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I would like to discuss a model of higher resonances in the zN scattering
that has been worked out extensively in the past year, and for which still
further works are being done. In this model which I am about to discuss,
we consider the three-particle intermediate states N +27 in which the two
_pions are strongly correlated in the T =J=1 state as an unstable particle
we now call the p meson [1, 2].As this new channel becomes energetically open,
the pN channel becomes coupled to the 7N channel. In fact the 7N system
can make a virtual transition to the pN channel even below the pN threshold.
In our model, we assume a strong coupling between the 7N and pN channels,
eventually developing a resonance either above or below the pN threshold.
This model is very similar to, but significantly different in one respect from,
the model suggested by Dalitz and Miller for the Y3. The analogy of the
Dalitz -Miller model in our problem would be to assume a strong force be-
tween the p and N particles to sustain a bound state which would be stable,
were it not for the ""weak' coupling between the pN and 7N channels. In our
model, however, it is precisely the coupling of the two channels that is re-
sponsible for the resonance. There is very little, if any, difference between
these two models phenomenologically, but at a deeper dynamical level, there
is a difference in outlook. )

The reason that the model we are considering is capable of accounting
for the higher resonances is seen as follows. Let Lj be the "orbital"
angular momentum and the total angular momentum of the 7N system and
I; the same for the pN system. Note that there is no change in the intrinsic
parity in the reaction N +7 — N + p. Therefore
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Now as the pN channel becomes energetically open, the I = 0(Lj= D3/2,
Sy/0) state will be excited first, then the I = 1 (F55, Py, Py} state, and
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so on. Since the statistical weight is proportional to (2J + 1), we expect

that the first resonance is predominantly in the state L; = Dy, and the second
one in the Lj = Fy/9, By, Py, states, which of course agree with the ex-
perimental findings. The isotopic dependance is determined by the specific
"primary" interaction we choose, and we will discuss it when the appropri-
ate moment comes. ]

Our formal approach will be based on the unitarity and analyticity of
the relevant amplitudes. Actually the analytic properties of the production
and three-particle-to-three-particle scattering amplitudes are only scantly
known, and we shall proceed by assuming a particular diagram as giving
the main contribution to the left hand cuts of the production amplitude. On
the unitarity relations of the coupled processes, I shall rely heavily on the
recent work of Ball, Frazer and Nauenberg.

While for the scattering amplitude the unitarity relation

T-T*=27iTpT* (1)

gives directly the discontinuity across the right hand cut, this is not the
case in general for the production and 3-particle-to-3-particle amplitudes.
Let us denote by subscript 1 the 7N channel, and by 2 the pN channel. Then
various elements of the T -matrix are defined as

Ty, (s0)  =N2k Vpi/mdm (k") N (p*"[ 3 (0) |7 (k) D2 K ulp),
T, (5,.0,) = AR, KoV /mdr (kD a()N (@) |3} (0) [ Sv2k u(p),  (2)
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T ; T in
Ty, (8,, 0, 0.,) = Nakj kg Nag/m r(k)) 7 (k§) N (g P | g (0) [ 7 (i) 7 ()" >
XN 4kjokgou(q).

In the above definitions of the T-matrix elements, we have deliberately
contracted the nucleon rather than the pion operators so as to keep the two
pions in the bra or ket together. To specify the kinematics of the reactions
7T+N&«—> 17 +N, 7+ N> 7+7+N, and7 +7 +N<—> 7 +7 + N we need

to specify 2,5 and 8 variables, respectively. We specify the total energy
of the system in the centre of mass which is common in three processes:

s=-(p+k?=-(p'+ k)
= - (@ tky k) = - (@ +k) *+kj)2 (3)

For three-particle states, we will denote by o the total energy square
of the two pion system in its own c.m.:

o= - (k +ko)?

o'= - (k] + k)2, o (4)
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The other remaining variables are appropriately chosen angles.

Suppressing the angular variables, we deduce the discontinuity of the

T..

;j across the real s-axis, s >(m + u)2as

1/2i [Ty, (8) - Tyy(s)] = £y Ty (54)py (8) Ty ()
+ Lo, Tip(s,,0,)0,4(8,0) Ty (s, o),
1/21 [T12 (54,, U) = T12 (S-: U)] = E2 T]l (S*)pl(s) T12(S')

+ 23‘0' T12 (S+, 0"4»),02 (S, U) T52 (s.; 0'.,: O),

1/2i[ Tgy (84,0, 0) - Tag(s.,0%0) = Ly To; (54,01 (8) Ty (s, 0)
+ E3_o’lT;2 (s,,d, o")p2 (s, 0" T2°2 (s_,0"0)
where L, is the two-particle phasé space integral for fixed s:
1 21
Lo fdcgsefdcp.
‘and p, (s) is the phase space factc;; of t‘her'7rN system:

Bf) = pfss map) o 1 0(o-(m +up) < [ HPITIO-MRtBIR. g1 (4 ).

L, ,is the three-particle phase space integral including the integration over
the continuous mass variable g, and pys, o) is the phase space factor for
the pN system: '

pfs.a) « pfs;mo) pfo;u,p) 0(s - m - Jo) 6(0 - 447 6(s - (m +u)?).

Eqgs. (5) are derivable (at least heuristically!) using the L.S,Z.formalism,
It must be emphasized that Eqgs. (5) are not the unitarity relations, albeit
they "are intimately related to the latter. Before exhibiting the connection
between those two, we wish to note the topological structure of the Ty, in
Eqs.(5). From the definition of T§, in Eq. (2), we see that

Sy = ;—‘ni’ 8(3 - Q) Spm + (27m)¢id(qtky tky - q' - ki~ ki) ... TS
. Ifac!ors
so that T2°2 is defined as

q A
T2°2 = rJ.':22 - Boﬁ(q - q')Tmr .

That is to say, the ''connected" amplitude excludes the disconnected group
in which the nucleon is non-interacting (Fig. 1).

To get rid of the complicating angular dependence in Egs. (5), it is con-
venient to decompose the amplitudes into partial waves. The decomposition
of the elastic amplitude is well-known, so I shall not elaborate upon this.

(5)
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Fig.1

To decompose the production amplitude Tys we first go to the 27 centre-of-
mass system and choose the %-axis along the direction of the q (see Fig. 2).

In this frame, we project out a particular angular momentum state £
of the 27-system with the quantizationaxis along the ¥ -axis. Let £j be the
projection of £ onto the 7-axis. Now we Lorentz-transform the system to
the total centre of mass. Since the Lorentz transformation is along the

¥-axis with the velocity
=|3|/,ﬂ§|2+0

the projection £; remains invariant and 2; acquires the role of the helicity
of the 27 system. As the two-pion system is now equivalent to a particle
of massJo, spin £, helicity ﬂ; as far as kinematics is concerned, the de-
composition into definite (J,r) states follows in the standard manner of Jacob
and Wick. The three-particles amplitude Tyy may be decomposed in a simi-
lar manner., If we assume, as we shall do, that only one particular £ domi-
nates, and that the mass-distribution in Jo is sharply peaked near ¢ = o,
the picture of an unstable particle can be naturally incorporated into our
scheme. From now on we shall retain only the £ ®= 1 amplitudes in our con-
gsiderations.

Once the amplitudes Tj; are decomposed into partial waves,the angular
integrations in Egs. (5) can be performed trivially. For given quantum num-
bers J, 7, we obtain

Tii(s,)' - Tfi(s.) = 2i Tfi(s,) py (s) Thy(s.)
(s m)z
+oL fdo T, 0,) pyls, o) V(5. 0., (6)
v yt

where, for £ = 1, o = 1, 2 or 3 is the polarization index corresponding to
two transverse, one longitudinal polarizations.

At this juncture let us clarify the connection between the discontinuity

(6) and the unitarity relations. For o, for example, the unitarity rela-
tion asserts that (suppressing J, 7, %‘,, a hereafter)
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Tyo (e, 04) - T (s, 0.} =21 TF,(s) py(s) Tyy (s,0) + 2ifdo’T1"é (5,0')0,(5,0) T s, 0’ 0).(7)

We assume Tﬁ”f(s, x,--) = Ty (g% x* ---), i.e, Tj; are real analytic functions
in the energy variables, We are unable to give a rigorous, general proof
for this, but this is true in perturbation theory as far as can be ascertained.
Then we may write Eq. (7) as

[le(s+: G+) - T12 (S-: 0+)] + [Tlg(s-s G+) - T12 (S_: 0'_)]
5 21Ty, (s-ie) pl(s) Ty, (s+ie)+2i ﬁc’le(s_, o'_)pz(s, o) T22(s+, ol,0,). (8)
Now we note that

ei 6(0)

To (s,064) - [p(s,0.) = 21 siné(o) Ty, (s_,0.)

= 2i [do"(Tyy - Tyy) pys. ") Tpp(s o). (9
Therefore, Egs. (8) and (9) imply the second {not written out) line of Eq. (6).

What it means may become clearer if you consider a particular diagram
(see Fig.3).

When we consider the imaginary part, there are contributions from parti-
tions 2 and 3 of the diagram as well as that from the partition 1.In com-
puting the "absorptive' part, however, the contributions from 2 and 3 should
not be included (since ¢ is fixed). It may be further remarked that the parti-
tions 2 and 3 give rise to terms of the form

ﬁo'Tm (5.,0.) pofs, 0') T2 (s, 0% o),

where ng is the excluded disconnected part
T2 = Ty - T.

So much for the unitarity aspect of the problem, let us now look at the
dynamics. We would like to take into account the longest range "force' that
contributes to the process r + N «—> p + N, One-pion exchange is possible
between the nucleon and the meson (see Fig. 4}.

@ ~MESON
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In fact, the reason why we have singled out the N + p intermediate state,
but neglected other states such as N +w (n) is,that this is the only state con-
sisting of one nucleon and one unstable meson that can be reached from the
N + 7 state through one-pion exchange. The matrix element for Fig. 4 is

— . 1
u(q) yuip) ig g5 For (0, -+ (10)
where t = -{p-q)?, and E; is

g eié(o)

Flo, ) e 8,

sin 6(0) P, (k, - k)|

27, ¢c.m.

=1 (0)3F (k- k),

When we make a partial wave projection of (10)we get two branch lines, one
extending from s=0 to - o, the other one between the two branch points s%,
given by

stfo) =m? +¢/2 % 52[%[(4m2 - u?)(4u? -0)]2
If we give a small positive imaginary part tog:o — o *+in, n>0,and in-

crease ¢ from a certain small valué, the branch points s¥g) move as in-
dicated in Fig. 5.
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Fig. 5

That is, the projection of the one-pion exchange amplitude develops an
anomalous singularity at ¢ = 2u2(1 +u/2m), a complex singularity at o= 4u2.
If, instead, we give a small imaginary part to ¢, the loci of the singularities
in Fig.5 are reflected about the real axis.

The amplitudes Tij contain some kinematical cuts. We define the new set
of amplitudes M;j; by

1 1
M; = T Ty iz
3 L

where the g; are factors proportional to p?L, p; being the magnitude of the
channel momentum, L; the lowest channel orbital angular momentum (L;= L
fori=1, L; =Ifori= 2, where L and I are defined as before). On defining
new quantities p'i (s), pi(s,o) by
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2Ltlag

pi(s) = g o (s)~ [p s - (m+u)],

“pl(s,0) = g2p2(s, o) ~ [a(s,0)2Fas s - (m+2u)?]
we can write the discontinuity conditions, Eq.(6), in the form
MYi(s,) - MY(s.) = 2i M{{(s.)p} M;y(s)
+2i Efdo Mli(s o) pl(s, o) MT(s,,0.). (11)

The factors pl and ph express the combined effect of the variation of the
available phase space and the centrifugal barrier. As a consequence, the
dominant energy dependence of the amplitudes near thresholds is removed
from Mij: the Mij are approximately constant near the thresholds.

We can now write down the dispersion equations for the M;;. The"input"
amplitude By (s, o) has a spectral representation of the form

fa00) [ 1 ds’ ® 4sr
Buls.o) =27 | [ 4% ateto) + [ 50 6o ]
s+ -

If we fix the value of ¢ below 2u2(1 + u/2m), we can write down the dis-
persion equation for My(s, o) :

Myy(s.0) = Byy(s,0) + = f =38 Myy(s)) oy () Myy(s))

(m+y)?

ds’
s’-s

1 )
+ = . 12
: (12)
(m+2y)?

Let us now consider the analytic continuation of Eq. (11) in the mass ¢.
As we have seen, M,, will develop an anomalous singularity, and we must
deform the contour in the second term of (12) to avoid the intruding cut of
le(s-lf, O') .

The amplitude Mo (s%, ) in the integrand must be continued to the second
sheet through the two-particle unitarity cut:

M,,(s,,0) = Mji(s.,0)
= M,,(s., o)1 + 2ip, (5) My, (s o)} !
pll(s - ie) = p (s +i€) = - py(s-1€) .

Therefore the continuation of Eq.(11) in o now gives
@ dsl

s'-s

_ 1
My,(5,0) = By(s,0) + f

(m+y)?

1 (m+p)2ds'

= 3 11 I
+ f P disc My(s') p, (s Mn(s’). (13)
s*(0)
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One can show that M,,(s, o) given by Eq. (13) does not satisfy the disconti-
nuity condition in ¢, namely

M, (s,0,) - M,y,(s,0.) = 2if_(0,) plo) My, (s,0.); plo) = /Ei;fil’, (14)

Eq.(14) means that

. Mai(s,o +1i€) -
d1°sc [—_——fﬂﬂ(aﬂe) ] o,

but because of the unsymmetrical (in the s-plane) complex anomalous singu-
larity, Eq.(13) gives

. M21(S,0+i€)] 1 [ ds’ { . My(s c+)] n
disc | —/———— | = - dis > s'M_ (s
° [ frq(o + i€) T - |15C t.doy) oy (81 M), (s)
17 ds’ 7. Mg’ a-)} o
+ - r
z P, Ldlsc £ (o) py (8 M (s")
(m+y)?
#0

Ball, Frazer and Nauenberg noted that the diagram shown in Fig.6 has
a cut from s+ to s, corresponding to the nuclear line indicated by arrow
on the mass shell.

The contribution from the branch cut from s* to s™ of this diagram can
be shown to be

(m+y)?
__l.__ _di ’ I (ot 1)
mplo) [f s'-s a(s’o) gy () M {s)
s+ s

w25 a(sh0)p,(s) M, (s)
s - ¥\5h00p, ISALEA N
(m+u)2
When we add this term to Eq. (13) and manipulate a little bit, we obtain

(mp)t
Mai(s,0) _ Byls,0) , 1

f.(c) flo)  7p(o)f (o) S Y

a(s,0) pj (s') My, (s")

s7(o) :
— L s’ ' . o
+ a(s)o s')M, . (s') +unitar tributions. (15
wp(O)ffﬁr(f+ y 57~ 5 2(82000, () My(&) y contributions. (15)
mty

By virtue of the relations
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Q’*(S, G) = 'a(S*:c*):

1 1 .
f_n(_o) - % = -21p(0‘)_,

the amplitude M,,(s,0) satisfies Eq. (15).
The above consideration may be understood better in terms of diagrams.

Consider, for example, a Cutkosky diagram of Fig.7.

Fig. 7

The discontinuity in o corresponds to the partition of the diagram along linel,
and this must be written in the form (see Eq. 14)

21t (0)p(0) Myy(s,0.),

Therefore, M,y; must include the ‘diagram shown in Fig. 8.

Fig. 8

In this model both the elastic amplitude M;; and the 3 particle amplitude
My are driven by the inelastic process, which in turn is generated by the
one-pion exchange mechanism and the unitarity. Schematically the whole
coupled processes can be shown as in Fig.9.

The non-linear set of equations (11) and (15) can be solved by the matrix
N/D method. Of course a slight modification is necessary to accommodate
the complex anomalous singularities. An important result is that, while
individual elements Dij do have complex singularities, the determinant of

D does not.



446 B.W. LEE
Moreover we observe that
S = p¥2D(s -ie) D Ys +i€)p !/
so that

1In det D(s!)-1n det D(s,) = Indet S = £ §,(s)

a eigenchannels

and from this and the fact that det D has only the normal unitarity cut, the
multichannel Levinson theorem follows :

 {sutm - 60(9)} = Tlboung )

Instead of demonstrating the N/D solution, let us be content with the
semiphenomenological K-matrix solution, to glean the nature of the more
elaborate solution. Let us adopt the matrix notation and write

M=K+iK-p" - M (16)

where the rows and columns of the matrices arelabelled by the discrete chan-
nel indeces i and the continuous ¢

1\2/111 M20.1
(M) = Ml, 20° :M‘ZO, 20" ete.

\

and the matrix p is diagonal
pll- 0 0
(p”) =| 0o nyls0) .
0
We write
my; = My,
m (s, 0) = My,(s, o) f12(0)
m22(s, g,0) = f-,;,%(o") M22(S, ¢4 0) f,;#(o') .

Now we make an essential approximation that f;;(c). is sharply peaked at
o = o;, and, in the spirit of the steepest descent approximation,

mlz(s,o) ~ mlz(s, Ur) = m12(s), etc.
Likewise we define kj; by removing the sharp dependance of «;; on the mass

distribution ¢. On defining the 3 particle factor p‘2I corrected for the final
interaction '
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(5 -m)? ®
Ezl(s) =f dclf,m(o)|2p2(s,a) .

4p?
We obtain a reduced 2 X 2 matrix relation between m and «:

. . —1
m,(s) = ky(s) + ik (s)pk (s)my (s) +ix, pym,, (17)
In order that the Mﬁ satisfy the relation, Egq.(12), it is necessary and
sufficient that « be real symmetric; the Mj; can be written as
~ L -1
m=(l-ig- k) "k ,
the condition for resonance is
Re [det (1 -ip- k)] =0
or
0= Re [l + pf by (kg kg = K11Kgp) - 100 Kyp - iPKge) (18)

Now in the range (m + “)2 <s< (m+ J&r)zpl is purely real, while 521 is pre-
dominantly imaginary, so that Eq.(18) reduces approximately to

| +155] kg 0. (18)
A necessary condition for resonance below the p N threshold is then
Koo < 0.

A detailed calculation shows that k4 is in fact negative both in the D3y, and
Fy/o states (T = 1/2) for the interaction considered (one-pion exchange), and
the ratio of the Kz, in the T =1/2 state to that in the T =3/2is~4:1(see Fig.10).
Since I 5%] ~| 5[21“1 , we see that, assuming k5% ~ «[1, the Dy, resonance
lies below the F;/s resonance in the T = 1/2 channel.

A crude calculation made by Cook and myself may be summarized in
the following graph (Fig. 11),

Isin 812
o
19, %y

T . 1 T
(rm"u)2 {m+ Ve, )2 (mﬁp)z 600 MeV {m+ \f?z)z
Fig. 10 Fig. 11
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