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Rational electromagnetic knots Olaf Lechtenfeld

1. Conformal equivalence of dS4 to I×S3 and two copies of R1,3
+

Four-dimensional de Sitter space is a one-sheeted hyperboloid (of radius `) in R1,4 3{Z0,Z1, . . . ,Z4}
given by

−Z2
0 +Z2

1 +Z2
2 +Z2

3 +Z2
4 = `2 (1.1)

Constant Z0 slices are 3-spheres of varying radius, yielding a parametrization of dS4 3 {τ,ωA} as

Z0 = −` cotτ and ZA =
`

sinτ
ωA for A = 1, . . . ,4

with τ ∈I := (0,π) and ωAωA = 1 .

(1.2)

The Minkowski metric
ds2 = −dZ2

0 +dZ2
1 +dZ2

2 +dZ2
3 +dZ2

4 (1.3)

induces on dS4 the metric

ds2 =
`2

sin2
τ

(
−dτ

2 +dΩ
2
3
)

with dΩ
2
3 for S3 , (1.4)

showing that dS4 is conformally equivalent to a finite cylinder I ×S3.
The Z0+Z4<0 half of dS4 is also conformally related to future Minkowski space R1,3

+ 3
{t,x,y,z},

Z0 =
t2−r2−`2

2 t
, Z1 = `

x
t
, Z2 = `

y
t
, Z3 = `

z
t
, Z4 =

r2−t2−`2

2 t

with x,y,z ∈ R and r2 = x2 + y2 + z2 but t ∈ R+ ,

(1.5)

since t ∈ [0,∞] corresponds to Z0 ∈ [−∞,∞] but Z0+Z4 < 0. In these Minkowski coordinates,

ds2 =
`2

t2

(
−dt2 +dx2 +dy2 +dz2) . (1.6)

One may cover the entire R1,3 by gluing a second dS4 copy and using the patch Z0+Z4 > 0.
We shall employ the direct relation between the cylinder and Minkowski coordinates:

cotτ =
r2−t2+`2

2` t
, ω1 = γ

x
`
, ω2 = γ

y
`
, ω3 = γ

z
`
, ω4 = γ

r2−t2−`2

2`2 (1.7)

with the convenient abbreviation

γ =
2`2√

4`2t2 +(r2− t2 + `2)2
(1.8)

Since t = −∞,0,∞ corresponds to τ = −π,0,π , the cylinder gets doubled to 2I × S3, and full
Minkowski space is covered by the cylinder patch ω4 ≤ cosτ . The cylinder time τ is a regular
smooth function of (t,x,y,z), but more useful will be

exp(iτ) =
(`+ it)2 + r2√

4`2t2 +(r2− t2 + `2)2
. (1.9)

The following is a rendition of the our publication [1].

1



P
o
S
(
C
O
R
F
U
2
0
1
8
)
1
4
9

Rational electromagnetic knots Olaf Lechtenfeld

Figure 1: An illustration of the map between a cylinder 2I×S3 and Minkowski space R1,3. The Minkowski
coordinates cover the shaded area. Its boundary is given by the curve ω4 = cosτ . Each point is a two-sphere
spanned by ω1,2,3, which is mapped to a sphere of constant r and t.

2. The correspondence

Yang–Mills and Maxwell theory are conformally invariant in four spacetime dimensions. There-
fore, we may solve their equations of motion on the cylinder 2I × S3 rather than directly on
Minkowski space R1,3. The cylinder parametrization has the advantage that it makes manifest a
hidden SO(4) covariance.

The gauge potential taking values in a Lie algebra g can always be chosen as

A =
3

∑
a=1

Xa(τ,ω)ea on 2I ×S3 (2.1)

where Xa ∈ g, and {ea} is a basis of left-invariant one-forms on S3. There is no dτ component
because we picked the temporal gauge Aτ = 0.

Yang–Mills or Maxwell solutions are translated from 2I×S3 to R1,3 simply by the coordinate
change (1.7). The behavior at the boundary cosτ = ω4 yields the fall-off properties at t→±∞. To
become explicit, we need the Minkowski-parametrization of the one-forms e0 ≡ dτ and ea, which
are subject to

dea + ε
a
bc eb∧ ec = 0 and eaea = dΩ

2
3 . (2.2)

In terms of the S3 coordinates (a, i, j,k = 1,2,3) they are

ea = −η
a
BC ωB dωC where η

i
jk = ε

i
jkη

i
j4 =−η

i
4 j = δ

i
j . (2.3)

A slightly lengthy computation yields the Minkowski-coordinate expressions,

e0 =
γ2

`3

(
1
2(t

2 + r2 + `2)dt− t xkdxk
)

ea =
γ2

`3

(
t xadt−

(1
2(t

2− r2 + `2)δ
a
k + xaxk + `ε

a
jkx j)dxk

)
,

(2.4)
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with the notation

(xi) = (x,y,z) and (for later) (xµ) = (x0,xi) = (t,x,y,z) . (2.5)

The simplest Yang–Mills solutions are most symmetric. To obtain them, let us impose SO(4)
symmetry by setting Xa(τ,ω) = Xa(τ). The Yang–Mills equations then become ordinary matrix
differential equations [2, 3],

d2

dτ2 Xa = −4Xa +3εabc [Xb,Xc]−
[
Xb, [Xa,Xb]

] [ d
dτ

Xa,Xa
]
= 0 . (2.6)

For g= su(2), these equations admit some analytic solutions [4, 5],

Xa(τ) =
(
1+ 1

2 q(τ)
)

Ta with
d2q
dτ2 = −∂V

∂q
for V (q) = 1

2 q2(q+2)2 , (2.7)

where {Ta} is an su(2) basis normalized to obey [Ta,Tb] = 2εabcTc. Notice the identification of Lie-
algebra and spatial indices. So the Yang–Mills problem has been reduced to a Newtonian particle
in a double-well potential V (q). Its prominent trajectories are (a) the vacua q(τ) ≡ −2 or 0, (b)
the sphaleron q(τ)≡−1 and (c) the bounce q(τ) =

√
2sech(

√
2(τ−τ0))−1. The corresponding

gauge potential takes the form

A =
(
1+ 1

2 q(τ)
)

g−1dg for g : S3→ SU(2) . (2.8)

The sphaleron gives the only nontrivial static homogeneous solution (on the cylinder), i.e. A =
1
2 Taea = 1

2 g−1dg, which translates to a finite-action homogeneous color-magnetic Yang–Mills so-
lution on dS4 [6] (see also [7]).

In addition, there exist analytic Abelian symmetric solutions,

Xa(τ) = X̄a(τ) T3 with
d2X̄a

dτ2 = −4 X̄a . (2.9)

Obviously, these are solutions to Maxwell’s equations, taking g= R, so we can drop the matrix T3

and consider just real-valued functions X̄a(τ). Let us drop the bar and consider Xa ∈ R from now
on. The general solution to (2.9) is an oscillation with frequency two,

Xa(τ) = ca cos
(
2(τ−τa)

)
. (2.10)

The task is to transfer the oscillatory cylinder solutions to Minkowski space (x≡ {xµ}),

A = Xa(τ(x))ea(x) = Aµ(x)dxµ yielding Aµ(x) with At 6= 0 , (2.11)

dA =
d

dτ
Xa e0∧ ea− ε

a
bcXa eb∧ ec = 1

2 Fµν dxµ ∧dxν yielding Fµν(x) . (2.12)

From this, we obtain electric and magnetic fields Ei = Fi0Bi =
1
2 εi jkFjk. For the computation it is

helpful to recognize that exp(2iτ) is a rational function of t and r.
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We may always choose a frame where X3 = 0 and τ2 = 0. The overall amplitude is irrelevant
as all equations are linear, and solutions can be superposed at will. Specializing to c1 = c2 = −1

8
and τ1 =

π

2 ,
X1(τ) =−1

8 sin2τ , X2(τ) =−1
8 cos2τ , X3(τ) = 0 , (2.13)

the result of short computation (putting `= 1) yields

~E + i~B =
1(

(t− i)2− r2
)3

 (x− iy)2− (t− i− z)2

i(x− iy)2 + i(t− i− z)2

−2(x− iy)(t− i− z)

 . (2.14)

This is the celebrated Hopf–Rañada electromagnetic knot [8, 9]. Our approach also yields its gauge
potential.

3. Construction of electromagnetic solutions

In the following, we are interested only in Maxwell solutions. The linearity of the equations
then will allow us to solve for a general (not SO(4)-symmetric) potential. Therefore, let us ad-
mit arbitrary non-symmetric configurations Xa = Xa(τ,ω) but capture the ω-dependence in an
SO(4)-covariant fashion. The main ingredients are the left-invariant vector fields generating right
multiplication,

Ra = −η
a
BC ωB

∂

∂ωC
⇒ [Ra,Rb] = 2εabc Rc , (3.1)

and the right-invariant ones generating left multiplication (by the inverse),

La = −η̃
a
BC ωB

∂

∂ωC
⇒ [La,Lb] = 2εabc Lc . (3.2)

They mutually commute, [Ra,Lb] = 0, and the right translations are dual to our left-invariant one-
forms, e.g. ea(Rb) = δ a

b . Hence, an arbitrary function Φ on S3 obeys

dΦ(ω) = ea RaΦ(ω) . (3.3)

The space of functions on S3 decomposes into irreps of su(2)L⊕ su(2)R labelled by a common
spin j ∈ {0, 1

2 ,1,
3
2 , . . .}. To make contact with standard physics notation, we define hermitian

“angular momenta”

Ia := i
2 LaJa := i

2 Ra ⇒ [Ia, Ib] = iεabc Ic[Ja,Jb] = iεabc Jc . (3.4)

A basis of hyperspherical harmonics

Yj;m,n(ω) with m,n =− j,− j+1, . . . ,+ j and 2 j = 0,1,2, . . . (3.5)

is specified by the relations

I2Yj;m,n = J2Yj;m,n = j( j+1)Yj;m,n ,

I3Yj;m,n = mYj;m,n and J3Yj;m,n = nYj;m,n .
(3.6)
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For an explicit construction, one introduces two complex coordinates

α = ω1 + iω2 and β = ω3 + iω4 subject to ᾱα + β̄β = 1 . (3.7)

The angular momenta generators in those terms read

I+ = (β̄ ∂ᾱ −α∂β )/
√

2 , J+ = (β∂ᾱ −α∂
β̄
)/
√

2 , (3.8)

I3 = (α∂α + β̄ ∂
β̄
− ᾱ∂ᾱ −β∂β )/2 , J3 = (α∂α +β∂β − ᾱ∂ᾱ − β̄ ∂

β̄
)/2 , (3.9)

I− = (ᾱ∂
β̄
−β∂α)/

√
2 , J− = (ᾱ∂β − β̄ ∂α)/

√
2 . (3.10)

The normalized hyperspherical harmonics are represented as

Yj;m,n =

√
2 j+1
2π2

√
2 j−m( j+m)!
(2 j)!( j−m)!

2 j−n( j+n)!
(2 j)!( j−n)!

(I−) j−m(J−) j−n
α

2 j (3.11)

and are homogenous polynomials of degree 2 j in {α, ᾱ,β , β̄}.
To set up a left-invariant and right-covariant formulation, we parametrize the general Maxwellian

gauge potential on 2I ×S3 as

A = X0(τ,ω)dτ +Xa(τ,ω)ea (3.12)

The temporal and Coulomb gauge allows us to impose

X0(τ,ω) = 0 and Ja Xa(τ,ω) = 0 . (3.13)

Maxwell’s equations then are nothing but coupled wave equations:

−1
4 ∂

2
τ Xa = (J2+1)Xa + iεabcJb Xc (3.14)

A more transparent rewriting employs the famiiar complex linear combinations

X± = (X1± iX2)/
√

2 , (3.15)

which provides a partial decoupling of the components,

−1
4 ∂

2
τ X+ = (J2− J3 +1)X++ J+X3 ,

−1
4 ∂

2
τ X3 = (J2 +1)X3− J+X−+ J−X+ ,

−1
4 ∂

2
τ X− = (J2 + J3 +1)X−− J−X3 ,

(3.16)

to be supplemented by the gauge condition

0 = J3X3 + J+X−+ J−X+ . (3.17)

Since the Xa live on S3, we naturally expand in our basis of hyperspherical harmonics,

Xa(τ,ω) = ∑
jmn

X j;m,n
a (τ)Yj;m,n(α,β ) (3.18)

From the form of the equations it is obvious that

5
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• the equations are diagonal in j and m, so these may be kept fixed

• they only couple triplets (X j;m,n
3 ,X j;m,n+1

+ ,X j;m,n−1
− ), so X± ∝ J±X3 for X3 ∝ Yj;m,n

• the ansatz X j;m,n
a (τ) = eiΩ j;n

a τc j;n
a gives a linear system for Ω

j;n
a and c j;n

a

The frequencies turn out to be integral,

Ω
j;n
a = ±2( j+1) or ±2 j , (3.19)

which produces two types of basis solutions:

• type I : j≥0 , m =− j, . . . ,+ j , n =− j−1, . . . , j+1 , Ω j =±2( j+1) ,

X+ =
√

( j−n)( j−n+1)/2 e±2( j+1)iτ Yj;m,n+1 ,

X3 =
√

( j+1)2−n2 e±2( j+1)iτ Yj;m,n ,

X− = −
√

( j+n)( j+n+1)/2 e±2( j+1)iτ Yj;m,n−1 ,

(3.20)

• type II : j≥1 , m =− j, . . . ,+ j , n =− j+1, . . . , j−1 , Ω j =±2 j ,

X+ = −
√
( j+n)( j+n+1)/2 e±2 j iτ Yj;m,n+1 ,

X3 =
√

j2−n2 e±2 j iτ Yj;m,n ,

X− =
√

( j−n)( j−n+1)/2 e±2 j iτ Yj;m,n−1 .

(3.21)

Of course, a generic solution is some linear combination of the above. Due to the linearity of the
equations, the overall scale of a solution is arbitrary.

4. Some properties of the solutions

Each complex solution yields two real ones, real part and imaginary part. For fixed spin j we get
2(2 j+1)(2 j+3) type-I solutions ( j≥0) and 2(2 j+1)(2 j−1) type-II solutions ( j>0). They add up
to 4(2 j+1)2 solutions for j>0 and 6 solutions for j=0, which is the correct number for the dimen-
sion of a spin- j representation of SO(4). Constant solutions (Ω=0) are not allowed; the simplest
ones (Ω=2) are the three complex j=0 type I and three complex j=1 type II basis configurations
( j;m,n) = (0,?,0) and (1,?,0) with ? = −1,0,+1, respectively. The Hopf–Rañada solution is a
real combination of (0,+1,0) and (0,−1,0). The classification (3.20) and (3.21) shows a gen-
eral parity relation map between ( j;m,n) type I and ( j+1;n,m) type II. Electromagnetic duality is
realized via shifting |Ω j|τ by ±π

2 ; this maps A 7→ AD.
The main technical task is to transform a chosen solution on 2I × S3 to Minkowski coordi-

nates (t,x,y,z), which is straightforward due to the explicit formulæ for all ingredients and will
produce only rational functions. Conserved (in time) quantities are helicity and energy,

h = 1
2

∫
R3

(
A∧F +AD∧FD

)
and E = 1

2

∫
R3

d3x
(
~E2 +~B2) . (4.1)

6
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Their common scale is determined by the amplitude of the solution, but their ratio is fixed for the
basis configurations. Both quantities are best computed in “sphere frame” at t = τ = 0,

F = Ea ea∧ e0 + 1
2Ba ε

a
bc eb∧ ec , (4.2)

giving, for example,∫
R3

d3x ~E2 =
1
`

∫
S3

d3
Ω3 (1−ω4)EaEa and

∫
R3

d3x ~B2 =
1
`

∫
S3

d3
Ω3 (1−ω4)BaBa , (4.3)

by exploiting the orthogonality properties of the hyperspherical harmonics.

5. Examples

Finally we shall present two cases for illustrative purposes. For the first example, let us take the real
part of the ( j;m,n) = (1;0,0) type-I basis solution. Combining e4iτ+e−4iτ = 2cos4τ and reading
off Y1;0,? from (3.20), we have

X+ = −
√

3
π

αβ cos4τ , X3 =
√

6
π
(ββ̄ −αᾱ) cos4τ , X− = −

√
3

π
ᾱβ̄ cos4τ . (5.1)

This solution has h = 12 and E = 48/` and takes the explicit form

(E+iB)x =
−2i

((t− i)2− x2− y2− z2)5 ×

×
{

2y+3ity− xz+2t2y+2itxz−8x2y−8y3 +4yz2

+ 4it3y−6t2xz−8itx2y−8ity3 +4ityz2 +10x3z+10xy2z−2xz3

+ 2(itxz+ x2y+ y3 + yz2)(−t2 + x2 + y2 + z2)+(ity− xz)(−t2 + x2 + y2 + z2)2
}
,

(E+iB)y =
2i

((t− i)2− x2− y2− z2)5 ×

×
{

2x+3itx+ yz+2t2x−2ityz−8x3−8xy2 +4xz2

+ 4it3x+6t2yz−8itx3−8itxy2 +4itxz2−10x2yz−10y3z+2yz3

+ 2(−ityz+ x3 + xy2 + xz2)(−t2 + x2 + y2 + z2)+(itx+ yz)(−t2 + x2 + y2 + z2)2
}
,

(5.2)

(E+iB)z =
i

((t− i)2− x2− y2− z2)5 ×

×
{

1+2it + t2−11x2−11y2 +3z2 +4it3−16itx2−16ity2 +4itz2

− t4−2t2x2−2t2y2−2t2z2 +11x4 +22x2y2 +10x2z2 +11y4−10y2z2 +3z4

+ 2it(t2−3x2−3y2− z2)(t2− x2− y2− z2)− (t2 + x2 + y2− z2)(−t2 + x2 + y2 + z2)2
}
.

Figures 2 and 3 below show t=0 energy density level surfaces and a particular closed magnetic
field line for this example. For the second example, a concrete

(3
2 ; 1

2 ,
3
2

)
type-I solution, t=0 energy

density level surfaces are displayed in Figure 4.
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6. Summary and discussion

• Rational electromagnetic fields with nontrivial topology have been investigated since 1989

• We introduced a new construction method based on two insights:

– the simplicity of solving Maxwell’s equations on a temporal cylinder over a three-
sphere

– the conformal equivalence of a cylinder patch to four-dimensional Minkowski space

• A = Xν(τ,ω)eν = Xν(τ(x),ω(x))eν
µ(x)dxµ

• Only finite-time τ ∈ (−π,+π) dynamics is required on the cylinder

• Our solutions have finite energy and action, by construction

• A complete basis was discovered for sufficiently fast spatially and temporally decaying fields

• The non-Abelian extension couples different j components of Xa and is expected to be much
harder

• The method may be useful for a numerical study of Yang–Mills dynamics in Minkowski
space
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Figure 2: Energy density level surfaces at t=0 for the (1;0,0) solution above.

Figure 3: A particular magnetic field line for the (1;0,0) solution above.
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Figure 4: Energy density level surfaces at t=0 for a particular
( 3

2 ; 1
2 ,

3
2

)
solution.

10


