experiment may find the negative Casimir interaction entropy in the
laboratory. Given that more detailed knowledge about the dissipation could
throw much light on the origin of the negative interaction entropy, evaluat-
ing the dissipation of the system explicitly, for example with the approach

pointed out in Refs. [152, 153], is valuable.



Chapter 4

Classical and quantum friction

4.1 Background

Friction is a well-known concept, a force which resists the relative motion of
bodies. The irreversible dissipation of energy is a distinct characteristic of
friction, which is also closely related to the time-reversibility of the system
involved. Usually friction is seen between bodies in contact, but quantum
fluctuations, perhaps modified by thermal fluctuations, predicts the proba-
bility of a non-contact frictional force, called Casimir friction.

Casimir friction has been studied for more than four decades [154, 155,
53, 52], and we saw a renaissance of this topic since about 2010, in which
Ref. [156], claiming no Casimir friction exists, may have inflamed passions.
Most researchers think Casimir friction is real, for instance Pendry [157]
derives a nonzero friction by considering the interaction of surface plas-
mons in two parallel dielectric plates mediated by the vacuum fluctuation
of the electromagnetic field. It is widely believed that the dissipation of
the media and the thermalization of the dynamical system are sources of
the Casimir friction, which makes sense since both of these effects are ir-
reversible. In their series of papers on the quantum oscillators in relative
motion [158, 159, 160, 161, 162, 163, 164], Hgye and Brevik show that there
is dissipation of energy, and thus frictional force, in a thermal dynamical sys-
tem. Barton also has his own series papers on oscillator systems [165, 166],

the results of which have some discrepancies with those of Hgye et al. There



are studies with the dissipation included as well. The main difficulty lies in
the proper management of the dissipation. The quantization of the macro-
scopic Maxwell’s equations with the media satisfying the Kramers-Kronig
relations has been given in Refs. [152, 153], and similar methods have been
utilized in some investigations on the Casimir friction [167, 168, 169, 170].
As is known, there are discrepancies among studies on the Casimir fric-
tion. For more details, please see Ref. [171]. In this chapter, based on our
research, we demonstrate both classical and quantum friction. The systems

explored are simple yet illustrative, in order to clarify our arguments.

4.2 C(Classical friction

Suppose a particle with the charge ¢ is moving in a medium [172] and its
charge density and current density are, respectively, p(¢,r) = ¢d[r — R(t)] and
j(t,r) = qR(t)d[r — R(t)], where R(t) is the trajectory of the particle. So

E(t,r) is expressed as

Blor) = [ S B ), Elwr) = [dfTuer) ), @ia)

- V2T w

5 } T,(r, ') =6d(r —1'), (4.1b)
which means the energy loss rate of the particle W can be written as

W= — / dr j(t.r) B(t,r) = —¢ / ‘;‘;—geiw@’—f)f{(w TR, R R().
(4.2)
Let the background be vacuum for z > 0 and an isotropic and homogeneous
medium (e, u) for z < 0, then the propagator can be written as

2
L,(r,r) = /ﬂeik'(r'r/l)g k(z,2)) (4.32)
[PACE} (27T)2 w, ) )



where g, x is the Minkowskian version of Eq. (2.13c), i.e.,

k2 0:0.9¢% n _§w2 E koky 020298 haky 2 B ikz 0291
k2 ee’ k2 gC,k k2 ee’ k2 g{,k ee’
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Buk = k2 ee’ T e W ng k2 e + k_2w gC,k ee’ ’ (4.3b)
ikzaz/ggk ikyaz/ggk k:2ggk
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and gE , gH satisfy the equations
1 2 K (BE,H) / /
0.——=0, + (e, p)w* — 9o (2,2) =0(z —2"). (4.30)
(1) (p,€) 7%

By defining k = \/k? — cpw?, kK = Vk? — w? and the functions e, as

) e ", z >0, (4.42)
e (z) = . . Aa
—K—R/p —fz | K—R/U Fz

—or/n € + € 2 < 0,

R/p—FK —kz —R/p—K kz
ST + —=—=e z>0
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e, z <0,

g% is expressed in the region 2,2’ > 0 as

- _ —r(z+2") —klz—2'|
N :
_ _ 4.4
9-(%%) Rlu+rk 2K 2k (4.40)

while in the region 2,2’ <0 it is

z+2')
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K — &/ el
K+ R/p 28/ 28/’

(&

g¥(z,7) = (4.449)

where the second terms on the right sides are the bulk terms when each
medium filling in the whole space. By making the substitution ¢ <> u, we
obtain the corresponding ¢''s.

Firstly, set the particle moving with a constant velocity. Assume that the
particle is not in the dielectric and its position at time ¢ is R(t) = vtx+az, a >

0, then W is

dwdt 1 . / &’k /
W= [ S [ e ekt G0
v / 2 iwe (27T)2€ ook (@) o
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Figure 4.1: The energy loss rates as functions of the velocity of particle outside the
medium, with the distance between particle and surface being ¢ = 10nm, fw, = 9.0eV and
hv = 0.035eV (in our unit convention a =1, w, = 0.45 and v = 0.00175).

It is obvious that W = 0 always holds true when the dielectric is nondissi-
pative. For the conductor described with the Drude model € = 1 — wg /(w? +

ivw), i =1, then the TE and TM contributions to IV are
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where v = 1/v/1 — 2, w, = 2w,a and v, = v/w,. In the high-velocity limit

v — 1, Wg and Wy behave as

2w2 ksze—lky‘wa 1
W — = ;’/d% L , (4.72)
1T Ky
B2+ e k|
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There are arguments claiming that in the weak-damping limit v — 0 the
friction approaches a constant, which is definitely a novel phenomenon and
should be interpreted properly.*

When the particle is in the Drude conductor, whose permittivity and
permeability are ¢ = 1 — w>/(w” 4 ivw),n = 1 as above, and its position at

time t is R(t) = vtXx + az, a < 0, then the TE and TM contributions to W,

! In the polar coordinate, Wg and Wy are written as

2 ppvl 2 —19 -1
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where v, = 2va and ¥ = vycosf. W%=0 = 0 is always true since the v,, dependence of Wy is
analytic, while for W we have
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which means
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which is consistent with the results in Eq. (4.7b) and Figure 4.1.
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with the bulk contribution ignored, are
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The results of Eq. (4.9) are plotted in Figure 4.2. In the limit v — 1,7 — oo,

the limiting values of AWg and AWy are
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As shown in Figure 4.2, the total energy loss rate turns from positive to
negative as the velocity of the particle increases, which implies an accelerating
force. But it is only the interaction contribution. It is easy to check that
the bulk contributions to W are divergent, which leads to some ambiguity.
Suppose the whole space is filled with the conductor € = 1 —w?/(w*+irw), p =

1, then the energy loss rates are
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Figure 4.2: The interaction energy loss rates as functions of the velocity of particle inside
the medium, with the distance between particle and surface being a = 10nm, hw, = 9.0eV
and hv = 0.035eV (in our unit convention a = 1, w, = 0.45 and v = 0.00175).
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where § > 0 is a point-splitting regulator in the z-direction. Obviously, it is
not sufficient to interpret the nontrivial bulk contributions with the point-
splitting regularization.

Consider a neutral particle with a dipole d. According to the Maxwell’s

equations, the electric field can be expressed as

. d , /
E(t,r) = —/dt'/dr’/ﬁe"w(t_t)I‘w(r,r')-P(t',r'), (4.12)

where P is the polarization source due to the particle. In our case, P(t,r) =



d(t)d[r—R(t)] where R(?) is the trajectory of the particle, and the force acting

on the particle is
d ; /
— / dt’ / Q—We—lw@—t trVrn To[R(E), R()] - d(¢)d(t), (4.13)
m

which means when d = dz and the particle is fixed above a dielectric half-
space with the permittivity ¢ = constant and permeability 4 = 1, the force

acting on the particle is?

dt’dw - Pkk?* gl (2, 2')
F(t):/ w(t=t) a/ Q;k/dQ

e—1 3d*z
— - 7% (a14)
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in which the nonphysical divergent self-interacting term has been ignored.
Now suppose the particle is moving in the z-direction with a constant
velocity, i.e., R(t) = vtx + az, a > 0, then the force parallel to the motion
caused by the dielectric slab is
AF(l) = duwly’ / é:; ikm(k§7:+k3)<l_m) emnk
k2 4+t 4 (g 1

- k2v2y2+ivgkpvy )
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when the dipole is not transverse but longitudinal, namely d= dx, then

2 .32 1
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when the dipole is parallel to the dielectric but not longitudinal, namely

2 Consider the same situation except for € — o0, then the electrostatic potential U is

2 2 942 a2
U=— q — q + 4 . _ , d=2qr,
dw(2a — 2r)  47(2a+2r)  47(2a) 27(2a)3

which is consistent with the result in Eq. (4.14), since F = —20U/0(2a).



d= dy, then
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Classical friction in various situations is under investigation, such as magnetic
dipoles and Vavilov-Cerenkov radiation. Besides, the time-dependence of the
dipole and thermal fluctuations may introduce interesting properties when

the dipole is moving [173, 174].

4.3 Quantum friction

Consider a neutral polarizable particle, modeled as a two-level system, with

the Hamiltonian and dipole operators

We + Wy A

Hy = A&, + S0 d=d(5.+50), (4.16)

where A = w, — wy, w, and w, are eigenenergies of the ground and excited
states of the particle. Suppose the particle is moving above a medium located
in z < 0 with a constant velocity v = vX according to the trajectory R(t) =

viX + az, t >0, a >0, then E(w,r) is

E(t,r) = —/0 j;u_ﬂ dr’ {e “Ir,(r, )-f’(w,r’)+h.c.] (4.17a)
= — / — / dt’{e—““—t’)e(t—t’)rw[r,R(t’)]-&(t’)+h.c.},
0 2m —00

which means the interaction Hamiltonian, in the Heisenberg picture, is

/ du / dt'{ gD R(E), R(E)] - lt, ¢)

+e e [R(t), R(E)] - &t 1) } (4.17b)



where &(t,t') = &(t —t') and its Fourier component &(w) is defined as

&t 1) = d(t)d(t/);d(t/)d(t)é(t—t’), &(w) = / h g—;ewd(t), (4.17¢)

and the causality condition is included as the step function 6(t — t'). The
dipole-dipole correlation function is a(t,t') = (&(t,t')) = tr[p(0)c&(t, ')], then
when v = 0, the interaction energy is

E, = / dwtr {I‘w(ai, az) - a(w) + I'Y (az, az) - a(—w)} (4.174)
0

= 2Re /O " dutr [Fw(ai,ai)-a(w)] = /_ " dustr {I‘w(ai,ai)ﬂ(w)},

o0

and the force on the particle is F(t) = —Vg (H;(t)), which, in our case, has

the form
/ dw/ g k. Imtr {gw (a,a) - a(kzv — w)} . (4.17e)
The equation of motion for §, is §, = iA§, — i[3,, H,], which is solved as
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t
+(0)eiB — jeiat / dt'[3,(0), H(t)], (4.18)
0

in which the approximation is made to the first order. Then the leading
terms of d(t) and a(t, ') are d©(t) = d[5,(0)e® + 5_(0)e 2] and aO)(t, 1) =
ddo(t —t') cos A(t — t') = a9 (t,t') and its w-transform is

dd
4

dd 21w

aV(w) = [6(w + A) + 0w — A)] +—P——" (4.19)
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To the first order we have

o t a(o) t ]:[ t t 5O (¢ ¢ f{ "
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0 t 0

]

which can be repeatedly checked that Vn > 1, a™ =0, meaning that
a(t,t) = a(t,t'). By using the oddness of the integral over k,, the fric-



tional force on the particle is

()
o]

which is zero when the velocity is zero. Assume the A = 0 and d = dz for

Fu(t) = /A dk:c/ df_kaxtr {Imgkwv—A,km’ a) 'dd}

dk
(271_?;2/{7mtr {Imgkzv-kA,k(a, CL) . dd} , (4.21)

simplicity, then F,(t) is

dk > kye~wak
e k + kzvy+iv,, + k
24+1) [ dkk3e=waF
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Obviously, if the substrate is nondissipative, i.e., v = 0, then F,(t) = 0, since
the imaginary part of g, vanishes.

To further explore the relation between irreversibility and friction, consid-
er another well-known model, in which two neutral polarizable particles are
in relative motion. Previous papers [158, 165] on this model usually ignored
retardation in the interaction between two oscillators. Here the retardation

has been introduced. The Hamiltonian and dipole operators are

. 52 1 1 -
. = Ly Smgw; - 1)? = wirlalaiy+ =), d=qt;, (4.232)
’ i=1,2 2m; 2 ( ) i;Q b:a:zyz 7b( WY !

where w; = diag(wm,wi’y, ww), and the operators a; . are defined as

T T
. Aip + Ay [miw;p Qip — g p
Tih = —F—=, Dip = ’ —, (4.23b)
" 1/ 2miwi,b b 2 7

which give us the commutation relations [a;,aj.] = 0, [a@b,a;p] = 0;;0pc-

Suppose the particle 1 is located at R;(¢) = 0 and the particle 2 is moving
with the trajectory Ry (). For clarity, assume the two particles only have the

freedom to move in the z-direction, then the interaction Hamiltonian, with



the retardation included, is

H(t) = / N dt' [t — ', Ry(t)] PO (E) ; M(E)7a(t) : (4.24a)

[e.o]

where the index z is ignored and the coupling coefficient is

it~ Ralt)) = e | Z—jj{()r [Ra(t), 0)6(t — t’>}
= Ra() — 1) 8~ Ra(t)] ~ ¥) .
= {192 |: 27T’R2(t)|3 27T‘R2(t)‘2 :| s Rg(t) = Rg(t) s (4.24b)

where the retarded Green’s functions is used. Let the interaction start at the

initial time ¢ = 0, the equations of motion for the two particles are

~

a;(t) = —iwja;(t) —ila;(t), Hi(8)], j = 1,2, (4.25a)

which are formally satisfy the relations

(t"e wit=t) 4+ h.c.

A/ 2ijJj

t )
TAJ‘ (t) = 72J';O(t) o Z/ dtl[fj;t/ (t>> Hi<t/)]a 7A’j;lt/ <t> = 4 . (4.25b)
0

The direct interaction energy ﬁi(o)(t), which is to the first order of v, is
A 0 t
HO®) = / A Blt — ¥, Ro ()]0 (t)fro(t), (4.26)
0

which means the averge of f[i(o) (t) is proportional to (9,0(t)71,0(t')). When the
two particles are initially disentangled, gi(o) just corresponds to the classical
result found in Eq. (4.13). When the particles are entangled and assume the
initial state described by the density matrix p(0) = [t =0)(t=0|, [t=0) =
(]0115) 4 [1,02))/+/2, then (i0(t)71.0(t')) is nonzero, i.e.,

cos(wot — wit’)

(Fa0(t)F10(t)) = #0. (4.27)
\/4771177120)1602
For simplicity, let m; = my = m, w; = ws = w,, then when particle 2 is

moving with a constant velocity in the z-direction and the trajectory Ry(t) =



(vt +a)z, a > 0, the force on particle 2 parallel to Ry is

Q1q2 (3 — w?2?) cos(w,ez) + 3w,z sin(w,2) .

. (4.28
Stz (428)

2mw, 2mz4

z=a+vt

The magnitude of F Z(O)(t) decays in an oscillatorily way as particle 2 moves

away from particle 1. The average of I Z(O) satisfies the expression

FZ(O)T ___ 1

3
dmrmw,vz;

cos(woz;) + Wz sin(wozi)} . 2= , (4.29)

which is just the change of the interaction energy with a factor of v~!. So it
depends on the initial position whether the averge force is attractive or not.
Also it is clear that the expectation value of each dipole moment is always
zero, i.e., <d,~;0(t)> = ¢;tr[p(0)7;0(t)] = 0, so the nonzero FZ(O)(t) in Eq. (4.29) is
purely a quantum effect. Although the quantum entanglement can facilitate
the transfer of energy, it is unlikely to be a source of energy dissipation, since
the dissipation typically means time-irreversible aspects of a process.

Of course, much more work, which may be fruitful, could be done. For

example, by including heat reservoirs, it is possible to track the path of energy

dissipation. For further discussions on this topic, please see our future papers.

4.4 Summary

In this chapter, we briefly depicted dissipative frictional forces in both clas-
sical and quantum systems, based on our recent studies on this topic. In
the framework of classical electrodynamics, we investigate the friction acting
on a charged particle moving parallel to an imperfect conducting slab de-
scribed by the Drude model. In nonrelativistic and ultrarelativistic regimes,
the properties of friction due to the TE and TM modes are quite different.
The velocity dependence of the friction is non-monotonic. The friction may
be nonzero in the low-resistivity limit when the particle is moving, even close
to the speed of light. The properties of friction due to a time-independent
dipole moving with a constant velocity are also studied. But it is much more

complicated if the dipole evolving with time. Even when the dipole moves



inside a homogeneous medium, the radiation may also result in a force in the
opposite direction of motion, although there are divergences which plague
physical interpretation.

Also, we introduce two models to catch a glimpse of the properties of
Casimir friction or quantum friction. When a two-level particle is moving
in front of a Drude conducting slab, the particle feels a frictional force due
to its interaction with the slab. If the slab is nondissipative, the friction is
zero. That is, the dissipation of the conductor leads to the friction. To fur-
ther explore quantum friction, we study two quantum oscillators in relative
motion with the retardation included. If the oscillators have a quantum en-
tanglement, we find a longitudinal force which is not a dissipative force. Our
arguments are limited to the leading order and multi-scattering corrections
are also nontrivial, though usually too small for any precise experimental
detection.

We will, of course, keep working on the classical and quantum friction
topics, which, we anticipate, can enrich our knowledge about the relations

between quantum friction and irriversibility of time.
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Chapter 5

Conclusions and perspectives

5.1 Conclusions

In Chapter 2, we study the Casimir energies, stresses, and forces in some pla-
nar and spherical systems. For homogeneous cases, we see bulk divergences
of Casimir stresses in a uniform background and we also see divergences at
the surface between two dielectrics. We reproduce the expression for the
Casimir-Lifshitz force in a DLP model, which has already been justified ex-
perimentally [74, 175, 176]. We briefly investigate Casimir stresses and forces
in spherical systems and show they are consistent with corresponding planar
cases but much more nontrivial due to the curvature. For inhomogeneous
cases, based on our work [118], we find divergences depending on disconti-
nuity properties of two media at their surface. Bulk divergences and special
cases are also given in Ref. [118]. In Chapter 2, we take a first step to fur-
ther understand our renormalization scheme, which is introduced to calculate
inhomogeneous Casimir forces in planar systems [19], by considering inter-
action between step homogeneous media. We try to generalize our scheme
to concentric spherical cases with some specific examples. More general ar-
guments should be carried out in the future.

In Chapter 3, we study the influence of thermal fluctuations on Casimir
effects. First we derive some well-known thermal corrections Casimir forces
for some homogeneous cases. The inhomogeneity of media has significan-

t effects on thermal Casimir forces, which is illustrated with some specific
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examples here, for planar and spherical systems. Based on our pioneering
studies [45, 46], we demonstrate Casimir self-entropies of an infinitely thin
plasma sheet and an infinitely thin plasma spherical shell. For the thin sheet,
its Casimir self-entropies have analytic forms. Both TE and TM Casimir
entropies are consistent with the third law of thermodynamics. The TE
contribution is always negative, the TM contribution is always positive, and
the total Casimir self-entropy is always positive. These results are overall
satisfactory, but when the plasma model for this thin sheet is replaced by
the Drude model, we see divergences in the Casimir self-entropy [45]. For
the thin spherical shell, no analytic forms are found for TE and TM Casimir
self-entropies, but consistent limiting arguments are given. The general prop-
erties of TE and TM Casimir self-entropies are evaluated numerically, which
contradict some limiting results. More investigations are needed. Also we
show negative Casimir interaction entropies due to geometry.

In Chapter 4, we calculate classical electromagnetic frictions acting on
a charged particle moving with a constant velocity above a Drude conduc-
tor [172]. We see a maximum in the velocity dependence of the TM frictional
force. Even when the dissipation of conductor disappears, the TM friction-
al force remains. We also briefly investigate the frictions due to quantum
fluctuations in atom-plate and oscillator-oscillator systems, where the retar-
dation of electromagnetic fields has been included. The frictional properties
depend strongly on the details of quantum evolution process. Lots of effort

should be put into the researches on this topic.

5.2 Perspectives

Definitely, it is not our intension to trap ourselves in theories that are pure-
ly abstract, since we recognize that we are always in a “practice-theory”
loop when trying to understand the world. Actually for Casimir physics, we
see a clear tendency towards practical applications. For example, the auto-
suspension has been implemented for a nanoplate [131] in a system similar to

that described in Sec. (2.4.1), which demonstrates the possibility of Casimir



forces keeping micro-structures nontouching and the whole system robust.
For another example, Munday et al. measured the Casimir torque with a
liquid in front of a birefringent substrate [139], which implies the Casimir
torque may be used as an actuating scheme for nanomechanics. We expect
our research could act as a guidance for experiments or even applications.

As shown in previous chapters, there are many problems in the topics
mentioned, which could and should be investigated. Casimir stress tensors
and forces in inhomogeneous system with other geometries, for instance the
spherical geometry in Chapter 2, or even topologies, are worthy of research.
It is interesting to discover properties apparently different from planar cases.
Though the divergences of Casimir stresses at the surface of inhomogeneous
media seem preposterous, it is believed those divergences should be finite
within the atomic scale, which should be precisely studied. It is also an
interesting proposal to test the potential influence of Casimir stresses on
the surface structure deformable media [119, 120], but the electrostrictive
contributions should be included [177]. Inhomogeneous Casimir forces have
a good latent capacity to be applied to micromechanical systems, which
implies the significance of experimentally accessible systems. How Casimir
stresses couple to gravity attracts much attention, but studies mainly focus
on simple cases of scalar fields [113, 68]. The influences of electromagnetic
Casimir stress tensors on gravity, especially with inhomogeneous media, are
largely unknown.

The Casimir entropy, especially the Casimir self-entropy, is a relatively
novel research object, and plenty of unsolved questions are waiting for us
to put forward and answer. Regularization methods and their consequences
should be understood. For example, in our investigations on the Casimir
self-entropy of a thin spherical shell, we see divergences inconsistent with
the third law of thermodynamics, which are omitted ad hoc. Renormaliza-
tion schemes in Casimir self-entropy calculations should be introduced, since
we expect the self-specific heat C' = T0S/JT to be finite. Factors, such as
geometry, topology, dimension of spacetime et al., may also affect the prop-

erties of Casimir self-entropy. As a counterpart, the dimensional dependences



of Casimir interaction entropy are given in Ref. [126]. We plan to figure out
some experimental implication due to the Casimir self-entropy [51].

We would like to make our own contributions to old yet active topics,
namely classical and quantum frictions. Studies on classical frictional self-
forces of electric and magnetic dipoles due to dipole radiation and Vavilov-
Cerenkov radiation, and their frictions when dipoles are moving in front an
imperfectly conducting surface, are in progress. The frictions in various sys-
tems, such as oscillator-oscillator, briefly depicted in Chapter 4, atom-atom,
atom-dielectrics and so on, should be considered. We will study thermal
corrections to quantum and classical frictions, which we think may facilitate

experiments [171]. Experimental proposals [178] are also welcome.



Appendix A

Some mathematical tools

In this appendix, we outline several mathematics utilized in our research.
As an appendix of a thesis in physics, we do not pursue the mathematical
completeness. For more details, please refer to professional math materials.

A.1 Vector Spherical Harmonics

The vector spherical harmonics (VSH) are defined as Y" = YT,
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where 0, is the angle between the directions of {2 and (Y, i.e. (0,¢) and
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A.2 Uniform Asymptotic Expansion

For large order v — 00, the modified Bessel functions can be uniformly
expanded as
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defined with e and s, we have the following useful properties
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which is just the Abel-Plana formula.

n
Consider the summation » f(a). For any integer n we have
a=m

/n dof(x / F@)dBy(x) = f(n+1;+f(n)—/:Hf’(a:)él(x)dx

(A.9)
where Bn(:z:) is the periodic Bernoulli function. So in our case we have

/f /f )By (z (A.10)

which, by employing B/, ,(z) = (n+1)B, (), leads us to the Euler-Maclaurin
formula [179]
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where we assume f(z) is integrable (usually Riemannian) in [m, n| up to pth
order of derivative, B, is the Bernoulli number, and Rp is referred to as
the remaining term. If f(z) has no singularity in [0,00) and the conditions
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Some summations involving special functions are also useful in our re-
search. For example, those involving the modified spherical Bessel functions
as follows [180]
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where Ei(z) is the exponential integral.
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