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We review the Laporta algorithm for the reduction of scalar integrals
to the master integrals and the differential equations technique for their
evaluation. We discuss the use of the basis of harmonic polylogarithms for
the analytical expression of the results and some generalization of this basis
to wider sets of transcendental functions.
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1. Introduction

In the last few years a large amount of work has been devoted to the
improvement of the techniques for the calculation of Feynman diagrams.
The reason is that future high energy physics experiments will reach a mea-
surement precision that will require, from the theoretical counterpart, the
control on the NNLO quantum corrections for several physical observables.

Basically two approaches have been developed for the calculation of Feyn-
man diagrams: the first one is based on the numerical and the other on the
analytical evaluation of the integrals involved. The goal of both approaches
is the complete and “automatic” evaluation of Feynman diagrams in multi-
scale processes, but, nowadays, this goal is far from being achieved. Different
problems arise. While for the numerical approach the presence of different
scales is not a problem, the treatment of infrared singularities, thresholds
and pseudo-thresholds is of complicated solution and sometimes it has to be
performed in a semi-analytic way. On the other hand, the analytic approach
gives a complete control on the “difficult” regions of the spectrum, but it is,
at the moment, constrained to processes in which the scales in the game are
at most three.
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Nevertheless, in both cases great results have been obtained.

In [1] a semi-numerical approach to the calculation of two-loop Feynman
diagrams was proposed and applied to the two-loop self-energy of the Higgs
boson and to the decay Z → bb̄; in [2] a method based on the Bernstein-
Tkachov theorem was proposed and applied both to multi-leg one-loop and
to two-point and three-point two-loop Feynman diagrams. In [3] a numeri-
cal method based on the sector decomposition was proposed and applied to
multi-leg one-loop Feynman diagrams calculations as well as to two-loop and
three-loop two-, three- and four-point functions in the non-physical region
and to the evaluation of phase-space integrals. Finally, in [4] the numerical
evaluation of two-point functions was made by means of differential equa-
tions solved with the Runge–Kutta method.

For what concerns the analytical approach, the evaluation of vacuum
diagrams, two-point, three-point and four-point functions (see for exam-
ple [5], [6, 11, 16, 27], and [7, 10, 29]), used also in the case of phase-space
integrals (see [8]), was made, in the last few years, with a variety of differ-
ent techniques. Since [9], the most used one consists in the reduction of the
Feynman diagrams to a small set of scalar integrals, via integration-by-parts,
Lorentz-invariance [10] and general symmetry identities [11], followed by the
calculation of the scalar integrals with different methods such as, for exam-
ple, the expansion by regions [12], the Mellin–Barnes transformations [13],
the relations among integrals of different dimension D [14], or the differential
equations method [15].

In this paper we will review the algorithm for the reduction of the Feyn-
man diagrams to the set of independent scalar integrals, called Master In-
tegrals (MIs) and the differential equations technique for their evaluation.
The problem of the choice of the basis of functions used for the expression
of the analytical results will be also discussed, giving particular emphasis
to the Harmonic Polylogarithms and the several extensions that took place
recently.

2. Algebraic reduction to master integrals

The calculation of a physical observable for a certain reaction in per-
turbation theory is connected to the evaluation of the Feynman diagrams
involved in the process. Once the observable is written in terms of Feynman
diagrams and the Dirac algebra is performed (that means usually that the
traces over the Dirac indices are evaluated), we find an expression which is
a combination of (several) scalar integrals, whose ultraviolet and infrared
divergences are regularized within the dimensional regularization scheme.
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The general structure of such integrals at the 2-loop level is the following:
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where t is the number of different denominators Di (this number is called
topology of the integral), t̄ is the number of independent scalar products Si

on the numerator, and D
Dk stands for a suitable integration measurement

(normalization) for the integrals.
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Fig. 1. Flowchart of the method used for the reduction to the MIs.

The reduction of the integrals of Eq. (1) to the MIs is schematically
represented in the flowchart of Fig. 1 and it is based on the following steps:

1. Once the Feynman diagrams for the evaluation of the observable are
written, we project the corresponding amplitude on a basis of known
tensors in such a way that the amplitude can be written in terms of
scalar form factors. These form factors are expressed in terms of a
huge number of scalar integrals, that can have on the numerator a
combination of scalar products between an external momentum and a
loop-momentum or between two loop-momenta; note that, because we
use dimensional regularization, a simplification between a scalar prod-
uct and a denominator that contains this scalar product is possible.
Once a denominator disappears, because of the simplification against
a scalar product, the topology of the integral is of course lowered by
a unit. In principle, given an integral of topology t, one must con-
sider all the possible t! subtopologies found simplifying repeatedly a
denominator against a scalar product on the numerator.
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2. The scalar integrals are classified with respect to their topology. Be-
cause we are dealing with integrals that have a suitable mass distribu-
tion (for example we can consider integrals with mass-less propagators
and outgoing legs) it can happen that subtopologies coming from dif-
ferent simplifications are the same subtopology, but expressed with dif-
ferent routings. Therefore, the “independent” subtopologies have to be
chosen and the “dependent” subtopologies have to be transformed by
means of suitable transformations in the independent ones. This anal-
ysis can be done in the framework of the “Auxiliary diagram scheme”
or the “shifts scheme”, as explained extensively in [16].

3. The reduction of the scalar integrals belonging to the independent
topologies to a “hopefully” small set of master integrals (MIs), is done
by means of the so-called Laporta algorithm [17], which consists in
the following. We know that the D-regularized scalar integrals coming
from the projection operation are not all independent, but they satisfy
certain classes of identity relations.

• The most important class is constituted by the integration-by-
part identities (IBPs), introduced in [9]. IBPs link scalar integrals
of the same topology, but with different power of the denominator
and different scalar products on the numerator, among each other
and to scalar integrals of subtopologies. IBPs can be written in
the following way:
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where i = 1, 2 and where vµ = kµ
1
, kµ

2
, pµ

i is one of the independent
vector of the problem. In the case of a 3-point functions, Eq. (2)
gives 8 equations for initial scalar amplitude in the brackets. For
a 4-point function, instead, the IBPs are 10.

• Another class of identity relations that can be used in the reduc-
tion process is related to the fact that the integrals are Lorentz
scalars [10]. This property translates into one additional equation
for a 3-point function:
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where p1 and p2 are the independent vectors of the problem, or
three additional equations for a 4-point function:
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where the independent vectors are p1, p2 and p3.

• In the case in which a suitable mass distribution is considered,
we can find additional equations considering the symmetries of
the diagrams (see [11]). In general a symmetry of the problem
brings to an identity that the integrals have to satisfy.

Considering all the identity relations mentioned above, a huge system
of linear equations is constructed. The unknowns are the scalar inte-
grals themselves and the point is that the construction of the system
can give more equations than unknown amplitudes [17], overconstrain-
ing formally the system; but not all the equations are independent. It
can happen that the system is effectively overconstrained, and then
the solution of the system gives the integrals of the topology under
consideration as a combination of the MIs of the subtopologies, or it is
not, and then all the integrals of the topology under consideration are
expressed as a combination of the MIs of that topology (and the MIs
of the subtopologies). The solution of the system is performed with
the Gauss law of substitution. The entire chain is completely algebraic
and can be implemented in a computer program.

Several authors developed own programs, written in FORM [18], C, or
Mathematica [19], for the generation of the linear system and for its solu-
tion [20, 21]. Recently, a computer program written for Maple [22], using
the Laporta algorithm for the reduction of scalar integrals to the MIs was
published [23].
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3. The differential equations method

The MIs are functions of the external kinematical invariants and, there-
fore, they satisfy a system of first-order linear differential equations. As a
simple example, consider the case in which a topology t has a single MI. Let
us choose the basic scalar integral of the topology1:

F (si) =

∫

D
Dk1D

Dk2

1

Di1 · · · Dit

, (7)

where si stand for the independent invariants that can be constructed with
the external momenta of the problem (for example s1 = p2

1, s2 = p1 · p2,
etc.).

The following matrix can be constructed:

Ojk(si) = pµ
j

∂

∂pµ
k

F (si) . (8)

As F (si) depends on the invariants si, we have, on one hand:
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where the functions aξ,kl(si) are linear combinations of si. On the other
hand, because F (si) is evaluated in dimensional regularization, and then it
is convergent, we can perform the derivative of Eq. (8) directly on the inte-
grand 1/Di1/../Dit , getting a combination of scalar integrals with additional
power on the denominator and scalar products on the numerator. Using the
identity relations loaded for the reduction to the MIs, the system of Eq. (8)
becomes a linear system involving the derivatives of F (si) with respect to
the invariants si, F (si) itself and the MIs of the subtopologies. The system
can be inverted and the differential equations can be written in the following
general way:

∂

∂sj

F (si) = A(D, si)F (si) + Ω(D, si) , (10)

where the non-homogeneous term Ω(D, si) contains the MIs of the subtopolo-
gies, that have to be considered known. The homogeneous term A(D, si)

1 The choice of the set of MIs to which all the scalar integrals belonging to a certain
topology can be reduced is totally free. One choice is connected to another by the
identity relations constructed for the reduction process. A criterion in the preference
of one set with respect to the others is, of course, related to the solution of the system
of differential equations. We choose the set that satisfy the easiest possible system.
That means, usually, the set for which the system is decoupled exactly in D or at
least triangularizes in the limit D → 4.
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gives the analytical structure of the function F (si), containing the thresh-
olds and pseudo-thresholds of the diagram under consideration, that appear
as singular points for the differential equation2. Note that one of the differ-
ential equations is sufficient for the solution of F (si), provided that we are
able to fix the boundary conditions. Therefore, we can consider only the
equation with respect to, say, s. The solution of Eq. (10) is done by means
of the Euler’s method of variation of the arbitrary constants.

Master Integrals

System of Diff. Eqs.

Solution of the System in Laurent series of �
Generation of Diff. Eqs. (+ IBP’s)

Fig. 2. Flowchart of the Differential Equations method.

We can sketch the search for the solution as follows:

1. We expand F (s) (the dependence on the other invariants is under-
stood) in Laurent series of (D − 4):

F (s) =

n
∑

j=−k

(D − 4)jFj(s) , (11)

where k is the maximum pole and n is the required order in (D − 4)
needed for F (s). Order by order in (D−4) we have, then, to solve the
equation:

∂

∂s
Fj(s) = A(s)Fj(s) + Ω̃j(s) , (12)

where for j = −k (the maximum pole) we have Ω̃−k(s) = Ω−k(s) (Ω(s)

is the non-homogeneous part in Eq. (10)) and for j > −k, Ω̃−k(s) can
involve also the previous orders in (D − 4) of F (s). Note that, while

the non-homogeneous term Ω̃j(s) is different at each order in (D− 4),
the homogeneous equation is the same.

2 The construction of the system of first-order linear differential equations is outlined
in the flowchart of Fig. 2.
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2. We solve the homogeneous equation

∂

∂s
f(s) = A(s) f(s) , (13)

finding the solution:

f(s) = exp





s
∫

A(t)dt



 . (14)

3. We express the solution of the non-homogeneous equation order by
order in (D − 4) in the integral form:

Fj(s) = f(s)





s
∫

1

f(t)
Ω̃j(t)dt + kj



 , (15)

where kj is the arbitrary constant of integration.

4. We fix the constant of integration imposing the initial conditions. In
order to find the initial conditions we have to know additional pieces
of information about the integral we are calculating. For example it is
sufficient to know that the integral is regular for some value of s.

In the case of N MIs (N > 1) we have still a system of N first-order
coupled linear differential equations for every variable si. As in the previous
case the equations in one of the invariants are sufficient for the solution.

In spite of the elegance of the method, two problems arise.
One is connected with the number of MIs that a topology can have. In

fact, while the solution of a first-order linear differential equation (case with
one MI) is relatively trivial, a second-order differential equation (case with
two MIs) can give more problems and starting from the third-order one it
can be hard to find the solution, except in very particular cases. We can
understand, therefore, the importance of the choice of the set of MIs. A
choice that, even in the case of two or more MIs, could triangularize the
system, at least in the (D − 4) expansion, would be of course more suitable
than another; but this choice cannot always be done and, in general, there
is not always a solution for the problem of a topology with many MIs.

Another problem concerns the choice of the basis of functions used for the
expression of the analytical results. Even in this case, there is not a unique
solution, but, nevertheless, one can follow some guidelines. For example the
uniqueness of the representation of the result in terms of these functions;
the non-redundancy of the representation and the absence of “hidden zeroes”
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(that means to avoid representations that can give expressions that are not
manifestly zero, but, because of the fact that these functions satisfy certain
relations, they are effectively zero); the total control on the expansions in
all the points of the domain and on the analytical continuation (these two
“properties” are needed for a numerical evaluation of the functions and then
of the result).

All these properties are fulfilled, by construction, by the set of functions
called Harmonic Polylogarithms, that we are going to review briefly in the
next paragraph.

4. Harmonic polylogarithms and related generalized functions

In many cases, a suitable integral representation for the Feynman di-
agrams can be found in terms of hypergeometric functions. Nevertheless,
in problems involving many scales, the dependence of the generalized hy-
pergeometric functions on these scales is highly non-trivial. Moreover, if we
regularize the divergent integrals in dimensional regularization, an expansion
in (D− 4) is required, for renormalization purposes. The expansion of a hy-
pergeometric function in its parameters can be very complicated [24]. This is
the reason why one looks for a solution of the differential equations directly
expanded in (D−4). Order by order in (D−4), we can find a representation
for the MIs in terms of Nielsen’s polylogarithms and related functions [25].
But, firstly, the representation in terms of polylogarithms suffers from the
problem of “hidden zeroes” discussed at the end of the previous paragraph;
moreover, it can happen that one needs an integral representation that does
not belong to this class of functions.

One of the most elegant solutions for these two problems is the intro-
duction of a basis of transcendental functions defined by repeated integra-
tion over a set of basic simple functions. Let us consider for example a
case in which we have at most two different scales in the problem, say s
and a, in such a way that we can construct the dimensionless parameter
x = s/a; moreover, the structure of the thresholds of the Feynman dia-
grams involved in the calculation is such that the possible singular points
are x = 0 and x = 1 and no squared roots are present in the homogeneous
equation for the MIs (this is actually the case of the majority of the calcu-
lations in [5, 6, 11, 16, 27]). In this situation a suitable basis of functions in
which the results can be expressed are the 1-dimensional harmonic polylog-
arithms (HPLs) introduced in [26]. We consider the following set of three
basis functions:

g(0;x) =
1

x
, g(1;x) =

1

1 − x
, g(−1;x) =

1

1 + x
, (16)
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we define the HPLs of weight 1 as:

H(0, x) =

x
∫

1

dt

t
= log x , (17)

H(1, x) =

x
∫

0

dt

1 − t
= − log (1 − x) , (18)

H(−1, x) =

x
∫

0

dt

1 + t
= log (1 + x) , (19)

and we iterate the previous definition introducing the HPLs of weight w + 1

H(~0w+1;x) =
1

(w + 1)!
logw+1 x , H(a, ~w;x) =

x
∫

0

f(a;x′)H(~w, x′), (20)

where a can take the values −1, 0 and 1 and ~w is a vector with w components,
consisting of a sequence of −1, 0 and 1 as well.

The set of functions so defined satisfy two important properties: (i) they
form a shuffle algebra, in which the product of two HPLs of weight w1 and
w2 is a HPL of weight w1 + w2; (ii) they form a closed set under certain
transformations of the argument. In particular, this property is needed for
the asymptotic evaluation of such a functions, connecting the expansion in
x → 0 to the one in x → ∞. Another important property of HPLs is that
their analytical structure is manifestly shown. The integral representations
of Eq. (15) can be expressed in terms of HPLs directly or re-conducted to
HPLs via simple integration by parts.

The choice of the basis (16) for the expression of the HPLs is connected
with the structure of the thresholds of the diagrams involved in the cal-
culation. It can happen that the solution of the homogeneous differential
equation contains a square root, that cannot be avoided by a suitable change
of variables. Moreover, we can deal with a calculation in which, for example,
the diagrams can have three different kind of thresholds: x = 0, x = 1 and
x = 4. In this case an extension of the basis of HPLs is needed [27]. We
introduce the following additional basis functions:

g(∓4;x) =
1

4 ± x
, g(c, x) =

1

x − 1

2
− i

√
3

2

, g(c, x) =
1

x − 1

2
+ i

√
3

2

g(∓r, x) =
1

√

x(4 ± x)
, g(∓1 ∓ r, x) =

1
√

x(4 ± x) (1 ± x)
,
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g(±1/4;x) =
1

1

4
∓ x

, g(±1 ± r/4;x) =
1

√

x ∓ 1

4
(1 ∓ x)

,

g(r0/4;x) =
1 − 2i

√

x − 1

4

x
√

x − 1

4

, g(−r0/4;x) =
1 − 2

√

x + 1

4

x
√

x + 1

4

. (21)

The relative weight-1 HPLs are defined as the integration between 0 and
x of the previous basis functions (all the functions in Eq. (21) are integrable
in x = 0) and the generalization to higher weights is done by Eq. (20) in
which now the single weight can take the values 0, ±1, ±4, ±r, c, c̄, ∓1∓ r,
±1/4, ±1 ± r/4, ±r0/4.

The set of generalized HPLs so introduced satisfy all the properties of
the former set of HPLs. Similar generalizations can be carried out in the
case of different thresholds.

Another generalization can be done in the case in which we have three
scales in the game and, therefore, two dimensionless parameters can be con-
structed. This gives the so-called 2-dimensional HPLs introduced in [28,29]
and their further extension introduced in [30].

As a remark, note that the representation of the analytical results in
terms of HPLs allows a perfect control on the numerical evaluations.

5. Summary

In this paper the Laporta algorithm for the reduction of the Feynman
diagrams to the master integrals and the differential equations technique for
their analytical evaluation are reviewed. A particular attention is paid to
the problem of the choice of the basis of functions in which the result can
be expressed. Some argument for the use of HPLs is done. In particular,
the possibility of an extension of the set of functions to the case of problems
involving different thresholds and different scales (more than two) is briefly
outlined.
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