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Despite the outstanding achievements of modern cosmology, the classical dispute on the precise value 
of H0, which is the first ever parameter of modern cosmology and one of the prime parameters in the 
field, still goes on and on after over half a century of measurements. Recently the dispute came to the 
spotlight with renewed strength owing to the significant tension (at > 3σ c.l.) between the latest Planck 
determination obtained from the CMB anisotropies and the local (distance ladder) measurement from the 
Hubble Space Telescope (HST), based on Cepheids. In this work, we investigate the impact of the running 
vacuum model (RVM) and related models on such a controversy. For the RVM, the vacuum energy density 
ρ� carries a mild dependence on the cosmic expansion rate, i.e. ρ�(H), which allows to ameliorate 
the fit quality to the overall SNIa+BAO+H(z)+LSS+CMB cosmological observations as compared to the 
concordance �CDM model. By letting the RVM to deviate from the vacuum option, the equation of state 
w = −1 continues to be favored by the overall fit. Vacuum dynamics also predicts the following: i) the 
CMB range of values for H0 is more favored than the local ones, and ii) smaller values for σ8(0). As 
a result, a better account for the LSS structure formation data is achieved as compared to the �CDM, 
which is based on a rigid (i.e. non-dynamical) � term.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The most celebrated fact of modern observational cosmology is 
that the universe is in accelerated expansion [1,2]. At the same 
time, the most paradoxical reality check is that we do not honestly 
understand the primary cause for such an acceleration. The sim-
plest picture is to assume that it is caused by a strict cosmological 
term, �, in Einstein’s equations, but its fundamental origin is un-
known [3]. Together with the assumption of the existence of dark 
matter (DM) and the spatial flatness of the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric (viz. the metric that expresses 
the homogeneity and isotropy inherent to the cosmological princi-
ple), we are led to the “concordance” �CDM model, i.e. the stan-
dard model of cosmology [4]. The model is consistent with a large 
body of observations, and in particular with the high precision data 
from the cosmic microwave background (CMB) anisotropies [5,6]. 
Many alternative explanations of the cosmic acceleration beyond a 
�-term are possible (including quintessence and the like, see e.g. 
the review [7]) and are called dark energy (DE) [8].
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The current situation with cosmology is reminiscent of the 
prediction by the famous astronomer A. Sandage in the sixties, 
who asserted that the main task of future observational cosmol-
ogy would be the search for two parameters: the Hubble constant 
H0 and the deceleration parameter q0 [9]. The first of them is 
the most important distance (and time) scale in cosmology prior 
to any other cosmological quantity. Sandage’s last published value 
with Tammann (in 2010) is 62.3 km/s/Mpc [10] – slightly re-
vised in Ref. [11] as H0 = 64.1 ± 2.4 km/s/Mpc. There is currently 
a significant tension between CMB measurements of H0 [5,12] – 
not far away from this value – and local determinations empha-
sizing a higher range above 70 km/s/Mpc [13,14]. As for q0, its 
measurement is tantamount to determining � in the context of 
the concordance model. On fundamental grounds, however, under-
standing the value of � is not just a matter of observation; in truth 
and in fact, it embodies one of the most important and unsolved 
conundrums of theoretical physics and cosmology: the cosmologi-
cal constant problem, see e.g. [3,7,15,16]. The problem is connected 
to the fact that the �-term is usually associated with the vac-
uum energy density, ρ� = �/(8πG), with G Newton’s coupling. 
The prediction for ρ� in quantum field theory (QFT) overshoots 
the measured value ρ� ∼ 10−47 GeV4 (in natural units c = h̄ = 1) 
by many orders of magnitude [16].
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Concerning the prime parameter H0, the tension among the dif-
ferent measurements is inherent to its long and tortuous history. 
Let us only recall that after Baade’s revision (by a factor of one half 
[17]) of the exceedingly large value ∼ 500 km/s/Mpc originally es-
timated by Hubble (which implied a universe of barely two billion 
years old only), the Hubble parameter was subsequently lowered 
to 75 km/s/Mpc and finally to H0 = 55 ± 5 km/s/Mpc, where it 
remained for 20 years (until 1995), mainly under the influence of 
Sandage’s devoted observations [18]. Shortly after that period the 
first measurements of the nonvanishing, positive, value of � ap-
peared [1,2] and the typical range for H0 moved upwards to ∼ 65
km/s/Mpc. In the meantime, many different observational values 
of H0 have piled up in the literature using different methods (see 
e.g. the median statistical analysis of > 550 measurements con-
sidered in [19,20]). As mentioned above, two kinds of precision
(few percent level) measurements of H0 have generated consid-
erable perplexity in the recent literature, specifically between the 
latest Planck values (HPlanck

0 ) obtained from the CMB anisotropies, 
and the local HST measurement (based on distance ladder esti-
mates from Cepheids). The latter, obtained by Riess et al. [13], is 
H0 = 73.24 ± 1.74 km/s/Mpc and will be denoted HRiess

0 . It can 
be compared with the CMB value H0 = 67.51 ± 0.64 km/s/Mpc, 
as extracted from Planck 2015 TT,TE,EE+lowP+lensing data [5], 
or with H0 = 66.93 ± 0.62 km/s/Mpc, based on Planck 2015 
TT,TE,EE+SIMlow data [12]. In both cases there is a tension above 
3σ c.l. (viz. 3.1σ and 3.4σ , respectively) with respect to the local 
measurement. This situation, and in general a certain level of ten-
sion with some independent observations in intermediate cosmo-
logical scales, has stimulated a number of discussions and possible 
solutions in the literature, see e.g. [21–29].

We wish to reexamine here the HRiess
0 − HPlanck

0 tension, but not 
as an isolated conflict between two particular sources of observa-
tions, but rather in light of the overall fit to the cosmological data 
SNIa+BAO+H(z)+LSS+CMB. Recently, it has been demonstrated 
that by letting the cosmological vacuum energy density to slowly 
evolve with the expansion rate, ρ� = ρ�(H), the global fit can be 
improved with respect to the �CDM at a confidence level of 3–4σ
[30–34]. We devote this work to show that the dynamical vacuum 
models (DVMs) can still give a better fit to the overall data, even if 
the local HST measurement of the Hubble parameter is taken into 
account. However we find that our best-fit values of H0 are much 
closer to the value extracted from CMB measurements [5,12]. Our 
analysis also corroborates that the large scale structure formation 
data (LSS) are crucial in distinguishing the rigid vacuum option 
from the dynamical one.

2. Dynamical vacuum models and beyond

Let us consider a generic cosmological framework described by 
the spatially flat FLRW metric, in which matter is exchanging en-
ergy with a dynamical DE medium with a phenomenological equa-
tion of state (EoS) p� = wρ� , where w = −1 + ε (with |ε| � 1). 
Such medium is therefore of quasi-vacuum type, and for w = −1
(i.e. ε = 0) we precisely recover the genuine vacuum case. Owing, 
however, to the exchange of energy with matter, ρ� = ρ�(ζ ) is 
in all cases a dynamical function that depends on a cosmic vari-
able ζ = ζ(t). We will identify the nature of ζ(t) later on, but 
its presence clearly indicates that ρ� is no longer associated to 
a strictly rigid cosmological constant as in the �CDM. The Fried-
mann and acceleration equations read, however, formally identical 
to the standard case:

3H2 = 8π G (ρm + ρr + ρ�(ζ )) (1)

3H2 + 2Ḣ = −8π G (pr + p�(ζ )) . (2)
Here H = ȧ/a is the Hubble function, a(t) the scale factor as a 
function of the cosmic time, ρr is the energy density of the ra-
diation component (with pressure pr = ρr/3), and ρm = ρb + ρdm
involves the contributions from baryons and cold DM. The local 
conservation law associated to the above equations reads:

ρ̇r + 4Hρr + ρ̇m + 3Hρm = Q , (3)

where

Q = −ρ̇� − 3H(1 + w)ρ� . (4)

For w = −1 the last equation boils down to just Q = −ρ̇� , which 
is nonvanishing on account of ρ�(t) = ρ�(ζ(t)). The simplest case 
is, of course, that of the concordance model, in which ρ� = ρ�0 =
const and w = −1, so that Q = 0 trivially. However, for w �= −1
we can also have Q = 0 in a nontrivial situation, which follows 
from solving Eq. (4). It corresponds to the XCDM parametrization 
[35], in which the DE density is dynamical and self-conserved. It is 
easily found in terms of the scale factor:

ρ XC DM
� (a) = ρ�0 a−3(1+w) = ρ�0 a−3ε , (5)

where ρ�0 is the current value. From (3) it then follows that the 
total matter component is also conserved. After equality it leads 
to separate conservation of cold matter and radiation. In gen-
eral, Q can be a nonvanishing interaction source allowing energy 
exchange between matter and the quasi-vacuum medium under 
consideration; Q can either be given by hand (e.g. through an 
ad hoc ansatz), or can be suggested by some specific theoreti-
cal framework. In any case the interaction source must satisfy 
0 < |Q | � ρ̇m since we do not wish to depart too much from the 
concordance model. Despite matter is exchanging energy with the 
vacuum or quasi-vacuum medium, we shall assume that radiation 
and baryons are separately self-conserved, i.e. ρ̇r + 4Hρr = 0 and 
ρ̇b + 3Hρb = 0, so that their energy densities evolve in the stan-
dard way: ρr(a) = ρr0 a−4 and ρb(a) = ρb0 a−3. The dynamics of 
ρ� can therefore be associated to the exchange of energy exclu-
sively with the DM (through the nonvanishing source Q ) and/or 
with the possibility that the DE medium is not exactly the vac-
uum, w �= −1, but close to it |ε| � 1. Under these conditions, the 
coupled system of conservation equations (3)–(4) reduces to

ρ̇dm + 3Hρdm = Q (6)

ρ̇� + 3Hερ� = −Q . (7)

In the following we shall for definiteness focus our study of 
the dynamical vacuum (and quasi-vacuum) models to the three 
interactive sources:

Model I (wRVM) : Q = ν H(3ρm + 4ρr) (8)

Model II (w Q dm) : Q dm = 3νdm Hρdm (9)

Model III (w Q �) : Q � = 3ν�Hρ� . (10)

Here νi = ν, νdm, ν� are small dimensionless constants, |νi | � 1, 
which are determined from the overall fit to the data, see e.g. Ta-
bles 1 and 2. The ordinal number names I, II and III will be used 
for short, but the three model names are preceded by w to recall 
that, in the general case, the equation of state (EoS) is near the 
vacuum one (that is, w = −1 + ε). These dynamical quasi-vacuum 
models are also denoted as wDVMs. In the particular case w = −1
(i.e. ε = 0) we recover the dynamical vacuum models (DVMs), 
which were previously studied in detail in [34], and in this case 
the names of the models will not be preceded by w .

In all of the above (w)DVMs, the cosmic variable ζ can be taken 
to be the scale factor, ζ = a(t), since they are all analytically solv-
able in terms of it, as we shall see in a moment. Model I with 
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Table 1
Best-fit values for the �CDM, XCDM, the three dynamical vacuum models (DVMs) and the three dynamical quasi-vacuum models (wDVMs), including their statistical 
significance (χ2-test and Akaike and Bayesian information criteria AIC and BIC). For detailed description of the data and a full list of references, see [31] and [34]. The quoted 
number of degrees of freedom (dof ) is equal to the number of data points minus the number of independent fitting parameters (4 for the �CDM, 5 for the XCDM and the 
DVMs, and 6 for the wDVMs). For the CMB data we have used the marginalized mean values and covariance matrix for the parameters of the compressed likelihood for 
Planck 2015 TT,TE,EE+lowP+lensing data from [36]. Each best-fit value and the associated uncertainties have been obtained by marginalizing over the remaining parameters.

Model H0 (km/s/Mpc) ωb ns �0
m νi w χ2

min/dof �AIC �BIC

�CDM 68.83 ± 0.34 0.02243 ± 0.00013 0.973 ± 0.004 0.298 ± 0.004 – −1 84.40/85 – –
XCDM 67.16 ± 0.67 0.02251 ± 0.00013 0.975 ± 0.004 0.311 ± 0.006 – −0.936 ± 0.023 76.80/84 5.35 3.11
RVM 67.45 ± 0.48 0.02224 ± 0.00014 0.964 ± 0.004 0.304 ± 0.005 0.00158 ± 0.00041 −1 68.67/84 13.48 11.24
Q dm 67.53 ± 0.47 0.02222 ± 0.00014 0.964 ± 0.004 0.304 ± 0.005 0.00218 ± 0.00058 −1 69.13/84 13.02 10.78
Q � 68.84 ± 0.34 0.02220 ± 0.00015 0.964 ± 0.005 0.299 ± 0.004 0.00673 ± 0.00236 −1 76.30/84 5.85 3.61
wRVM 67.08 ± 0.69 0.02228 ± 0.00016 0.966 ± 0.005 0.307 ± 0.007 0.00140 ± 0.00048 −0.979 ± 0.028 68.15/83 11.70 7.27
w Q dm 67.04 ± 0.69 0.02228 ± 0.00016 0.966 ± 0.005 0.308 ± 0.007 0.00189 ± 0.00066 −0.973 ± 0.027 68.22/83 11.63 7.20
w Q � 67.11 ± 0.68 0.02227 ± 0.00016 0.965 ± 0.005 0.313 ± 0.006 0.00708 ± 0.00241 −0.933 ± 0.022 68.24/83 11.61 7.18

Table 2
The same as Table 1 but adding the HRiess

0 local measurement from Riess et al. [13].

Model H0 (km/s/Mpc) ωb ns �0
m νi w χ2

min/dof �AIC �BIC

�CDM 68.99 ± 0.33 0.02247 ± 0.00013 0.974 ± 0.003 0.296 ± 0.004 – −1 90.59/86 – –
XCDM 67.98 ± 0.64 0.02252 ± 0.00013 0.975 ± 0.004 0.304 ± 0.006 – −0.960 ± 0.023 87.38/85 0.97 −1.29
RVM 67.86 ± 0.47 0.02232 ± 0.00014 0.967 ± 0.004 0.300 ± 0.004 0.00133 ± 0.00040 −1 78.96/85 9.39 7.13
Q dm 67.92 ± 0.46 0.02230 ± 0.00014 0.966 ± 0.004 0.300 ± 0.004 0.00185 ± 0.00057 −1 79.17/85 9.18 6.92
Q � 69.00 ± 0.34 0.02224 ± 0.00016 0.965 ± 0.005 0.297 ± 0.004 0.00669 ± 0.00234 −1 82.48/85 5.87 3.61
wRVM 67.95 ± 0.66 0.02230 ± 0.00015 0.966 ± 0.005 0.300 ± 0.006 0.00138 ± 0.00048 −1.005 ± 0.028 78.93/84 7.11 2.66
w Q dm 67.90 ± 0.66 0.02230 ± 0.00016 0.966 ± 0.005 0.300 ± 0.006 0.00184 ± 0.00066 −0.999 ± 0.028 79.17/84 6.88 2.42
w Q � 67.94 ± 0.65 0.02227 ± 0.00016 0.966 ± 0.005 0.306 ± 0.006 0.00689 ± 0.00237 −0.958 ± 0.022 78.98/84 7.07 2.61
w = −1 is the running vacuum model (RVM), see [16,33,34,37]. It 
is special in that the interaction source indicated in (8) is not ad 
hoc but follows from an expression for the dynamical vacuum en-
ergy density, ρ�(ζ ), in which ζ is not just the scale factor but the 
full Hubble rate: ζ = H(a). The explicit RVM form reads

ρ�(H) = 3

8πG

(
c0 + νH2

)
. (11)

The additive constant c0 = H2
0

(
�0

� − ν
)

is fixed from the condition 
ρ�(H0) = ρ�0, with �0

� = 1 − �0
m − �0

r . Combining the Fried-
mann and acceleration equations (1)–(2), we find Ḣ = −(4πG/3)

(3ρm + 4ρr + 3ερ�), and upon differentiating (11) with respect to 
the cosmic time we are led to ρ̇� = −ν H (3ρm + 4ρr + 3ερ�). 
Thus, for ε = 0 (vacuum case) we indeed find ρ̇� = −Q for Q
as in (8). However, for the quasi-vacuum case (0 < |ε| � 1) Eq. (7)
does not hold if ρ�(H) adopts the form (11). This RVM form is 
in fact specific to the pure vacuum EoS (w = −1), and it can be 
motivated in QFT in curved spacetime through a renormalization 
group equation for ρ�(H), what explains the RVM name [16]. In 
it, ν plays the role of the β-function coefficient for the running 
of ρ� with the Hubble rate. Thus, we naturally expect |ν| � 1 in 
QFT, see [16,38]. Interestingly, the RVM form (11) can actually be 
extended with higher powers of Hn (typically n = 4) to provide 
an effective description of the cosmic evolution from the inflation-
ary universe up to our days [37,39]. Models II and III are purely 
phenomenological models instead, in which the interaction source 
Q is introduced by hand, see e.g. Refs. [26,40–42] and references 
therein.

The energy densities for the wDVMs can be computed straight-
forwardly. For simplicity, we shall quote here the leading parts 
only. The exact formulas containing the radiation terms are more 
cumbersome. In the numerical analysis we have included the full 
expressions. Details will be shown elsewhere. For the matter den-
sities, we find:

ρ I
dm(a) = ρdm0 a−3(1−ν) + ρb0

(
a−3(1−ν) − a−3

)
ρ II (a) = ρdm0 a−3(1−νdm) (12)
dm
ρ III
dm(a) = ρdm0 a−3 + ν�

ν� + w
ρ�0

(
a−3 − a−3(ε+ν�)

)
,

and for the quasi-vacuum energy densities:

ρ I
�(a) = ρ�0a−3ε − ν ρm0

ν + w

(
a−3(1−ν) − a−3ε

)
ρ II

�(a) = ρ�0a−3ε − νdm ρdm0

νdm + w

(
a−3(1−νdm) − a−3ε

)
(13)

ρ III
� (a) = ρ�0 a−3(ε+ν�) .

Two specific dimensionless parameters enter each formula, νi =
(ν, νdm, ν�) and w = −1 + ε . They are part of the fitting vector 
of free parameters for each model, as explained in detail in the 
caption of Table 1. For νi → 0 the models become noninteractive 
and they all reduce to the XCDM model case (5). For w = −1 we 
recover the DVMs results previously studied in [34]. Let us also 
note that for νi > 0 the vacuum decays into DM (which is ther-
modynamically favorable [34]) whereas for νi < 0 is the other way 
around. Furthermore, when w enters the fit, the effective behav-
ior of the wDVMs is quintessence-like for w > −1 (i.e. ε > 0) and 
phantom-like for w < −1 (ε < 0).

Given the energy densities (12) and (13), the Hubble function 
immediately follows. For example, for Model I:

H2(a) = H2
0

[
a−3ε + w

w + ν
�0

m

(
a−3(1−ν) − a−3ε

)]
. (14)

Similar formulas can be obtained for Models II and III. For w = −1
they all reduce to the DVM forms previously found in [34]. And 
of course they all ultimately boil down to the �CDM form in the 
limit (w, νi) → (−1, 0).

3. Structure formation: the role of the LSS data

The analysis of structure formation plays a crucial role in com-
paring the various models. For the �CDM and XCDM we use the 
standard perturbations equation [4]

δ̈m + 2H δ̇m − 4πGρm δm = 0 , (15)
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Fig. 1. Left: The LSS structure formation data ( f (z)σ8(z)) versus the predicted curves by Models I, II and III, see equations (8)–(10) for the case w = −1, i.e. the dynamical 
vacuum models (DVMs), using the best-fit values in Table 1. The XCDM curve is also shown. The values of σ8(0) that we obtain for the models are also indicated. Right: 
Zoomed window of the plot on the left, which allows to better distinguish the various models.
with, however, the Hubble function corresponding to each one of 
these models. For the wDVMs, a step further is needed: the per-
turbations equation not only involves the modified Hubble function 
but the equation itself becomes modified. Trading the cosmic time 
for the scale factor and extending the analysis of [34,43,44] for the 
case w �= −1 (ε �= 0), we find

δ′′
m + A(a)

a
δ′

m + B(a)

a2
δm = 0 , (16)

where the prime denotes differentiation with respect to the scale 
factor, and the functions A(a) and B(a) are found to be as follows:

A(a) = 3 + aH ′

H
+ �

H
− 3rε (17)

B(a) = −4πGρm

H2
+ 2

�

H
+ a�′

H
− 15rε − 9ε2r2

+ 3ε(1 + r)
�

H
− 3rε

aH ′

H
. (18)

Here r ≡ ρ�/ρm and � ≡ −ρ̇�/ρm . For νi = 0 we have � = 3Hrε , 
and after a straightforward calculation one can show that (16) can 
be brought to the standard form Eq. (15).

To solve the above perturbations equations we have to fix the 
initial conditions on δm and δ′

m for each model at high redshift, 
namely when non-relativistic matter dominates over radiation and 
DE, see [34]. Functions (17) and (18) are then approximately con-
stant and Eq. (16) admits power-law solutions δm(a) = as . From 
explicit calculation we find that the values of s for each model 
turn out to be:

sI = 1 + 3

5
ν

(
1

w
− 4

)
+O(ν2)

sII = 1 − 3

5
νdm

(
1 + 3

�0
dm

�0
m

− 1

w

)
+O(νdm

2) (19)

sIII = 1 .

We can check that for w = −1 all of the above equations (16)–(19)
render the DVM results previously found in [34]. The generaliza-
tion that we have made to w �= −1 (ε �= 0) has introduced several 
nontrivial extra terms in equations (17)–(19).

The analysis of the linear LSS regime is usually implemented 
with the help of the weighted linear growth f (z)σ8(z), where 
f (z) = d ln δm/d ln a is the growth rate and σ8(z) is the rms mass 
fluctuation on R8 = 8 h−1 Mpc scales. It is computed as follows 
(see e.g. [31,34]):
Fig. 2. The LSS structure formation data ( f (z)σ8(z)) and the theoretical predictions 
for models (8)–(10), using the best-fit values in Tables 2 and 3. The curves for the 
cases Ia, IIIa correspond to special scenarios for Models I and III where the agree-
ment with the Riess et al. local value HRiess

0 [13] is better (cf. Table 3). The price, 
however, is that the concordance with the LSS data is now spoiled. Case IIIb is our 
theoretical prediction for the scenario proposed in [26], aimed at optimally relaxing 
the tension with HRiess

0 . Unfortunately, the last three scenarios lead to phantom-like 
DE and are in serious disagreement with the LSS data.

σ8(z) = σ8,�

δm(z)

δ�
m (0)

√ ∫ ∞
0 kns+2T 2(p,k)W 2(kR8)dk∫ ∞

0 kns,�+2T 2(p�,k)W 2(kR8,�)dk
, (20)

where W is a top-hat smoothing function and T (p, k) the transfer 
function. The fitting parameters for each model are contained in p. 
Following the mentioned references, we have defined as fiducial 
model the �CDM at fixed parameter values from the Planck 2015 
TT,TE,EE+lowP+lensing data [5]. These fiducial values are collected 
in p� . In Figs. 1–2 we display f (z)σ8(z) for the various models 
using the fitted values of Tables 1–3. We remark that our BAO and 
LSS data include the bispectrum data points from Ref. [45] – see 
[34] for a full-fledged explanation of our data sets. In the next 
section, we discuss our results for the various models and assess 
their ability to improve the �CDM fit as well as their impact on 
the H0 tension.

4. Discussion

Following [34] the statistical analysis of the various models is 
performed in terms of a joint likelihood function, which is the 
product of the likelihoods for each data source and includes the 
corresponding covariance matrices. As indicated in the caption of 
Table 1, the �CDM has 4 parameters, whereas the XCDM and the 



J. Solà et al. / Physics Letters B 774 (2017) 317–324 321
Table 3
Best-fit values for the �CDM and models RVM, Q� , wRVM and wQ� by making use of the CMB+BAO data only. In contrast to Tables 1–2, we now fully dispense with the 
LSS data (see [31,34]) to test its effect. The starred/non-starred cases correspond respectively to adding or not the local value HRiess

0 from [13] as data point in the fit. The AIC 
and BIC differences of the starred models are computed with respect to the �CDM*. We can see that under these conditions models tend to have �AIC, �BIC < 0, including 
the last two starred scenarios, which are capable of significantly approaching HRiess

0 .

Model H0 (km/s/Mpc) ωb ns �0
m νi w χ2

min/dof �AIC �BIC

�CDM 68.23 ± 0.38 0.02234 ± 0.00013 0.968 ± 0.004 0.306 ± 0.005 – −1 13.85/11 – –
RVM 67.70 ± 0.69 0.02227 ± 0.00016 0.965 ± 0.005 0.306 ± 0.005 0.0010 ± 0.0010 −1 13.02/10 −3.84 −1.88
Q � 68.34 ± 0.40 0.02226 ± 0.00016 0.965 ± 0.005 0.305 ± 0.005 0.0030 ± 0.0030 −1 12.91/10 −3.73 −1.77
wRVM 66.34 ± 2.30 0.02228 ± 0.00016 0.966 ± 0.005 0.313 ± 0.012 0.0017 ± 0.0016 −0.956 ± 0.071 12.65/9 −9.30 −4.22
w Q � 66.71 ± 1.77 0.02226 ± 0.00016 0.965 ± 0.005 0.317 ± 0.014 0.0070 ± 0.0054 −0.921 ± 0.082 12.06/9 −8.71 −3.63
�CDM* 68.46 ± 0.37 0.02239 ± 0.00013 0.969 ± 0.004 0.303 ± 0.005 – −1 21.76/12 – –
RVM* 68.48 ± 0.67 0.02240 ± 0.00015 0.969 ± 0.005 0.303 ± 0.005 0.0000 ± 0.0010 −1 21.76/11 −4.36 −2.77
Q �* 68.34 ± 0.39 0.02224 ± 0.00016 0.966 ± 0.005 0.302 ± 0.005 0.0034 ± 0.0030 −1 20.45/11 −3.05 −1.46
Ia (wRVM*) 70.95 ± 1.46 0.02231 ± 0.00016 0.967 ± 0.005 0.290 ± 0.008 −0.0008 ± 0.0010 −1.094 ± 0.050 18.03/10 −5.97 −1.82
IIIa (w Q �*) 70.27 ± 1.33 0.02228 ± 0.00016 0.966 ± 0.005 0.291 ± 0.010 −0.0006 ± 0.0042 −1.086 ± 0.065 18.64/10 −6.58 −2.43
DVMs have 5, and finally any of the wDVMs has 6. Thus, for a 
fairer comparison of the various nonstandard models with the con-
cordance �CDM we have to invoke efficient criteria in which the 
presence of extra parameters in a given model is conveniently pe-
nalized so as to achieve a balanced comparison with the model 
having less parameters. The Akaike information criterion (AIC) and 
the Bayesian information criterion (BIC) are known to be extremely 
valuable tools for a fair statistical analysis of this kind. They can be 
thought of as a modern quantitative formulation of Occam’s razor. 
They read [46–48]:

AIC = χ2
min + 2nN

N − n − 1
, BIC = χ2

min + n ln N , (21)

where n is the number of independent fitting parameters and N
the number of data points. The bigger are the (positive) differ-
ences �AIC and �BIC with respect to the model having smaller 
values of AIC and BIC the higher is the evidence against the model 
with larger AIC and BIC. Take, for instance, Tables 1 and 2, where 
in all cases the less favored model is the �CDM (thus with larger 
AIC and BIC). For �AIC and �BIC in the range 6–10 one speaks 
of “strong evidence” against the �CDM, and hence in favor of the 
nonstandard models being considered. This is typically the situ-
ation for the RVM and Q dm vacuum models in Table 2 and for 
the three wDVMs in Table 1. Neither the XCDM nor the Q � vac-
uum model attain the “strong evidence” threshold in Tables 1 or 2. 
The XCDM parametrization, which is used as a baseline for com-
parison of the dynamical DE models, is nevertheless capable of 
detecting significant signs of dynamical DE, mainly in Table 1 (in 
which HRiess

0 is excluded), but not so in Table 2 (where HRiess
0 is 

included). In contrast, model Q � does not change much from Ta-
ble 1 to Table 2.

In actual fact, the vacuum model III (Q �) tends to remain al-
ways fairly close to the �CDM. Its dynamics is weaker than that of 
the main DVMs (RVM and Q dm). Being |νi | � 1 for all the DVMs, 
the evolution of its vacuum energy density is approximately loga-
rithmic: ρ III

� ∼ ρ�0(1 −3ν� ln a), as it follows from (13) with ε = 0. 
Thus, it is significantly milder in comparison to that of the main 
DVMs, for which ρ I,II

� ∼ ρ�0
[
1 + (�0

m/�0
�)νi(a−3 − 1)

]
. The per-

formance of Q � can only be slightly better than that of �CDM, a 
fact that may have not been noted in previous studies – see [21,
26,40–42] and references therein.

According to the same jargon, when the differences �AIC and 
�BIC are both above 10 one speaks of “very strong evidence” 
against the unfavored model (the �CDM, in this case), wherefore 
in favor of the dynamical vacuum and quasi-vacuum models. It is 
certainly the case of the RVM and Q dm models in Table 1, which 
are singled out as being much better than the �CDM in their abil-
ity to describe the overall observations. From Table 1 we can see 
that the best-fit values of νi for these models are secured at a 
Fig. 3. Contour plots for the RVM (blue) and wRVM (orange) up to 2σ , and for the 
�CDM (black) up to 5σ in the (H0, �0

m)-plane. Shown are the two relevant cases 
under study: the plot on the left is for when the local H0 value of Riess et al. [13]
is included in the fit (cf. Table 2), and the plot on the right is for when that local 
value is not included (cf. Table 1). Any attempt at reaching the HRiess

0 neighborhood 
enforces to pick too small values �0

m < 0.27 through extended contours that go 
beyond 5σ c.l. We also observe that the two (w)RVMs are much more compatible 
(already at 1σ ) with the HPlanck

0 range than the �CDM. The latter, instead, requires 
some of the most external contours to reach the HPlanck

0 1σ region whether HRiess
0 is 

included or not in the fit. Thus, remarkably, in both cases when the full data string 
SNIa+BAO+H(z)+LSS+CMB enters the fit the �CDM has difficulties to overlap also 
with the HPlanck

0 range at 1σ , in contrast to the RVM and wRVM. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

confidence level of ∼ 3.8σ . These two models are indeed the most 
conspicuous ones in our entire analysis, and remain strongly fa-
vored even if HRiess

0 [13] is included (cf. Table 2). In the last case, 
the best-fit values of νi for the two models are still supported at a 
fairly large c.l. (∼ 3.2σ ). This shows that the overall fit to the data 
in terms of dynamical vacuum is a real option since the fit qual-
ity is not exceedingly perturbed in the presence of the data point 
HRiess

0 . However, the optimal situation is really attained in the ab-
sence of that point, not only because the fit quality is then higher 
but also because that point remains out of the fit range whenever 
the large scale structure formation data (LSS) are included. For this 
reason we tend to treat that input as an outlier – see also [49] for 
an alternative support to this possibility, which we comment later 
on. In the following, we will argue that a truly consistent picture 
with all the data is only possible for H0 in the vicinity of HPlanck

0
rather than in that of HRiess

0 .
The conclusion is that the HRiess

0 –HPlanck
0 tension cannot be re-

laxed without unduly forcing the overall fit, which is highly sensi-
tive to the LSS data. It goes without saying that one cannot have 
a prediction that matches both H0 regions at the same time, so at 
some point new observations (or the discovery of some systematic 
in one of the experiments) will help to consolidate one of the two 
ranges of values and exclude definitely the other. At present no fa-
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Fig. 4. Contour lines for the �CDM (black) and RVM (blue) up to 4σ in the 
(H0, σ8(0))-plane. As in Fig. 3, we present in the left plot the case when the lo-
cal H0 value of Riess et al. [13] is included in the fit (cf. Table 2), whereas in the 
right plot the case when that local value is not included (cf. Table 1). Again, any at-
tempt at reaching the HRiess

0 neighborhood enforces to extend the contours beyond 
the 5σ c.l., which would lead to a too low value of �0

m in both cases (cf. Fig. 3) 
and, in addition, would result in a too large value of σ8(0) for the RVM. Notice that 
H0 and σ8(0) are positively correlated in the RVM (i.e. H0 decreases when σ8(0)

decreases), whilst they are anticorrelated in the �CDM (H0 increases when σ8(0)

decreases, and vice versa). It is precisely this opposite correlation feature with re-
spect to the �CDM what allows the RVM to improve the LSS fit in the region where 
both H0 and σ8(0) are smaller than the respective �CDM values (cf. Fig. 1). This 
explains why the Planck range for H0 is clearly preferred by the RVM, as it allows 
a much better description of the LSS data. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

vorable fit can be obtained from the �CDM that is compatible with 
any of the two H0 ranges. This is transparent from Figs. 3 and 4, 
in which the �CDM remains always in between the two regions. 
However, our work shows that a solution (with minimum cost) is 
possible in terms of vacuum dynamics. Such solution, which in-
evitably puts aside the HRiess

0 range, is however compatible with 
all the remaining data and tends to favor the Planck range of H0
values. The DVMs can indeed provide an excellent fit to the overall 
cosmological observations and be fully compatible with both the 
HPlanck

0 value and at the same time with the needed low values of 
the σ8(0) observable, these low values of σ8(0) being crucial to fit 
the structure formation data. Such strategy is only possible in the 
presence of vacuum dynamics, whilst it is impossible with a rigid 
�-term, i.e. is not available to the �CDM.

In Fig. 1 we confront the various models with the LSS data 
when the local measurement HRiess

0 is not included in our fit. The 
differences can be better appraised in the plot on the right, where 
we observe that the RVM and Q dm curves stay significantly lower 
than the �CDM one (hence matching better the data than the 
�CDM), whereas those of XCDM and Q � remain in between.

Concerning the wDVMs, namely the quasi-vacuum models in 
which an extra parameter is at play (the EoS parameter w), we 
observe a significant difference as compared to the DVMs (with 
vacuum EoS w = −1): they all provide a similarly good fit quality, 
clearly superior to that of the �CDM (cf. Tables 1 and 2) but in 
all cases below that of the main DVMs (RVM and Q dm), whose 
performance is outstanding.

In Table 3, in an attempt to draw our fit nearer and nearer to 
HRiess

0 [13], we test the effect of ignoring the LSS structure forma-
tion data, thus granting more freedom to the fit parameter space. 
We perform this test using the �CDM and models (w)RVM and 
(w)Q � (i.e. models I and III and testing both the vacuum and 
quasi-vacuum options), and we fit them to the CMB+BAO data 
alone. We can see that the fit values for H0 increase in all starred 
scenarios (i.e. those involving the HRiess

0 data point in the fit), and 
specially for the cases Ia and IIIa in Table 3. Nonetheless, these 
lead to νi < 0 and w < −1 (and hence imply phantom-like DE); 
and, what is worse, the agreement with the LSS data is ruined (cf. 
Fig. 2) since the corresponding curves are shifted too high (beyond 
Fig. 5. Contour lines for the models wRVM (Ia) and wQ� (IIIa) up to 3σ in the 
(H0, σ8(0))-plane, depicted in orange and purple, respectively, together with the 
isolated point (in black) extracted from the analysis of Ref. [26], which we call IIIb. 
The cases Ia, IIIa and IIIb correspond to special scenarios with w �= −1 for Models 
I and III in which the value HRiess

0 is included as a data point and then a suitable 
strategy is followed to optimize the fit agreement with such value. The strategy con-
sists to exploit the freedom in w and remove the LSS data from the fit analysis. The 
plot clearly shows that some agreement is indeed possible, but only if w takes on 
values in the phantom region (w < −1) (see text) and at the expense of an anoma-
lous (too large) value of the parameter σ8(0), what seriously spoils the concordance 
with the LSS data, as can be seen in Fig. 2. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

the �CDM one). In the same figure we superimpose one more 
scenario, called IIIb, corresponding to a rather acute phantom be-
havior (w = −1.184 ± 0.064). The latter was recently explored in 
[26] so as to maximally relax the H0 tension – see also [21]. Un-
fortunately, we find (see Fig. 2) that the associated LSS curve is 
completely strayed since it fails to minimally describe the f σ8 data 
(LSS).

In Fig. 3 we demonstrate in a very visual way that, in the con-
text of the overall observations (i.e. SNIa+BAO+H(z)+LSS+CMB), 
whether including or not including the data point HRiess

0 (cf. Ta-
bles 1 and 2), it becomes impossible to getting closer to the local 
measurement HRiess

0 unless we go beyond the 5σ contours and end 
up with a too low value �0

m < 0.27. These results are aligned with 
those of [50], in which the authors are also unable to accommo-
date the HRiess

0 value when a string of SNIa+BAO+H(z)+LSS+CMB
data (similar but not equal to the one used by us) is taken into ac-
count. Moreover, we observe in Fig. 3 not only that both the RVM 
and wRVM remain much closer to HPlanck

0 than to HRiess
0 , but also 

that they are overlapping with the HPlanck
0 range much better than 

the �CDM does. The latter is seen to have serious difficulties in 
reaching the Planck range unless we use the most external regions 
of the elongated contours shown in Fig. 3.

Many other works in the literature have studied the existing 
H0 tension. For instance, in [28] the authors find H0 = 69.13 ±
2.34 km/s/Mpc assuming the �CDM model. Such result almost 
coincides with the central values of H0 that we obtain in Tables 1
and 2 for the �CDM. This fact, added to the larger uncertainties of 
the result, seems to relax the tension. Let us, however, notice that 
the value of [28] has been obtained using BAO data only, what ex-
plains the larger uncertainty that they find. In our case, we have 
considered a much more complete data set, which includes CMB 
and LSS data as well. This is what has allowed us to better con-
strain H0 with smaller errors and conclude that when a larger data 
set (SNIa+BAO+H(z)+LSS+CMB) is used, the fitted value of the 
Hubble parameter for the �CDM is incompatible with the Planck 
best-fit value at about 4σ c.l. Thus, the �CDM model seems to be 
in conflict not only with the local HST estimation of H0, but also 
with the Planck one!

Finally, in Figs. 4 and 5 we consider the contour plots (up to 
4σ and 3σ , respectively) in the (H0, σ8(0))-plane for different sit-
uations. Specifically, in the case of Fig. 4 the plots on the left and 
on the right are in exact correspondence with the situations pre-
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viously presented in the left and right plots of Fig. 3, respectively.1

As expected, the contours in the left plot of Fig. 4 are slightly 
shifted (“attracted”) to the right (i.e. towards the HRiess

0 region) as 
compared to those in the right plot because in the former HRiess

0
was included as a data point in the fit, whereas HRiess

0 was not 
included in the latter. Therefore, in the last case the contours for 
the RVM are more centered in the HPlanck

0 region and at the same 
time centered at relatively low values of σ8(0) 
 0.73–0.74, which 
are precisely those needed for a perfect matching with the experi-
mental data points on structure formation (cf. Fig. 1). On the other 
hand, in the case of Fig. 5 the contour lines correspond to the 
fitting sets Ia, IIIa of Table 3 (in which BAO and CMB data, but 
no LSS formation data, are involved). As can be seen, the contour 
lines in Fig. 5 can attain the Riess 2016 region for H0, but they 
are centered at rather high values (∼ 0.9) of the parameter σ8(0). 
These are clearly higher than the needed values σ8(0) 
 0.73–0.74. 
This fact demonstrates once more that such option leads to a bad 
description of the structure formation data. The isolated point in 
Fig. 5 is even worst: it corresponds to the aforementioned theoret-
ical prediction for the scenario IIIb proposed in [26], in which the 
HRiess

0 region can be clearly attained but at the price of a serious 
disagreement with the LSS data. Here we can see, with pristine 
clarity, that such isolated point, despite it comfortably reaches the 
HRiess

0 region, it attains a value of σ8(0) near 1, thence completely 
strayed from the observations. This is, of course, the reason why 
the upper curve in Fig. 2 fails to describe essentially all points of 
the f (z)σ8(z) observable. So, as it turns, it is impossible to reach 
the HRiess

0 region without paying a high price, no matter what 
strategy is concocted to approach it in parameter space.

As indicated, we must still remain open to the possibility that 
the HPlanck

0 and/or HRiess
0 measurements are affected by some kind 

of (unknown) systematic errors, although some of these possibil-
ities may be on the way of being ruled out by recent works. For 
instance, in [51] the authors study the systematic errors in Planck’s 
data by comparing them with the South Pole Telescope data. Their 
conclusion is that there is no evidence of systematic errors in 
Planck’s results. If confirmed, the class of the (w)RVMs studied 
here would offer a viable solution to both the H0 and σ8(0) exist-
ing tensions in the data, which are both unaccountable within the 
�CDM. Another interesting result is the “blinded” determination 
of H0 from [27], based on a reanalysis of the SNIa and Cepheid 
variables data from the older work by Riess et al. [14]. These au-
thors find H0 = 72.5 ± 3.2 km/s/Mpc, which should be compared 
with H0 = 73.8 ± 2.4 km/s/Mpc [14]. Obviously, the tension with 
HPlanck

0 diminished since the central value decreased and in addi-
tion the uncertainty has grown by ∼ 33%. We should now wait 
for a similar reanalysis to be made on the original sample used in 
[13], i.e. the one supporting the value HRiess

0 , as planned in [27]. 
In [52] they show that by combining the latest BAO results with 
WMAP, Atacama Cosmology Telescope (ACT), or South Pole Tele-
scope (SPT) CMB data produces values of H0 that are 2.4–3.1σ
lower than the distance ladder, independent of Planck. These au-
thors conclude from their analysis that it is not possible to explain 
the H0 disagreement solely with a systematic error specific to the 
Planck data. Let us mention other works, see e.g. [24,29], in which 
a value closer to HRiess

0 is found and the tension is not so severely 
loosened; or the work [53], which excludes systematic bias or un-
certainty in the Cepheid calibration step of the distance ladder 
measurement by [13]. Finally, we recall the aforementioned re-
cent study [49], where the authors run a new (dis)cordance test to 
compare the constraints on H0 from different methods and con-

1 The HPlanck
0 band indicated in Figs. 3–5 is that of [12], which has no significant 

differences with that of [5].
clude that the local measurement is an outlier compared to the 
others, what would favor a systematics-based explanation. Quite 
obviously, the search for a final solution to the H0 tension is still 
work in progress.

5. Conclusions

The present updated analysis of the cosmological data SNIa +
BAO + H(z) + LSS + CMB disfavors the hypothesis � = const. as 
compared to the dynamical vacuum models (DVMs). This is con-
sistent with our most recent studies [30–34]. Our results sug-
gest a dynamical DE effect near 3σ within the standard XCDM 
parametrization and near 4σ for the best DVMs. Here we have 
extended these studies in order to encompass the class of quasi-
vacuum models (wDVMs), where the equation of state parameter 
w is near (but not exactly equal) to −1. The new degree of free-
dom w can then be used to try to further improve the overall fit 
to the data. But it can also be used to check if values of w differ-
ent from −1 can relax the existing tension between the two sets 
of measurements of the H0 parameter, namely those based: i) on 
the CMB measurements by the Planck collaboration [5,12], and ii) 
on the local measurement (distance ladder method) using Cepheid 
variables [13].

Our study shows that the RVM with w = −1 remains as the 
preferred DVM for the optimal fit of the data. At the same time 
it favors the CMB measurements of H0 over the local measure-
ment. Remarkably, we find that not only the CMB and BAO data, 
but also the LSS formation data (i.e. the known data on f (z)σ8(z)
at different redshifts), are essential to support the CMB measure-
ments of H0 over the local one. We have checked that if the 
LSS data are not considered (while the BAO and CMB are kept), 
then there is a unique chance to try to accommodate the lo-
cal measurement of H0, but only at the expense of a phantom-
like behavior (i.e. for w < −1). In this region of the parameter 
space, however, we find that the agreement with the LSS for-
mation data is manifestly lost, what suggests that the w < −1
option is ruled out. There is no other window in the parameter 
space where to accommodate the local H0 value in our fit. In con-
trast, when the LSS formation data are restored, the fit quality 
to the overall SNIa+BAO+H(z)+LSS+CMB observations improves 
dramatically and definitely favors the Planck range for H0 as well 
as smaller values for σ8(0) as compared to the �CDM.

In short, our work suggests that signs of dynamical vacuum en-
ergy are encoded in the current cosmological observations. They 
appear to be more in accordance with the lower values of H0 ob-
tained from the Planck (CMB) measurements than with the higher 
range of H0 values obtained from the present local (distance lad-
der) measurements, and provide smaller values of σ8(0) that are 
in better agreement with structure formation data as compared to 
the �CDM. We hope that with new and more accurate observa-
tions, as well as with more detailed analyses, it will be possible to 
assess the final impact of vacuum dynamics on the possible solu-
tion of the current tensions in the �CDM.
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7. Note added in proof

Since the first version of this work appeared in preprint form, 
arXiv:1705.06723, new analyses of the cosmological data have ap-
peared, in particular the one-year results by the DES collaboration 
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(DES Y1 for short) [54]. They do not find evidence for dynami-
cal DE, and the Bayes factor indicates that the DES Y1 and Planck 
data sets are consistent with each other in the context of �CDM. 
However, in our previous works – see in particular [31,34] – we 
explained why the Planck results did not report evidence on dy-
namical DE. For instance, in [5] they did not use LSS (RSD) data, 
and in [6] they only used a limited set of BAO and LSS points. In 
the mentioned works [31,34] we have shown that under the same 
conditions we recover their results, but when we use the full data 
string, which involves not only CMB but also the rich BAO+LSS 
data set, we do obtain instead positive indications of dynamical DE. 
A similar situation occurs with DES Y1; they do not use direct data 
on LSS structure formation despite they recognize that smaller val-
ues of σ8(0) than those predicted by the �CDM are necessary to 
solve the tension existing between the concordance model and the 
LSS observations. In contrast, let us finally mention that our posi-
tive result on dynamical DE is consistent with the recent analysis 
by Gong-Bo Zhao et al. [55], who report on a signal of dynamical 
DE at 3.5σ c.l. using similar data ingredients as in our analysis.
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