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I. INTRODUCTION. 

Nonl&ear Hill's equations of the form 

z."(e) + n(0)z(e) =-F(B;z) (I*11 

frequently occur in the description of betatron oscillations 

in cyclic accelerators and in intersecting storage rings ([l] - 

[31) l In equation (I.l), 0 stands for the azimuth around the 

machine (of radius l), n denotes a periodic function with 

(minimal) period T I 27~, while F generally depends nonlinearly 

on z and also periodically on 8 with, however, a minimal period 

T' in general different from T. In this paper, we present 

without (detailed) proofs new results regarding the stability . - 
properties of a class of equations of the form (I-l), relevant 

to the problem of the beam-beam interaction in the "weak-strong" 

approximation. Specifically, we discuss new inequalities for 

the corresponding action functional, valid in particular whenever 

the strong beam has an anisotropic (ribbon-like) Gaussian current 

density. We then solve the variational problem by direct methods, 

establish its connection with the existence problem of periodic 

orbits, and finally briefly indicate how to construct the mini- 

mizing sequences involved. A general theory, along with complete 

proofs, will appear in [4]. 
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2. A CLASS OF NONLINEAR HILL'S EQUATIONS AND THE "WEAK-STRONG" 

BEAM-BEAM INTERACTION: A VARIATIONAL FORMULATION. 
-h 

Consider a continuous periodic function A with minimal period 
1. 27~ and let W2 2T be the space of all- real square integrable 

8 
functions z on [O,~IT] that have a square integrable (generalized) 

1 derivative z'; equip W2 2T with the norm 8 

I I I4 IIf 2 = I I4 1; + I I4 1; I (2.1) 

where 

IIzjl; = j2rz2(e)de and IIzlII~ = j2'(zV2(e)de (2-2) 
0 0 

. - 
Now consider a function G from Wt 2n into itself which satisfies 

I 
the following properties: 

(1) 0 5 G(z) I $ for all zcw 1 
2,2lT' 

(2) G is concave in z2; in other words, there exists a function 

H such that 

H(x) = G(z) (2.3) 

where x = z 2 , which satisfies the inequality 

H(Xx+ (14)~) 2 AH(x) + (l-X)H(y) (2.4) 

for all nonnegative x and y in Wi 2T and for each X E (0;l). ? 
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2. A CLASS OF NONLINEAR HILL'S EQUATIONS AND THE "WEAK—STRONG"

BEAM-BEAM INTERACTION: A VARIATIONAL FORMULATION.
7*

Consider a continuous periodic function A with minimal period

2H and let Wl‘ be the space of all real square integrable
2,2w

functions 2 on [0,2fi] that have a square integrable (generalized)

derivative 2'; equip W3 2“ with the norm
I

t 2 2 2
'llzilillz = ilzllz + llz'llz (2'1)

where

2n 2n

||z|l2=I 22mm) and llz'll2=f (z')2(e)de (2.2)
2 2

0 0

Now consider a function G from w; 2n into itself which satisfies
I

the following properties:

2
(1) 0sc(z)sE2— for all Ze

V(2) G is concave in 22; in other words, there exists a function

H such that

H(x) = G(z) , (2.3)

where X = 22, which satisfies the inequality

H(Ax+~(l-A)y) 2 AH(X) + (1—A)H(y) (2.4)

for all nonnegative x and y in w: 2“ and for each he (0;l).
I



315 

(3) G is (Fr&het)-differentiable on Wi 2K with bounded derivative I 

G’ (z) = F(z) (2.5) - 

In other words one has the relation 

G(z+v) - G(z) = F(z)v + R(z;v) (2.6) 

for all v~W!j 21T, where R(z;v) is the remainder satisfying 
I 

the relation 

(2.7) 

For z twice continuously differentiable on [O,~IT] we then consider 

the differential equation 

z ” + nz = eAF(z) (2.8) 

where n is a positive real number and @ a real parameter. We 

are concerned with the stability properties of equation (2.8) 

in terms of n and B; in other words we would like to know for 

what values of n and 6 all the solutions of (2.8) are bounded 

(stability), and for which ones at least one of the solutions 

is unbounded (instability). Likewise, we would like to know 

how the solutions of (2.8) bifurcate away from those of the 

linear equation corresponding to F(z) = z in (2.8). In this 

paper, we shall restrict our attention to the existence problem 
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of periodic orbits and address ourselves to these more general 

questions in [4]. 
4 

- 

There are two elementary examples that have motivated this study 

in the first place, for which G satisfies the properties (l)-(3) 

above. 

EXAMPLE 1: The linear case. We have F(z) = z in (2.8); we may 
2 

then choose G(z) = 5 and thereby H(x) = 5; properties (l)-(3) 

are here obvious. 

EXAMPLE 2: The anisotropic (ribbonAlike) Gaussian beam. In 

this case we have F(z) = erf(z) (error function), namely 

F(z)(8) = 2n-1'2[ 
z(8) 

exp[-t2]dt 
0 

(2.9) 

for z 2 0, and F(-z) = -erf(z) otherwise (see [ll-[3]). We then 

may choose 

G(z) = z erf(z) + TT -l/2 (exp[-z2] -1) (2.10) 

and consequently 

H(x) =' J;; erf(J;;) + n-1'2(exp[-x] -1) (2.11) 

An elementary calculation shows that H is concave in x if, and 

only if, 

T 

- 
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Jj;- 
f exp[-t21dt 2 & exp[-x] 
0 

(2.12) 

for a"ll nonnegative x's in Wt 2n. Relation (2.12) can then 
I 

be proved using the power series expansions for exp[-x] and 

erf[&], namely 

erf[fi] = 2~ -l/2 (-l)n(&)2n+1 
n! (2n+l) (2.13) 

n=O 

This shows that property (2) above is satisfied; property (1) 

can be proved by similar arguments. Property (3) is the result 

of a direct computation; in particular (2.7) follows from 

elementary estimates for I lR(z;v) I11,J’ We refer the reader to 

[4] for details. Observe that, in this specific example, G 
. - 

itself is convex in z; this is, however, irrelevant. The crucial 

property is the concavity in z2, as we shall see below. 

Now consider the action functional 

S[z] = ; /2'(z'12(0)d'3 - ; 1 
2lT 2lT 

z2(e)d6 + f3j A(e)G(z) (0)de 
0 0 0 

5 sq[z] + Bj A(e)G(z) (c)de 
0 

(2.14) 

where S stands for the quadratic, harmonic oscillator functional 
9: 

Z2(e)de (2.15) 

/§ 2[ exp[-t ]dt 2 /§ exp[-x] (2.12)
0

for £11 nonnegative x's in w; 2w' Relation (2.12) can then
I

be proved using the power series expansions for exp[—x] and

erf[/§], namely

-l/2 E (_l)n(/§)2n+l
erf[/§] = 2n n! n+ (2.13)

n=0
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of a direct computation; in particular (2.7) follows from

elementary estimates for HR(z;v)H1 2. We refer the reader to
I

[4] for details. Observe that, in this specific example, G
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itself is convex in z; this is, however, irrelevant. The crucial

property is the concavity in 22, as we shall see below.

Now consider the action functional

2H 2H 2nn% I (z')2(6)de - 5 f 22(e)de + 3] A(e)G(z)(e)de
o o o

S[z]

2w
sqlz] + BI A(e)G(z)(e)de (2.14)

0

H!

where Sq stands for the quadratic, harmonic oscillator functional

2w 2 n 2n 2
f (z') (e)da — 5 f z (e)de (2.15)
o o

NI
HSqIZI =
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In terms of (2.21, one can then rewrite (2.14) as 

-h 2 27T 
2sfzl = 11"'112 - nlj~l If + 2B\ AWG(z) Wde (2.16) 

0 

In the next section, we shall present a set of inequalities 

for S and indicate how to determine its critical points using 

direct variational methods. This, in turn, will allow us to 

discuss the existence problem of periodic orbits of equation 

(2.8). Observe that S is not convex in z in general, so that 

the traditional convex minimization techniques (see for instance 

151) may not be applied. 

3. INEQUALITIES FOR THE FUNCTIONAL S AND SOLUTION OF THE VARIA- 

TIONAL PROBLEM FOR PERIODIC ORBITS. 

We shall denote by W?j [27Fl the subspace of Wi 2n containing 
I I 

all the real periodic functions of the form 

+a 
2-w = 1 

k=--a, 
akexp[ik8 1 

which satisfy the conditions 

z (0) = z(27r) 

and 

a0 E /271z(e)d0 = 0 
0 

(3.1) 

(3.2) 
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In terms of (2.2), one can then rewrite (2.14) as

a 2 2 2w
25(2] = ||z'|[2 - n||z||2 + 28) A(6)G(z)(9)de (2.16)

o

In the next section, we shall present a set of inequalities

for S and indicate how to determine its critical points using

direct variational methods. This, in turn, will allow us to

discuss the existence problem of periodic orbits of equation

(2.8). Observe that S is not convex in z in general, so that

the traditional convex minimization techniques (see for instance

[5]) may not be applied.

3. INEQUALITIES FOR THE FUNCTIONAL S AND SOLUTION OF THE VARIA-

TIONAL PROBLEM FOR PERIODIC ORBITS.

1 1 . ..F AWe shall denote by W2,[2w] the subspace 0. W2 2“ containing
I

all the real periodic functions of the form

+00

2(6) = 2 akexp[ik6] (3.1)
kz—oo

which satisfy the conditions

2(0) = 2(2n)

and

2n
0 I z(e)de 0 (3.2)D.) H!
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In order to detect the critical points of S on Wi [2Tl, we shall 
I 

needdn upper bound as well as a lower bound for S[y], where 

both z and v belong to Wi [2-rrl; we shall equip W1 
I 2,[2lT] with 

the kinetic energy norm 

IMlf 2 = j2*(s,J2(e)de (3.3) 
I 0 

which, under the conditions (3.21, is equivalent to (2.1) since 

we have 

II42 zG IIz’ll2 (3.4) 

A typical situation is described in the following 

PROPOSITION 3.1. Consider the functional (2.14) where G satis- 

fies the properties (l)-(3) above. Assume moreover that 0 <n<l, 

BA I 0, jA(@,j I K f or some positive K independent of 8 and that 

Then one has 

OS ; (1 -n-1f31K) I Iz-v]~:,~ I S[yl s i (S[z]+S[vI) - SLyI (3.6) 

1 for all z,vEW~,[~~]. 
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In order to detect the critical points of S on w: [2n]’ we shall
I

needaan upper bound as well as a lower bound for S[E%Z], where

we shall equip W1 with1both 2 and V belong to W 2,[2n]2.[2n1’
the kinetic energy norm

2n
Hzllia =10 (2')2(6)de (3.3)

which, under the conditions (3.2), is equivalent to (2.1) since

we have

Hzll2 s IIZ'II2 (3.4)

A typical situation is described in the following

PROPOSITION 3.1. Consider the functional (2.14) where G satis—

fies the properties (l)-(3) above. Assume moreover that 0<11<Jq
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1-11
K0 s IBI s (3.5)

Then one has

Z‘V Z+V._2_ .._..__]]slz‘-(S[z]+s[v]) — s[ 205 %(1—n—|51K)Hz—VH§,2 s s[ (3.6)

lfor all z,v«:W2’[2n].
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SKETCH OF THE PROOF (see [4] for details). From (2.15) one has 

-h 

sq[yl + sq ry = ; (Sq[zl +sqw (3.7) 

Moreover for G concave in 'z2 and such that G(O) 2 0, one has 

the estimate 

G(---- ‘7) + G(y) 2 $ (G(z) + G(v)) (3.8) 

Combination of (3.8), (3.7) and (2.14) with the fact that BAS 0 

then leads to the upper bound in (3.6). On the other hand one has 

2B12nA(f3)G(z) (c)de 2 -ml lIzI 1; (3.9) 
0 

. - which follows from property (1) above and our assumptions on 

B and A; relation (3.9), along with (2.16), (3.4), (3.5) then 

implies the lower bounds in (3.6). This completes the proof. 

REMARK. The concavity of G in z2 is crucial to establish (3.8); 

concavity in z, along with the parity of G, would only lead to 

G( F, +G( y) 2 G(z) + G(v) 

which is not sufficient to establish (3.6). 

(3.10) 

Proposition (3.1) now allows us to construct a critical point 

of S on W1 2,[27Tl 
; indeed, since S[z] 2 0 for all z in W1 2JW' 
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there exist a greatest lower bound 

4 
056= inf S[z] 

1 
ZEW2,[27T] 

- 

(3.10) 

and a minimizing sequence z (NJ such that 

lim S[z(N)] = d (3.11) 
N+= 

The fact that S actually takes on its minimal value a in Wl 2, [27rl 
is described in the following 

PROPOSITION 3.2. Under the same conditions as in proposition 

(3-l), with the exception of (3.5) which is replaced by 

OS Ifi] <q (3.12) 

there exists a function z in Wi 12rl such that 
f 

S[z] = 45 

Moreover one has lim z (NJ = z in the norm (3.3). 

(3.13) 

PROOF. Apply (3.6) to the minimizing sequence z (N) ; we get 

0 si (l-n-IB]K) 1 Izl”) - zIN) 1 Izf2 5 $ (s[z(~)] +s[z(~)]) - b (3.14) 
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there exist a greatest lower bound

0 s A = inf S[z] (3.10)
1 _

zeWZI [2”]

and a minimizing sequence 2(N) such that

lim sum] = A (3.11)
N+oo
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I
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0 5-81—(l—n-IBIK)|IZ(M) —z(N)||i,25 321(stz‘ml +S[z(N)]) — 3 (3.14)
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since S 
z (Ml + z(N) 

2 I 
2 A; from (3.11) and (3.14) we then get 

lim jIz(") -z(N)ij1,2 = 0 
M,N+=' 

(3.15) 

which proves that lim z (NJ = z since W 1 : 
2,1-r] 

1s complete. 
N-tw 

Relation (3.13) then follows from (3.11) and the continuity 

of s. This completes the proof. 

EXAMPLE: Solution to the variational problem for the Gaussian, 

ribbon-like beam-beam interaction. We shall simply rephrase 

our results in physical terms, in the context of example 2. 

Consider the equation 

z ” + nz = BA erf(z) (3.16) 

which describes .the vertical betatron oscillations of one 

particle in the weak beam, going through the strong Gaussian, 

ribbon-like, counterrotating beam at one of the interaction 

regions of an intersecting storage ring; one then has the following 

THEOREM 3.3. Under the same conditions as in proposition 3.2, 

in particular with a magnetic field index n satisfying 0 <n<l 

(weak focusing regime), there exists a periodic orbit z in 
1 

w2f [27Tl 
with period 27~ which minimizes the action functional 
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z(M) + z(N)
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ribbon—like beam—beam interaction. We shall simply rephrase

our results in physical terms, in the context of example 2.

Consider the equation

2" + nz = BA erf(z) (3.16)

which describes.the vertical betatron oscillations of one

particle in the weak beam, going through the strong Gaussian,

ribbon-like, counterrotating beam at one of the interaction

regions of an intersecting storage ring: one then has the following

THEOREM 3.3. Under the same conditions as in proposition 3.2,

in particular with a magnetic field index n satisfying 0<I1<l

(weak focusing regime), there exists a periodic orbit z in

w: [2“] with period 2n which minimizes the action functional
I
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S[z] = +/2n(z')2(e)de - 
2TT 

:J z2(e)de 
0 0 

27T 
+ BS A(0) (z erf(z) +r -1'2(exp[-z2] -1)) (c)de 

0 

Moreover, the minimizing orbit z vanishes atleast once in 

[0,27r] (relation 3.2). 

Similar results can be obtained for the strong focusing regime 

and for minimizing orbits which may vanish more than once in 

[0,2Trl (see [4]). 

One.important question now remains: is the minimizing orbit 

z in prqposition (3.2) (respectively in theorem (3.3)) neces- 

sarily a (classical) solution of equation (2.8) (respectively 

of equation (3.16)) and is it possible to devise algorithms 

or iterative procedures to actually construct minimizing sequences 
z(N) converging to z? 

We shall address ourselves to this question in the next section. 

4. CONNECTION BETWEEN THE VARIATIONAL PROBLEM AND THE EXISTENCE 

OF NON TRIVIAL PERIODIC ORBITS. 

We first have to, mention that the solution to the variational 

problem of the preceding section may be chosen twice continuously 

differentiable if G(z) is regular enough in z; this follows 

from very general circumstances (see for instance [6]). In this 

case, we have the following 

323

2n 2n
slz] = é—f (z')2(e)de — f 22(e)de

0 0

an
d

2N
+ Bf Me) (2 erf(z)+1r‘l/2(exp[-zz]—1))(e)de

0
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4. CONNECTION BETWEEN THE VARIATIONAL PROBLEM AND THE EXISTENCE

OF NON TRIVIAL PERIODIC ORBITS.

We first have toimention that the solution to the variational

problem of the preceding section may be chosen twice continuously

differentiable if G(z) is regular enough in 2; this follows

from very general circumstances (see for instance [6]). In this

case, we have the following
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THEOREM 4.1. Let z be a twice continuously differentiable 

-function in Wi [2Vl which minimizes S; then z satisfies equation - 
I 

i2.8 j, namely 

z ” +‘nz = @AF(z) 

In this case one has the representation 

6 = B/2nA(B){G(z) -$ ZF(Z)](e)de 
0 

(4.1) 

(4.2) 

for.the minimal value of S. 

PROOF. Since z minimizes S on WYj 12nl one has I 
. - 

S[z+ Xv] 2 S[z] (4.3) 

for all v in Wi I [2rl and for each real X; thus the function 

X --3 S[z+ Xv] has a minimum at h = 0, which implies 

-& S[z + hvl (X=0) = I 
27r 

0 

1 for all v in W2,C[2nl. An 

shows that (4.4) actually 

in turn, implies 

(-z” - nz + BAF(z) )v(e)de = 0 (4.4) 

elementary density argument then 

holds for each v in LTznl which, 
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A = BI A(e){G(z) -§ zF(z)}(e)de (4.2)

0

for the minimal value of S.

PROOF. Since 2 minimizes S on W1 one has2,[2fl]

S[z+-Av] 2 Stz] (4.3)

for all v in W3 [2“] and for each real A; thus the function

A-—+ S[z4—Av] has a minimum at A = O, which implies

2n
3— S[z+)\v](>\=0) =1 {-z"-nz+BAF(z)}v(9)d6 = o (4.4)
dA 0

for all v in w: 12“]. An elementary density argument then
I

shows that (4.4) actually holds for each v in LiZfl] which,

in turn, implies
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z ” + nz - BAF(z) = 0 (4.5) 
- 

'which is (4.1). Now from (4.5) (Or (4.1)) one gets 

2"~ + nz 2 = BA;F(z) (4.6) 

and consequently the relation 

-12n(zy2(e)de + nl 
2lT 21T 

z2(e)de = Bj A(e)zF(z) (c)de (4.7) 
0 0 0 

after an integration by parts of z"z. One can then express 

(4.7) in terms of S[z] using (2.14), which leads to 

6 = S[z] = Bj2ca(e)iG(z) -3 zF(z)](B')dB (4.8) 
0 

This completes the proof. 

A few remarks are necessary at this point; we first observe 

that the relation 

S[z] = f312*A(e)IG(z) -3 zF(z))(e)de 
0 

(4.9) 

is a necessary condition for any twice continuously differen- 

tiable function in W1 2,[2ml 
to be a periodic solution of equation 

(4.1) with period 27~. This fact, combined with the lower bound 
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O

This completes the proof.

A few remarks are necessary at this point; we first observe

that the relation

2H 1
s[21= Bf A<e){G(z) -§ zF(z)}(6)d6 (4.9)

o

is a necessary condition for any twice continuously differen-

tiable function in W to be a periodic solution of equation1
2,[ZW]

(4.1) with period 2w. This fact, combined with the lower bound
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in (3.6), then leads to statements regarding the existence of 

periodic orbits which allow us to distinguish between the trivial - 

solucon z - 0 and the non trivial ones z 3 0. A typical 

example is the following 

THEOREM 4.2 (The linear case). Consider equation (2.8) with 

F(z) = z, namely 

z ” + (n-BA)z = 0 (4.10) 

Then, under the same conditions as in proposition (3.2), 

equation (4.10) has no non trivial periodic solution with 

period 27~. 

PROOF. Choose anynonzero z in W1 2fE2Rl' Since 1 - n - IfilK > 0 

from (3.12), the lower bound in (3.6) implies 

S[z] > 0 (4.11) 

On the other hand one has 

$j"A(O) {G(z) -; zF(z)} = 0 
0 

2 
since F(z) = z and G(z) = F ; the necessary condition (4.9) 

can therefore not be satisfied. This proves the theorem. 
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0

2
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can therefore not be satisfied. This proves the theorem.
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REMARK. The preceding result has nothing surprising. Indeed, 

condition (3.12) can be rewritten as 
- 

- 

O&!<Q--n n (4.12) 

and consequently represents the two-dimensional region in the 
B - - n plane bounded by the positive coordinate axes and the n 
hyperbola 

l-n 
C(n) = Kn (4.13) 

From. Floquet's theory and the Liapounov-Haupt oscillation theorem 

however, it is known that the periodic orbits of equation (4.10) 

are not likely to exist in such two-dimensional domains, but only 
B on well defined curves in the - - n n plane (see for instance 

171 and 181). In particular for B = 0, one has non trivial 

periodic orbits with period HIT only if n = 1, namely where the 

curve (4.13) intersects the horizontal axis; this is hardly a 

surprise since the fundamental period associated with the equation 

z ” +nz=O (4.14) 

isT=g. , 

We now show that the above structure may persist in the nonlinear 

case: a typical example is the following 
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REMARK. The preceding result has nothing surprising. Indeed,

condition (3.12) can be rewritten as
4‘»

[<1‘n mum

and consequently represents the two-dimensional region in the

E — n plane bounded by the positive coordinate axes and the

hyperbola

um=lgn (an)

From Floquet's theory and the Liapounov-Haupt oscillation theorem

however, it is known that the periodic orbits of equation (4.10)

are not likely to exist in such two-dimensional domains, but only

on well defined curves in the g - n plane (see for instance

[7] and [8]). In particular for B = 0, one has non trivial

periodic orbits with period 2n only if n = 1, namely where the

curve (4.13) intersects the horizontal axis; this is hardly a

surprise since the fundamental period associated with the equation

2" + nz = 0 (4.14)

is T = M?

We now show that the above structure may persist in the nonlinear

case: a typical example is the following
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THEOREM 4.3 (The anisotropic (ribbon-like) Gaussian beam). 

. -Consider the equation 
- 

- 

z $’ + nz = i3A erf(z) (4.15) 

in the weak focusing regime 0 < n < 1, and under the same 

conditions as in proposition (3.2). Then equation (4.15) has 

no non trivial periodic orbit with period 21r. 

PROOF. The same argument as in theorem (4.2) is applicable if 

one observes that one has 

G(z) - ; zF(z) = $zerf(z) + IT -l/2 kxp I-z21 -1)lO (4.16) 

along with @A I 0. Inequality (4.16) follows from the convexity 

of G(z) - $ zF(z) and G(0) = 0. One then has 

2R 
"'0 A (0) (G(z) -$ zF(z))(e)de 5 0 (4.17) 

so that the necessary condition (4.9) cannot be satisfied since 

S[z] > 0 for any non zero z. This completes the proof. 

Similar results hold for the general case as long as G(z) - ;zF(z) 2 0. 
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THEOREM 4.3 (The anisotropic (ribbon—like) Gaussian beam).

»Consider the equation
A

z" + nz = 8A erf(z) (4.15)

in the weak focusing regime 0 < n < l, and under the same

conditions as in proposition (3.2). Then equation (4.15) has

no non trivial periodic orbit with period 2n.

PROOF. The same argument as in theorem (4.2) is applicable if

one observes that one has

NI
HG(z) - % 213(2) = zerf(z) + n_l/2(exp[—zz] —1) 20 (4.16)

along with BA S 0. Inequality (4.16) follows from the convexity

of G(z) — % zF(z) and G(O) = 0. One then has

2n 1
Bf A(6){G(z) -5_- zF(z)}(e)de s o (4.17)

0

so that the necessary condition (4.9) cannot be satisfied since

SIz] > 0 for any non zero 2. This completes the proof.

Similar results hold for the general case as long as G(z) - %2F(z) 20.
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The actual construction of approximation sequences z (N) converging 

to non trivial periodic orbits is a much less simple matter; we - 

shall?only give the main ideas here, and refer the reader to [4] 

for details. We first observe that the method of the variation 

of parameters applied to equation (4.1) leads' to the solution 

z(e) = z,(e) + sin(&(8-T))A(T)F(z(T))d-r (4.18) 

where z o satisfies (4.14). Define then the Volterra operator V by 

v(f) w = j& 1 
8 

sin(&(e-T)A(T)f(r)dT 
0 

(4.18) 

1 
On w2,2TT and the function A from Wa 2r into itself by 

I 

A(z) = z - z. - V(F(z)) (4.19) 

Provided a sufficiently smooth F in (4.1) (typically once 

continuously differentiable), one can then apply the contrac- 

tion mapping argument to show that there exists a z cW~ 2r I 
satisfying (4.18) along with z(O) = z(~IT), in other words 

such that 

A(z) = 0 (4.20) 

One can then numerically implement the computation of the root 

in (4.20)using Newton's method. Indeed the derivative of A(z) is 
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such that
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in (4.20)using Newton's method. Indeed the derivative of A(z) is
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A’ (z) = 1 + V(F'(z)) (4.21) 
- 

- 
where 1 denotes the identity function on W1 2,2* ; one can then show 

that A'(z) is invertible, so that the sequence of approximations 

to the periodic orbit is recursively given by 

z(N+l) = ,(N) _ (l+v(F'(~(~)))-~A(z(~)) (4.22) 

Quadratic convergence can be obtained. We hope to present our 

complete results at the next follow-up sessions. 
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