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Abstract
Inclusive four-jet events produced in proton–proton collisions at a center-of-mass energy of
√

s = 7 TeV have been analysed for the presence of double parton scattering using data corre-
sponding to an integrated luminosity of (37.3 ± 1.3) pb−1, collected with the ATLAS detector at
the LHC. The fraction of events arising from double parton scattering has been extracted using an
artificial neural network, under the assumption that the four-jet topology originating from double
parton scattering can be represented by a random combination of dijet events. The fraction was
estimated to be fDPS = 0.084 +0.009

−0.012 (stat.) +0.062
−0.031 (syst.) in four-jet events, where each event contains

at least four reconstructed jets with transverse momentum, pT ≥ 20 GeV, pseudo-rapidity, |η | ≤ 4.4,
and the highest-pT jet has pT ≥ 42.5 GeV. Combined with the measurements of the dijet and four-jet
cross-sections in the appropriate phase-space regions, the effective overlap area between the inter-
acting protons, σeff , was found to be σeff = 16.1 +2.0

−1.5 (stat.) +6.1
−6.8 (syst.) mb. This value is consistent

within the quoted uncertainties with previous measurements of σeff at center-of-mass energies above
1 TeV, using various final states, and it is roughly a quarter of the inelastic cross-section. A sample
enriched with double parton scattering events was extracted and some characteristics of these events
were studied.
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Preface
The analysis presented in this thesis was initiated in collaboration with Dr. Iftach Sadeh whose thesis
contains preliminary results. Since those preliminary results, the following advances were made by
the author:

Z two new Monte Carlo (MC) samples were generated with Alpgen +Herwig +Jimmy (AHJ)
and Sherpa, including a full simulation of the ATLAS detector. Since the detector simulation
is a CPU-intensive process, two special filters had to be developed, one to select four-jet events
and the other to select double parton scattering (DPS) events on parton-level. With these filters,
it was possible to increase the amount of events available for the analysis by about a factor 10;

Z the four-jet event selection was modified from exclusive to inclusive, i.e., events with more
than four jets are included in the measurement. Throughout the analysis, when discussing a
four-jet (dijet) event, the leading (highest transverse momentum) four (two) jets in the event
are considered. The inclusive selection introduced two complications, it made differentiating
between DPS and single parton scattering (SPS) events harder and it forced the distinction
between two classes of DPS events, complete-DPS (cDPS) and semi-DPS (sDPS). The former
are events in which the two dijets of DPS are among the four leading jets. In the latter class of
DPS events, out of the four leading jets, three jets originate from one scattering and one from
the other;

Z a new method was developed to classify double parton scattering events on parton-level by
matching partons to jets. This method is different from the one employed in the previous DPS
measurement performed in ATLAS since the four-jet final state and the inclusive selection
require the classification to be performed at the jet-level, rather than at the event-level. Classi-
fying the events in this manner allowed to select SPS events which contain the low transverse
momentum (pT) activity, while ensuring that none of the four leading jets originate from hard
secondary interactions. A more physical description of SPS events is obtained this way;

Z the sample representing cDPS was constructed by overlaying dijets from data, rather than from
MC, thanks to the development of a new overlaying scheme which allowed to take advantage
of the entire sample of dijet events;

Z the classification of DPS and SPS events was performed using an artificial neural network (NN).
A principal component analysis was utilized to further optimize the selection of variables used
as input to the NN. New variables were constructed to improve the classification of cDPS events
and additional variables were added for the classification of sDPS events;

Z the NN was expanded to include three outputs, corresponding to three probabilities for the
event to be a SPS, cDPS or sDPS event. Combining the three probabilities and the constraint
that the sum of the probabilities is one, the outputs of the NN for each event were plotted as a
single point inside an equilateral triangle (Dalitz plot). Plotting the NN outputs on a Dalitz plot
helped visualize the classification power of the NN and the results of the fit used to determine
the fractions of cDPS and sDPS events ( fcDPS and fsDPS , respectively);

Z the methodology of the measurement was validated extensively using the new MC samples.
In order to ascertain that the topology of cDPS events is reproducible by overlaying two dijet
events, the dijet overlay sample was compared to a cDPS sample extracted from the AHJ MC.
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A comparison of the NN output distributions in the two samples verified that the topology of
the overlaid dijet events is comparable to that of cDPS events extracted from AHJ;

Z the topology of SPS events extracted from the AHJ sample was tested due to a disagreement
observed between the data and AHJ in distributions related to back-to-back topologies of the
third and fourth jet in the event (sorted according to jet pT). Four-jet events were generated
in Sherpa with the module adding multi-parton interactions turned off. Thus, four-jet SPS
events, simulated using matrix element (ME) calculations in the realm of perturbative quantum
chromodynamics, were obtained. A good agreement was observed in the comparison between
the distributions of SPS events in both MC generators. This indicated that the topology of SPS
events in AHJ, simulated with ME calculations as well, is similar to that in Sherpa. Based
on this comparison, the disagreements between the distributions in the data and in AHJ were
understood to be due to an excess of DPS events in AHJ;

Z an additional check of the last conclusion was performed by studying the same distributions
as above as a function of the NN output. Using the NN output, a sample composed almost
entirely from SPS events and a sample enriched with DPS events were selected from the data
and MC samples. A good agreement was observed between the distributions in all three SPS
samples, while an excess of DPS events in AHJ was observed in the DPS enriched sample. As
expected, the distributions in Sherpa underestimated the distributions in the data in the DPS
enriched sample;

Z the fit procedure used to estimate fcDPS and fsDPS was validated by fitting the NN output
distributions in the inclusive AHJ sample with the corresponding distributions in the SPS,
cDPS and sDPS samples. Comparing the fractions obtained from the fit with the parton-level
fractions, an excellent agreement was observed, confirming the fit method and further verifying
the overlay method to construct complete-DPS events;

Z the availability ofMC sampleswhich include a full simulation of theATLAS detector facilitated
a different approach to estimate systematic uncertainties. Additional systematic uncertainties
were included, pertaining to various corrections and parameters used in the analysis;

Z a two-dimensional fit to the NN output distributions in data was performed and an estimate
of fcDPS and fsDPS in data was obtained. This is the first time the fraction of sDPS events is
extracted from data directly;

Z the distributions in data of the main observables used in the analysis are compared to the
combination of distributions in the SPS, cDPS and sDPS samples, normalized based on the
estimated fcDPS and fsDPS . Systematic uncertainties were included in the distributions and a
good description of the data in most regions of phase-space is achieved;

Z combining the fcDPS and fsDPS extracted in data with the measured dijet and four-jet cross-
sections, the effective overlap area between the interacting protons, σeff , was estimated, obtain-
ing a value which is consistent within the quoted uncertainties with previous measurements of
σeff at center-of-mass energies above 1 TeV, using various final states. The measured value of
σeff is roughly a quarter of the inelastic cross-section;

Z some characteristics of DPS events were studied by using the NN output to extract a sample
enriched with DPS events (34%) and comparing it to a sample of SPS events (with purity
above 99%). Distributions of the proton longitudinal momentum carried by the massless
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parton participating in the interaction, x, in this sample were compared to the x distributions
in the SPS sample. The comparison indicated that in DPS events the x values of the two
interactions taking place are uncorrelated. The average charged particle multiplicity in DPS
events in data was estimated to be ∼8% higher than in SPS events.

This analysis is intended to be published as an ATLAS paper and submitted to a journal. At the
time of the submission of this thesis, the editorial process within the ATLAS collaboration has been
initiated.
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CHAPTER1
Introduction
The Standard Model of particle physics (SM) [1–4] is one of the greatest achievements of modern
physics. It provides a unified picture of the fundamental constituents of matter and combines the
three interactions that mediate the dynamics of subatomic particles, the electromagnetic, weak and
strong interactions. With the discovery of the Higgs boson at the LHC [5–11], all of the particles in
the SM have now been discovered.

The SM contains 26 free parameters (including the parameters of the neutrino sector); it has been
tested in numerous measurements and has been shown to successfully describe high energy particle
interactions. Data from precision measurements of the Z-pole parameters, performed at LEP and at
SLAC [12], may be used to predict the W boson and top quark masses, where the latter prediction
is obtained through radiative corrections evaluated in the framework of the SM. Global fits of
the electroweak sector of the SM [13] provide predictions for additional electroweak observables.
Comparing these indirect constraints to direct measurements provides a stringent test of the SM. The
latest prediction of the SM confirmed recently is the existence of the Higgs boson, the last piece of
the SM puzzle.

With these successes, the validity of the SM at energies up to the electroweak scale has been firmly
established. However, the remaining unanswered questions point to the fact that the SM is not the
complete fundamental theory sought after. One of the four fundamental forces in the universe,
gravitation, described by general relativity, is not included in the SM. Attempts to unify general
relativity with the SM have been unsuccessful thus far. The SM does not provide an explanation for
the accelerated expansion of the universe, as observed in cosmological measurements, nor does it
contain a viable candidate for dark matter, necessary to account for the orbital velocities of stars in the
Milky Way. Measurements of neutrino oscillations imply that neutrinos have non-zero mass, whilst
in the “classic” SM they are massless. The observed matter-antimatter asymmetry of the universe is
not explained by the SM. These inadequacies of the SM lead to the current view of it as an effective
field theory that is valid at low energy scales where measurements have been performed so far, but
which arises from a more fundamental theory at higher energy scales.

The research conducted at the Large Hadron Collider (LHC) at CERN is at the forefront of particle
physics as well as at the energy frontier. Any study performed at the LHC, be it the investigation of
the properties of the Higgs boson or the search for new phenomena beyond the SM, requires a detailed
understanding of the strong interactions, described by Quantum Chromodynamics (QCD). This is
due to the fact that in proton–proton (pp) collisions at high energy, the rate of strong interactions is
orders of magnitude higher than any other interaction.

Strong interactions involve partons (quarks and gluons), yet partons are never visible in their own
right. Almost immediately after being produced, gluons and quarks fragment into other quarks and
gluons, or quarks decay semi-leptonically into other quarks, which in turn form hadrons, leading to a
collimated spray of energetic hadrons referred to as a jet. As a result, jet production is the dominant
process in pp collisions and jets often accompany the production of other SM particles. The high
rate of jet production provides an ideal avenue to probe QCD and parton distribution functions
(PDF) [14–16], which describe the longitudinal distribution of the momenta of quarks and gluons
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1 Introduction

within a proton. The transverse distribution of the partons within the proton has yet to be measured,
though at low energies there is an ongoing program attempting to extract it [17–27].

Most studies of pp collisions consider a single hard interaction occurring between two partons in the
colliding protons, where “hard” refers to aminimummomentum transfer in the interaction of the order
of a few GeV2. However, when two hadrons collide at high energy, there is a possibility that more
than one parton in one of the hadrons will interact with partons in the other hadron. The importance
of such multi-parton interactions (MPI) has been realized long ago [28,29]. At high energy colliders
such as the Tevatron, with a center-of-mass energy,

√
s, ranging between 1.8−1.96 TeV, and the LHC

(
√

s = 7− 13 TeV), MPI are a potential source of multi-jet and/or multi-lepton events and therefore
constitute a source of background in particular for rare physics processes. Multi-parton interactions
may also provide the option to investigate the transverse structure of the proton [30].

In hadronic collisions, MPI are an inseparable part of a wider phenomenon called the underlying
event (UE). The UE is defined as any hadronic activity that cannot be attributed to the particles
originating from the hard scattering. In this sense the UE consists of MPI and the hadronization
of beam remnants. Most of these interactions are soft, at scales below ∼1 GeV2, and generally do
not result in jets with high transverse momenta (pT). However, the high energy available at the
LHC and the high density of partons accessible with low fraction of the proton momenta, enhance
the probability of hard MPI relative to past experiments [31]. The expected abundance of MPI
phenomena at the LHC and their importance for the full picture of hadronic collisions has led
to many phenomenological estimates of the MPI contribution in various final states such as four
jets [31–39], four jets including b-jets [31, 40, 41], jets associated with photons or leptons [42],
four leptons produced in double Drell-Yan processes [43] as well as in a number of channels with
electroweak gauge bosons [44–50].

The existing phenomenology of MPI is based on several simplifying assumptions, since such inter-
actions cannot be completely described by perturbative quantum chromodynamics (pQCD). Recent
interest has produced some advances [51–70], however, a systematic treatment within QCD remains
to be developed. The simplest case of MPI is that of double parton scattering (DPS). The rate of
DPS is characterized by the so-called effective cross-section, σeff , which is related to the degree of
overlap between the interacting hadrons in the plane perpendicular to the direction of motion. In
principle, it holds information about the transverse density distributions of partons in the proton and
about the correlations between partons.

Measurements of DPS have been performed at energies between 63 GeV and 1.96 TeV in the four-jet
and γ + three-jets channels [71–76]. At the LHC, manifestations of DPS have been measured in the
W + two-jet final state using 7 TeV data by the ATLAS [77] and CMS [78] collaborations. Estimations
of σeff were performed by the LHCb collaboration in the observation of double charm production
involving open charm, using 7 TeV data [79]. In the measurement of four-jet production performed by
the CMS collaboration [80], contributions from DPS were found to improve the agreement between
distributions extracted from data and Monte Carlo predictions. Table 1.1 summarizes the existing
measurements of σeff .

In this analysis, the DPS rate is studied in the four-jet final state in pp collisions at
√

s = 7 TeV,
using a data sample of (37.3 ± 1.3) pb−1 with an average number of interactions per bunch crossing,
〈µ〉 = 0.41, collected at the LHC with the ATLAS experiment during 2010. The four-jet final
state may arise due to a single parton-parton collision (SPS), accompanied by additional radiation.
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Experiment
√

s (GeV) Final state σeff

AFS (pp), 1986 [71] 63 4 jets ∼5 mb

UA2 (pp̄), 1991 [72] 630 4 jets >8.3 mb (95% C.L)

CDF (pp̄), 1993 [73] 1800 4 jets 12.1+10.7
−5.4 mb

CDF (pp̄), 1997 [74] 1800 γ+ 3-jets 14.5 ± 1.7+1.7
−2.3 mb

DØ (pp̄), 2010 [75] 1960 γ+ 3-jets 16.4 ± 0.3 ± 2.3 mb

LHCb (pp), 2012 [79] 7000 D0D0 21 ± 1.5 ± 2 mb

LHCb (pp), 2012 [79] 7000 D0D̄0 2.35 ± 0.05 ± 0.20 mb

LHCb (pp), 2012 [79] 7000 D0D+ 23.5 ± 3.5 ± 2 mb

LHCb (pp), 2012 [79] 7000 D0D− 3.00 ± 0.1 ± 0.25 mb

LHCb (pp), 2012 [79] 7000 D0D+s 18 ± 4 ± 2 mb

LHCb (pp), 2012 [79] 7000 D0D−s 2.80 ± 0.25 ± 0.30 mb

LHCb (pp), 2012 [79] 7000 D0Λ̄−c 4.5 ± 1.0 ± 0.5 mb

LHCb (pp), 2012 [79] 7000 D+D+ 33.0 ± 5.5 ± 3.5 mb

LHCb (pp), 2012 [79] 7000 D+D− 3.20 ± 0.20 ± 0.35 mb

LHCb (pp), 2012 [79] 7000 D+D+s 29.5 ± 7.5 ± 3.0 mb

LHCb (pp), 2012 [79] 7000 D+D−s 3.5 ± 0.5 ± 0.5 mb

LHCb (pp), 2012 [79] 7000 D+Λ+c 70 ± 35 ± 10 mb

LHCb (pp), 2012 [79] 7000 D+Λ̄−c 7.5 ± 2.0 ± 1.0 mb

LHCb (pp), 2012 [79] 7000 J/ψD0 14.9 ± 0.4 ± 1.1+2.3
−3.1 mb

LHCb (pp), 2012 [79] 7000 J/ψD+ 17.6 ± 0.6 ± 1.3+2.8
−3.7 mb

LHCb (pp), 2012 [79] 7000 J/ψD+s 12.8 ± 1.3 ± 1.1+2.0
−2.7 mb

LHCb (pp), 2012 [79] 7000 J/ψΛ+c 18.0 ± 3.3 ± 2.1+2.8
−3.8 mb

ATLAS (pp), 2013 [77] 7000 W+ 2 jets 15 ± 3 +5
−3 mb

CMS (pp), 2014 [78] 7000 W+ 2 jets 20.7 ± 0.8 ± 6.6 mb

Table 1.1: Summary of the published measurements of σeff at various center-of-mass energies (
√

s) and final
states. The first quoted uncertainty is the statistical uncertainty and the second is the systematic uncertainty.
In the case of the measurements involving J/ψ mesons in the final state, the third uncertainty is due to the
unknown polarization of the prompt J/ψ mesons.
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1 Introduction

Alternatively, it can also originate from two separate parton-parton collisions, each producing at least
a pair of jets. The latter case is expected to have different characteristics from the former and thus
the rate of DPS may be statistically estimated. Presented here is the extraction of the rate of DPS and
the corresponding σeff , using Monte Carlo to represent the topology of four jets arising from SPS
and under the assumption that the four-jet topology originating from DPS can be represented by a
random combination of dijet events.

Outline of the thesis
Following the short introduction given here, a theoretical overview of QCD and DPS is presented in
Chapter 2. The LHC and the ATLAS experiment, together with the trigger and jet reconstruction
are described in Chapter 3. A summary of Monte Carlo event generators and detector simulation
is given in Chapter 4. The event selection procedure is described in Chapter 5. Chapter 6 details
the methodology adopted for the measurement of σeff and Chapter 7 presents various validations
of the methodology. The statistical and systematic uncertainties associated with the measurement
are discussed in Chapter 8. Finally, the results and conclusions are presented in Chapters 9 and 10,
respectively.
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CHAPTER2
Theoretical background
2.1 The Standard Model of particle physics
The SM is a gauge quantum field theory (QFT) describing most elementary particles in nature and the
interactions between them [81]. Each of the three forces of relevance to particle physics is described
by a QFT corresponding to the exchange of an integer spin force-carrying particle, known as a gauge
boson. The photon is the gauge boson responsible for electromagnetic interactions. In the case of the
strong interaction, the force-carrying particle is the gluon which, like the photon, is massless. The
weak interaction is mediated by three massive bosons, the W± and Z bosons. The unification of the
electromagnetic and weak interactions leads to a mixing of the physical photon with the Z boson.
Within this unified model, referred to as the Glashow, Salam andWeinberg electroweak model [1–3],
the couplings of the photon, the W± and Z bosons are related via a mixing angle. The SM is based
in the symmetry group SU(3)C × SU(2)L × U(1)Y, where the electroweak sector is based in the
SU(2)L × U(1)Y group, and the strong sector is based in the SU(3)C group.

The elementary particles in the SM are half-integer spin fermions, six quarks and six leptons. Both
quarks and leptons carry the electroweak charge and hence interact via the electroweak force. Quarks
may be classified depending on their electric chargeQ; quarks u, c and t haveQ = 2/3 and quarks d, s
and b haveQ = −1/3. Quarks interact both via the strong interaction and via electroweak interactions.
Electrons (e), muons (µ) and taus (τ) are massive leptons with an electric charge Q = −1. Their
associated neutrinos, respectively νe , νµ and ντ , do not carry an electric charge. For each particle
in the SM, there is an anti-particle with the same mass and quantum numbers, but with opposite
electroweak charge (and opposite color charge in the case of quarks). The fundamental particles of
the Standard Model, sorted according to family, generation and mass, are listed in Fig. 2.1.

Figure 2.1: The fundamental particles of the Standard Model, sorted according to family, generation and
mass.
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2 Theoretical background

The SM formalism is based on local gauge invariance and its success in describing the experimental
data places the local gauge invariance on a solid experimental basis. However, terms in the Lagrangian
corresponding to particle masses break the required local gauge invariance. The Higgs mechanism
of spontaneous symmetry breaking [82–87] provides a solution to this issue. Within this mechanism,
the fermions and electroweak gauge bosons acquire masses through their interaction with the Higgs
field. This field leads to the existence of a massive scalar boson, the Higgs boson, recently discovered
at the LHC [5–11].

The existence of the Higgs boson also provides a solution to the violation of the cross-section unitarity
in W+W− → W+W− scattering, the Feynman diagrams of which are shown in Fig. 2.2. The unitarity
violation may be cancelled by the Feynman diagrams involving the exchange of a scalar particle, the
Higgs boson, as shown in Fig. 2.3.
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The Higgs mechanism generates the masses of the electroweak gauge bosons in a

manner that preserves the local gauge invariance of the Standard Model.

17.2 Lagrangians in Quantum Field Theory

The Higgs mechanism is described in terms of the Lagrangian of the Standard

Model. In quantum mechanics, single particles are described by wavefunctions

that satisfy the appropriate wave equation. In Quantum Field Theory (QFT), par-

ticles are described by excitations of a quantum field that satisfies the appropriate

quantum mechanical field equations. The dynamics of a quantum field theory can

be expressed in terms of the Lagrangian density. Whilst the development of QFT

is outside the scope of this book, an understanding of the Lagrangian formalism is

necessary for the discussion of the Higgs mechanism. The purpose of this section

is to provide a pedagogical introduction to the Lagrangian of the Standard Model,

which ultimately contains all of the fundamental particle physics.

17.2.1 Classical ields

In classical dynamics, the motion of a system can be described in terms of forces

and the resulting accelerations using Newton’s second law, F = mẍ. The same

equations of motion can be obtained from the Lagrangian L defined as

L = T − V, (17.1)
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Figure 2.3: Feynman diagrams for Higgs boson exchange in W+W− → W+W− scattering.

2.2 Strong interactions
The QFT describing strong interactions is Quantum Chromodynamics [88]. Its development began
in the 1950s, when a large number of particles (hadrons) were discovered. Attempts at sorting the
hadrons into groups of similar properties led to the Eightfold Way [89–91] framework, invented by
Murray Gell-Mann and Yuval Ne’eman, organizing the particles into octet groups. The Eightfold
Way was successful in describing the new particles in a symmetry scheme based on the SU(3) group.
Subsequently, Gell-Mann [92] and George Zweig [93], went on to propose that the structure of the
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2.2 Strong interactions

groups could be explained by the existence of three smaller particles inside the hadrons. Gell-Mann
referred to these smaller particles as quarks, but since they were never observed as free particles,
he considered them to be merely convenient mathematical constructs, not real particles. Later deep
inelastic scattering (DIS) experiments [94] confirmed the existence of point-like fermions within
the hadron. Based on these collision experiments and the scaling observations made by James
Bjorken [95], Richard Feynman proposed the parton model [96], suggesting that quarks are real
particles composing hadrons. It was also postulated that quarks carried a new quantum number
called color [97,98], which could explain certain puzzles such as the apparent symmetry of the wave
function of the lightest hadron composed of three quarks (a baryon), the rate for π0 → 2γ and later
on the rate for e+e− → hadrons. The first circumstantial evidence for the existence of the neutral
gluons was found by measuring the total fraction of the proton momentum carried by the quarks.
Gluons were later found to be spin 1 bosons by studying the angles between three jets produced in
e+e− → qqg interactions [99, 100]. In QCD, gluons mediate strong interactions between quarks,
carrying a combination of color and anti-color charge.

Quantum Chromodynamics was established as a theoretical framework for strong interactions only
following the discovery of asymptotic freedom as a consequence of the renormalisability of the
theory [101,102]. A short overview of the features of QCD follows.

2.2.1 Color confinement
Colored particles are never observed directly; they are confined to color singlet states. This is referred
to as the color confinement hypothesis, believed to originate from gluon–gluon self-interactions.
There is currently no analytic proof of the concept of color confinement. However, a qualitative
understanding of the likely origin may be obtained by considering the case in which two free quarks
are pulled apart. The interaction between the quarks may be thought of in terms of the exchange
of virtual gluons. Since gluons carry a color charge, there are attractive interactions between the
virtual gluons being exchanged. A schematic illustration of these gluon–gluon interactions is shown
in Fig. 2.4. The effect of these interactions is the squeezing of the color field between the quarks into
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that no objects with non-zero colour charge can propagate as free particles. Colour

confinement is believed to originate from the gluon–gluon self-interactions that

arise because the gluons carry colour charge, allowing gluons to interact with other

gluons through diagrams such as those shown in Figure 10.5.

There is currently no analytic proof of the concept of colour confinement,

although there has been recent progress using the techniques of lattice QCD. Nev-

ertheless, a qualitative understanding of the likely origin can be obtained by consid-

ering what happens when two free quarks are pulled apart. The interaction between

the quarks can be thought of in terms of the exchange of virtual gluons. Because

they carry colour charge, there are attractive interactions between these exchanged

virtual gluons, as indicated in Figure 10.6a. The effect of these interactions is to

squeeze the colour field between the quarks into a tube. Rather than the field lines

spreading out as in QED (Figure 10.6b), they are confined to a tube between the

quarks, as indicated in Figure 10.6c. At relatively large distances, the energy den-

sity in the tube between the quarks containing the gluon field is constant. Therefore

the energy stored in the field is proportional the separation of the quarks, giving a

term in the potential of the form

V(r) ∼ κr, (10.13)

where experimentally κ ∼ 1 GeV/fm. This experimentally determined value for

κ (see Section 10.8) corresponds to a very large force of O(105) N between any

two unconfined quarks, regardless of separation! Because the energy stored in the

colour field increases linearly with distance, it would require an infinite amount

Figure 2.4: Schematic of the effect of gluon–gluon interactions on the long-range strong force.

a tube. At relatively large distances, the energy density in the tube between the quarks containing
the gluon field is constant. Therefore, the energy stored in the field is proportional to the separation
between the quarks, giving a term in the potential of the form

V (~r) ∼ κr , (2.1)

where κ is determined experimentally to be κ ∼ 1 GeV/fm. The value of κ corresponds to a force of
about 105N between two unconfined quarks. As the energy stored in the color field increases linearly
with distance, an infinite amount of energy would be required to separate two quarks. As a result,
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2 Theoretical background

quarks are confined into bound hadronic states that are colorless combinations of quarks/anti-quarks.
Since gluons carry a color charge, they are also confined to colorless hadrons and do not propagate
over macroscopic distances (unlike the photon).

A consequence of color confinement is that quarks and gluons do not propagate freely and are
observed as jets of colorless particles. The process by which high-energy quarks and gluons produce
jets is known as hadronization and it may be described qualitatively as follows:

i a quark and anti-quark produced in the interaction initially separate at high velocities;

ii as they separate, the color field is restricted to a tube with high energy density;

iii as the quarks separate further, the energy stored in the color field is sufficient to form new qq̄
pairs, breaking the color field into shorter “strings”;

iv this process continues, producing more qq̄ pairs, until all the quarks and anti-quarks have
sufficiently low energy to combine and form colorless hadrons.

The hadronization process results in two collimated spray of energetic hadrons, referred to as jets,
one following the initial quark direction and the other the initial anti-quark direction. Hence, in
high-energy collisions, quarks and gluons are always observed as jets of hadrons. The process of
hadronization is not understood from first principals. However, a number of phenomenological
models exist, providing a reasonable description of experimental data.

2.2.2 Running coupling and asymptotic freedom

At low-energy scales, the coupling constant of QCD is relatively large, αS ∼ O(1). Consequently,
perturbation theory cannot be applied to QCD at low energies. However, αS is not constant; its
value depends on the energy scale of the interaction. At high energies, αS becomes sufficiently
small (αS ∼ 0.1), such that perturbation theory may be used. In this way, QCD divides into a
non-perturbative low-energy regime, where first-principles calculations are not currently possible,
and a high-energy regime where predictions are calculable using perturbation theory. The running
of αS is closely related to renormalization.

Renormalization in the context of particle physics is a technique used to treat infinite integrals arising
in calculations in perturbation theory. In QCD, higher-order corrections to the propagator in the
qq → qq interaction would lead to a divergence of the cross-section. These corrections are due to
infinite contributions from loop diagrams such as the ones shown in Fig. 2.5. A renormalization
procedure is necessary in order to absorb these infinities and allow the theory to give meaningful
results, comparable with experimental measurements. This is achieved by effectively subtracting
these infinities through counter-terms embedded in so-called bare parameters that are not measurable.
The renormalization procedure introduces a correction to the renormalised parameter, depending on
the renormalization scale, µR, (interpreted as the scale at which the subtraction is made), and on
the physical scale at which the measurement is made. The latter is taken as the squared momentum
transfer |q2 | (Q2). The renormalization scale is usually chosen to be of the order of Q2. However,
the renormalization scale in itself is not a physical quantity. The physical predictions of the theory,
calculated to all orders, should in principle be independent of the choice of the renormalization scale.
This fact can be exploited in order to calculate the effective variation of αS with changes in scale. In
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shown in Figure 10.13. For values of q2 and µ2 larger than the confinement scale,

the difference between the gluon self-energy again grows logarithmically

ΠS (q2) − ΠS (µ2) ≈ −
B

4π
ln

(

q2

µ2

)

,

where the B depends to the numbers of fermionic (quark) and bosonic (gluon)

loops. For N f quark flavours and Nc colours,

B =
11Nc − 2N f

12π
.

The effect of the bosonic loops enters the expression for the q2 evolution of αS

with the opposite sign to the pure fermion loops, with the fermion loops leading

to a negative contributions (which was also the case for QED) and the gluon loops

leading to positive contributions. The corresponding evolution of αS (q2) is

αS (q2) =
αS (µ2)
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For Nc = 3 colours and N f ≤ 6 quarks, B is greater than zero and hence αS

decreases with increasing q2.

There are many ways in which αS can be measured. These include studies of the

hadronic decays of the tau-lepton, the observed spectra of bound states of heavy

quarks (cc and bb), measurements of deep inelastic scattering, and jet production

rates in e+e− annihilation. Figure 10.14 shows a summary of the most precise mea-

surements of αS which span |q| = 2 − 200 GeV. The predicted decrease in αS with

increasing |q| is clearly observed and the data are consistent with the QCD predic-

tions for the running of αS with a value of αS at |q2| = m2
Z

of

αS (m2
Z) = 0.1184 ± 0.0007.

Figure 2.5: Loop diagrams contributing to the propagator in the qq → qq interaction at squared momentum
transfer q2.

the one loop approximation (first order in perturbation theory), the evolution of αS with the scale Q2

is given by,

αS
(
Q2

)
=

αS
(
µ2

R

)
1 + β1αS

(
µ2

R

)
ln

(
Q2/µ2

R

) = 1
β1 ln

(
Q2/Λ2

QCD

) , (2.2)

where

Λ
2
QCD = µ

2
R exp *.

,
−

1
β1αS

(
µ2

R

) +/
-

(2.3)

sets the scale of the coupling constant of QCD. The parameter β1 is the first term in the beta function
of the strong coupling constant,

β (αS) = −β1α
2
S(µ2)

(
1 + β2αS(µ2)

)
+ O(α4

S(µ2)) , (2.4)

which encodes the dependence of αs on the energy scale. The first term, β1, is

β1 =
11Nc − 2Nf

12π
, (2.5)

where Nc and Nf are the number of colors and flavors, respectively. For Nc = 3 and Nf ≤ 6 quarks,
β1 is greater than zero and hence αS decreases with increasing Q2. Therefore, the coupling constant
is sizeable at low values of Q2, leading to confined partons, and as it decreases with increasing Q2

it leads to asymptotic freedom [101, 102]. Consequently, at high Q2 (small distances), quarks and
gluons behave as if they were free and perturbative theory is applicable. The current theoretical and
experimental results for the running αS are shown in Fig. 2.6 [103].

2.2.3 Parton distribution functions
The presence of free quarks within the proton was first observed in DIS experiments performed at the
Stanford Linear Accelerator Center (SLAC) [94]. Electrons of energies between 5 GeV and 20 GeV
were fired at a liquid hydrogen target. The scattering angle of the electron was measured using a large
movable spectrometer, in which the energy of the detected final-state electrons could be selected by
using a magnetic field. The differential cross sections, measured over a range of incident electron
energies, were used to determine the structure of the proton via the so-called structure functions.
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Figure 2.6: Summary of the current measurements of αS as a function of the energy scale Q (markers) and the
theoretical prediction for the dependence of αS on Q (black line). The respective degree of QCD perturbation
theory used in the extraction of αS is indicated in brackets. (Figure taken from [103].)

The differential cross-section for electron–proton (e−p) inelastic scattering, under the assumption
Q2 � y2m2

p, may be written as

d2σe−p

dxdQ2 ≈
4πα
Q4

(
y2F1

(
x,Q2

)
+

1 − y

x
F2

(
x,Q2

))
, (2.6)

where α is the fine-structure constant and F1
(
x,Q2

)
and F2

(
x,Q2

)
are the structure functions.

The latter are parametrized in terms of the momentum transfer, Q2, and of x, which represents (at
leading-order) the fraction of proton longitudinal momentum carried by the massless struck quark.
The parameter y is the fractional energy lost by the electron in the scattering process in the frame
where the proton is initially at rest and mp is the mass of the proton.

The experimental data revealed two striking features of the structure functions. The first observation,
known as Bjorken scaling, was that both F1

(
x,Q2

)
and F2

(
x,Q2

)
are (almost) independent of Q2,

allowing the structure functions to be written as

F1
(
x,Q2

)
→ F1(x) and F2

(
x,Q2

)
→ F2(x) . (2.7)

The lack of Q2 dependence of the structure functions is strongly suggestive of scattering from point-
like constituents within the proton. This is equivalent to the onset of sin−4(θ/2) behavior for large
momentum transfers in the Rutherford experiment, which revealed the “point” charge of the nucleus
in the atom, where θ is the scattering angle of the incident α particle.
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2.2 Strong interactions

The second observation was that in the DIS regime, Q2 ∼ O(10) GeV2, the structure functions F1(x)
and F2(x) are not independent, but satisfy the Callan-Gross relation [104]

F2 = 2xF1 . (2.8)

This observation can be explained by assuming that the underlying process in electron–proton inelastic
scattering is the elastic scattering of electrons from point-like spin-half constituent particles within
the proton, namely the quarks.

The quarks inside the proton interact with each other through the exchange of gluons. The dynamics
of this interacting system result in a distribution of quark momenta within the proton. These
distributions are expressed in terms of parton distribution functions. The structure function F2 may
be written as

F2 =

Nq∑
i

e2
i x f i (x) , (2.9)

where e2
i and f i (x) are respectively the squared electric charge and momentum distribution of the ith

quark, and the sum goes over all quarks in the hadron (in total Nq quarks). The f i (x) functions are the
PDFs which can be interpreted (at leading order of perturbation theory) as the probability densities
of finding a quark with flavor i, carrying a fraction x of the proton longitudinal momentum.

Since f i (x) reflects a probability, the following relation is required:∫ 1

0
x

Nq∑
i

f i (x)dx = 1 . (2.10)

This relation is referred to as themomentum sum rule. However, in DIS measurements, the measured
integral of Eq. (2.10) comes up to be about 0.5. This was the first hint for the presence of gluons
within the proton, carrying about half of the momentum of the proton. Conventionally, partons
composing a hadron are divided between gluons, valence quarks and sea quarks. Valence quarks are
responsible for the quantum numbers of the hadron, while sea quarks are quark/anti-quark pairs that
are generated due to quantum fluctuations.

The interactions among the partons within the proton lead to a deviation from the naive parton model
in terms of scaling violations. The latter have been observed experimentally, as seen in Fig. 2.7,
where measurements at a given value of x are shown to depend on Q2. At high (low) values of x, the
proton structure function is observed to decrease (increase) with increasing Q2. This implies that at
high Q2 the proton is observed to have a greater fraction of low x quarks. Qualitatively, this could
be described as follows: at low Q2, the wavelength of the virtual photon is too long to resolve the
spatial sub-structure of the proton. At higher values of Q2, corresponding to shorter-wavelengths of
the virtual photon, it is possible to resolve finer detail. In this case, the DIS process is sensitive to
the effects of quarks radiating virtual gluons, q → qg, gluons radiating gluons, g → gg, and gluons
producing quark/anti-quark pairs g → qq̄. Consequently, more low-x quarks are “seen” in high-Q2

deep inelastic scattering.

The HERAPDF2.0 PDF parameterization, obtained using measurements of deep inelastic e±p scat-
tering at HERA [105], for gluons (xg), valence up (xuv) and down (xdv) quarks and sea (xS) quarks is
shown in Fig. 2.8. Because gluons with large momenta are suppressed by the gluon 1/Q2 propagator,
sea quarks and gluons tend to be produced at low x values, as seen in Fig. 2.8.
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Figure 2.7: The combined HERA data for the inclusive neutral current (NC) e±p reduced cross-sections
together with fixed-target measurements and the predictions of the HERAPDF2.0 NLO parameterization [105]
as a function ofmomentum transfer,Q2, at fixed values of Bjorken-x. The bands represent the total uncertainties
on the predictions. Dashed lines indicate extrapolation into kinematic regions not included in the fit. (Figure
taken from [105].)

The DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi) formalism [106–108] models the
q → qg, g → gg, and g → qq̄ interactions through splitting functions, and uses them to perturbatively
evolve the renormalised parton densities that contain the Q2 dependence. Hence, even though
currently it is not possible to calculate the proton PDFs from first principles within the theory of
QCD, the Q2 dependence of the PDFs is calculable. The implication of PDF evolution is that
measuring parton distributions at one scale, µ0, allows their prediction at any other scale, µ1, as long
as both µ0 and µ1 are large enough for both αS(µ0) and αS(µ1) to be small.

It should be noted that PDFs parameterize the longitudinal momentum distributions of the partons
in the proton, but offer no information about the transverse motion or spatial distribution of the
partons, which are integrated over. Recent years have seen a growing number of attempts to include
the momentum distribution in the plane perpendicular to the direction of motion [109–112]. A
number of experiments [17–27] study the nucleon partonic structure through the so-called Semi-
Inclusive Deep Inelastic Scattering processes (`N → `hX), in which one observes in the final state,
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Figure 2.8: The parton distribution functions for gluons (xg), valence up (xuv) and down (xdv) quarks and
sea (xS) quarks of the HERAPDF2.0 next-to-leading-order (NLO) parameterization [105] at a factorization
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f = 10 GeV2 (see Section 2.2.4 for definition), as a function of x. The gluon and sea distributions
are scaled down by a factor of 20. The experimental, model and parameterization uncertainties are shown.
(Figure taken from [105].)

in addition to the lepton, also one hadron, e.g. a pion. In this case, the hadron, which results from
the fragmentation of a scattered quark, “remembers” the original motion of the quark, including the
transverse motion, and offers new information. Such measurements, and in principle measurements
of MPI, may provide the option to expand the concept of PDFs to include correlations between the
partons in the transverse plane.

2.2.4 QCD factorization

Calculations in QCD are possible only in the high-energy regime, where perturbation theory applies.
However, high energy pp collisions involve processes occurring both at high and low energy scales.
The QCD factorisation theorem [113, 114] allows the separation of the two components in cross-
section calculations. Similarly to renormalization, the factorization procedure is used to absorb
singularities produced by massless partons into the (unobserved) bare PDFs. A new scale, µ2

F, called
the factorisation scale, is introduced in addition to the renormalization scale µ2

R and the momentum
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transfer, Q2. Both µ2
R and µ2

F are typically chosen to be of the order of Q2, however physical
cross-sections should not be affected by the choice of scales.

Using factorization, the cross-section for the process i j → X may be written as

dσi j→X

(
xi, x j,Q2

)
=

∑
i j

∫
dxidx j f i

(
xi, µ2

F

)
f j

(
x j, µ

2
F

)
× dσ̂i j→X

(
αS

(
µ2

R
)
,Q2/µ2

R
)
, (2.11)

where σi j→X and σ̂i j→X are the “full” hadronic and partonic cross-sections, respectively, for the
i j → X interaction. The σ̂i j→X partonic cross-section is calculable in perturbative QCD. The
functions f i

(
xi, µ2

F

)
and f j

(
x j, µ

2
F

)
are the PDFs for partons i and j, respectively, and µ2

F is the
factorization scale. The sum runs over the flavor of the partons in the proton. The factorization
theorem implies that the PDFs observed experimentally are universal and process independent. Once
they are derived from a particular measurement, they may be used in Eq. (2.11) for other processes.
Full cross-section calculations are therefore possible within the QCD framework.

2.3 Phenomenological models of pp collisions
Thus far, pp collisions were described only in the context of two quasi-free partons interacting. While
it is possible to calculate and give predictions for cross-sections involving the interaction between
two partons, final states of pp collisions at the LHC are more complex and include many particles
and non-perturbative effects. Monte Carlo techniques in event generators are most commonly used
to simulate the full picture of the collision in order to obtain predictions of experimental observables.
Event generators use phenomenological models to describe the low scale aspect of the collision. A
description of these models is given in the following sections.

2.3.1 Parton showers

The hard scattering is calculated in pQCD at a fixed order in αS. Usually leading-order (LO)
calculations are used, although in recent years many final states calculations were expanded to next-
to-leading-order (NLO). At leading-order, only 2→ 2 diagrams are included, such as the ones shown
in Fig. 2.9 for dijet production. The Alpgen event generator [115] (see Section 4.1.2) is able to
provide tree-level matrix elements for hard multi-parton processes (2→ n).

Once the hard scattering is simulated starting from the matrix element calculation that includes
the convolution with the PDF, subsequent radiation is simulated using a series of probabilities for
partons to split. This approach is called the parton shower approximation and it serves as approximate
higher-order corrections to the hard process. The parton shower algorithm is typically formulated as
an evolution in momentum transfer down from the high scales associated with the hard process to the
low scales, of order 1 GeV2, associated with confinement of the partons into hadrons. In each step
(scale), the probabilities Pqq̄ , Pgq , Pqg and Pgg corresponding to the collinear splittings g → qq̄,
g → gq, q → qg and g → gg, respectively, are estimated. These probabilities are governed by the
DGLAP splitting kernels [108] and they are dependent on the flavor and spin of the parton.

For each parton participating in the hard interaction, the probability to be accompanied by a collinear
splitting is used iteratively to generate one collinear splitting and then treating the final state of that
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Figure 2.9: Examples for leading-order Feynman diagrams for dijet production in proton–proton collisions at
the LHC, for (a) t-channel gluon scattering and (b) quark/anti-quark s-channel annihilation.

splitting as a new hard process, generating an even more collinear splitting from it, and so on. A
collinear emission is required to be “resolvable”, i.e., k⊥ > Q0, where k⊥ is the transverse momentum
of the emitted parton and Q0 is the cut-off scale. The latter is a parameter of the model which cuts
both collinear and soft divergences. In order to avoid the scale where αS ∼ 1, Q0 has to be above
ΛQCD and it therefore becomes a physical parameter affecting observable distributions.

Virtual (loop) corrections are treated together with emissions below Q0 (unresolvable) in the par-
ton shower algorithm. The probabilities for unresolvable emissions, also known as Sudakov form
factors [116], are derived from the splitting probabilities through unitarity. Wide angle soft gluon
emission effects are taken into account in the collinear parton shower algorithm by ordering the
emissions based on the angle.

Partons may radiate prior to the interaction and lose some of their momentum. This is referred to as
initial state radiation. Initial state radiation is treated within the parton shower algorithm in a similar
way to final state radiation, albeit with backward evolution (from low-x to high-x).

2.3.2 Matching the hard scatter with parton shower

Emissions in parton showers are limited from below in scale by Q0. However, a limit on the upper
scale is also necessary in order to avoid double counting. A QCD 2→ 2 scattering accompanied by
an emission from one of the external legs that is much harder than the hard scale gives the hard process
a strong recoil that boosts one or both of its outgoing partons to a significantly higher transverse
momentum. The outcome is a configuration that is indistinguishable from one that arises from a
harder process accompanied by a softer emission from one of its external legs. This can be avoided
by setting the upper limit of the parton shower evolution to the scale of the hard scattering. This
is referred to as matching between the matrix element and parton showers. A number of matching
algorithms were developed, such as the MLM matching scheme [117] and the CKKW merging
algorithm [118,119].
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2 Theoretical background

2.3.3 Hadronization

The hypothesis of local parton-hadron duality states that the momentum and quantum numbers of
hadrons follow those of their constituent partons [120]. The twomainmodels of hadronization in event
generators, the stringmodel and clustermodel, follow this hypothesis. The stringmodel [121] is based
on the qualitative description of hadronization given in Section 2.2.1. The cluster model [122, 123]
starts by splitting gluons non-perturbatively, g → qq̄ after the parton shower. Color-singlet qq̄
combinations have lower masses and a universal spectrum due to the so-called preconfinement
property [124] of the shower. These color-singlet combinations are assumed to form clusters, which
mostly undergo simple isotropic decay into pairs of hadrons, chosen according to the density of states
with appropriate quantum numbers. A schematic illustration of the string model and cluster model
is shown in Figs. 2.10(a) and 2.10(b), respectively.

(a) (b)

Figure 2.10: Schematic illustration of hadronization in the (a) string and in the (b) cluster models.

2.3.4 The underlying event

In order to perform measurements in pp collisions it is important to have a good understanding not
only of the short-distance hard scattering process, but also of the accompanying activity, collectively
referred to as the underlying event [125]. This includes partons not participating in the hard-scattering
process (beam remnants), and additional scatters in the same proton–proton collision, termedmultiple
parton interactions. Initial and final state gluon radiation also contribute to the UE activity.

The soft interactions contributing to the UE cannot be calculated reliably using pQCD methods
and are generally described using various phenomenological models in event generators. These
models rely extensively on MPI for the description of the UE. A detailed description of the MPI
model implemented in the Jimmy [126, 127] package for the Herwig event generator is given in
Section 4.1.2.

Underlying event models typically contain many parameters whose values and energy dependences
are not known a priori. Therefore, the model parameters must be tuned to experimental data to obtain
insight into the nature of soft QCD processes and to optimise the description of UE contributions for
studies of hard-process physics. Since it is impossible to unambiguously separate the UE from the
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2.4 Double parton scattering phenomenology

hard scattering process on an event-by-event basis, measurements of various distributions sensitive
to the properties of the UE are performed [128]. The parameters in event generators are then tuned
such that their predictions simultaneously describe as many of the distributions as possible.

An additional way to gain insight into the nature of the UE is to study hard MPI. The simplest and
most prominent case of hard MPI is that of hard double parton scattering. The latter refers to pp
collisions in which two hard interactions occur simultaneously, each resulting in high-pT particles.
An overview of the phenomenology of DPS is given in the next section.

2.4 Double parton scattering phenomenology
The DPS phenomenology is based on the general expression for the differential double parton
scattering cross-section in hadronic interactions at a center-of-mass energy

√
s, dσ̂DPS

(A,B)(s),

dσ̂DPS
(A,B)(s) =

1
1 + δAB

∑
i, j,k,l

∫
Γi j (x1, x2, r⊥; QA,QB) dσ̂(A)

ik
(x1, x ′1) dσ̂(B)

jl
(x2, x ′2)

× Γkl (x ′1, x ′2, r⊥; QA,QB) dx1dx2dx ′1dx ′2d2r⊥. (2.12)

The two final states produced in the two hard partonic subprocesses are denoted by A and B and
the subscript (A,B) refers to the production of both final states. The term dσ̂(A)

ik
(dσ̂(B)

jl
) denotes the

differential partonic cross-sections for the production of a system A (B) in the collision of partons
i and k ( j and l). The Γi j (x1, x2, r⊥; QA,QB) term represents the double parton distribution. It
may be loosely interpreted as the inclusive probability distribution function to find a parton i( j) with
longitudinal momentum fraction x1(x2) at scaleQA(QB) in the proton, with the two partons separated
by a transverse distance r⊥. The scale QA(QB) is given by the characteristic scale of subprocess A
(B). The quantity δAB is the Kronecker delta used to construct a symmetry factor such that if A = B,
the double parton scattering cross-section is divided by two. The integration over the momentum
fractions x1 and x2 is constrained by energy conservation, such that (x1 + x2 ≤ 1). Summation over
all possible parton combinations is performed. A sketch of double parton scattering in the four-jet
final state is shown in Fig. 2.11 for illustration.

The expression given in Eq. (2.12) is often simplified by making two assumptions. First, it is assumed
that the double parton distribution may be decomposed into a transverse and a longitudinal part,

Γi j (x1, x2, r⊥; QA,QB) ' F (r⊥)Di j (x1, x2; QA,QB).

The longitudinal component, Di j (x1, x2; QA,QB), has a rigorous interpretation in leading–order
pQCD as the double parton density function (dPDF). It quantifies the inclusive probability of finding
a parton i with momentum fraction x1 at scale QA in conjunction with a parton j with momentum
fraction x2 at scale QB in a proton. Predictions of double parton scattering cross-sections and of
event signatures require modelling of Di j (x1, x2; QA,QB) and of the transverse component, F (r⊥).
Correlations in both longitudinal momenta and transverse positions may have to be taken into account
in these functions.

Distribution of partons in the transverse region cannot be calculated using pQCD. Existing models
typically use Gaussian or exponential forms (or their combination) to describe F (r⊥) [129, 130].
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Figure 2.11: Sketch of a double parton scattering process in the four-jet final state, in which the active partons
originating from one proton are i and j and from the other are k and l. Each interaction results in two outgoing
partons (jets) such that i + k → jet 1 + jet 2 and j + l → jet 3 + jet 4.

Therefore the transverse component is effectively encoded through a phenomenological parameter
with the units of an area or a cross-section, σeff (s),

σeff (s) =
[∫

d2r⊥ (F (r⊥))2
]−1

.

In this formalism, σeff is a universal scaling parameter, independent of the exact partonic process and
the phase-space region considered, and rather a property of the colliding hadrons. Naively, it may be
related to the geometrical size of the proton or, more accurately, to the transverse size of the region
where hard interactions are localized. This leads to an estimate of σeff ≈ πR2

p ≈ 50 mb, where Rp is
the proton radius. Alternatively, σeff may be connected to the inelastic cross-section, which would
lead to σeff ≈ σinel ≈ 70 mb at

√
s = 7 TeV [131,132]. For hard interactions, assuming uncorrelated

scatterings, σeff can be estimated from the gluon form factor of the proton [133] and comes out to
be ∼30 mb. Connecting it, on the other hand, with the total or inelastic proton–proton cross-section
would render it dependent on the center-of-mass energy of the hadronic collisions.

Using the above, the DPS cross-section reduces to

dσ̂DPS
(A,B)(s) =

1
1 + δAB

1
σeff (s)

∑
i, j,k,l

∫
Di j (x1, x2; QA,QB) dσ̂(A)

ik
(x1, x ′1)

× dσ̂(B)
jl

(x2, x ′2) Dkl (x ′1, x ′2; QA,QB) dx1dx2dx ′1dx ′2. (2.13)

In the absence of a rigorous formalism, it is typically assumed that Di j (x1, x2; QA,QB) may be
written as a product of single parton distribution functions (PDFs),

Di j (x1, x2; QA,QB) ' Di (x1; QA)D j (x2; QB)(1 − x1 − x2)Θ(1 − x1 − x2). (2.14)
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In general, this factorization ansatz is not expected to hold because of energy, momentum and spin
conservation. It was also proved that even if such an ansatz works at some scale, the DGLAP
evolution equation for the dPDFs will break this simple relation [53, 59]. However, at sufficiently
low x values the corrections are assumed to be small, thus the equation above will provide a good
approximation. This is in accordance with some experimental results [74], which also suggest that
this factorization holds up to moderately low x.

Finally, using the assumptions above, the DPS cross-section can be expressed in the simple form

dσ̂DPS
(A,B) =

1
1 + δAB

dσ̂A · dσ̂B
σeff

, (2.15)

where the assumed dependence of σeff on s was dropped for simplicity.

As seen in Table 1.1, the measured values of σeff typically range from about 5 mb at the lowest
energy to about 20 mb at LHC energies. Although some of the LHCb results [79] indicate much
higher and much lower values, the origin of this spread is not yet understood. The difference
between the measured value of σeff and the phenomenological estimates indicates the existence
of correlation effects in the dPDFs of the proton. With the factorization ansatz of Eq. (2.14), the
unknown correlations are absorbed into σeff , which then may become dependant on the process. This
might explain the observed departure of the measured value of σeff from the simple expectations.

Further attempts to reconcile the difference between the expected value of σeff of 50-70 mb with
the measured value of 10-20 mb introduce non-trivial correlations [51, 53], in particular in the
impact parameter space [54]. One argument, suggested in Refs. [34, 58, 62, 63, 65] may resolve
the discrepancy; it goes as follows: in DPS, two partons from one proton collide with two partons
from the other proton. The two partons from a given proton can originate from the non-perturbative
hadron wave-function or, alternatively, emerge from perturbative splitting of a single parton from the
hadron. The former represents a double-(2→2) interaction, and the latter a (3→4) interaction. The
(3→4) process could provide an enhancement in the DPS cross-section by increasing the effective
local parton density, leading to σeff lower than expected.

In Monte Carlo (MC) generators, MPI, which of course also encompass double parton scattering, are
a fundamental part of the simulation of the UE. Within MPI models used in MC, the value of σeff
is closely related to the matter distribution in the proton. The parameters of MPI models are set by
tuning to UE measurements performed in data. Having fixed the parameters of a given MPI model,
an unambiguous prediction of σeff can be extracted. Values of σeff for different set of parameters
and models are typically in the range 20 to 40 mb, depending on the assumed F (r⊥), mostly above
the measured values.

In a recent study [134] it was shown that by including the average measured value of σeff as a
constraint in the tuning process of the parameters of the MPI model in the Herwig++ MC event
generator, it is possible to obtain a set of parameters that yields a good description of the UE
properties with σeff = 14.8 mb. Similarly, the CMS collaboration [135] performed a study in
which distributions sensitive to DPS contributions were included in the tuning of the Pythia UE
parameters. A set of parameters corresponding to a value of σeff ∼ 20 mb was obtained. It was
therefore concluded that it is possible to describe the DPS cross-section and underlying event final
states in theHerwig and PythiaMPImodels, without additional dynamics. The parameters obtained
in the fit correspond to a larger local parton density, as advocated by the proponents of the (3→4)
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process enhancing the DPS cross-section. This was further tested by reweighting events generated
with Pythia based on the kinematics of the MPI in the event to introduce the contribution expected
by the (3→4) process, obtaining simultaneously a good description of soft UE observables and hard
MPI observables [136].

2.4.1 Four-jet final state

The dominant mechanism for the production of events containing four high-pT jets at the LHC in
leading order is double gluon bremsstrahlung. This process is described quantitatively by pQCD. A
few Feynman diagrams depicting such events are shown in Fig. 2.12. The topology is characterized

gg −→ gggg gg −→ gggg gq −→ gqgg gg −→ ggqq̄
Figure 2.12: Four of the Feynman diagrams which contribute to the leading-order matrix element expression
for the double gluon bremsstrahlung process.

by two partons in the initial state and four in the final state, denoted as (2→ 4). Alternatively, the
final state of four high-pT jets could also be produced through the DPS mechanism involving two
pairs of parton-parton interactions, each leading to two jets, in the same proton–proton collision. The
process of DPS is denoted in the following as (2→2)×2.

The two pairs of parton-parton interactions in (2→2)×2 events would produce two pairs of jets that,
in first approximation, balance each other. On the other hand, the extra partons in (2→4) interactions
originate from radiation and would not, in most cases, result in two pairs of balanced jets. On an
event-by-event basis, it is impossible to determine whether a (2→4) or a (2→2)×2 interaction took
place. However, the topological features of the jets may help establish the frequency of the two
processes. In this analysis, these topological features are exploited in order to estimate the rate of
DPS in the data.

The topology of the four jets originating from the (3→ 4) interaction is expected to be slightly
different from the topology in the (2→ 2)×2 process. In particular, since one of the two pairs of
interacting partons emerges from a perturbative splitting, the two partons are expected to have high
transverse momentum. The high transverse momentum would cause each of the two dijet systems to
be boosted and therefore less balanced. However, with the typical jet energy resolution, for jets with
pT ∼ 20 GeV, the expected difference in topologies is hard to observe. Therefore, in this analysis, no
attempt is made to differentiate between the two processes.
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2.4 Double parton scattering phenomenology

2.4.1.1 The effective cross-section in the four-jet final state

After integrating the differential cross-sections in Eq. (2.15) over the phase-space defined by the
selection cuts of the A and B final states, the expression for the DPS cross-section in the four-jet final
state may be re-written as

σDPS =
1

1 + δAB

σA
2 jσ

B
2 j

σeff
, (2.16)

where σA
2 j (σ

B
2 j ) is the measured cross-section for dijet events in the phase-space region labeled A

(B). The double parton scattering cross-section may be expressed as

σDPS = fDPS · σ4 j , (2.17)

where σ4 j is the measured cross-section for four-jet events in the phase-space A + B. The term
fDPS is the fraction of DPS events in the four-jet final state. Combining Eqs. (2.16) and (2.17), the
expression for σeff in the four-jet final state becomes,

σeff =
1

1 + δAB
1

fDPS

σA
2 jσ

B
2 j

σ4 j
, (2.18)

2.4.1.2 Cross-section definition

The dijet and four-jet final states may be defined inclusively or exclusively. That is, exclusive
selection of n-jet events would accept only events with exactly n jets in the event. For the purpose
of differentiating DPS from SPS in various final states, the exclusive states are easier to handle.
However, it was pointed out in Refs. [137, 138] that an exclusive selection leads to a σeff that is
process-dependent. In the following, when discussing a four-jet (dijet) event selection, the selection
cuts require at least four jets (two jets) in the event. No restrictions are applied on additional jets in the
events. However, when measuring the cross-section of four-jet (dijet) events, the leading (highest-pT)
four (two) jets in the event are considered, rather than all different combinations of four jets (dijets).
This definition of the cross-section is referred to as an “inclusive” cross-section in the following.
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CHAPTER3
Experimental setup
3.1 The Large Hadron Collider

The Large Hadron Collider is a proton–proton collider located at the Franco-Swiss border near
Geneva, Switzerland. It lies in a tunnel 27 km in circumference at an average depth of a 100 meters.
The tunnel houses 1232 superconducting bending dipole magnets, cooled using liquid helium to an
operating temperature of 1.9 K, producing a magnetic field of about 8 T. The use of dipole magnets
allows to keep protons traveling clockwise and counter-clockwise on orbit at the same time. In
total, 392 quadrupole magnets are used to keep the beams focused and to collide them at the four
interaction points (IP) of the LHC experiments. The design center-of-mass energy of the LHC is
√

s = 14 TeV.

Protons are produced by ionizing hydrogen atoms in an electric field. They are injected into
RF cavities and accelerated to 750 keV. The beam is then transmitted to the LINAC 2, a linear
accelerator, which increases the energy to 50 MeV. The protons are accelerated to 1.4 GeV by the
Proton Synchrotron Booster and then further to 26 GeV by the Proton Synchrotron. Next, the Super
Proton Synchrotron accelerates the protons to 450 GeV, the minimum energy required to maintain a
stable beam in the LHC. Finally, the LHC accelerates them to the operating energy.

During the first two years of operation (2010-2011), the LHC operated at
√

s = 7 TeV, with
3.5 TeV per proton beam, delivering 5.51 fb−1 total integrated luminosity with a peak luminos-
ity of 3.65 × 1033 cm−2s−1 [139]. During 2012, the LHC operated at

√
s = 8 TeV, with 4

TeV per proton beam, delivering 22.8 fb−1 total integrated luminosity with a peak luminosity of
7.73 × 1033 cm−2s−1 [139]. In June of 2015 the LHC started Run-2 after a two-year shutdown for
maintenance and upgrades. Currently the LHC is operating at

√
s = 13 TeV, with with 6.5 TeV per

proton beam.

At the design luminosity of 1034 cm−2s−1, the beam will consist of 2808 bunches of 1011 protons
each, 25 ns apart. The dataset used in this measurement was collected during 2010, where the number
of bunches increased gradually throughout the data taking period from 50 to 368, with a minimum
separation of 150 ns between bunches. A total of 48.1 pb−1 integrated luminosity was delivered in
2010, with a peak luminosity of 2.1 × 1032 cm−2s−1 [139].

3.2 The ATLAS Detector

The ATLAS (A Toroidal Lhc ApparatuS) detector [140] at the LHC covers nearly the entire solid
angle around the collision point. It consists of an inner tracking detector surrounded by a thin
superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer
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incorporating three large superconducting toroid magnets. The inner-detector system (ID) is im-
mersed in a 2 T axial magnetic field and provides charged particle tracking in the range |η | < 2.51.
Figure 3.1(a) shows a schematic view of the ATLAS detector and its sub-systems.

The inner detector
The high-granularity silicon pixel detector (Pixel) covers the vertex region and typically provides
three measurements per track, the first hit being normally in the innermost layer. It is followed by the
silicon microstrip tracker (SCT) which usually provides four two-dimensional measurement points
per track. These silicon detectors are complemented by the transition radiation tracker (TRT), which
enables radially extended track reconstruction up to |η | = 2.0. The TRT also provides electron
identification information based on the fraction of hits (typically 30 in total) above a higher energy
deposit threshold corresponding to transition radiation.

The calorimeter
The ATLAS calorimeter, shown schematically in Fig. 3.1(b), is the principal tool used in the analysis.
The calorimeter system covers the pseudo-rapidity range |η | < 4.9. Within the region |η | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon
(LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering |η | < 1.8, to
correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided
by the steel/scintillating-tile calorimeter, segmented into three barrel structures within |η | < 1.7, and
two copper/LAr hadronic endcap calorimeters (HEC). The solid angle coverage is completed with
forward copper/LAr and tungsten/LAr calorimeter modules (FCal) optimized for electromagnetic
and hadronic measurements, respectively.

The muon spectrometer
The muon spectrometer comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by superconducting air-core toroids. The
precision chamber system covers the region |η | < 2.7 with three layers of monitored drift tubes,
complemented by cathode strip chambers in the forward region, where the background is highest.
The muon trigger system covers the range |η | < 2.4 with resistive plate chambers in the barrel, and
thin gap chambers in the endcap regions.

The trigger system
A three-level trigger system is used to select interesting events [141]. The Level-1 trigger is imple-
mented in hardware and uses a subset of detector information to reduce the event rate to a design
value of at most 75 kHz. This is followed by two software-based trigger levels which together reduce

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis
points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the
z-axis. The pseudo-rapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured
in units of ∆R ≡

√
(∆η)2 + (∆φ)2. When dealing with massive jets and particles, the rapidity y = 1

2 ln
(
E+pz

E−pz

)
is used,

where E is the jet energy and pz is the z-component of the jet momentum.
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(a)

(b)

Figure 3.1: Schematic view of the (a) ATLAS detector and of the (b) ATLAS calorimeter system.
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the event rate to about 200Hz. An additional trigger system used in ATLAS relies on the minimum-
bias trigger scintillators. The various triggers used in the analysis are described in further detail in
Section 3.10.

3.3 Luminosity
The accurate measurement of the delivered luminosity is a key component of the ATLAS physics pro-
gram. For cross-section measurements of SM processes the uncertainty on the delivered luminosity
is often one of the dominant systematic uncertainties. The instantaneous luminosity of proton–proton
collisions can be calculated as

L =
Rinel
σinel

, (3.1)

where Rinel is the rate of inelastic proton–proton interactions and σinel is the inelastic cross-section.
Any detector sensitive to inelastic proton–proton interactions can be used as a source for relative lu-
minosity measurement and several ATLAS devices are utilized for this purpose, as described in [142].
However, these detectors must be calibrated using an absolute measurement of the luminosity.

The recorded luminosity can be written as

L =
µvisnb f rev
σvis

, (3.2)

where µvis is the visible number of interactions per bunch crossing in the detector, nb is the number
of bunch pairs colliding in ATLAS, f rev is the LHC revolution frequency (11245.5 Hz) and σvis is
the visible cross-section, to be determined via calibration for each detector.

The calibration is done using dedicated beam separation scans, also known as “van der Meer”
scans [143], where the two beams are stepped through each other in the horizontal and vertical planes
to measure their overlap function. The delivered luminosity is measured using beam parameters

L =
nb f revn1n2
2πΣxΣy

, (3.3)

where n1 and n2 are the number of protons per bunch in beam 1 and beam 2, respectively, forming the
bunch charge product, and Σx and Σy characterize the horizontal and vertical profiles of the colliding
beams.

By comparing the delivered luminosity to the peak interaction rate µMax
vis observed by a given detector

during the van der Meer scan, σvis is determined as

σvis = µ
Max
vis

2πΣxΣy
n1n2

. (3.4)

Two primary detectors were used to make bunch-by-bunch luminosity measurements during the
2010 running period: LUCID and BCM. The LUCID detector is a Cerenkov detector specifically
designed for measuring the luminosity in ATLAS. Sixteen mechanically polished aluminum tubes
filled with C4F10 gas surround the beampipe on each side of the IP at a distance of 17 m, covering
the pseudo-rapidity range 5.6 < |η | < 6.0.
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The beam conditions monitor (BCM) consists of four small diamond sensors on each side of the
ATLAS IP arranged around the beam-pipe in a cross pattern. The BCM is a fast device primarily
designed to monitor background levels and issue a beam-abort request in case beam losses start to
risk damage to ATLAS detectors.

In total, (37.3 ± 1.3) pb−1 of data taken during 2010 are used in this analysis. The systematic
uncertainty on the integrated luminosity for 2010 proton–proton data is 3.5% [144].

3.4 Jet algorithms
As mentioned, quarks and gluons manifest themselves as groups of collimated particles in the final
state called jets. The reconstruction of a jet requires a procedure that associates particles or energy
deposits to a single jet (jet algorithm) and a recombination scheme that specifies how to combine
the four-momenta of the jet constituents. Since partons are not physically observable objects, there
is no unique jet definition. However, because measurements are performed at the hadron-level and
theoretical expectations at the parton-level, a precise definition of jets is required.

The “Snowmass Accord” [145] was the first attempt to standardize jet definitions across different
experiments and between theory and experiment. It defined the following properties a jet definition
must satisfy:

⇒ infrared safety - in order to calculate cross-sections in perturbation theory, the jet definition
must be insensitive to the presence of infinitely soft gluons. The presence or absence of
additional soft particles between two particles belonging to the same jet should not affect the
recombination of these two particles into a jet. Generally, any soft particles not coming from
the fragmentation of a hard scattered parton should not affect the number of produced jets;

⇒ collinear safety - a jet should be reconstructed independently whether the transverse momen-
tum is carried by one particle or if that particle is split into two collinear particles;

⇒ order independence - the algorithm should be applicable at parton- hadron- or detector-level,
and lead to the same origin of the jet.

An illustration of infrared and collinear sensitivity in jet-finding is given in Fig. 3.2.

The Snowmass Accord defined a jet as a direction that maximizes the amount of transverse energy
flowing through a cone centered on its direction. First implementations of this definition often
included a “seed” particle in order to shorten computation time and a split/merge stage in order to
deal with overlapping jets. However, it was found that the precise definition of the seeds makes the
merging/splitting step infrared-unsafe.

Other jet algorithms have been proposed over the years such as sequential recombination algorithms
(cluster algorithms), which are based on event shape analysis [146]. These algorithms are based upon
pair-wise clustering of the input constituents and define a distance measure between constituents, as
well as some condition upon which clustering into a jet should be terminated.

The most common clustering algorithms are the anti-kt [147], kt [148] and Cambridge/Aachen [149,
150] algorithms. The algorithms begin by calculating the distance di j between constituents i and j,
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No gluon radiation:
two separate jets

With gluon radiation:
One jet

(a)

With collinear splitting:
No jet (under threshold)

Without collinear splitting:
One jet (over threshold)

Energy threshold

(b)

Figure 3.2: An illustration of (a) infrared and (b) collinear sensitivity in jet reconstruction.

as well as the distance diB between constituent i and the beam (B). These distances, calculated for
all sets of constituents 〈i, j〉, are defined as

diB = k2p
T, i , (3.5)

di j = min(k2p
T, i, k2p

T, j )
(∆R)2

i j

R2 , (3.6)

where
(∆R)2

i j = (yi − y j )2 + (φi − φ j )2 .

The variables R and p are constants of the algorithm and kT, i , yi and φi are respectively the transverse
momentum, the rapidity and the azimuth of the ith constituent.

For each constituent i, the minimal distance (min di j ) is found and compared to diB. If
(min di j ) < diB, the constituents i and j are combined and the distances are re-calculated. In
case diB < (min di j ), constituent i is removed from the list of constituents and is classified as a jet.
This process is repeated until all of the constituents are clustered into jets. The final four-momentum
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of the jet is obtained from summing the four-momenta of its constituents in the four-vector recom-
bination scheme [146]. This scheme conserves energy and momentum, and allows a meaningful
definition for the jet mass.

The variable R sets the resolution at which jets are resolved from each other and the beam. The type
of clustering algorithm is defined by the p variable, where a choice of p = 1 results in kt jets, the
special case in which p = 0 produces Cambridge/Aachen jets and p = −1 leads to anti-kt jets.

In the analysis presented here, the anti-kt jet algorithm, implemented in the FastJet package [151],
is used to cluster jets with a distance parameter R = 0.6. The anti-kt algorithm has the advantage of
producing fairly circular jets while still being collinear and infrared safe. A pseudo-event display of
a dijet event is shown in Fig. 3.3, demonstrating two circular jets with pT ∼ 20 GeV reconstructed
using the anti-kt algorithm.
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T

 Particle jet (p
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Figure 3.3: Pseudo event display of the distribution of the two highest-pT particle jets in the event (filled
areas, see definition in Section 3.5) and their constituents (black stars) in the φ − y plane, where φ is the jet
azimuthal angle and y its rapidity. Each jet area color corresponds to the jet transverse momentum (pT) and
the jet pT, in GeV, y and φ are displayed next to it.
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3.5 Inputs to jet reconstruction
Two jet collections are used in the measurement, calorimeter jets and particle jets, termed based on
the input used in the jet algorithm.

Calorimeter jets
At the detector level, the input objects to the jet algorithm are three-dimensional topological calorime-
ter clusters (topo-clusters) [152, 153] built from calorimeter cells. Each topo-cluster is built from a
seed cell, whose signal-to-noise (S/N) ratio is above a threshold of S/N = 4. Cells adjacent to the
seed (or the cluster being formed) that have a S/N ≥ 2 are added to the topo-cluster iteratively until
no more neighboring cells with S/N ≥ 2 are found. Finally, all calorimeter cells adjacent to the
formed topo-cluster are added, regardless of their S/N .

The topo-cluster algorithm also includes a splitting step in order to optimize the separation of showers
from different close-by particles. All cells in a topo-cluster are searched for local maxima in terms
of energy content with a threshold of 500 MeV. This means that the selected calorimeter cell has
to be more energetic than any of its neighbors. The local maxima are then used as seeds for a new
iteration of topological clustering, which splits the original cluster into smaller topo-clusters.

When used as input to the jet reconstruction, only topo-clusters with a positive energy are used and
each topo-cluster is considered as a massless particle with energy equal to the sum of energies of all
the included calorimeter cells and a direction calculated from the weighted averages of the pseudo-
rapidities and azimuthal angles of its constituent cells. The weight used in the average is the absolute
cell energy and the direction is relative to the nominal ATLAS coordinate system. This clustering
algorithm is designed to suppress calorimeter noise and to follow the shower development in the
calorimeter. Calorimeter jets are built from cells calibrated at the electromagnetic (EM) scale2.

Particle jets
Jets from Monte Carlo simulations are referred to as particle jets. These jets are built from particles
with a lifetime longer than 10 ps in the Monte Carlo event record, excluding muons and neutrinos.
Particle jets are not passed through the simulation of the ATLAS detector. The definition of a particle
jet requires that the transverse momentum of the anti-kt jet is at least 10 GeV. The variables pertaining
to the particle jets are subsequently denoted by the subscript truth.

3.6 Jet energy calibration
The jet energy calibration relates the jet energy measured with the ATLAS calorimeter to the true
energy of the corresponding jet of stable particles entering the detector. Four calibration steps are
applied to the jets, as detailed below. A full description of the jet energy calibration is given in
Ref. [154].
2 The electromagnetic scale is the basic calorimeter signal scale for the ATLAS calorimeters. It has been established
using test-beam measurements for electrons and muons to give the correct response for the energy deposited by
electromagnetic showers, while it does not correct for the lower hadron response.
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3.6.1 Pile-up correction

Jets calibrated at the EM scale are affected by additional energy due to multiple proton–proton
interactions within the same bunch crossing (pile-up). An average correction is applied on the
reconstructed jets in order to subtract this additional energy. The correction is derived fromminimum
bias data, where the average additional transverse energy, ET, per calorimeter tower is measured as a
function of η, the number of reconstructed primary vertices, NPV, and bunch spacing. The effect of
additional proton–proton interactions from different bunch crossings that can be caused by trains of
consecutive bunches (out-of-time pile-up) was found to be small in the 2010 dataset [154]. Events
with more than one primary vertex are rejected (see Chapter 5). Hence, the pile-up correction applied
to jets in this study arises only from out-of-time pile-up and is therefore minimal. Further details on
the pile-up correction are given in Ref. [154].

3.6.2 Jet origin correction

The geometrical center of the ATLAS detector is used as a reference to calculate the direction of
the topo-clusters utilized in the jet reconstruction. Once the primary vertex, defined as the vertex
with the highest

∑
ptrack

T (see Chapter 5), is selected, the four-momentum of each topo-cluster is
re-calculated using this vertex and the jet four-momentum is then re-defined as the four-vector sum
of the topo-clusters. This correction depends mainly on the z position of the primary vertex. It
improves the angular resolution and results in a small improvement (< 1%) in the jet pT response,
R

pT
EM, defined as

R
pT
EM = pEM

T /ptruth
T , (3.7)

where pEM
T is the jet pT at the EM scale and ptruth

T is the pT of the particle jet matched to it.

3.6.3 Jet energy scale

The final stage of the jet calibration is the EM+JES calibration. This calibration corrects for the
following detector effects that affect the jet energy measurement:

- calorimeter non-compensation - the response of the calorimeter is different for particles of
the same energy producing electromagnetic or hadronic showers;

- inactive material - energy losses in inactive regions of the detector;

- leakage - showers not fully contained in the depth of the calorimeters;

- out of cone - energy deposits of the particle jet which are missed in the reconstructed jet;

- reconstruction efficiency - signal loss in calorimeter clustering and jet reconstruction due to
cell noise thresholds.

The calibration function, F calib
EM , is dependent on the measured energy and jet position and is applied

as follows:
Ecalib = Edet

EM × F
calib

EM

(
Edet

EM, η
)
. (3.8)
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Here Edet
EM is the calorimeter energy measured at the EM scale and Ecalib is the hadron-level calibrated

jet energy. The calibration function F calib
EM was derived from Monte Carlo simulated events using the

detector-level jet energy response,
REM = Edet

EM/Etruth . (3.9)

The variable Etruth is the energy of the particle jet matched to the detector-level jet. The calibration
function was derived by fitting the response distribution as a function of jet energy in bins of pseudo-
rapidity. The final jet energy scale that relates the measured calorimeter jet energy to the true jet
energy was then calculated as the inverse of the fitted function.

3.6.4 Jet pseudo-rapidity correction

In poorly instrumented regions of the detector, a bias in the reconstructed η of jets is observed. In
these regions, topo-clusters are reconstructed with a lower energy with respect to better instrumented
regions (see Fig. 10 in [154]). This causes the jet direction to be biased towards the better
instrumented calorimeter regions. An η-dependent correction is applied to jets in order to correct for
this bias.

The η-correction is derived as the average difference between the η of the origin-corrected recon-
structed jets and their matched particle jets. It is parameterized as a function of the jet energy and
pseudo-rapidity and is very small (∆η = ηtruth − ηorigin < 0.01) for most regions of the calorimeter.
In the HEC-FCal transition regions this correction is up to seven times larger (∆η = 0.07 for low pT
jets).

3.7 Jet quality selection

Jets with high pT (pT ≥ 20 GeV) produced in pp collisions must be distinguished from background
jets not originating from hard scattering events. The main sources of background are,

- large calorimeter noise;

- beam-gas events, where one proton of the beam collides with the residual gas within the beam
pipe;

- beam-halo events, e.g., caused by interactions in the tertiary collimators in the beam-line far
away from the ATLAS detector;

- cosmic ray muons overlapping in-time with collision events.

These backgrounds are divided into two categories, calorimeter noise and non-collision interac-
tions.
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Calorimeter noise
Two types of calorimeter noise are addressed, sporadic noise bursts and coherent noise. Sporadic
noise bursts in the HEC commonly result in a single noisy calorimeter cell, which contributes almost
all of the energy of a jet. Such jets are therefore rejected if they have high HEC energy fractions.
The signal shape quality, may also be used for rejection, being a measure of the pulse shape of a
calorimeter cell compared to nominal conditions. Due to the capacitive coupling between channels,
neighboring calorimeter cells around the noise burst have an apparent negative energy, denoted by
Eneg. A high value of Eneg is therefore used to distinguish jets which originate in noise bursts. On
rare occasions, coherent noise in the electromagnetic calorimeter develops. Fake jets arising from
this background are characterized by a large EM energy fraction, fEM, which is the ratio of the energy
deposited in the EM calorimeter to the total energy. Similar to the case of noise bursts in the HEC, a
large fraction of calorimeter cells exhibit a poor signal shape quality.

Non-collision backgrounds
Cosmic rays or non-collision interactions are likely to induce events where jet candidates are not
in-time with the beam collision. A cut on the jet-time may therefore be applied to reject such jets.
Jet-time is reconstructed from the energy deposition in the calorimeter by weighting the reconstructed
time of calorimeter cells forming the jet with the square of the cell energy. The calorimeter time
is defined with respect to the event time recorded by the trigger. A cut on fEM is applied to make
sure that jets have some energy deposited in the calorimeter layer closest to the interaction region,
as expected for a jet originating from the nominal interaction point. Since real jets are expected to
have tracks, the fEM cut may be applied together with a cut on the scalar sum of the pT of the tracks
associated with the jet, divided by the jet pT. A cut on the maximum energy fraction in any single
calorimeter layer is applied to further reject non-collision background.

3.7.1 Jet reconstruction efficiency

A quality criterion is applied to jets, denoted as Medium selection, incorporating the requirements on
the conditions defined above. The exact conditions are specified in detail in Ref. [154]. The quality
selection introduces inefficiencies to the jet reconstruction which is corrected for on a jet-by-jet basis.
For jet pT > 60 GeV, the reconstruction efficiency is above 99% across all rapidities. For lower
jet pT, the reconstruction efficiencies range between 96-98% within |y | < 2.1 and above 99% at
|y | ≥ 2.1.

The uncertainty on the jet reconstruction efficiency is evaluated using track jets which are used to
portray “truth jets” [155]. Track jets are built by applying the anti-kt algorithm to the reconstructed
tracks in an event [156]. The efficiency to reconstruct a calorimeter jet given a track jet nearby is
studied in both data andMC in the region covered by the tracking detector, |y | < 2.1. The comparison
of the measured efficiencies in data and in MC is used to infer the degree to which the calorimeter jet
reconstruction efficiency may be mis-modeled in the MC. The disagreement was found to be 2% for
calorimeter jets with pT of 20 GeV and less than 1% for those with pT > 30 GeV. This disagreement
for jets with |y | < 2.1 is taken as a systematic uncertainty for all jets in the rapidity range |y | ≤ 4.4.
This is expected to be a conservative estimate in the forward region where the jets have higher energy
for a given pT.
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3.8 Jet calibration uncertainties
The systematic uncertainty associated with the jet energy scale (JES) is one of the dominant sources
of uncertainties. The sources for the JES uncertainty have been evaluated in part using pp collision
data and in part using systematic variations ofMC simulations. The sources of uncertainty considered
in this measurement are the following (values for jets with 20 ≤ pT < 30 GeV and 0.3 ≤ |η | < 0.8
are given in parenthesis):

- single hadron response - uncertainty associated with the response of a single particle entering
the calorimeter (1.8%). Discrepancies may arise due to the limited knowledge of the exact
detector geometry; due to the presence of additional inactive material; and due to the modelling
of the exact way particles interact in the detector;

- cluster thresholds - uncertainty associated with the thresholds for reconstructing topo-clusters
(2.0%). The clustering algorithm is based on the signal-to-noise ratio of calorimeter cells.
Discrepancies between the simulated noise and the real noise, or changes in time of the noise
in data, can lead to differences in the cluster shapes and to the presence of fake topo-clusters;

- Perugia 2010 and Alpgen+Herwig+Jimmy - uncertainty associated with the modelling of
fragmentation and the underlying event, or with other choices in the event modelling of the
MC generator (2.1%). The response predicted by the nominal Pythia generator are compared
to the Pythia Perugia 2010 tune and to Alpgen, coupled to Herwig and Jimmy;

- intercalibration - uncertainty associated with the calorimeter response for forward jets
(|η | ≥ 0.8), obtained using the dijet balance in-situ technique (3.5% for jets with 20 ≤ pT < 30
GeV and 2.1 ≤ |η | < 2.8);

- relative non-closure - uncertainty associated with the non-closure of the energy of jets in MC
following the JES calibration (1.9%).

The total uncertainty for jets calibrated using the EM+JES calibration described above is roughly 2%
for jets with 40 ≤ pT < 2000 GeV in the central region of the detector, increasing up to roughly 4%
for jets with lower or higher pT. A full description of the jet calibration uncertainty can be found in
Ref. [154].

3.9 Dataset
The measurement presented here utilizes the full ATLAS 2010 data sample from proton–proton
collisions at

√
s = 7 TeV, with a few exceptions. For the low-pT region (events where the highest-pT

jet has 20 ≤ pT < 60 GeV), only data runs taken up to the beginning of June are considered. In that
period the instantaneous luminosity of the accelerator was low enough that pile-up contributions were
negligible and the majority of the bandwidth was allocated to the Minimum Bias trigger (MBTS)
that is used to collect low-pT events. The first data taking period was not used for forward jets (jets
in the η region |η | > 2.8), since the forward jet trigger was not yet commissioned.

For all data events considered in the following, good operation status was required for the first-level
trigger, solenoid magnet, inner detectors (Pixel, SCT, and TRT), calorimeters (barrel, endcap, and
forward), luminosity, as well as tracking, jet, and missing energy reconstruction performance. In
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addition, stable operation was required for the high-level trigger during the periods when it was used
for event rejection.

3.10 Trigger
Three different triggers are used for the measurement: the MBTS, the central (|η | < 3.2) and the
forward jet triggers (3.1 < |η | < 4.9).

The MBTS (denoted by L1_MBTS_1 at Level 1 and by EF_MBTS for the Event Filter) requires
at least one hit in the minimum bias scintillators located in front of the endcap cryostats, covering
2.08 < |η | < 3.75, and is the primary trigger used to select minimum-bias events in ATLAS. It has
been demonstrated [157] to have negligible inefficiency for the events of interest for this analysis and
is used to select events with low-pT jets.

The central and forward jet triggers independently select data using several jet transverse energy
thresholds, each requiring the presence of a jet with sufficient transverse energy at the EM scale,
EEM

T . The jet triggers are composed of three consecutive levels; Level 1 (L1), Level 2 (L2) and Event
Filter (EF). For each L1 threshold, there is a corresponding L2 threshold that is generally set 15 GeV
above the L1 threshold3. Each such L1+L2 combination is referred to as a L2 trigger chain. The
jet trigger names follow a convention such that the names begin with the trigger-level, followed by a
“regional” identifier and end with a number. Two regional identifiers are used, the letter J denotes
central triggers and the combination FJ denotes forward triggers. The number stands for the trigger
threshold, e.g. L1_J5 is a Level 1 central trigger with a threshold, EEM

T > 5 GeV.

In 2010, only L1 information was used to select events in the first 3 pb−1 of data taken, while both
the L1 and L2 stages were used for the rest of the data sample. The jet trigger did not reject events
at the EF stage in 2010, so the L2 and EF trigger-levels were equivalent. In the early part of Period
A, before run 152777, a mis-timing in the L1 central jet trigger hardware caused large inefficiencies,
so all jets before this run are triggered using L1_MBTS_1. A limited number of runs from period E
(sub-periods E1-E4) are excluded, due to a problem with the configuration of the trigger. The
trigger strategy used in this analysis is equivalent to the trigger strategy developed and used in the
measurement of the dijet cross-section using 2010 data [155]4.

3.10.1 Trigger efficiency

The per-jet trigger efficiency is determined from the probability that a single jet passes a given trigger
threshold, regardless of what the other jets in the event do. In order to determine the efficiency of
the jet triggers, the off-line reconstructed jets are matched to central or forward trigger jets based
on the rapidity of the reconstructed jet. However, in the transition region, 2.8 < |η | < 3.6, there is
an ambiguity whether to associate a reconstructed jet to a central or to a forward trigger object. In
this region, central L1 trigger objects may be reconstructed as forward jets, and vice versa. Since
the rapidity resolution of trigger objects is insufficient to unambiguously assign a reconstructed jet

3 The exception is the lowest threshold, for which the difference between L1 and L2 is 10 GeV.
4 It was tested by repeating the measurement of the dijet cross-section, as described in [158].
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to a central or forward trigger jet, the reconstructed jet are matched to a trigger object by the shortest
distance,

∆R =

√(
φtrig − φjet

)2
+

(
ηtrig − ηjet

)2
, (3.10)

using the pseudo-rapidity and azimuth of the trigger object, ηtrig and φtrig, and of the reconstructed
jet, ηjet and φjet. When available, the matching is performed between reconstructed jets and L2
objects. Since L2 objects are seeded by L1 trigger jets, the matching to a L2 trigger jet provides a
direct association of the reconstructed jet to central or forward L1 trigger jet.

When the L2 trigger was not available and matching to L1 trigger jets in FCal was necessary, the ∆R
matching (see Eq. (3.10)) was not possible because no η information was available for forward L1
jet triggers. In that case, a different matching scheme was used, by utilizing the distance ∆φ between
the reconstructed jet and L1 trigger jet. A detailed explanation of this matching procedure is given
in Section 6.2.2 of [159].

Figures 3.4 and 3.5 show the efficiencies for L1 and L2 trigger chains with various thresholds as a
function of the reconstructed jet pT for anti-kt jets with R = 0.6. The efficiency curves are shown
for various regions of the detector. The first region is the central region, |y | < 2.8, where the central
trigger system is used (Figs. 3.4(a) and 3.4(b)). In can be seen that the per-jet L1 and L2 trigger
efficiencies are fully efficient in this region. The second is the crack region between the barrel and
endcap calorimeters, 1.3 ≤ |y | < 1.6 (Figs. 3.4(c) and 3.4(d)); there, the per-jet L1 and L2 trigger
efficiencies are never fully efficient due to calorimeter inhomogeneities. The third is the transition
region between the central and the forward trigger systems, 2.8 ≤ |y | < 3.6 (Figs. 3.5(a) and 3.5(b));
in this region, trigger selection is performed by matching jets to either the central or the forward
triggers, as described above, and the trigger efficiencies are above 97%. The fourth is the forward
region, 3.6 ≤ |y | ≤ 4.4, where the forward jet trigger is used (Figs. 3.5(c) and 3.5(d)); due to an
inactive FCal trigger tower that spans a width of ∆φ = π/4 in the y region |y | ≥ 3.1, the forward jet
triggers are not fully efficient in this region.

As the instantaneous luminosity increased throughout data-taking, it was necessary to prescale
triggers with lower ET thresholds. For each bin of jet-pT considered, a dedicated trigger threshold is
chosen such that the efficiency is as close as possible to 100% and the prescale is as small as possible.
Table 3.1 presents the various triggers used in the analysis as a function of jet pT and y, for different
periods of data taken throughout 2010. The corresponding per-jet trigger efficiencies are shown in
Table 3.2, where the efficiencies in the “crack” region are given in place of the efficiencies integrated
over the entire central region. The uncertainty on the per-jet trigger efficiency ranges between 1 and
2%, depending on the trigger region and threshold, and is propagated as a systematic uncertainty.

3.10.2 Luminosity calculation using a two-trigger selection scheme
In order to maximize the amount of accepted events collected by the trigger, a two-trigger strategy
is used, following the prescription employed in Ref. [155]. An event is accepted if at least one of the
two leading jets can be matched in pT and y to a triggering jet. The event is then assigned to one of
two luminosity classes, Ljet

single or L
jet
double. The former, a single-trigger luminosity class, is for events

where the two jets are assigned to the same trigger. The latter, a double-trigger luminosity class, is
for events in which each jet is assigned to a different trigger. It is worth noting that also jets that
did not fire the trigger are assigned a trigger based on their pT and η for the sake of the luminosity
calculation.
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Figure 3.4: Trigger efficiency as a function of the reconstructed jet transverse momentum, pT, for jets within
rapidity |y | < 2.8, (a) and (b), and for jets in the crack region between the barrel and endcap calorimeters,
(c) and (d). Various triggers (L1 and L2) and different data taking periods are shown, as indicated in the
figures. The jets are associated with central triggers, denoted by (C). Trigger thresholds are denoted by EEM

T ,
the minimal transverse energy at the electromagnetic scale of a jet which is required to fire the trigger.
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Figure 3.5: Trigger efficiency as a function of the reconstructed jet transverse momentum, pT, for various
triggers (L1 and L2) and for different data taking periods, as indicated in the figures. The trigger objects are
associated with jets within rapidity 2.8 < |y | < 3.6 ((a) and (b)) and within rapidity 3.6 < |y | < 4.4 ((c) and
(d)), belonging to either the central (C) or the forward (F) jet trigger systems. Trigger thresholds are denoted
by EEM

T , the minimal transverse energy at the electromagnetic scale of a jet which is required to fire the trigger.
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pT [GeV]
Trigger name

Period A Periods A-D Periods E-F
Periods G-I

(Run < 152777) (Run ≥ 152777) (excl. E1-E4)

|y | < 3.6

20 < pT ≤ 42.5 L1_MBTS L1_MBTS L1_MBTS EF_MBTS
42.5 < pT ≤ 70 L1_MBTS L1_J5 L1_J5 L2_J15
70 < pT ≤ 97.5 L1_MBTS L1_J15 L1_J15 L2_J30

97.5 < pT ≤ 152.5 L1_MBTS L1_J30 L1_J30 L2_J45
152.5 < pT ≤ 197.5 L1_MBTS L1_J55 L1_J55 L2_J70
197.5 < pT ≤ 217.5 L1_MBTS L1_J55 L1_J55 L2_J90
217.5 < pT L1_MBTS L1_J55 L1_J55 L1_j95

2.8 ≤ |y | < 3.6

20 < pT ≤ 42.5 L1_MBTS L1_MBTS L1_MBTS EF_MBTS
42.5 < pT ≤ 62.5 L1_MBTS L1_MBTS L1_FJ10 EF_MBTS
62.5 < pT ≤ 72.5 L1_MBTS L1_MBTS L1_FJ10 L2_FJ25
72.5 < pT ≤ 95 L1_MBTS L1_MBTS L1_FJ30 L2_FJ25
95 < pT ≤ 160 L1_MBTS L1_MBTS L1_FJ30 L2_FJ45

160 < pT L1_MBTS L1_MBTS L1_FJ30 L2_FJ70

3.6 ≤ |y | ≤ 4.4

20 < pT ≤ 42.5 L1_MBTS L1_MBTS L1_FJ10 EF_MBTS
42.5 < pT ≤ 50 L1_MBTS L1_MBTS L1_FJ10 L2_FJ25
50 < pT ≤ 67.5 L1_MBTS L1_MBTS L1_FJ30 L2_FJ25

67.5 < pT ≤ 100 L1_MBTS L1_MBTS L1_FJ30 L2_FJ45
100 < pT L1_MBTS L1_MBTS L1_FJ30 L2_FJ70

Table 3.1: Trigger chains as a function of the reconstructed jet transverse momentum, pT, and rapidity, y,
ranges in various data-taking periods, as indicated in the table. In the naming scheme (for details see text), the
number that follows the trigger name stands for the threshold in transverse energy at the EM scale, EEM

T .
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3.10 Trigger

pT [GeV]
Per-jet trigger efficiency

Period A Periods A-D Periods E-F
Periods G-I

(Run < 152777) (Run ≥ 152777) (excl. E1-E4)

Crack region, 1.3 ≤ |y | < 1.6

20 < pT ≤ 42.5 1 1 1 1
42.5 < pT ≤ 70 1 0.89 0.89 0.96
70 < pT ≤ 97.5 1 0.88 0.88 0.87

97.5 < pT ≤ 152.5 1 0.81 0.81 0.83
152.5 < pT ≤ 197.5 1 0.83 0.83 0.82
197.5 < pT ≤ 217.5 1 0.83 0.83 0.80
217.5 < pT 1 0.83 0.83 0.81

Forward region, 2.8 ≤ |y | < 3.6

20 < pT ≤ 42.5 1 1 1 1
42.5 < pT ≤ 62.5 1 1 1 1
62.5 < pT ≤ 72.5 1 1 1 0.99
72.5 < pT ≤ 95 1 1 0.97 0.99
95 < pT ≤ 160 1 1 0.97 0.99
160 < pT 1 1 0.97 1

Forward region, 3.6 ≤ |y | ≤ 4.4

20 < pT ≤ 42.5 1 1 0.95 1
42.5 < pT ≤ 50 1 1 0.95 0.99
50 < pT ≤ 67.5 1 1 0.95 0.99

67.5 < pT ≤ 100 1 1 0.95 0.97
100 < pT 1 1 0.95 0.97

Table 3.2: The plateau per-jet trigger efficiency as a function of the jet transverse momentum, pT, and rapidity,
y, ranges in various data taking periods, as indicated in the table. The uncertainty on the per-jet trigger
efficiency ranges between 1 and 2%, depending on the trigger region and threshold.
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In order to account for different prescale combinations of the two jets, the Inclusive method for fully
efficient combinations [160] is used. In this scheme, the integrated luminosity of each trigger is
calculated over the entire event sample, taking into account the trigger prescale in each period. In the
same manner, the integrated luminosity of all possible combinations of two prescaled triggers firing
simultaneously is calculated over the entire sample.

Let LLB denote the integrated luminosity in a luminosity-block (LB), and let PLB denote the prescale
of a given jet trigger within this LB. The effective luminosity of a single trigger for the entire dataset
can then be written as

L
jet
single =

∑
LB

LLB
PLB

, (3.11)

where the summation is over all luminosity-blocks. The effective luminosity for a pair of triggers
takes into account the probability that two triggers with prescales, P0

LB and P1
LB, fired simultaneously

in a given event; it is defined by

L
jet
double =

∑
LB

LLB

P0
LBP1

LB/
(
P0

LB + P1
LB − 1

) . (3.12)

The resulting matrix of integrated luminosities for each trigger combination is then used as a weight
for each event. Tables 3.3 and 3.4 show the integrated single- and double-trigger luminosities for the
different trigger-bins used in the analysis.

The combined trigger efficiency of the two leading jets is computed in a similar manner as in
Eq. (3.12), using the corresponding per-jet trigger efficiencies (given in Table 3.2) and the single-jet
reconstruction efficiency (see Section 3.7.1). Together these yield the probability for an event to have
fired a given trigger (or trigger combination), and for a jet (or pair of jets) to have been reconstructed
and matched to the trigger(s). The inverse of the combined trigger and reconstruction efficiency
factor is multiplied by the luminosity of the selected luminosity class, producing the final luminosity
weight for each event.
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2010 Period A , Run < 152777

Trigger name L1_MBTS

L1_MBTS 1.81 ·10−4

2010 Periods A-D (Run ≥ 152777)

Trigger name L1_MBTS L1_J5 L1_J15 L1_J30 L1_J55

L1_MBTS 5.52 ·10−4 2.48 ·10−2 2.57 ·10−1 2.57 ·10−1 2.57 ·10−1

L1_J5 2.48 ·10−2 2.57 ·10−1 2.57 ·10−1 2.57 ·10−1

L1_J15 2.57 ·10−1 2.57 ·10−1 2.57 ·10−1

L1_J30 2.57 ·10−1 2.57 ·10−1

L1_J55 2.57 ·10−1

2010 Periods E-F (excl. E1-E4)

Trigger name L1_MBTS L1_J5 L1_J15 L1_J30 L1_J55 L1_FJ10 L1_FJ10

L1_MBTS 7.78 ·10−5 2.41 ·10−3 2.36 ·10−2 1.08 ·100 2.13 ·100 1.52 ·10−2 2.13 ·100

L1_J5 2.34 ·10−3 2.58 ·10−2 1.08 ·100 2.13 ·100 1.75 ·10−2 2.13 ·100

L1_J15 2.36 ·10−2 1.08 ·100 2.13 ·100 3.80 ·10−2 2.13 ·100

L1_J30 1.08 ·100 2.13 ·100 1.08 ·100 2.13 ·100

L1_J55 2.13 ·100 2.13 ·100 2.13 ·100

L1_FJ10 1.51 ·10−2 2.13 ·100

L1_FJ30 2.13 ·100

Table 3.3: Integrated luminosity in pb−1 for different trigger combinations used in several data-taking periods
in 2010, up to period F. The uncertainty on the luminosity is 3.5%.

51



3 Experimental setup

2010 Periods G-I

Trigger name EF_MBTS L2_J15 L2_J30 L2_J45 L2_J70 L2_J90 L1_J95

EF_MBTS 9.66 ·10−5 2.37 ·10−3 4.94 ·10−2 2.40 ·10−1 6.15 ·100 5.89 ·100 3.38 ·101

L2_J15 2.29 ·10−3 5.14 ·10−2 2.44 ·10−1 6.15 ·100 5.89 ·100 3.38 ·101

L2_J30 4.93 ·10−2 2.63 ·10−1 6.17 ·100 5.91 ·100 3.38 ·101

L2_J45 2.41 ·10−1 6.21 ·100 5.95 ·100 3.38 ·101

L2_J70 6.15 ·100 7.58 ·100 3.38 ·101

L2_J90 5.89 ·100 3.38 ·101

L1_J95 3.38 ·101

2010 Periods G-I

Trigger name L2_FJ25 L2_FJ45 L2_FJ70

EF_MBTS 1.55 ·10−1 3.66 ·100 3.38 ·101

L2_J15 1.58 ·10−1 3.66 ·100 3.38 ·101

L2_J30 1.79 ·10−1 3.68 ·100 3.38 ·101

L2_J45 3.24 ·10−1 3.74 ·100 3.38 ·101

L2_J70 6.20 ·100 7.48 ·100 3.38 ·101

L2_J90 5.94 ·100 7.29 ·100 3.38 ·101

L1_J95 3.38 ·101 3.38 ·101 3.38 ·101

L2_FJ25 1.55 ·10−1 3.73 ·100 3.38 ·101

L2_FJ45 3.66 ·100 3.38 ·101

L2_FJ70 3.38 ·101

Table 3.4: Integrated luminosity in pb−1 for the different trigger combinations used during data-taking
periods G-I in 2010. The uncertainty on the luminosity is 3.5%.

52



CHAPTER4
Monte Carlo simulation
The final states of pp interactions at the LHC are very complex and typically involve many particles
and different scales. Monte Carlo techniques are most commonly used to simulate these interactions
in order to obtain predictions of experimental observables. For comparison of distributions obtained
using MC with distributions in data, a detailed simulation of the interactions of particles with the
ATLAS detector is required.

A description of the MC generators and of the ATLAS detector simulation used in the analysis is
presented in the following.

4.1 Event generators
A pp collision at the LHC is composed of interactions at different scales of the momentum transfer
involved. Factorization is used to separate the processes occurring in the interaction according
to that scale. At the highest scales the constituent partons of the incoming protons interact to
produce a relatively small number of energetic outgoing particles. The matrix elements of these hard
subprocesses are perturbatively computable. Soft interactions at the very lowest scales, of the order
of 1 GeV2, cannot yet be calculated from first principles and have to be modelled. The hard and soft
regimes are distinct but connected by an evolutionary process that can be calculated in principle from
perturbative QCD.

Event generators simulate the full picture of pp collisions using MC techniques. An overview of
MC event generators for LHC physics can be found in [161]. A short summary of multi-parton
interactions in event generators, a subject of interest to this study, is presented in the following, and
a brief description of the different event generators utilized in this analysis is given.

4.1.1 Multi-parton interactions in event generators

The inclusion of MPI in event generators is important not only for the purpose of achieving a better
description of observables in data, e.g., particle multiplicity. A first model for this phenomenon in
the framework of MC was presented in [162]. Adding MPI resolves a fundamental theoretical issue,
namely the fact that the inclusive dijet cross-section (σ2 j ), calculated assuming one parton-parton
scatter per proton–proton collision, exceeds the total cross-section (σtot) as extrapolated using non-
perturbative fits. Naively, this violates the unitarity of perturbative QCD cross-sections, but this
problem can be resolved by assuming more than one parton scatter per hadron collision. The logic
is as follows: the total cross-section is an inclusive number, quantifying the intrinsic likelihood of an
interaction to occur when two protons collide. When measuring σtot, a collision between two protons
would count as one interaction, regardless of how many parton-parton interactions occur. Thus, an
event with n parton-parton interactions will be counted n times when measuring σ2 j , but only once
when measuring σtot. Under the assumption that all parton-parton interactions are independent, σ2 j
may be expressed as

σ2 j (p⊥,min) = 〈n〉(p⊥,min) σtot , (4.1)
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where 〈n〉(p⊥,min) is the average number of parton-parton interactions producing partons with trans-
verse momentum above p⊥,min per proton–proton collision. The problem is therefore restated such
that instead of the inclusive jet cross-section diverging as p⊥,min → 0, the number of interactions
per collision diverges. The latter divergence is regularized within event generators by introducing a
cutoff value of p⊥,min, motivated by color screening (see section 7.3.1 in [161]). The cutoff parameter
is tuned to data and is usually of the order of a few GeV.

4.1.2 Alpgen + Herwig + Jimmy

The Alpgen package is a tree level matrix element generator for hard multi-parton processes (2→ n)
in hadronic collisions [115]. Matching of parton showerswithmatrix element partons fromAlpgen is
done using theMLMmatching scheme [117]. Here, Alpgen has been interfaced to the Herwig [163,
164] general-purpose event generator which uses angular-ordered parton showers. It also employs
a cluster model for jet hadronization based on non-perturbative gluon splitting [122]. Simulation
of multiple parton interactions is done in the Jimmy [126, 127] package, interfaced to the Herwig
generator. Further details on the multi-parton interactions model implemented in Jimmy is given
below.

The sample utilized in this analysis was generated with Alpgen 2.14 using the CTEQ6L1 PDF set,
interfaced to Jimmy and Herwig 6.520 using the AUET2 [165] set of underlying event parameters
(tune). The MPI parameters in the AUET2 tune were set with the early ATLAS data. The MLM
matching scale, the energy scale in which matching of matrix elements to parton showers begins,
was set to 15 GeV. The implication of this choice is that partons with pT ≥ 15 GeV in the final state,
originate from matrix elements, and not from the parton shower.

Five separate Alpgen samples were generated, each corresponding to a fixed order matrix element
(2 → n, with n = 2, 3, . . . , 6). The samples were then combined based on the respective matrix
element cross-section as calculated in Alpgen. To increase the amount of DPS events in the final
sample, a filter was applied during the generation of the 2→ 2 matrix element sample. The so-called
DPS filter selected events containing at least two partons with pT ≥ 15 GeV originating from a
secondary interaction.

The main SPS sample used in the analysis is extracted from the Alpgen + Herwig + Jimmy MC
combination (AHJ) by matching jets to partons, as described in Section 6.7.2. A sample of DPS
events is also extracted from AHJ in order to study their topology and validate the measurement
methodology.

Multi-parton interactions model in Jimmy
The Jimmy model for MPI assumes some distribution of the matter inside the hadron in impact
parameter (b) space, which is independent of the momentum fraction, x. TheMPI rate of interactions
of type A, accompanying the “trigger” interaction, B, is then calculated using the cross section for
the hard sub-process, the PDF and the area overlap function, Γ(b). The starting point for the MPI
model is the assertion that, at fixed impact parameter, b, different scatters are independent, so their
number obeys Poisson statistics.
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The cross-section for events in which there are n scatters of type A is given by

σn =

∫
d2b

(Γ(b)σA)n

n!
e−Γ(b)σA, (4.2)

where σA is the parton-parton cross-section and Γ(b) is the matter density distribution, obeying∫
d2bΓ(b) = 1. (4.3)

The probability distribution for n is then

Pn ≈

∫
d2bn (Γ(b)σA)n

n! e−Γ(b)σA

σA
. (4.4)

Equation (4.4) is an approximation made under the assumption that the “trigger” interaction of type B
has a small cross-section compared to the cross-section of the interaction of type A, σB � σA. With
this assumption, Pn becomes independent of σB. The Monte Carlo implementation of MPI in Jimmy
generates n scatters of type A, according to Eq. (4.4), for each event of type B. Further corrections to
the generation process are introduced when B is a subset of A, as is the case for the present analysis.
For a more comprehensive derivation of the MPI model in pp interactions implemented in Jimmy,
see [166].

4.1.3 Pythia
The Pythia [167] event generator simulates non-diffractive pp collisions using a 2 → 2 matrix
element at leading order to model the hard subprocess. It uses pT-ordered parton showers to model
additional radiation in the leading-logarithmic approximation. Multiple parton interactions are
modelled based on the original ideas of [162], but further refined [129, 168]. The hadronization of
partons is achieved with the Lund string model [121].

The model implemented in Pythia for the generation of MPI is similar to the one implemented in
Jimmy, although with a few differences [161]. The “turn-off curve” for interactions with pT below the
cutoff value p⊥,min is a smooth one in Pythia, while Jimmy employs a step function, Θ(p⊥ − p⊥,min).
The form of the matter distribution in the proton in Pythia is a simple parametric form such as a
Gaussian, double Gaussians or exponentials [162], while the form implemented in Jimmy is based
on the electromagnetic form factor [169]. A detailed description of multiple interactions in Pythia
is given in [129].

Samples generated with Pythia 6.425 are used in this analysis mainly in the geometrical acceptance
calculation (see Section 6.6). The samples were generated utilizing the modified leading-order PDF
set MRST LO* [15] with the AMBT1 set of underlying event parameters, tuned to describe the
distributions measured by ATLAS in minimum bias collisions [170].

4.1.4 Sherpa
Sherpa is a general-purpose tool for the simulation of particle collisions at high-energy colliders,
using tree-level matrix-element generators for the calculation of hard scattering processes [171,172].
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The emission of additional QCD partons off the initial and final states is performed using a pT-ordered
parton shower model. Combining leading order matrix elements and parton showers is done with
special care in Sherpa [173], based on the CKKW merging algorithm [118, 119]. A simple model
of multiple interactions, based on the model described in [162], is used to account for underlying
events in hadron–hadron collisions. The fragmentation of partons into primary hadrons is described
using a phenomenological cluster-hadronization model [123].

The sample used for the analysis was generated within Sherpa 1.4.2 with the CT10 PDF set and the
default Sherpa underlying event tune. The CKKW matching scale was set to 15 GeV, similarly to
the AHJ sample described above. Events were generated without multi-parton interactions by setting
the internal flag, MI_HANDLER=None. The resulting sample is compared to the SPS sample extracted
from the AHJ sample for validation purposes (see Section 7.3).

4.2 Simulation of the ATLAS detector
Four-vectors of stable particles in the events generated are passed through the full ATLAS detector
simulation. The Geant software toolkit [174] within the ATLAS simulation framework [175]
propagates the particles through theATLAS detector and simulates their interactions with the detector
material. The energy deposited by particles in the active detector material is converted into detector
signals with the same format as the ATLAS detector read-out. The simulated detector signals are
in turn reconstructed with the same reconstruction software as used for the data. Finally, simulated
events are reconstructed and jets are calibrated in the same manner as in the data.

The resulting MC events are used to construct detector-level distributions directly comparable with
the data and to study the performance of the detector by estimating reconstruction efficiencies,
geometrical coverage and the performance of the triggers.
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CHAPTER5
Event selection
To reject events initiated by cosmic-ray muons and other non-collision backgrounds, events in this
analysis are required to have at least one primary hard scattering vertex. A primary hard scattering
vertex is required to be consistent with the beam-spot and to have at least five tracks, each complying
with the following criteria:

- track transverse momentum, ptrack
T > 150 MeV;

- combined number of hits in the Pixel and SCT detectors associated with the track,
NPixel + NSCT ≥ 7;

- transverse (d0) and longitudinal (z0) impact parameters, measured with respect to the vertex to
which the tracks are extrapolated, |d0 | < 1.0 mm and |z0 | · sin θ < 1.5 mm, where θ is the polar
angle of the track;

- quality of track fit,
(
χ2/NDF

)
track

< 3.5.

As mentioned in Section 3.6.2, the primary vertex associated to the event of interest (hard scattering
vertex) is the one with the highest associated transverse track momentum

∑
ptrack

T .

The rate of hard double parton scattering is measured in events which have at least four jets in the
final state – an event set referred to as inclusive four-jet events. For the purpose of measuring σeff in
the four-jet final state, inclusive dijet events are selected in a similar manner as four-jet events, having
at least two jets in the final state. Both dijet and four-jet events are selected using the two-trigger
selection scheme described in Section 3.10.

Jets are required to have pT ≥ 20 GeV and |η | ≤ 4.4. In each event selected, jets are ordered in
descending order of their transverse momenta. That is, denoting by piT the transverse momentum of
the i th jet in an event, the pT of jets in e.g., a four-jet event, fulfil the condition,

p1
T > p2

T > p3
T > p4

T .

Once the jets are sorted in descending order of pT, the jet with the highest-pT, p1
T , is referred to as

the leading jet.

The leading jet in four-jet events is required to have pT ≥ 42.5 GeV. Restricting the pT of the leading
jet to be higher than the minimal threshold for reconstruction, creates a scale separation between
the jets in the event. This sets a different scale for the interactions in DPS events, which is helpful
when attempting to identify these events. The restriction on the leading jet is also motivated by the
trigger strategy of the analysis. It amounts to the requirement that at least one jet in the event fires
a jet trigger (see Section 3.10). Four-jet events in which the two leading jets are associated with the
MBTS trigger are rejected due to the argument below. Such events constitute a very small fraction
of the overall sample, but they dominate completely the phase-space region in which both leading
jets have transverse momenta in the range 20 < pT < 42.5 GeV. Since they are associated with very
high luminosity weights (see Section 3.10.2), they tend to introduce large statistical fluctuations into
the measurement. Consequently, the requirement that at least one jet in the event is associated with
a jet trigger is enforced.
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The expression for the DPS cross-section for the final state (A,B), given in Eq. (2.15), involves two
cross-sections for the final states A and B. The transverse momentum requirement applied on the
leading jet in four-jet events therefore splits the final states A and B into two classes of dijet events. In
one class of dijet events, the cut on the transverse momentum of the leading jet must be equivalent to
the cut on the leading jet in four-jet events, pT ≥ 42.5 GeV. The other type of dijet events corresponds
to the sub-leading pair of jets in the four-jet event, with a requirement pT ≥ 20 GeV. In the following,
the cross-section for dijets selected with pT ≥ 20 GeV is denoted by σA

2 j and the cross-section for
dijets with p1

T ≥ 42.5 GeV is denoted by σB
2 j .

Pile-up may potentially introduce a bias to the measurement by adding extra jets, by changing the
pT of the jets or by causing splitting of the jets. In order to avoid these issues, the 2010 data taking
periods with a low average number of interactions per beam crossing are used, 〈µ〉 = 0.41. The
average number of reconstructed vertices in the data sample collected with the triggers described in
Section 3.10 is 1.4. To further reduce the effects of pile-up, only single-vertex events are selected.

To summarize, the measurement is performed using three samples, two distinct samples of dijet
events and a sample of four-jet events, selected using the following requirements:

(dijet A) NPV = 1 , Njet = 2 , p1,2
T ≥ 20 GeV , |η1,2 | ≤ 4.4 ,

(dijet B) NPV = 1 , Njet = 2 , p1
T ≥ 42.5 GeV , p2

T ≥ 20 GeV , |η1,2 | ≤ 4.4 ,

(four-jet) NPV = 1 , Njet = 4 , p1
T ≥ 42.5 GeV , p2−4

T ≥ 20 GeV , |η1−4 | ≤ 4.4 ,

(5.1)

where NPV is the number of reconstructed vertices in the event and Njet is the minimum number of
reconstructed anti-kt, R = 0.6, jets in the event.
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CHAPTER6
Methodology
The expression for σeff , defined in Eq. (2.18),

σeff =
1

1 + δAB

σA
2 jσ

B
2 j

σDPS
=

1
1 + δAB

1
fDPS

σA
2 jσ

B
2 j

σ4 j
, (6.1)

guides the analysis, where the double parton scattering cross-section,

σDPS = fDPS · σ4 j ,

is extracted using the measured cross-section of four-jet events, σ4 j . The latter includes all events
with a four-jet final state, i.e., both (2→ 4) and (2→ 2)×2 topologies. The cornerstone of the
measurement of σeff is the extraction of fDPS [77] and the measurement of the ratio of inclusive dijet
and four-jet cross-sections.

6.1 Classes of double parton scattering events
Among events with at least four jets, DPS contributes two classes of events. The first class consists
of events in which the two dijets of DPS are among the four leading jets, referred to as complete-DPS
(cDPS) events. In the second class of events, out of the four leading jets, three jets originate from
one scattering and one from the other. A schematic sketch of the latter class of DPS events, named
semi-DPS (sDPS), is shown in Fig. 6.1.

In the following, the distinction between the two classes of double parton scattering events is taken
into account by modifying Eq. (6.1) to read

σeff =
1

1 + δAB
1

fcDPS + fsDPS

σA
2 jσ

B
2 j

σ4 j
, (6.2)

where fcDPS and fsDPS are the fractions of complete-DPS events and semi-DPS events, respectively,
and their values in AHJ are fcDPS = 0.1 and fsDPS = 0.05 (see Chapter 7). The cross-sections in
Eq. (6.2) do not require any modification since they are all inclusive cross-sections. That is, the
three-jet cross-section accounting for the production of a sDPS event is already included in the dijet
cross-sections.

6.2 Symmetry factor
As explained in Section 2.4, the symmetry factor in the expression for the double parton scattering
cross-section is set to two if the two cross-sections under consideration are identical, or to one
otherwise. The two cross-sections, σA

2 j and σ
B
2 j , selected in the A and B phase-space regions defined

in Eq. (5.1), overlap in the region where the leading jet has pT ≥ 42.5 GeV. This is taken into account
by a symmetry factor proportional to the size of the overlap, as described in this section.
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Figure 6.1: Schematic sketch of a semi-DPS event, in which one interaction contributes three partons (jets)
to the four-jet final state and the other interaction contributes one parton (jet). The four leading (highest-pT)
partons in the schematic event are circled by the red ellipse, marking the partons selected in the event topology
reconstruction.

The expression for the DPS cross-section, defined in Eq. (2.16), is re-written as the sum of two
exclusive contributions,

σDPS = σ2 j (20 ≤ p1
T < 42.5) · σ2 j (p1

T ≥ 42.5) +
1
2

(
σ2 j (p1

T ≥ 42.5)
)2
, (6.3)

where the definition σ2 j (p1
T ≥ 42.5) ≡ σB

2 j is used and σ2 j (20 ≤ p1
T < 42.5) refers to the dijet

cross-section for events selected in the phase-space region labeled A in Eq. (5.1), with an additional
requirement that the leading jet has 20 ≤ pT < 42.5 GeV. The first term on the right-hand side of
Eq. (6.3) relates two mutually exclusive cross-sections and therefore the symmetry factor in this term
is set to one. The second term contains two equivalent cross-sections, thus its symmetry factor is set
to half. For simplicity, the factor (σeff )−1 is dropped in this discussion.

The cross-sections in Eq. (6.3) may be expressed in terms of the σA
2 j cross-section and the fractional

overlap, γ,

σ2 j (p1
T ≥ 42.5) = γσA

2 j ≡ γσ2 j (p1
T ≥ 20) , (6.4)

σ2 j (20 ≤ p1
T < 42.5) = (1 − γ)σA

2 j ≡ (1 − γ)σ2 j (p1
T ≥ 20) , (6.5)

where σ2 j (p1
T ≥ 20) ≡ σA

2 j . Introducing these relations into Eq. (6.3) yields

σDPS = σ2 j (p1
T ≥ 42.5) ·

(
(1 − γ)σ2 j (p1

T ≥ 20) +
1
2
γσ2 j (p1

T ≥ 20)
)

(6.6)

=

(
1 −

γ

2

)
σ2 j (p1

T ≥ 20) · σ2 j (p1
T ≥ 42.5) (6.7)

=

(
1 −

γ

2

)
σA

2 j · σ
B
2 j . (6.8)
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Hence, the symmetry factor in Eq. (6.2) comes out to be

1
1 + δAB

= 1 −
γ

2
, (6.9)

where

γ =
σB

2 j

σA
2 j
. (6.10)

The fractional overlap may be extracted from the measured cross-sections in data (see Section 6.5),

γdata =
σB

2 j (data)

σA
2 j (data)

= 0.1293 ± 0.0007 (stat.) , (6.11)

where each cross-section is corrected for the fiducial acceptance (see Section 6.6). The fractional
overlap may also be estimated in Pythia. Two dijet samples are selected by applying the cuts defined
in Eq. (5.1) on particle jets in Pythia. The ratio between the calculated cross-sections is then used
to estimate γ,

γPythia =
σB

2 j (Pythia)

σA
2 j (Pythia)

= 0.1333 ± 0.0011 (stat.) . (6.12)

A good agreement is observed between the values of γ obtained in data and in MC. In order to
estimate the effect of the difference between γdata and γPythia on the measured value of σeff , the
latter is calculated for each value of γ. The relative difference between the two results is of the order
of 0.2%, a negligible difference compared to the statistical uncertainty on σeff . Thus, no systematic
uncertainty is associated with the value of γ.

6.3 Correction due to overlapping jets
Two anti-kt jets with a radius parameter of 0.6 occupy a non-negligible area in the η − φ plane. It
is therefore conceivable that one of the jets from the secondary interaction would overlap with a jet
from the primary interaction. In such an occurrence, the anti-kt algorithm would merge the two jets
and the event would not be counted as a four-jet event. The probability for this to occur is related to
the combined area of the two jets from the primary interaction with respect to the total fiducial area
in the η − φ plane. In the case of hard jets, the anti-kt algorithm produces circular jets with a radius
R (see Fig. 3.3). Therefore, an estimate for the probability of a jet originating from DPS overlapping
with one of the jets from the primary interaction may be calculated from,

P(overlap) =
2 · πR2∫ 4.4

−4.4 dη ·
∫ 2π

0 dφ
=

2 · πR2

8.8 · 2π
= 0.041 . (6.13)

The fiducial volume in the η − φ plane is defined by the cuts in Eq. (5.1). This probability is used as
a geometrical correction to the measured DPS cross-section. The fraction of three-jet events failing
the four-jet cut due to merging of a jet from the secondary interaction with a jet from the primary
interaction was also determined directly from AHJ to be 0.0428 ± 0.0005. In order to evaluate
the effect of the difference between these two estimates on the measured value of σeff , the latter is

61



6 Methodology

calculated for each value of P(overlap). The relative difference between the two results is of the order
of 0.2%, a negligible difference compared to the statistical uncertainty on σeff . Thus, no systematic
uncertainty is associated with this geometrical correction.

6.4 The effective cross-section in terms of experimental
observables

The general expression for the measured dijet and four-jet cross-sections may be written as

σn j =
Nn j

An j εn jLn j
, (6.14)

where the subscript, n j, denotes either dijet (2 j) or four-jet (4 j) topologies. For each n j channel,
Nn j is the number of measured events, An j is the geometrical acceptance of these events, εn j is the
efficiency for reconstructing the event1 and Ln j is the corresponding luminosity.

Using the identity given in Eq. (6.14) and incorporating the symmetry factor defined in Eq. (6.9), the
expression for σeff may be re-written using measurable observables as

σeff =
(
1 −

γ

2

) 1
fcDPS + fsDPS

NA
2 j N

B
2 j

N4 j

L4 j

LA
2 jL

B
2 j

ε4 j

εA2 j ε
B
2 j

A4 j

AA
2 jA

B
2 j
. (6.15)

This expression may be simplified by defining

Sn j = Nn j/(εn jLn j )

as the observed cross-section at the detector-level and by defining the acceptance ratio,

α
4 j
2 j =

A4 j

AA
2 jA

B
2 j
.

Following these definitions, Eq. (6.15) reduces to

σeff =
(
1 −

γ

2

) α
4 j
2 j

fcDPS + fsDPS

SA
2 jS

B
2 j

S4 j
. (6.16)

Equation (6.16) is the fundamental expression used to extract σeff , where the acceptance ratio
α

4 j
2 j , cross-sections Sn j , and the fractions fcDPS and fsDPS , are the observables necessary for the

determination of σeff . The following sections detail the strategy adopted for the measurement of
each of these observables.
1 In the 2010 data there is need to differentiate between the acceptance and the efficiency, as the non-geometrical
inefficiencies of the detector (e.g. faulty electronic channels) were not properly simulated as part of the MC10
campaign.
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6.5 Measurement of the dijet and four-jet cross-sections

6.5 Measurement of the dijet and four-jet cross-sections
The dijet and four-jet cross-sections, Sn j , are estimated in data by counting the number of dijet and
four-jet events passing the cuts detailed in Eq. (5.1). Events areweighted by the appropriate luminosity
factors and are corrected for trigger efficiency. In addition, jet reconstruction efficiency corrections
are applied for each jet, depending on its pT and η. For a given event, the total reconstruction
efficiency correction depends on whether it contributes to the dijet or the four-jet sample.

6.5.1 Correcting for the selection of single-vertex events
Asmentioned in Chapter 5, only events with one primary vertex are analyzed. In order to compensate
for the loss of events with NPV > 1, a correction based on the average number of interactions per
bunch crossing, 〈µ〉, is applied.

The measured cross-section may be expressed as

σ = σ(NPV = 1) ·
Nevt

Nevt(NPV = 1)
, (6.17)

where σ(NPV = 1) is the measured cross-section after selecting events with NPV = 1, Nevt(NPV = 1)
is the number of single-vertex events and Nevt is the number of events for all NPV values. The fraction
on the right-hand side of Eq. (6.17) may be expressed as

Nevt
Nevt(NPV = 1)

=
1 − P(NPV = 0)
P(NPV = 1)

, (6.18)

where P(NPV = 1) is the probability that one interaction occurred in the bunch crossing and the
probability to have any number of interactions is expressed as 1 − P(NPV = 0). The probability
follows the Poisson distribution with an average rate 〈µ〉. Therefore, P(NPV = 0) and P(NPV = 1)
may be estimated using 〈µ〉,

P(NPV = 0) = e−〈µ〉 , P(NPV = 1) = 〈µ〉e−〈µ〉 . (6.19)

The correction is then applied by assigning to each single-vertex event a weight,

w =
1 − P(NPV = 0)
P(NPV = 1)

=
1 − e−〈µ〉

〈µ〉e−〈µ〉
= 1.236 , (6.20)

where the value of µ is averaged over the entire data sample, yielding 〈µ〉 = 0.41. Various methods
are used to measure µ and the maximal difference between the values obtained using the different
methods is taken as the uncertainty, ∆µ = ±0.5% [144]. This uncertainty is propagated to σeff as
described in Section 8.2.2.

6.5.2 Measured cross-sections
The numbers of events in the selected dijet and four-jet samples are

NA
2 j = 2,241,633 , NB

2 j = 2,036,798 and N4 j = 488,693 . (6.21)
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The combination of these numbers with the corresponding luminosity and efficiency factors (see
Sections 3.7.1 and 3.10) and the correction applied for selecting single-vertex events yields the
following observed cross-sections:

SA
2 j = 1.9534 · 108 ± 4.9 · 105 (stat.) +5.73

−6.01 · 106 (syst.) pb ,

SB
2 j = 2.6206 · 107 ± 3.4 · 104 (stat.) +5.64

−5.84 · 105 (syst.) pb ,

S4 j = 3.109 · 106 ± 1.1 · 104 (stat.) +1.53
−1.64 · 105 (syst.) pb ,

(6.22)

where the first uncertainty is statistical (stat.) and the second systematic (syst.). The systematic
uncertainties on the observed cross-sections are related to the systematic uncertainty on the jet recon-
struction efficiency (see Section 3.7.1). The methodology for the measurement of σeff was chosen
such that these uncertainties cancel almost entirely (see Eq. (6.16)), as discussed in Section 8.2.3.

6.6 Acceptance
The second component of the measurement is the acceptance ratio, α4 j

2 j . The acceptance of each
class of events is individually estimated using the Pythia MC sample. The same restrictions on the
phase-space of calorimeter jets, defined in Eq. (5.1), are applied on particle jets. The definition of
the acceptance is given by

A
A,B
n j =

NA,B calo
n j

NA,B truth
n j

, (6.23)

where NA,B calo
n j (NA,B truth

n j ) is the number of n-jet events passing the (A or B) selection cuts using
detector (particle) jets.

The acceptance is sensitive to the migration of events into and out of the phase-space of the measure-
ment. Due to the very steep jet pT spectrum in dijet and four-jet events, it is crucial to achieve the
best agreement possible between the jet pT spectra in data and MC before calculating the acceptance.
Moreover, because the migration towards higher momenta is more probable than in the opposite
direction, it is important to have good control over the pT distribution below the threshold used for
the analysis. Therefore, for the following studies, the threshold was lowered to 10 GeV. The fiducial
|y | range was also increased to 4.5, in order to take into account possible migration in y.

6.6.1 Acceptance for dijet events
In the following comparisons of jet pT spectra between data and MC (Figs. 6.2 and 6.3), the leading
jet pT distribution in data, in the range 50 < pT < 70 GeV, is used to set the normalization of the
distributions in the MC.

A comparison between the pT spectra of the two leading jets in dijet events in data and in Pythia
is shown in Fig. 6.2(a). It can be seen that in the range 10 ≤ pT < 20 GeV, the MC distributions
underestimates the data by a factor of 1.7 for the leading jet and by a factor of 1.4 for the sub-leading
jet. In the range 20 ≤ pT < 80 GeV, the data and MC agree to within a few percent. As pT increases
however, a growing discrepancy is observed, increasing up to 30% at pT = 500 GeV.
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Figure 6.2: Transverse momentum, pT, spectra of the two highest-pT jets, denoted as p1,2
T in the figures, in

data and in MC, (a) before and (b) after re-weighting of the MC (see text for details). The leading jet pT
distribution in data, in the range 50 < pT < 70 GeV, is used to set the normalization of the distributions in the
MC. The ratio of data to MC is shown in the bottom panels, where statistical uncertainties are shown as the
shaded areas, visible only at pT ≥ 400 GeV.

To reach a better agreement, the events in the MC are re-weighted, based on two dimensional pT-y
distributions. Normalized pT-y distributions of the leading jet in data and in MC are constructed,
where, at this stage, detector-level jets are used in the MC. As a first guess, the weights are estimated
from the ratio of the two distributions. The resulting distribution is then parametrized by a smooth
function for each y bin, producing a two-dimensional re-weighting function which is continuous in
one dimension (pT) and discrete in the other (y). The weight correction is applied to each event in
the MC based on the leading particle jet pT and y.

The pT distributions of the two leading jets after re-weighting the events in MC are compared to
data in Fig. 6.2(b). The agreement between the distributions in data and MC after the correction is
within 5% across the pT spectrum, apart from the range 20 ≤ pT < 30 GeV where the disagreement
rises to ∼ 15%. This level of agreement between the data and the MC is sufficient for the purpose of
calculating the acceptance.

6.6.2 Acceptance for four-jet events

The calculation of the acceptance for four-jet events is performed by selecting a subset of the dijet
sample. As mentioned in Section 4.1.3, Pythia uses a 2 → 2 matrix element at leading order
to generate events. Extra jets beyond the two leading ones are generated as part of the parton
shower. Therefore, in order to obtain a good representation of the topology of four-jet events in
data, the four-jet events in Pythia are re-weighted to the data. The four-jet acceptance calculation
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cannot be performed with the AHJ MC sample due to the DPS filter applied during generation (see
Section 4.1.2).

A comparison between the pT distributions of the four leading jets in data and in Pythia is shown
in Fig. 6.3(a). In the range 30 ≤ pT < 200 GeV, the agreement between the leading jet distributions
is within statistical uncertainties. At pT ≥ 200 GeV, the distribution in the MC is steeper than in
the data, which leads to an observed difference of about 10% at pT = 500 GeV. The same is true
for the second jet, where a good agreement is observed in the range 10 ≤ pT < 120 GeV, while at
pT ≥ 120 GeV a discrepancy of about 15% is observed. In the case of the third and fourth jet, a
good agreement is seen in the range 10 ≤ pT < 30 GeV, while the MC underestimates the data by
about 20% at pT ≥ 30 GeV.
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Figure 6.3: Transverse momentum, pT, spectra of the four highest-pT jets, denoted as p1−4
T in the figures,

in data and in MC, (a) before and (b) after re-weighting of the MC (see text for details). The leading jet pT
distribution in data, in the range 50 < pT < 70 GeV, is used to set the normalization of the distributions in the
MC. The ratio of data to MC is shown in the bottom panels, where statistical uncertainties are shown as the
shaded areas.

As a first attempt to re-weight the MC, the re-weighting factors are calculated from six-dimensional
distributions, constructed from the pT and y of the three measured leading jets. Similar to the
dijet case, the weights are estimated by taking the ratio of the normalized distribution in data to
the corresponding distribution in the MC. Interpolation between pT bins is used to extract a smooth
function from the ratio distribution. Like in the dijet case, this smooth function is applied based on
the pT and y of the three leading particle jets.

The pT distributions of the four leading jets in data and in MC, after applying the correction, are
compared in Fig. 6.3(b). In spite of this approximate “unfolding”, a good agreement between data
and MC across the entire pT range, for all four jets, is observed. A deviation of the order of 10% is
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seen for leading jets with pT ≥ 150 GeV. However, such a difference at this range of pT has no effect
on the acceptance. It is therefore concluded that the correction applied to the MC, based on the three
leading jets, is adequate for the acceptance calculation.

6.6.3 Jet rapidity distributions
A comparison between the y distributions of the two (four) leading jets in dijet (four-jet) events
in data and in Pythia, after re-weighting, is shown in Fig. 6.4(a) (Fig. 6.4(b)). The leading jet y
distributions in data, in the range −1 < y < 1, are used to set the normalization of the distributions
in the MC.
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Figure 6.4: Rapidity, y, distribution of the (a) two (y1−2) and (b) four (y1−4) jets with highest transverse
momentum, pT, in data and in Pythia, after re-weighting the latter (see text for details). The leading jet y
distribution in data, in the range −1 < y < 1, is used to set the normalization of the distributions in the MC.
The ratio of data to MC is shown in the bottom panels, where statistical uncertainties are shown as the shaded
areas.

In the range −2 < y < 2, the y distributions in data and in MC agree to within 10%, both in dijet
and in four-jet events. For dijet events, in the range −3.5 < y < −2.0 (2.0 < y < 3.5), the leading jet
distribution in the MC underestimates the data by about 20% (15%). The sub-leading jet distribution
in data is well described by theMC in these ranges. At the far edges of the detector, |y | > 3.5, the MC
overestimates the data by a factor of 2. In the case of four-jet events, a similar tendency is observed
for the leading jet, while the distributions of the other jets display better agreement with data.

Disagreements between the data and the MC within the fiducial y range of the measurement do not
affect the acceptance calculation. The effect on the acceptance calculation due to the disagreements
seen in the ranges |y | > 4 is minimal. There are relatively few events that migrate into and out of the
fiducial |y | range of the measurement.
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6.6.4 Final acceptance calculation

The values of the acceptance factors, as obtained from the re-weighted MC using Eq. (6.23), are

AA
2 j = 1.113 ± 0.004 (stat.) , AB

2 j = 1.073 ± 0.004 (stat.) and A4 j = 1.125 ± 0.011 (stat.) .

The factors are all above one, reflecting the higher probability for migration towards higher momenta,
due to the very steep jet pT spectrum in dijet and four-jet events. The corresponding value of the
acceptance ratio is

α
4 j
2 j = 0.94 ± 0.01 (stat.) . (6.24)

In order to determine whether the statistical uncertainty on α4 j
2 j should be propagated as a systematic

uncertainty, α4 j
2 j was re-calculated after modifying the re-weighting functions used in Sections 6.6.1

and 6.6.2. Two re-weighting functions were obtained from a confidence interval of one standard
deviation around the nominal function. One function corresponds to the upper edge and one to
the lower edge of the confidence interval. The process of re-weighting Pythia and calculating α4 j

2 j

was then repeated for each function. The resulting values of α4 j
2 j deviate from the nominal value

by 1%. A deviation identical to the statistical uncertainty quoted in Eq. (6.24). Ergo, the statistical
uncertainties in the distributions used for re-weighting are translated to a systematic uncertainty on
the re-weighting functions. In order to account for this, the statistical uncertainty on α4 j

2 j is propagated
as a systematic uncertainty in the following.

6.7 Template samples

Themain challenge in themeasurement ofσeff is to estimate the double parton scattering contribution
to the four-jet data sample. It is impossible to extract complete-DPS and semi-DPS candidate events
on an event by event basis. Therefore, the usual approach is to use the expected distributions of a
variable sensitive to cDPS and sDPS in the data and fit to it the expected templates for the SPS, cDPS
and sDPS contributions. For this purpose, it is essential to first extract the SPS, cDPS and sDPS
samples. The second step is to find or build a variable sensitive to the cDPS and sDPS contributions.
The following sections describe these steps in detail.

6.7.1 Event classification in MC

In the AHJ combination of MC generators, the user can identify the origin of outgoing partons from
the pp collision in the event record. The outgoing partons can be assigned to the primary interaction
from the Alpgen ME generator or to a secondary interaction, generated in Jimmy. The former are
referred to as primary-scatter partons and the latter are referred to as secondary-scatter partons. Once
the outgoing partons are classified, the jets in the event may be matched to outgoing partons and the
event can be classified as a SPS, cDPS or sDPS event.
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6.7.2 Jet to parton matching
The matching of jets to partons relies on the principle of local parton hadron duality [176–178] and
is done in the η − φ plane by calculating

∆Rparton−jet =
√

(ηparton − ηjet)2 + (φparton − φjet)2 , (6.25)

between outgoing partons and jets reconstructed using the anti-kt algorithmwith a distance parameter
R = 0.6. The distribution of the distance ∆Rparton−jet between primary-scatter partons and the closest
jet is shown in Fig. 6.5(a). For 95% of the primary-scatter partons, the parton is within the radius of
the jet, ∆Rparton−jet ≤ 0.6. A drop in the slope of the distribution is seen around ∆Rparton−jet ≈ 1.1.
This indicates that the distance between a jet and the parton from which it originated may extend up
to ∆Rparton−jet = 1.0. Larger distances seen in Fig. 6.5(a) correspond to cases in which the jet does
not originate from the parton. Therefore, a cut on the maximal distance ∆Rparton−jet ≤ 1.0 is applied
when matching jets and partons.
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Figure 6.5: (a) Normalized distributions of the distance ∆Rparton−jet, defined in Eq. (6.25), between primary-
scatter partons and the closest jet. (b) Normalized distributions of the distance ∆Rparton−jet between secondary-
scatter partons and the closest jet before (black dots) and after (blue empty squares) requiring a one-to-one
match (see text for definition). The transverse momentum, pT, of primary-scatter and secondary-scatter partons
(see Section 6.7.1 for definition) is limited from below, pparton

T ≥ 15 GeV.

The distribution of the distance ∆Rparton−jet between secondary-scatter partons and the closest jet
is shown as black dots in Fig. 6.5(b). For 90% of the secondary-scatter partons, the parton is
within the radius of the jet. It can be seen that the distribution for secondary-scatter partons peaks at
∆Rparton−jet = 0.1, unlike the distribution for primary-scatter partonswhich peaks at∆Rparton−jet = 0.0.
This is expected since secondary-scatter partons typically have lower pT and hence produce lower
pT jets. The plateau observed at ∆Rparton−jet ≥ 1.0 corresponds to cases in which the jet closest to
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the secondary-scatter parton originates from a primary-scatter parton. In order to avoid such cases,
the distance ∆Rparton−jet is required to be the shortest out of all combinations of jets and partons in
the event. This produces a one-to-one matching between partons and jets. The distribution of the
distance ∆Rparton−jet for secondary-scatter partons after requiring a one-to-one match is shown as blue
empty squares in Fig. 6.5(b).

Due to the abundance of low-pT secondary-scatter partons in a typical MC event, a scenario in
which a jet with pT ≥ 20 GeV matches a low-pT (∼ 5 GeV) secondary-scatter parton is not rare.
In such a case, the energy of the secondary-scatter parton is likely combined with radiation from
the primary-scatter parton in the jet reconstruction procedure, producing a jet with pT ≥ 20 GeV.
Classifying this jet as originating from a secondary-scatter parton would be wrong. Therefore, an
additional requirement is applied to the partons when performing the jet-to-parton matching,

pparton
T ≥ 15 GeV . (6.26)

This cut on the minimum pT of the parton is aimed to ensure that the jet was initiated by the matched
parton.

The choice of the value 15 GeV as the minimum pT of matched partons was guided by the matching
scale between radiation generated as part of the ME and radiation generated as part of the parton
shower in the AHJ combination of generators (see Section 4.1.2). To check that this value is
appropriate for jets with pjetT ≥ 20 GeV, the pparton

T distribution of primary-scatter partons matching
jets in the range 20 ≤ pjetT ≤ 25 GeV, shown in Fig. 6.6, was studied. It can be seen that most of the
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Figure 6.6: The transverse momentum, pT, distribution of primary-scatter partons matching jets in the range
20 ≤ pjetT ≤ 25 GeV. A parton and a jet are considered matched if ∆Rparton−jet ≤ 1.0. The pT of a primary-scatter
parton (see Section 6.7.1 for definition) is limited from below, pparton

T ≥ 15 GeV.
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jets are initiated by outgoing partons of comparable transverse momentum. The distribution exhibits
a tail towards high pparton

T values from partons which lost some of their transverse momentum to
radiation. A shorter tail towards lower values of pparton

T is cut off by the pparton
T ≥ 15 GeV requirement

applied on the matched partons. Assuming a Gaussian distribution, the estimated fraction of matches
lost due to this threshold is about 4% for jets in the range 20 ≤ pjetT ≤ 25 GeV and about 0.2% for
all jets. Since unmatched jets are classified as originating from the primary interaction and since the
majority of jets are initiated by the primary interaction, the fraction of jets whose origin is wrongly
classified is even smaller.

The matching efficiency is tested in four-jet events which contain at least four primary-scatter partons.
In 99.6% of these events, all four jets match primary-scatter partons. This leads to the conclusion
that for partons with pparton

T ≥ 15 GeV, the matching procedure is fully efficient. Jets not matched to
an outgoing parton with pparton

T ≥ 15 GeV (primary or secondary) are most likely initiated by a parton
from the shower stage of the simulation (Herwig), dressed with energy from the underlying event.
This cannot be checked, since the event record does not contain the necessary information about
partons generated in the shower. The stability of the measurement with respect to the jet-to-parton
matching is discussed in Section 8.3

6.7.3 Single parton scattering sample

The SPS sample has to be extracted from MC event generators which use MPI (and therefore double
parton scattering) to generate the underlying activity accompanying the hard interaction. For a
good description of pQCD and to ascertain the measurement of hard double parton scattering, the
SPS sample should contain all of the soft MPI and underlying activity, without any hard secondary
interactions. By matching partons to jets, as described in the previous section, events from the
inclusive AHJ sample in which none of the leading four jets are matched to a secondary-scatter
parton are selected for the SPS sample. This ensures that none of the jets in the SPS events originate
from hard secondary interactions, while all of the soft MPI and underlying activity is retained in
these events.

A pseudo event display of the four leading particle jets in an event classified as a SPS event is shown
in Fig. 6.7. In this event, all four jets were matched to primary-scatter partons, shown as black squares
in the figure. As was mentioned in Section 6.7.2, this is the case in almost all events with at least
four primary-scatter partons.

6.7.4 Double parton scattering sample

In the picture of double parton scattering advocated here, the two dijet productions are decorrelated.
Therefore, a four-jet cDPS event may be constructed from two overlaid dijet events. To reduce any
dependence of the measurement on the modelling of dijet production in MC, cDPS events are built
from dijet events in data.

The first step in constructing the overlaid dijets sample consists of selecting dijet events from the data
sample. The selection criteria are similar to the dijet selection cuts given in Eq. (5.1), i.e., two jets in
the event, each with pT ≥ 20 GeV and |y | ≤ 4.4. The one crucial difference is an extra cut applied on
additional jets in the event. In order to avoid double counting with the sDPS final state, events with
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Figure 6.7: Pseudo event display of the distribution of the four leading particle jets (filled areas), jet constituents
(brown stars) and primary-scatter partons (full black squares) in the φ − y plane in an event classified as SPS,
where φ is the jet azimuthal angle and y its rapidity. Each jet area color corresponds to the jet transverse
momentum (pT) and the jet pT, in GeV, y and φ are displayed next to it. Primary-scatter partons are defined
in Section 6.7.1.

an additional jet with pT ≥ 20 GeV are rejected. Double counting would occur in case an event with
three jets is overlaid with a dijet event, since such a final state is included in the sDPS sample.

Once a list of dijet events is assembled, pairs of events are overlaid into four-jet events. The conditions
which must be fulfilled in order for a given pair of events to be overlaid are the following:

• none of the four jets overlap, i.e., ∆R jet−jet > 0.6 for anti-kt jets with a distance parameter of
0.6;

• the vertices of the two overlaid events are no more than 10 mm apart in the z direction;

• at least one of the four jets has pT ≥ 42.5 GeV;

• only single-vertex events are used.

The first condition ensures none of the jets would have been merged if the four-jet event was
reconstructed as a real event; the second condition avoids possible bias, due to events where two
jet pairs originate from far-away vertices; the last two conditions are imposed in order to match the
conditions and phase-space cuts in the four-jet sample.

After a pair of dijet events are overlaid into a four-jet event, the jets are re-ordered based on their
pT. As a result, the sub-leading jet in the four-jet overlay event may have originally been either
the sub-leading jet in the first dijet pair, or the leading jet in the second dijet pair. This reflects the
possible scenarios of four-jet cDPS events in data and the limitation of pairing the jets based on their
pT. The ordering in pT of the four reconstructed jets does not necessarily correspond to the two

72



6.7 Template samples

highest-pT jets originating from one interaction and the second pair from the other interaction. This
and other limitations are discussed further in Section 6.8.

For various studies performed using AHJ, it is necessary to extract a cDPS sample from the AHJ
sample in the same manner in which the SPS sample is extracted. Events in AHJ are classified as
cDPS events if two of the four leading jets are matched to primary-scatter partons and the other two
are matched to secondary-scatter partons.

A pseudo event display of a cDPS event extracted from the AHJ sample is shown in Fig. 6.8. It
can be seen that two jets were matched to primary-scatter partons, marked with black squares in the
figure, and two jets were matched to secondary-scatter partons, marked with yellow circles. The
event shown in Fig. 6.8 displays the typical topology of cDPS events. The jets in each pair are of
almost equivalent pT and the distance between them in azimuth is close to π.
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Figure 6.8: Pseudo event display of the distribution of the four leading particle jets (filled areas), jet constituents
(brown stars), primary-scatter partons (full black squares) and secondary-scatter partons (full yellow circles)
in the φ − y plane in an event classified as complete-DPS, where φ is the jet azimuthal angle and y its rapidity.
Each jet area color corresponds to the jet transverse momentum (pT) and the jet pT, in GeV, y and φ are
displayed next to it. Primary-scatter and secondary-scatter partons are defined in Section 6.7.1.

The topology of cDPS events constructed by overlaying two dijet events is compared to the topology
of cDPS events extracted from theAHJ sample. A description of the comparison is given in Chapter 7,
where the measurement methodology is validated in MC. The required distance between jets in the
overlay procedure, ∆R jet−jet > 0.6, and its effect on the measurement is discussed in Section 8.3.

6.7.5 Semi-DPS sample
The semi-DPS sample is extracted from the AHJ sample by matching outgoing partons to jets.
Events in which three of the leading jets are matched to primary-scatter partons and the fourth jet
is matched to a secondary-scatter parton are classified as sDPS events. In principal, a sDPS event
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may be constructed by overlaying three-jet events and dijet events, similar to the way cDPS events
are built for the complete-DPS sample. However, the data cannot be used for this purpose since
it is impossible to know a-priori whether the three-jet event was the result of one or two partonic
interactions. Thus, a sDPS sample extracted from AHJ is used.

A pseudo event display of a sDPS event extracted from the AHJ sample is shown in Fig. 6.9. Three
of the four leading jets were matched to primary-scatter partons, marked with black squares in the
figure, and the fourth jet was matched to a secondary-scatter parton, marked with a yellow circle. An
additional secondary-scatter parton, not matched to any of the four leading jets, is also seen in the
event.
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Figure 6.9: Pseudo event display of the distribution of the four leading particle jets (filled areas), jet constituents
(brown stars), primary-scatter partons (full black squares) and secondary-scatter partons (full yellow circles)
in the φ− y plane in an event classified as semi-DPS, where φ is the jet azimuthal angle and y its rapidity. Each
jet area color corresponds to the jet transverse momentum (pT) and the jet pT, in GeV, y and φ are displayed
next to it. Primary-scatter and secondary-scatter partons are defined in Section 6.7.1.

6.8 Differentiating variables
To determine fcDPS and fsDPS it is necessary to find a variable that is able to differentiate between
four jets produced in a SPS or in a DPS interaction. In a DPS, two dijet interactions occur and should
result in pair-wise pT balanced jets. On the other hand, in a SPS interaction, extra jets are the result
of radiation, so the pair-wise pT balancing happens rather accidentally. Therefore, the topology of
the four jets is expected to be different for DPS events and SPS events.

Correlations are expected between all four jets in the final state of a SPS interaction. These correlations
have several characteristics that could be used to construct variables. For example, one would expect
the third and fourth jets (assumed here to be higher-order radiative corrections to the hard scattering)
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to be close-by in the φ − y plane to the two leading jets. No pair-wise balance in pT and no pair-wise
back-to-back symmetry in azimuth are expected.

In a DPS event, under the assumption of uncorrelated (2→2)×2 QCD interactions, different topologies
should be prominent. For instance, one would expect that there would be pair-wise balance in pT
between the two pairs corresponding to the two interactions. Each pair should be back-to-back in the
transverse plane, and the azimuthal angle between the planes of interactions should have a random
distribution. A random distribution is also expected for the ∆y between the two pairs of jets.

The topology of three of the jets in sDPS events would resemble the topology of the jets in SPS
interactions. In the majority of the events, the third or fourth jet is expected to be collinear in azimuth
with one of the leading jets. In addition, the jet initiated by radiation is expected to be closer, in the
φ− y plane, to the plane defined by the leading interaction. The jet produced in the second interaction
would most likely not be correlated with the other three jets in the event, neither in azimuth nor in
the rapidity space.

The simplest differentiating variables would involve choosing the two pairs among the four jets and
then requiring the jets in each pair to balance in pT or have large azimuthal separation. However,
there are various ways to select two pairs of jets in a four-jet event. One could order the jets in pT
and define the leading pair (the two jets with the highest pT) and the sub-leading pair (remaining two
jets). A more sophisticated method, used in Ref. [74], chooses the pairs that minimize the pair-wise
pT balance. Once the pairs are selected, a variable may be constructed based on one pair of jets, the
two pairs of jets or a multi-dimensional combination of pairs and kinematic properties.

However, such an approach is always limited by the need to select the pairs in each event based on a
priori assumptions. In addition, the use of one kinematic property, for example jet pT, could lead to
large uncertainties stemming from the jet energy scale uncertainty. In the case of a multi-dimensional
combination between kinematic properties like pT balance and the azimuthal angle separation, the
strong correlation between the variables is not taken into account.

For the topology of sDPS events, in which only one of the jets is expected to be uncorrelated with the
rest, pairing of the four jets into two pairs would not serve the goal of differentiating this topology
from the others. In this case, one would need to build a variable which tests the correlation of each
jet with the three other jets in the event. That is, the differentiating variable would be constructed
differently whether the event is a cDPS or sDPS candidate event. Such a complication presents
further limitations on the approach of using a single differentiating variable constructed from the
kinematic properties of the jets.

These limitations were studied and a conclusion was reached that no single variable could encompass
all of the information in the topology of four-jet events in an uncorrelated manner. Therefore, a
different approach was adopted, the use of an artificial neural network (NN). Various variables may
be given as input to the NN (see Section 6.10), a study of possible ones is described in the following.

6.8.1 Possible variables

In constructing possible variables, three guiding principals were followed:

1. use pair-wise relations that have the potential to differentiate SPS and cDPS topologies;
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2. include angular relations between all jets in light of the expected topology of sDPS events;

3. attempt to construct variables least sensitive to systematic uncertainties.

The first two guidelines entail in them the different characteristics of SPS and cDPS events discussed
in Section 6.8. The third guideline led to the usage of ratios of pT in order to avoid large dependencies
on the JES systematic uncertainties. The variables studied as potential input variables for the NN
are,

∆
pT
i j =

���~p
i
T + ~p j

T
���

piT + p j
T

; ∆φi j = ���φi − φ j
��� ; ∆yi j = ���yi − y j

��� ;

p2
T

p1
T

;
p3
T

p1
T

;
p4
T

p1
T

;

|φ1+2 − φ3+4 | ; |φ1+3 − φ2+4 | ; |φ1+4 − φ2+3 | ;

(6.27)

where piT, ~p i
T, yi and φi stand for the scalar and vectorial transverse momentum, rapidity and

azimuthal angle of jet i, respectively, with i = 1, 2, 3, 4. The variables with the sub-script i j are
calculated for all possible combinations, i j = 12, 34, 13, 23, 14, 24. The term φi+ j denotes the
azimuthal angle of the vectorial sum of jets i and j.

6.8.2 Distributions of the variables in the three samples

The distributions of all2 variables are shown in Appendix A.1, where for each variable, three
normalized distributions in the SPS, cDPS and sDPS samples are compared. The variables for which
the three distributions exhibit the largest differences, are discussed in more detail in the following.

A discussion on the variables in an attempt to relate the distributions to the expected event topology
has to be made while taking into account the strong correlation between the variables. The variables
constructed from the pT of two jets, ∆pT

i j , are correlated to the angular difference between the jets,
∆φi j , in a non-linear way. Only a combination of the two contains all the information on the relation
between jets i and j. Therefore, in the discussion below, the distributions of ∆pT

i j and ∆φi j will be
analyzed together in an attempt to describe the topology of the jets in the different samples.

In most cDPS events the two leading jets originate from one interaction and jets 3 and 4 originate
from the other. However, in about 15% of the cDPS events, that is not the case. In the following,
the pairing notation {〈i, j〉〈k, l〉} is used to describe a cDPS event in which jets i and j originate from
one interaction and jets k and l originate from the other.

Transverse momenta and azimuthal angle variables
Normalized distributions of the∆pT

12 and∆pT
34 variables in the SPS, cDPS and sDPS samples are shown

in Fig. 6.10. The corresponding distributions of the ∆φi j variables are shown in Fig. 6.11. In the

2 The distributions of the
piT
p1
T
variables are not shown since their differentiating power was found to be negligible (see

Section 6.10).
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Figure 6.10: Normalized distributions of the variables, (a) ∆pT
12 and (b) ∆pT

34 , defined in Eq. (6.27), in the SPS
(blue histogram, AHJ), cDPS (red histogram, overlaid dijets from data) and sDPS (yellow histogram, AHJ)
samples, selected in the phase-space defined in the legend.

cDPS sample, the ∆pT
12 and ∆pT

34 distributions peak at low values, indicating that both the leading and
the sub-leading jet pairs are balanced in pT. The small peak around unity is likely due to events in
which the correct pairing of the jets is {〈1, 3〉〈2, 4〉}. In the SPS sample, the leading jet-pair exhibits
a wider peak at higher values of ∆pT

12 compared to that in the cDPS sample. This is due to the fact
that the two leading jets cannot balance well in pT, as the second pair of jets carries some of the
momentum of the same hard scatter. A narrower peak around the same values of ∆pT

12 is seen in the
sDPS sample. The smaller width of the peak is attributed to the fact that in sDPS events only one
of the leading jets is likely to lose significant transverse momentum through radiation. Therefore,
the range available for the ratio of transverse momenta between the two leading jets is smaller in the
sDPS sample, compared to the SPS sample.

The balance between the dijet pairs seen in the ∆pT
12 and ∆pT

34 distributions in the cDPS sample is
also seen in the ∆φ12 and ∆φ34 distributions, shown in Fig. 6.11. In the SPS and sDPS samples, the
two leading jets are only approximately back-to-back, resulting in a wider peak around π in ∆φ12,
compared to the cDPS sample.

The distribution of ∆pT
34 in both SPS and sDPS samples is driven by the ∆φ34 distribution shown

in Fig. 6.11(b). As expected, the ∆φ34 distribution is almost uniform. Due to the steeply falling
jet pT spectrum, in the majority of the events p3

T ≈ p4
T ≈ 20 GeV. Introducing the approximation

p3
T ≈ p4

T ≈ pT into ∆pT
34 , the expression for ∆

pT
34 becomes

∆
pT
34 =

���~p
3
T + ~p 4

T
���

p3
T + p4

T
≈

√
2pT + 2pT cos (∆φ34)

2pT
=

√
1 + cos (∆φ34)

√
2

. (6.28)
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Figure 6.11: Normalized distributions of the variables, (a) ∆φ12 and (b) ∆φ34, defined in Eq. (6.27), in the
SPS (blue histogram, AHJ), cDPS (red histogram, overlaid dijets from data) and sDPS (yellow histogram,
AHJ) samples, selected in the phase-space defined in the legend.

As seen in Fig. 6.10(b), the shape of the distribution of ∆pT
34 in the SPS and sDPS samples follows

the shape of the function on the right hand side of Eq. (6.28).

In the∆φ34 distributions in all three samples, a dip is seen at∆φ34 < 0.6. This is a direct consequence
of the jet reconstruction algorithm in the SPS and sDPS samples and of the overlay requirements in
the cDPS sample. In the jet reconstruction algorithm, the distance parameter, R = 0.6, dictates how
close jets can be to each other before they are merged into one jet. Therefore, jets close to each other
in φ must be far away in y, a limitation causing the dip seen in the distributions. The dip is less
pronounced in the sDPS case since, as expected, the ∆y34 distribution in this sample is wider (see
Fig. 6.12(a)).

Rapidity based variables
The set of variables quantifying the distance between jets in rapidity, ∆yi j , is particularly important
for the sDPS topology. As seen in the ∆φi j distributions, the azimuthal distance between jets in the
SPS sample may be large and in general have a similar distribution as in the sDPS sample. However,
in SPS interactions leading to the four-jet final state, the radiated jets are expected to span the rapidity
area between the radiating jets. Hence, on average, smaller distances between non-leading jets are
expected in the SPS sample compared to the sDPS sample.

Normalized distributions of the ∆y34 variable in the SPS, cDPS and sDPS samples are shown in
Fig. 6.12(a). The distributions in the SPS and cDPS samples are similar, apart from at ∆y34 < 2
where a peak structure is observed in the SPS sample, most likely due to events in which jets 3 and 4
are radiated off the same jet.
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Figure 6.12: Normalized distributions of the variables, (a) ∆y34 and (b) φ1+2 − φ3+4, defined in Eq. (6.27), in
the SPS (blue histogram, AHJ), cDPS (red histogram, overlaid dijets from data) and sDPS (yellow histogram,
AHJ) samples, selected in the phase-space defined in the legend.

The distribution of the ∆y34 variable in the sDPS sample is wider than in the other two samples,
as expected from the sDPS topology. In 95% of the sDPS events, jets 3 and 4 are initiated by two
different interactions. Therefore, their position in the φ− y plane is expected to be uncorrelated. This
translates into a larger distance, on average, between them, as seen in figure Fig. 6.12(a).

Dijet planes based variables
The φi+ j − φk+l variables represent the azimuthal angle between the planes defined by the two dijet
pairs. Normalized distributions of the φ1+2 − φ3+4 variable in the SPS, cDPS and sDPS samples are
shown in Fig. 6.12(b).

Since in the cDPS sample, the two dijet events are randomly overlaid, the angle between the planes
defined by the leading dijet pair and sub-leading dijet pair is expected to have a uniform distribution.
This is clearly seen in the plateau of the distribution of φ1+2 − φ3+4 in the cDPS sample. The
enhancement at π represents events in which the pairing of the jets may be either {〈1, 3〉〈2, 4〉} or
{〈1, 4〉〈2, 3〉}.

The peak at π seen in the SPS sample in the φ1+2 − φ3+4 distribution is a direct result of momentum
conservation. The four jets in the event should, up to extra jets in the event, balance in the transverse
plane. Therefore, the two jets constructed by vectorially adding the pairs of jets in the event are
forced to be back-to-back, as clearly indicated by the peak at π. A wider peak around π is evident
in the sDPS sample, indicating that the four leading jets in the event do not balance as well in the
transverse plane, compared with SPS interactions. The notion of sDPS events, as portrayed in this
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analysis, dictates the existence of (at least) five jets in the final state. Thus, the four leading jets in
sDPS events are not expected to fully balance each other in pT.

Conclusions based on the distributions of the variables
The study of the various distributions of the variables in the three samples may be summed up as
follows:

• strong correlations between all the variables are observed - The ∆pT
i j and ∆φi j variables

are correlated in a non-linear way, while geometrical constraints correlate the ∆yi j and ∆φi j
variables. Transverse momentum conservation relate the φi+ j − φk+l variables with the ∆pT

i j
and ∆φi j variables;

• a clear separation between all three samples is not observed in any of the variables - The
variables in which a large discrepancy is observed between the SPS and cDPS distributions,
e.g., ∆pT

34 , do not provide any differentiating power between SPS and sDPS;

• all variables are important - In cDPS events, where the pairing of the jets is different from
{〈1, 2〉〈3, 4〉}, variables relating the other possible pairs, e.g., ∆φ13, may hint as to which is the
correct pairing.

These conclusions lead to the decision to use a multivariate technique in the form of an NN.

6.9 Principal component analysis
The capability of each of the variables defined in Eq. (6.27) to differentiate between SPS, cDPS and
sDPS events was tested with the help of principal component analysis (PCA) [179]. The principal
components (PC) are calculated using all the variables listed in Eq. (6.27) in a sample constructed by
joining the three individual samples. The transformation of the variables to PC is defined in such a
way that the first principal component has the largest possible variance, i.e., it accounts for the largest
spread in the sample. Each subsequent component in turn has the highest variance possible under
the constraint that it is linearly uncorrelated with the preceding components.

A comparison between the variances of the PC in SPS, cDPS and sDPS events is shown in Fig. 6.13.
The relative difference between the variances of each principal component,

Ω
i
SPS =

|σi − σSPS |

σSPS
, (6.29)

is calculated separately for the cDPS and sDPS samples and shown in the bottom panel of Fig. 6.13.
The term σi in Eq. (6.29) denotes the variance for a given principal component in the sample i.
A large value of Ωi

SPS for a given principal component corresponds to a higher capability of this
component to differentiate between the three classes of events.

The variance values of the first two PC in Fig. 6.13 are of similar magnitude. About 44% of the
variance of the combined sample is accounted for in the first two PC. A gradual drop in variance
is seen for the subsequent components, until the 19th component, where a large drop in variance is
observed. To account for ∼95% of the variance in the sample, the first 12 components are necessary.
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Figure 6.13: Variance values for the principal components calculated in the combined sample of SPS, cDPS
and sDPS, selected in the phase-space defined in the legend, shown separately for each sample, as indicated.
The relative difference between the variances of each principal component, defined in Eq. (6.29), is shown in
the lower panel.

A large value of ΩcDPS
SPS is observed for the first three PC. The sixth principal component displays the

largest value of ΩsDPS
SPS , suggesting it is capable to differentiate between sDPS and SPS.

Each group of variables was tested by comparing the difference in variance of the PC with and
without the group included in the PCA. For this comparison, the difference in variance,

ωi
SPS = |σi − σSPS | , (6.30)

is used, where i refers to either cDPS or sDPS. The PCA is repeated five times, each time after
removing one group of variables from the full list of variables. Thus, six sets of PC are obtained, one
calculated using all the variables and five calculated with one group missing. The values of ωi

SPS for
each principal component in each set are shown in Figs. 6.14(a) and 6.14(b) in the cDPS and sDPS
samples, respectively. A drop in the value of ωi

SPS for a given principal component after removing a
group of variables is interpreted as a loss of differentiating power, while taking into account that the
new set of PC is not identical to the original one.

Separation between SPS and cDPS
Comparing the ωcDPS

SPS values obtained using all variables to the values obtained after removing the
∆
pT
i j or ∆φi j variables, a significant decrease is observed in the differentiating power between SPS

and cDPS. On the other hand, removing the ∆yi j variables has a negligible effect. The drop in
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Figure 6.14: Values of (a)ωcDPS
SPS and (b)ωsDPS

SPS , defined in Eq. (6.30), for each principal component calculated
in the combined sample of SPS, cDPS and sDPS, selected in the phase-space defined in the legend, using all
the variables listed in Eq. (6.27) and after removing each group of variables as indicated in the legend.

ωcDPS
SPS value after removing the ���φi+ j − φk+l

��� variables is significant in the first principal component,
suggesting it is partially constructed from these variables.

The piT/p1
T variables have a small effect on the differentiating power between SPS and cDPS. The

visible decrease in the ωcDPS
SPS value for the first principal component is compensated by a rise in the

ωcDPS
SPS value for the second principal component.

Separation between SPS and sDPS
The conclusions reached in the cDPS case on the differentiating power of the ∆pT

i j , ∆φi j and
���φi+ j − φk+l

��� variables apply also in the sDPS case. The difference occurs for the ∆yi j variables in
the sDPS case. As mentioned, when performing the PCA with all the variables, the sixth principal
component has potential to separate between SPS and sDPS. Removing the ∆yi j variables leads
to a significant drop in the ωsDPS

SPS value for the sixth principal component, without a visible rise
in any other principal component. This suggests that the ∆yi j variables are mapped to the sixth
principal component and contribute significantly to the differentiating power between sDPS and SPS,
as expected.

A similar drop for the sixth principal component is seenwhen removing the piT/p1
T variables. However,

an almost identical rise in the value of ωsDPS
SPS is observed for the fifth principal component. It is

therefore likely that removing the piT/p1
T variables leads to the ∆yi j variables being mapped to the

fifth principal component. Hence, the observed drop is misleading and the piT/p1
T variables are not

capable of separating sDPS and SPS.
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Conclusions based on PCA
The PCA is a useful tool used to reduce the amount of variables required to classify events. Here
it demonstrated that the ∆yi j variables do not contribute to the separation between SPS and cDPS,
while playing an important role in classifying sDPS events. The piT/p1

T variables show the least
classification power out of all the variables, therefore they were removed from the list of variables
given as input to the NN.

6.10 Extraction of the fraction of DPS events using a neural
network

It has been shown that artificial neural network computing is a powerful method of solving complex
problems, such as pattern recognition [180], regression [181] and classification [182]. The advantage
of using anNN to construct a differentiating variable is that it allows the use of asmany input variables
as can be constructed from the four-jet topology, while taking into account the correlation between
the variables on an event by event basis. For each event, the NN receives information describing
the topology of the four jets in the event and returns three probabilities for the event to be SPS,
cDPS or sDPS. Essentially, the NN folds the N dimensions of the N input variables into two
dimensions, while fully taking into account the correlations between the input variables. The two
dimensions take the form of three NN output variables, ξSPS, ξcDPS and ξsDPS, with the constraint,
ξSPS + ξcDPS + ξsDPS = 1.

6.10.1 Training of the neural network

Once the three input samples for the NN are prepared, events from each sample are divided into two
(statistically independent) sub-samples, the training sample and the test sample. As the names imply,
the former is used to train the NN, and the latter to test the robustness of the result. The samples are
weighted such that the same effective number of events from the SPS, cDPS and sDPS samples is
used for the training of the NN. In all subsequent figures, only the test SPS, cDPS and sDPS samples
are shown.

The NN is a feed-forward multilayer perceptron, implemented in the Root analysis framework [183].
The Broyden-Fletcher-Goldfarb-Shanno [184–187] supervised learning algorithm is used in the
training, utilizing back-propagation to update the weights based on a set of examples.

Studies [188,189] have shown that given enough hidden neurons in one layer, the NN can approximate
any continuous function. However, in practice, this requires a very large number of hidden neurons
in the one layer. On the other hand, if two hidden layers are used, a more modest number of hidden
neurons is needed to reach the same numerical accuracy [190]. Therefore, in order to achieve high
numerical accuracy and shorter convergence time, the final structure of the NN used here consists of
two hidden layers.

The input layer has 21 neurons, corresponding to the variables selected as input variables to the
NN, the first and second hidden layers have 30 and nine neurons, respectively, and the output of the
network consists of three neurons. A sigmoid function is used as the activation function of hidden
neurons and a linear activation function is used in neurons in the input layer. These choices represent
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the product of an optimization study on the performance of the NN and balance the complexity of
the network with the computation time of the training.

The PCA described in Section 6.9 transforms a set of linearly correlated variables into a set of
uncorrelated PC. However, as demonstrated in Section 6.8.2, the variables defined in Eq. (6.27) are
correlated in a non-linear way. Since the NN is capable of resolving non-linear correlations between
the input variables [188], the PC computed in Section 6.9 are not used as input. Instead, the original
variables are given as input to the NN.

For the training process, three flags are used to mark each event as belonging to one of the samples;
e.g., an event from the cDPS sample is marked as

ξSPS = 0, ξcDPS = 1, ξsDPS = 0.

Each output of the NN, ξi , is normalized to values in the range [0, 1] by using a softmax function
at the output layer. The input variables are normalized as well, in order not to cause a numeric bias
towards variables with larger values.

During the training phase of the NN, weights between the various neurons are modified, changing
the output of the network. The result is quantified by an error function, ENN, which measures the
agreement of the response of the network with the desired result. Figure 6.15(a) shows the value of
ENN as a function of the number of training cycles (epochs) of the network. The training should be
stopped when the value of ENN begins to rise for the test sample while it continues to fall for the
training sample. Here, training was stopped after 1300 epochs, as ENN converged to a stable value
for the training sample and there was a slight indication of a rise in the value of ENN for the test
sample.

6.10.2 Significance of variables to the output of the neural network

The chosen structure of the NN and the final set of weights after completion of the training are
illustrated in Fig. 6.15(b). The circles represent neurons, where each column stands for a layer of the
network, and the width of a connecting line between neurons is proportional to the magnitude of the
respective weight. The larger the weight of a given neuron, the more significant the contribution of
the corresponding variable.

A more quantitative presentation of the significance of each input variable is given in Fig. 6.16. For
each event in the test samples, small variations, ±ε, are made to the value of each input variable and
the difference between the corresponding NN output values, ∆ξNN, is recorded. The small variation
for each variable was chosen to be 10% of the RMS of the variable distribution, ε = 0.1 × RMS,
where the RMS is calculated after normalizing the variables to the range [0, 1]. The difference ∆ξNN
is calculated as

∆ξNN =
√

(ξ+εSPS − ξ
−ε
SPS)2 + (ξ+εcDPS − ξ

−ε
cDPS)2 + (ξ+εsDPS − ξ

−ε
sDPS)2 , (6.31)

where ξ±εi signifies the value of ξi after the variation ±ε is made to one of the input variables. After
repeating the calculation of ∆ξNN for each input variable and for all the events in the test samples,
the resulting distributions are compared, as shown in Fig. 6.16. High values of ∆ξNN are interpreted

84



6.10 Extraction of the fraction of DPS events using a neural network

Epoch

1 10 210 310

N
N

E

0.7

0.75

0.8

0.85
Training sample

Test sample

 = 0.6R jets, tkanti-

 42.5 GeV≥ 1
T

p

 20 GeV≥ 2,3,4

T
p

 = 1
PV

 4.4, N≤| 
1-4

η|

 internalATLAS

(a)

T
p

12∆

T
p

34∆

T
p

13∆

T
p

23∆

T
p

14∆

T
p

24∆
12

φ∆
34

φ∆
13

φ∆
23

φ∆
14

φ∆
24

φ∆
12

y∆
34

y∆
13

y∆
23

y∆
14

y∆
24

y∆
3 + 4

φ - 
1 + 2

φ
2 + 4

φ - 
1 + 3

φ
2 + 3

φ - 
1 + 4

φ

SPS
ξ

sDPS
ξ

cDPS
ξ

 internalATLAS

(b)

Figure 6.15: (a) Dependence of the value of the error function of the NN, ENN, on the number of training cycles
(epochs) of the network, for the NN training and test samples, as indicated in the figure. (b) Schematic depiction
of the structure of the NN, where neurons are denoted by blue circles, layers are denoted by columns of circles,
and lines represent the weights which connect neuron pairs, where the thickness of a line is proportional to
the relative magnitude of the corresponding weight. Each input variable, denoted next to each input neuron
and defined in Eq. (6.27), corresponds to a neuron in the first layer of the network. The outputs of the NN are
denoted by ξi .

as high significance of the corresponding input variable to the NN output. This serves as a test for
which variables are useful for classification.

As the topology of double parton scattering would lead us to expect, the most significant variables
are the variables representing the “back-to-back”-ness of the sub-leading dijet pair, ∆pT

34 and ∆φ34.
The variable representing the angle between the planes of the leading dijet pair and the sub-leading
dijet pair, φ1+2 − φ3+4, exhibits strong significance as well.

6.10.3 Output of the neural network

Since the NN outputs are three probabilities, their sum is normalized to one, ξSPS+ ξcDPS+ ξsDPS = 1.
With this normalization, the three outputs of the NN for each event may be plotted as a single point
inside an equilateral triangle (Dalitz plot). A point in the triangle expresses the three probabilities
as three distances from each of the sides of the triangle. The vertices would therefore be populated
according to the probability to belong to one of the samples. Events assigned high probabilities
are pushed into the vertices. Plotting the NN outputs on a Dalitz plot this way helps visualize
the classification power of the NN. Figure 6.17 shows an illustration of the Dalitz plot, where the
horizontal axis corresponds to 1√

3
ξsDPS +

2√
3
ξcDPS and the vertical axis to the value of ξsDPS. The

corners of the triangle are then divided to the three classes of events as illustrated in Fig. 6.17.
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Figure 6.16: Distributions of the difference in the output of the NN, ∆ξNN, for all events in the test sample,
selected in the phase-space defined in the legend, as calculated by making small variations, ±ε, to each input
variable to the NN (see text for details). Input variables are defined in Eq. (6.27) and their corresponding
distributions are indicated in the legend.

The separation power of theNNmay be judged by examining the distributions of the three test samples
in the Dalitz plot, as shown in Fig. 6.18. The distributions are drawn in three-dimensions, where the
number of events in each bin is proportional to the area of the box drawn. The dashed horizontal
lines in Fig. 6.18 mark the slices the triangle is divided to for visualization of the distributions, as
discussed in Section 6.11.

Three clusters are visible in Fig. 6.18. The clearest peak is seen in the bottom right corner, of events
from the cDPS sample. However, a contribution from SPS events in the same corner is also visible.
The bottom left corner is mostly populated by SPS events, where a sharp peak is visible in the corner.
A lower ridge of SPS events extending towards the sDPS corner is observed as well. A visible peak
of sDPS events is seen, though it is not concentrated in the top corner. The peak is concentrated
around ξsDPS ∼ 0.8 and along the side connecting the SPS and sDPS corners.

The peak structure seen in Fig. 6.18 suggests that the NN is able to classify cDPS events with some
overlap of SPS events. The latter confirms the assumption that some SPS interactions result in a
topology similar to the one seen in cDPS events. Ergo, a cut based classification would lead to an
impure sample of cDPS events. Classification of sDPS events is a harder task, as seen from the peak
structure in Fig. 6.18. The topologies of SPS and sDPS events overlap even more, so the classification
power of the NN is lower than in the cDPS case.

Based on the results seen above, it is clear that classification of cDPS and sDPS events on an event
by event basis is impossible. However, the peak structure suggests that estimation of the different
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the constraint, ξSPS + ξcDPS + ξsDPS = 1. The vertical and horizontal axes are defined in the figure. Each event
is translated to a point in the triangle by applying the NN and mapping the outputs to the two-dimensional
Dalitz plot. The distance of the point from the three triangle sides may be used to classify the event as coming
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Figure 6.18: Normalized distributions of the NN outputs, mapped to a two-dimensional Dalitz plot as
described in the text, in the SPS (blue), cDPS (red) and sDPS (yellow) test samples selected in the phase-space
defined in the legend. For each sample, the relative number of events in each bin is proportional to the area of
the box drawn. The dashed horizontal lines show the five slices used to visualize the fit results.
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contributions may be performed.

6.11 Estimate of the cDPS and sDPS contributions
To estimate the cDPS and sDPS fractions in four-jet events, the two-dimensional Dalitz distribution
in data (D) is fitted to a weighted sum of the SPS (MSPS), cDPS (McDPS) and sDPS (MsDPS)
distributions, each normalized to the measured four-jet cross-section in data, with the fractions as
free parameters. The optimal fractions are obtained using a fit of the form,

D = (1 − fcDPS − fsDPS) · MSPS + fcDPS · McDPS + fsDPS · MsDPS , (6.32)

where a χ2 minimization is performed, as implemented in the Minuit package in Root [183], taking
into account statistical uncertainties of all the samples in each bin.

In order to visualize the results of the fit, the triangle shown in Fig. 6.18 is divided into five slices,

1. 0.0 ≤ ξsDPS < 0.1,

2. 0.1 ≤ ξsDPS < 0.3,

3. 0.3 ≤ ξsDPS < 0.5,

4. 0.5 ≤ ξsDPS < 0.7,

5. 0.7 ≤ ξsDPS ≤ 1.0,

as illustrated by the dashed horizontal lines in Fig. 6.18. The fit is performed in two dimensions, but
the fit results and NN output distributions are shown in the one-dimensional slices.

The fit to the NN output distribution in four-jet events in data is shown in Figs. 6.19, the results
of which will be discussed in detail in Section 9.1. The distributions for four-jet events in data are
compared to a combination of the SPS, cDPS and sDPS fractional contributions, based on the results
from the fit. A validation of the methodology proposed here is given in the next section.
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Figure 6.19: Distributions of the NN outputs, 1√
3
ξsDPS +

2√
3
ξcDPS, in the ξsDPS ranges indicated in the figures,

for four-jet events in data (dots), selected in the phase space defined in the legend, compared to the result
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contributions, the sum of which is shown as the green histogram. The fractions obtained and the quality
criteria of the fit, χ2/NDF, are indicated in the legend.
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CHAPTER7
Methodology validation
The measurement methodology requires extensive validation. For this purpose, the inclusive AHJ
sample is used to mimic the data and the NN is applied to the AHJ events. Fitting the NN output
distributions of the SPS, cDPS and sDPS samples to the NN output distribution of the inclusive
AHJ sample allows to estimate the fractions of double parton scattering in the inclusive AHJ sample,
f (MC)
cDPS and f (MC)

sDPS . The cDPS and sDPS fractions on parton-level in the AHJ sample, f (P)
cDPS and

f (P)
sDPS , can be extracted directly from the event record. A comparison of f (P)

cDPS and f (P)
sDPS with the

values obtained from the fit to the inclusive AHJ sample, f (MC)
cDPS and f (MC)

sDPS , serves as validation for
the measurement methodology.

7.1 Determination of the fraction of double parton scattering on
parton-level

Todetermine the parton-level cDPS and sDPS fractions in theAHJ sample, the cuts defined inEq. (5.1)
were applied to the sample. Namely, only events passing the following cuts at the reconstructed level
are retained:

• exactly one reconstructed vertex, NPV = 1;

• the four leading jets in the event are within |η | ≤ 4.4;

• the transverse momentum of the leading jet obeys p1
T ≥ 42.5 GeV;

• the transverse momenta of the three sub-leading jets obey, p2,3,4
T ≥ 20 GeV.

Thus, a four-jet AHJ sample equivalent to the four-jet data sample is selected. The next step is to
classify the events as SPS, cDPS and sDPS events on parton-level.

The process of selecting SPS, cDPS and sDPS events from the AHJ sample based on partonic
information is described in Section 6.7.1. Briefly, outgoing partons from the interactions are matched
to the four leading jets in the event. In case the four jets match two primary-scatter partons and two
secondary-scatter partons, the event is classified as a cDPS event. Events where three primary-scatter
partons match three jets and one secondary-scatter parton matches one jet are classified as sDPS
events. In case none of the four jets matches a secondary-scatter parton, the event is classified as
coming from a SPS interaction.

Once the events are classified on parton-level to three classes, f (P)
cDPS and f (P)

sDPS are defined as

f (P)
cDPS =

NP(cDPS)
NP(SPS) + NP(cDPS) + NP(sDPS)

, f (P)
sDPS =

NP(sDPS)
NP(SPS) + NP(cDPS) + NP(sDPS)

,

(7.1)
where NP(SPS), NP(cDPS) and NP(sDPS) are the number of SPS, cDPS and sDPS events in the
AHJ sample, respectively. The fractions come out to be

f (P)
cDPS = 0.103 ± 0.001 (stat.), f (P)

sDPS = 0.052 ± 0.001 (stat.). (7.2)
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7.2 Kinematic properties of jets in AHJ

7.2.1 Jet pT-y distributions in AHJ

The inclusive AHJ sample is used as pseudo-data in the validation process. In comparisons of
kinematic properties of the jets, between the data and the AHJ sample, some discrepancies were
found. Figure 7.1 shows a comparison between the data and the AHJ sample of the pT and y

distributions of the four leading jets. In subsequent figures comparing pT (y) distributions, the
leading jet pT (y) distribution in data, in the range 50 < pT < 70 GeV (−1.0 < y < 1.0), is used to
set the normalization of the distributions in the MC.

In the range 20 < pT < 30 GeV, theMC underestimates the data by 45%, 15% and 5% for the second,
third and fourth jet, respectively. Above 30 GeV, the MC overestimates the data by about 5% for the
second jet and by 15% for the third and fourth jet. The leading jet pT distributions in data and MC
agree within 5% in the range 42.5 ≤ pT < 100 GeV. Above 100 GeV, the distribution in the MC
starts falling less steeply than in the data, overestimating the data by about 20%.
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Figure 7.1: Distributions of the (a) transverse momentum, pT, and (b) rapidity, y, of the four highest-pT jets,
denoted as p1−4

T and y1−4 in the figures, in data and in AHJ. The leading jet pT (y) distribution in data, in the
range 50 < pT < 70 GeV (−1.0 < y < 1.0), is used to set the normalization of the distributions in the MC.
The ratio of data to MC is shown in the bottom panels, where statistical uncertainties are shown as the shaded
areas.

A disagreement is also seen in the y distributions shown in Fig. 7.1(b). The MC exhibits more jets at
high rapidity, |y | > 3.5. The difference is largest for the leading jet, reaching 40% in both extremes
of the rapidity range.
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7.2.2 Variables distributions in data and in AHJ

These differences between data and MC in the basic kinematic properties of the jets are exhibited as
differences in the distributions of the NN input variables as well. Two representative comparisons
between data and MC are shown in Fig. 7.2. Distributions in the MC are rescaled to the cross-section
measured in data. The distributions of the ∆pT

12 input variable in data and MC are compared in
Fig. 7.2(a), where in addition to the inclusive MC distribution, the SPS, cDPS and sDPS distributions
composing the inclusive AHJ sample are shown with their respective fractions. The two leading jets
in MC appear to be more balanced than in the data, as reflected by a shift of the peak to lower values.
This is consistent with the observation that in data the sub-leading jet is of lower pT than in the MC.
Considering the minimum pT cut on the leading jet, pT ≥ 42.5 GeV, a sub-leading jet of lower pT
would lead to less balanced leading dijets.
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Figure 7.2: Comparison between the distributions of the variables (a) ∆pT
12 and (b) ∆y12, defined in Eq. (6.27),

in four-jet events in data (dots), selected in the phase space defined in the figure, and in the AHJ MC (green
histogram). Also shown are the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram)
contributions with their respective fractions indicated in the legend. The distributions of the MC are rescaled
to the cross-section measured in data.

A comparison between the distributions of the ∆y12 input variable in data and MC is shown in
Fig. 7.2(b), where similarly the various contributions to the AHJ sample are shown. The distance ∆y
between the leading jets in the MC is larger, on average, than in data, producing the wider distribution
seen in the figure. This observation is consistent with the jet y distributions shown in Fig. 7.1(b).
More jets in high y regions in the MC translates to a larger distance between the jets, particularly for
the leading jet, for which the largest difference is seen between data and MC.
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7.2.3 Re-weighting of AHJ

To correct for the discrepancies in the kinematic properties of four-jet events between data and AHJ, a
re-weighting of AHJ is required. Since the migration of events into and out of the phase-space of the
measurement is taken into account in the acceptance calculation (see Section 6.6), the re-weighting is
applied in the same phase-space as the one defined for the measurement. In addition, the re-weighting
factors are calculated using reconstructed jets, rather than particle jets.

To reach a good description of the topology of four-jet events in data, the re-weighting is performed
based on eight-dimensional distributions, constructed from the pT and y of the four leading jets.
Normalized, eight-dimensional pT-y distributions are constructed in data and in AHJ and the ratio
between them produces a discrete, bin-by-bin, re-weighting function. The weight correction is then
applied to each event in AHJ based on the pT and y of the four leading jets.

Since jets in cDPS and sDPS events are expected to populate more the low pT end of the spectrum
than the high pT one, there is a risk that the re-weighting would change their relative fractions by a
significant amount. That is, based on the discrepancies seen in Fig. 7.1(a), events in AHJ with jets
in the range 20 < p2,3,4

T < 30 GeV will be given about 20% higher weight and events with jets in
the range 30 < p3,4

T < 60 GeV will be given about 15% lower weight. Modifying the fractions of
cDPS and sDPS in AHJ could have an effect on the measurement in data. Therefore, the fractions are
re-calculated after the re-weighting in order to ascertain that they were not modified by a significant
amount.

The pT distributions of the four jets in data and MC after the correction are shown in Fig. 7.3(a). At
low pT, pT ≤ 40 GeV, the distributions in data and MC agree to within 5%, while as pT increases the
agreement deteriorates to be within 10%, until reaching a range in which it is not possible to make a
statistically significant comparison.

The y distributions of the four jets in data andMC after re-weighting theMC are shown in Fig. 7.3(b).
The distributions in data and MC agree to within 5% across the entire range.

7.2.4 Variables distributions after re-weighting AHJ

A comparison of the distributions of the ∆pT
12 and ∆y12 variables in data and MC after re-weighting

is shown in Fig. 7.4. The distributions in the MC are rescaled to the cross-section measured in data.
Distributions of SPS, cDPS and sDPS events in the AHJ sample are shown as well, normalized to
their respective contribution to the AHJ sample.

The shift in the peak position in the∆pT
12 distribution in theMCwith respect to the data (see Fig. 7.4(a))

has been reduced significantly, leading to an overall better agreement with data. The width of the
∆y12 distribution in MC was reduced as a result of the re-weighting (see Fig. 7.4(b)). The MC
agrees with the data across the ∆y12 range, except for the lowest bin, ∆y12 < 0.2, where the MC
underestimates the data by about 5%, beyond the statistical uncertainty which is of the order of 2%
in this bin. This discrepancy was studied further, examining the shape of the events in this bin in an
attempt to understand the source of the difference. However, no obvious candidates of background
processes or mis-modelling of the MC were found. Therefore, the disagreement is considered to be
the result of a statistical fluctuation.
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Figure 7.3: Distributions of the (a) transverse momentum, pT, and (b) rapidity, y, of the four highest-pT jets,
denoted as p1−4

T and y1−4 in the figures, in data and in AHJ, after re-weighting the latter. The leading jet pT (y)
distribution in data, in the range 50 < pT < 70 GeV (−1.0 < y < 1.0), is used to set the normalization of the
distributions in the MC. The ratio of data to MC is shown in the bottom panels, where statistical uncertainties
are shown as the shaded areas.

The improvement in the description of the data, obtained by re-weighting of theMC sample, is seen in
all distributions of the input variables, with the exception discussed in Section 7.3. In the following,
all of the distributions extracted from the AHJ sample are taken from the re-weighted sample. The
systematic uncertainty associated with the re-weighting of AHJ is discussed in Section 8.2.1.

7.2.5 Fractions of DPS after re-weighting AHJ

The fractions, f (P)
cDPS and f (P)

sDPS , after the re-weighting are re-calculated and come out to be

f (P)
cDPS = 0.094 ± 0.001 (stat.), f (P)

sDPS = 0.048 ± 0.001 (stat.) . (7.3)

A relatively small change is observed, compared to the average value of the correction (∼20%),
confirming that the re-weighting is safe to perform. The small change in the fractions, together with
the fact that the majority of theAHJ sample is composed of SPS events (85%), leads to the conclusion
that re-weighting AHJ essentially re-weights the SPS sample.

7.3 Double parton scattering fraction in AHJ
A discrepancy is found in the ∆pT

34 and ∆φ34 distributions between the data and MC before and after
re-weighting. Comparisons of the ∆pT

34 and ∆φ34 distributions in data and in the re-weighted AHJ
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Figure 7.4: Comparison between the distributions of the variables (a) ∆pT
12 and (b) ∆y12, defined in Eq. (6.27),

in four-jet events in data (dots), selected in the phase space defined in the figure, and in the AHJ MC after
re-weighting (green histogram). Also shown are the SPS (blue histogram), cDPS (red histogram) and sDPS
(yellow histogram) contributions with their respective fractions indicated in the legend. The distributions of
the MC are rescaled to the cross-section measured in data.

sample are shown in Fig. 7.5. The distributions of the MC are rescaled to the cross-section measured
in data. Also shown are the SPS (85.8%), cDPS (9.4%) and sDPS (4.8%) contributions to the AHJ,
scaled to their respective fractions. TheMC overestimates the data at low values of∆pT

34 by about 14%,
summed over the first four bins in Fig. 7.5(a). A similar and related overestimation is seen in the
∆φ34 distributions, shown in Fig. 7.5(b), where the area below the peak at π is about 13% larger in
the MC than in data. These excesses suggest that there are more sub-leading jets (jets 3 and 4) which
are back-to-back in the MC than in the data.

The improvement in the discrepancies seen in the distributions of the variables after re-weighting
(see Section 7.2.4) is not observed for the ∆pT

34 and ∆φ34 distributions. The re-weighting does not
affect these variables since they are driven by the topology of jets 3 and 4 in the φ plane, rather than
their pT and y.

Two hypotheses were considered as possible sources of the abundance of back-to-back jets in the MC
with respect to the data,

1. a mis-modelling of SPS interactions in AHJ;

2. a larger fraction of DPS in AHJ compared to data.

It is crucial to test which of the two options is correct, since a mis-modelling of SPS in AHJ which
leads to more back-to-back jets would have a very large effect on the measurement. In case the
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Figure 7.5: Comparison between the distributions of the variables (a) ∆pT
34 and (b) ∆φ34, defined in Eq. (6.27),

in four-jet events in data (dots), selected in the phase space defined in the figure, and in the AHJ MC (green
histogram). Also shown are the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram)
contributions with their respective fractions indicated in the legend. The distributions of the MC are rescaled
to the cross-section measured in data.

fraction of DPS in AHJ turns out to be the culprit, it will have no consequence on the measurement,
since the fractions in AHJ do not play a role in the estimation of the fractions in data.

To test the first hypothesis, the distributions in the SPS sample extracted from AHJ were compared to
the distributions of a SPS sample from a different MC. Since it is impossible to select SPS events in
data, a comparison to a different MC sample is the only option available. For this purpose, a multi-jet
QCD sample was generated with the Sherpa generator.

Similarly to AHJ, albeit with a different matching scheme, the CKKW matching scale of Sherpa is
set to 15 GeV. This implies that partons with pT above 15 GeV in the final state, necessarily originate
from matrix elements, and not from the parton shower. Most jets passing the pT ≥ 20 GeV cut are
therefore associated with the hard interaction (cf. Section 6.7.2).

The Sherpa generator does not allow access in the event record to the partons participating in the
main and accompanying interactions. Therefore, it is impossible to extract a SPS sample from an
inclusive four-jet QCD sample generated with Sherpa as is done in the AHJ case. Subsequently, a
different approach was taken. In the generation process, the module adding multi-parton interactions
to the main interactions was turned off (see Chapter 4).

Turning off completely the MPI module in Sherpa removes all soft and hard interactions accompa-
nying the main interactions. This is equivalent to rejecting all events with secondary-scatter partons
with pT ≥ 3.5 GeV in the AHJ sample. Hence, the two SPS samples from AHJ and Sherpa are not
exactly equivalent. However, considering the identical matching scale between the AHJ and Sherpa
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samples and the fact that in most SPS events extracted from the AHJ sample, the jets were matched
to partons originating from the matrix elements, the two SPS samples should be similar. To phrase it
differently, the four jets in both SPS samples most likely originate from SPS interactions, despite the
different approaches taken in extracting the samples. One caveat is the inclusion of soft secondary
interactions in the AHJ SPS sample which could potentially decorrelate the jets somewhat due to
color reconnection, extra energy flow in the event and so on.

To test the topology of the sub-leading dijet in SPS events extracted from theAHJ sample, distributions
of the ∆pT

34 and ∆φ34 variables in both samples are compared. The same selection process described
in Chapter 5 is applied to the Sherpa sample to select four-jet events. Once four-jet events are
extracted from the Sherpa sample, the topology of the sub-leading dijet may be studied. Normalized
distributions of the ∆pT

34 and ∆φ34 variables in the SPS samples from AHJ and Sherpa are shown in
Fig. 7.6.
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Figure 7.6: Normalized distributions of the variables (a) ∆pT
34 and (b) ∆φ34, defined in Eq. (6.27), in four-jet

SPS events extracted from the AHJ sample (dots, light blue), selected in the phase space defined in the figure,
and in SPS events generated with the Sherpa generator (dark blue histogram).

A good agreement in the shapes of the distributions is observed for both variables. Some small
discrepancies, of the order of a few percent, are observed in a few isolated bins in both distributions,
but these discrepancies are far smaller than the ones observed between the distributions in AHJ and
in data. In addition, the bins in which the differences between the distributions are observed are not
in values specifically related to back-to-back topologies.

To test the effect of the re-weighting on the ∆pT
34 and ∆φ34 distributions, an additional comparison

between Sherpa andAHJ is performed after re-weighting the Sherpa sample. A similar re-weighting
procedure to the one described in Section 7.2.3, using eight-dimensional pT-y distributions, is applied
to the Sherpa sample. In this case, since the Sherpa sample contains only SPS events, it cannot be
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re-weighted based on distributions in data. Therefore, the reference distributions used to calculate
the correction factors are taken from the SPS sample of AHJ after re-weighting the latter to data.

Normalized distributions of the ∆pT
34 and ∆φ34 variables in the re-weighted Sherpa sample are

compared to the corresponding distributions in AHJ in Fig. 7.7. The same good agreement is
observed between the distributions after the re-weighting. It can be seen that the change in the shapes
of the distributions in the Sherpa sample as a result of the re-weighting is minimal. This serves as a
confirmation that these distributions are not sensitive to a pT-y based re-weighting of events.
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Figure 7.7: Normalized distributions of the variables (a) ∆pT
34 and (b) ∆φ34, defined in Eq. (6.27), in four-jet

SPS events extracted from the AHJ sample (dots, light blue), selected in the phase space defined in the figure,
and in SPS events generated with the Sherpa generator (dark blue histogram) after re-weighting.

The topology of SPS events in AHJ and Sherpa is tested further by comparing to that of SPS events
extracted from data. Using the NN output, an almost pure sample (∼99.7%) of SPS events may be
selected from the data by applying the following cuts:

1
√

3
ξsDPS +

2
√

3
ξcDPS ≤ 0.2 , ξsDPS ≤ 0.1 . (7.4)

These cuts are applied to events in data, AHJ and Sherpa and the resulting∆pT
34 and∆φ34 distributions

are compared in Figs. 7.8(a) and (b). The distributions in the MC are normalized to the cross-section
measured in the data. A good agreement is observed between all three distributions, indicating that
the SPS topology is adequately modelled in the MC generators.

Additional comparisons of the distributions of the ∆pT
34 and ∆φ34 variables are shown in Fig. 7.8,

selected in the ranges,

• 0.2 < 1√
3
ξsDPS +

2√
3
ξcDPS ≤ 0.8 , ξsDPS ≤ 0.1 in (c) and (d);
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Figure 7.8: Distributions of the of the variables ∆pT
34 ((a),(c) and(e)) and ∆φ34 ((b), (d) and (f)), defined

in Eq. (6.27), in four-jet events selected in the phase space defined in the figure, in data (dots), AHJ (green
histogram) and SPS events generated with the Sherpa generator (burgundy histogram). The normalization
factor of the distributions in MC is obtained from the ratio of the measured cross-sections in data and MC in
the range defined in Eq. (7.4).
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• 1√
3
ξsDPS +

2√
3
ξcDPS > 0.8 , ξsDPS ≤ 0.1 in (e) and (f).

The normalization factor used for the distributions in MC in the range defined in Eq. (7.4) is used
for the ranges defined above as well. A good agreement is observed between the data and AHJ in
the distributions shown in Figs. 7.8(c) and (d), while Sherpa underestimates the effective number
of events in data by about 20%, particularly in the regions where cDPS is expected to manifest
itself (∆pT

34 < 0.4 and ∆φ34 > 2.2). In the range enriched with cDPS events (∼25%), shown
in Figs. 7.8(e) and (f), the distributions in data lie below the distributions in AHJ and above the
distributions in Sherpa. The effective number of events in AHJ is 21% larger than in data in this
range while in Sherpa it is smaller than in data by about 40%. The former is consistent with the
observation that the fraction of DPS in AHJ is higher than in the data. The latter is expected since
the Sherpa sample was generated with the module adding MPI turned off.

In conclusion, the excess of events with jets 3 and 4 at the back-to-back topology is traced back to an
excess in DPS events in the AHJ sample compared to the data.

7.4 Validation of overlay method
The cDPS sample used in the determination of the fraction of cDPS events in data is constructed
by overlaying two dijet events from data (see Section 6.7.4). In order to ascertain that the topology
of cDPS events is reproducible by overlaying two dijet events, the dijet overlay sample is compared
to the cDPS sample extracted from the AHJ MC. Distributions of the various input variables were
studied. However, since the distributions are one or two-dimensional at most, they are incapable of
representing the full four-jet event topology. Therefore, the most representative distribution of the
event topology as a whole is the NN output distribution. As explained earlier, the NN is able to
fold the N dimensions of the N input variables into two dimensions, while taking into account the
correlations between the observables.

The NN is applied to the cDPS sample extracted from the AHJ MC and the output distribution
is compared to the output distribution of the cDPS sample constructed from dijets in data. As
before, the two-dimensional output distribution of the NN is divided into five one-dimensional
distributions, making the comparison easier. Normalized distributions of the Dalitz plot in the range
0 ≤ ξsDPS < 0.1 are compared in Fig. 7.9(a). A good agreement is observed between the two
distributions. In addition, a sharp peak is observed around 1√

3
ξsDPS +

2√
3
ξcDPS = 1, suggesting that

most cDPS events are classified as such. About 64% of the cDPS events in the AHJ sample are
assigned ξsDPS values in the range 0 ≤ ξsDPS < 0.1. Hence, this slice of the Dalitz plot is of the
highest significance in classifying cDPS events and determining their fraction in an inclusive sample.
A similar agreement is seen for the next slice of the triangle, 0.1 ≤ ξsDPS < 0.3, shown in Fig. 7.9(b),
in which about 22% of the cDPS events in AHJ are classified.

The distributions of the remaining slices, 0.3 ≤ ξsDPS < 0.5, 0.5 ≤ ξsDPS < 0.7 and
0.7 ≤ ξsDPS ≤ 1.0, are shown in Figs. 7.9(c), 7.9(d) and 7.9(e), respectively. A discrepancy
between the distributions is seen in these slices. As the value of ξsDPS grows, the distributions of
cDPS events from AHJ tend to have a larger contribution at lower values of 1√

3
ξsDPS +

2√
3
ξcDPS

compared to the distribution in the overlaid dijet events. Since a relatively small fraction (∼14%) of
the cDPS events are assigned values in the range 0.3 ≤ ξsDPS ≤ 1.0, the effect of the discrepancy
on the results of the fit is expected to be minimal (this is confirmed in Section 7.5). To demonstrate
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the relative size of the discrepancy observed in the range 0.3 ≤ ξsDPS ≤ 1.0, a projection of the full
Dalitz plot on the horizontal axis is shown in Fig. 7.9(f). It can be seen that the discrepancy in the
full distribution is of the order of 1%.

Based on these results, it is concluded that the topology of the overlaid dijet events is comparable to
that of cDPS events extracted fromAHJ. The advantage of using overlaid dijets from data to construct
the cDPS sample is that the jets are at the same JES as the jets in four-jet events in data. This leads
to a smaller systematic uncertainty. Moreover, a larger cDPS sample is obtained this way, leading to
a smaller statistical uncertainty.

7.5 Validation of fit procedure
A final step of validation for the measurement methodology is of the fit procedure. The NN is applied
to the inclusive AHJ sample and the resulting distribution is fitted with the NN output distributions
of the SPS, cDPS and sDPS test samples. The fractions obtained from the fit, f (MC)

cDPS and f (MC)
sDPS , are

compared to the fractions at parton-level, f (P)
cDPS and f (P)

sDPS , extracted in Section 7.1.

As explained in Section 6.11, a constrained fit is performed to the two-dimensional NN output
distribution of the inclusive AHJ sample. Distributions of the three test samples, normalized to the
measured four-jet cross-section, are the components used in the fit. The results are shown in five
one-dimensional slices of the Dalitz plot in Fig. 7.10. In each slice, the distribution of four-jet events
in AHJ is compared to a combination of the SPS, cDPS and sDPS fractional contributions, based on
the results from the fit.

A comparison of the results obtained from the fit to the parton-level fractions is given below,

f (P)
cDPS = 0.094 ± 0.001 (stat.), f (MC)

cDPS = 0.094 ± 0.003 (stat.),

f (P)
sDPS = 0.048 ± 0.001 (stat.), f (MC)

sDPS = 0.041 ± 0.008 (stat.).
(7.5)

A good agreement is observed, confirming the fit method to estimate the fractions and the overlay
method to construct cDPS events. The larger statistical uncertainty on f (MC)

cDPS and f (MC)
sDPS compared

to f (P)
cDPS and f (P)

sDPS reflect the loss of statistical power due to the use of a template fit to esti-
mate the fractions and the fact that their uncertainties are fully correlated. The fit quality criteria,
χ2/NDF = 0.2, indicates that the sum of the distributions is almost identical to the distribution of
the four-jet AHJ sample. In the case of the SPS and sDPS test samples it is expected, since they
were selected randomly from the full SPS and sDPS samples in AHJ. However, such an excellent
result obtained with the cDPS sample constructed from overlaid dijet events from data confirms that
the disagreement observed in the distributions in the range 0.3 ≤ ξsDPS ≤ 1.0 (see Section 7.4) has
a negligible effect on the fit. In conclusion, the comparison given in Eq. (7.5) indicates that the
methodology is sound.
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Figure 7.9: Normalized distributions of theNNoutputs, 1√
3
ξsDPS+

2√
3
ξcDPS, in the ranges (a) 0.0 ≤ ξsDPS < 0.1,

(b) 0.1 ≤ ξsDPS < 0.3, (c) 0.3 ≤ ξsDPS < 0.5, (d) 0.5 ≤ ξsDPS < 0.7, (e) 0.7 ≤ ξsDPS ≤ 1.0 and (f)
0.0 ≤ ξsDPS ≤ 1.0, in cDPS events extracted from AHJ (red dots), selected in the phase space defined in the
figure, and in the cDPS sample constructed from dijet events in data (red histogram).
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Figure 7.10: Distributions of the NN outputs, 1√
3
ξsDPS +

2√
3
ξcDPS, in the ξsDPS ranges indicated in the figures,

for four-jet events in AHJ (dots), selected in the phase space defined in the legend, compared to the result
of fitting a combination of the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram)
contributions, the sum of which is shown as the green histogram. The fractions obtained and the quality
criteria of the fit, χ2/NDF, are indicated in the legend.
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CHAPTER8
Uncertainties
The measurement of σeff is sensitive to various sources of uncertainty. Other than the statistical
uncertainty, described below, uncertainties on the properties of the jets are taken into account and
the uncertainty on the luminosity measurement is considered. The uncertainty on the properties of
the jets is broken down into the JES uncertainty, mentioned in Section 3.8, and the jet energy and
angular resolution. Apart from these uncertainties, various stability checks of the measurement are
discussed in this section.

8.1 Statistical uncertainty
The statistical uncertainty on the four-jet data sample affects both the four-jet cross-section measure-
ment and the fit process used to extract fDPS in data. In addition, the dijet samples used to construct
the cDPS input sample to the NN are the same samples used in the dijet cross-section measurements.
Therefore, the statistical uncertainties on the double parton scattering fractions and on the mea-
sured cross-section are inherently correlated. Instead of calculating the correlation analytically, the
combined uncertainty on σeff is estimated numerically by performing many pseudo-experiments.

The process of performing one pseudo-experiment is as follows. The value of each data point in
the NN output Dalitz plot is smeared randomly within one standard deviation of the nominal value,
where the standard deviation is derived from the respective statistical uncertainty. All the points
in all four distributions, the four-jet data and the SPS, cDPS and sDPS distributions, are smeared
simultaneously. The smeared distributions are then used to perform the fit and extract the “smeared”
double parton scattering fractions, denoted as f̃cDPS and f̃sDPS. In addition, the “smeared” four-jet
cross-section, S̃4 j , is extracted from the smeared distribution in data. The measured dijet cross-
sections are similarly treated, randomly varying each cross-section within one standard deviation as
derived from the respective statistical uncertainty. The resulting “smeared” dijet cross-sections are
denoted as S̃2 j .

Rewriting Eq. (6.16) using the “smeared” values, one may define the quantity,

σ̃eff =
(
1 −

γ

2

) α
4 j
2 j

f̃cDPS + f̃sDPS

S̃A
2 j S̃

B
2 j

S̃4 j
, (8.1)

which represents the value of σeff , following the smearing procedure.

The pseudo-experiment described above is iterated many times, resulting in a distribution of values
of σ̃eff , shown in Fig. 8.1. The measured value of σeff is taken as the most probable value and the
relative statistical uncertainty is obtained by finding the smallest interval

[
σ̃

up
eff, σ̃

down
eff

]
containing

68% of the integral of the distribution [191],

∆σeff =
+12.2
−9.4 % (stat.) .
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Figure 8.1: Distribution of σ̃eff , defined in Eq. (8.1), representing the value of σeff obtained in each pseudo-
experiment described in the text.

8.2 Systematic uncertainties
A systematic uncertainty of 3.5%due to the integrated luminositymeasurement is added in quadrature
to the uncertainty on σeff (see Section 3.3). As mentioned in Section 6.6.4, the statistical uncertainty
on α4 j

2 j (of ∼1%) is propagated as a systematic uncertainty and therefore added in quadrature to the
uncertainty on σeff .

8.2.1 Uncertainty due to the re-weighting of AHJ
The systematic uncertainty associated with the re-weighting of AHJ is determined by performing
many pseudo-experiments. The re-weighting of events in AHJ based on the kinematic properties of
four-jet events in data (see Section 7.2.3) is performed using eight-dimensional pT-y distributions.
In one pseudo-experiment, each point in the latter distributions was smeared randomly within one
standard deviation of the uncertainty of the corresponding bin. Subsequently, the re-weighting of
events in AHJ was performed using the smeared distributions. The average relative change in the
measured value of σeff due to the smeared weighting function is ±5.9%, taken as a systematic
uncertainty and added in quadrature to the uncertainty on σeff .

8.2.2 Uncertainty due to single-vertex events selection
To correct for events rejected due to the presence of additional pp collisions, a weight is given to
each event based on µ (see Eq. (6.20)). The uncertainty associated with this correction is determined
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by increasing or decreasing the weight according to the systematic uncertainty on µ (±0.5%). The
resulting systematic uncertainty on σeff is ±0.1%.

8.2.3 Jet reconstruction efficiency uncertainty

The correction for the jet reconstruction efficiency is applied for each jet in an event (see Section 3.7.1).
The uncertainty on the measured cross-section is then determined by increasing or decreasing the
value of the correction applied according to the systematic uncertainty on the jet reconstruction
efficiency. This results in the following fractional systematic uncertainties on the observed cross-
sections:

∆SA
2 j =

+2.9
−3.1 (syst.) % ,

∆SB
2 j =

+2.1
−2.2 (syst.) % ,

∆S4 j =
+4.9
−5.3 (syst.) % .

(8.2)

Propagated to the uncertainty on σeff , these cancel almost entirely,

∆σeff = ±0.1 (syst.) % . (8.3)

This is well understood, considering that the cross-sections enter the calculation of σeff in the fraction

σeff ∼
SA

2 jS
B
2 j

S4 j
. (8.4)

Since the correction is applied for each jet separately, it is applied four times in the numerator (2× 2)
and four times in the denominator. The magnitude of the correction is similar since the pT and y cuts
applied to the jets in the two classes of dijet events were selected such that they correspond to the
cuts in four-jet events. The systematic uncertainty quoted in Eq. (8.3) is added in quadrature to the
uncertainty on σeff .

8.2.4 Uncertainty on the jet energy scale

Six sources of uncertainty on the JES, described in Section 3.8, are considered; generator event mod-
elling (Alpgen+Herwig+Jimmy), cluster thresholds, intercalibration, soft physics modelling (Perugia
2010), relative non-closure and single hadron response. The effects of the different components on
the determination of the fraction of double parton scattering in data and on the calculation of the
acceptances are determined by introducing positive and negative variations to the energy scale of jets
in the MC.

For each JES uncertainty component, a variation of one standard deviation of the JES uncertainty for
this component is introduced to the energy scale of the jets in the Pythia sample used to calculate the
acceptance. As the JES uncertainty is dependent on the pT and y of the jet, so is the variation. After
the energy of jets is varied, they are re-sorted according to their pT, and the event is either rejected or
accepted. Accepted events are then re-classified as dijet events (of type A or B) and as four-jet events.
The acceptances and their ratio, α4 j

2 j , are subsequently calculated, as described in Section 6.6.
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The process of varying the energy scale of the jets is performed simultaneously in the AHJ sample
used to extract the SPS and sDPS samples. Event selection is applied on the AHJ events after the
variation and the re-weighting procedure described in Section 7.2.3, using eight-dimensional pT-y
distributions, is performed. The latter is done in order to maintain an agreement with the data in the
kinematic properties of four-jet events after varying the JES. Events are subsequently classified as
either SPS or sDPS events. For each JES component, modified NN output distributions are obtained
and used to extract fcDPS and fsDPS in data.

Since the cDPS sample is constructed from dijet events in data, no variation is applied to the energy
scale of the jets in the cDPS sample used to extract fcDPS and fsDPS . This is considered one of the
main advantages of using the data to construct the cDPS sample. The JES of jets in the data samples
used in the cross-section measurements are not varied either.

Normalized distributions of five one-dimensional slices of the Dalitz plot for the SPS samples,
extracted from AHJ after introducing positive and negative variations, are shown in Figs. 8.2 and 8.3,
respectively. The distributions obtained using the nominal JES are shown for comparison. The
positive (negative) variation is denoted as “up” (“down”) in the figures. The differences observed
between the distributions after varying the JES up or down are within 5% in most bins.

The values of the acceptance ratio and double parton scattering fractions obtained after each variation
are used to calculate σeff for every component of the JES uncertainty. For all JES uncertainty
components, the deviation from the nominal value of the sum fcDPS + fsDPS is canceled somewhat
in the ratio by the deviation of α4 j

2 j from the nominal value. The contributions to the uncertainty on
σeff from the different sources are considered uncorrelated, and so the total uncertainty is computed
as the quadratic sum of all the components. The relative systematic uncertainties on σeff due to the
different sources of uncertainty on the JES are listed in Table 8.1. The JES uncertainty on σeff comes
out asymmetric and amounts to + 35

− 39%.

JES source of uncertainty ∆σeff [%]

Generator event modelling +14 / -17
Cluster thresholds +10 / -19
Intercalibation +15 / -17

Soft physics modelling +20 / -17
Relative non-closure +7 / -14

Single hadron response +16 / -12

Total relative JES systematic uncertainty +35 / -39

Table 8.1: Summary of the relative systematic uncertainties on σeff due to the different sources of uncertainty
on the jet energy scale. The total uncertainty is calculated as the quadratic sum of all components. The
individual components of the uncertainty are described in Section 3.8.
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Figure 8.2: Normalized distributions of the NN outputs, 1√
3
ξsDPS +

2√
3
ξcDPS, in the ξsDPS ranges indicated in

the figures, for SPS events extracted from the AHJ sample, selected in the phase space defined in the legend,
using the nominal JES and after introducing a positive (up) variation to the energy scale of the jets, as indicated
in the legend. The ratio between the nominal and modified JES distributions is shown in the bottom panels,
where statistical uncertainties are shown as the shaded areas.
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Figure 8.3: Normalized distributions of the NN outputs, 1√
3
ξsDPS +

2√
3
ξcDPS, in the ξsDPS ranges indicated in

the figures, for SPS events extracted from the AHJ sample, selected in the phase space defined in the legend,
using the nominal JES and after introducing a negative (down) variation to the energy scale of the jets, as
indicated in the legend. The ratio between the nominal and modified JES distributions is shown in the bottom
panels, where statistical uncertainties are shown as the shaded areas.
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8.2.5 Jet energy and angular resolution uncertainty

The jet energy resolution (JER) is measured both using in-situ methods and by comparing to particle
jets in the MC (closure test) [192]. Systematic uncertainties associated with the measured resolution
are mostly dominated by data/MC disagreement when using in-situ methods and by the difference
between results obtained with the closure test and with in-situ methods. The jet angular resolution
is measured in MC using a derivative of the closure test, where the y and φ of calorimeter jets
are compared to those of the corresponding particle jets. Systematic uncertainties on the angular
resolution are estimated by varying the parameters used in the closure test.

In order to asses the effect of the jet energy and angular resolution uncertainties on the measurement
of σeff , jets in the MC samples, Pythia and AHJ, are smeared according to the measured resolution
uncertainties. To evaluate the JER systematic uncertainty, the energy of each jet is scaled by a
random factor derived from the energy resolution uncertainty, based on its pT and y. The random
factor is pulled from a Gaussian distribution with a standard deviation set by the uncertainty. A
similar approach is taken to estimate the jet angular resolution uncertainty, where jets are rotated in
the rapidity and azimuthal planes based on a random smearing factor derived from the respective
angular resolution uncertainty.

Similar to the process of evaluating the JES systematic uncertainties, for each source of resolution
uncertainty, jets are smeared simultaneously in the Pythia and AHJ samples. Events selection is
applied after the smearing and events in the AHJ sample are re-weighted based on the kinematic
properties of four-jet events, as described in Section 7.2.3. For each source of resolution uncertainty,
modified NN output distributions for SPS and sDPS events are used to extract fcDPS and fsDPS in
data.

Normalized distributions of five one-dimensional slices of the Dalitz plot for the SPS samples,
extracted from AHJ after smearing the jets, are shown in Fig. 8.4. The distributions obtained without
smearing the jets are shown for comparison. An agreement within 5% is observed between the
nominal distributions and the distributions obtained by smearing y or φ of the jets. A larger deviation
of up to 10% is seen in the distributions due to the smearing of the energy of jets.

The relative systematic uncertainties on σeff are evaluated for the JER uncertainty and the jet angular
uncertainties by extracting fcDPS and fsDPS using the modified distributions and calculating α4 j

2 j using
smeared jets. A summary of the corresponding uncertainties is listed in Table 8.2.

Source of uncertainty ∆σeff [%]

Jet rapidity resolution ± 3
Jet azimuthal angle resolution ± 1

Jet energy resolution ± 12

Table 8.2: Summary of the relative systematic uncertainties on σeff due to the different sources of jet energy
and angular resolution uncertainties.
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Figure 8.4: Normalized distributions of the NN outputs, 1√
3
ξsDPS +

2√
3
ξcDPS, in the ξsDPS ranges indicated in

the figures, for SPS events extracted from the AHJ sample, selected in the phase space defined in the legend,
using the nominal jets and after smearing the energy, rapidity or azimuthal angle of the jets, as indicated in
the legend. The ratio between the nominal and smeared distributions is shown in the bottom panels, where
statistical uncertainties are shown as the shaded areas.
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8 Uncertainties

8.3 Stability checks
The stability of the measured value of σeff with respect to the various parameter values used in the
measurement was studied. Parameters such as pparton

T and ∆R jet−jet were varied and the requirement
∆Rparton−jet ≤ 0.6 was applied, leading to a relative change in σeff of the order of a few percent. A
full study of the effects of these parameter values is not possible, as it would require repeating the
measurement using a different set of observables, e.g., anti-kt jets with a distance parameter of 0.4 or
generating a new AHJ sample with a different matching scale. However, since the observed relative
changes lie within the quoted statistical uncertainty on σeff , no systematic uncertainty is assigned
due to these parameters.
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CHAPTER9
Results
9.1 Determination of σeff
The results of the fit to the NN output distribution in four-jet events in data are shown in Fig. 9.1.
The fractions of the cDPS and sDPS samples, as obtained by the fit, are

fcDPS = 0.052 ± 0.003 (stat.), fsDPS = 0.035 ± 0.008 (stat.) , (9.1)

where the goodness-of-fit, χ2, divided by the number of degrees of freedomof the fit (NDF) yielded

χ2/NDF = 2.1 .

A comparison of the fit distributions with the distributions in data in five one-dimensional slices of
the Dalitz plot is shown in Fig. 9.1. The statistical uncertainty in each bin in the fit distribution is
shown as the dark shaded area while the light shaded area represents their sum in quadrature with the
systematic uncertainties. The distributions of the SPS, cDPS and sDPS contributions are also shown,
normalized to their respective fraction in the data as obtained by the fit. The biggest disagreement
with the data is seen for the left-most bin in the range 0.0 ≤ ξsDPS < 0.1 (Fig. 9.1(a)) and the three
left-most bins in the range 0.1 ≤ ξsDPS < 0.3 (Fig. 9.1(b)) of the Dalitz plot. These bins contribute
about 50% of the value of the χ2 and are dominated by the SPS contribution and have negligible
contribution from double parton scattering events. Thus, a discrepancy between the data and the fit
result in these bins points to a mis-modelling in the MC of pQCD. It is expected to have a negligible
effect on the measurement of the double parton scattering rate.

The quality of fit, χ2/NDF = 2.1, may indicate that the statistical uncertainties evaluated in the fit
are underestimated. Therefore, in order to check whether this is the case, the distributions for fcDPS
and fsDPS obtained when performing many pseudo-experiments (fits) were used (see Section 8.1).
The most probable values for the fractions fcDPS and fsDPS as obtained from the f̃cDPS and f̃sDPS
distributions are

fcDPS = 0.052 +0.002
−0.005 (stat.), fsDPS = 0.032 +0.008

−0.01 (stat.) , (9.2)

where the uncertainties reflect the smallest interval containing 68% of the integral of the distri-
bution. The fraction values and their statistical uncertainties obtained from the two approaches
(Eqs. (9.1) and (9.2)) are in agreement.

Taking into account the systematic uncertainties for the calculation of χ2 (without re-doing the fit),
the value of χ2 improves to

χ2/NDF = 0.7 .

This value of χ2/NDF suggests that the sum of the SPS, cDPS and sDPS contributions provides a
good description of the data.

The distributions of the input variables in data are compared to a combination of the distributions
in the three samples, SPS, cDPS and sDPS. The latter three distributions are normalized to their
respective fraction in the data as obtained by the fit. The comparison is shown in Fig. 9.2 for the ∆pT

34
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Figure 9.1: Distributions of the NN outputs, 1√
3
ξsDPS +

2√
3
ξcDPS, in the ξsDPS ranges indicated in the figures, for

four-jet events in data (dots), selected in the phase space defined in the legend, compared to the result of fitting a
combination of the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram) contributions, the
sum of which is shown as the green histogram with statistical and systematic uncertainties added in quadrature.
The fractions obtained and the quality criteria of the fit, χ2/NDF, are indicated in the legend.
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Figure 9.2: Comparison of the distribution of the variable ∆pT
34 , defined in Eq. (6.27), in four-jet events in

data (dots), selected in the phase space defined in the figure, with the sum (green histogram) of the SPS (blue
histogram), cDPS (red histogram) and sDPS (yellow histogram) contributions. The sum of the contributions
is normalized to the cross-section measured in data and the various contributions are normalized to their
respective fractions obtained from the fit, as indicated in the legend. The statistical uncertainty in each bin in
the sum of contributions distribution is shown as the dark shaded area while the light shaded area represents
their sum in quadrature with the systematic uncertainties.

variable and in Appendix A.2 for all other variables. A good description of the data in most regions
of phase-space is achieved.

Once the fraction of double parton scattering in four-jet events in the data is estimated, the measure-
ments of the dijet and four-jet cross-sections are used to calculate the effective overlap area between
the interacting protons, σeff . For completeness, the measured cross-section values and the estimated
acceptances ratio are repeated here,

SA
2 j = 1.9534 · 108 ± 4.9 · 105 (stat.) +5.73

−6.01 · 106 (syst.) pb ,

SB
2 j = 2.6206 · 107 ± 3.4 · 104 (stat.) +5.64

−5.84 · 105 (syst.) pb ,

S4 j = 3.109 · 106 ± 1.1 · 104 (stat.) +1.53
−1.64 · 105 (syst.) pb ,

α
4 j
2 j = 0.94 ± 0.01 (stat.) +0.15

−0.14 (syst.) .

(9.3)

The statistical uncertainty on α4 j
2 j is taken as a systematic uncertainty. The systematic uncertainties

on the observed cross-sections and the acceptance ratio are partially canceled when propagated to
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σeff . The combination of these values together with the measured fractions given in Eq. (9.2) yields

σeff = 16.1 +2.0
−1.5 (stat.) +6.1

−6.8 (syst.) mb . (9.4)
This value is consistent within the quoted uncertainties with previousmeasurements at center-of-mass
energies above 1 TeV, performed in ATLAS and in other experiments [71–75,77,78], some of which
are summarized in Fig. 9.3.

 [GeV]s

210 310 410

 [m
b]

ef
f

σ

5

10

15

20

25

ATLAS (4 jets)

CMS (W + 2 jets)

ATLAS (W + 2 jets)

 + 3 jets)γDO (

 + 3 jets)γCDF (

CDF (4 jets)

UA2 (4 jets - lower limit)

AFS (4 jets - no errors given)

Figure 9.3: Dependence of the effective overlap area between the interacting protons, σeff , on center-of-mass
energy,

√
s, in different processes and different experiments [71–75, 77, 78]. The inner error bars (where

visible) correspond to the statistical uncertainties and the outer error bars represent their sum in quadrature
with the systematic uncertainties. Arrows indicate the limited information on the quality of the measurement
as stated in the legend. Measurements at identical

√
s are slightly shifted in center-of-mass energy for clarity.

Within the large uncertainties, the measurements are consistent with no
√

s dependence of σeff . The
σeff value obtained is about a quarter of the measured value of σinel at

√
s = 7 TeV [131, 132].

An estimate for the fraction of the proton longitudinal momentum carried by the massless parton
participating in the interaction, x, may be obtained from the jet kinematics (see Section 9.2.1). The
typical value of x in the phase-space defined in this measurement is x∼10−2, a region of the PDF
dominated by the gluon (see Fig. 2.8). However, the measured value of σeff is a factor two less than
what would be expected from the gluon form factor of the proton [133].
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9.2 Characteristics of DPS events
A sample with a high fraction of DPS events, a DPS enriched sample (eDPS), may be selected from
the data using the NN output,

1
√

3
ξsDPS +

2
√

3
ξcDPS ≥ 0.95 , ξsDPS ≤ 0.1 . (9.5)

This cut provides a sample composed of ∼34% DPS events, estimated from the two-dimensional fit.
Similarly, a sample composed almost entirely of SPS events (99.7%), referred to in the following as
an eSPS sample, may be selected with the following cut on the NN output:

1
√

3
ξsDPS +

2
√

3
ξcDPS ≤ 0.2 , ξsDPS ≤ 0.1 . (9.6)

The cut ξsDPS ≤ 0.1 renders the contribution of sDPS events in the eDPS and eSPS samples negligible.
The characteristics of DPS events in data may then be compared to those of SPS events.

9.2.1 Parton kinematics

Under the assumption that the jets are massless, the estimate for x, xobs, for a N-jet final state is
obtained from

xobs
± =

1
√

s

N∑
i

pT, ie±yi , (9.7)

where xobs
± refers to the xobs values of the parton x coming from the positive or negative z direction.

The terms pT, i and yi correspond to the pT and y of the i th jet. In the following, only xobs
+ distributions

are shown (referred to as xobs), since the distributions of xobs
+ and xobs

− are expected to be identical
for a fully symmetric detector.

Two xobs values are calculated for each candidate DPS event, xobs
1,2 , corresponding to the two dijet

pairs in the event. Up to this point, it was not necessary to pair the four jets in the event since the
input to the NN included all possible pairings. However, it is required for the calculation of xobs

1,2 . One
method for pairing the jets is based on pT values such that xobs

1 corresponds to the leading two jets
(1 and 2) and xobs

2 corresponds to jets 3 and 4. In DPS events extracted from AHJ it was found that
this method leads to the right pairing in 85% of the events. Another method exploits the expected
pair-wise pT balance between the dijet pairs in DPS events [73]. The assignment of pairs of jets is
performed by minimizing the quantity

S = ∆pT
i j + ∆

pT
kl
, (9.8)

where all three possible pair combinations are considered {〈i, j〉〈k, l〉} (see Section 6.8.2). This
pairing was found to be correct in 92% of the DPS events extracted from AHJ. Therefore, in the
following, the latter method is employed and xobs

1 corresponds to the primary interaction (associated
with the leading jet) and xobs

2 corresponds to the secondary one.

The xobs
1 and xobs

2 distributions in the eDPS sample in data are compared in Fig. 9.4(a). As expected,
the xobs

2 distribution of the secondary interaction is shifted towards lower xobs values with respect to
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the xobs
1 distribution. The distribution of xobs

2 as a function of xobs
1 is shown in Fig. 9.4(b), where the

number of events in each bin is proportional to the area of the box drawn. The dashed red line in
Fig. 9.4(b) marks the case where xobs

2 = xobs
1 and is drawn for visualization purposes. Two peaks are

observed in the distribution, one below the red line for cases in which xobs
1 > xobs

2 and one above the
line (xobs

1 < xobs
2 ). The former is more prominent, however events in which xobs

1 , associated with the
leading jet, is smaller than xobs

2 are not rare. These are events in which the second pair of jets happens
to be at higher y than the leading one. Within the two event types, no evident correlation between
xobs

1 and xobs
2 is observed and the correlation coefficient is determined to be rxobs

1 xobs
2
= −0.07.
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Figure 9.4: (a) Normalized distributions of the estimated fraction of the proton longitudinal momentum
carried by the massless parton participating in the primary interaction, xobs

1 , and the secondary interaction,
xobs

2 , in the eDPS sample selected using the cuts defined in Eq. (9.5), extracted from four-jet events in data
selected in the phase-space defined in the figure. (b) Distribution of xobs

2 as a function of xobs
1 for the same

sample. The estimate for xobs
1,2 is obtained using Eq. (9.7).

Figure 9.5(a) shows a comparison of the xobs distributions in the eDPS and eSPS samples extracted
from data, obtained by summing over the four jets. For SPS events, xobs is the estimate of x for the
only hard scattering in the event, while for DPS events, it is the sum of the x values of the two hard
interactions. A small shift towards lower xobs values in the eDPS sample is observed. This may
indicate that DPS events occur at lower x values, as expected.

In the following comparisons between data and AHJ, the original AHJ distributions are used (before
any re-weighting, see Section 7.2.3). A comparison between the xobs distributions in all four-jet
events in data and in AHJ is shown in Fig. 9.5(b). The distribution in AHJ is shifted towards higher
xobs values, as expected from the harder jet pT distribution observed in AHJ compared with the data
(see Fig. 7.1(a)).
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Figure 9.5: (a) Normalized distributions of the estimated fraction of the proton longitudinal momentum
carried by the massless parton participating in the interaction, xobs, in the eDPS and eSPS samples selected
using the cuts defined in Eqs. (9.5) and (9.6), respectively, extracted from four-jet events in data selected in the
phase-space defined in the figure. (b) Comparison between the normalized xobs distributions in four-jet events
in data (dots) and in AHJ (red histogram), selected in the phase-space defined in the figure. The estimate for
xobs is obtained from all four jets in the event using Eq. (9.7).

The distributions of xobs
1 in the eSPS samples in data and in AHJ are compared in Fig. 9.6(a). The

xobs
1 distribution in AHJ is shifted towards higher values, similarly to the shift seen in Fig. 9.5(b),

although a smaller shift is observed in the xobs
1 case. The same comparison is shown for the xobs

2
distribution in Fig. 9.6(b). In the case of the xobs

2 distribution, a good agreement between the data
and AHJ is observed.

Figure 9.7 shows the same comparisons as in Fig. 9.6, but for the eDPS samples in data and in AHJ.
An excess at high xobs

1 values is observed in the distribution in AHJ with respect to the distribution in
the data (see Fig. 9.7(a)), as was seen for the eSPS sample. However, the excess is more pronounced
in this case and it is observed also at low xobs

1 values. A disagreement is observed between the xobs
2

distributions in data and in AHJ (see Fig. 9.7(b)). The distribution in AHJ is wider and extends to
lower xobs

2 values.

The xobs
1 and xobs

2 distributions in the eDPS sample in AHJ, shown in Fig. 9.7, may be separated into
contributions of SPS and DPS events, directly extracted using the event record of AHJ. Normalized
distributions of xobs

1 and xobs
2 in the eDPS sample in data are compared in Fig. 9.8 to the distributions

in SPS and DPS events in the eDPS sample in AHJ. Interestingly, a good agreement is observed
between the distributions in the eDPS sample in data and the SPS distributions in AHJ, for both
variables. This indicates that in the data, there is not much difference in the x-distributions of SPS
and DPS events. On the other hand, a discrepancy is observed between the distributions in the DPS
sample in AHJ and the distributions in data. A wider xobs

1 distribution is observed in DPS events
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Figure 9.6: Normalized distributions of the estimated fraction of the proton longitudinal momentum carried
by the massless parton participating in the (a) primary interaction, xobs

1 , and (b) secondary interaction, xobs
2 , in

the eSPS sample selected using the cuts defined in Eq. (9.6), extracted from four-jet events in data (dots) and
in AHJ (red histogram), selected in the phase-space defined in the figure. The estimate for xobs

1,2 is obtained
using Eq. (9.7).
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Figure 9.7: Normalized distributions of the estimated fraction of the proton longitudinal momentum carried
by the massless parton participating in the (a) primary interaction, xobs

1 , and (b) secondary interaction, xobs
2 , in

the eDPS sample selected using the cuts defined in Eq. (9.5), extracted from four-jet events in data (dots) and
in AHJ (red histogram), selected in the phase-space defined in the figure. The estimate for xobs

1,2 is obtained
using Eq. (9.7).
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in AHJ compared with the data. The xobs
2 distribution in DPS events in AHJ is flatter and does not

have a clear peak as the distribution in data. These discrepancies may be attributed to the wider jet y
distributions observed in AHJ compared with the data (see Fig. 7.1(b)). Interactions where both jets
are in the forward (backward) region contribute to the excess at high (low) xobs

1,2 values.
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Figure 9.8: Normalized distributions of the estimated fraction of the proton longitudinal momentum carried by
the massless parton participating in the (a) primary interaction, xobs

1 , and (b) secondary interaction, xobs
2 , in the

eDPS sample selected using the cuts defined in Eq. (9.5), extracted from four-jet events in data (dots) selected
in the phase-space defined in the figure, compared to the xobs

1,2 distributions in SPS events (blue histogram) and
DPS events (red histogram) directly extracted from AHJ. The estimate for xobs

1,2 is obtained using Eq. (9.7).

The comparisons between data and AHJ in Figs. 9.5(b), 9.6, 9.7 and 9.8 are shown in Appendix A.3
after re-weighting the events in AHJ. As expected, after re-weighting, a better agreement between
the distributions in data and in AHJ is observed, although some discrepancies remain.

9.2.2 Charged particle multiplicity

Naively, one might expect the particle multiplicity in DPS events to be higher than in SPS events. A
test of this expectationmay be performed by studying the distributions of charged particlemultiplicity,
where charged particles are measured as tracks in the detector. The distribution of the number of
tracks in the event, Ntrack, associated with the primary vertex (see Chapter 5), is studied in the
different samples. Normalized Ntrack distributions in the eDPS and eSPS samples extracted from
data are compared in Fig. 9.9(a). The distribution in the eDPS sample is shifted towards higher Ntrack
values with an average of 87.2±0.5 tracks observed per event while an average of 81.2±0.2 tracks is
observed in the eSPS sample. The same comparison is shown in Fig. 9.9(b) for eDPS ( fDPS ∼ 42%)
and eSPS ( fDPS ∼ 0.5%) samples extracted from AHJ. A larger shift is observed in AHJ, with the
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ratio

RAHJ
Ntrack
=
〈NeDPS

track 〉

〈NeSPS
track 〉

= 1.137 ± 0.007 , (9.9)

while in data Rdata
Ntrack
= 1.074±0.007, where 〈NeDPS

track 〉 (〈N
eSPS
track 〉) refers to the average Ntrack in the eDPS

(eSPS) sample. Only statistical uncertainties are estimated on the 〈Ntrack〉 values. The difference in
the RNtrack values between data and AHJ cannot be explained by the different fDPS values in the two
eDPS samples.
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Figure 9.9: Normalized distributions of the number of tracks reconstructed in the event, Ntrack, in the eDPS
and eSPS samples selected using the cuts defined in Eqs. (9.5) and (9.6), respectively, extracted from four-jet
events in (a) data and in (b) AHJ, selected in the phase-space defined in the figure.

The Ntrack distribution in SPS and DPS events extracted from AHJ by matching jets to partons (see
Section 6.7.2) is shown in Fig. 9.10(a). It can be seen that the distribution in SPS events extracted
this way is shifted towards higher Ntrack values (〈NSPS

track〉 = 94.2 ± 0.3), compared to the distribution
in the eSPS sample (〈NeSPS

track 〉 = 90.3 ± 0.4). This suggests a dependence of the Ntrack distribution
on the value of 1√

3
ξsDPS +

2√
3
ξcDPS, regardless of the event classification. Figure 9.10(b) confirms

this observation, where the Ntrack distribution of events classified as coming from a SPS is shown for
different values of 1√

3
ξsDPS +

2√
3
ξcDPS.

The dependence observed in AHJ of 〈NSPS
track〉 on the value of 1√

3
ξsDPS +

2√
3
ξcDPS may be used to

extrapolate the value of 〈NSPS
track〉 in data from the range used to select the eSPS sample to the range

used to select the eDPS sample. The estimate

〈NSPS
track〉 = 85 ± 0.8 , (9.10)
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Figure 9.10: (a) Normalized distributions of the number of tracks reconstructed in the event, Ntrack, in the
SPS and DPS samples extracted from four-jet events in AHJ, selected in the phase-space defined in the figure.
(b) Normalized distributions of Ntrack in the SPS sample extracted from four-jet events in AHJ, selected in the
phase-space defined in the figure, for various values of 1√

3
ξsDPS+

2√
3
ξcDPS (xDalitz), as indicated in the legend.

in the eDPS sample in data is obtained in this manner, where the uncertainty is only statistical and
does not reflect the validity of the assumption used in the extrapolation. Considering that the eDPS
sample is composed of approximately 34% DPS events and using Eq. (9.10), an estimate for the
average charged particle multiplicity in DPS events in data is obtained, 〈NDPS

track〉 = 92 ± 0.9. This
implies that DPS events in data have about 8%more tracks than SPS events. This effect was expected
and it is observed also in MC, though the effect in MC is larger (13%).

It is worth noting that the input to the NN consists of variables pertaining only to the topology of
the jets. However, events classified as DPS events by the NN exhibit a different Ntrack distribution, a
property of the events not included in the classification process.
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CHAPTER10
Summary and conclusions
A measurement of the rate of hard double parton scattering in four-jet events was performed using a
sub-sample of data collected with the ATLAS experiment in 2010, with an average number of interac-
tions per bunch crossing, 〈µ〉 = 0.41, corresponding to an integrated luminosity of (37.3±1.3) pb−1.
Three different sub-samples were selected, all consisting of single-vertex events of proton–proton
collisions at a center-of-mass energy,

√
s = 7 TeV. Four-jet events are defined as those in which

at least four jets with transverse momentum, pT ≥ 20 GeV, and pseudo-rapidity, |η | ≤ 4.4, are
reconstructed. Events are further constrained such that the highest-pT jet has pT ≥ 42.5 GeV. Two
additional dijet samples were selected with the requirement of having at least two jets with transverse
momentum, pT ≥ 20 GeV, and pseudo-rapidity, |η | ≤ 4.4. One of the dijet samples was further
constrained such that it contains at least one jet with pT ≥ 42.5 GeV.

The fraction of events arising from double parton scattering has been measured using an artificial
neural network, where the four-jet topology originating from double parton scattering is represented
by a random combination of dijet events selected in data. The topology of four-jet events in which
three jets originate from one interaction and the fourth jet originates from a secondary interaction
was extracted from MC. The rate of the latter class of double parton scattering events is directly
estimated in data.

The fraction of double parton scattering in four-jet events was estimated to be,

fDPS = 0.084 +0.009
−0.012 (stat.) +0.062

−0.031 (syst.) . (10.1)

Combining this with measurements of the dijet and four-jet cross-sections in the appropriate phase-
space regions, the effective overlap area between the interacting protons, σeff , yields

σeff = 16.1 +2.0
−1.5 (stat.) +6.1

−6.8 (syst.) mb .

This value is about a quarter of the measured value of σinel at
√

s = 7 TeV and about half of what
would be expected from the gluon form factor of the proton. The σeff value obtained is consistent
with previous measurements performed at center-of-mass energies above 1 TeV and in various final
states. This suggests that σeff is a universal parameter, process and phase-space independent.

Some of the characteristics of DPS events were studied by selecting a sample enriched with DPS
events (34%) and comparing it to a sample of SPS events (with purity above 99%). Comparisons of
the distributions of the fraction of the proton longitudinal momentum carried by the massless parton
participating in the interaction, x, indicate that in DPS events the x values of the two interactions
taking place are uncorrelated. The average charged particle multiplicity in DPS events in data was
estimated to be ∼8% higher than in SPS events.
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APPENDIXA
Additional figures
Auxiliary figures, pertaining to different sections in the thesis, are presented in the following.

A.1 Distributions of the input variables in the three samples
Normalized distributions of all the variables defined in Eq. (6.27), in the SPS, cDPS and sDPS
samples, are presented in the following:
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Figure A.1: Normalized distributions of the variables, (a) ∆pT
12 , (b) ∆

pT
34 , (c) ∆

pT
13 and (d) ∆pT

23 , defined in
Eq. (6.27), in the SPS (blue histogram, AHJ), cDPS (red histogram, overlaid dijets from data) and sDPS
(yellow histogram, AHJ) samples, selected in the phase-space defined in the legend.
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Figure A.2: Normalized distributions of the variables, (a) ∆pT
14 , (b) ∆

pT
24 , (c) ∆φ12 and (d) ∆φ34, defined in

Eq. (6.27), in the SPS (blue histogram, AHJ), cDPS (red histogram, overlaid dijets from data) and sDPS (yellow
histogram, AHJ) samples, selected in the phase-space defined in the legend.
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Figure A.3: Normalized distributions of the variables, (a) ∆φ13, (b) ∆φ23, (c) ∆φ14 and (d) ∆φ24, defined
in Eq. (6.27), in the SPS (blue histogram, AHJ), cDPS (red histogram, overlaid dijets from data) and sDPS
(yellow histogram, AHJ) samples, selected in the phase-space defined in the legend.
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Figure A.4: Normalized distributions of the variables, (a) ∆y12, (b) ∆y34, (c) ∆y13 and (d) ∆y23, defined
in Eq. (6.27), in the SPS (blue histogram, AHJ), cDPS (red histogram, overlaid dijets from data) and sDPS
(yellow histogram, AHJ) samples, selected in the phase-space defined in the legend.
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Figure A.5: Normalized distributions of the variables, (a) ∆y14, (b) ∆y24, (c) φ1+2 − φ3+4, (d) φ1+3 − φ2+4 and
(e) φ1+4 − φ2+3, defined in Eq. (6.27), in the SPS (blue histogram, AHJ), cDPS (red histogram, overlaid dijets
from data) and sDPS (yellow histogram, AHJ) samples, selected in the phase-space defined in the legend.
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A.2 Variables distributions in data compared to fit results

In the following, the distributions of the input variables in data are compared to a combination of
the distributions in the three samples, SPS, cDPS and sDPS, where latter three distributions are
normalized to their respective fraction of the data as obtained by the fit:
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Figure A.6: Comparison of the distribution of the variables (a) ∆pT
12 , (b) ∆

pT
13 , (c) ∆

pT
23 and (d) ∆pT

14 , defined in
Eq. (6.27), in four-jet events in data (dots), selected in the phase space defined in the figure, with the sum (green
histogram) of the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram) contributions.
The sum of the contributions is normalized to the cross-section measured in data and the various contributions
are normalized to their respective fractions obtained from the fit, as indicated in the legend. The statistical
uncertainty in each bin in the sum of contributions distribution is shown as the dark shaded area while the light
shaded area represents their sum in quadrature with the systematic uncertainties.

130



A.2 Variables distributions in data compared to fit results

24
T

p
∆

0 0.2 0.4 0.6 0.8 1

 [p
b]

σ

0

200

400

600

310×

Data 2010

SPS - AHJ (91.3%)

cDPS - Data - overlay (5.2%)

sDPS - AHJ (3.5%)

 of contributions∑
 = 0.6R jets, tkanti-

 42.5 GeV≥ 1
T

p

 20 GeV≥ 2,3,4

T
p

 = 1
PV

 4.4, N≤| 
1-4

η|

(a) 12
φ∆

0 1 2 3

 [p
b]

σ

0

100

200

300

400

310×

Data 2010

SPS - AHJ (91.3%)

cDPS - Data - overlay (5.2%)

sDPS - AHJ (3.5%)

 of contributions∑
 = 0.6R jets, tkanti-

 42.5 GeV≥ 1
T

p

 20 GeV≥ 2,3,4

T
p

 = 1
PV

 4.4, N≤| 
1-4

η|

(b)

34
φ∆

0 1 2 3

 [p
b]

σ

0

50

100

150

200

310×

Data 2010

SPS - AHJ (91.3%)

cDPS - Data - overlay (5.2%)

sDPS - AHJ (3.5%)

 of contributions∑

 = 0.6R jets, tkanti-

 42.5 GeV≥ 1
T

p

 20 GeV≥ 2,3,4

T
p

 = 1
PV

 4.4, N≤| 
1-4

η|

(c) 13
φ∆

0 1 2 3

 [p
b]

σ

0

50

100

150

200

310×

Data 2010

SPS - AHJ (91.3%)

cDPS - Data - overlay (5.2%)

sDPS - AHJ (3.5%)

 of contributions∑
 = 0.6R jets, tkanti-

 42.5 GeV≥ 1
T

p

 20 GeV≥ 2,3,4

T
p

 = 1
PV

 4.4, N≤| 
1-4

η|

(d)

Figure A.7: Comparison of the distribution of the variables (a)∆pT
24 , (b)∆φ12, (c)∆φ34 and (d)∆φ13, defined in

Eq. (6.27), in four-jet events in data (dots), selected in the phase space defined in the figure, with the sum (green
histogram) of the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram) contributions.
The sum of the contributions is normalized to the cross-section measured in data and the various contributions
are normalized to their respective fractions obtained from the fit, as indicated in the legend. The statistical
uncertainty in each bin in the sum of contributions distribution is shown as the dark shaded area while the light
shaded area represents their sum in quadrature with the systematic uncertainties.
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Figure A.8: Comparison of the distribution of the variables (a) ∆φ23, (b) ∆φ14, (c) ∆φ24 and (d) ∆y12,
defined in Eq. (6.27), in four-jet events in data (dots), selected in the phase space defined in the figure, with
the sum (green histogram) of the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram)
contributions. The sum of the contributions is normalized to the cross-section measured in data and the various
contributions are normalized to their respective fractions obtained from the fit, as indicated in the legend. The
statistical uncertainty in each bin in the sum of contributions distribution is shown as the dark shaded area
while the light shaded area represents their sum in quadrature with the systematic uncertainties.
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Figure A.9: Comparison of the distribution of the variables (a)∆y34, (b)∆y13, (c)∆y23 and (d)∆y14, defined in
Eq. (6.27), in four-jet events in data (dots), selected in the phase space defined in the figure, with the sum (green
histogram) of the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow histogram) contributions.
The sum of the contributions is normalized to the cross-section measured in data and the various contributions
are normalized to their respective fractions obtained from the fit, as indicated in the legend. The statistical
uncertainty in each bin in the sum of contributions distribution is shown as the dark shaded area while the light
shaded area represents their sum in quadrature with the systematic uncertainties.
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Figure A.10: Comparison of the distribution of the variables (a) ∆y24, (b) φ1+2 − φ3+4, (c) φ1+3 − φ2+4 and
(d) φ1+4−φ2+3, defined in Eq. (6.27), in four-jet events in data (dots), selected in the phase space defined in the
figure, with the sum (green histogram) of the SPS (blue histogram), cDPS (red histogram) and sDPS (yellow
histogram) contributions. The sum of the contributions is normalized to the cross-section measured in data
and the various contributions are normalized to their respective fractions obtained from the fit, as indicated in
the legend. The statistical uncertainty in each bin in the sum of contributions distribution is shown as the dark
shaded area while the light shaded area represents their sum in quadrature with the systematic uncertainties.
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A.3 Distributions of xobs in data and AHJ
In the following, distributions of xobs are compared between the data and AHJ after applying the
re-weighting procedure discussed in Section 7.2.3.
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Figure A.11: Normalized distributions of the estimated fraction of the proton longitudinal momentum carried
by the massless parton participating in the (a) primary interaction, xobs

1 , and (b) secondary interaction, xobs
2 , in

the eSPS sample selected using the cuts defined in Eq. (9.6), extracted from four-jet events in data (dots) and
in AHJ after re-weighting (red histogram), selected in the phase-space defined in the figure. (c) Comparison
between the normalized xobs distributions in four-jet events in data (dots) and in AHJ after re-weighting (red
histogram), selected in the phase-space defined in the figure. The estimate for xobs and xobs

1,2 are obtained using
Eq. (9.7).
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Figure A.12: Normalized distributions of the estimated fraction of the proton longitudinal momentum carried
by the massless parton participating in the (a) primary interaction, xobs

1 , and (b) secondary interaction, xobs
2 , in

the eDPS sample selected using the cuts defined in Eq. (9.5), extracted from four-jet events in data (dots) and
in AHJ after re-weighting (red histogram), selected in the phase-space defined in the figure. The estimate for
xobs

1,2 is obtained using Eq. (9.7).
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Figure A.13: Normalized distributions of the estimated fraction of the proton longitudinal momentum carried
by the massless parton participating in the (a) primary interaction, xobs

1 , and (b) secondary interaction, xobs
2 ,

in the eDPS sample selected using the cuts defined in Eq. (9.5), extracted from four-jet events in data (dots)
selected in the phase-space defined in the figure, compared to the xobs

1,2 distributions in SPS events (blue
histogram) and DPS events (red histogram) directly extracted from AHJ after re-weighting. The estimate for
xobs

1,2 is obtained using Eq. (9.7).
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תקציר

של מסה  מרכז  באנרגיית  פרוטון—פרוטון,  בהתנגשויות  ג'טים  ארבעה  אירועי 

√s=7 TeVכפול של פיזור  אירועי  הימצאותם של  לזהות   על מנת  נותחו    ,

של  ללומינוסיטי  התואמים  נתונים  בעזרת  (37±1.3)פרטונים,  pb−1שנאספו

. החלק היחסי של אירועי פיזור כפול חולץ באמצעות רשתLHC ב-ATLASבגלאי 

נוירונים מלאכותית, תחת ההנחה שהטופולוגיה של ארבעה ג'טים הנוצרים מפיזור כפול

יכולה להיות מיוצגת על ידי שילוב אקראי של אירועי זוגות ג'טים. החלק היחסי הוערך

fלהיות DPS=0.084−0.012
+0.009 (stat.)−0.031

+0.062 (syst.)כל בהם  ג'טים,  באירועי ארבעה   

רוחבי, תנע  עם  ג'טים  ארבעה  לפחות  מכיל  ,pT⩾20GeVאירוע 

ישη|⩽4.4|פסואודו-רפידיטי,  ביותר  הגבוה  הרוחבי  התנע  עם  ולג'ט   ,

pT⩾42.5 GeVבשילוב עם מדידות של חתך הפעולה של אירועים עם זוגות .

ג'טים ואירועים עם ארבעה ג'טים, במרחב הפאזות המתאים, שטח החפיפה האפקטיבי

אינטרקציה,  המבצעים  הפרוטונים  σבין  effלהיות נמצא   ,

σeff=16.1−1.5
+2.0 (stat.)−6.8

+6.1 (syst.)mb,תוצאה זו קונסיסטנטית, בתווך השגיאות .

של עבר  מדידות  σעם  effמעל מסה  מרכז  תוצרי1TeVבאנרגיות  עם 

אינטרקציות שונים והיא בערך רבע מחתך הפעולה האיאלסטי באנרגיות אלה. מדגם

מועשר באירועי פיזור כפול חולץ ומספר מאפיינים של אירועים אלה נחקרו.



העבודה הוכנה בחוג לפיזיקת החלקיקים של אוניברסיטת תל-אביב,
אהרן לוי. ופרופ' הלינה אברמוביץבהדרכתם של פרופ' 



אוניברסיטת תל-אביב
הפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר

חקר של פיזור כפול של פרטונים
 pp באירועי ארבעה ג'טים בהתנגשויות

√באנרגיית מרכז מסה  s=7 TeV
LHC ב-ATLASעם ניסוי 

חיבור זה הוגש לסנאט של אוניברסיטת תל-אביב,
 כחלק מהדרישות לקבלת תואר "דוקטור לפילוסופיה"

ולאסטרונומיה"   לפיזיקה ס ביה
לחלקיקים  החוג

ידי- על

גואטה  אוראל

2015ספטמבר 

העבודה הוכנה בהדרכתם של
אהרן לוי.ץ ופרופ' הלינה אברמובי פרופ' 
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