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We study in detail the low-lying excitations and vortices in the broken symmetry phase of
Landau-Ginzburg effective theories of Anyonic Superconductivity. These theories are described
by a complex scalar field interacting with a U(1) gauge field. The gauge field action incorporates
a Chern-Simons term. We find in the topologically trivial sector that the angular momentum
has an anomaly and the low energy fluctuations are described by a charge-neutral massive boson.
The vortices are charged and carry angular momentum. We investigate in detail the profiles
for magnetic field, charge, electric field and order parameter. We find that the magnetic field
nucleates away from the origin, and the charge and electric field distribution are localized within
a ring away from the origin. We conjecture on the possibility of roton-like excitations in the

spectrum,

There is presently much interest in the understand-
ing of the superconducting properties of a system of
particles with fractional statistics’2. We study the
Landau-Ginzburg effective theory as derived by Banks
and Lykken® and Fradkin®. Here we will briefly report
on our work®®, This effective theory is described by a
complex scalar field interacting with a U(1) gauge field
and is obtained from the underlying microscopic theory
in the long-wavelength limit after some duality transfor-
mations. The U(1) gauge field is the usual electromag-
netic field, but after integrating out the statistical inter-
action in the microscopic theory, there appears a Chern-
Simons term for the electromagnetic field in the effective
long- wavelength theory. Finally the long-wavelength ef-
fective theory is described by the lagrangian
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The parameter 4 is determined by the statistics of the
anyons in the underlying microscopic theory, and the pa-
rameter A is phenomenological and requires knowledge
of the dynamics and spectrum of the microscopic the-
ory. We will study the case of general anyon statistics
and leave 6 as a parameter. Let us first of all study the
spectrum of low-lying excitations in the broken symme-
try phase in the topologically trivial sector. To simplify
our discussion we will decouple the Higgs mode and con-
sider only the phase fluctuations of the order parameter.
Furthermore since we are interested in the long- wave-
length limit, we will neglect for the moment the F; 3,, term
since it is higher order in derivatives. The effective La-
grangian density describing the long-wavelength physics
of the phase fluctuations (Goldstone modes) is
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where ¢ is the phase of the order parameter ¢ and we
absorbed some normalization factors. We now proceed
to quantize the low-lying modes of the theory. A consis-
tent quantization first requires an analysis of the Hamil-
tonian structure of the Chern-Simons part of the above
Lagrangian®. After a close look at the Lagrangian equa-
tions of motion one finds that the correct symplectic
structure determines the following equal time commu-
tator for the quantum theory
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The Hamiltonian density, Gauss’ law operator G and
magnetic field B are
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By splitting the gauge field into longitudinal and trans-
verse components A;(z) = 9;n + €;;0;x and using eq.(3)
one finds the equal time commutators
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By choosing the representation in which both 1 and ¢ are
diagonal, Gauss’ law constraint on the wave functionals
is solved by wave functionals of the form®
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The combination § — ¢/e is gauge invariant. In the
physical subspace (the wavefunctionals are annihilated
by G) the last term in the Hamiltonian (4) vanishes.
Let us introduce the canonical pair p = n— ¢fe, II, =
(I, — eIl4)/2, and pass to a discrete Fourier representa-
tion in a large volume V. Isolating the zero momentum
modes and identifying the charge opeator Q with the zero



momentum component of II; we find on the physical sub-
space that the Hamiltonian (4) becomes®
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Performing the Bogoliubov canenical transformation
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These are the fields that diagonalize the Hamiltonian

B=L 43} m,(ymo(-k)
v * 23

4
(k’ + 57) o(ke(-k)]  (10)
The low-lying spectrum is that of a charge neutral free
massive boson. The gauge invariant angular momen-
tum is obtained from the commutator of the generator of
boosts constructed from the Hamiltonian (4) as required
by the spin- statistics theorem. It is equivalent to the one
obtained from the symmetric energy-momentum tensor.
In the physical subspace it becomes
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The last term is the anomaly found by Hagen” and it may
not be arbitrarily removed because the angular momen-
tum generator is uniquely defined by the Poincare alge-
bra. In the broken symmetry phase, the charge operator
Q) does not annihilate the vacuum, therefore the angular
momentum is not a sharp operator and has strong fluc-
tuations. We now investigate the vortices of the theory.
The vortex solutions with n-units of flux are obtained as
static solutions to the equations of motion obtained from

the Lagrangian density (1) with the following ansatze:
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The equations of motion take on a very simple form by
introducing the mass scales
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and the dimensionless ratios and functions
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For § = 0 (conventional superconductors), « is the
stiffness parameter that determines type I or type II
superconductivity®. The equations of motion become
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The regular solutions obey the boundary conditions as
z—0

f=0, h—0, a — constant (18)
and as 2 — co
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With these boundary conditions we find that the vortices
have charge Q and flux ® = [ d®rB(r) given by

&= -2rn

~2mné
T 9=— (20
The asymptotic solution as z — oo reveals the presence
of two masses® (in the units determined by the mass
scales introduced above)
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Above fi, a;, a, are integration constants. As z —
0 the reguiar solutions are expressed as a power series
expansion in z. We find
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Where again fy, ap, By are integration constants. The
set of integration constants is determined by integrating
the differential equations and requiring regularity of the
solutions both at infinity and at the origin. The constant
By is the magnetic field at the origin. For 6 = 0 (B=10)
the solutions are the Abrikosov-Nielsen-Olesen vortices
with a(z) = 0. The solutions may be studied near the

Abrikosov-Nielsen-Olesen (A-N-O) limit by using pertur-
bation theory in 8. One finds that there is only one solu-
tion evolving smoothly from this limit and that the mag-
rotic field diminishes continuously from the origin. Fur-
thormore the magnetic field at the origin diminishes as 3
increases, and finally in the Chern-Simons limit 8 — oo,
a — 00, afB = fized, the magnetic field vanishes at the
origin. An analytical study of the solutions in the asymp-
totic regions shows that the charge density and electric
field vanish at the origin, rise reaching a maximun and
fall-off exponentially forming a ring around the origin.



We solved the differential equations numerically in a wide
range of parameters from the A-N-O limit to the Chern-
Simons limit® for an n = 1 vortex. Figure 1 shows the
profile for negative of the magnetic field b(z) = h’/z for
a=1,4=0,03, 0.6, and Chern-Simons limit. Figure
2 shows a profile for the order parameter f(z). The pro-
file changes very slightly within the whole range between
A-N-O and Chern-Simons limits. Figure 3 shows the di-
mensionless charge demnsity p(z) = a(z) f?(z), and Figure
4 shows the profile for the electric field e = a’(z) for the
same range of parameters as Figure 1. It is remarkable
that for 3 # 0 the equations of motion in the unbroken
phase do not admit a solution with non-zero magnetic
field, whereas in the ordered phase the magnetic field nu-
cleates for all values of the statistical parameter. How-
ever, near the Chern-Simons limit, the magnetic field,
charge density and electric field are localized within a
ring away from the origin. The total (gauge invariant)
angular momentum is
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and coincides with the anomalous term for the angular
momentum (11) for topologically trivial sector. The an-
gular momentum density and magnetic moment density
are again localized within a ring away from the origin®.
These vortices are charged and have angular momentum.
However in the broken symmetry phase there cannot be
localized charged states because of screening. We then
conjecture that because both charge and angular momen-
tum have large fluctuations, the ground state will have
vortex-antivortex pairs. But since these are screened, as
they move through the medium they will drag a backflow
current with them that will screen their charge at long
distances. These excitations will then be reminiscent of
the roton excitations in superfluid He. These excitations
should manifest themselves as a minimum in the disper-
sion relation of the fully quantized vortex plus broken
symmetry fluctuations.
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