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a b s t r a c t

We calculate the first relativistic corrections to the Kompaneets equation for the evolution of the photon
frequency distribution brought about by Compton scattering. The Lorentz invariant Boltzmann equation
for electron–photon scattering is first specialized to isotropic electron and photon distributions, the
squared scattering amplitude and the energy–momentum conserving delta function are each expanded
to order v4/c4, averages over the directions of the electron and photon momenta are then carried out,
and finally an integration over the photon energy yields our Fokker–Planck equation. The Kompaneets
equation, which involves only first- and second-order derivatives with respect to the photon energy,
results from the order v2/c2 terms, while the first relativistic corrections of order v4/c4 introduce third-
and fourth-order derivatives. We emphasize that our result holds when neither the electrons nor the pho-
tons are in thermal equilibrium; two effective temperatures characterize a general, non-thermal electron
distribution. When the electrons are in thermal equilibrium our relativistic Fokker–Planck equation is in
complete agreement with the most recent published results, but we both disagree with older work.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Kompaneets [1] equation,
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describes the scattering of unpolarized, low energy photons of fre-
quency x on a dilute distribution of non-relativistic electrons when
all the particles — photons and electrons — are distributed isotrop-
ically in their momenta. The non-relativistic total photon–electron
cross section is the Thomson cross section rT. The electron number
density and mass are denoted by ne and me. The photon phase space
distribution f(t,x) is normalized such that the number nc of photons
per unit volume is given by

ncðtÞ ¼ 2
Z ðd3kÞ
ð2pÞ3

f ðt;xÞ; ð1:2Þ

in which the prefactor 2 counts the number of photon polarization
states and k is the photon wave-number vector with jkjc = x. If the
electrons are in thermal equilibrium described by a Maxwell–
Boltzmann distribution, then T is the temperature (in energy units)
Te of this thermal distribution. However, the Kompaneets equation
(1.1) holds for any isotropic distribution of electron momenta with
ll rights reserved.
T defined to be 2/3 of the average energy in this distribution [2]. For
photons with a Planck distribution,

f ðt;xÞ ! f ð0ÞðxÞ ¼ 1
expf�hx=Tcg � 1

: ð1:3Þ

The terms in the curly braces in the Kompaneets equation (1.1) van-
ish when Tc = T. In particular, if T = Tc = Te, there is a time-indepen-
dent photon distribution in thermal equilibrium with the
electrons.1

Our purpose here is to examine the first relativistic corrections
to the Kompaneets equation. These corrections have been previ-
ously computed by Challinor and Lasenby (C&L) [3] for the case
in which the electrons are in a thermal distribution. Using the
method of C&L, Itoh et al. [4] carried out the expansion to a much
higher order in v/c. Subsequently, Sazonov and Sunyaev [5] con-
firmed the previous work of Challinor and Lasenby. Here we use
a method that is quite different from that employed by C&L, a
method that does not require that the electrons be in thermal equi-
librium. Moreover, this method explicitly exhibits the order of v/c
in every term and thus provides a straightforward evaluation of the
correct v2/c2 corrections to the Kompaneets equation. Although the
structure of our result is quite different from that found by C&L, we
agree with C&L in the number of higher-order derivatives with
respect to the photon frequency x which must supplement the
Kompaneets equation to correctly account for the relativistic
1 Since Compton scattering preserves the photon number, the collision term on the
ght-hand side of Eq. (1.1) also vanishes for a general Bose–Einstein distribution of
assless particles at temperature T, f(t,x) ? f(a)(x) = [exp{(⁄x/T) � a} � 1]�1.
ri
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corrections. Such higher-order derivative terms are missing from
the ad hoc treatments of Cooper [6] and of Prasad et al. [7]. These
authors assume (incorrectly) that the relativistic corrections may
be accounted for by simply replacing the factor x4 that stands just
before the curly braces in Eq. (1.1) by a function a(x,T) which is
determined so as to give the rate of change of the photon energy
density including the first relativistic corrections. We compute
both the rate of energy exchange between the photons and elec-
trons and the Sunyaev–Zel’dovich effect [9–11] which follow from
the relativistically corrected Kompaneets equation. Including the
first relativistic corrections, our results entail two effective temper-
atures Teff1 and Teff2 which are defined by energy moments of the
electron phase-space distribution. When the electron distribution
is restricted to a thermal, relativistic Maxwell–Boltzmann distribu-
tion at temperature T, Teff1 = Teff2 = T and we find, after some alge-
bra, that our results that have a completely different structure are,
in fact, in complete agreement with those of C&L. Moreover, the
rate of energy exchange that we compute (also written down by
C&L) agrees with that found earlier by Woodward [8].

Our presentation is organized as follows: After describing the
general method we use in Section 2, we then outline the calcula-
tion in Section 3 using the results of several Appendices. Finally,
our results are shown in Section 4: Section 4.1 presents our general
result, Section 4.2 gives its restriction to the case in which the pho-
tons are in thermal equilibrium at temperature Tc, Section 4.3 de-
rives the rate of energy transport between photons at temperature
Tc and the electrons in a general distribution, and finally, in Section
4.4 the Sunyaev–Zel’dovich effect for non-thermal electrons with
the first relativistic correction is briefly described.

2. Relativistic Boltzmann equation for isotropic scattering

We start from the Lorentz invariant form of the Boltzmann
equation for electron–photon scattering:

k@f ðx; kÞ ¼
Z ðd3p0Þ
ð2pÞ3

1
2E0
ðd3k0Þ
ð2pÞ3
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Here we revert to units in which ⁄ = 1 = c, but we shall return to
conventional units when we write the final result. The left-hand
side of the equation involves the relativistic scalar k@ = x(@/
@t) + k � r. We are assuming that the electrons and photons are
not polarized. Hence jTj2 denotes the square of the Lorentz invariant
scattering amplitude that is summed over the initial and final elec-
tron and photon spins. It is divided by the initial electron spin
weight ge = 2 so as to describe the average scattering from an ini-
tially unpolarized ensemble of electrons. It is divided by the square
of the photon spin weight g2

c ¼ 4 because initially there is an unpo-
larized mixture and finally the scattering is into the scalar density
f(x,k) that describes a typical photon (with the factor gc = 2 needed
to provide the photon number count in Eq. (1.2)). The function
g(x,p) is the electron phase space density. We choose our Lorentz
metric to have signature (�+++) so that t = x0 = �x0 while for the
spatial coordinates xk = xk.

We now specialize to the isotropic case of interest where
f(x,k) ? f(t,x) and g(x,p) ? g(t,E), with the electron number den-
sity given by

ne ¼ 2
Z ðd3pÞ
ð2pÞ3

gðt; EÞ: ð2:2Þ

The integration variables p and p0 in Eq. (2.1) are dummy variables.
We shall make the interchange p M p0 in the first set of terms in Eq.
(2.1) so as to have a common factor of g(t,E) for the two ‘scattering
in to’ and ‘scattering out of’ terms. To keep a convenient form, we
shall also use the detailed balance relation

Tðp0; k0; p; kÞ
�� ��2 ¼ Tðp; k; p0; k0Þ

�� ��2 ð2:3Þ

for this first term in Eq. (2.1). Finally, we note that the p0 integration
is best performed using

ðd3p0Þ
ð2pÞ3

1
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3p0Þ
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2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm2

e

q ¼ ðd
4p0Þ
ð2pÞ3

d p02 þm2
e

� �
ð2:4Þ

against the four-dimensional delta function which now replaces

p0 ¼ pþ k� k0 ð2:5Þ

giving

p02 þm2
e ¼ 2pðk� k0Þ � 2kk0: ð2:6Þ

In this fashion, we obtain
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in which the four-momentum p0 in jT(p0,k;p,k0)j2 is determined by
Eq. (2.5).

The angular part of the integrations over p and k0 pick out the
completely rotationally invariant part of the integrand. Thus, with
angular brackets denoting the average over all the orientations of
the vectors within it, we may make the replacement

dð2pðk� k0Þ � 2kk0ÞjTðp0; k0; p; kÞj2

! dð2pðk� k0Þ � 2kk0ÞjTðp0; k0; p; kÞj2
D E

� sðp;x0;xÞ: ð2:8Þ

In view of these remarks, we may write Eq. (2.7) as
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with

Fðt;x; pÞ ¼ x
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For the evaluation of Eq. (2.10) it is convenient to separate the
weight that appears there into symmetric and antisymmetric
parts:

sðp; x0;xÞ ¼ sSðp;x0;xÞ þ sAðp;x0;xÞ ð2:11Þ

with

sSðp;x;x0Þ ¼ þsSðp;x0;xÞ ð2:12Þ

and

sAðp;x;x0Þ ¼ �sAðp; x0;xÞ: ð2:13Þ

With this decomposition, Eq. (2.10) becomes
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3. Expansions and angular averages

It proves convenient to use the angles a, a0 between p and k, k0,
and the angle h between k and k0. We also use the velocity

v ¼ jpj
E
¼ jpj

EðjpjÞ < 1: ð3:1Þ

The delta function in Eq. (2.8) now becomes

dð2pðk� k0Þ � 2kk0Þ ¼ 1
2E

dðxð1� v cos aÞ �x0ð1� v cos a0Þ

� ðxx0=EÞð1� cos hÞÞ ð3:2Þ

and the squared scattering amplitude (A8) now appears as

jTðp0; k0; p; kÞj2 ¼ 6pm2
erT 2þ 1� cos h

ð1� v cos aÞð1� v cos a0Þ

�

� xx0
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)
: ð3:3Þ

As we shall see, the Kompaneets equation results from expanding
Eqs. (3.2) and (3.3) in powers of v, with this equation resulting from
the order v2 terms. The leading relativistic corrections that concern
us require that the expansion be carried out to order v4. We note that
since in the applications that we envisage, x, x0 � T � p2/me � v2E,
x/E or x0/E should be counted as being of order v2.

The needed expansion of the delta function (3.2) in powers of v
reads
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The term of order v0, d(x �x0), makes no contribution, since for it
the two parts of the collision integral, the ‘scattering into’ and the
‘scattering out of’, cancel. Hence we need expand the squared
amplitude (3.3) only to order v3 to obtain results good to order v4:

jTðp0;k0;p;kÞj2’6pm2
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g: ð3:5Þ
We now multiply the expressions (3.4) and (3.5) together and retain
the resulting terms up to those of order v4. We then use the result of
angular averaging over the directions of p detailed in Appendix B
and subsequently average over the direction between k and k0,
the average over cosh. To present the results in a compact form,
we separately record the order v2 result, the one that gives the Kom-
paneets equation,
s2ðp;x0;xÞ ¼ hjTðp0; k0; p; kÞj2dð2pðk� k0Þ � 2kk0Þij2

¼ 4pm2
e
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rT v2 xx0
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E
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ð3:6Þ
and the order v4 result which gives the leading relativistic correc-
tion to the Kompaneets equation
s4ðp;x0;xÞ¼ jTðp0;k0;p;kÞj2dð2pðk�k0Þ�2kk0Þ
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There are no terms of odd order in v in the somewhat lengthly alge-
bra required to obtain these formulae. They simplify with the aid of
the delta function identities presented in Appendix C:
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4. Results

It is now a straightforward although tedious matter to insert the
forms above into Eq. (2.14), perform the x0 integrals, and place the
results into Eq. (2.9) to secure the Kompaneets equation and its
leading relativistic corrections.
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4.1. General result
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Here we have reverted to conventional units and used the effective
temperature definitions (D4) and (D7) of Appendix D which, for
convenience, we repeat here:

Teff1 ¼
1
ne

Z ðd3pÞ
ð2pÞ3

p2c2

3EðpÞ2gðt; EÞ ð4:2Þ
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T2
eff2 ¼

4
15ne
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2me
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2gðt; EÞ: ð4:3Þ

As explained in detail in Appendix D, when the electrons are in
thermal equilibrium with a relativistic Maxwell–Boltzmann distri-
bution at temperature T, Teff1 ? T holds exactly. On the other hand,
in this limit Teff2 ? T only to leading order in v2/c2; but this is suffi-
ciently accurate because T2

eff2 appears only in the relativistic
corrections.

We have arranged the terms in the result (4.1) so as to exhibit
certain features. We have arranged terms into groups that sepa-
rately vanish in thermal equilibrium, Teff 1 = Teff2 = T. These groups
in Eq. (4.1) are: line 1; lines 2 and 3; line 4; lines 5 and 6; lines 7
and 8. To achieve this, it was necessary to introduce terms of order
T2

eff1 in all of the lines representing relativistic corrections—all of
the lines of Eq. (4.1) save for the first which has the form given
by Kompaneets. However, the sum of all of these order T2

eff1 terms
vanishes, as a simple calculation shows.

We have also chosen to order the terms in our result (4.1) so as
to have successive parts involve overall higher derivatives. Since
each part starts out with at least one overall derivative, the result
conserves photon number as it must. Only the part with the single
overall derivative d/dx contributes to the rate of energy exchange
between the photons and the electrons. Similarly, the rate at which
the second moment (⁄x)2 changes with time is affected only by the
parts involving d/dx and d2/dx2 while all the parts contribute to
the time rate of change of the (⁄x)3 moment. We have kept some
photon frequency derivatives within the sequence of increasingly
higher overall derivative so that, as we have just mentioned, the
sum of the terms in each of these groups vanishes in thermal equi-
librium. Each of these groupings in the result (4.1) vanishes, in fact,
in the more general situation in which the photon distribution is of
the Planck form (1.3) but with the electron g(E) constrained only to
have Teff1 = Teff2 = Tc.

Our expression (4.1) is in complete agreement with the work of
Challinor and Lasenby [3] in the limit in which the electrons are in
thermal equilibrium at temperature Te. However, as mentioned
previously, the structure of our expression (4.1) for electrons in
thermal equilibrium—which is equivalent to that of C&L—differs
completely from the previous (incorrect) results of Cooper [6]
and of Prasad et al. [7].

4.2. Photons in thermal equilibrium

For photons in thermal equilibrium at a temperature Tc (the
Planck distribution (1.2) or, more generally, a Bose–Einstein distri-
bution of photons) the result reduces to
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4.3. Energy transport

The energy transfer per unit volume to the photons is given by

_uc ¼ 2
Z ðd3kÞ
ð2pÞ3

x
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f ðt;xÞ: ð4:5Þ

From Eq. (4.4), we see that, including the first relativistic correc-
tions, this energy transfer between a photon distribution in equilib-
rium at temperature Tc and an arbitrary isotropic distribution of
election energies involves
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Hence, again reverting to conventional units,
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In the electron thermal equilibrium limit in which Teff1 =
Teff2 = Te, the energy transfer rate (4.8) agrees with the rate given
by Woodward [8] which was later confirmed by Challinor and
Lasenby [3]. The result (4.8) holds, of course, for a general isotropic
distribution of electrons with the two effective temperatures Teff1

and Teff2 defined by the integrals (4.2) and (4.3).
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4.4. Sunyaev–Zel’dovich effect

Eq. (4.4) can be used to generalize published results on relativistic
corrections to the Sunyaev–Zel’dovich effect, the distortion of the
cosmic microwave background, a Planck distribution at a very low
temperature, by high energy electrons in hot plasmas in galactic
clusters. We sketch this generalization here both as an illustration
of our result and to record a formula that can be used to ascertain
if a more detailed treatment is warranted as more data comes along.

The distortion involves changing the time derivative in the
Boltzmann equation to the proper coordinate distance ‘ along
the line of sight through the plasma cloud, t ? ‘/c. In doing so in
the relativistic corrected Kompaneets formula (4.4), we encounter
two dimensionless variables

y1 ¼ rT

Z
d‘neð‘Þ

Teff1ð‘Þ
mec2 ð4:9Þ

and

y2 ¼ rT

Z
d‘neð‘Þ

T2
eff2ð‘Þ
m2

e c4 ; ð4:10Þ

that replace the conventional y parameter.2 It is now convenient to
define

x ¼ �hx
Tc

ð4:11Þ

and write the Planck distribution as f0(x) = [exp{x} � 1]�1. Since the
microwave background temperate Tc is so low, while the electrons
have average energies that are several keV, we may neglect the very
small ratios Tc/Teff1and Tc/Teff2 as well as Tc/mec

2. With the omission
of these terms, carrying out the derivatives in Eq. (4.4) yields the
spectral distortion

Df ðxÞ
f0ðxÞ

¼ y1x½1þ f0ðxÞ�fx� 4þ 2xf0ðxÞg

þ y2x½1þ f0ðxÞ�
x

10
ð235� 84xþ 7x2Þ

n
�10þ 1

5
ð235� 252xþ 49x2Þxf0ðxÞ

þ126
5
ðx� 2Þx2f 2

0 ðxÞ þ
84
5

x3f 3
0 ðxÞ

�
: ð4:12Þ

In the limit of small x, the Rayleigh–Jeans region, Eq. (4.12) simpli-
fies to

Df ðxÞ
f0ðxÞ

¼ �2y1 þ
17
5

y2: ð4:13Þ

Eqs. (4.12) and (4.13) hold when the electrons are not in thermal
equilibrium; when they are in equilibrium Eqs. (4.12) and (4.13)
agree with the expressions obtained by Challinor and Lasenby3

[3]. Elaborate discussions of the Sunayeav–Zel’dovich effect have
previously been presented for non-thermal electrons [12,13] for spe-
cific choices of the electron distribution function g(E, t).

Appendix A. Squared amplitude details

We first express the fully relativistic squared amplitude [14] as

jTðp0;k0;p;kÞj2¼6pm2
erT

j0

j
þ j

j0

 �
þ2

m2
e

j
�m2

e

j0

 �
þ m2

e

j
�m2

e

j0

 �2
( )

;

ðA1Þ
2 Note that even in the case of a plasma in local thermodynamic equilibrium with
an electron temperature Te(‘), the relativistic corrections involve a different y
parameter (y = y2) defined by the electron number weighted average of T2

e ð‘Þ rather
than the first power Te(‘) that appears in y = y1.

3 These authors, however, do not define the proper parameters y1 and y2 that, as
noted in the previous footnote, are needed for the relativistic treatment, but rather
use a y = y1 and then multiply this by an undefined electron temperature to obtain a
y2 parameter for the relativistic corrections.
in which rT ¼ 8pr2
0=3 is the Thomson cross section with r0 the clas-

sical electron radius and, with our space-like metric

j ¼ �pk ¼ p0k0 � p � k; j0 ¼ �pk0 ¼ p0k0
0 � p � k0: ðA2Þ

Note that in terms of these variables the delta function constraint
(3.2) reads

j0 � j ¼ kk0: ðA3Þ

It is convenient to use the variable

�j ¼
ffiffiffiffiffiffiffiffi
jj0
p

; ðA4Þ

so that the relation (A3) may be written as

j0

j
¼ 1þ kk0

j
¼ 1þ

ffiffiffiffiffi
j0
j

r
kk0

�j
: ðA5Þ

The proper solution of this quadratic equation, written in terms of
j0/j, is

j0

j
¼ 1

2
kk0

�j

 �2

þ 2þ kk0

�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk0

�j

 �2

þ 4

s2
4

3
5: ðA6Þ

Similarly,

j
j0
¼ 1

2
kk0

�j

 �2

þ 2� kk0

�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk0

�j

 �2

þ 4

s2
4

3
5: ðA7Þ

Making use of Eq. (A3) and some algebra now presents

jTðp0; k0; p; kÞj2 ¼ 6pm2
erT

kk0

�j

 �2

þ 2þ 2m2
e

kk0

�j2 þm4
e

kk0

�j2

 �2( )
:

ðA8Þ
Appendix B. Angular averages

The calculation outlined in the text involves the integration of

cos a ¼ p̂ � k̂ ¼ p̂lk̂l; cos a0 ¼ p̂ � k̂0 ¼ p̂lk̂0l ðB1Þ

and of the products of the powers cosma cosna0, over the solid angle
of the momentum p associated with the electron distribution g(t,E).
This is equivalent to averaging over all orientations of the unit vec-
tor p̂, and this averaging can be performed at any stage of the com-
putation—it may be performed before the actual integral over p is
carried out. The averages may be expressed as contractions of outer
products k̂l � � � and k̂0m � � �with the rotationally invariant tensors that
result from the angular averages hp̂kp̂l � � �i. For example,

hcos a cos a0i ¼ k̂lk̂0mhp̂kp̂mi: ðB2Þ

This is the method that we shall employ.
Under the angular average

hp̂li ¼ 0 ðB3Þ

and since p is a vector, not a pseudo-vector,

hp̂lp̂mp̂ni ¼ 0; ðB4Þ

because the only rotationally invariant, third rank tensor, is the
pseudo-tensor �lmn. The lowest-order correlation is

hp̂lp̂mi ¼ 1
3

dlm; ðB5Þ

where dkl is the matrix element of the invariant unit matrix. The
overall coefficient is determined by the trace hp̂lp̂li ¼ h1i ¼ 1. The fi-
nal average that we shall need is
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hp̂kp̂lp̂mp̂ni ¼ 1
15
½dkldmn þ dkmdln þ dkndlm�: ðB6Þ

Here the particular combination of the delta symbols on the right-
hand side is required to reproduce the complete symmetry of the
left-hand side under any permutation of the indices k, l, m, n. The
overall coefficient again follows from taking the trace over any in-
dex pair and comparing the result with Eq. (B5).

Therefore,

hcos ai ¼ 0 ¼ hcos a0i ðB7Þ

and

hcos a cos a0i ¼ 1
3

k̂ � k̂0 ¼ 1
3

cos h; ðB8Þ

from which follow

hcos2 ai ¼ 1
3
¼ hcos2 a0i: ðB9Þ

Since the angular average of three momentum vectors vanishes,

0 ¼ hcos3 ai ¼ hcos2 a cos a0i ¼ hcos a cos2 a0i ¼ hcos3 ai: ðB10Þ

Next,

hcos3 a cos a0i ¼ 1
15

k̂2k̂ � k̂0 þ k̂2k̂ � k̂0 þ k̂ � k̂0k̂2
h i

¼ 1
5

cos h ðB11Þ

and

hcos a cos3 a0i ¼ 1
5

cos h: ðB12Þ

Finally

hcos2 a cos2 a0i ¼ 1
15

k̂2k̂02 þ ðk̂ � k̂0Þ2 þ ðk̂ � k̂0Þ2
h i

¼ 1
15
½1þ 2 cos2 h�; ðB13Þ

from which follow

hcos4 ai ¼ 1
5
¼ hcos4 a0i: ðB14Þ
4 The result that we have obtained for an effective temperature definition that
reduces without approximation to the temperature of a relativistic Maxwell–
Boltzmann distribution is motivated and explained by the following discussion of
relativistic statistical mechanics. In general, even for an interacting system of
particles, the grand canonical ensemble partition function Z defines the grand
potential X by lnZ = X/T. A fundamental theorem of the theory relates X to the
pressure p and the volume V of the system by X = p V. For the case of a dilute free gas
with number density n, it is a standard textbook result that lnZ = n V, even for a
relativistic ensemble of particles. Thus, for a dilute, non-interacting gas, the familiar
equation of state p = n T holds even for relativistic particles. On the other hand, with
an arbitrary phase space density f(t,p) for particles with spin weight gS, the spatial
stress is given by

Tkl ¼
Z ðd3pÞ
ð2pÞ3

pkpl

EðpÞ gSf ðt;pÞ:

The pressure is defined by the trace of the spatial stress, p ¼ Tk
k=3. Thus the definition

(D4) for electrons is just Teff1 = pe/ne. The general statistical mechanics discussion
above now shows that Teff1 ? T for the case of an equilibrium distribution. This is
a proof of this equilibrium limit, independent of the explicit computation given in
Eq. (D5).
Appendix C. Delta function identities

The work in the text involves various derivatives of
d(x �x0) = d(x) multiplied by various powers of x �x0 = x. Simple
manipulations can be performed to place a derivative dn/dxn to the
left of a power xm, leaving lower derivatives and lower powers of x.
Again, the lower derivatives can be ordered to the left so that all
the derivatives appear as total derivatives. According to the rules
of generalized functions, any resulting term of the form xld(x) gives
a vanishing contribution. The simplest example of this procedure is

xd0ðxÞ ¼ d
dx
½xdðxÞ� � dðxÞ: ðC1Þ

As we have just noted, the first term may be discarded. Moreover,
the delta function d(x) = d(x �x0) with no derivative can also be
omitted because it gives rise to equal contributions from the ‘scat-
tering into’ and ‘scattering out of’ terms in the Boltzmann equation
which cancel. We use the symbol ‘=’ to denote the only effective
parts that remain after the manipulations described above have
been made. Thus, we write Eq. (C1) as

xd0ðxÞ‘ ¼ ’0: ðC2Þ

More involved computations lead to the effective results
xd00ðxÞ ‘ ¼ ’ � 2d0ðxÞ; ðC3Þ

x2d00ðxÞ ‘ ¼ ’ 0; ðC4Þ

xd000ðxÞ ‘ ¼ ’ � 3d00ðxÞ; ðC5Þ

x2d000ðxÞ ‘ ¼ ’ 6d0ðxÞ; ðC6Þ

x2d
0000 ðxÞ ‘ ¼ ’ þ 12d00ðxÞ ðC7Þ

and

x4d
0000 ðxÞ‘ ¼ ’0: ðC8Þ
Appendix D. Effective temperatures defined by electron
distribution integrals

Here we shall explain the definitions of the two effective tem-
peratures Teff1 and Teff2 that reduce to the electron temperature
Te when the electron relativistic phase-space distribution g(t,E) is
restricted to be a Maxwell–Boltzmann distribution.

For our system of free, relativistic electrons, the number density
is given for an arbitrary phase space distribution g(t,E) by

ne ¼
Z ðd3pÞ
ð2pÞ3

2gðt; EÞ: ðD1Þ

For the case of thermal equilibrium,

gðpÞ ¼ const: exp � EðpÞ
T

� �
; ðD2Þ

in which

EðpÞ ¼ p2 þm2
e

	 
1=2 ðD3Þ

is the total relativistic energy of an electron with momentum p.
We define

Teff1 ¼
1
ne

Z ðd3pÞ
ð2pÞ3

p2

3EðpÞ2gðt; EÞ ðD4Þ

because, with this definition for an arbitrary electron distribution
g(t,E), we have the exact (to all orders of v2) limit Teff1 ? T when
g(t,E) is replaced by a relativistic Maxwell–Boltzmann distribution
with temperature T. This assertion is proved by noting that partial
integration gives4
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ne ¼
Z ðd3pÞ
ð2pÞ3

2gðt; EÞ

¼
Z ðd3pÞ
ð2pÞ3

2const: exp � EðpÞ
T

� �
1
3
@

@p
� p

¼ �
Z ðd3pÞ
ð2pÞ3

1
3

p � @
@p

2const: exp � EðpÞ
T

� �

¼ 1
T

Z ðd3pÞ
ð2pÞ3

p2

3EðpÞ2gðt; EÞ: ðD5Þ

To obtain the definition of Teff2, we note it will appear only in first
relativistic corrections to the Kompaneets equation. Hence, for an
equilibrium distribution, we may approximate a relativistic correc-
tion integral byZ ðd3pÞ
ð2pÞ3

p2

2m

 �2

2gðt; EÞ ’ 2const: expf�me=Tg
Z ðd3pÞ
ð2pÞ3

p2

2me

 �2

� exp � p2

2meT

� �
’ 15

4
T2ne: ðD6Þ

Therefore, for an arbitrary distribution, we shall define

T2
eff2 ¼

4
15ne

Z ðd3pÞ
ð2pÞ3

p2

2me

 �2

2gðt; EÞ: ðD7Þ

To leading order, the only order needed, Teff2 ? T when g(t,E) be-
comes a thermal distribution.

With these results in hand, we can now evaluate the the inte-
grals needed in the text. The following two integrals appear with
the lowest-order functions sS

2 and sA
2 , and thus they must be evalu-

ated to both lowest and first non-leading orders:Z ðd3pÞ
ð2pÞ3

v2

E2 gðt; EÞ ¼
Z ðd3pÞ
ð2pÞ3

p2

E4 gðt; EÞ

’
Z ðd3pÞ
ð2pÞ3

1
m3

e

p2

E
� 6

me

p2

2me

 �2
" #

gðt; EÞ

¼ 3
2

ne

m3
e

Teff1 �
15
2

T2
eff2

me

" #
; ðD8Þ
Z ðd3pÞ
ð2pÞ3

1
E3 gðt; EÞ ’

Z ðd3pÞ
ð2pÞ3

1
m3

e
1� 3

2
p2

m2
e

� �
gðt; EÞ

’ ne

2m3
e

1� 9
2

Teff1

me

� �
: ðD9Þ

On the other hand, for the higher order sS
4 and sA

4 terms, we need
only leading evaluations:Z ðd3pÞ
ð2pÞ3

v4

E2 gðt; EÞ ’ 15
2

ne

m2
e

T2
eff2

m2
e
; ðD10Þ

Z ðd3pÞ
ð2pÞ3

1
E4 gðt; EÞ ’ ne

2m4
e
; ðD11Þ

Z ðd3pÞ
ð2pÞ3

v2

E3 gðt; EÞ ’ 3
2

ne

m4
e

Teff1: ðD12Þ
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