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I would like to d iscu ss  a m odel o f h igher resonances in the jtN scattering 
that has been w orked out extensively  in the past yea r, and fo r  which still 
fu rther w orks are  being done. In this m odel which I am about to d iscu ss, 
we con sid er the th ree -p a rtic le  interm ediate states N + 2jt in which the two 
pions are  strongly corre la ted  in the T = J = 1 state as an unstable particle 
we now ca ll the p m eson  [1, 2] .A s this new channel becom es energetically  open, 
the pN channel b ecom es coupled to the ttN channel. In fact the irN system  
can make a virtual transition  to the pN channel even below  the pN threshold. 
In our m odel, we assum e a strong coupling between the jtN and pN channels, 
eventually developing a resonance either above o r  below the pN threshold. 
This m odel is  very  s im ila r  to, but significantly different in one respect from , 
the m odel suggested by Dalitz and M iller  fo r  the Y*. The analogy of the 
D alitz -M ille r  m odel in our prob lem  would be to assum e a strong fo r ce  b e ­
tween the p and N p a rtic les  to sustain a bound state which would be stable, 
w ere it not fo r  the "w eak" coupling between the pN and irN channels. In our 
m odel, how ever, it is  p re c ise ly  the coupling of the two channels that is  r e ­
sponsible fo r  the reson an ce . T here  is  very  little , if any, d ifference between 
these two m odels phenom enologically , but at a deeper dynam ical level, there 
is  a d ifferen ce  in outlook.

The reason  that the m odel we are con siderin g  is  capable o f accounting 
fo r  the higher reson an ces is  seen as fo llow s . Let L j be the "orb ita l" 
angular mom entum  and the total angular mom entum o f the ttN system  and 
Ij the sam e fo r  the pN system . Note that there is  no change in the intrinsic 
parity in the reaction  N + it —* N + p. T h ere fore

jtN pN

h h

S l/2 S l/2 D l/2

P l/2 P l/2

P 3/2 P3/2 F 3/2

P3/2 S3/2 D 3/2

D5/2 D5/2 G 5/2

F 5/2 P5/2 F 5/2

Now as the pN channel becom es energetica lly  open, the I * 0 (Lj = D 3/ 2 , 
S1 / 2) state w ill be excited  fir s t , then the 1 = 1  (F5/ 2 , P3/ 2 . P1/ 2) state, and
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so on. Since the statistica l weight is  proportional to (2 J + 1), we expect 
that the firs t  resonance is  predom inantly in the state Lj = D3/2 and the second 
one in the Lj = F5/ 2 , I$/2 . P i/2 states, which of cou rse  agree with the e x ­
perim ental findings. The isotop ic dependance is  determ ined by the specific 
"p r im a ry " interaction  we ch oose , and we w ill d iscu ss it when the appropri­
ate mom ent com es.

Our form a l approach w ill be based on the unitarity and analyticity of 
the relevant am plitudes. Actually the analytic properties o f the production 
and th re e -p a rt ic le -to -th re e -p a rt ic le  scattering amplitudes are only scantly 
known, and we shall p roceed  by assum ing a particular diagram  as giving 
the main contribution to the left hand cuts of the production amplitude. On 
the unitarity relations o f the coupled p ro ce sse s , I shall rely heavily on the 
recent w ork of Ball, F ra z e r  and Nauenberg.

W h ile  f o r  the sca tte r in g  am plitude the unitarity  re la tion

T  - T * =  2 ff i  T  p T *  (1)

g iv e s  d ire c t ly  the d iscon tinu ity  a c r o s s  the right hand cut, th is  is  not the 
c a s e  in g en era l f o r  the p rod u ction  and 3 -p a r t i c le - t o - 3 -p a r t ic le  am plitu des. 
L et us denote by su b scr ip t 1 the 7tN channel, and by 2 the pN channel. Then 
v a r io u s  e lem en ts  o f  the T -m a t r ix  a re  defined  as

Tn  (s +) =sl2kQ J p j,7 m < jr (k ')N (p ')out| Jjj, (0) 17r(k) > s /2 u (p ),
_________  ______  out I , r

T21 ( s + ,  ct+) =N /4kj0k '0»,/q^/m <Jr(k')7r(k^)N(qO | (0) | jr(k )> ./2 k 0u(p), (2)

T22 ( s + ,  ct+', c t +)  = J T k ^ k ^ J ^ i  <V(kj) 7r (k2) N (q ')out | J* (0) | ir (k j i r  (k2f  >

X V 4 k 10k 20u (q ) .

In the above  d e fin ition s  o f the T -m a t r ix  e lem en ts , w e have d e lib era te ly  
con tra cted  the n u cleon  ra th er than the p ion  o p e r a to r s  so  as to  keep  the tw o
p ions in the b ra  o r  ket to g e th er . T o  sp ec ify  the k in em a tics  o f the rea ction s
it + N — > it + N, ir + N <— > ir + ir + N, and ir + ir + N <— > ir + ir + N w e need 
to  sp e c ify  2, 5 and 8 v a r ia b le s , r e s p e c t iv e ly . W e sp e c ify  the to ta l energy  
o f the sy stem  in the ce n tre  o f m a ss  w hich  is  com m on  in th ree  p r o c e s s e s  :

s = - (p + k )2 = - (p '+  k ')2 

= - (q + k a + k 2)2 = - (q ' + k 1' + k2' ) 2. (3)

F o r  th re e -p a r t ic le  sta tes , w e w ill denote by a the to ta l energy square 
o f the tw o p ion  sy stem  in its  own c . m . :

ct = - (kj + k2)2

a ' -  -  (k ' + k ' ) 2 . ‘ (4)



UNITARITY AND PRODUCTION AMPLITUDES 4 3 9

T he oth er rem a in in g  v a r ia b le s  a re  a p p rop ria te ly  ch osen  an g les .
S u ppressin g  the angular v a r ia b le s , w e deduce  the d iscon tinu ity  o f the 

Ty a c r o s s  the re a l s -a x is ,  s ^.(m  + / j )2 as

E3 0 is  the th ree-particle  phase space integral including the integration over 
the continuous m ass variab le  a, and p2(s, cr) is  the phase space fa ctor  fo r  
the pN s y s te m :

A /s, ct) oc Pj(s; m.Jo) p^a;ß,ß) 6(-fs - m -n/ct) 6{o - 4/j2) 0 (s - (m +^)2).

E qs. ( 5) are derivable  (at least h euristica lly !) using the L . S .Z .fo rm a lis m . 
It must be em phasized that E qs. (5) are  not the unitarity relations, albeit 
they a re  intim ately related to the la tter. B efore  exhibiting the connection 
between those two, we wish to note the topo log ica l structure of the T2C2 in 
E qs. (5). F rom  the definition  o f T22 in Eq. (2), we see that

That is  to say, the "con n ected " amplitude excludes the disconnected group

T o get rid  of the com plicating  angular dependence in E qs. (5), it is con ­
venient to decom pose  the am plitudes into partia l w aves. The decom position  
o f the e lastic  am plitude is  w ell-know n, so  I shall not elaborate upon this.

l / 2 i  [Tjj (s+) - T jj (s .)]  -  £ 2 I n  (s+)Pj (s) Tjj (s .)

+ Eao T12(s+jct+)p2(s , ct) T21(s_, ct.),

1 / 2 i [Tj2 (s+, cr) - T12(s_, ct)] -  E2 Tj j (s+)Pi (s )T j2(s .)

+ £ 3 0. T j2 (s +, cr+)p2 (s , ct) T22 (s. ,  ct.', ct), (5)

l / 2 i  [ T22 (s+,ct',ct) - T2c2 (s .,c t ',o ) = £ 2 T2i (s+, ct')pi (s) T12 (s_, cr)

+ £ 3.o"T2c2 (s+, ct', o" ) p2 (s , cr") T2c2 (s ., a", a) 

w here £ 2 is  the tw o-particle  phase epace integral fo r  fixed s :

and Pj (s) is  the phase space fa cto r  o f the >N system  :

T [ s - ( m  +/i)2]1/2[ s - ( m - / j ) 2] 1̂  
2s

0 (s - (m + a*)2) -

®22 =  ̂ " 0 *) ®>nr + (2 Tr )4 i  6 (q + kj + k2 -  q ' - k {- 1̂ ) . . .  T25

t 22 = ^ 2  - S « ( q  - q ')T„  .

in w hich the nucleon is  non-in teracting  (F ig. 1).
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------- -q -̂-------- --------  PION

--------  NUCLEON

Fig. 1

To decom pose  the production  amplitude T12 we fir s t  go to the 2 n centre-of- 
m ass system  and ch oose  the |--axis along the d irection  o f the q (see F ig. 2).

Fig. 2

In th is fram e, we p ro ject  out a particu lar angular momentum state I  
o f the 27r-system with the quantization axis along the |!-axis. Let £y be the 
p ro jection  o f £ onto the |--axis. Now we L oren tz-tran sform  the system  to 
the total cen tre of m a ss . Since the Lorentz transform ation  is along the 
T -axis with the ve locity  --------------

the p ro jection  £ j  rem ains invariant and acqu ires the ro le  of the helicity 
o f the 2 7T system . A s the tw o-pion system  is  now equivalent to a particle 
of m a ss  Ja, spin £, h elicity  £^ as fa r  as k inem atics is  concerned, the d e ­
com position  into definite (J,jr) states fo llow s in the standard manner of Jacob 
and W ick . The th ree -p artic les  amplitude T22 may be decom posed  in a s im i­
la r  m anner. If we assum e, as we shall do, that only one particu lar £ d om i­
nates, and that the m ass-d istribu tion  in s/a is  sharply peaked near a = <j, , 
the p icture o f an unstable p article  can be naturally incorporated into our 
sch em e. F rom  now on we shall retain only the £ m 1 amplitudes in our con ­
siderations.

Once the am plitudes Tjj a re  decom posed into partial w aves,the angular 
integrations in E qs. (5) can be perform ed  triv ia lly . F o r  given quantum num­
b ers  J, n, we obtain

t {\ (s+)' - t £  (s .) = 2i T & s*) p, (s) t £ ( s _ )
(Vi m)*

+ 2i L [da  T $[s+, a+) P2(s , a) t £ ( s _ ,  ct_), (6)
4(1*

w here, fo r  £ = 1, a • 1, 2 o r  3 is  the polarization  index corresponding to 
two tra n sv erse , one longitudinal polarizations.

At this juncture let us c la r ify  the connection between the discontinuity 
Eq. (6) and the unitarity re la tion s. F o r  TJ2 , fo r  exam ple, the unitarity re la ­
tion  a sserts  that (suppressing J, it .L , a hereafter)
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T12 (s+, o+) -  Tj* (s . ,  a.)  -  2 iT * (s )  pj(s) T12 (s ,a) + 2iJdo' T * (s, , o ' ) tr).(7)

W e assum e lij*(s, x, - - )  = Ty (s*, x* - - - ) ,  i. e., Ty are rea l analytic functions 
in the energy v a ria b les . W e are  unable to give a rigorou s, general proof 
fo r  th is, but this is  true in perturbation theory as fa r  as can be ascertained. 
Then we may w rite  E q. (7) as

[T 12(s+,<t;) -  T12(s_ , ct+)] + [ T 12<s _ ,cf+) -  T12( s .,<tJ ]

s 2 iT n (s - ie )  pj(s) Tn  (s + ie )+  2i J c t o 'T ^ s . ,  ai)p2(s, a) T22(s+, <j’+, a+). (8)

Now we note that

T12 (s, a+) - T12 (s , ar_) = 2 ie lS(0) sin 6(a) T12 (s_,crj

= 2 i J ia’(T22 - T2c2 ) p2(s, a') TJ2 (s . , a . ) . (9)

T h ere fore , E qs. (8) and (9) im ply the second (not written out) line of Eq. (6). 
What it m eans may becom e c le a re r  if you con sider a particu lar diagram  
(see F ig . 3).

i1
Fig. 3

When we con sid er the im aginary part, there are contributions from  parti­
tions 2 and 3 o f the diagram  as vfell as that from  the partition 1 .In c o m ­
puting the "a b sorp tiv e " part, how ever, the contributions from  2 and 3 should 
not be included (since a is  fixed). It may be further rem arked that the parti­
tions 2 and 3 give r is e  to te rm s of the form

Jda'T 12{ s „  ex.) p2(s, a') T^ (s+, a ', a)

w here T22 is  the excluded disconnected part

t 'D -  t * t  c a22 ~ x22 ~ l 22-

So much fo r  the unitarity aspect o f the problem , let us now look  at the 
dynam ics. W e would like  to take into account the longest range " fo r c e "  that 
contributes to  the p ro ce ss  w + N <— > p + N. One-pion exchange is  possib le  
betw een the nucleon and the m eson  (see  F ig . 4).

p -M E S O N

Fig. 4
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In fact, the reason  why we have singled out the N + p interm ediate state, 
but neglected  other states such as N + u { n) is,that this is  the only state con ­
sisting o f one nucleon and one unstable m eson  that can be reached from  the 
N + 7T state through one-pion exchange. The m atrix  elem ent fo r  F ig . 4 is

ü(q) ^u(p) ig  F „  (ct, • • •) (10)

w here t = - (p -q )2, and F „  is

F-  (ff’ ' ' 0  *  3 > J ^ 2  Sin 5(a) P1 (&V

When we make a partia l wave p ro jection  of (10)w e get two branch lines, one 
extending from  s = 0 to - oo, the other one between the two branch points s*, 
given by

s±(a) = m 2 +a/2 ± ^ l ( 4 m 2 - ß 2)[4ß2 -< j)]1/2 . 
iß

If we give a sm all positive  im aginary part to a : a -> a + irj, n> 0, and in ­
c re a se  cr from  a certa in  sm all value, the branch points s^cr) m ove as in ­
dicated in F ig . 5.

S' Ctf)<✓///
(m-u)* /  (m + ii)2

— r> -------------
** I e - I  p2

\\

Fig. 5

That is , the p ro jection  of the one-p ion  exchange amplitude develops an 
anom alous singularity at a = 2/j2( 1 + /Lt/2m), a com plex singularity ata= 4/j2. 
If, instead, we give a sm all im aginary part to a, the lo c i  o f the singularities 
in F ig . 5 a re  re flected  about the rea l ax is.

The am plitudes T  ̂ contain som e kinem atical cuts. We define the new set 
of am plitudes My by

Mii = 4  Tii jgj

w here the gj are fa cto rs  proportional to p fLl, p; being the magnitude of the 
channel m om entum , L j the low est channel orb ita l angular momentum (L t = L 
fo r  i ■ 1, Lj * I fo r  i = 2, w here L and I a re  defined as be fore ). On defining 
new quantities p!j (s), p^(s, ct) by
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P ^ s )  = g 1 P1 ( s ) ~  [p2L+1as s (m + u )2] ,

P^s.ff) = g2P2(s ,ff) ~  [ q (s ,a )21+1 as s (m + 2 /i)2] , 

we can w rite the discontinuity conditions, Eq. (6), in the form  

M j'ifsJ - MJ*(s_) = 2i M }"{s .)p i M n (s+)

+ 2i £ Jda  M*2(s_, a J p2(s, a) MI21(s+, a+) .

4 4 3

(11)

The fa cto rs  p̂ - and p\ exp ress the com bined effect o f the variation o f the 
available phase space and the centrifugal b a rr ie r . A s a consequence, the 
dominant energy dependence o f the am plitudes near thresholds is  rem oved 
fro m  Mjj : the My are approxim ately constant near the thresholds.

W e can now w rite  down the d ispersion  equations fo r  the My . The"input" 
am plitude B 21(s,cr) has a spectra l representation  of the form

.  W " )   ̂ - s' ' '
B2l(s* ”

' f* d s ' , , , , r  d s '
J  I T i  * J  F T I
s +

ß(s',a)

If we fix  the value o f cr below 2 /j2( i  + ß/2m),  we can w rite down the d is ­
p ers ion  equation fo r  M 21(s, cr) :

fl©

M21(s,ct) = B ats , a) + l- j  M21(st') P l(s') Mn (s.')
(m+ji)2

(m+2fj)z
Let us now con sid er the analytic continuation o f Eq. (11) in the m ass cr. 

As we have seen, ,M21 w ill develop  an anom alous singularity, and we must 
deform  the contour in the second term  of (12) to avoid the intruding cut of 
M 21(s£, cr).

The am plitude M 2i{si, cr) in the integrand must be continued to the second 
sheet through the tw o-p a rtic le  unitarity cut:

M21(s+,cr) * MH(s_ ,ct)

= M21(s_, cr)[l + 2ip1 (s )M 11(s . ,a ) ] '1

p“ (s - ie) * p j(s +  ie) = - p j ( s - ic )  .

T h ere fo re  the continuation of Eq. (11) in a now g ives

1 r "  d s '
M21(s,ct) = B 21(s,ct) + -J

(m+M) 2 

(m+M)2 /
+ i  / -2 5 1  d isc M“ (s')Pi (s ')M “ (s '). (13)

7T J  S ' -  S 1 11
S+(0)
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One can show that M 21(s, c )  given by Eq. (13) does not satisfy the d iscon ti­
nuity condition  in ct, nam ely

M„,.21(s,cr+) - ex.) = a ifJ c x J p fa J lv y s .c r J .-p M  = . (14)

Eq. (14) m eans that

d isc
a

M2i(s,(T + ig ) 1

f > + >̂ J ' " *
but because o f the unsym m etrica l (in the s-p lane) com plex anomalous singu­
la rity , E q .( l3 )  gives

d isco
M 2i(s , a + ie) ds*■ i  r 

h . .
d s '

+i [ , i r j  s ' - s
(m+iJ) 2 

#  0.

disc M2i(s'*crt) 
c *>♦> 

’ l lr M 2i ( s ' c t - )  disc — — T—

p“ (s ')M n (s') 

Pl ( s o f t s ' )

Ball, F ra z e r  and Nauenberg noted that the diagram  shown in F ig .6 has 
a cut from  s+ to s-, corresponding to the nuclear line indicated by arrow 
on the m ass shell.

Fig. 6

The contribution from  the branch cut from  s + to s '  o f this diagram  can 
be shown to be

1
7rp (cr) /  Ä  « (b 7,a) p“  ( s O M ^ s 'J

dsj —  a{s', a) p1(s') M 11(s')
s '- s

When we add this term  to Eq. (13) and manipulate a little bit, we obtain

(m+io*

=  m  + — i—  r  a (s ')0)p1' (s ' ) m . , (so
f * > )  f i r A )  Q) S ' - s '

1 PS ^  d s '+ — . - — / —— « (s '.a J p ^ s 'J M (s ')  + unitary contributions. (15)
7rp(c7)f°„J s ' - s  i ii

(m+pi)2

By virtue o f the relations
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a * (s ,  a )  = - c t ( s*,or*), 

1 1
2ip(cr),

the am plitude M ^ s .c r )  sa tis fies  Eq. (15).
The above con sideration  may be understood better in term s of diagram s. 

C onsider, fo r  exam ple, a Cutkosky diagram  of F ig . 7 .

\

S f /
/

______

Fig. 7

The discontinuity in cr corresp on d s  to the partition of the diagram  along line 1, 
and th is m ust be w ritten in the fo rm  (see  Eq. 14)

2if„(cr)p(cr)M 12(s ,cr .).

T h ere fore , M ^ must include the 'diagram  shown in F ig . 8.

Fig. 8

In this m odel both the e lastic  amplitude Mn  and the 3 particle  amplitude 
M 22 a re  driven by the in elastic p ro ce ss , which in turn is generated by the 
one-p ion  exchange m echanism  and the unitarity. Schem atically the whole 
coupled p ro ce s s e s  can be shown as in F ig . 9 .

;x k = : x x x : +  x m x

= +'iO ::̂ +'iE 3 X^

Fig. 9

The n on -linear set o f equations (11) and (15) can be solved by the m atrix 
N /D  m ethod. Of cou rse  a slight m odification  is  n ecessary  to accom m odate 
the com plex  anom alous s ingu larities. An important result is  that, while 
individual elem ents Dy do have com plex  singularities, the determinant of 
D does not.
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S = p '/2 D(s - iO D '^ s  + ielp’ 17'
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so that

ln det D ( s ! ) - ln  det D(s+) = ln det S = £ 6a (s)
a eigenchannels

and from  this and the fact that det D has only the norm al unitarity cut, the 
m ultichannel Levinson theorem  fo llow s :

E | 6 fl(m + M) -  öa (°o)^ -  7T (inbound "  ^c.D. Dj) •

Instead o f dem onstrating the N /D  solution, let us be content with the 
sem iphenom enological K -m atrix  solution, to glean the nature of the m ore 
elaborate solution. Let us adopt the m atrix  notation and w rite

M = K + iK  • p s* - M (16)

w here the row s and colum ns of the m atrices  are labelled by the d iscrete  chan­
nel in deces i and the continuous a

and the m atrix  p is  diagonal

We w rite

m n  = Mn

m 12( s ,CT) = M ^fs.crJ f^V )

m 22(s, o', a) = f^(or') M22(s, o ', o ) ^ ( o )  .

Now we m ake an essentia l approxim ation that f^fa). is  sharply peaked at 
a = <jr, and, in the sp irit o f the steepest descent approxim ation,

ml2(s,(r) =* m12(s,or) =  m 12(s ) , e tc .

L ikew ise we define icy by rem oving the sharp dependance of Ky on the m ass 
distribution a. On defining the 3 partic le  fa ctor  pj1 corrected  fo r  the final 
interaction
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P2l(

We obtain a reduced 2 X 2  m atrix  relation between m and k ;

m n (s) = ku (s ) + i Kn (s)p\ (s )m n (s) + i kj2 (17)

In o rd e r  that the My satisfy  the relation, Eq. (12), it is  n ecessary  and 
sufficient that k be rea l sy m m etr ic ; the My can be written as

m = (1 - ip - • k) 1 k ,

the condition  fo r  resonance is

Re [det (1 - ijx - k )] = 0

or

0 = Re [1 + pi P2 (k12 k2i - * 1 1 *22) "" * ii  " * P2 *22  ̂ •

Now in the range (m + / u f < s <  (m +  s/ar)2Pi is  purely real, while p  ̂ is p re ­
dominantly im aginary, so that E q . (18) reduces approxim ately to

I + I P 2 I *22 “  0 ■ (18 ^

A n ecessa ry  condition fo r  resonance below the pN  threshold is then
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A  detailed calcu lation  shows that k22 is  in fact negative both in the D3/2. and 
F5/2 states (T = 1 /2 ) fo r  the interaction  con sidered  (one-pion exchange), and 
the ratio o f the *22. in the T = 1/2 state to that in the T =3/2 is ^ 4  :l (s e e  F ig .10). 
Since | p 2| ^ ! p |2I+1 , we see that, assum ing k£° =; /cj^ .the D3/2 resonance 
lie s  below  the F5/2 resonance in the T = 1/2 channel.

A  crude calcu lation  made by Cook and m yse lf may be sum m arized in 
the fo llow ing  graph (F ig . 11).

1=0 1=1

' 0 i

Fig. 10
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