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Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes 
a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that 
such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we 
show that the Gödel-type metrics with chronology protection can emerge in Einstein–Horndeski gravity. 
We construct such exact solutions also in Einstein–Horndeski–Maxwell and Einstein–Horndeski–Proca 
theories.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Gödel metric [1], constructed in 1949, is one of the most in-
teresting exact solutions predicted by General Relativity (GR). The 
original construction by Gödel requires a fine-tuning balance be-
tween a negative cosmological constant and the matter density of 
some uniform homogeneous pressureless perfect fluids or dusts. 
The Gödel universe is a direct product of a three-dimensional ho-
mogeneous rotating spacetime with a real line. This spacetime 
metric exhibits several peculiar features, such as the presence of 
naked closed time-like curves (CTCs) and the absence of globally 
spatial-like Cauchy surface.

The Gödel metric can be generalized by introducing a con-
stant α, and the resulting metrics are referred as the Gödel type. 
Naked CTCs are present as long as 0 < α < 1, with α = 1/2 corre-
sponding to the original Gödel metric. (See section 2 for details.) 
In this paper, we consider only these four-dimensional Gödel-type 
metrics, and we believe that it is appropriate to call all these met-
rics simply as Gödel metrics. There have been continuing efforts 
in the GR community to construct and study the Gödel metrics, 
see, for example, [2–13,15,14,16–23] and references therein. Gödel 
metrics can also be embedded in strings and M-theory [9,21]. (In 
literature, the Gödel metric was generalized to include two pa-
rameters; however, as was demonstrated in [21], these metrics 
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are related to the metric of the single-parameter α by coordinate 
transformations.)

The existence of naked CTCs in spacetime violates the chronol-
ogy protection conjecture proposed by Hawking [24]. Since Gödel 
metrics can be supported by fundamental matter fields such as 
Maxwell and axion fields, microscopic Gödel metrics present chal-
lenges to the chronological protection. Gödel metrics are absent 
from CTCs when the parameter α ≥ 1. What is intriguing is that 
with the framework of Einstein gravity with minimally-coupled 
matter, the null energy condition implies that 0 < α ≤ 1 [21]. Thus 
naked CTCs are unavoidable for Gödel metrics in Einstein grav-
ity, unless α = 1, which corresponds to simply a direct product 
of a real line and anti-de Sitter spacetime (AdS) in three dimen-
sions. The general α > 1 metrics with chronology protection re-
quires modified gravities beyond Einstein gravity [7,13–16,18–20]. 
In particular, in the low-energy effective theory of strings with 
higher-derivative corrections, Gödel metrics with α > 1 was con-
structed in [7]. However, this theory, when treated on its own, 
involves ghost modes. It is thus of interest to look for ghost-free 
theories beyond Einstein gravity that support Gödel metrics with 
α > 1 so that the spacetime is absent from CTCs.

In this paper, we construct Gödel metrics in Einstein–Horndeski 
gravity. The Horndeski terms [25] involve a non-minimally coupled 
axionic scalar that enters the Lagrangian only through a covari-
ant derivative. The theory is analogous to Gauss–Bonnet gravity 
where the linearized equations of motion are of two derivatives. 
Horndeski gravity has been deeply investigated in the context of 
cosmology, (see e.g. [26,27];) and also in the context of black 
holes [28–31], black hole thermodynamics [32,33], and holographic 
properties [34–37]. Recently new black holes were constructed that 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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violate [38] the conjecture of the reverse isoperimetric inequality 
proposed in [39].

In the embedding of Gödel metrics in string and M-theory, an 
axion carrying a proper magnetic axion charge plays an important 
role [21]. It is thus natural to consider Horndeski gravity where 
an axion is a necessary component in the theory. Furthermore, as 
a modified theory to Einstein gravity, its null energy condition is 
modified, and hence Horndeski gravity may restore the chronologi-
cal protection, and we find that it is indeed the case. Chronological 
protection in general classes of Horndeski gravities were also dis-
cussed in [40].

The paper is organized as follows. In section 2, we consider 
Gödel metrics with general α parameter and review that α ≥ 1
metrics are chronologically protected. We then demonstrate that 
such metrics can arise from Einstein–Horndeski gravity where the 
Horndeski axion carries a magnetic charge. In section 3, we obtain 
the Gödel metrics in Einstein–Horndeski–Maxwell and Einstein–
Horndeski–Proca theories. We conclude the paper in section 4.

2. Gödel metrics in Horndeski theory

In this paper, we consider a class of metrics in four dimensions 
that take the form

ds2 = �2
[
−(dt + rdφ)2 + αr2dφ2 + dr2

r2
+ dz2

]
, (2.1)

where � and α > 0 are constants. The metric is homogeneous and 
a direct product of a real line R and a three-dimensional rotating 
spacetime which was called Gα in [21]. The Gα associates with the 
three dimensional metric of (t, φ, r) and the R associates with the 
coordinate z. When α = 1/2, the original Gödel metric is recov-
ered, corresponding to G1/2 × R. The solution can be constructed 
by fine-tuning a negative cosmological constant against homoge-
neous pressureless perfect fluids [1]. When α = 1, the Gα part of 
the metric is locally AdS3, i.e. G1 = AdS3. In this paper, we find it 
appropriate to refer all the Gα ×R metrics (2.1) as Gödel metrics.

For α ≥ 1, t is the globally-defined time coordinate. This is no 
longer true when α < 1, which is indicative of the existence of 
possible CTCs. To see this explicitly, one can make a coordinate 
transformation [21]

r = cosh r̂ + cos φ̂ sinh r̂ , rφ = 1√
α

sin φ̂ sinh r̂ ,

tan
( 1

2 φ̂ + 1
2

√
α (t − t̂)

) = e−r̂ tan( 1
2 φ̂) , (2.2)

the Gödel metrics (2.1) become

ds2 = �2
[
−

(
dt̂ + 2√

α
sinh2( 1

2 r̂)dφ̂
)2 + sinh2 r̂ dφ̂2 +dr̂2 +dz2

]
.

(2.3)

Absence of a conic singularity at r̂ = 0 requires that φ̂ be peri-
odic and the period be �φ̂ = 2π . It follows that for α < 1 the 
spacetime develops negative g

φ̂φ̂
for sufficiently large r, indicating 

naked CTCs. Such CTCs are absent for Gödel metrics with α ≥ 1. In 
the previous related works [21], we found within the framework of 
Einstein gravity, the null energy condition requires that α ≤ 1, and 
hence the Gödel metrics in Einstein gravity necessary have naked 
CTCs.

It should be emphasized that the three-dimensional metric Gα

is completely specified by its Ricci tensor. Thus, as was remarked 
in the introduction, the two-parameter Gödel metrics in literature 
can be all derived by some coordinate transformations from our 
Gα metric.
In this section, we show that solutions with α > 1 can emerge 
in Einstein–Horndeski theory. Horndeski terms are a class of higher 
derivative polynomials constructed from Riemann tensors and ax-
ionic scalars [25]. The action of Einstein–Horndeski gravity at the 
lowest-order in four dimensions is given by

S =
∫ √−g L d4x ,

L = κ(R − 2�) − 1

2

(
β gμν − γ Gμν

)∇μχ∇νχ + Lmat , (2.4)

where κ , β and γ are coupling constants, Gμν = Rμν − 1
2 Rgμν

is the Einstein tensor, χ is axionic scalar field, and Lmat is the 
Lagrangian of matter. When γ = 0, β = 0 and κ = 1, the theory re-
duces to Einstein theory with a cosmological constant. When the 
axion χ is constant, the Einstein theory is also recovered. The ex-
plicit Einstein and axion equations can be found in literature, see, 
e.g. [29,32]. For simplicity, we take κ = 1 throughout the paper.

Since the Gödel metric (2.1) is homogeneous, the coefficient m0

in the kinetic term for the axion, namely K = 1
2 m2

0 χ̇2, is constant, 
and it must be non-negative. In other words, the ghost-free condi-
tion requires that

m2
0 = −

(
β η00 − γ G00

)
= 4αβ�2 + (3 − 4α)γ

4α�2
≥ 0 . (2.5)

For the general Gödel metric (2.1), we follow the analogous con-
struction of [21] and take the axion to be magnetic:

χ = kz . (2.6)

For pure Einstein–Horndeski theory without matter, we obtain the 
solution

γ = 4αβ�2

4α − 1
, k =

√
4α − 1

αβ
, � = −4α − 1

4α�2
. (2.7)

Substituting the solution into the ghost-free condition (2.5), we 
find

m2
0 = 2β

4α − 1
> 0 . (2.8)

Together with the reality condition for constant k, we find two 
branches of solutions{
α > 1

4

β > 0
or

{
0 < α < 1

4

β < 0
. (2.9)

Thus we see that the original (α = 1/2) Gödel metric can emerge 
in Horndeski gravity; furthermore, in addition to the usual Gödel 
metrics with α < 1, metrics with α > 1 that maintain the chrono-
logical protection can also emerge.

3. Gödel metrics in Horndeski theory with matter

In this section, we generalized the Gödel metrics in Horndeski 
gravity by introducing matter fields, such as Maxwell and Proca 
fields. We also restrict the constant β to be positive only. In some 
cases, we can set β = 1 without loss of generality.

3.1. Maxwell field

The Lagrangian for the Maxwell field is given by

Lmat = − 1
4 F 2 , F = dA . (3.1)

Assuming that the coordinate z is periodic, one can take the fol-
lowing ansatz [5]:
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A = q sin(wz)(dt + rdφ) , (3.2)

where w is a constant, inverse to the period of coordinate z. The 
solution is best described as Gα × S1 rather than Gα × R. For the 
metric (2.1), the solutions are given by

w = 1√
α

, � = (1 − 2α)(1 − 4α)γ − 8α2β�2

8α �2
(
(1 − 2α)γ + 2αβ�2

) , (3.3)

q2 = �2(α − 1)
(
(4α − 1)γ − 4αβ�2

)
(1 − 2α)γ + 2αβ�2

,

k =
√

2 �√
(1 − 2α)γ + 2αβ�2

. (3.4)

Solutions with γ = 0 were constructed in [5]. The reality condi-
tions of (q, k) imply that

(α − 1)
(
(4α − 1)γ − 4αβ�2) ≥ 0 , (2α − 1)γ − 2αβ�2 < 0 .

(3.5)

When α = 1, Maxwell field vanishes, reverting back to a special 
case discussed in the previous section. For α > 1, we find that γ
must lie within the range:

α > 1 : 4αβ�2

4α − 1
≤ γ <

2αβ�2

2α − 1
. (3.6)

Substituting the γ range into (2.5), we find that the ghost free 
condition is indeed satisfied, namely

0 <
β

2(2α − 1)
≤ m2

0 <
2β

4α − 1
. (3.7)

Gödel metrics with α < 1 can also arise. In this case, the reality 
conditions imply that

(4α − 1)γ − 4αβ�2 ≤ 0 , (2α − 1)γ − 2αβ�2 < 0 . (3.8)

Together with the ghost-free condition (2.5), we find that α < 1
solutions are also possible in Einstein–Horndeski–Maxwell gravity 
and the corresponding γ range is given by

0 < α ≤ 1
4

1
4 < α < 3

4
3
4 ≤ α < 1

γ ≥ − 4αβ�2

3−4α − 4αβ�2

3−4α ≤ γ ≤ 4αβ�2

4α−1 γ ≤ 4αβ�2

4α−3

. (3.9)

3.2. Including χ F ∧ F

We can further add a topological term so that the matter con-
tent becomes,

Lmat = − 1
4 F 2 + 1

8χεμνρσ Fμν Fρσ . (3.10)

The coordinate z is now treated as a real line, instead as a circle. 
Making an ansatz for the Maxwell potential [21]

A = qrdφ , (3.11)

we find that the solutions are given by

k = 1√
α

, � = −8α2�2 + (2α − 1)γ

16α2�4
,

q2 = (1 − α)
(
4α�2 − γ

)
2α

, β = 1 + (2α − 1)γ

2α�2
. (3.12)

Solutions with γ = 0 were constructed in [21]. We require that 
β > 0, and together with ghost-free condition (2.5) and reality con-
dition, we find that the results are:
0 < α ≤ 1
4

1
4 < α < 3

4
3
4 ≤ α ≤ 1 α > 1

−4α�2 ≤ γ < 2α�2

1−2α |γ | ≤ 4α�2 − 2α�2

2α−1 < γ ≤ 4α�2 γ ≥ 4α�2
.

(3.13)

3.3. Proca field

We now consider the Proca field, and the Lagrangian is given 
by

Lmat = − 1
4 F 2 − 1

2 m2 A2 , (3.14)

where F = dA. Taking the ansatz [21]

A = q(dt + rdφ) , (3.15)

we find general Gödel solutions with

m = 1√
α �

, � = (1 − 2α)(1 − 4α)γ + 4(1 − 3α)αβ�2

4α�2(γ − 3αγ + 4αβ�2)
,

(3.16)

q2 = �2(α − 1)(γ (4α − 1) − 4αβ�2)

γ (1 − 3α) + 4αβ�2
,

k = 2�

√
α

γ (1 − 3α) + 4αβ�2
. (3.17)

Solutions with γ = 0 were constructed in [21]. The reality con-
dition, together with the ghost-free condition (2.5), restrict the 
parameter regions. For our choice of β > 0, we find that the 
chronology-protected (α > 1) Gödel metrics exist in Einstein–
Horndeski–Proca theory, and the Horndeski coupling constant γ
lies in the following regions:

1 < α ≤ 2 α > 2

4αβ�2

4α−1 < γ <
4αβ�2

3α−1
4αβ�2

4α−1 < γ ≤ 4αβ�2

4α−3

. (3.18)

Gödel metrics with α ≤ 1 can also arise and the results for the 
constant γ range is identical to those in the Einstein–Maxwell the-
ory discussed earlier.

4. Conclusions

In this paper, we considered a class of Gödel metrics (2.1) with 
a free parameter α. In Einstein gravity, the null energy condi-
tion imposes that α ≤ 1, with α = 1 corresponding to AdS3 × R. 
Since Gödel metrics with α < 1 have naked CTCs, the chronology 
in these universes are not protected.

We constructed Gödel metrics in Einstein–Horndeski theories, 
with or without additional matter that includes Maxwell and Proca 
fields. We find that Gödel metrics with α > 1 that evade CTCs 
can also emerge, and consequently the corresponding chronology 
is protected. We determine the range of the Horndeski coupling 
constant γ so that the theories that admit the Gödel metrics are 
absent from ghost excitations. The full stability of these metrics 
however requires further investigation.

Acknowledgements

W.-J.G. and H.L. are supported in part by NSFC grants No. 
11475024, No. 11175269 and No. 11235003. S.-L.L. is supported 
in part by Graduate Technological Innovation Project of Beijing In-
stitute of Technology. H.W. is supported in part by NSFC grants 
No. 11575022 and No. 11175016.



W.-J. Geng et al. / Physics Letters B 780 (2018) 196–199 199
References

[1] K. Gödel, An example of a new type of cosmological solutions of Einstein’s field 
equations of graviation, Rev. Mod. Phys. 21 (1949) 447, https://doi .org /10 .1103 /
RevModPhys .21.447.

[2] A. Banerjee, S. Banerji, Stationary distributions of dust and electromagnetic 
fields in general relativity, J. Phys. A 1 (1968) 188.

[3] F. Bampi, C. Zordan, A note on Gödel’s metric, Gen. Relativ. Gravit. 9 (1978) 
393.

[4] A.K. Raychaudhuri, S.N. Guha Thakurta, Homogeneous space–times of the 
Gödel type, Phys. Rev. D 22 (1980) 802, https://doi .org /10 .1103 /PhysRevD .22 .
802.

[5] M.J. Reboucas, J. Tiomno, On the homogeneity of Riemannian space–times of 
Gödel type, Phys. Rev. D 28 (1983) 1251, https://doi .org /10 .1103 /PhysRevD .28 .
1251.

[6] M.J. Reboucas, J.E. Aman, A.F.F. Teixeira, A note on Gödel type space–times, 
J. Math. Phys. 27 (1986) 1370, https://doi .org /10 .1063 /1.527093.

[7] J.D. Barrow, M.P. Dabrowski, Gödel universes in string theory, Phys. Rev. D 
58 (1998) 103502, https://doi .org /10 .1103 /PhysRevD .58 .103502, arXiv:gr-qc /
9803048.

[8] P. Kanti, C.E. Vayonakis, Gödel type universes in string inspired charged gravity, 
Phys. Rev. D 60 (1999) 103519, https://doi .org /10 .1103 /PhysRevD .60 .103519, 
arXiv:gr-qc /9905032.

[9] D. Israel, Quantization of heterotic strings in a Godel/anti-de Sitter space–time 
and chronology protection, J. High Energy Phys. 0401 (2004) 042, https://doi .
org /10 .1088 /1126 -6708 /2004 /01 /042, arXiv:hep -th /0310158.

[10] M. Gurses, A. Karasu, O. Sarioglu, Godel type of metrics in various dimensions, 
Class. Quantum Gravity 22 (2005) 1527, https://doi .org /10 .1088 /0264 -9381 /22 /
9 /003, arXiv:hep -th /0312290.

[11] M. Gurses, O. Sarioglu, Godel-type metrics in various dimensions II: inclusion 
of a dilaton field, Class. Quantum Gravity 22 (2005) 4699, https://doi .org /10 .
1088 /0264 -9381 /22 /22 /004, arXiv:hep -th /0505268.

[12] R.J. Gleiser, M. Gurses, A. Karasu, O. Sarioglu, Closed timelike curves and 
geodesics of Godel-type metrics, Class. Quantum Gravity 23 (2006) 2653, 
https://doi .org /10 .1088 /0264 -9381 /23 /7 /025, arXiv:gr-qc /0512037.

[13] M.J. Reboucas, J. Santos, Gödel-type universes in f (R) gravity, Phys. Rev. D 80 
(2009) 063009, https://doi .org /10 .1103 /PhysRevD .80 .063009, arXiv:0906 .5354
[astro -ph .CO].

[14] H. Ahmedov, A.N. Aliev, Black string and Gödel type solutions of Chern–
Simons modified gravity, Phys. Rev. D 82 (2010) 024043, https://doi .org /10 .
1103 /PhysRevD .82 .024043, arXiv:1003 .6017 [hep -th].

[15] J. Santos, M.J. Reboucas, T.B.R.F. Oliveira, Gödel-type universes in Palatini f (R)

gravity, Phys. Rev. D 81 (2010) 123017, https://doi .org /10 .1103 /PhysRevD .81.
123017, arXiv:1004 .2501 [astro -ph .CO].

[16] C. Furtado, J.R. Nascimento, A.Y. Petrov, A.F. Santos, Horava–Lifshitz gravity 
and Gödel universe, Phys. Rev. D 84 (2011) 047702, https://doi .org /10 .1103 /
PhysRevD .84 .047702, Erratum: Phys. Rev. D 84 (2011) 069904, https://doi .org /
10 .1103 /PhysRevD .84 .069904, arXiv:1106 .4003 [hep -th].

[17] D. Liu, P. Wu, H. Yu, Gödel-type universes in f (T ) gravity, Int. J. Mod. Phys. D 
21 (2012) 1250074, https://doi .org /10 .1142 /S0218271812500745, arXiv:1203 .
2016 [gr-qc].

[18] J.B. Fonseca-Neto, A.Y. Petrov, M.J. Reboucas, Gödel-type universes and chronol-
ogy protection in Horava–Lifshitz gravity, Phys. Lett. B 725 (2013) 412, https://
doi .org /10 .1016 /j .physletb .2013 .07.018, arXiv:1304 .4675 [astro -ph .CO].

[19] J.A. Agudelo, J.R. Nascimento, A.Y. Petrov, P.J. Porfírio, A.F. Santos, Gödel and 
Gödel-type universes in Brans–Dicke theory, Phys. Lett. B 762 (2016) 96, arXiv:
1603 .07582 [hep -th].

[20] P.J. Porfirio, J.B. Fonseca-Neto, J.R. Nascimento, A.Y. Petrov, J. Ricardo, A.F. San-
tos, Chern–Simons modified gravity and closed timelike curves, Phys. Rev. 
D 94 (4) (2016) 044044, https://doi .org /10 .1103 /PhysRevD .94 .044044, arXiv:
1606 .00743 [hep -th].
[21] S.L. Li, X.H. Feng, H. Wei, H. Lü, Gödel universe from string theory, Eur. Phys. 
J. C 77 (5) (2017) 289, https://doi .org /10 .1140 /epjc /s10052 -017 -4856 -z, arXiv:
1612 .02069 [hep -th].

[22] N. Dadhich, A. Molina, J.M. Pons, Generalized Gödel universes in higher dimen-
sions and pure Lovelock gravity, Phys. Rev. D 96 (8) (2017) 084058, https://
doi .org /10 .1103 /PhysRevD .96 .084058, arXiv:1703 .05663 [gr-qc].

[23] F.S. Gama, J.R. Nascimento, A.Y. Petrov, P.J. Porfirio, A.F. Santos, Gödel-type so-
lutions within the f(R,Q) gravity, Phys. Rev. D 96 (6) (2017) 064020, https://
doi .org /10 .1103 /PhysRevD .96 .064020, arXiv:1707.03440 [hep -th].

[24] S.W. Hawking, The chronology protection conjecture, Phys. Rev. D 46 (1992) 
603, https://doi .org /10 .1103 /PhysRevD .46 .603.

[25] G.W. Horndeski, Second-order scalar-tensor field equations in a four-
dimensional space, Int. J. Theor. Phys. 10 (1974) 363, https://doi .org /10 .1007 /
BF01807638.

[26] L. Amendola, Cosmology with nonminimal derivative couplings, Phys. Lett. 
B 301 (1993) 175, https://doi .org /10 .1016 /0370 -2693(93 )90685 -B, arXiv:gr-qc /
9302010.

[27] C. Germani, A. Kehagias, New model of inflation with non-minimal deriva-
tive coupling of Standard Model Higgs boson to gravity, Phys. Rev. Lett. 
105 (2010) 011302, https://doi .org /10 .1103 /PhysRevLett .105 .011302, arXiv:
1003 .2635 [hep -ph].

[28] A. Cisterna, C. Erices, Asymptotically locally AdS and flat black holes in the 
presence of an electric field in the Horndeski scenario, Phys. Rev. D 89 (2014) 
084038, https://doi .org /10 .1103 /PhysRevD .89 .084038, arXiv:1401.4479 [gr-qc].

[29] A. Anabalon, A. Cisterna, J. Oliva, Asymptotically locally AdS and flat black holes 
in Horndeski theory, Phys. Rev. D 89 (2014) 084050, https://doi .org /10 .1103 /
PhysRevD .89 .084050, arXiv:1312 .3597 [gr-qc].

[30] M. Rinaldi, Black holes with non-minimal derivative coupling, Phys. Rev. D 86 
(2012) 084048, https://doi .org /10 .1103 /PhysRevD .86 .084048, arXiv:1208 .0103
[gr-qc].

[31] E. Babichev, C. Charmousis, Dressing a black hole with a time-dependent 
Galileon, J. High Energy Phys. 1408 (2014) 106, https://doi .org /10 .1007 /
JHEP08(2014 )106, arXiv:1312 .3204 [gr-qc].

[32] X.H. Feng, H.S. Liu, H. Lü, C.N. Pope, Black hole entropy and viscosity bound 
in Horndeski gravity, J. High Energy Phys. 1511 (2015) 176, https://doi .org /10 .
1007 /JHEP11(2015 )176, arXiv:1509 .07142 [hep -th].

[33] X.H. Feng, H.S. Liu, H. Lü, C.N. Pope, Thermodynamics of charged black holes 
in Einstein–Horndeski–Maxwell theory, Phys. Rev. D 93 (4) (2016) 044030, 
https://doi .org /10 .1103 /PhysRevD .93 .044030, arXiv:1512 .02659 [hep -th].

[34] W.J. Jiang, H.S. Liu, H. Lü, C.N. Pope, DC conductivities with momentum dis-
sipation in Horndeski theories, J. High Energy Phys. 1707 (2017) 084, https://
doi .org /10 .1007 /JHEP07(2017 )084, arXiv:1703 .00922 [hep -th].

[35] M. Baggioli, W.J. Li, Diffusivities bounds and chaos in holographic Horn-
deski theories, J. High Energy Phys. 1707 (2017) 055, https://doi .org /10 .1007 /
JHEP07(2017 )055, arXiv:1705 .01766 [hep -th].

[36] E. Caceres, R. Mohan, P.H. Nguyen, On holographic entanglement entropy of 
Horndeski black holes, J. High Energy Phys. 1710 (2017) 145, https://doi .org /
10 .1007 /JHEP10(2017 )145, arXiv:1707.06322 [hep -th].

[37] H.S. Liu, H. Lü, C.N. Pope, Holographic heat current as Noether current, J. High 
Energy Phys. 1709 (2017) 146, https://doi .org /10 .1007 /JHEP09(2017 )146, arXiv:
1708 .02329 [hep -th].

[38] X.H. Feng, H.S. Liu, W.T. Lu, H. Lü, Horndeski gravity and the violation of 
reverse isoperimetric inequality, Eur. Phys. J. C 77 (11) (2017) 790, https://
doi .org /10 .1140 /epjc /s10052 -017 -5356 -x, arXiv:1705 .08970 [hep -th].
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