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Abstract

We present a general study of 3-point functions of conformal field theory in momentum space, follow-
ing a reconstruction method for tensor correlators, based on the solution of the conformal Ward identities 
(CWI’s), introduced in recent works by Bzowski, McFadden and Skenderis (BMS). We investigate and 
detail the structure of the CWI’s, their non-perturbative solutions and the transition to momentum space, 
comparing them to perturbation theory by taking QED as an example. We then proceed with an analysis 
of the T JJ correlator, presenting independent and detailed re-derivations of the conformal equations in 
the reconstruction method of BMS, originally formulated using a minimal tensor basis in the transverse 
traceless sector. A careful comparison with a second basis introduced in previous studies shows that this 
correlator is affected by one anomaly pole in the graviton (T) line, induced by renormalization. The result 
shows that the origin of the anomaly, in this correlator, should be necessarily attributed to the exchange of 
a massless effective degree of freedom. Our results are then exemplified in massless QED at one-loop in 
d-dimensions, expressed in terms of perturbative master integrals. An independent analysis of the Fuchsian 
character of the solutions, which bypasses the 3K integrals, is also presented. We show that the combina-
tion of field theories at one-loop – with a specific field content of degenerate massless scalar and fermions 
– is sufficient to generate the complete non-perturbative solution, in agreement with a previous study in 
coordinate space. The result shows that free conformal field theories, in specific dimensions, arrested at 
one-loop, reproduce the general result for the T JJ . Analytical checks of this correspondence are presented 
in d = 3, 4 and 5 spacetime dimensions. This implies that the generalized 3K integrals of the BMS solution 
can be expressed in terms of the two single master integrals B0 and C0 of 2- and 3-point functions, with 
significant simplifications.

* Corresponding author.
E-mail addresses: claudio.coriano@le.infn.it (C. Corianò), matteomaria.maglio@le.infn.it (M.M. Maglio).
https://doi.org/10.1016/j.nuclphysb.2018.11.016
0550-3213/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2018.11.016
http://www.elsevier.com/locate/nuclphysb
mailto:claudio.coriano@le.infn.it
mailto:matteomaria.maglio@le.infn.it
https://doi.org/10.1016/j.nuclphysb.2018.11.016
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2018.11.016&domain=pdf


C. Corianò, M.M. Maglio / Nuclear Physics B 938 (2019) 440–522 441
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The analysis of multi-point correlation functions in conformal field theory (CFT) is of out-
most importance in high energy physics and in string theory, where exact results for lower
(2- and 3-)point functions are combined with the operator product expansion (OPE) in order 
to characterize the structure of correlators of higher orders. This is the key motivation for a boot-
strap program in d = 4 spacetime dimensions.

The enlarged SO(2, 4) symmetry of CFT’s – respect to Poincaré invariance – has been es-
sential for establishing the form of some of their correlation functions. For 3-point functions, the 
solution of the conformal constraints in coordinate space allows to determine such correlators 
only up to few constants [1,2], which can then be fixed within a specific realization of a theory. 
In the case of a Lagrangian realization of a given CFT, such constants are expressed in terms 
of its (massless) field content (number of scalars, vectors, fermions), according to rather simple 
algebraic relations.

Except for perturbative studies performed at Lagrangian level, such as in the case of the N = 4
super Yang–Mills theory, which reach considerably high orders in the gauge coupling expansion, 
most of these analyses are performed in coordinate space, with no reference to any specific 
Lagrangian.

There are obvious reasons for this. The first is that the inclusion of the conformal constraints is 
more straightforward to obtain in coordinate space, compared to momentum space. The second is 
that the operator product expansion (OPE) in momentum space is difficult to perform, especially 
for correlators of higher orders (≥ 3), in the Minkowski region. However, there are also some 
advantages which are typical of a momentum space analysis, and these are related to the avail-
ability of dimensional regularization (DR), at least at perturbative level, and to the technology of 
master integrals, which has allowed to compute large classes of multiloop amplitudes.

Another advantage has to do with the identification of the conformal anomaly [3], which 
can be automatically extracted in DR (in d spacetime dimensions), being proportional to the 
1/(d − 4) singularity of the corresponding correlators. In coordinate space, instead, the anomaly 
contributions has to be added by hand by the inclusion of an inhomogeneous local term (i.e. by 
pinching all of its external coordinates), whose structure has to be inferred indirectly [1].

Finally, a crucial issue concerns the physical character of the anomaly, which does not find any 
simple particle interpretation in position space, while it is clearly associated to the appearance of 
an anomaly pole in momentum space [4–6] in an uncontracted anomaly vertex. One finds, by a 
perturbative one-loop analysis of any anomalous correlator, that the anomaly is always associated 
with such massless exchanges in the corresponding diagram. It is therefore possible to identify 
them as effective degrees of freedom induced by the anomaly, present in the 1PI (one-particle 
irreducible) effective action. The physical significance of such contributions has been stressed in 
several previous works [4,6,7] along the years. They have recently discussed in condensed matter 
theory in the context of topological insulators and of Weyl semimetals [8,9].

One of the goals of our work is to compare and extend previous perturbative analysis of the 
T JJ correlator with more recent ones based on the solution of the conformal Ward identities 
(CWI’s) in momentum space [11–14]. This correlator is the simplest one describing the coupling 
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of gravity to ordinary matter in QED and it has been investigated in perturbation theory from 
several directions [15–19].

1.1. Direct Fourier transform and the reconstruction program

In principle, one can move from coordinate space to position space in a CFT by a Fourier 
transform. This was the approach of [20] for 3-point functions, which can be explicitly worked 
out by introducing a regulator (ω) for the transform very much alike DR. The regulator serves 
as an intermediate step since some of the components of the correlators in position space are ap-
parently non-transformable. It has been shown that 1/ω poles generated by the transform cancel
in all the correlators analyzed, giving a complete expression for these in momentum space. The 
result is expressed in terms of ordinary and logarithmic master integrals of Feynman type, for 
which, in the latter case, it is possible to derive recursion relations as for ordinary ones [20]. The 
advantage of such approach is of being straightforward and algorithmic. It may be essential and 
probably the only manageable way to re-express the bootstrap program of CFT’s in momentum 
space beyond 3- and 4-point functions, from the original coordinate space analysis. Consistency 
with the analysis presented in [20] implied rather directly that such logarithmic integrals had to 
be re-expressed in terms of ordinary Feynman integrals. In fact, it was shown in the same study 
that the TJJ correlator was entirely reproduced by a free field theory in coordinate space. Our 
analysis in momentum space is in complete agreement with this former result.

1.2. Reconstruction

An alternative method has been developed more recently, based on the direct solution of the 
conformal Ward identities in momentum space. The method has been proposed in [14] and [24]
for scalar 3-point functions and extensively generalized to tensor correlators in [14].

Several issues related to the renormalization of the solutions of the conformal Ward identities 
have been investigated in [12,13], adopting the formalism of the 3K integrals (i.e. parametric 
integrals of 3 Bessel functions). Several analyses in momentum space, for specific applications, 
have been worked out [10,23], but the generality of the approach is clearly a significant feature 
of [14], which reconstructs a tensor correlator starting from its transverse/traceless components 
and using the conservation/trace Ward identities (local terms). The latter are reconstructed from 
lower point functions.

The result is expressed in terms of two sets of primary and secondary conformal Ward identi-
ties (CWI’s), the first involving the form factors of the transverse/traceless contributions, which 
are parametrized on a symmetry basis, the second emerging from CWI’s of lower point func-
tions. For 3-point functions, the secondary CWI’s involve conservation, trace and special WI’s. 
In all the cases, the reconstructed solutions for 3-point functions can be given in terms of gener-
alized hypergeometrics of type F4, [20], also known as Appell’s hypergeometric function of two 
variables (F4), related to 3-K integrals [14].

1.2.1. The anomaly pole of the TJJ
One of the results of our analysis will be to show how such contributions originate from the 

process of renormalization, taking as an example the case of the T JJ , filling in the intermediate 
steps of the discussion presented in [22]. We follow the general (BMS) approach introduced in 
[11] for the solution of the conformal constraints, which we detail in several of its parts, not 
offered in [11]. It has been compelling to proceed with an independent re-derivation of all the 
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lengthy equations. The method can be directly generalized to higher point functions and imple-
mented algorithmically, as we are going to show in a separate work. When coming to discuss the 
momentum space approach in CFT, there are several gaps in the literature, which are of method-
ological nature and need to be addressed. These concerns the correct form of the differential 
equations, the treatment of the derivatives of the Dirac δ’s induced by momentum conserva-
tion, violations of the Leibnitz rule for the special conformal transformations, or the choice of 
the Lorentz (spin) singlet operator in the action of the conformal group on a specific correlator. 
These are points that we will address systematically. We will illustrate how to merge the results 
of the BMS approach on the structure of the minimal set of (4) form factors (the A-basis), so-
lutions of the CWI’s for the T JJ correlator, with a basis of 13 ones (the F -basis) defined in 
previous perturbative studies. We will show how to extract from the F -basis 4 combinations 
of the 13 and we will verify that they respect the scalar equations identified within the BMS 
approach.

The use of this second basis is essential in order to prove that the WI’s and the renormalization 
procedure for this correlator, imply that the anomaly can be attributed to the appearance of an 
anomaly pole in a single tensor structure of nonzero trace.

1.3. Our work

As we have just mentioned, one of the goals of this work, in a first part, is to present a system-
atic approach to the analysis of the CWI’s in momentum space, closing a gap in the literature. 
The transition to momentum space raises the issue of how to include momentum conservation 
(i.e. translational invariance in coordinate space) in the presence of the dilatation and the special 
conformal generators. We will be dealing, in particular, with a rigorous treatment of such con-
tributions which show up after a Fourier transform of the conformal generators to momentum 
space.

We are going to investigate in detail the role of these contributions relying on the theory of 
tempered distributions. In particular, the discussion of these terms will be performed using a 
Gaussian basis which converges – in a distributional sense – to a covariant δ function in D = 4
and allows to define a formal calculus for such distributions.

Such contributions do not cancel, but lead to specific forms of the conformal generators in 
momentum space which are, however, in agreement with those presented in [14,21,24]. We define 
operational methods for the treatment of the covariant derivatives of δ functions in a consistent 
way, which may find application also beyond the scope of the current treatment, being quite 
general.

In a second part we move to discuss scalar and tensor correlators and the solutions of the 
CWI’s. We elaborate, in particular, one the apparent violation of the Leibnitz rule for the special 
conformal (SC) generator (Kκ ), which emerges whenever we impose momentum conservation 
and eliminate one of the momenta, and the symmetric action of this operator, at an intermediate 
stage, is not evident. In position space this corresponds to choosing one coordinate to be zero, and 
treating the corresponding operator in a given correlation function, as spin singlet. The derivation 
of the constraints on the form factors is performed, in our case, by using Lorentz Ward identities, 
on which we elaborate in detail, confirming the results of [14]. We show how different choices 
for the singlet operator leads to an equivalent set of conformal equations. We then illustrate how 
to derive the solutions of the various form factors using some properties of the hypergeometric 
equations, bypassing the 3K integrals, showing that the Fuchsian indices of all the equations 
remain the same for all the solutions.
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Such analysis is followed by a perturbative study of T JJ correlator in the transverse trace-
less basis both in QED and in scalar QED, deriving the associated anomalous conformal Ward 
identities from this perspective.

In the final part of our work we show how the perturbative solutions for the Ai , which are 
given in an appendix, reproduce the exact BMS result in a simplified way. We use the cases of 
d = 3 and d = 5 to show the exact correspondence between the two. This correspondence is 
studied by fixing an appropriate normalization of the photon two-point functions, on which we 
elaborate. This shows that the choice of different perturbative sectors (scalar, fermion) in both 
cases are sufficient to reproduce the entire nonperturbative result. This implies that only arbitrary 
constant in the nonperturbative solution, expressed in terms of the 3K integrals, has to simplify 
and be expressible in terms of simple integrals B0 and C0, the scalar 2- and 3-point functions. In 
our conclusions we briefly comment on the possible origin of such simplifications.

2. Special conformal Ward identities in the operatorial approach

In this section, to make our treatment self-contained, we briefly illustrate the operatorial 
derivation of the CWI’s for correlators involving 3-point functions of stress energy tensors.

An infinitesimal transformation

xμ(x) → x′ μ(x) = xμ + vμ(x) (2.1)

is classified as an isometry if it leaves the metric gμν(x) invariant in form. If we denote with 
g′

μν(x
′) the new metric in the coordinate system x′, then an isometry is such that

g′
μν(x

′) = gμν(x
′). (2.2)

This condition can be inserted into the ordinary covariant transformation rule for gμν(x) to give

g′
μν(x

′) = ∂xρ

∂x′ μ
∂xσ

∂x′ ν gρσ (x) = gμν(x
′) (2.3)

from which one derives the Killing equation for the metric

vα∂αgμν + gμσ ∂νv
σ + gσν∂μvσ = 0. (2.4)

For a conformal transformation the metric condition (2.2) is replaced by the condition

g′
μν(x

′) = 
−2gμν(x
′) (2.5)

generating the conformal Killing equation (with 
(x) = 1 − σ(x))

vα∂αgμν + gμσ ∂νv
σ + gσν∂μvσ = 2σgμν. (2.6)

In the flat spacetime limit this becomes

∂μvν + ∂νvμ = 2σ ημν, σ = 1

d
∂ · v. (2.7)

From now on we switch to the Euclidean case, neglecting the index positions. Using the fact that 
every conformal transformation can be written as a local rotation matrix of the form

Rμ
α = 


∂x′ μ

∂xα
(2.8)

we can first expand generically R around the identity as
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R = 1 + [ε] + . . . (2.9)

with an antisymmetric matrix [ε], which we can re-express in terms of antisymmetric parameters 
(τρσ ) and 1/2 d (d − 1) generators �ρσ of SO(d) as

[ε]μα = 1

2
τρσ

(
�ρσ

)
μα(

�ρσ

)
μα

= δρμδσα − δραδσμ (2.10)

from which, using also (2.8) we derive a constraint between the parameters of the conformal 
transformation (v) and the parameters τμα of R

Rμα = δμα + τμα = δμα + 1

2
∂[αvμ] (2.11)

with ∂[αvμ] ≡ ∂αvμ − ∂μvα .
Denoting with �A the scaling dimensions of a vector field Aμ(x)′, its variation under a con-

formal transformation can be expressed via R in the form

A′ μ(x′) = 
�ARμαAα(x)

= (1 − σ + . . .)�A(δμα + 1

2
∂[αvμ] + . . .)Aα(x) (2.12)

from which one can easily deduce that

δAμ(x) ≡ A′ μ(x) − Aμ(x) = −(v · ∂ + �Aσ)Aμ(x) + 1

2
∂[αvμ]Aα(x), (2.13)

which is defined to be the Lie derivative of Aμ in the v direction, modulo a sign

LvA
μ(x) ≡ −δAμ(x). (2.14)

As an example, in the case of a generic rank-2 tensor field (φI K ) of scaling dimension �φ , 
transforming according to a representation DI

J (R) of the rotation group SO(d), (2.12) takes the 
form

φ′ I K(x′) = 
�φDI
I ′(R)DK

K ′(R)φI ′ K ′
(x). (2.15)

In the case of the stress energy tensor (D(R) = R), with scaling (mass) dimension �T (�T = d)

the analogue of (2.12) is

T ′ μν(x′) = 
�T Rμ
α Rν

βT αβ(x)

= (1 − �T σ + . . .)(δμα + 1

2
∂[αvμ] + . . .)(δμα + 1

2
∂[αvμ] + . . .) T αβ(x) (2.16)

where ∂[αvμ] ≡ ∂αvμ − ∂μvα . One gets

δT μν(x) = −�T σ T μν − v · ∂ T μν(x) + 1

2
∂[αvμ] T αν + 1

2
∂[νvα]T μα. (2.17)

For a special conformal transformation (SCT) one chooses

vμ(x) = bμx2 − 2xμb · x (2.18)

with a generic parameter bμ and σ = −2b · x (from 2.7) to obtain
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δT μν(x) = −(bαx2 − 2xαb · x) ∂αT μν(x) − �T σT μν(x) + 2(bμxα − bαxμ)T αν

+ 2(bνxα − bαxν)T μα(x). (2.19)

It is sufficient to differentiate this expression respect to bκ in order to derive the form of the 
SCT Kκ on T in its finite form

KκT μν(x) ≡ δκT μν(x) = ∂

∂bκ
(δT μν)

= −(x2∂κ − 2xκx · ∂)T μν(x) + 2�T xκT μν(x) + 2(δμκxα − δακxμ)T αν(x)

+2(δκνxα − δακxν)T
μα. (2.20)

The approach can be generalized to correlators built out of several operators. In the case of a 
T JJ correlator,

�μναβ(x1, x2, x3) = 〈T μν(x1)J
α(x2)J

β(x3)〉 (2.21)

with a vector current of dimension �J , the CWI’s take the explicit form

Kκ�μναβ(x1, x2, x3) =
3∑

i=1

Ki
κ
scalar (xi)�

μναβ(x1, x2, x3)

+2
(
δμκx1ρ − δκ

ρx
μ
1

)
�ρναβ + 2

(
δνκx1ρ − δκ

ρxν
1

)
�μραβ

2
(
δακx2ρ − δκ

ρxα
2

)
�μνρβ + 2

(
δβκx3ρ − δκ

ρx
β
3

)
�μναρ = 0,

(2.22)

where

Ki
κ
scalar = −x2

i

∂

∂xκ

+ 2xκ
i xτ

i

∂

∂xτ
i

+ 2�ix
κ
i (2.23)

is the scalar part of the special conformal operator acting on the ith coordinate and �i ≡
(�T , �J , �J ) are the scaling dimensions of the operators in the correlation function.

2.1. Constraints from translational symmetry and the Leibniz rule

One of the main issues, when moving to momentum space, is to include the constraint from 
translational symmetry on a tensor correlator. The inclusion of this constraint at the beginning, 
for a tensor 3-point function of the form

〈Hμ1ν1
1 (x1)H

μ2ν2
2 (x2)H

μ3ν3
3 (x3)〉, (2.24)

with each of the Hi’s of scaling dimensions �H
i , reduces it to the form

〈Hμ1ν1
1 (x13)H

μ2ν2
2 (x23)H

μ3ν3
3 (0)〉, (2.25)

and the action of Kκ , the special conformal generator, on (2.24) and (2.25) will obviously change. 
The transition to momentum space in the two cases above takes to two different forms of the 
special CWI. The first form will be symmetric in momentum space, but at the cost of generating 
derivatives of the delta-function, which enforce conservation of the total momentum, while the 
second one will be asymmetric, treating one of the momenta as dependent from the other two. 
The final result for the scalar equations of the corresponding form factors will obviously be 
symmetric respect the three momenta.
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In particular, the Lorentz (spin) generator, in the case of (2.25), will act only the indices of H1
and H2, but not on those of H3, although the differentiation respect to the 4-momentum p3 will 
be performed implicitly by a chain rule in this second case, once we move to momentum space.

We are going to illustrate this point in detail.
Identifying Kκ

i H
μν
i with the expression (2.20) (with �T → �H

i ), then the action of the spe-
cial conformal transformation on (2.24) will take the forms

Kκ 〈Hμ1ν1
1 (x1)H

μ2ν2
2 (x2)H

μ3ν3
3 (x3)〉 =

3∑
i=1

Kκ
i 〈Hμ1ν1

1 (x1)H
μ2ν2
2 (x2)H

μ3ν3
3 (x3)〉

= e−iP x3Kκ′〈Hμ1ν1
1 (x13)H

μ2ν2
2 (x23)H

μ3ν3
3 (0)〉

(2.26)

with P the total translation operator (P = P1 + P2 + P3) and

Kκ′ = eiPx3 Kκe−iP x3 . (2.27)

Using the relations of the conformal algebra

[Kκ,P ν] = 2i(ηκνD + Mκν), [D,P μ] = −iP μ

[Mκν,P μ] = −i(ηκμP ν − ημνP κ),

and expanding (2.27) we obtain the relation

Kκ′ = Kκ + ix3μ[P μ,Kκ ] + i2

2
x3μx3ν[P μ, [P ν,Kκ ]] + . . .

= Kκ + 2xκ
3 D + 2x3μMκμ − 2xκ

3 x3μP μ + x2
3P κ,

(2.28)

since the commutator of higher order vanish.
The explicit form of the operators (dilatation, Lorentz and special conformal) D, Mμν, Kκ is 

Kκ = Kκ
1 + Kκ

2 + Kκ
3 , D = D1 + D2 + D3, Mμν = M

μν
1 + M

μν
2 + M

μν
3 and

M
μν
i = L

μν
i + �

μν
i , Ll = i(x

μ
l

∂

∂xν
l

− xν
l

∂

∂x
μ
l

), (2.29)

split into angular momentum (L) and spin (�). We illustrate this crucial point in some detail, 
since it shows how the action of the Lorenz generators on the field at x3 vanishes. We get (using 
p̂κ

l ≡ i∂/∂xκ
l )

Kκ′ = x2
1 p̂κ

1 − 2xκ
1 x1νp̂

ν
1 − 2ixκ

1 �1 − 2x1ν�
κν
1

+ x2
2 p̂κ

2 − 2xκ
2 x2νp̂

ν
2 − 2ixκ

2 �2 − 2x2ν�
κν
2

+ x2
3 p̂κ

3 − 2xκ
3 x3νp̂

ν
3 − 2ixκ

3 �3 − 2x3ν�
κν
3

+ 2ixκ
3 (�1 + �2 + �3) + 2xκ

3 (x1νp̂
ν
1 + x2νp̂

ν
2 + x3νp̂

ν
3)

+ 2x3ν(�
κν
1 + �κν

2 + �κν
3 ) + 2x3ν(x

κ
1 p̂ν

1 − xν
1 p̂κ

1 + xκ
2 p̂ν

2 − xν
2 p̂κ

2 + xκ
3 p̂ν

3 − xν
3 p̂κ

3 )

− 2xκ
3 x3μ(p̂

μ
1 + p̂

μ
2 + p̂

μ
3 ) + x2

3(p̂κ
1 + p̂κ

2 + p̂κ
3 )

(2.30)

which shows the cancellation of the contribution from the generator M3 since
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Kκ′ = (x1 − x3)
2p̂κ

1 − 2(xκ
1 − xκ

3 )(x1ν − x3ν)p̂1
ν − 2i(xκ

1 − xκ
3 )�1 − 2(x1ν − x3ν)�

κν
1

+ (x2 − x3)
2p̂κ

2 − 2(xκ
2 − xκ

3 )(x2ν − x3ν)p̂
ν
2 − 2i(xκ

2 − xκ
3 )�2 − 2(x2ν − x3ν)�

κν
2 .

(2.31)

Notice that both �1 and �2 denote the two spin matrices, which act only on H1 and H2. In other 
words, in coordinate space the choice x3 = 0 implies that H3 behaves as a Lorentz singlet respect 
to the spin part. The result can be rewritten in the compact form

Kκ′ = Kκ
13 + Kκ

23, (2.32)

where the action of Kκ
13 on a rank-2 tensor Hμν , for instance, is given by

KκHμν(x13) = Kκ
scalar (x13)H

μν + 2
(
δμκx13ρ − δκ

ρx
μ
13

)
Hρν

+ 2
(
δνκx13ρ − δκ

ρxν
13

)
Hμρ, (2.33)

with Kscalar (x13) being given as in (2.23) with xi → x13 and �i → �H , and we obtain the 
equation

0 = Kκ 〈Hμ1ν1
1 (x1)H

μ2ν2
2 (x2)H

μ3ν3
3 (x3)〉

= e−iP x3
(
Kκ

13 + Kκ
23

) 〈Hμ1ν1
1 (x13)H

μ2ν2
2 (x23)H

μ3ν3
3 (0)〉. (2.34)

Notice that the solution of this equation can be obtained by solving the reduced equation

(Kκ
13 + Kκ

23)〈Hμ1ν1
1 (x13)H

μ2ν2
2 (x23)H

μ3ν3
3 (0)〉 = 0 (2.35)

which is equivalent to finding the solution of (2.34) with x3 = 0 and acting afterwards with the 
translation operator e−iP x3 to restore the full dependence on the third coordinate. Setting

χμ1ν1μ2ν2μ3ν3(x12, x13) ≡ 〈Hμ1ν1
1 (x13)H

μ2ν2
2 (x23)H

μ3ν3
3 (0)〉, (2.36)

anticipating the discussion that will be presented for these equations in momentum space, the 
special CWI then can be cast into the form∫

d4p1 d4p2e
−i(p1x13+p2x23)(Kκ

p1
+ Kκ

p2
)χ(p1,p2) = 0 (2.37)

giving

(Kκ
p1

+ Kκ
p2

)χ(p1,p2) = 0. (2.38)

Notice that the previous form of χ(p1, p2), which is a function of the independent momenta 
p1 and p2, conjugate to x12 and x13, is the final form of the function, having re-expressed p3
in terms of p1 and p2. In a direct explicit computation, one has to act with the transforms of 
Kκ(x12) and Kκ(x13), that we denote as Kκ(p1) and Kκ(p2), on the transform of the initial 
correlator

(Kκ(p1) + Kκ(p2))〈Hμ1ν1
1 (p1)H

μ2ν2
2 (p2)H3(p̄3)〉 =

=
∫

ddx13d
dx23 e−ip1·x12−ip2·x23(Kκ(x12) + Kκ(x13))

× 〈Hμ1ν1
1 (x13)H

μ2ν2
2 (x23)H

μ3ν3
3 (0)〉 (2.39)
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with p3 → p̄3 = −p1 −p2 and the Leibniz rule is violated. The symmetry respect to the external 
invariants (p2

1, p
2
2, p

2
3) of the conformal generator is only reobtained at the end, after applying 

the chain rule for the differentiation of p3 respect to the two independent momenta.
The final result is that in momentum space we can treat H3(p̄3) as a single particle operator, 

in the sense that the differentials in p1 and p2 will act separately on H1 and H2, but also on H3
implicitly, via a chain rule.

At the same time, as clear from (2.31), the spin rotation matrix �μν contained in the Lorentz 
generator Mμν will act only on H1 and H2, treating H3 as a Lorentz (spin) singlet. We will 
present on the sections below complete worked out examples of this action. Since we are free 
to set any of the 3 coordinates to zero, the intermediate steps of the computations of the CWI’s 
will be completely different, and the choice of the Lorentz singlet operator can be dictated by 
convenience.

The choice of the point x which will be set to zero (e.g. x3 = 0) is obviously arbitrary, but 
preferably should be suggested by the symmetry of the correlator. For instance, for correlators 
such as 〈T (x1)T (x2)T (x3)〉 and 〈T (x1)T (x2)O(x3)〉 setting x3 = 0 and removing momentum 
p3 in terms of p1 and p2 is the natural choice. In the 〈T (x1)J (x2)J (x3)〉 case it is convenient to 
set x1 = 0 and re-express the momentum p1 in terms of p2 and p3.

3. The conformal generators in momentum space

In this section we discuss two formulations of the dilatation and SCT’s, with the goal of clar-
ifying the treatment of the constraints coming from the conservation of the total momentum in a 
generic correlator. We will be using some condensed notations in order to shorten the expressions 
of the transforms in momentum space. We will try to avoid the proliferation of indices, whenever 
necessary, with the conventions

�(x) ≡ 〈φ1(x1)φ2(x2) . . . φn(xn)〉 eipx ≡ ei(p1x1+p2x2+...pnxn)

dp ≡ dp1dp2 . . . dpn �(p) ≡ �(p1,p2, . . . , pn). (3.1)

It will also be useful to introduce the total momentum P =∑n
j=1 pj .

The momentum constraint is enforced via a delta function δ(P ) under integration. For in-
stance, translational invariance of �(x) gives

�(x) =
∫

dp δ(P ) eipx �(p1,p2,p3). (3.2)

In general, for an n-point function �(x1, x2, . . . , xn) = 〈φ1(x1)φ2(x2)...φn(xn)〉, the condition of 
translation invariance

〈φ1(x1)φ2(x2), . . . , φn(xn)〉 = 〈φ1(x1 + a)φ2(x2 + a) . . . φn(xn + a)〉 (3.3)

generates the expression in momentum space of the form (3.2), from which we can remove one 
of the momenta, conventionally the last one, pn, which is replaced by its “on shell” version 
pn = −(p1 + p2 + . . . pn−1)

�(x1, x2, . . . , xn) =
∫

dp1dp2...dpn−1e
i(p1x1+p2x2+...pn−1xn−1+pnxn)�(p1,p2, . . . , pn).

(3.4)

We start by considering the dilatation WI.
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The condition of scale covariance for the fields φi of scale dimensions �i (in mass units)

�(λx1, λx2, . . . , λxn) = λ−��(x1, x2, . . . , xn), � = �1 + �2 + . . .�n (3.5)

after setting λ = 1 + ε and Taylor expanding up to O(ε) gives the scaling relation

(Dn + �)� ≡
n∑

j=1

(
xα
j

∂

∂xα
j

+ �j

)
�(x1, x2, . . . , xn) = 0, (3.6)

with

Dn =
n∑

j=1

xα
j

∂

∂xα
j

. (3.7)

The corresponding equation in momentum space can be obtained either by a Fourier transform 
of (3.6), which can give either symmetric or asymmetric expressions of the equations in the 
respective momenta pi or, more simply, exploiting directly (3.5). In the latter case, using the 
translational invariance of the correlator under the integral, by removing the δ-function con-
straint, one obtains

�(λx1, λx2, . . . , λxn)

=
∫

ddp1d
dp2 . . . ddpn−1e

iλ(p1x1+p2x2+...pn−1xn−1+pnxn)�(p1,p2, . . . , pn)

= λ−�

∫
ddp1d

dp2 . . . ddpn−1e
i(p1x1+p2x2+...pn−1xn−1+pnxn)�(p1,p2, . . . , pn). (3.8)

It is simply a matter of performing the change of variables pi = p′
i/λ on the rhs of the equation 

above (first line) with dp1...dpn−1 = (1/λ)d(n−1)ddp′
1 . . . ddp′

n−1 to derive the relation

1

λd(n−1)
�(

p1

λ
,
p2

λ
, . . . ,

pn

λ
) = λ−��(p1,p2, . . . , pn). (3.9)

Setting λ = 1/s this generates the condition

s(n−1)d−��(sp1, sp2, . . . , spn) = �(p1,p2, . . . , pn) (3.10)

and with s ∼ 1 + ε, expanding at O(ε) we generate the equation⎡
⎣ n∑

j=1

�j − (n − 1)d −
n−1∑
j=1

pα
j

∂

∂pα
j

⎤
⎦�(p1,p2, . . . , pn) = 0. (3.11)

It is straightforward to reobtain the same equation from the direct Fourier transform of (3.6) if 
we use translational invariance since

(Dn + �)�(x1, . . . , xn) =
= (Dn + �)

∫
ddp1 . . . ddpnδ(P )eip1x1+...pnxn�(p1, . . . , pn)

=
⎛
⎝ n∑

j=1

�j +
n−1∑
i=1

xi n

∂

∂xin

⎞
⎠∫

ddp1 . . . ddpn−1e
ip1x1n+...pn−1xn−1 n

× �(p1, . . . , pn−1, p̄n)
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=
∫

ddp1 . . . ddpn−1

⎛
⎝ n∑

j=1

�j +
n−1∑
j=1

pj

∂

∂pj

⎞
⎠ eip1x1n+...pn−1xn−1 n

× �(p1, . . . , pn−1, p̄n). (3.12)

At this point we perform a partial integration n − 1 times, moving the derivatives from the expo-
nential to the correlator � to reobtain (3.11)

0 = (Dn + �)�(x1, . . . , xn)

=
∫

ddp1 . . . ddpn−1

⎛
⎝ n∑

j=1

�j − (n − 1)d −
n−1∑
j=1

pα
j

∂

∂pα
j

⎞
⎠

× �(p1, . . . , pn−1, p̄n) eip1x1n+...ipn−1xn−1 n . (3.13)

A rigorous way to reobtain this result is to consider directly the conformal algebra for the di-
latation operator D = (iDn + �) and use the commutation relations. For our purpose we can 
consider a realization of �(x1, . . . xn) via some operators Oj(xj )

D 〈O1(x1) . . .On(xn)〉 ≡
n∑

j=1

D(xj ) 〈O1(x1) . . .On(xn)〉

=
⎡
⎣ n∑

j=1

�j +
n∑

j=1

xα
j

∂

∂xα
j

⎤
⎦ 〈O1(x1) . . .On(xn)〉 . (3.14)

This n-point function is translationally invariant, so that we can shift the fields using the 
translation operator exp(iP · xn), with P the total translation operator P =∑n

j=1 Pj

D 〈O1(x1) . . .On(xn)〉 = e−ixn·P D′ 〈O1(x1 − xn) . . .On(xn−1 − xn)On(0)〉 = 0 (3.15)

where

D′ = eix
μ
n ·Pμ D e−ix

μ
n ·Pμ =

∞∑
k=0

ik

k! xν1
n . . . xνk

n [Pν1, [. . . [Pνk
,D] . . . ]]. (3.16)

Using the commutation relations of the conformal algebra, there are at most two non-vanishing 
terms in this sum. Evaluating the finite multiple commutators we get

D′ = D + ixν
n [Pν,D] = D − xν

nPν (3.17)

and explicitly

D′ =
n∑

j=1

[
�j + xν

j (Pj )ν

]
− xν

n

n∑
j=1

(Pj )ν

=
n−1∑
j=1

(xj − xn)
ν(Pj )ν +

n∑
j=1

�j =
n−1∑
j=1

(xj − xn)
ν ∂

∂xj ν

+
n∑

j=1

�j . (3.18)

Notice that the solution of (3.15) can be obtained by solving the reduced equation

D′ 〈O1(x1 − xn) . . .On(xn−1 − xn)On(0)〉 = 0 (3.19)
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and then acting with a total translation. In momentum space this relation generates the Ward 
identity∫ n∏

j=1

ddxj eix1·p1+...ipn·xn D′ 〈O1(x1 − xn) . . .On(xn−1 − xn)On(0)〉 = 0, (3.20)

that is∫
ddp1 . . . ddpnδ

(d)

⎛
⎝ n∑

j=1

pj

⎞
⎠

⎡
⎣ n∑

j=1

�j − (n − 1)d −
n−1∑
j=1

pα
j

∂

∂pα
j

⎤
⎦

× 〈O1(p1) . . .On(pn−1)On(p̄n)〉 = 0, (3.21)

where p̄n = − 
∑n−1

j=1 pj .
If we decided to work with symmetric expressions of the transform, the approach would be 

more cumbersome since it would involve δ′ (derivative) terms in the integrand. We are going 
to discuss this second approach both for the dilatation and for the special conformal transfor-
mations. It requires a brief digression on the use of some relations for the covariant δ-functions 
which we are going to formulate below and that will be essential in order to clarify the correct 
way to treat such contributions.

3.1. Delta calculus and symmetric Gaussians

It is possible to derive a formal calculus for the derivatives of δd(P ) using as defining condi-
tions that, for a generic function f (p) which is regular at P μ = 0 the rules∫

ddP ∂αδd(P )f (P ) = −∂αf (0) (3.22)

and ∫
ddP ∂β∂αδd(P )f (P ) = ∂β∂αf (0) (3.23)

hold. For instance one easily obtains formally

∂αδd(P ) ≡ ∂

∂P α
δd(P ) = − d

P 2 δd(P )P α, (3.24)

which can be checked using the following rule for symmetric integration in (3.22)∫
ddP

δd(P )

P 2 P αP βf (0) = 1

d
ηαβ, (3.25)

where f (0) is a constant. Similarly, one can show that∫
ddP P α δd(P )

P 2 f (0) = 0, (3.26)

which is consistent with the fact that the integral∫
ddP ∂αδd(P ) = 0, (3.27)

has a zero boundary value. Notice that (3.26) can be extended to the more general form
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∫
ddP P α δd(P )

P 2 f (P ) = 0, (3.28)

if the function f (P ) is regular at P = 0.
To derive such relations on a rigorous basis, we need to introduce a suitable family of functions 

converging to the δd(P ) in the distributional limit.
We will be needing the relations

δd(P ) = δ(P )δ(
)

P d−1C(θ1, ..., θd−1)
, δ(
) ≡

D−1∏
l=1

δ(θl) C(θ1, ...θd−1) =
d−2∏
l=1

sin θd−l−1
l

(3.29)

between the cartesian and the polar coordinates versions of the delta function. Then clearly

∫
ddP δd(P ) =

∞∫
0

dP

π∫
0

dθ1

π∫
0

dθ2 . . .

2π∫
0

dθd−1δ(P )δ(
d) = 1. (3.30)

It is easily shown that the integral of a vector n of unit norm, expressed in the same variables

nα(θ1, . . . , θd−1) = (cos θ1, cos θ2 sin θ1, . . . , sin θd−1 . . . sin θ1),

0 ≤ θi ≤ π, i = 1,2, . . . d − 2, 0 ≤ θd−1 ≤ 2π, (3.31)

vanishes∫
d
nα(θ1, . . . , θd−1) = 0, d
 ≡ dθ1dθ2 . . . dθd−1. (3.32)

These relations will be used to parametrize the tensor integrals over the (total) momentum 
P μ of the correlators as nμ|P |, with |P | being the magnitude of P. Notice that respect to the 
d-dimensional angular integration measure d
d , d
 is stripped of the angular factors

d
d ≡ d


d−2∏
l=1

sin θd−l−1
l . (3.33)

The vanishing of (3.32) is simply due to the symmetry of the angular integrations. This may 
not be obvious if we separate the angular from the radial parts of the δ function and performs the 
angular integration first, since the d-dimensional rotational symmetry is broken∫

d
nα(θ1, . . . , θd−1)δ(
) = δα0, (3.34)

where the nonzero component surviving in (3.34) depends on the directions chosen for the polar 
axis, and the integration measure has been stripped off of the angular factors. Notice that only 
one component (n0), proportional to cos θd−1, is nonvanishing after the integration with δ(
), 
the remaining ones being zero. Therefore, the vanishing of (3.26) has to be shown by using a 
rotationally symmetric sequence of functions which avoid the formal manipulation in (3.32). For 
this purpose we use a sequence of normalized Gaussians

Gk(P ) = 1

(2π)d/2kd
e
− P 2

2k2 ,

∫
ddPGk(P ) = 1 (3.35)

converging to δd(P ) as k → 0. We need to consider the distributional limit of
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∫
ddP

P α

P 2 Gk(P ) =
∞∫

0

P d−2dP Gk(P ))

∫
nα(θ1, . . . , θd−1)d
d

= 1

2
√

2πd/2kd/2+1/2
�(

d − 1

2
)

∫
nα(θ1, . . . , θd−1)d
d (3.36)

which vanishes after angular integration since

Yα(n) ≡
∫

nα(θ1, . . . , θd−1)d
d = 0 (3.37)

with the boundaries given in (3.31). Therefore, the correct angular average should be taken before 
the distributional limit of k → 0, giving a vanishing result, thereby proving (3.26). The result 
for the rank-2 integral in (3.25) which has been justified above by covariance and symmetric 
integration, can also be obtained by a similar method. In this case we get

∫
ddP

P αP β

P 2 Gk(P ) =
∞∫

0

P d−1Gk(P )dP Yαβ(n), (3.38)

where we have defined the angular part

Yαβ(n) ≡
∫

nαnβ(θ1, . . . , θd−1)d
d = 1

d
Vdδαβ, Vd = 2πd/2

�[d/2] . (3.39)

Also in this case the integral (3.38) is factorized with

∞∫
0

dPP d−1Gk(P ) = 1

Vd

, (3.40)

which is independent of the k parameter of the distributional limit. Therefore

∫
ddP

P αP β

P 2 Gk(P ) =
∞∫

0

P d−1Gk(P )dP Yαβ(n) = 1

d
δαβ (3.41)

for any value of the parameter k. This takes directly to (3.25) if the parameter of the Gaussian 
family approaches k = 0 in order to extract the value of a test function f (P ) at P = 0.

One can expand on this result using the rules of the ordinary calculus formally, by taking 
multiple derivatives of δ(P ) using (3.22), which imply that

∂β∂αδd(P ) = ∂β

(
− d

P 2 δd(P )P α

)

= d(d + 2)

(P 2)2 δd(P )P αP β − d

P 2 δd(P )δαβ . (3.42)

These correctly generate (3.23) using symmetric integration∫
ddP

δd(P )

2 2 P αP βP ρP σ f (0) = 1 (
δαβδρσ + δαρδβσ + δασ δβρ

)
. (3.43)
(P ) d(d + 2)
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Another useful relation is
n∑

j=1

pα
j

∂

∂pα
j

δd(P ) =
n∑

j=1

pα
j

∂

∂P α
δd(P )

= P α∂αδd(P ) = −d δd(P ), (3.44)

using (3.24), which is of immediate derivation. We will be using the relations above to illustrate 
the elimination of one of the momenta from the differential equations which characterize the 
CWI’s in momentum space.

3.2. The dilatation Ward identity with one less momentum

We can reobtain the results of the previous sections for the dilatation WI by using the calculus 
derived above. The dilatation Ward identity of (3.6) can indeed be written in a (p1, p2, . . . pn)

symmetric form using
n∑

j=1

(
xα
j

∂

∂xα
j

+ �j

)
�(x1, x2, . . . , xn)

=
3∑

j=1

(
xα
j

∂

∂xα
j

+ �j

)∫
ddp eipx δ(P )�(p)

=
∫

ddp δd(P ) eipx

⎛
⎝ n∑

j=1

�j − nd −
n∑

j=1

pα
j

∂

∂pα
j

⎞
⎠�(p) + δ′

term, (3.45)

with

δ′
term = −

∫
ddp P α∂αδd(P )eipx�(p) = d

∫
ddp δd(P )eipx�(p), (3.46)

where we have used (3.44). Inserting (3.46) into (3.45) we obtain the symmetric expression of 
the scaling relation in momentum space

n∑
j=1

(
xα
j

∂

∂xα
j

+ �j

)
�(x1, x2, . . . , xn)

=
∫

ddp δd(P )eipx

⎛
⎝ n∑

j=1

�j − (n − 1)d −
n∑

j=1

pα
j

∂

∂pα
j

⎞
⎠�(p). (3.47)

The expression given above depends only on n − 1 momenta, since one of them can be elim-
inated. If we choose as independent ones p1, . . . pn−1 with (p1, . . . , pn) → (p1, . . . , pn−1, P), 
and define q = p1 + p2 . . . + pn−1, then the dependence on pn in (3.47) can be re-expressed in 
terms of the total momentum P and of the sum of the independent momenta q as

�(p) = �(p1, . . . , pn−1,P ) pα
n = P α − qα

n∑
j=1

pα
j

∂

∂pα
j

�(p) =
n−1∑
j=1

pα
j

∂

∂pα
j

�(p1, . . . pn−1,P )

+ (P α − qα)
∂

�(p1, . . . pn−1,P ). (3.48)

∂P α
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The last (nth) term in (3.47) is given by

σn ≡
∫

ddp δd(P )eipxpα
n

∂

pα
n

�(p). (3.49)

Rewriting the exponential as eip·x → ei(p1·x1n+...pn−1·xn−1 n+iP ·xn) and using the δd(P ) to remove 
the P · xn term, σn takes the form

σn =
∫

ddp1d
dp2 . . . ddpn−1d

dP δd(P )eip1x1n+ip2x2n+...ipn−1xn−1n ×

×(P − q)α
∂

P α
�(p1, . . . pn−1,P )

= −
∫

ddp1d
dp2 . . . ddpn−1e

ip1x1n+ip2x2n+...ipn−1xn−1nqα

×
∫

ddP
∂

∂P α
�(p1, . . . pn−1,P )δd(P ). (3.50)

Notice that in the expression above we have removed the δd(P )P α ∂
∂Pα �(p) term, which after a 

partial integration becomes∫
ddP δd(P )P α ∂

∂P α
�(p1, . . . pn−1,P )eip1x1n+ip2x2n+...ipn−1xn−1n

=
∫

ddP eip1x1n+ip2x2n+...ipn−1xn−1n

(
−d + P α ∂

∂P α
δd(P )

)
�(p1, . . . pn−1,P ) (3.51)

and vanishes by (3.24). Similarly, we derive the vanishing relation∫
ddP P α ∂

∂P α
�(p1, . . . pn−1,P )δd(P ) = d

∫
ddP δd(P )

P α

P 2 �(p1, . . . pn−1,P )

= d

∫
ddP δd(P )

P α

P 2 �(p1, . . . pn−1,0) (3.52)

= 0 (3.53)

which has been obtained as a result of (3.26) and (3.28). Therefore we find that σn = 0, reobtain-
ing the expected scaling equation in momentum space⎛

⎝ n∑
j=1

�j − (n − 1)d −
n−1∑
j=1

pα
j

∂

∂pα
j

⎞
⎠�(p1, . . . pn−1, p̄n) = 0. (3.54)

3.3. Special conformal WI’s for scalar correlators

We now turn to the analysis of the special conformal transformations in momentum space. In 
this second case the δ′ terms cancel identically. Also in this case we discuss both the symmetric 
and the asymmetric forms of the equations, focusing our attention first on the scalar case. The 
Ward identity in the scalar case is given by

n∑
j=1

(
−x2

j

∂

∂xκ
j

+ 2xκ
j xα

j

∂

∂xα
j

+ 2�jx
κ
j

)
�(x1, x2, . . . , xn) = 0 (3.55)

which in momentum space, using
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xα
j → −i

∂

∂pα
j

∂

∂xκ
j

→ ipκ
j (3.56)

becomes

n∑
j=1

∫
ddp

(
pκ

j

∂2

∂pα
j ∂pκ

j

− 2pα
j

∂2

∂pα
j ∂pκ

j

− 2�j

∂

∂pκ
j

)
eip·xδd(P )φ(p) = 0, (3.57)

where the action of the operator is only on the exponential. At this stage we integrate by parts, 
bringing the derivatives from the exponential to the correlator and on the Dirac δ function ob-
taining∫

ddpeipx Kk
s �(p)δd(P ) + δ′

term = 0 (3.58)

in the notations of Eq. (3.1), where we have introduced the differential operator acting on a scalar 
correlator in a symmetric form

Kk
s =

n∑
j=1

(
pκ

j

∂2

∂pα
j ∂pα

j

+ 2(�j − d)
∂

∂pκ
j

− 2pα
j

∂2

∂pκ
j ∂pα

j

)
. (3.59)

Some of the terms containing first and second derivatives of the Dirac delta function can be 
rearranged using also the intermediate relation

Kκ
s δd(P ) =

(
P k ∂2

∂P α∂Pα

− 2P α ∂2

∂P α∂P k
+ 2(� − nd)

∂

∂P k

)
δd(P )

= 2d(d n − d − �)P k δd(P )

P 2

= −2(d n − d − �)
∂

∂Pk

δd(P ), � =
n∑

j=1

�j, (3.60)

where we have repeatedly used (3.24) together with (3.42) and (3.44). Combining all the deriva-
tive terms, on the other hand, we obtain

δ′
term =

∫
ddp eip·x

⎡
⎣ ∂

∂P α
δd(P )

n∑
j=1

(
pα

j

∂

∂pκ
j

− pκ
j

∂

∂pα
j

)
�(p)

+2
∂

∂P κ
δd(P )

⎛
⎝ n∑

j=1

(�j − pα
j

∂

∂pα
j

) − (n − 1)d

⎞
⎠�(p)

⎤
⎦ .

(3.61)

Notice that such terms vanish by using rotational invariance of the scalar correlator

3∑
j=1

(
pα

j

∂

∂pκ
j

− pκ
j

∂

∂pα
j

)
�(p) = 0, (3.62)

as a consequence of the SO(4) symmetry
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3∑
j=1

Lμν(xj )〈φ(x1)φ(x2)φ(x3)〉 = 0, (3.63)

with

Lμν(x) = i
(
xμ∂ν − xν∂μ

)
, (3.64)

and the symmetric scaling relation,⎛
⎝ n∑

j=1

�j −
n−1∑
j

pα
j

∂

∂pα
j

− (n − 1)d

⎞
⎠�(p) = 0, (3.65)

where we have used (3.24). Using (3.60) and the vanishing of the δ′
term terms, the structure of the 

CWI on the correlator �(p) then takes the symmetric form

n∑
j=1

∫
ddpeip·x

(
pκ

j

∂2

∂pjα∂pα
j

− 2pα
j

∂2

∂pα
j ∂pκ

j

+ 2(�j − d)
∂

∂pκ
j

)
φ(p)δd(P ) = 0. (3.66)

This symmetric expression is the starting point in order to proceed with the elimination of one of 
the momenta, say pn. Also in this case, one can proceed by following the same procedure used 
in the derivation of the dilatation identity, dropping the contribution coming from the dependent 
momentum pn, thereby obtaining the final form of the equation

n−1∑
j=1

(
pκ

j

∂2

∂pα
j ∂pα

j

+ 2(�j − d)
∂

∂pκ
j

− 2pα
j

∂2

∂pκ
j ∂pα

j

)
�(p1, . . . pn−1, p̄n) = 0. (3.67)

Also in this case the differentiation respect to pn requires the chain rule. For a certain sequence 
of scalar single particle operators

�(p1, . . . pn−1, p̄n) = 〈φ(p1) . . . φ(p̄n)〉 (3.68)

the Leibnitz rule is therefore violated. As we have already mentioned, the complete symmetry of 
the solution respect to the three momenta is however respected. We will now move to a discussion 
of the general structure of the method, focusing first on scalars and then on tensor correlators.

4. Reduction of the action of Kκ
scalar

In the case of a scalar correlator all the anomalous conformal WI’s can be re-expressed in 

scalar form by taking as independent momenta the magnitude pi =
√

p2
i as the three independent 

variables. Defining F(p1, p2) = �(p1, p2, p̄3) and using the relation

pα
1

∂F
p1

α
+ pα

2
∂F
p2

α
= p1

∂�

∂p1
+ p2

∂�

∂p2
+ p3

∂�

∂p3
(4.1)

the anomalous scale equation becomes(
� − 2d −

3∑
i=1

pi

∂

∂pi

)
�(p1,p2, p̄3) = 0. (4.2)

The relation above is derived using the chain rule
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∂�

∂p
μ
i

= p
μ
i

pi

∂�

∂pi

− p̄
μ
3

p3

∂�

∂p3
. (4.3)

It is a straightforward but lengthy computation to show that the special (non anomalous) con-
formal transformation in d dimension takes the form, for the scalar component

Kscalar
κ� = 0 (4.4)

with

Kκ
scalar =

3∑
i=1

pκ
i Ki (4.5)

Ki ≡ ∂2

∂pi∂pi

+ d + 1 − 2�i

pi

∂

∂pi

(4.6)

with the expression (4.5) which can be split into the two independent equations

∂2�

∂pi∂pi

+ 1

pi

∂�

∂pi

(d + 1 − 2�1) − ∂2�

∂p3∂p3
− 1

p3

∂�

∂p3
(d + 1 − 2�3) = 0 i = 1,2. (4.7)

Notice that in the derivation of (4.5) one needs at an intermediate step the derivative of the scaling 
WI

p1
∂2�

∂p3∂p1
+ p2

∂2�

∂p3∂p2
= (� − 2d − 1)

∂�

∂p3
− p3

∂2�

∂p3∂p3
. (4.8)

Defining

Kij ≡ Ki − Kj (4.9)

Eqs. (4.7) take the form

Kκ
13� = 0 and Kκ

23� = 0. (4.10)

5. Transverse Ward identities

To fix the form of the correlator we need to impose the transverse WI on the vector lines and 
the conservation WI for T μν . In this section we briefly discuss their derivation and their explicit 
expressions. We consider the functional

W [g,A] =
∫

Dψ̄Dψe−(S0[g,ψ]+S1[A,ψ]) (5.1)

integrated over the fermions ψ , in the background of the metric gμν and of the gauge field Aa
μ. 

In the case of a nonabelian gauge theory the action is given by

S0[g,A,ψ] = −1

4

∫
d4x

√−gxF
a
μνF

μνa +
∫

d4x
√−gxiψ̄γ μDμψ

S1[g,A] =
∫ √−gxJ

a
μAμa (5.2)

with
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Fa
μν = ∇μAa

ν − ∇νA
a
μ + gcf

abcAb
μAc

ν

= ∂μAa
ν − ∂νA

a
μ + gcf

abcAb
μAc

ν,

∇μAνa = ∂μAνa + �λ
μνA

λa (5.3)

with Jμa = gcψ̄γ μT aψ denoting the fermionic current, with T a the generators of the theory 
and ∇μ denoting the covariant derivative in the curved background on a vector field. The local 
Lorentz and gauge covariant derivative (D) on the fermions acts via the spin connection

Dμψ =
(

∂μψ + Aa
μT a + 1

4
ω

ab
μ γab

)
ψ (5.4)

having denoted with ab the local Lorentz indices. A local Lorentz covariant derivative (D) can 
be similarly defined for a vector field, say V a , via the Vielbein ea

μ and its inverse e μ
a

DμV a = ∂μV a + ω
a

μbV
b (5.5)

with

∇μV ρ = e ρ
a DμV a (5.6)

with the Christoffel and the spin connection related via the holonomic relation

�ρ
μν = e ρ

a

(
∂μe

a
ν + ω

a

μbe
b
ν

)
. (5.7)

Diffeomorphism invariance of the generating functional (5.1) gives∫
ddx

(
δW

δgμν

δgμν(x) + δW

δAa
μ

δAa
μ(x)

)
= 0 (5.8)

where the variation of the metric and the gauge fields are the corresponding Lie derivatives, for 
a change of variables xμ → xμ + εμ(x)

δAa
μ(x) = −∇αAa

μεα − Aa
α∇μεα

δgμν = −∇μεν − ∇νεμ (5.9)

while for a gauge transformation with a parameter θa(x)

δAa
μ = Dμθa ≡ ∂μθa + gcf

abcAb
μθc. (5.10)

Using (5.9), Eq. (5.8) becomes

0 =
〈∫

d4x

(
δ(S0 + S1)

δgμν

δgμν + δS1

δAa
μ

δAa
μ

)〉

=
〈∫

d4x
√−gx

[∇μT μν + (∇μAa
ν − ∇νA

a
μ)Jμa + ∇μJμaAa

ν

]
εν(x)

〉
(5.11)

while the condition of gauge invariance gives∫
ddx

δW

δAa
μ

δAa
μ =

〈∫
d4x

√−gxJ
μ
a Dμθa

〉
= 0 (5.12)

which, in turn, after an integration by parts, generates the gauge WI

〈∇μJμa〉 = gcf
abc〈J b〉Aμc. (5.13)
μ
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Inserting this relation into (5.11) we obtain the conservation WI

〈∇μTμν〉 + Fa
μν〈Jμa〉 = 0. (5.14)

In the abelian case, diffeomorphism and gauge invariance then give the relations

0 = ∇ν 〈T μν〉 + Fμν 〈Jν〉
0 = ∇ν 〈J ν〉 (5.15)

with naive scale invariance gives the traceless condition

gμν 〈T μν〉 = 0. (5.16)

The functional differentiation of (5.15) and (5.16) allows to derive ordinary Ward identities for 
the various correlators. In the T JJ case we obtain, after a Fourier transformation, the conserva-
tion equation

p1ν1 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉
= 4

[
δμ1μ2p2λ 〈Jλ(p1 + p2) Jμ3(p3)〉 − p

μ1
2 〈Jμ2(p1 + p2) Jμ3(p3)〉

]
+ 4

[
δμ1μ3p3λ 〈Jλ(p1 + p3) Jμ2(p2)〉 − p

μ1
3 〈Jμ3(p1 + p3) Jμ2(p2)〉

]
(5.17)

and vector current Ward identities

p2μ2 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉 = 0 (5.18)

p3μ3 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉 = 0, (5.19)

while the naive identity (5.16) gives the non-anomalous condition

δμ1ν1 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉 = 0, (5.20)

valid in the d �= 4 case. We recall that the 2-point function of two conserved vector currents Ji

(i = 2, 3) [24] in any conformal field theory in d dimension is given by

〈Jα
2 (p)J

β
3 (−p)〉 = δ�2 �3 (c123�J )παβ(p)(p2)�2−d/2,

�J = πd/2

4�2−d/2

�(d/2 − �2)

�(�2)
, (5.21)

with c123 an overall constant and �2 = d − 1. In our case �2 = �3 = d − 1 and Eq. (5.17) then 
takes the form

p1μ1 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉

= 4c123�J

(
δν1μ2

p2λ

(p2
3)

d/2−�2
πλμ3(p3) − p

ν1
2

(p2
3)

d/2−�2
πμ2μ3(p3)

+δν1μ3
p3λ

(p2
2)

d/2−�2
πλμ2(p2) − p

ν1
3

(p2
2)

d/2−�2
πμ3μ2(p2)

)
. (5.22)

Explicit expressions of the secondary CWI’s are determined using (5.18) and (5.20) and the 
explicit form (5.22).
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6. TJJ reconstruction the BMS way

We are now going investigate the BMS approach, which is technically quite involved, high-
lighting several steps which are crucial in order to clarify the basic structure of the method. The 
method is exemplified in the case of the T JJ . Several intermediate steps, which we believe are 
necessary in order to characterize the approach, have been worked out independently and are 
based on the use of the Lorentz Ward identities.

Given the partial symmetry of the T JJ correlator, for instance, respect to the T T T case, one 
can choose as independent momenta either p1 and p2 or, more conveniently, p2 and p3, given 
the symmetry of the two J currents.

With the first choice, outlined below, the current J (p3) is singlet under the (spin) Lorentz 
generators. With the second choice, the two currents are treated symmetrically and the stress 
energy tensor is treated as a singlet under the same generators. The derivation of the CWI’s 
in this second case will be outlined in section 7. The equations obtained in the two cases are 
obviously the same.

First of all we discuss the canonical Ward identities for the 〈T JJ 〉 correlation function in 
momentum space. From the general definition of the global Ward identities in position space

3∑
j=1

Gg(xj ) 〈T μ1ν1(x1) Jμ2(x2) Jμ3(x3)〉 = 0, (6.1)

where Gg is the generator of the infinitesimal symmetry transformation. The dilatation Ward 
identities take the form

0 =
⎡
⎣ 3∑

j=1

�j − (n − 1)d −
2∑

j=1

pα
j

∂

∂pα
j

⎤
⎦ 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p̄3)〉 . (6.2)

To proceed towards the analysis of the constraints, it is essential to introduce the Lorentz covari-
ant Ward identities

0 =
2∑

j=1

[
pν

j

∂

∂pjμ

− p
μ
j

∂

∂pjν

]
〈T μ1ν1(p1) Jμ2(p2) Jμ3(p̄3)〉

+ 2
(
δν
α1

δμ(μ1 − δμ
α1

δν(μ1
)

〈T ν1)α1(p1) Jμ2(p2) Jμ3(p̄3)〉
+ (

δν
α2

δμμ2 − δμ
α2

δνμ2
) 〈T μ1ν1(p1) J α2(p2) Jμ3(p̄3)〉

+ (
δν
α3

δμμ3 − δμ
α3

δνμ3
) 〈T μ1ν1(p1) Jμ2(p2) J α3(p̄3)〉 , (6.3)

where

δν(μ1 〈T ν1)α1 Jμ2 Jμ3〉 ≡ 1

2

(
δνμ1 〈T ν1α1 Jμ2 Jμ3〉 + δνν1 〈T μ1α1 Jμ2 Jμ3〉 ), (6.4)

and finally the special conformal Ward identities

0 =
2∑

j=1

[
2(�j − d)

∂

∂pκ
j

− 2pα
j

∂

∂pα
j

∂

∂pκ
j

+ (pj )κ
∂

∂pα
j

∂

∂pjα

]

× 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p̄3)〉
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+ 4

(
δκ(μ1

∂

∂p
α1
1

− δκ
α1

δλ(μ1
∂

∂pλ
1

)
〈T ν1)α1(p1) Jμ2(p2) Jμ3(p̄3)〉

+ 2

(
δκμ2

∂

∂p
α2
2

− δκ
α2

δλμ2
∂

∂pλ
2

)
〈T μ1ν1(p1) J α2(p2) Jμ3(p̄3)〉 , (6.5)

which we will use in the next sections in order to determine the tensor structure of this correlator.

6.1. Projectors

The basic observation in the BMS approach is that the action of the special conformal, trace 
and conservation (longitudinal) WI’s take a simpler form if we enforce a decomposition of the 
tensor correlators in terms of transverse traceless, longitudinal and trace parts and project the 
Ward identities on the same subspaces. Recall that for a symmetric tensor such as the EMT, this 
decomposition is performed using the following projectors

πμ
α = δμ

α − pμpα

p2 , π̃μ
α = 1

d − 1
πμ

α (6.6)

�
μν
αβ = 1

2

(
πμ

α πν
β + π

μ
β πν

α

)
− 1

d − 1
πμνπαβ, (6.7)

Iμν
αβ = 1

p2 pβ

(
pμδν

α + pνδμ
α − pαpβ

p2 (δμν + (d − 2)
pμpν

p2 )

)
(6.8)

Lμν
αβ = 1

2

(
Iμν

αβ + Iμν
βα

)
τ

μν
αβ = π̃μνδαβ (6.9)

with

δ
μν
αβ = �

μν
αβ + �

μν
αβ (6.10)

�
μν
αβ ≡ Lμν

αβ + τ
μν
αβ (6.11)

The previous identities allow to decompose a symmetric tensor into its transverse traceless 
(via �), longitudinal (via L) and trace parts (via τ ), or on the sum of the combined longitu-
dinal and trace contributions (via �). We are now going to illustrate the approach in the case of 
the T T T correlation function. The transverse traceless projections will be denoted as (t) and the 
trace parts with (s). We will be denoting such correlator as φ and try to resort to a condensed 
notation in order to characterize the algebraic structure of the procedure. For a rank-6 correlator 
of 3 T ’s, φ will denote the tensor

φ ≡ 〈T μ1ν1(p1)T
μ2ν2(p2)T

μ3ν3(p3)〉. (6.12)

We can act on this correlator with the two projectors � and � on each (combined) pair of indices 
and momenta. For instance, the transverse traceless part of φ is obtained by acting with 3 �
projectors on the indices of the EMT’s

φttt ≡ �1�2�3φ (6.13)

≡ �1
μ1ν1
α1β1

�2
μ2ν2
α2β2

�3
μ3ν3
α3β3

〈T α1β1(p1)T
α2β2(p2)T

α3β3(p3)〉, (6.14)

where �1
μ1ν1
α1β1

≡ �
μ1ν1
α1β1

(p1). Similarly, the remaining 7 components of the φ correlator can be 
obtained by acting with all the other combinations of projectors (�, �), to obtain
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φ = φttt + φtst + φtss + φsss + φstt + φsst + φsts . (6.15)

Acting with the special conformal transformation Kκ (both with the scalar and the spin parts) on 
φ we can again project the result onto the orthogonal subspaces t t t, tss, etc., and try to solve the 
equations separately in each of these 8 sectors. In our condensed notation the equation for the 
special conformal transformation takes the form

φ′ = Kκφ = 0, (6.16)

and its projection into the 8 independent sectors, such as, for instance

φ′
t t t ≡ �1�2�3K

κφ = 0, (6.17)

φ′
stt ≡ �1�2�3K

κφ = 0, φ′
sst ≡ �1�2�3K

κφ = 0, . . . (6.18)

and so on, can be obtained by the action of the �’s and �’s on (6.16). It is important to realize 
that only the equation φ′

t t t = 0 involves 3-point functions beside 2 point functions, and needs to 
be solved. The remaining sectors do not give any new equation, since they involve only 2-point 
functions, being related to the conservation and trace WI’s. However they define consistency 
conditions for lower point functions that will introduce some constraint on the arbitrary constants 
appearing in the solutions of the primary WI’s.

To illustrate these points we will treat the correlators φ, φ′ as vectors in a functional space on 
which the Kκ operator will act both in differential form and algebraically via its spin rotation 
matrices. For instance we define

φttt ≡ Ptttφ, where Pttt ≡ �1�2�3, φtst ≡ Ptstφ with Ptst ≡ �1�2�3, . . . (6.19)

and similarly in the other cases. In general, it is convenient to characterize the action of Kκ on 
each subspace via a projection, such as

φ
′ (tt t)
t t t ≡ PtttK

κPtttφ φ
′ (tt t)
st t = PsttK

κPtttφ, . . . (6.20)

and so on, for a total of 64 = 8 ×8 sectors. In the first expressions above, for example, the original 
transverse traceless projection (t t t) is acted upon by Kκ and then it is re-projected onto the t t t
sector. There are several simplifications among these matrix elements. For example, a direct 
computation, that we will prove below, gives

PsttK
κPtttφ = 0, PtstK

κPtttφ = 0, PttsK
κPtttφ = 0, . . . (6.21)

showing that the φttt amplitude is mapped only into another amplitude in the same t t t subspace 
by the action of Kκ .

6.1.1. Endomorphic action of Kκ on the transverse-traceless sector
Kκ acts as endomorphism on the transverse traceless sector of a tensor correlator. To illustrate 

this point we consider the case of the T T T , though the approach is generic. Define

Yμ1ν1μ2ν2μ3ν3 = �1
μ1ν1
α1β1

�2
μ2ν2
α2β2

�3
μ3ν3
α3β3

〈T α1β1T α2β2T α3β3〉 (6.22)

to be the transverse traceless projection of the T T T . One can check the transversality of the 
action of Kκ (the other contribution of Kκ being similar) by contracting Y with p1
1scalar
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p
μ1
1 Kκ

1scalarY
μ1ν1μ2ν2μ3ν3

=
(

−2pα
1 p

μ1
1

∂2

∂pα
1 ∂pκ

1
+ pκ

1 p
μ1
1

∂2

∂pα
1 ∂pα

1

)
Yμ1ν1μ2ν2μ3ν3

= −2pα
1

∂

∂pα
1

(
p

μ1
1

∂

∂pκ
1
Yμ1ν1μ2ν2μ3ν3

)
+ 2p

μ1
1

∂

pκ
1
Yμ1ν1μ2ν2μ3ν3

+ pκ
1

∂

∂pα
1

(
p

μ1
1

∂

pα
1
Yμ1ν1μ2ν2μ3ν3

)
− pκ

1
∂

∂p
μ1
1

Yμ1ν1μ2ν2μ3ν3

= 2pα
1

∂

∂pκ
1
Yκν1μ2ν2μ3ν3 − 2Yκν1μ2ν2μ3ν3 − 2pκ

1
∂

∂p
μ1
1

Yμ1ν1μ2ν2μ3ν3 (6.23)

where we have rearranged the partial derivatives. For the spin part we obtain

p
μ1
1 Kκ

1spinY
μ1ν1μ2ν2μ3ν3 = 2p

μ1
1

(
δκμ1

∂

∂pα
1

− δκα ∂

p
μ1
1

)
Yαν1μ2ν2μ3ν3

+ 2p
μ1
1

(
δκν1

∂

∂pα
1

− δκα ∂

p
ν1
1

)
Yμ1αμ2ν2μ3ν3

= 2pκ
1

∂

∂pα
1
Yαν1μ2ν2μ3ν3 − 2p

μ1
1

∂

∂p
μ1
1

Yκν1μ2ν2μ3ν3

+ 2Yκν1μ2ν2μ3ν3 . (6.24)

Adding (6.23) and (6.24) it is shown that

p
μ1
1 Kκ

1 Yμ1ν1μ2ν2μ3ν3 = 0, (6.25)

which clearly holds for the entire K operator since �1 filters to the left of K2, obtaining

p
μ1
1 KκYμ1ν1μ2ν2μ3ν3 = 0. (6.26)

Notice that in the derivation of this result the nonlinear character of the action of Kκ
scalar , which 

induces mixed derivative terms does not play any role. Due to the trace-free property of the 
projectors, then we obtain in our condensed notation

�1K
κφttt = 0. (6.27)

The solution of the CWI’s are then constructed, in this method, by acting on the entire correlator 
having parametrized its transverse traceless parts in therms of a minimal set of form factors plus 
trace/longitudinal terms (the semilocal or pinched terms). Semilocal terms are those containing a 
single delta function which will pinch two of the three external coordinates. The term ultralocal 
(or local) refers to the contribution of the anomaly itself, which is obtained when all the 3 point 
of the correlator coalesce.

6.2. Application to the T JJ

Turning to the T JJ case, we can divide the 3-point function into two parts: the transverse-
traceless part and the semi-local part (indicated by subscript loc) expressible through the trans-
verse and trace Ward Identities. These parts are obtained by using the projectors � and �, 
previously defined. We can then decompose the full 3-point function as follows
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〈T μ1ν1 Jμ2 Jμ3〉 = 〈tμ1ν1 jμ2 jμ3〉 + 〈T μ1ν1 Jμ2 j
μ3
loc〉 + 〈T μ1ν1 j

μ2
loc Jμ3〉

+ 〈tμ1ν1
loc Jμ2 Jμ3〉 − 〈T μ1ν1 j

μ2
loc j

μ3
loc〉 − 〈tμ1ν1

loc j
μ2
loc Jμ3〉

− 〈tμ1ν1
loc Jμ2 j

μ3
loc〉 + 〈tμ1ν1

loc j
μ2
loc j

μ3
loc〉 . (6.28)

All the terms on the right-hand side, apart from the first one, may be computed by means of 
transverse and trace Ward Identities. The exact form of the Ward identities depends on the exact 
definition of the operators involved, but more importantly, all these terms depend on 2-point 
function only. The main goal now is to write the general form of the transverse-traceless part of 
the correlator and to give the solution using the Conformal Ward identities.

Using the projectors � and π one can write the most general form of the transverse-traceless 
part as

〈tμ1ν1(p1) jμ2(p2) jμ3(p3)〉 = �
μ1ν1
α1β1

(p1)π
μ2
α2

(p2)π
μ3
α3

(p3) Xα1β1 α3α3, (6.29)

where Xα1β1 α3α3 is a general tensor of rank four built from the metric and momenta. We can enu-
merate all possible tensor that can appear in Xα1β1 α3α3 preserving the symmetry of the correlator, 
as illustrated in [14]

〈tμ1ν1(p1)j
μ2(p2)j

μ3(p3)〉
= �1

μ1ν1
α1β1

π2
μ2
α2

π3
μ3
α3

(
A1 p

α1
2 p

β1
2 p

α2
3 p

α3
1 + A2 δα2α3p

α1
2 p

β1
2 + A3 δα1α2p

β1
2 p

α3
1

+A3(p2 ↔ p3)δ
α1α3p

β1
2 p

α2
3 + A4 δα1α3δα2β1

)
, (6.30)

where we have used the symmetry properties of the projectors, and the coefficients Ai i =
1, . . . , 4 are the form factors, functions of p2

1, p
2
2 and p2

3. This ansatz introduces a minimal set of 
form factors which will be later determined by the solutions of the CWI’s. For future discussion, 
we will refer to this basis as to the A-basis.

We can now consider the dilatation Ward identities for the transverse-traceless part obtained 
by the decomposition of (6.2). We are then free to apply the projectors � and π to this decom-
position in order to obtain the final result

0 = �
μ1ν1
α1β1

(p1)π
μ2
α2

(p2)π
μ3
α3

(p3)

⎡
⎣ 3∑

j=1

�j − 2d −
2∑

j=1

pα
j

∂

∂pα
j

⎤
⎦[

A1p
α1
2 p

β1
2 p

α2
3 p

α3
1

+ A2δ
α2α3p

α1
2 p

β1
2 + A3δ

α1α2p
β1
2 p

α3
1 + A3(p2 ↔ p3)δ

α1α3p
β1
2 p

α2
3 + A4δ

α1α3δα2β1

]
.

(6.31)

It is possible to obtain from this projection a set of differential equations for all the form factors. 
These equations are expressed as⎡

⎣2d + Nn −
3∑

j=1

�j +
2∑

j=1

pα
j

∂

∂pα
j

⎤
⎦ An(p1,p2,p3) = 0, (6.32)

where Nn is the tensorial dimension of An, i.e. the number of momenta multiplying the form 
factor An and the projectors � and π .

Turning to the special CWI’s, 〈T JJ 〉 in (6.5), we can write the same equation in the form

Kκ 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉 = 0, (6.33)
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where Kκ is the special conformal generator. As before, we introduce the decomposition of the 
3-point function to obtain

0 = Kκ

[
〈tμ1ν1 jμ2 jμ3〉 + 〈tμ1ν1

loc jμ2 jμ3〉 + 〈tμ1ν1 j
μ2
loc jμ3〉 + 〈tμ1ν1 jμ2 j

μ3
loc〉

+ 〈tμ1ν1
loc j

μ2
loc jμ3〉 + 〈tμ1ν1

loc j
μ2
loc jμ3〉 + 〈tμ1ν1 j

μ2
loc j

μ3
loc〉 + 〈tμ1ν1

loc j
μ2
loc j

μ3
loc〉

]
.

(6.34)

In order to isolate the equations for the form factors appearing in the decomposition, we are free 
to apply the projectors � and π defined previously. Through a lengthy calculation we find

�ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3) Kκ 〈tμ1ν1
loc jμ2 jμ3〉

= �ρ1σ1
μ1ν1

πρ2
μ2

πρ3
μ3

[
4d

p2
1

δκμ1 p1α1 〈T α1ν1Jμ2Jμ3〉
]

�ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3) Kκ 〈tμ1ν1 j
μ2
loc jμ3〉

= �ρ1σ1
μ1ν1

πρ2
μ2

πρ3
μ3

[
2(d − 2)

p2
2

δκμ2 p2α2 〈T α1ν1Jα2Jμ3〉
]

�ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3) Kκ 〈tμ1ν1 jμ2 j
μ3
loc〉

= �ρ1σ1
μ1ν1

πρ2
μ2

πρ3
μ3

[
2(d − 2)

p2
3

δκμ3p3α3 〈T α1ν1Jμ2Jα3〉
]

(6.35)

and all the terms with at least two insertion of local terms are zero. T We have verified, as 
expected, that the equations above remain invariant if we choose as independent momenta p2
and p3 while acting on p1 indirectly by the derivative chain rule. More details on this analysis 
will be given in a section below. In this way we may rewrite (6.5) in the form

0 = �ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3)

(
Kκ 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉

)

= �ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3)

{
Kκ 〈tμ1ν1(p1) jμ2(p2) jμ3(p3)〉

+ 4d

p2
1

δκμ1 p1α1 〈T α1ν1(p1)J
μ2(p2)J

μ3(p3)〉

+ 2(d − 2)

p2
2

δκμ2p2α2 〈T α1ν1Jα2Jμ3〉 + 2(d − 2)

p2
3

δκμ3p3α3 〈T α1ν1Jμ2Jα3〉
}
.

(6.36)

The equation above is an independent derivation of the corresponding BMS result, which is not 
offered in [14]. Notice that our derivation, which details the various contributions coming from 
the local terms in the T JJ , has been derived using heavily the Lorentz Ward identities.

The last three terms may be re-expressed in terms of 2-point functions via the transverse Ward 
identities. After other rather lengthy computations, we find that the first term in the previous 
expression, corresponding to the transverse traceless contributions, can be written in the form
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�ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3)

[
Kκ 〈tμ1ν1(p1) jμ2(p2) jμ3(p3)〉

]
= �ρ1σ1

μ1ν1
(p1)π

ρ2
μ2

(p2)π
ρ3
μ3

(p3)×

×
[
pκ

1

(
C11 p

μ3
1 p

μ1
2 p

ν1
2 p

μ2
3 + C12 δμ2μ3p

μ1
2 p

ν1
2 + C13δ

μ1μ2p
ν1
2 p

μ3
1 + C14δ

μ1μ3p
ν1
2 p

μ2
3

+ C15δ
μ1μ2δν1μ3

)+ pκ
2

(
C21 p

μ3
1 p

μ1
2 p

ν1
2 p

μ2
3 + C22 δμ2μ3p

μ1
2 p

ν1
2 + C23δ

μ1μ2p
ν1
2 p

μ3
1

+ C24δ
μ1μ3p

ν1
2 p

μ2
3 + C25δ

μ1μ2δν1μ3
)+ δμ1κ

(
C31 p

μ3
1 p

ν1
2 p

μ2
3 + C32 δμ2μ3p

ν1
2

+ C33 δμ2ν1p
μ3
1 + C34 δμ3ν1p

μ2
3

)+ δμ2κ
(
C41 p

μ3
1 p

μ1
2 p

ν1
2 + C42 δμ1μ3p

ν1
2

)
+ δμ3κ

(
C51 p

μ2
3 p

ν1
2 p

μ2
3 + C52 δμ1μ2p

ν1
2

)]
(6.37)

where now Cij are differential equations involving the form factors A1, A2, A3, A4 of the 
representation of the 〈tjj〉 in (6.30). For any 3-point function, the resulting equations can be 
divided into two groups, the primary and the secondary conformal Ward identities. The primary 
are second-order differential equations and appear as the coefficients of transverse or transverse-
traceless tensor containing pκ

1 and pκ
2 , where κ is the special index related to the conformal 

operator Kκ . The remaining equations, following from all other transverse or transverse-traceless 
terms, are then secondary conformal Ward identities and are first-order differential equations.

6.3. Primary CWI’s

From (6.36) and (6.37) one finds that the primary CWI’s are equivalent to the vanishing of the 
coefficients C1j and C2j for j = 1, . . . , 5. The CWI’s can be rewritten in terms of the operators 
defined in Eq. (4.9) as

0 = C11 = K13A1

0 = C12 = K13A2 + 2A1

0 = C13 = K13A3 − 4A1

0 = C14 = K13A3(p2 ↔ p3)

0 = C15 = K13A4 − 2A3(p2 ↔ p3)

0 = C21 = K23A1

0 = C22 = K23A2

0 = C23 = K23A3 − 4A1

0 = C24 = K23A3(p2 ↔ p3) + 4A1

0 = C25 = K23A4 + 2A3 − 2A3(p2 ↔ p3)

(6.38)

6.4. Secondary CWI’s

The secondary conformal Ward identities are first-order partial differential equations and in 
principle involve the semi-local information contained in jμ

loc and tμν
loc . In order to write them 

compactly, one defines the two differential operators

LN = p1(p
2
1 + p2

2 − p2
3)

∂

∂p1
+ 2p2

1 p2
∂

∂p2

+ [
(2d − �1 − 2�2 + N)p2

1 + (2�1 − d)(p2
3 − p2

2)
]

(6.39)

R = p1
∂

∂p1
− (2�1 − d) . (6.40)
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The reason for introducing such operators comes from (6.37), once the action of Kκ is made 
explicit. The separation between the two sets of constraints comes from the same equation, and 
in particular from the terms trilinear in the momenta within the square bracket. One needs also 
the symmetric versions of such operators

L′
N = LN, with p1 ↔ p2 and �1 ↔ �2, (6.41)

R′ = R, with p1 �→ p2 and �1 �→ �2. (6.42)

These operators depend on the conformal dimensions of the operators involved in the 3-point 
function under consideration, and additionally on a single parameter N determined by the Ward 
identity in question. In the 〈T JJ 〉 case one finds considering the structure of Eqs. (6.36) and 
(6.37)

C31 = − 2

p2
1

[L4A1 + RA3 − RA3(p2 ↔ p3)]

C32 = − 2

p2
1

[
L2 A2 − p2

1(A3 − A3(p2 ↔ p3))
]

C33 = − 1

p2
1

[L4 A3 − 2R A4]

C34 = − 1

p2
1

[
L4 A3(p2 ↔ p3) + 2R A4 − 4p2

1A3(p2 ↔ p3)
]

(6.43)

C41 = 1

p2
2

[
L′

3 A1 − 2R′A2 + 2R′A3
]

C42 = 1

p2
2

[
L′

1 A3(p2 ↔ p3) + p2
2(4A2 − 2A3) + 2R′A4

]

C51 = 1

p3

[
(L4 − L′

3)A1 − 2(2d + R + R′)A2 + 2(2d + R + R′)A3(p2 ↔ p3)
]

C52 = 1

p2
3

[
(L2 − L′

1)A3 − 4p2
3A2 + 2p2

3A3(p2 ↔ p3) + 2(2d − 2 + R + R′)A4

]
(6.44)

From (6.36) and (6.37) using (5.22) the secondary CWI’s take the explicit form

C31 = C41 = C42 = C51 = C52 = 0, C32 = 16d c123 �J

p2
1

[
1

(p2
3)

σ0
− 1

(p2
2)

σ0

]
,

C33 = 16d c123 �J

p2
1(p

2
3)

σ0
, C34 = −16d c123 �J

p2
1 (p2

2)
σ0

,

(6.45)

where in our σ0 = d/2 − �2. Expressed in this form all the scalar equations for the Ai are not 
apparently symmetric in the exchange of p2 and p3, and it may not be immediately evident that 
they can be recast in such a way that the symmetry is respected.

7. Symmetric treatment of the J currents

Let’s now consider p1 as dependent momentum, showing the equivalence of the CWI’s with 
this second choice. As we have just mentioned above, this choice is the preferred one in the 
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search for the solutions of the T JJ . In this case, the action of the spin (Lorentz) part of the 
transformation will leave the stress energy tensor as a singlet, acting implicitly on p1 via the 
chain rule. As we are going to show, the resulting equations will be linear combinations of the 
original part. This extends the analysis presented by BMS.

The structure of the decomposition in (6.30) of the 〈T JJ 〉 correlator is still valid but now the 
explicit form of the special conformal operator Kκ has to be modified as

Kκ 〈T μ1ν1 Jμ2 Jμ3〉 =
3∑

j=2

[
2(�j − d)

∂

∂pκ
j

− 2pα
j

∂

∂pα
j

∂

∂pκ
j

+ (pj )κ
∂

∂pα
j

∂

∂pjα

]

× 〈T μ1ν1(p̄1) Jμ2(p2) Jμ3(p3)〉

+ 2

(
δκμ2

∂

∂p
α2
2

− δκ
α2

δλμ2
∂

∂pλ
2

)
〈T μ1ν1(p̄1) J α2(p2) Jμ3(p3)〉

+ 2

(
δκμ3

∂

∂p
α3
3

− δκ
α3

δλμ3
∂

∂pλ
3

)
〈T μ1ν1(p̄1) Jμ2(p2) J α3(p3)〉

(7.1)

where p̄μ
1 = −p

μ
2 − p

μ
3 . Considering the SCWI’s for the 3-point function we can write

Kκ(p2,p3)〈T μ1ν1(p̄1) Jμ2(p2) Jμ3(p3)〉 = 0,

in which we have stress the p2 and p3 dependence of the special conformal operator. Then one 
has to take the decomposition of the 3-point function as in (6.30) and using the relations (6.35), 
that are still valid in this case, one derives (6.36), in which now the K operator is defined in terms 
of p2 and p3 only. As in the previous case, one finds CWI’s which are similar to those given in 
(6.37)

�ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3)

[
Kκ 〈tμ1ν1(p1) jμ2(p2) jμ3(p3)〉

]
= �ρ1σ1

μ1ν1
(p1)π

ρ2
μ2

(p2)π
ρ3
μ3

(p3)×

×
[
pκ

2

(
C̃11 p

μ3
1 p

μ1
2 p

ν1
2 p

μ2
3 + C̃12 δμ2μ3p

μ1
2 p

ν1
2 + C̃13δ

μ1μ2p
ν1
2 p

μ3
1 + C̃14δ

μ1μ3p
ν1
2 p

μ2
3

+ C̃15δ
μ1μ2δν1μ3

)
+ pκ

3

(
C̃21 p

μ3
1 p

μ1
2 p

ν1
2 p

μ2
3 + C̃22 δμ2μ3p

μ1
2 p

ν1
2 + C̃23δ

μ1μ2p
ν1
2 p

μ3
1

+ C̃24δ
μ1μ3p

ν1
2 p

μ2
3 + C̃25δ

μ1μ2δν1μ3
)

+ δμ1κ
(
C̃31 p

μ3
1 p

ν1
2 p

μ2
3 + C̃32 δμ2μ3p

ν1
2

+ C̃33 δμ2ν1p
μ3
1 + C̃34 δμ3ν1p

μ2
3

)
+ δμ2κ

(
C̃41 p

μ3
1 p

μ1
2 p

ν1
2 + C̃42 δμ1μ3p

ν1
2

)

+ δμ3κ
(
C̃51 p

μ2
3 p

ν1
2 p

μ2
3 + C̃52 δμ1μ2p

ν1
2

)]
. (7.2)

In this case we obtain the primary WI’s by imposing the vanishing of the coefficients C̃ij , for 
i = 1, 2 and j = 1, . . . , 5. In this way we get
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0 = C̃11 = K21A1

0 = C̃12 = K21A2 − 2A1

0 = C̃13 = K21A3

0 = C̃14 = K21A3(p2 ↔ p3) + 4A1

0 = C̃15 = K21A4 + 2A3

0 = C̃21 = K31A1

0 = C̃22 = K31A2 − 2A1

0 = C̃23 = K31A3 + 4A1

0 = C̃24 = K31A3(p2 ↔ p3)

0 = C̃25 = K31A4 + 2A3(p2 ↔ p3)

(7.3)

and it is simple to verify that these equations are equivalent to those given in (6.38). In the case of 
the secondary WI’s we have to consider some further properties of the form factors. For instance 
the coefficient C̃31 has the explicit form

C̃31 = 2

p2
1

[
p2(p

2
1 − p2

2 + p2
3)

∂

∂p2
A1 − p2

1p3
∂

∂p3
A1 − p2

2p3
∂

∂p3
A1 + p3

3
∂

∂p3
A1

− p2
∂

∂p2
A3 − p3

∂

∂p3
A3 + p2

∂

∂p2
A3(p2 ↔ p3) + p3

∂

∂p3
A3(p2 ↔ p3)

− 6(p2
2 − p2

3)A1 − 4(A3 − A3(p2 ↔ p3))

]
(7.4)

in which it is possible to substitute the derivative with respect to p3 in terms of derivatives with 
respect to p2 and p1 using the dilatation Ward identities

∂

∂p3
An = 1

p3

[
(d − 2 − Nn)An −

2∑
j=1

pj

∂

∂pj

An

]
. (7.5)

Using the identity given above in (7.4), one derives the relation

C̃31 = 2

p2
1

[
L4 A1 + R A3 − R A3(p2 ↔ p3)

]
(7.6)

with the identification of the differential operators L and R defined in (6.39) and (6.40). In this 
way it is possible to show that all the coefficients related to the secondary Ward identities are the 
same of those obtained with p3 as the dependent momentum. This argument proves that in spite 
of the choice of the dependent momentum, the scalar equations for the form factors related to the 
CWI’s remain identical.

8. The Fuchsian approach to the solutions of the primary CWI’s and universality

In this section we are going to investigate the Fuchsian structure of the equations. The goal of 
the section is to present a new method of solution which differs from the one based on 3K inte-
grals presented in [14]. We should mention that the number of integration constants introduced 
by the primary CWI’s, using this method, may not necessarily coincide with those presented in 
[14], and the constraints imposed by the secondary CWIs, that we will not discuss, will obviously 
be different.

The goal of this section is twofold. We want to show first of all that the Fuchsian exponents 
(defined as (ai, bj ) below), are universal and characterize the entire system of equations. In the 
scalar case, as well as for all the 3-point functions that we have investigated, we have verified 
that always the same set of exponents (ai, bj ) are generated.

The second important feature is that the method allows to characterize particular solutions of 
4 and higher point functions in some restricted kinematics, allowing a significant generalization 
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of the analysis presented here, with new special functions appearing in the solutions. Details of 
this study will be presented in a separate work.

Being the CWI’s a system of equations, we will first solve for each of the form factors, starting 
from the equations for A1, which are homogeneous, and then proceed towards the inhomoge-
neous ones, from A2 to A4. For each form factor we identify the general solution and a particular 
solution, which are added together. Then we impose the symmetry constraints on the two vec-
tor lines, due to Bose symmetry. For example, the solution for A2 will constraint the constants 
appearing in the general solution of A1, and so on for A3 and A4. The independent constants of 
integration are identified only at the end, once all the constraints from A1 to A4 are put together. 
We have included a small section where we summarize the final expressions of the form factors 
by this method.

8.1. Scalar 3-point functions

To illustrate our approach we start reviewing the case of the scalar correlator �(p1, p2, p3), 
which is simpler, defined by the two homogeneous conformal equations

K31� = 0 K21� = 0 (8.1)

combined with the scaling equation

3∑
i=1

pi

∂

∂pi

� = (� − 2d)�. (8.2)

Following the approach presented in [24], the ansatz for the solution can be taken of the form

�(p1,p2,p3) = p�−2d
1 xaybF (x, y) (8.3)

with x = p2
2

p2
1

and y = p2
3

p2
1

. Here we are taking p1 as “pivot” in the expansion, but we could 

equivalently choose any of the 3 momentum invariants. � is required to be homogenous of degree 
� − 2d under a scale transformation, according to (8.2), and in (8.3) this is taken into account 
by the factor p�−2d

1 . The use of the scale invariant variables x and y takes to the hypergeometric 
form of the solution. One obtains

K21φ = 4p�−2d−2
1 xayb

(
x(1 − x)

∂

∂x∂x
+ (Ax + γ )

∂

∂x
− 2xy

∂2

∂x∂y
− y2 ∂2

∂y∂y

+ Dy
∂

∂y
+ (E + G

x
)

)
F(x, y) = 0 (8.4)

with

A = D = �2 + �3 − 1 − 2a − 2b − 3d

2
γ (a) = 2a + d

2
− �2 + 1

G = a

2
(d + 2a − 2�2)

E = −1

4
(2a + 2b + 2d − �1 − �2 − �3)(2a + 2b + d − �3 − �2 + �1). (8.5)

Similar constraints are obtained from the equation K31� = 0, with the obvious exchanges 
(a, b, x, y) → (b, a, y, x)
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K31φ = 4p�−2d−2
1 xayb

(
y(1 − y)

∂

∂y∂y
+ (A′y + γ ′) ∂

∂y
− 2xy

∂2

∂x∂y
− x2 ∂2

∂x∂x

+ D′x ∂

∂x
+ (E′ + G′

y
)

)
F(x, y) = 0 (8.6)

with

A′ = D′ = A γ ′(b) = 2b + d

2
− �3 + 1

G′ = b

2
(d + 2b − 2�3)

E′ = E. (8.7)

Notice that in (8.6) we need to set G/x = 0 in order to perform the reduction to the hypergeo-
metric form of the equations, which implies that

a = 0 ≡ a0 or a = �2 − d

2
≡ a1. (8.8)

From the equation K31� = 0 we obtain a similar condition for b by setting G′/y = 0, thereby 
fixing the two remaining indices

b = 0 ≡ b0 or b = �3 − d

2
≡ b1. (8.9)

The four independent solutions of the CWI’s will all be characterized by the same 4 pairs of 
indices (ai, bj ) (i, j = 1, 2). Setting

α(a, b) = a+b+ d

2
− 1

2
(�2 +�3 −�1) β(a, b) = a+b+d − 1

2
(�1 +�2 +�3)

(8.10)

then

E = E′ = −α(a, b)β(a, b) A = D = A′ = D′ = − (α(a, b) + β(a, b) + 1) , (8.11)

the solutions take the form

F4(α(a, b),β(a, b);γ (a), γ ′(b);x, y) =
∞∑
i=0

∞∑
j=0

(α(a, b), i + j) (β(a, b), i + j)

(γ (a), i) (γ ′(b), j)

xi

i!
yj

j !
(8.12)

where (α, i) = �(α + i)/�(α) is the Pochammer symbol. We will refer to α . . . γ ′ as to the first, 
. . ., fourth parameters of F4.

The 4 independent solutions are then all of the form xaybF4, where the hypergeometric func-
tions will take some specific values for its parameters, with a and b fixed by (8.8) and (8.9). 
Specifically we have

�(p1,p2,p3) = p�−2d
1

∑
a,b

c(a, b, ��)xayb F4(α(a, b),β(a, b);γ (a), γ ′(b);x, y) (8.13)

where the sum runs over the four values ai, bi i = 0, 1 with arbitrary constants c(a, b, ��), with 
�� = (�1, �2, �3). Notice that (8.13) is a very compact way to write down the solution. How-
ever, once this type of solutions of a homogeneous hypergeometric system are inserted into an 
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inhomogeneous system of equations, the sum over a and b needs to be made explicit. For this 
reason it is convenient to define

α0 ≡ α(a0, b0) = d

2
− �2 + �3 − �1

2
, β0 ≡ β(b0) = d − �1 + �2 + �3

2
,

γ0 ≡ γ (a0) = d

2
+ 1 − �2, γ ′

0 ≡ γ (b0) = d

2
+ 1 − �3, (8.14)

to be the 4 basic (fixed) hypergeometric parameters, and define all the remaining ones by shifts 
respect to these. The 4 independent solutions can be re-expressed in terms of the parameters 
above as

S1(α0, β0;γ0, γ
′
0;x, y) ≡ F4(α0, β0;γ0, γ

′
0;x, y)

=
∞∑
i=0

∞∑
j=0

(α0, i + j) (β0, i + j)

(γ0, i) (γ ′
0, j)

xi

i!
yj

j ! (8.15)

and

S2(α0, β0;γ0, γ
′
0;x, y) = x1−γ0 F4(α0 − γ0 + 1, β0 − γ0 + 1;2 − γ0, γ

′
0;x, y) , (8.16)

S3(α0, β0;γ0, γ
′
0;x, y) = y1−γ ′

0 F4(α0 − γ ′
0 + 1, β0 − γ ′

0 + 1;γ0,2 − γ ′
0;x, y) , (8.17)

S4(α0, β0;γ0, γ
′
0;x, y)

= x1−γ0 y1−γ ′
0 F4(α0 − γ0 − γ ′

0 + 2, β0 − γ0 − γ ′
0 + 2;2 − γ0,2 − γ ′

0;x, y) . (8.18)

Notice that in the scalar case, one is allowed to impose the complete symmetry of the correlator 
under the exchange of the 3 external momenta and scaling dimensions, as discussed in [24]. This 
reduces the four constants to just one. We are going first to extend this analysis to the case of the 
A1 − A4 form factors of the T JJ .

8.2. Form factors: the solution for A1

The solutions for the form factors A1 − A4 can be derived using a similar, but modified 
approach, being the equations also inhomogeneous. As previously we take as a pivot p2

1, and 
assume a symmetry under the (P23) exchange of (p2, �2) with (p3, �3) in the correlator. In the 
case of two photons �2 = �3 = d − 1.

We start from A1 by solving the two equations from (6.38)

K21A1 = 0 K31A1 = 0. (8.19)

In this case we introduce the ansatz

A1 = p�−2d−4
1 xaybF (x, y) (8.20)

and derive two hypergeometric equations, which are characterized by the same indices (ai, bj )

as before in (8.8) and (8.9), but new values of the 4 defining parameters. We obtain

A1(p1,p2,p3)

= p�−2d−4
1

∑
a,b

c(1)(a, b, ��)xayb F4(α(a, b) + 2, β(a, b) + 2;γ (a), γ ′(b);x, y)

(8.21)
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with the expression of α(a, b), β(a, b), γ (a), γ ′(b) as given before, with the obvious switching 
of the �i in order to comply with the new choice of the pivot (p2

1)

α(a, b) = a + b + d

2
− 1

2
(�2 + �3 − �1)

β(a, b) = a + b + d − 1

2
(�1 + �2 + �3) (8.22)

which are P23 symmetric and

γ (a) = 2a + d

2
− �2 + 1

γ ′(b) = 2b + d

2
− �3 + 1 (8.23)

with P23γ (a) = γ ′(b). If we require that �2 = �3, as in the T JJ case, the symmetry constraints 
are easily implemented. Given that the 4 indices, if we choose p1 as a pivot, are given by

a0 = 0, b0 = 0, a1 = �2 − d

2
, b1 = �3 − d

2
(8.24)

clearly in this case a = b and γ (a) = γ (b). F4 has the symmetry

F4(α,β;γ, γ ′;x, y) = F4(α,β;γ ′, γ ;y, x), (8.25)

and this reflects in the Bose symmetry of A1 if we impose the constraint

c(1)(a1, b0) = c(1)(a0, b1). (8.26)

8.3. The solution for A2

The equations for A2 are inhomogeneous. In this case the solution can be identified using 
some properties of the hypergeometric differential operators Ki , appropriately splitted. We recall 
that in this case they are

K21A2 = 2A1 (8.27)

K31A2 = 2A1. (8.28)

We take an ansatz of the form

A2(p1,p2,p3) = p�−2d−2
1 F(x, y) (8.29)

which provides the correct scaling dimensions for A2. Observe that the action of K21 and K3 on 
A2 can be rearranged as follows

K21A2 = 4xaybp�−2d−4
1

(
K̄21F(x, y) + ∂

∂x
F (x, y)

)
(8.30)

K31A2 = 4xaybp�−2d−4
1

(
K̄31F(x, y) + ∂

∂y
F (x, y)

)
(8.31)

where
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K̄21F(x, y) =
{
x(1 − x)

∂2

∂x2 − y2 ∂2

∂y2 − 2x y
∂2

∂x∂y

+ [
(γ (a) − 1) − (α(a, b) + β(a, b) + 3)x

] ∂

∂x

+ a(a − a1)

x
− (α(a, b) + β(a, b) + 3)y

∂

∂y
− (α + 1)(β + 1)

}
F(x, y),

(8.32)

and

K̄31A2 =
{
y(1 − y)

∂2

∂y2 − x2 ∂2

∂x2 − 2x y
∂2

∂x∂y

+ [
(γ ′(b) − 1) − (α(a, b) + β(a, b) + 3)y

] ∂

∂y

+ b(b − b1)

y
− (α(a, b) + β(a, b) + 3)x

∂

∂x
− (α(a, b) + 1)(β(a, b) + 1)

}
× F(x, y). (8.33)

At this point observe that the hypergeometric function solution of the equation

K̄21F(x, y) = 0 (8.34)

can be taken of the form

�
(2)
1 (x, y)

= p�−2d−2
1

∑
a,b

c
(2)
1 (a, b, ��)xayb F4(α(a, b) + 1, β(a, b) + 1;γ (a) − 1, γ ′(b);x, y)

(8.35)

with c(2)
1 a constant and the parameters a, b fixed at the ordinary values (ai, bj ) as in the pre-

vious cases (8.8) and (8.9), in order to get rid of the 1/x and 1/y poles in the coefficients of 
the differential operators. The sequence of parameters in (8.35) will obviously solve the related 
equation

K31�
(2)
1 (x, y) = 0. (8.36)

Eq. (8.34) can be verified by observing that the sequence of parameters (α(a, b) + 1, β(a, b) +
1γ (a) − 1) allows to define a solution of (8.33) set to zero, for an arbitrary γ ′(b), since this 
parameter does not play any role in the solution of the corresponding equation. The sequence 
(α(a, b) +1, β(a, b) +1, γ ′(b)), on the other hand, solves the homogeneous equations associated 
to K31 (i.e. Eq. (8.36)) for any value of the third parameter of F4, which in this case takes the 
value γ (a) − 1. A similar result holds for the mirror solution

�
(2)
2 (x, y)

= p�−2d−2
1

∑
a,b

c
(2)
2 (a, b, ��)xayb F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b) − 1;x, y)

(8.37)

which satisfies

K̄31�
(2)

(x, y) = 0 K21�
(2)

(x, y) = 0. (8.38)
2 2



C. Corianò, M.M. Maglio / Nuclear Physics B 938 (2019) 440–522 477
As previously remarked, the values of the exponents a and b remain the same for any equation 
involving either a Ki,j or a K̄ij , as can be explicitly verified. This implies that the fundamental 
solutions of the conformal equations are essentially the 4 functions of the type S1, . . . S4, for 
appropriate values of their parameters.

At this point, to show that F1 and F2 is a solution of Eqs. (8.27) we use the property

∂p+qF4(α,β;γ1, γ2;x, y)

∂xp∂yq

= (α,p + q)(β,p + q)

(γ1,p)(γ2, q)
F4(α + p + q,β + p + q;γ1 + p;γ2 + q;x, y) (8.39)

which gives (for generic parameters α, β, γ1, γ2)

∂F4(α,β;γ1, γ2;x, y)

∂x
= αβ

γ1
F4(α + 1, β + 1, γ1 + 1, γ2, x, y)

∂F4(α,β;γ1, γ2;x, y)

∂y
= αβ

γ2
F4(α + 1, β + 1, γ1, γ2 + 1, x, y). (8.40)

Obviously, such relations are valid whatever dependence the four parameters α, β, γ1, γ2 may 
have on the Fuchsian exponents (ai, bj ). The actions of K21 and K31 on the �

(i)
2 ’s (i = 1, 2) in 

(8.37) are then given by

K21�
(2)
1 (x, y) = 4p�−2d−4

1

∑
a,b

c
(2)
1 (a, b, ��)xayb ∂

∂x

× F4(α(a.b) + 1, β(a, b) + 1;γ (a) − 1, γ ′(b);x, y)

= 4p�−2d−4
1

∑
a,b

c
(2)
1 (a, b, ��)xayb (α(a, b) + 1)(β(a, b) + 1)

(γ (a) − 1)

× F4(α(a, b) + 2, β(a, b) + 2;γ (a), γ ′(b);x, y)

K31�
(2)
1 (x, y) = 0 (8.41)

K31�
(2)
2 (x, y) = 4p�−2d−4

1

∑
a,b

c
(2)
2 (a, b, ��)xayb ∂

∂y

× F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b) − 1;x, y)

= 4p�−2d−4
1

∑
a,b

c
(2)
2 (a, b, ��)xayb (α(a, b) + 1)(β(a, b) + 1)

(γ ′(b) − 1)

× F4(α(a, b) + 2, β(a, b) + 2;γ (a), γ ′(b);x, y)

K21�
(2)
2 (x, y) = 0, (8.42)

where it is clear that the non-zero right-hand-side of both equations are proportional to the form 
factor A1 given in (8.21). Once this particular solution is determined, Eq. (8.21), by comparison, 
gives the conditions on c(2) and c(2) as
1 1



478 C. Corianò, M.M. Maglio / Nuclear Physics B 938 (2019) 440–522
c
(2)
1 (a, b, ��) = γ (a) − 1

2(α(a, b) + 1)(β(a, b) + 1)
c(1)(a, b, ��) , (8.43)

c
(2)
2 (a, b, ��) = γ ′(b) − 1

2(α(a, b) + 1)(β(a, b) + 1)
c(1)(a, b, ��) . (8.44)

Therefore, the general solution for A2 in the T JJ case (in which γ (a) = γ ′(b)) is given by 
superposing the solution of the homogeneous form of (8.21) and the particular one (8.35) and 
(8.37), by choosing the constants appropriately using (8.44). Its explicit form is written as

A2 = p�−2d−2
1

∑
ab

xayb

[
c(2)(a, b, ��)F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b);x, y)

+ (γ (a) − 1) c(1)(a, b, ��)

2(α(a, b) + 1)(β(a, b) + 1)

(
F4(α(a, b) + 1, β(a, b) + 1;γ (a) − 1, γ ′(b);x, y)

+ F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b) − 1;x, y)

)]
,

(8.45)

since γ (a) = γ ′(b).

8.4. The solution for A3

Using a similar strategy, the particular solution for the form factor A3 of the equations

K21A3 = 0 K31A3 = −4A1 (8.46)

can be found in the form

�(3)(x, y)

= p�−2d−2
1

∑
ab

c
(3)
1 (a, b, ��)xaybF4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b) − 1;x, y).

(8.47)

Also in this case the inhomogeneous equation in (8.46) fixes the integration constants to be 
those appearing in A1

c
(3)
1 (a, b, ��) = − γ ′(b) − 1

(α(a, b) + 1)(β(a, b) + 1)
c(1)(a, b, ��). (8.48)

Therefore the general solution of the equations (8.46) can be written as

A3 =p�−2d−2
1

∑
ab

xayb

[
c(3)(a, b, ��)F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b);x, y)

− (γ (a) − 1) c(1)(a, b, ��)

(α(a, b) + 1)(β(a, b) + 1)

× F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b) − 1;x, y)

]
(8.49)

since γ (a) = γ ′(b) in the T JJ case.
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8.5. The A4 solution

The last pair of equations

K21A4 = −2A3 K31A4 = −2A3(p2 ↔ p3) (8.50)

admit three particular solutions

�
(4)
1 = p�−2d

1

∑
ab

xayb c
(4)
1 (a, b, ��)F4(α(a, b),β(a, b), γ (a) − 1, γ ′(b), x, y) (8.51)

�
(4)
2 = p�−2d

1

∑
ab

xayb c
(4)
2 (a, b, ��)F4(α(a, b),β(a, b), γ (a), γ ′(b) − 1, x, y) (8.52)

�
(4)
3 = p�−2d

1

∑
ab

xayb c
(4)
3 (a, b, ��)F4(α(a, b),β(a, b), γ (a) − 1, γ ′(b) − 1;x, y)

(8.53)

with the action of K21 and K31 on them as

K21�
(4)
1 = 4p�−2d−2

1

∑
ab

xayb c
(4)
1 (a, b, ��)

α(a, b)β(a, b)

(γ (a) − 1)

× F4(α(a, b) + 1, β(a, b) + 1, γ (a), γ ′(b), x, y) (8.54)

K31�
(4)
1 = 0 (8.55)

K21�
(4)
2 = 0 (8.56)

K31�
(4)
2 = 4p�−2d−2

1

∑
ab

xayb c
(4)
2 (a, b, ��)

α(a, b)β(a, b)

(γ ′(b) − 1)

× F4(α(a, b) + 1, β(a, b) + 1, γ (a), γ ′(b), x, y) (8.57)

K21�
(4)
3 = 4p�−2d−2

1

∑
ab

xayb c
(4)
3 (a, b, ��)

α(a, b)β(a, b)

(γ (a) − 1)

× F4(α(a, b) + 1, β(a, b) + 1, γ (a), γ ′(b) − 1;x, y) (8.58)

K31�
(4)
3 = 4p�−2d−2

1

∑
ab

xayb c
(4)
3 (a, b, ��)

α(a, b)β(a, b)

(γ ′(b) − 1)

× F4(α(a, b) + 1, β(a, b) + 1, γ (a) − 1, γ ′(b);x, y) (8.59)

The inhomogeneous equations (8.50) fix the integration constants to be those appearing in A3
and A3(p2 ↔ p3) as

c
(4)
1 = − (γ (a) − 1)

2α(a, b)β(a, b)
c(3)(a, b, ��) (8.60)

c
(4)
2 = − (γ ′(b) − 1)

2α(a, b)β(a, b)
c(3)(a, b, ��) (8.61)

c
(4)
3 = (α(a, b) + 1)(β(a, b) + 1)

2α(a, b)β(a, b)
c(1)(a, b, ��). (8.62)
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Finally, using the properties γ (a) = γ ′(b), we give the general solution for the A4 as

A4 = p�−2d
1

∑
ab

xa yb

[
c(4)(a, b, ��)F4(α(a, b),β(a, b), γ (a), γ ′(b);x, y)

+ (α(a, b) + 1)(β(a, b) + 1)

2α(a, b)β(a, b)
c(1)(a, b, ��)

× F4(α(a, b),β(a, b), γ (a) − 1, γ ′(b) − 1;x, y)

− (γ (a) − 1)

2α(a, b)β(a, b)
c(3)(a, b, ��)

(
F4(α(a, b),β(a, b), γ (a) − 1, γ ′(b), x, y)

+ F4(α(a, b),β(a, b), γ (a), γ ′(b) − 1, x, y)

)]
(8.63)

Notice that, differently from this case, number of free constants can be significantly reduced in 
the case of a fully symmetric correlator, such as the T T T , where the number of constants reduces 
to 4, as in the BMS case.

8.6. Summary

To summarize, the solutions of the primary WI’s in the T JJ case are expressed as sums of 4 
hypergeometrics of universal indicial points

a0 = 0, b0 = 0, a1 = �2 − d

2
, b1 = �3 − d

2
(8.64)

and parameters

α(a, b) = a + b + d

2
− 1

2
(�2 + �3 − �1) , β(a, b) = a + b + d − 1

2
(�1 + �2 + �3)

(8.65)

γ (a) = 2a + d

2
− �2 + 1 , γ ′(b) = 2b + d

2
− �3 + 1, (8.66)

where �2 = �3 = d − 1 and �1 = d . In particular they are given by

A1 = p�−2d−4
1

∑
a,b

c(1)(a, b, ��)xayb F4(α(a, b) + 2, β(a, b) + 2;γ (a), γ ′(b);x, y)

(8.67)

A2 = p�−2d−2
1

∑
ab

xayb

[
c(2)(a, b, ��)F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b);x, y)

+ (γ (a) − 1) c(1)(a, b, ��)

2(α(a, b) + 1)(β(a, b) + 1)

(
F4(α(a, b) + 1, β(a, b) + 1;γ (a) − 1, γ ′(b);x, y)

+ F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b) − 1;x, y)

)]

(8.68)
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A3 =p�−2d−2
1

∑
ab

xayb

[
c(3)(a, b, ��)F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b);x, y)

− (γ (a) − 1) c(1)(a, b, ��)

(α(a, b) + 1)(β(a, b) + 1)

× F4(α(a, b) + 1, β(a, b) + 1;γ (a), γ ′(b) − 1;x, y)

]
(8.69)

A4 = p�−2d
1

∑
ab

xa yb

[
c(4)(a, b, ��)F4(α(a, b),β(a, b), γ (a), γ ′(b);x, y)

+ (α(a, b) + 1)(β(a, b) + 1)

2α(a, b)β(a, b)
c(1)(a, b, ��)

× F4(α(a, b),β(a, b), γ (a) − 1, γ ′(b) − 1;x, y)

− (γ (a) − 1)

2α(a, b)β(a, b)
c(3)(a, b, ��)

(
F4(α(a, b),β(a, b), γ (a) − 1, γ ′(b), x, y)

+ F4(α(a, b),β(a, b), γ (a), γ ′(b) − 1, x, y)

)]
(8.70)

in terms of the constants c(i)(a, b) given above. The method has the advantage of being generaliz-
able to higher point functions, in the search of specific solutions of the corresponding correlation 
functions.

9. Perturbative analysis in the conformal case: QED and scalar QED

In this section we turn to discuss the connection between the solutions of the CWI’s presented 
by BMS and the perturbative T JJ vertex. The QED case has been previously studied in [4,7], 
where more details can be found. The expressions of the form factors had been given in the 
F-basis of 13 form factors, which will be reviewed in the next section. We will have to recompute 
them in order to present them expressed in terms of the two basic fundamental master integrals 
B0 and C0 of the tensor reduction rather than in their final form, given in [7].

Here we are also going to introduce the diagrammatic expansion for the T JJ in scalar QED, 
since it will be needed in the last part of the work when we are going to compare the general 
BMS solution against the perturbative one in d = 3 and d = 5.

The quantum actions for the fermion field is

Sf ermion = i

2

∫
ddx e eμ

a

[
ψ̄γ a(Dμψ) − (Dμψ̄)γ aψ

]
, (9.1)

e
μ
a is the Vielbein and e its determinant, with its covariant derivative Dμ as

Dμ = ∂μ + ieAμ + �μ = ∂μ + ieAμ + 1

2
�ab eσ

a ∇μ eb σ . (9.2)

The �ab are the generators of the Lorentz group in the case of a spin 1/2-field. The gravitational 
field is expanded, as usual, in the form gμν = ημν + hμν around the flat background metric with 
fluctuations hμν . As usual, the Latin and Greek indices are related to the locally flat and curved 
backgrounds respectively. We take the external momenta as incoming. In order to simplify the 
notation, we introduce the tensor components
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Aμ1ν1μν ≡ ημ1ν1ημν − 2ημ(μ1ην1)ν (9.3)

where we indicate with the round brackets the symmetrization of the indices and the square 
brackets their anti-symmetrization

ημ(μ1ην1)ν ≡ 1

2

(
ημμ1ην1ν + ημν1ημ1ν

)
(9.4)

and the vertices in the fermion sector are

V
μ

Jψψ̄
(k1, k2) = −ie γ μ (9.5)

V
μ1ν1

T ψψ̄
(p1k1, k2) = − i

4
Aμ1ν1μν γν (k1 + k2)μ (9.6)

V
μ1ν1μ2

T Jψψ̄
(k1, k2) = i e

2
Aμ1ν1μ2ν γμ. (9.7)

In the one-loop approximation the contribution to the correlation functions are given by the 
diagrams in Fig. 1, with vertices shown in Fig. 2. We calculate all the diagram contributions in 
momentum space for the fermion sector as

�μ1ν1μ2μ3(p2,p3) ≡ 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉F
= 2

( 2∑
i=1

V
μ1ν1μ2μ3
F,i (p1,p2,p3) +

2∑
i=1

W
μ1ν1μ2μ3
F,i (p1,p2,p3)

)
(9.8)

where the VF,i terms are related to the triangle topology contributions, while the WF,i terms 
denote the two bubble contributions in Fig. 1. All these terms are explicitly given as

V
μ1ν1μ2μ3
F,1

= −i3
∫

dd�

(2π)d

×
Tr
[
V

μ1ν1

T ψψ̄
(� − p2, � + p3)

(
/� + /p3

)
V

μ2

Jψψ̄
(�, � − p2) /�V

μ3

Jψψ̄
(�, � + p3)

(
/� − /p2

)]
�2 (� − p2)2(� + p3)2

(9.9)

V
μ1ν1μ2μ3
F,2

= −i3
∫

dd�

(2π)d

×
Tr
[
V

μ1ν1

T ψψ̄
(� − p3, � + p2)

(
/� + /p2

)
V

μ2

Jψψ̄
(�, � − p3) /�V

μ3

Jψψ̄
(�, � + p2)

(
/� − /p3

)]
�2 (� − p3)2(� + p2)2

(9.10)

W
μ1ν1μ2μ3
F,3 = −i2

∫
dd�

(2π)d

Tr
[
V

μ1ν1μ2

T Jψψ̄
(� + p3, �)

(
/� + /p3

)
V

μ3

Jψψ̄
(�, � + p3) /�

]
�2 (� + p3)2 (9.11)

W
μ1ν1μ2μ3
F,2 = −i2

∫
dd�

(2π)d

Tr
[
V

μ1ν1μ3

T Jψψ̄
(� + p2, �)

(
/� + /p2

)
V

μ2

Jψψ̄
(�, � + p2) /�

]
�2 (� + p2)2 (9.12)
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9.1. The T JJ in scalar QED

Now we turn to consider scalar QED. The action, in this case, can be written as

Sscalar =
∫

ddx
√−g

(∣∣Dμ φ
∣∣2 + (d − 2)

8(d − 1)
R |φ|2

)
(9.13)

where R is the scalar curvature and φ denotes a complex scalar. We have explicitly reported 
the coefficient of the term of improvement, and with Dμφ = ∂μφ + ieAμ being the covariant 
derivative for the coupling to the gauge field Aμ. At one-loop the contribution to the T JJ is 
given by the diagram in Fig. 1, with the obvious replacement of a fermion by a scalar in the 
internal loop corrections. In this case they are given by

〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉S = 2

(
V

μ1ν1μ2μ3
S (p1,p2,p3)+

3∑
i=1

W
μ1ν1μ2μ3
S,i (p1,p2,p3)

)

(9.14)

where the VS terms are related to the triangle topology contribution and the WS,i’s are the three 
bubble contributions in Fig. 1. All these are explicitly given as

V
μ1ν1μ2μ3
S (p1,p2,p3)

= i3
∫

dd�

(2π)d

V
μ1ν1
T φφ∗(� − p2, � + p3)V

μ2
Jφφ∗(�, � − p2)V

μ3
Jφφ∗(�, � + p3)

�2 (� − p2)2(� + p3)2 (9.15)

W
μ1ν1μ2μ3
S,1 (p1,p2,p3) = i2

2

∫
dd�

(2π)d

V
μ1ν1
T φφ∗(� + p1, �)V

μ2μ3
JJφφ∗(�, � + p1)

�2 (� + p1)2 (9.16)

W
μ1ν1μ2μ3
S,2 (p1,p2,p3) = i2

2

∫
dd�

(2π)d

V
μ1ν1μ2
T Jφφ∗ (� + p3, �)V

μ3
Jφφ∗(�, � + p3)

�2 (� + p3)2 (9.17)

W
μ1ν1μ2μ3
S,3 (p1,p2,p3) = i2

2

∫
dd�

(2π)d

V
μ1ν1μ3
T Jφφ∗ (� + p2, �)V

μ2
Jφφ∗(�, � + p2)

�2 (� + p2)2 (9.18)

where we have included the symmetry factors and the vertices are given by

V
μ
Jφφ∗(k1, k2) = ie (k

μ
1 + k

μ
2 ) (9.19)

V
μ1ν1
T φφ∗(p1k1, k2) = i

2
Aμνμ1ν1 k1μk2ν + i χ

(
p

μ1
1 p

ν1
1 − ημ1ν1p2

1

)
(9.20)

V
μ1ν1μ2
T Jφφ∗ (k1, k2) = i e

2
Aμ1ν1μμ2 (k1μ + k2μ) (9.21)

V
μ1μ2
JJφφ∗(k1, k2) = 2 i e2 ημ1μ2 (9.22)

where χ = (d − 2)/[8(d − 1)] is the coefficient for the term of improvement. They are shown in 
Fig. 2.



C. Corianò, M.M. Maglio / Nuclear Physics B 938 (2019) 440–522 485
Fi
g.

2.
T

he
ve

rt
ic

es
in

Q
E

D
an

d
sc

al
ar

Q
E

D
.



486 C. Corianò, M.M. Maglio / Nuclear Physics B 938 (2019) 440–522
Table 1
Basis of 13 fourth rank tensors satisfying the vector current conservation on the external lines with momenta p and q .

i t
μναβ
i

(p, q)

1
(
k2gμν − kμkν

)
uαβ(p.q)

2
(
k2gμν − kμkν

)
wαβ(p.q)

3
(
p2gμν − 4pμpν

)
uαβ(p.q)

4
(
p2gμν − 4pμpν

)
wαβ(p.q)

5
(
q2gμν − 4qμqν

)
uαβ(p.q)

6
(
q2gμν − 4qμqν

)
wαβ(p.q)

7
[
p · q gμν − 2(qμpν + pμqν)

]
uαβ(p.q)

8
[
p · q gμν − 2(qμpν + pμqν)

]
wαβ(p.q)

9
(
p · q pα − p2qα

)[
pβ

(
qμpν + pμqν

)− p · q (gβνpμ + gβμpν)
]

10
(
p · q qβ − q2pβ

) [
qα

(
qμpν + pμqν

)− p · q (gανqμ + gαμqν)
]

11
(
p · q pα − p2qα

)[
2qβqμqν − q2(gβνqμ + gβμqν)

]
12

(
p · q qβ − q2pβ

) [
2pαpμpν − p2(gανpμ + gαμpν)

]
13

(
pμqν + pνqμ

)
gαβ + p · q (gανgβμ + gαμgβν

)− gμνuαβ − (
gβνpμ + gβμpν

)
qα − (

gανqμ + gαμqν
)
pβ

10. The F-basis of the expansion for the T JJ in QED

The T JJ amplitude can be expanded on the basis proposed by Giannotti and Mottola [4], in 
terms of 13 independent tensors structures given in Table 1. In this scheme, the amplitude can be 
written as

�μ1ν1μ2μ3(p2,p3) =
13∑
i=1

Fi(s; s1, s2,0) t
μ1ν1μ2μ3
i (p2,p3), (10.1)

where the invariant amplitudes Fi are functions of the kinematic invariants s = p2
1 = (p2 +p3)

2, 
s1 = p2

2, s2 = p2
3, and the tμ1ν1μ2μ3

i form the basis of independent tensor structures.
This set of 13 tensors is linearly independent in d dimensions, for generic k2, p2, q2 different 

from zero. Five of the 13 are Bose symmetric,

t
μναβ
i (p, q) = t

μνβα
i (q,p) , i = 1,2,7,8,13 , (10.2)

while the remaining eight tensors are Bose symmetric pairwise

t
μναβ
3 (p, q) = t

μνβα

5 (q,p) , (10.3)

t
μναβ
4 (p, q) = t

μνβα

6 (q,p) , (10.4)

t
μναβ
9 (p, q) = t

μνβα
10 (q,p) , (10.5)

t
μναβ

(p, q) = t
μνβα

(q,p) . (10.6)
11 12
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In the set are present two tensor structures

uαβ(p, q) ≡ (p · q)gαβ − qαpβ , (10.7a)

wαβ(p,q) ≡ p2q2gαβ + (p · q)pαqβ − q2pαpβ − p2qαqβ , (10.7b)

which appear in t1 and t2 respectively. Each of them satisfies the Bose symmetry requirement,

uαβ(p, q) = uβα(q,p) , (10.8a)

wαβ(p,q) = wβα(q,p) , (10.8b)

and vector current conservation,

pαuαβ(p, q) = 0 = qβuαβ(p, q) , (10.9a)

pαwαβ(p, q) = 0 = qβwαβ(p, q) , (10.9b)

obtained from the variation of gauge invariant quantities FμνF
μν and (∂μF

μ
λ)(∂νF

νλ)

uαβ(p, q) = −1

4

∫
d4x

∫
d4y eip·x+iq·y δ2{FμνF

μν(0)}
δAα(x)Aβ(y)

, (10.10)

wαβ(p,q) = 1

2

∫
d4x

∫
d4y eip·x+iq·y δ2{∂μF

μ
λ∂νF

νλ(0)}
δAα(x)Aβ(y)

. (10.11)

All the ti ’s are transverse in their photon indices

qαt
μναβ
i = 0 pβt

μναβ
i = 0. (10.12)

t2 . . . t13 are traceless, t1 and t2 are tracefull. With this decomposition, the two vector Ward iden-
tities are automatically satisfied by all the amplitudes, as well as the Bose symmetry.

Coming to the conservation WI for the graviton line, this is automatically satisfied by the two 
tensor structures t1 and t2, which are completely transverse, while it has to be imposed on the 
second set (t3 . . . t13) giving 3 constraints

−p2F3 + (3q2 + 4p · q)F5 + (2p2 + p · q)F7 − p2q2F10 − p2(p2 + p · q)F9

+ p2q2F11 = 0 ,

p2F4 − (3q2 + 4p · q)F6 − (2p2 + p · q)F8 − p · qF10 + (q2 + 2p · q)F11 = 0 ,

−p · q (p2 + p · q)F9 − q2(q2 + p · q)F11 + F13 + �(p2) = 0 , (10.13)

plus 3 symmetric additional ones, obtained by the exchange of the two photon momenta and the 
symmetries of the form factors corresponding to (10.3)

F3(p, q) = F5(q,p) , (10.14)

F4(p, q) = F6(q,p) , (10.15)

F9(p, q) = F10(q,p) , (10.16)

F11(p, q) = F12(q,p) . (10.17)

In other words, if we decided to identify from the F3 . . . F13 components a complete transverse 
traceless sector, using (10.14) and (10.13) we would identify only 4 components in this sector. 
Such 4 components, obviously, would be related to the transverse and traceless form factors 
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(A1 . . .A4) introduced in the BMS parametrization. Their explicit expressions will be given be-
low. An important aspect of the F -basis is that only 1-form factor has to be renormalized for 
dimensional reasons, the others being finite. Such form factor, F13, plays an important role in the 
description of the behavior of the trace parts of the same expansion, which involve t1 and t2 (i.e. 
F1 and F2).

10.1. Dilatation Ward identities in the F -basis

The identification of the combination of form factors Fi which span the transverse traceless 
sector of the correlator can proceed in several ways. In this and in the next section we will 
proceed by starting from its general expansion in the F -basis, and perform a transverse traceless 
projection, after acting on it with the dilatation and the special conformal transformations. This 
allows to gather the result of the action of the dilatation in terms of coefficients Di in the form

0 = �
μ1ν1
α1β1

(p1)π
μ2
α2

(p2)π
μ3
α3

(p3)
{
D1 p

α1
2 p

β1
2 p

α2
3 p

α3
1

+ D2 δα2α3p
α1
2 p

β1
2 + D3δ

α1α2p
β1
2 + p

α3
1 D4 δα1α3p

β1
2 p

α2
3 + D5 δα1α3δα2β1

}
(10.18a)

where Di , i = 1, . . . , 5 are differential operator acting on the Fi form factors. In order to ver-
ify the previous relation, the coefficients Di multiplying the independent tensor structures have 
to vanish, giving a set of differential equation for particular combination of the Fi’s. The first 
equation for D1 will be of the form

D1 = 4

[
3∑

i=1

pi

∂

∂pi

− (d − 6)

]
(F7 − F3 − F5)

− 2p2
2

[
3∑

i=1

pi

∂

∂pi

− (d − 8)

]
F9 − 2p2

3

[
3∑

i=1

pi

∂

∂pi

− (d − 8)

]
F10 = 0

(10.19)

which can be rearranged as

D1 =
(

3∑
i=1

pi

∂

∂pi

− (d − 6)

)[
4(F7 − F5 − F3) − 2p2

2F9 − 2p2
3F10

]= 0, (10.20)

and similarly for the other Di’s, which correspond to

D2

(
3∑

i=1

pi

∂

∂pi

− (d − 4)

)

× [
2(p2

1 − p2
2 − p2

3)(F7 − F5 − F3) − 4p2
2p

2
3(F6 − F8 + F4) − 2F13

]= 0 (10.21)

D3 =
(

3∑
i=1

pi

∂

∂pi

− (d − 4)

)[
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]= 0 (10.22)

D4 =
(

3∑
pi

∂

∂pi

− (d − 4)

)[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]= 0 (10.23)

i=1
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D5 =
(

3∑
i=1

pi

∂

∂pi

− (d − 2)

)[
(p2

1 − p2
2 − p2

3)F13
]= 0. (10.24)

This allows us to identify specific combinations of the F ’s which will span the transverse trace-
less sector of the T JJ .

10.2. Special conformal Ward identities in the F -basis

A similar approach can be followed in the case of the primary and secondary CWI’s. Also in 
this case we project the special CWI’s onto the transverse traceless sector, obtaining

0 = �ρ1σ1
μ1ν1

(p1)π
ρ2
μ2

(p2)π
ρ3
μ3

(p3)

{
Kκ 〈tμ1ν1(p1) jμ2(p2) jμ3(p3)〉

+ 4d

p2
1

δκμ1 p1α1 〈T α1ν1(p1)J
μ2(p2)J

μ3(p3)〉
}

(10.25)

where we have used the conservation Ward Identities

p2μ2 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉 = 0

p3μ3 〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉 = 0. (10.26a)

Also in this case one can express the first term in (10.25) in the form of (6.37) in order to 
isolate the primary and secondary WI’s for the form factors.

10.3. Primary WI’s

A first set of primary conformal WI’s is given by

0 =K13
[
4(F7 − F5 − F3) − 2p2

2F9 − 2p2
3F10

]
(10.27a)

0 =K13
[
2(p2

1 − p2
2 − p2

3)(F7 − F5 − F3) − 4p2
2p

2
3(F6 − F8 + F4) − 2F13

]
+ 2

[
4(F7 − F5 − F3) − 2p2

2F9 − 2p2
3F10

]
(10.27b)

0 =K13
[
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]
− 4

[
4(F7 − F5 − F3) − 2p2

2F9 − 2p2
3F10

]
(10.27c)

0 =K13
[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13] (10.27d)

0 =K13
[
(p2

1 − p2
2 − p2

3)F13
]− 2

[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]
(10.27e)

and a second set as

0 =K23
[
4(F7 − F5 − F3) − 2p2

2F9 − 2p2
3F10

]
(10.28a)

0 =K23
[
2(p2

1 − p2
2 − p2

3)(F7 − F5 − F3) − 4p2
2p

2
3(F6 − F8 + F4) − 2F13

]
(10.28b)

0 =K23
[
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]
− 4

[
4(F7 − F5 − F3) − 2p2

2F9 − 2p2
3F10

]
(10.28c)

0 =K23
[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13]

+ 4
[
4(F7 − F5 − F3) − 2p2F9 − 2p2F10

]
(10.28d)
2 3
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0 =K23
[
(p2

1 − p2
2 − p2

3)F13
]+ 2

[
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]
− 2

[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]
. (10.28e)

It is clear from the way in which we have organized the contributions in square brackets ([ ]) that 
they correspond to the same structures identified in the projections of the dilatation WI’s.

10.4. Secondary WI’s

For completeness we list the secondary Ward Identities obtained in a similar way, which are 
given by

0 = L′
3

[
4(F7 − F3 − F5) − 2p2

2F9 − 2p2
3F10

]
+ 2R′[p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]
− 2R′[2(p2

1 − p2
2 − p2

3)(F7 − F5 − F3) − 4p2
2p

2
3(F6 − F8 + F4) − 2F13

]
(10.29)

0 = L′
1

[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]
− 2p2

2

[
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]
+ 4p2

2

[
2(p2

1 − p2
2 − p2

3)(F7 − F5 − F3) − 4p2
2p

2
3(F6 − F8 + F4) − 2F13

]
+ 2R′[(p2

1 − p2
2 − p2

3)F13
]

(10.30)

0 = − 2

p2
1

{
L4

[
4(F7 − F3 − F5) − 2p2

2F9 − 2p2
3F10

]
+ R

[
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]
− R

[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]}

+ 4d

p2
1

[
p2

3(p1 · p3 − p1 · p2 − p2 · p3)F10 − 4F3p1 · p2

− p2
2p

2
3(F11 − F12) + 4F5p1 · p3 + 2(p1 · p2 − p1 · p3)F7

+ p2
2(p1 · p3 − p1 · p2 + p2 · p3)F9

]
(10.31)

0 = − 2

p2
2

{
L2

[
2(p2

1 − p2
2 − p2

3)(F7 − F5 − F3) − 4p2
2p

2
3(F6 − F8 + F4) − 2F13

]

− p2
1(p

2
1 − p2

2 − p2
3)(p

2
3F10 − p2

2F9) + 2p2
3p

2
2p

2
1(F12 − F11)

}

+ 4d

p2
1

[
(p2

2 − p2
3)F13 + (p4

3 + p4
1 − p4

2 − 2p2
1p

2
3)F3 + 2p2

2p
2
3(p

2
1 + p2

2 − p2
3)F4

+ (2p2
1p

2
2 − p4

1 − p4
2 + p4

3)F5 + 2p2
2p

2
3(p

2
2 − p2

3 − p2
1)F6 + 2p2

2p
2
3(p

2
3 − p2

2)F8

+ (p4 − p4 + p2p2 − p2p2)F7
]

(10.32)
2 3 1 3 1 2
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0 = − 1

p2
1

{
L4

[
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]− 2R
[
(p2

1 − p2
2 − p2

3)F13
]}

+ 4d

p2
1

[
p1 · p3p2 · p3p

2
3F10 + p·p2p

2
2p

2
3F12 − p2

2F13
]

(10.33)

0 = − 1

p2
1

{
L4

[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]+ 2R
[
(p2

1 − p2
2 − p2

3)F13
]

− 4p2
1

[
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]}

+ 4d

p2
1

[
p2

2p
2
3 p1 · p3F11 + p2

2F13 + p1 · p2p
2
2p3 · p2F9

]
. (10.34)

We are now going to use the results above in order to identify the link between the two trans-
verse sections in the F -basis introduced by the perturbative expansion and the A-basis of the 
transverse traceless sector. Notice that the 13 form factors of the F-basis form a complete basis 
in d-dimensions, and have some nice properties, as we are going to emphasize below.

10.5. Connection between the A- and the F -basis

By a direct analysis of the previous primary and secondary constraint in the F -basis, using 
the equations given in Sections 6.3 and 6.4 for the Ai form factors, we obtain the relations which 
define the mapping between the transverse traceless sectors in the two basis, which is given by

A1 = 4(F7 − F3 − F5) − 2p2
2F9 − 2p2

3F10 (10.35a)

A2 = 2(p2
1 − p2

2 − p2
3)(F7 − F5 − F3) − 4p2

2p
2
3(F6 − F8 + F4) − 2F13 (10.35b)

A3 = p2
3(p

2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13 (10.35c)

A3(p2 ↔ p3) = p2
2(p

2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13 (10.35d)

A4 = (p2
1 − p2

2 − p2
3)F13. (10.35e)

It is worth noticing that the form factor A3 and its corresponding A3(p2 ↔ p3) are well-defined 
since

F10(s; s1, s2,0) = F9(s; s2, s1,0), F12(s; s1, s2,0) = F11(s; s2, s1,0). (10.36)

Going back to the full perturbative amplitude we can re-express the entire correlator as

〈T μ1ν1(p1) Jμ2(p2) Jμ3(p3)〉
= 〈tμ1ν1(p1) jμ2(p2) jμ3(p3)〉 + 〈tμ1ν1

loc (p1) Jμ2(p2) Jμ3(p3)〉 (10.37)

where the semi-local term is expressed exactly as

〈tμ1ν1
loc (p1) Jμ2(p2) Jμ3(p3)〉 =

= p1β1

p2
1

[
2p

(μ1
1 δν1)

α1
− p1α1

(d − 1)

(
δμ1ν1 + (d − 2)

p
μ1
1 p

ν1
1

p2
1

)]

× 〈T α1β1(p1) Jμ2(p2) Jμ3(p3)〉 (10.38)

and the transverse traceless part is reconstructed as
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〈tμ1ν1(p1) jμ2(p2) jμ3(p3)〉pert = �
μ1ν1
α1β1

(p1)π
μ2
α2

(p2)π
μ3
α3

(p3)×

×
{ [

4(F7 − F3 − F5) − 2p2
2F9 − 2p2

3F10
]
p

α1
2 p

β1
2 p

α2
3 p

α3
1

+ [
2(p2

1 − p2
2 − p2

3)(F7 − F5 − F3) − 4p2
2p

2
3(F6 − F8 + F4) − 2F13

]
δα2α3p

α1
2 p

β1
2

+ [
p2

3(p
2
1 − p2

2 − p2
3)F10 − 2p2

2 p2
3F12 − 2F13

]
δα1α2p

β1
2 p

α3
1

+ [
p2

2(p
2
1 − p2

2 − p2
3)F9 − 2p2

2p
2
3F11 − 2F13

]
δα1α3p

β1
2 p

α2
3

+ [
(p2

1 − p2
2 − p2

3)F13
]
δα1α3δα2β1

}
. (10.39)

Notice that neither F1 nor F2 will be part of the local contributions since they are both completely 
traceless. Therefore in the F -basis, the contributions appearing in (10.38) will be combinations 
of F3 . . . F13 which are independent from the 4 combinations of the F ′s identified by the mapping 
(10.35).

Since we are still defining the correlator in d-dimensions, and it is conformal in this case, then 
its d-dimensional trace has to vanish. This condition brings in two additional constraints on the 
two form factors F1 and F2, which now enter into the analysis,

F1 = (d − 4)

p2
1(d − 1)

[
F13 − p2

2 F3 − p2
3 F5 − p2 · p3 F7

]
(10.40)

F2 = (d − 4)

p2
1(d − 1)

[
p2

2 F4 + p2
3 F6 + p2 · p3 F8

]
, (10.41)

which will be important for the renormalization procedure and the identification of the anomaly 
term.

We remark that the independent analysis of A4 [13], which has essentially the same structure 
as F13, as one can immediately realize from (10.35), shows that in a general conformal field 
theory the singularity of F13 can only be of order 1/(d − 4) and not any higher. We are now 
going to test such general analysis to the specific case of QED at one-loop.

10.6. F13 in QED

The expressions of the 13 Fi form factors in d-dimensions are shown in the appendix. The 
renormalized results in d = 4 have been given in [7]. Notice that we have expressed their expres-
sions directly in terms of the two master integrals

B0(s,0,0) =
∫

ddl

iπ2

1

l2(l − p1)2 ≡ B0(s)

C0(s, s1, s2) = 1

iπ2

∫
ddl

1

(l2) ((l − q)2) ((l + p)2)
(10.42)

which will be useful for the discussion of the action of the conformal generators on each of them. 
Introducing the variables σ ≡ s2 − 2s(s1 + s2) + (s1 − s2)

2 and γ ≡ s − s1 − s2, F13 takes the 
form
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F13,d (s, s1, s2) = 2π2e2s2

(d − 2)(d − 1)dσ 2

{
− 2s2

[
(d2 − 3d + 4)(s + s1) − 4(d − 1)s1

]
+ (d2 − 3d + 4)

[
(s − s1)

2 + s2
2

]}
B0(s) − π2e2s1

(d − 2)(d − 1)dσ 2 γ

{
d3σ 2 − d2[3s4

− 2s3(7s1 + 9s2) + 8s2(3s2
1 + 3s1s2 + 4s2

2

)− 2s(s1 − s2)
2(9s1 + 11s2) + 5(s1 − s2)

4]
+ 2d

[
2s4 − 11s3(s1 + s2) + s2(21s2

1 + 24s1s2 + 19s2
2

)+ s
(−17s3

1 + 5s2
1s2 + 25s1s

2
2

− 13s3
2

)+ (s1 − s2)
3(5s1 − 3s2)

]+ 8s1
(
s3 − 3s2(s1 + s2) + 3s

(
s2

1 − s2
2

)− (s1 − s2)
3)}

× B0(s1) − π2e2s2

(d − 2)(d − 1)dσ 2γ

{
d3σ 2 − d2[3s4 − 2s3(9s1 + 7s2) + 8s2(4s2

1 + 3s1s2

+ 3s2
2

)− 2s(s1 − s2)
2(11s1 + 9s2) + 5(s1 − s2)

4]+ 2d
[
2s4 − 11s3(s1 + s2) + s2(19s2

1

+ 24s1s2 + 21s2
2

)+ s
(−13s3

1 + 25s2
1s2 + 5s1s

2
2 − 17s3

2

)+ (s1 − s2)
3(3s1 − 5s2)

]
+ 8s2

[
s3 − 3s2(s1 + s2) − 3s

(
s2

1 − s2
2

)+ (s1 − s2)
3]}B0(s2)

+ 4π2e2s2s1s2(dσ + 8s1s2)

(d − 2)dσ 2γ
C0(s, s1, s2), (10.43)

which we will study in the d → 4 limit. As discussed in [4] [7], the singularity of this form factor 
comes from the scalar form factor �(p2) of the photon 2-point function 〈JJ 〉. The singularity 
of this correlator will be at all orders of the form 1/ε in a conformal theory and not higher. This 
is a crucial point in the proof which is clearly not satisfied in a non-conformal theory. In fact, the 
only available counterterm to regulate a conformal theory is given by

1

ε

∫
d4x

√
gFμνF

μν (10.44)

which renormalizes the 2-point function 〈JJ 〉 and henceforth F13. Explicit computations in QED 
at one-loop, where the theory is conformal, show that

F13 = G0(p
2
1,p

2
2,p

3
3) − 1

2
[�(p2

2) + �(p2
3)] (10.45)

We just recall that the structure of the two-point function of two conserved vector currents of 
scaling dimensions η1 and η2 is given by [24]

G
αβ
V (p) = δη1η2 cV 12

πd/2

4η1−d/2

�(d/2 − η1)

�(η1)

(
ηαβ − pαpβ

p2

)
(p2)η1−d/2 , (10.46)

with cV 12 being an arbitrary constant. It will be nonvanishing only if the two currents share the 
same dimensions, and it is characterized just by a single pole (to all orders) 1/ε in dimensional 
regularization. The divergence can be regulated with d → d − 2ε, and expanding the product 
�(d/2 −η) (p2)η−d/2 in 10.46 in a Laurent series around d/2 −η = −n (integer) one can extract 
the single pole in 1/ε in the form [24]

�(d/2 − η) (p2)η−d/2 = (−1)n

n!
(

−1

ε
+ ψ(n + 1) + O(ε)

)
(p2)n+ε , (10.47)

where ψ(z) is the logarithmic derivative of the Gamma function, and ε takes into account the 
divergence of the two-point correlator for particular values of the scale dimension η and of the 
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space–time dimension d . In the QED case, the renormalization involves only the master integrals 
B0(si), which gives (d = 4 − 2ε)

F13 = 2π2e2

3ε
+ F

f in
13 , (10.48)

implying that F1 (from (10.41)) will be given by

F1 =
(

2

3

ε

s

)(
2πe2

3ε
+ F

f in
13

)
, (10.49)

which in the d → 4 limit gives

lim
d→4

F1 = −4

9

π2

s
, (10.50)

showing the appearance of an anomaly pole in the single form factor which is responsible for the 
trace anomaly.

It is quite obvious that the non-perturbative analysis of [13] in the A-basis and the perturbative 
ones in the F -basis are consistent. There is some additional important information that we can 
extract in the latter basis if we go back to the two equations in (10.41).

1. From the finiteness of all the form factors, except for F13 which is regulated with a 1/ε

divergence, it is obvious that in the limit of d → 4, as a result of (10.49), F1 is nonvanishing 
and exhibits a 1/p2

1 ≡ 1/s behavior. Therefore, the emergence of F1 in d = 4 as a form factor 
which accounts for the anomaly is a nice feature if this general analysis. It shows how to link an 
anomaly pole to the renormalization of a single form factor in the expansion of the correlator.

2. At the same time, it is possible to check explicitly from its d-dimensional expression shown 
in (A.6) that the second form factor F2 vanishes as d → 4, proving that there will be one and 
only one tensor structure of nonzero trace.

3. Although the results above are fully confirmed by the previous perturbative analysis, they 
hold generically (non perturbatively) in the context of the conformal realizations of such corre-
lator.

A natural question to ask is what happens to the tensor structures t2, . . . t13 as we move 
from d to 4 dimensions. The answer is quite immediate. We contract such structures with the 
d-dimensional metric gμν(d) and perform the d → 4 limit. One can easily check that t9, t10, t11
and t12, remain traceless in any dimensions, while the remaining ones become traceless in this 
limit. For instance

gμν(d)t
μναβ
1 = (d − 4)k2uαβ(p, q)

gμν(d)t
μναβ
2 = (d − 4)k2wαβ(p,q), (10.51)

and similarly for the others. Therefore, in the d → 4 limit, the F -basis satisfies all the original 
constraints and the separation between traceless and trace-contributions which were described in 
Sect. 9.

10.7. Implications

We may summarize the result of this section by saying that the emergence of an anomaly pole 
in the T JJ is not limited to perturbation theory but is a specific feature of the non-perturbative 
solution as well. The perturbative description offers a simple view of why this phenomenon 
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Fig. 3. (a): Dispersive description of the singularity of the spectral density ρ(s) as a spacetime process. (b): The exchange 
of a pole as the origin of the conformal anomaly in the TJJ viewed in perturbation theory.

takes place. In the dispersive representation of the unique form factor which is responsible for 
the appearance of the anomaly (F1), this phenomenon is related to the exchange of a collinear 
fermion/antifermion pair in the s variable (ρ(s) ∼ δ(s)) (see Fig. 3). This configuration provides 
a contribution to the anomaly action of the form

Spole = − e2

36π2

∫
d4xd4y

(
�h(x) − ∂μ∂νh

μν(x)
)
�−1

x yFαβ(x)Fαβ(y) (10.52)

In view of the equivalence between the perturbative and the nonperturbative solution for the Ai

(and henceforth for the F -basis), which will be discussed in section 13, it is obvious that this 
phenomenon is lifted from its perturbative origin and acquires a general meaning. We refer to 
[4,25] for a general perturbative analysis of the spectral densities for such type of vertices.

There is no doubt that this is a one-loop phenomenon in QED which is obviously violated at 
higher orders, since the theory, in this case, ceases to be conformal. However, as we are going to 
show in the next section, the one-loop expression in QED reproduces the entire non perturbative 
conformal BMS solution, and this explains why our proof should be considered a definitive proof 
of the fact that, at least for this correlator, the exchange of effective massless interactions is the 
key signature of the conformal anomaly.

11. Conformal Ward identities and the perturbative master integrals

We now turn to illustrate the action of the conformal generators on the d-dimensional expres-
sions of the Fi , showing that they are indeed solutions of the corresponding CWI’s. We will first 
elaborate on the action of the conformal generators on the simple master integrals B0, C0. Such 
an action will be reformulated in terms of the external invariant of each master integral, starting 
from the original definitions of the special conformal Kκ and dilatation D operators.

Understanding the way the conformal constraints work on perturbative realizations of confor-
mal correlators is indeed important for various reasons. For instance, one can find, by a direct 
perturbative analysis simpler realizations of the general hypergeometric solutions of the CWI’s 
for the Ai , while, at the same time, one can test the consistency of the general approach imple-
mented in the solution of the conformal constraints which does not rely on an explicit Lagrangian 
but just on the data content of a given CFT. We are going to show that indeed such is the case and 
that the d-dimensional form factors given in the appendix satisfy all the conformal constraints 
corresponding to the dilatation and special conformal WI’s.

11.1. The conformal constraints on the external invariants

The action of the special conformal transformations Kκ and of the dilatations D on them, will 
require that Kij , LN , R in (4.9), (6.39) and (6.40) be expressed in terms of the three invariants 
s, s1 and s2.
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Taking the four-momentum pμ
1 as independent, we will be using the chain rules

∂

∂p
μ
2

= −p1μ

p1

∂

∂p1
+ p2μ

p2

∂

∂p2
(11.1)

∂

∂p
μ
3

= −p1μ

p1

∂

∂p1
+ p3μ

p3

∂

∂p3
, (11.2)

and by taking appropriate linear combinations of these relations we obtain the system of equa-
tions ⎛

⎝p
μ
2

∂

∂p
μ
2

− p
μ
2

∂

∂p
μ
3

p
μ
3

∂

∂p
μ
2

− p
μ
3

∂

∂p
μ
3

⎞
⎠=

(
p2 −p2·p3

p3
p2·p3

p2
−p3

)(
∂

∂p2

∂
∂p3

)
. (11.3)

Solving the system above for the derivative of the magnitudes of the momenta we obtain the 
relations

∂

∂p2
=
(

p2p3

(p2 · p3)2 − p2
2p

2
3

)[
p2 · p3

p3

(
p

μ
3

∂

∂p
μ
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− p
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∂

∂p
μ
3
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(
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μ
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∂

∂p
μ
2
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μ
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∂

∂p
μ
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(11.4a)

∂

∂p3
=
(

p2p3

(p2 · p3)2 − p2
2p

2
3

)[
p2

(
p

μ
3

∂

∂p
μ
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− p
μ
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∂

∂p
μ
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)
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(
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μ
2

∂

∂p
μ
2

− p
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∂

∂p
μ
3

)]
.

(11.4b)

Afterwards, by taking other linear combinations we obtain⎧⎪⎨
⎪⎩

p
μ
2

∂

∂p
μ
2

+ p
μ
3

∂

∂p
μ
2

= p1
∂

∂p1
− p1·p2

p2

∂
∂p2

p
μ
3

∂

∂p
μ
3

+ p
μ
2

∂

∂p
μ
3

= p1
∂

∂p1
− p1·p3

p3

∂
∂p3

, (11.5)

which, combined together, give

p1
∂

∂p1
=
(

p2 p3

(p2 · p3)2 − p2
2 p2

3

)[
p2 · p3

p2 p3

(
(p2 · p3) + p2

2

)
p

μ
3

∂

∂p
μ
3

+ p2 · p3

p2 p3

(
(p2 · p3) + p2

3

)
p

μ
2

∂

∂p
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p3
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3
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p

μ
3

∂

∂p
μ
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− p3

p2
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2

)
p

μ
2

∂

∂p
μ
3

]
, (11.6)

with the four-vector forms of the derivatives rearranged as

p
μ
2

∂

∂p
μ
2

B0(s) = (d − 4)

2s
(s + s1 − s2)B0(s) (11.7a)

p
μ
3

∂

∂p
μ
2

B0(s) = (d − 4)

2s
(s − s1 + s2)B0(s) (11.7b)

p
μ
2

∂

∂p
μ B0(s) = (d − 4)

2s
(s − s1 + s2)B0(s) (11.7c)
3
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p
μ
3

∂

∂p
μ
2

B0(s) = (d − 4)

2s
(s + s1 − s2)B0(s). (11.7d)

Inserting these expressions in (11.4) and (11.6) we obtain the relations

p1
∂

∂p1
B0(s) = (d − 4)B0(s),

∂

∂p2
B0(s) = 0,

∂

∂p3
B0(s) = 0. (11.8a)

The four-derivatives of B0(s1) are computed in a similar way, obtaining

p
μ
2

∂

∂p
μ
2

B0(s1) = (d − 4)B0(s1) (11.9a)

p
μ
3

∂

∂p
μ
2

B0(s1) = (d − 4)

2s1
(s − s1 − s2)B0(s1) (11.9b)

p
μ
2

∂

∂p
μ
3

B0(s1) = p
μ
3

∂

∂p
μ
2

B0(s1) = 0, (11.9c)

giving

p1
∂

∂p1
B0(s1) = 0,

∂

∂p2
B0(s1) = (d − 4)

p2
B0(s1),

∂

∂p3
B0(s1) = 0. (11.10a)

Finally, for the scalar 2-point function B0(s2) we obtain

p
μ
2

∂

∂p
μ
2

B0(s2) = p
μ
3

∂

∂p
μ
2

B0(s2) = 0 (11.11a)

p
μ
2

∂

∂p
μ
3

B0(s1) = (d − 4)

2s2
(s − s1 − s2)B0(s2) (11.11b)

p
μ
3

∂

∂p
μ
2

B0(s1) = (d − 4)B0(s2), (11.11c)

and

p1
∂

∂p1
B0(s2) = 0,

∂

∂p2
B0(s2,0,0) = 0,

∂

∂p3
B0(s2) = (d − 4)

p3
B0(s2). (11.12a)

Finally, we consider the action of these operators on the scalar integral C0(s, s1, s2), obtaining 
the relations

p
μ
2

∂

∂p
μ
2

C0(s, s1, s2) = (d − 3)

s

[
B0(s1) − B0(s2)

]
+ (d − 6)s + (d − 4)(s1 − s2)

2s
C0(s, s1, s2) (11.13a)

p
μ
3

∂

∂p
μ
2

C0(s, s1, s2) = (d − 3)

s s1

[
(s1 − s)B0(s2) + sB0(s) − s1B0(s1)

]
+ (d − 4)(s − s1)(s + s1 − s2)

2s s1
C0(s, s1, s2) (11.13b)

p
μ
2

∂

∂p
μ
3

C0(s, s1, s2) = (d − 3)

s s2

[
(s2 − s)B0(s1) + sB0(s) − s2B0(s2)

]
+ (d − 4)(s − s2)(s − s1 + s2)

C0(s, s1, s2) (11.13c)

2s s2
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p
μ
3

∂

∂p
μ
2

C0(s, s1, s2) = (d − 3)

s

[
B0(s2) − B0(s1)

]
+ (d − 6)s − (d − 4)(s1 − s2)

2s
C0(s, s1, s2). (11.13d)

Using the relations given above, after some algebra, we obtain the expressions

∂

∂p1
C0 = p1

σ s

{
2(d − 3)

[
(s + s1 − s2)B0(s1) + (s − s1 + s2)B0(s2) − 2s B0(s)

]
+ [

(d − 4)(s1 − s2)
2 − (d − 2)s2 + 2s(s1 + s2)

]
C0(s, s1, s2)

}
(11.14a)

∂

∂p2
C0 = p2

σ s1

{
2(d − 3)

[
(s + s1 − s2)B0(s) + (s1 + s2 − s)B0(s2) − 2s1 B0(s1)

]
+ [

2s2
(
s1 − (d − 4)s

)+ (s − s1)
(
(d − 4)s + (d − 2)s1

)+ (d − 4)s2
2

]
× C0(s, s1, s2)

}
(11.14b)

∂

∂p3
C0 = p3

σ s2

{
2(d − 3)

[
(s − s1 + s2)B0(s) + (s1 + s2 − s)B0(s1) − 2s2 B0(s2)

]
+ [

(d − 4)(s − s1)
2 − (d − 2)s2

2 + 2s2(s + s1)
]
C0(s, s1, s2)

}
. (11.14c)

At this point, one can write the operators K , LN and R of the special CWI’s in terms of the 
three invariants s, s1 and s2 as

∂

∂s
= 1

2p1

∂

∂p1
,

∂

∂s1
= 1

2p2

∂

∂p2
,

∂

∂s2
= 1

2p3

∂

∂p3
, (11.15)

and from the explicit form of the Ki operator in (4.9) we obtain

Ki = δi,j+1

[
4sj

∂2

∂s2
j

+ 2(d + 2 − 2�i)
∂

∂sj

]
, i = 1,2,3, (11.16)

where we have set s0 ≡ s.
In the same way, we find that the operators LN and R, from their defining expressions (6.39)

and (6.40), take the form

LN = 2(s + s1 − s2) s
∂

∂s
+ 4s s1

∂

∂s1
+ [

(2d − �1 − 2�2 + N)s + (2�1 − d)(s2 − s1)
]

(11.17)

R = 2 s
∂

∂s
− (2�1 − d), (11.18)

while their symmetric versions are given by

L′
N = LN with s ↔ s1 and �1 ↔ �2 (11.19)

R′ = R with s �→ s1 and �1 �→ �2. (11.20)

We then obtain
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K12 B0(s) = K13 B0(s) = −4(d − 4)

s
B0(s,0,0), K23 B0(s) = 0

K21 B0(s1) = K23 B0(s1) = −2(d − 4)

s1
B0(s1), K13 B0(s1) = 0

K31 B0(s2) = K32 B0(s2) = −2(d − 4)

s2
B0(s2), K12 B0(s2) = 0, (11.21a)

and

K12 C0(s, s1, s2)

= 4(d − 3)

s s1 σ

[
− (

s2 + (s − 2s1)(s1 − s2)
)
B0(s2) + s(s + 5s1 − s2)B0(s)

− 2s1 (2s + s1 − s2)B0(s1)

]

+ 1

s s1 σ

[
4(d − 3)(3s − 3s1 − s2) s s1 + 2(d − 4)(s − 2s1)σ

]
C0(s, s1, s2) (11.22a)

K23 C0(s, s1, s2)

= 4(d − 3)

s1 s2 σ

[
(s1 − s2)(s − s1 − s2)B0(s) + s1(s1 − s + 2s2)B0(s1)

+ s2(s − 3s1 − s2)B0(s2)

]
+ 1

s1 s2 σ

[
2(d − 4)(s1 − s2)[(s − s1)

2 − 2s s2 + s2
2 ]

+ 4(d − 2)(s1 − s2) s1 s2
]
C0(s, s1, s2) (11.22b)

K13 C0(s, s1, s2)

= 4(d − 3)

s s2 σ

[
− (

s2 + (s − 2s2)(s2 − s1)
)
B0(s1) + s(s − s1 + 5s2)B0(s)

− 2s2(2s − s1 + s2)B0(s2)

]

+ 1

s s2 σ

[
4(d − 3)(3s − 3s2 − s1) s s2 + 2(d − 4)(s − 2s2)σ

]
C0(s, s1, s2), (11.22c)

while the action of the operators LN and R on B0(s) is given by

LN B0(s) = [
(N − 2)s − 4s1 + 4s2

]
B0(s)

L′
N B0(s) = [

(d + N − 7)s1 + (d − 2)(s2 − s)
]
B0(s)

R B0(s) = −4B0(s)

R′ B0(s) = −(d − 2)B0(s), (11.23a)

and on B0(s1)

LN B0(s1) = [
(d + N − 6)s + d(s2 − s1)

]
B0(s1)

L′
N B0(s1) = [

(N − 3)s1 − 2s + 2s2
]
B0(s1)

R B0(s1) = −d B0(s1)

R′ B0(s1) = −2B0(s1). (11.24a)
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Similarly, for B0(s2) we obtain

LN B0(s2) = [
(N − d + 2)s + d(s2 − s1)

]
B0(s2)

L′
N B0(s2) = [

(N − d + 1)s1 + (d − 2)(s2 − s)
]
B0(s2)

R B0(s2) = −d B0(s2)

R′ B0(s2) = −(d − 2)B0(s2), (11.25a)

and for C0(s, s1, s2)

LN C0(s, s1, s2) = 2(d − 3)
[
B0(s1) − B0(s2)

]+ [
(N − 4)s − 4(s1 − s2)

]
C0(s, s1, s2)

L′
N C0(s, s1, s2) = 2(d − 3)

[
B0(s) − B0(s2)

]+ [
(N − 5)s1 − 2(s − s2)

]
C0(s, s1, s2)

R C0(s, s1, s2) = 2(d − 3)

σ

[
(s + s1 − s2)B0(s1) + (s − s1 + s2)B0(s2) − 2s B0(s)

]
+ 2

σ

[− (d − 1)s2 + (d + 1)s(s1 + s2) − 2(s1 − s2)
2]C0(s, s1, s2)

R′ C0(s, s1, s2) = 2(d − 3)

σ

[
(s + s1 − s2)B0(s) + (−s + s1 + s2)B0(s2) − 2s1 B0(s1)

]
− 2

σ

[
s(s1 − d s1 − 2s2) + (s1 − s2)(d − 2)s1 − s2(s1 − s2) + s2]

× C0(s, s1, s2). (11.26a)

Using the explicit expressions of the form factors Fi presented in the appendix, we have explicitly 
verified that they satisfy all the conformal constraints, once the action on the two master integrals 
is re-expressed according to the derivative rules that we have derived in this section in terms of 
the external invariants.

12. Renormalization and anomalous Ward identities in QED

In this final section we turn to the derivation of the anomalous CWI’s for this correlator in 
QED. We recall that the singularity in the form factor F13, which is the only one which is affected 
by the renormalization of the F -basis, can be removed by using the counterterm∫

d4x
√−gFμνF

μν. (12.1)

After the renormalization procedure in the F-basis, the renormalized expressions of the Ai form 
factors are obtained using the mapping (10.35). One can then derive renormalized anomalous 
(dilatation, primary and secondary) WI’s. Using the explicit expressions of the Ai given in the 
appendix, and performing the renormalization, we obtain(

3∑
i

pi

∂

∂pi

+ 2

)
A1 = 0 = −μ

∂

∂μ
A1 (12.2)

(
3∑
i

pi

∂

∂pi

)
AR

2 = 8π2 e2

3
= −μ

∂

∂μ
AR

2 (12.3)

(
3∑

pi

∂

∂pi

)
AR

3 (p2 ↔ p3) = 8π2 e2

3
= −μ

∂

∂μ
AR

3 (12.4)

i
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(
3∑
i

pi

∂

∂pi

− 2

)
AR

4 = −4

3
π2 e2(s − s1 − s2) = −μ

∂

∂μ
AR

4 , (12.5)

for the dilatation WI’s, while for the primary CWI’s we obtain

K13A1 = 0

K13A
R
2 = −2A1

K13A
R
3 = 4A1

K13A
R
3 (p2 ↔ p3) = 0

K13A
R
4 = 2AR

3 (p2 ↔ p3) − 16π2e2

3

K23A1 = 0

K23A
R
2 = 0

K23A
R
3 = 4A1

K23A
R
3 (p2 ↔ p3) = −4A1

K23A
R
4 = −2AR

3 + 2AR
3 (p2 ↔ p3).

(12.6)

In all the equations e is the renormalized charge and can be traded for β(e) by the relation 
β(e)/e = e2/(12π2). For the secondary CWI’s we obtain

L4A1 + RAR
3 − RAR

3 (p2 ↔ p3) = 0

L2 AR
2 − s (AR

3 − AR
3 (p2 ↔ p3))

= 16

9
π2e2

[
3s1BR

0 (s1,0,0) − 3s2B
R
0 (s2,0,0) − s1 + s2

]
+ 24

9
π2e2s

L4 AR
3 − 2R AR

4 = 32

9
π2 e2s2

[
1 − 3BR

0 (s2,0,0)
]
+ 48

9
π2 e2 s

L4 AR
3 (p2 ↔ p3) + 2R AR

4 − 4 sAR
3 (p2 ↔ p3) = 32

9
π2 e2s1

[
3BR

0 (s1,0,0) − 1
]

L′
3 AR

1 − 2R′AR
2 + 2R′AR

3 = 0

L′
1 AR

3 (p2 ↔ p3) + p2
2(4AR

2 − 2AR
3 ) + 2R′AR

4 = 16

3
π2 e2 s1,

(12.7)

where we have used the relations
∂

∂si
BR

0 (sj ,0,0) = −δij

si
i = 0,1,2 (12.8)

where s0 = s and

∂

∂s
C0 = 1

s σ

[
s(s1 + s2 − s)C0 + B0,R(s1)(s + s1 − s2) + B0,R(s2)(s − s1 + s2)

− 2s B0,R(s)
]

(12.9)

∂

∂s1
C0 = 1

s1 σ

[
s1(s + s2 − s1)C0 + B0,R(s)(s + s1 − s2) + B0,R(s2)(s1 − s + s2)

− 2s1 B0,R(s1)
]

(12.10)

∂

∂s2
C0 = 1

s2 σ

[
s2(s + s1 − s2)C0 + B0,R(s1)(s2 + s1 − s) + B0,R(s)(s − s1 + s2)

− 2s2 B0,R(s2)
]
. (12.11)
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We have defined σ = s2 − 2s(s1 + s2) + (s1 − s2)
2, B0,R(si) ≡ B0,R(si , 0, 0) = 2 − log

(
− si

μ2

)
and, for simplicity, C0 ≡ C0(s, s1, s2).

In d = 4 the operator Ki and LN take the forms

K1 ≡ 4s
∂2

∂s2 − 4
∂

∂s
, K2 ≡ 4s1

∂2

∂s2
1

, K3 ≡ 4s2
∂2

∂s2
2

(12.12)

LN ≡ 2s (s + s1 − s2)
∂

∂s
+ 4s s1

∂

∂s1
+ [(N − 2)s + 4(s2 − s1)] , R ≡ 2s

∂

∂s
− 4

(12.13)

L′
N ≡ 2s1 (s + s1 − s2)

∂

∂s1
+ 4s s1

∂

∂s
+ [(N − 3)s1 + 2(s2 − s)] , R′ ≡ 2s1

∂

∂s1
− 2.

(12.14)

13. Comparing the 3K solutions of BMS with the perturbative result in QED

The perturbative analysis presented above provides a significant check of the consistency of 
the BMS approach for 3-point functions. However, at the same time, it carries a lot of insight 
about the connection between CFT’s realized by free field theories and the structure of the cor-
responding nonperturbative solutions. In order to clarify this point we proceed with a direct 
comparison between the expressions of the Ai given in the appendix and the analogous results 
for the same correlator given in [14]. The Ai ’s given in the appendix have been obtained by the 
recomputed Fi ’s.

The final outcome of this analysis will be, by this direct check, that free field theories com-
pletely saturate the general nonperturbative solution, providing drastic simplifications of the 
results presented in [14]. As already mentioned, the latter have been presented in the form of 
parametric integrals of 3 Bessel functions, which obviously amount to linear combinations of 
Appell functions, originally introduced in studies of the AdS/CFT correspondence.

To make our treatment self-contained we need to provide some basic description of the struc-
ture of the solutions obtained by BMS in their analysis and then we will establish a direct link 
between these expressions and the simplified ones given in the appendix, corresponding to the 
perturbative Ai ’s. The BMS solutions take the form

A1 = α1J4[000]
A2 = α1J3[100] + α3J2[000]
A3 = 2α1J3[001] + α3J2[000]
A4 = 2α1J2[011] + α3J1[010] + α4J0[000] (13.1)

where the Jn[k1k2k3] are integrals corresponding to hypergeometric functions F4 of 2 variables. 
In general they are defined as

Jn[k1k2k3] = Id/2−1+n[β1β2β3] (13.2)

where

Iα[σ1σ2σ3](p1,p2,p3) =
∞∫

dxxα

3∏
j=1

p
σj

j Kσj
(pjx) (13.3)
0
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with βi = �i − d/2 + ki . In our case �1 = d and �2 = �3 = d − 1. The parametric integral is 
expressed in terms of products of modified Bessel functions Kν(x) of second kind. The explicit 
expressions of such integrals have been worked out in [14]. All the J integrals appearing in the 
solution correspond to master integrals of the form [24]

J (ν1, ν2, ν3) =
∫

ddl

(2π)d

1

(l2)ν3((l + p1)2)ν2((l − p2)2)ν1
, (13.4)

which can be directly connected to 3-point functions of scalar operators, of suitable scaling di-
mensions �i by the relations∫

ddp1

(2π)d

ddp2

(2π)d

ddp3

(2π)d
(2π)dδ(d)(p1 + p2 + p3) J (ν1, ν2, ν3)e

−ip1·x1−ip2·x2−ip3·x3

= 1

4ν1+ν2+ν3π3d/2

�(d/2 − ν1)�(d/2 − ν2)�(d/2 − ν3)

�(ν1)�(ν2)�(ν3)

× 1

(x2
12)

d/2−ν3(x2
23)

d/2−ν1(x2
31)

d/2−ν2
, (13.5)

with

�1 = d − ν2 − ν3 , �2 = d − ν1 − ν3 , �3 = d − ν1 − ν2 (13.6)

ν1 = 1

2
(d + �1 − �2 − �3) ν2 = 1

2
(d − �1 + �2 − �3) ,

ν3 = 1

2
(d − �1 − �2 + �3) (13.7)

An equivalent expression of the master integral J (ν1, ν2, ν3) can be obtained combining the 
expressions above in the form

J (ν1, ν2, ν3) = π−d/224−3d/2

�(ν1)�(ν2)�(ν3)�(d − ν1 − ν2 − ν3)
p

d/2−ν2−ν3
1 p

d/2−ν1−ν3
2 p

d/2−ν1−ν2
3

×
∞∫

0

dxxd/2−1Kd−ν1−ν3(p1x)Kd−ν2−ν3(p2x)Kd−ν1−ν2(p3x) (13.8)

An alternative expression for this integral can be found in [24]. Notice that if we plug the scaling 
dimensions of T μν and of the current J ρ , for instance in J0[000], we encounter divergences 
which need to be regulated using a rather complex scheme which has been discussed in [14]. 
This implies that the coefficients of the scalar 3-point functions contained in the J integrals 
correspond to generalized master integrals with indices νi which are real numbers rather than 
just integers, as in the case of ordinary perturbation theory, for instance in QCD. This sets them 
apart from the standard integrals appearing in massless theories at higher orders.

Because of this, it is not obvious that the general 3K solution can be directly related to the 
simple master integrals which appear in the Ai , given in the appendix, containing the two master 
integrals B0 and C0. In fact, all the relations presented in [14] which allow to connect various 
J integrals are, therefore, unrenormalized and need to be expanded in a regulator in order to 
generate the final expressions for each form factor. This, unfortunately does not allow to recog-
nize that such solutions can be drastically simplified. By the same token, the solutions that we 
have provided for the Ai using the Fuchsian analysis of section 8 cannot be easily recognized for 
being related just to ordinary B0 and C0 master integrals.
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We are now going to show that the same information provided by the J integrals is entirely 
reproduced by the perturbative solution in a simplified way. This clearly implies that there are 
significant cancellations among the contributions coming from different J integrals in the BMS 
solution, in whatever form they are written, which are far from being evident. The latter, obvi-
ously, remains essential in order to determine the minimal set of constants which characterize the 
general conformal solution and allow to establish a link between this and the perturbative result, 
but their significance probably stops here.

In order to establish this link, we consider different field theories in various dimensions char-
acterized by a generic number of degenerate massless fermions, say nψ , which, as we are going 
to show, will be taking the role of α1 in the final solution. Let’s investigate this point.

As shown in [14], the secondary CWI’s allow to express the 4 constants αi in terms of α1

and the normalization of the 2-point function CJ . These relations, in general, involve a regulator, 
except for specific dimensions. In d = 3 and d = 5, for instance, the correlator is finite and the 
relation between the perturbative and the non perturbative expressions of the Ai is transparent 
and can be worked out analytically.

We start from the two point functions, since the CJ presented [14] and in free field theory 
(QED) must be matched. In [14] the normalization of the JJ correlator is defined by the relation

〈Jμ(p)J ν(−p)〉 = CJ πμν(p)�

(
1 − d

2
+ ε

2

)
pd−2−ε (13.9)

while in our case, in conformal QED, we find in dimensional regularization

〈 Jμ(p)J ν(−p) 〉 = 2π
D
2 e2 (d − 2)

d − 1
p2 πμν(p)B0(p

2,0,0)

= 2π
d
2 e2 (d − 2)πμν(p)

(d − 1)� (d − 2)

[
�

(
d

2
− 1

)]2

�

(
2 − D

2

)
pd−2, (13.10)

having used the explicit expression of the two point scalar integral (13.15).
In odd spacetime dimension n (d = n + ε), the limit ε → 0 is finite and then the comparison 

between (13.9) and (13.10) gives the value for the normalization constant CJ of the two point 
function 〈JJ 〉 as

CJ = 2π
d
2 e2 (d − 2)

(d − 1)� (d − 2)

[
�
(

d
2 − 1

)]2
�
(
2 − d

2

)
�
(
1 − d

2

) . (13.11)

It is simple to verify that the values of CJ in the d = 3 and d = 5 are those given by (13.11), in 
fact

CJ
d = 3= π

3
2 e2

[
�

(
1

2

)]3 [
�

(
−1

2

)]−1

= −π
5
2 e2

2
(13.12)

CJ
d = 5= 3π

5
2 e2

2�(3)

[
�

(
3

2

)]2

�

(
−1

2

) [
�

(
−3

2

)]−1

= −9π
7
2 e2

32
(13.13)

With this information, we can proceed further, showing that the expressions of the Ai’s presented 
in section A agree with those determined in the nonperturbative solution.
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13.1. Explicit result in d = 3 (QED and scalar QED)

We consider the fermion and the scalar contribution combined together, selecting an arbitrary 
number of massless fermions and scalars running inside the loops, with constants nF and nS

related to this condition.
In the particular case of d = 3 there are simplifications both in the exact and the perturbative 

solutions. The scalar integral B0 is given by

B0(s,0,0) = 1

iπ
d
2

∫
dd�

l

�2(� − p1)2 = π
d
2
[
�
(

d
2 − 1

)]2
�
(
2 − d

2

)
π

d
2 �(d − 2) (p2

1)
2− d

2

(13.14)

for which in d = 3 becomes

B0(s,0,0) = π3/2

p1
(13.15)

where p1 = |p1| =
√

p2
1. The scalar 3-point function C0 can be simplified using the star-triangle 

rule for which∫
ddx

[(x − x1)2]α1 [(x − x2)2]α2 [(x − x3)2]α3∑
i αi = d= iπd/2ν(α1)ν(α2)ν(α3)

[(x2 − x3)2] d
2 −α1 [(x1 − x2)2] d

2 −α3 [(x1 − x3)2] d
2 −α2

(13.16)

where

ν(x) = �
(

d
2 − x

)
�(x)

, (13.17)

which holds only if the condition 
∑

i αi = d is satisfied. In the case d = 3 (13.16) is proportional 
to the three point scalar integral, and in particular

C0(p
2
1,p

2
2,p

2
3) =

∫
dd�

iπ
d
2

1

�2(� − p2)2(� + p3)2

=
∫

ddk

iπ
d
2

1

(k − p1)2(k + p3)2(k + p3 − p2)2

=
[
�
(

d
2 − 1

)]3

(p2
1)

d
2 −1(p2

2)
d
2 −1(p2

3)
d
2 −1

d = 3= π3/2

p1 p2 p3
. (13.18)

The explicit expression of the form factors in d = 3 using the perturbative approach to one 
loop order, can be found by substituting the expression of the scalar integral, using (13.15) and 
(13.18), and then considering the limit d → 3 for all the form factors. The scalar and the fermion 
cases contribute equally, modulo an overall constant, giving

A1,D=3 =
(

π3 e2(8nF + nS)

6

)
2
(
4p1 + p2 + p3

)
(p1 + p2 + p3)4 (13.19)

A2,D=3 =
(

π3 e2(8nF + nS)
)

2p2
1

3 −
(

π3 e2 (8nF − nS)
)

6 (p1 + p2 + p3) 2
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× (2p1 + p2 + p3)

(p1 + p2 + p3)2 (13.20)

A3,D=3 =
(

π3e2(8nF + nS)

6

) (−2p2
1 − 3p1p2 + 3p1p3 − p2

2 + p2
3

)
(p1 + p2 + p3)3

−
(

π3e2(8nF − nS)

2

)
(2p1 + p2 + p3)

(p1 + p2 + p3)2 (13.21)

A4,D=3 =
(

π3e2(8nF + nS)

6

)
(2p1 + p2 + p3)

(
p2

1 − (p2 + p3)
2 + 4p2p3

)
2(p1 + p2 + p3)2

+
(

π3e2(8nF − nS)

4

)(
2p2

1

(p1 + p2 + p3) − p2 − p3

)
(13.22)

which coincide with the solution given by BMS in the limit d = 3, modulo the identification of 
the constants

α1 =
(

π3 e2(8nF + nS)

6

)
, cJ = −

(
π

5
2 e2 (8nF − nS)

8

)
. (13.23)

13.2. Explicit result in d = 5 (QED and scalar QED)

The case d = 5 is slightly more involved. In fact, while the result of B0 is still the same, the 
explicit form of the C0 needs some manipulations. We start from the star-triangle relation (13.16)∫

ddx

[(x − x1)2]2 [(x − x2)2] [(x − x3)2]2

d = 5= iπd/2ν(2)ν(1)ν(2)

[(x2 − x3)2] d
2 −2 [(x1 − x2)2] d

2 −2 [(x1 − x3)2] d
2 −1

(13.24)

= iπ4

2

1

[(x2 − x3)2]1/2 [(x1 − x2)2]1/2 [(x1 − x3)2]3/2 (13.25)

and use an integration by parts to reduce the left-hand side. In particular, by setting x1 → p1, 
x2 → −p3, x3 → p1 − p3 we obtain∫

ddx

[(x − x1)2]2 [(x − x2)2] [(x − x3)2]2 =
∫

ddx

[(x − p1)2]2 [(x + p3)2] [(x − p1 + p3)2]2

=
∫

dd�

[(�)2]2 (� − p2)2 [(� + p3)2]2 = iπ4

2p1 p2 p3
3

(13.26)

and ∫
dd�

[(�)2]2 (� − p2)2 [(� + p3)2]2

= − iπ
d
2 (d − 4)

[
(d − 6)(s − s1)

2 − (d − 4)s2
2 + 2s2(s + s1)

]
2 C0(s, s1, s2)
4s s1 s2
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− iπ
d
2 (d − 3)

[
(d − 6)(s − s1) + (d − 4)s2

]
2s s1 s2

2

B0(s,0,0)

+ iπ
d
2 (d − 3)

[
(d − 6)(s − s1) − (d − 4)s2

]
2s s1 s2

2

B0(s1,0,0)

+ iπ
d
2 (d − 3)

[
(d − 6)(s + s1) + (d − 4)s2

]
2s s1 s2

2

B0(s2,0,0) (13.27)

where s = p2
1, s1 = p2

2 and s2 = p2
3 as previously. Inserting this expression into Eq. (13.25) and 

solving for C0, in d = 5 one finds

C0(s, s1, s2) = π3/2

p1 + p2 + p3
. (13.28)

From (13.14) the B0 is calculated in d = 5 as

B0(s,0,0) = −π3/2

4
p1. (13.29)

Plugging these results into the general form of the Ai given in appendix A we find

A1,d=5 = π4e2(8nF + nS)

120(p1 + p2 + p3)5

[
4p4

1 + 20p3
1(p2 + p3) + 4p2

1

(
7
(
p2 + p3

)2 + 6p2p3

)
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((
p2 + p3

)2 + p2p3

)
+ 3(p2 + p3)

2
((

p2 + p3
)2 + p2p3

)]
(13.30)

A2,d=5 = π4e2p2
1(8nF + nS)

120(p1 + p2 + p3)4

×
[
(p1 + p2 + p3)

3 + (p1p2 + p1p3 + p2p3)(p1 + p2 + p3) + 3p1p2p3

]
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[
2p4

1 + 6p3
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2
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3
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)2 − p2p3

)]
(13.31)

A3,d=5 = π4e2(8nF + nS)

240(p1 + p2 + p3)4

[
(−2p5

1 − 8p4
1(p2 + p3) − 8p3

1p2(2p2 + 3p3)

+ p2
1

(
−19p3

2 − 40p2
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2
3 + 15p3

3

)
− 3(p2 − p3)(p2 + p3)

(
p2
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3

)
(4p1 + p2 + p3)

]

+ π4e2(24nF − nS)

48(p1 + p2 + p3)3

[
2p4

1 + 6p3
1(p2 + p3) + 2p2

1

(
5p2
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3
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2
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)
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2
(
p2
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(13.32)
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A4,d=5 = π4e2(8nF + nS)

480(p1 + p2 + p3)3

[
2p6

1 + 6p5
1(p2 + p3) + 4p4

1

(
2(p2 + p3)
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)
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1

(
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)(
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2 + 32p2p3
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)(
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)
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− π4e2(24nF − nS)

96(p1 + p2 + p3)2

[
2p5

1 + 4p4
1(p2 + p3) + 4p3

1

(
p2

2 + p2p3 + p2
3

)
− p2

1(p2 + p3)
(
p2

2 − 5p2p3 + p2
3

)
− 6p1

(
p4

2 + p3
2p3 + p2p

3
3 + p4

3

)
− 3(p2 + p3)

3
(
p2

2 − p2p3 + p2
3

)]
(13.33)

in agreement with the solution given by BMS in the limit d = 5, with the identifications

α1 =
(

π4e2(8nF + nS)

240

)
, cJ = −

(
3π

7
2 e2(24nF − nS)

128

)
. (13.34)

This shows that, after fixing the normalization of the 2-point function, we are essentially left, 
both from the perturbative and the non perturbative side, with the same solution.

14. Comments

There are several obvious conclusions that we can draw from this comparative study of the 
T JJ that we are going to briefly summarize.

The Ai computed in perturbation theory satisfy the same anomalous conformal Ward identi-
ties as the nonperturbative ones, as shown by us in the previous sections for d = 4.

They both satisfy homogeneous (non anomalous) CWI’s in general (d) dimensions.
In d = 3 and d = 5 the two solutions completely match, having consistently matched the 

normalization of the JJ 2-point function in the two separate cases.
In d = 5, where the corresponding field theory is nonrenormalizable, the perturbative 

computation still matches the nonperturbative one. This obviously occurs because the non-
renormalizability of the theory does not play any role, being the matching between the two 
theories a purely one loop result (one loop saturation).

We conclude that, at least for the T JJ , free field theories in momentum space at one loop 
provide the same information derived from the non-perturbative solutions, and the two can be 
freely interchanged, being equivalent. The two analytical derivations are therefore expected to 
coincide for any dimension. Obviously, as already mentioned, this implies that there should be 
significant cancellations among the contributions of the 3K integrals or those given by us in 8.6
in such a way that they can be expressed in terms of the elementary master integrals B0 and C0.

The two expressions of A1, which is affected only by a single integration constant α1, in the 
two forms given in section A and in Eq. (13.1), show quite directly that J4[000] can be expressed in 
terms of the elementary master integrals present in the perturbative expansion. Direct checks for 
the other J integrals appearing in the expressions of A2, A3 . . . and so on, are harder to perform, 
since each of these form factors depends on at least two J integrals, as evident from Eq. (13.1).

14.1. Coordinate space analysis

We should mention that this result is not unexpected, since it had been shown in ([20] sec-
tion 3) that the solution for the T JJ (but also for the TOO and JJJ ) in coordinate space 
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presented by Osborn and Petkou [1] could be completely reproduced by the simple one loop 
diagrams of scalar QED and QED using fermion and scalar sectors. These correlators had been 
shown to be “completely integrable”, in the words of [20], which meant that it was possible for 
such expressions to proceed with a direct Fourier transform to momentum space without the need 
of introducing an extra regulator (ω) for the transform.

The fact that the nonperturbative solutions are mirrored by the perturbative ones, shows that 
result obtained at one loop in the perturbative description are automatically inherited by the 
nonperturbative one, being identical in the case of 3-point functions. The complex machinery of 
the general solutions, both in coordinate and in position space, can be completely reproduced by a 
simple one-loop analysis. Since conformal symmetry for 3-point functions is “saturated” at one 
loop, this explains why radiative corrections in such correlators which preserve the conformal 
symmetry are necessarily bound to be proportional to the one-loop result, as in the case of the 
AV V diagram, for instance.

We are then entitled to come to immediate conclusions concerning the analysis presented in 
[7] in regards to the emergence of anomaly poles in one-loop QED, which are not artifact of 
perturbation theory, but are naturally part of the nonperturbative solution and are protected by 
the conformal symmetry.

15. Summary and conclusions

We have presented a general discussion of the transition from position to momentum space 
in the analysis of tensor correlators, clarifying some aspects of the realization of the conformal 
generators in this space. We have illustrated how to handle the derivative of the δ functions of 
momentum conservation, giving a direct derivation of the correct forms of the equations. We 
have also shown how to proceed with the treatment of the dependent momentum, when acting 
with the conformal generator on each of the independent momenta.

Then we have moved toward a direct analysis of the T JJ vertex, detailing some of the 
involved intermediate steps, technically demanding, used in the BMS reconstruction of such 
correlator.

In a recent work [22] we have presented the physical motivations, derived from combined 
perturbative and non perturbative studies of the T JJ vertex, why anomaly poles in anomaly 
vertices should be considered the key signature of the conformal anomaly. The goal of this work 
has been to fill in the intermediate steps of our previous analysis. The presence of such massless 
degrees of freedom generated in the presence of anomalies shows that they are not an artifact of 
perturbation theory.

We have studied a simple instantiation of such vertex in massless QED, and confronted it with 
the general approach for solving the conformal constraints in momentum space for scalars [7,11]
and tensor correlators [11,13]. Such solutions do not rely on any Lagrangian realization and are, 
therefore, very general. In this way it is possible to establish an important connection between 
perturbative and non-perturbative approaches, in the analysis of specific correlators, which brings 
to significant simplifications of the general result.

Even though massless QED is not a conformal theory, the violation of conformality is asso-
ciated to the β-function of the running coupling constant and, exactly for this reason, specific 
correlation functions containing one or more insertions of stress–energy tensors play, in this con-
text, an important role, due to the trace anomaly.

There has been considerable interest in the analysis of the breaking of the conformal sym-
metry in realistic non-conformal theories such as QED and QCD, and in their manifestations 
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through higher perturbative orders [26,27]. In this respect, the analysis of exact solutions, at least 
for 3-point functions, may shed light on the manifestation of the conformal breaking, which is 
obviously associated to a non-zero β function and, according to our analysis and to the analysis 
of [4,5,7], is accompanied by the appearance of an anomaly pole in the effective action.

We have shown that the one loop result in perturbation theory saturates the nonperturbative 
solutions. This implies that the main master integrals necessary to expand the nonperturbative re-
sult should turn out to be just B0 and C0, in agreement with former analysis in coordinate space. 
These analyses share the goal of establishing the form of the anomaly action and address its non-
locality, given their role in describing the breaking of conformal symmetry. It is not surprising, 
therefore, that such massless interactions have received attention in the investigation of the role 
of the chiral and of the conformal anomalies in topological insulators and in Weyl semi-metals, 
as recently emphasized in [8,9]. The study of such materials provides a direct application of the 
properties of the vertices that we have been interested in. Obviously, the parallel study of per-
turbative and non-perturbative methods stops at the level of 3-point functions, since higher point 
functions need to be bootstrapped. However, the connection found in our work clearly indicate 
that the possibility of studying a skeleton expansion of realistic field theories, with conformal 
vertices arrested to one-loop order, could provide a complementary way to investigate the boot-
strap program for higher point functions is CFT’s.

One obvious question, emerging from this analysis, is if this result can be generalized to more 
complex correlators, such as the TTT, where more integration constants are present and for which 
a coordinate space analysis of such correlator has not been related to the free field theory result. 
We plan to address this issue in related work.
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Appendix A. Form factors contributions

A.1. Form factors Ai in d dimensions

We present the expressions of the form factors Ai in the massless limit in D-dim. These 
relations will be functions of the three invariants s, s1 and s2 and we have defined σ = s2 −
2s(s1 + s2) + (s1 − s2)

2 and γ = s − s1 − s2

A1,d (s, s1, s2) = 16π2e2s2

(d − 2)(d − 1)dσ 4

{
2γ

[− 2s2(s + 2s1) + (s − s1)
2 + s2

2

](
s2 + s γ

− (s1 − s2)
2)− 2d3s1s2γ

[
(s1 − s2)

2 − s2]+ 4d2s1s2
[
s2(s1 + s2) − (γ + s)(s1 − s2)

2

− 4s s1 s2
]+ s2d

(
5s2 + 12ss1 − 5s2

1

)
(s − s1)

2 − 2s2
2

(
5s3 + 12s2s1 + 17ss2

1 − 2s3
1

)
− 5s4

2(s + s1) − (s − s1)
5 + s5

2 + 2s3
2(5s + s1)(s + 2s1)

}
B0(s) − 4π2e2 s1

4
(d − 2)(d − 1)d σ
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×
{

8d3s2 s2(s + s1 − s2)γ
2 + 2d

[
s6 − 2s5(s1 + 3s2) − s4(s1 − 3s2)(5s1 + 3s2)

+ 4s3s1
(
5s2

1 + 2s1s2 − 11s2
2

)− s2(s1 − s2)
(
25s3

1 + 37s2
1s2 + 59s1s

2
2 − 9s3

2

)
+ 2s(s1 − s2)

3(7s2
1 + 12s1s2 − 3s2

2

)− (s1 − s2)
5(3s1 − s2)

]+ d2[s6 − 2s5(3s1 + 5s2)

+ (s1 − s2)
6 + s4(15s2

1 + 50s1s2 + 31s2
2

)− 4s3(5s3
1 + 17s2

1s2 − 9s1s
2
2 + 11s3

2

)
+ s2(s1 − s2)

(
15s3

1 + 35s2
1s2 + 77s1s

2
2 − 31s3

2

)− 2s(s1 − s2)
4(3s1 + 5s2)

]+ 8s1(γ

+ 2s2)
(
2s2 − s(s1 + s2) − (s1 − s2)

2)(σ − 2ss2
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(d − 2)(d − 1)dσ 4
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{
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2
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1 − 9s2
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2
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2
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1 − 108s3
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1s2
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3
2 + 15s4

2

)
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4(5s1 + 3s2) + (s1 − s2)
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[
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2
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2
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3
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2

)
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3(3s2
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2

)− (s1 − 3s2)(s1 − s2)
5]+ 8s2

[
2s5 − 7s4(s1 + s2)

+ s3(− 4s2
1 + 8s1s2 + 8s2

2

)+ s2(8s3
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1s2 − 2s3
2
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2
2 + 3s3
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)}
C0(s, s1, s2) (A.1)

A2,d (s, s1, s2) = − 4π2e2 s2
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2(s + s1)(3s
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3]− 2d2[s5 + s4(8s1 − 6s2) − 2s3(14s2

1 + s1s2 − 7s2
2

)
+ 2s2(s1 − s2)

(
15s2

1 + 9s1s2 + 8s2
2

)− s(s1 − s2)
3(13s1 + 9s2) + 2(s1 − s2)

5]− 2dσ

× [
s3 − 12s2s1 + 3s(s1 − s2)(3s1 + s2) − 2(s1 − s2)

3]− 8s s2(s + s1 − s2)(σ − 2s s1)

}

× B0(s2) + 8π2e2s2

3 s1s2

{
− d2σ γ + d

(
2s γ + σ

)
γ + 8ss1s2

}
C0(s, s1, s2) (A.2)
(d − 2)dσ
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A3,d (s, s1, s2) = − 4π2e2s2

(d − 2)(d − 1)dσ 3

{
4γ (s − s1 + s2)

(
σ − 2s2 s1

)− 3dσ
(−2s2(s+

3s1) + (s − s1)
2 + s2

2

)+ d2[2s2
2

(
3s2 + 18ss1 + 19s2

1

)− 4s3
2(s + 7s1) − 4s2(s + 3s1)

× (s − s1)
2 + (s − s1)

4 + s4
2

]+ 4dσ s1s2

}
B0(s) + 2π2e2s1

(d − 2)(d − 1)dσ 3

{
d3σ

[
s3 + 3s2

× (s2 − s1) + s(s1 − s2)(3s1 + 5s2) − (s1 − s2)
3]+ d2[s4(17s1 + 7s2) − 3s5 − 2s3

× (
19s2

1 + 14s1s2 − 9s2
2

)+ 2s2(21s3
1 + 5s2

1s2 + 31s1s
2
2 − 25s3

2

)− s(s1 − s2)
3(23s1

+ 33s2) + 5(s1 − s2)
5]+ 2dσ

[
2s3 − 3s2(3s1 + s2) + 2s(2s1 − s2)(3s1 + 5s2) − (5s1

− 3s2)(s1 − s2)
2]+ 8s1σ(s − s1 + s2)

2
}
B0(s1) + 2π2e2s2

(d − 2)(d − 1)dσ 3

{
d3σ

[
s3 + 3s2(s1

− s2) + s
(− 5s2

1 + 2s1s2 + 3s2
2

)+ (s1 − s2)
3]− d2[s5 + 7s4(s1 − s2) − 6s3(5s2

1

+ 6s1s2 − 3s2
2

)+ 2s2(19s3
1 + 7s2

1s2 + 17s1s
2
2 − 11s3

2

)− s(s1 − s2)
3(19s1 + 13s2)

+ 3(s1 − s2)
5]+ 2dσ

[
s2(3s1 + s2) − 2s

(
2s2

1 + 5s1s2 + s2
2

)+ (s1 − s2)
2(s1 + s2)

]− 8s2

× [− s4 + 2s3(2s1 + s2) − 2s(s1 − s2)
2(2s1 + s2) + (s1 − s2)

4]}B0(s2) − 8π2e2s2s1s2

(d − 2)dσ 3

×
{
d2[γ σ + 2(s1 + s2)(s1 − s2)

2]− d
[
s3 − s2(3s1 + 7s2) + s

(
3s2

1 + 2s1s2 + 11s2
2

)
− s3

1 + 5s2
1s2 + s1s

2
2 − 5s3

2

]+ 8s1s2(s − s1 + s2)

}
C0(s, s1, s2) (A.3)

A4,d (s, s1, s2) = 2π2e2s2γ

(d − 2)(d − 1)dσ 2

{
d2σ + 4(σ − 2s1s2) − d

[
3σ − 8s1s2

]}
B0(s)

− π2e2s1

(d − 2)(d − 1)dσ 2

{
d3σ 2 + 8s1(s − s1 + s2)(σ − 2s s2) − d2σ

(
3s2 − 4s(2s1 + 3s2)

+ 5(s1 − s2)
2)+ 2d

[
2s4 − 11s3(s1 + s2) + s2(21s2

1 + 24s1s2 + 19s2
2

)− s(s1 − s2)

× (
17s2

1 + 12s1s2 − 13s2
2

)+ (s1 − s2)
3(5s1 − 3s2)

]}
B0(s1,0,0) − π2e2s2

(d − 2)(d − 1)dσ 2

×
{
d3σ 2 + d2σ

[− 3s2 + 4s(3s1 + 2s2) − 5(s1 − s2)
2]+ 2d

[
2s4 − 11s3(s1 + s2)

+ s2(19s2
1 + 24s1s2 + 21s2

2

)+ s
(− 13s3

1 + 25s2
1s2 + 5s1s

2
2 − 17s3

2

)+ (s1 − s2)
3(3s1

− 5s2)
]+ 8s2

(
s3 − 3s2(s1 + s2) − 3s

(
s2

1 − s2
2

)+ (s1 − s2)
3)}B0(s2,0,0)

+ 4π2e2s2s1s2

(d − 2)dσ 2 (dσ + 8s1s2)C0(s, s1, s2) (A.4)

A.2. Form factors Fi in d-dim

We present here the expressions of the invariant amplitudes in the massless limit in d-
dimensions, previously given in d = 4. These expressions will be functions of the three invariants 
s = p2, s2 = p2 and s2 = p2 and are explicitly given as
1 1 3
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F1,d (s, s1, s2,0) = 2π2 e2(d − 4)

3(d − 2)(d − 1)d σ 3

{
2s3

2

[
(8 − 9d)s2 + 2s s1d(3d − 8) + 4s s1 + (2d

− 3)d s2
1

]− s2(s − s1)
2[(13d − 16)s2 − 2(d − 4)(2d − 1)s s1 + d(4d − 7)s2

1

]
+ 2s2

2

[
(11d − 12)s3 + 3(5 − 2d)ds2 s1 + 3(3 − 4d)d s s2

1 + 12s s2
1 + d(2d − 3)s3

1

]
+ s4

2

[
(7d − 4)s + (7 − 4d)ds1

]+ (s − s1)
4[(3d − 4)s − d s1

]− d s5
2

}
B0(s)

+ 2π2 e2(d − 4)s1

3(d − 2)(d − 1)d s σ 3

{
2s3

2

[− d2(s2 + 10s s1 + 5s2
1) + d(s + s1)(s + 9s1)

+ 4s1(2s + s1)
]− 2ds2

2

[
(d − 1)s3 + (13 − 7d)s2 s1 + (9 − 5d)s s2

1 + (11 − 5d)s3
1

]
+ s4

2

[
3(d − 1)d s + d s1(5d − 7) − 4s1

]+ (d − 1)s2(s − s1)
2[d(s − s1)(3s + 5s1)

+ 8s1(2s + s1)
]− (s − s1)

4[(d − 1)d s − s1(d − 3) − 4s1
]− (d − 1)d s5

2

}
B0(s1)

+ 2π2 e2(d − 4)s2

3(d − 2)(d − 1)d s σ 3

{
d2[2s3

2(5s2 + 6s s1 + 5s2
1) − 2s2

2(5s3 + 3s2 s1 − 5s s2
1 + 5s3

1)

+ s2(s − s1)(5s3 + s2 s1 + 15s s2
1 − 5s3

1) − 5s4
2(s + s1) − (s − s1)

4(s + s1) + s5
2

]
+ dσ

[
7s2

2(s + s1) − 5s2(s − s1)
2 + (s − s1)

2(s + s1) − 3s3
2

]+ 4s2γ (s + s1 − s2)

× [
σ − 2s s1

]}
B0(s2) − 4π2 e2(d − 4)s1 s2 γ

3(d − 2)d σ 3

{
d
[− s3 + 3s2(s1 + s2)

− (s1 − s2)
2(γ + 2s)

]+ 8s s1 s2

}
C0(s, s1, s2) (A.5)

F2,d (s, s1, s2) = 4π2 e2(d − 4)

3(d − 2)(d − 1)d σ 3

{
2s2[2d2 s1 s2 − 3(d − 2)s2

1 − 3(d − 2)s2
2

]
− (d − 4)s4 + 4(d − 3)s3(s1 + s2) + 4(d − 1)s(s1 + s2)

[
s2

1 − 4s1 s2 + s2
2

]− d(s1 − s2)
2

× [
2(2d − 3)s1 s2 + s2

1 + s2
2

]}
B0(s) − 4π2 e2(d − 4)s1

3(d − 2)(d − 1)d s σ 3

{
4d2 s s2

[
(s − s2)

2 − s2
1

]
+ d σ(σ − 4s s2) + 4s1(s − s1 + s2)(σ − 2s2 s)

}
B0(s1,0,0) − 4π2 e2(d − 4)s2

3(d − 2)(d − 1)d s σ 3

×
{

4d2s s1
[
(s − s1)

2 − s2
2

]+ dσ(σ − 4s s1) + 4s2(s + s1 − s2)(σ − 2s s1)

}
B0(s2,0,0)

+ 8π2(d − 4)e2 s1 s2

3(d − 2)dσ 3

{
8s s1 s2 + d γ

[
s2 − (s1 − s2)

2]}C0(s, s1, s2) (A.6)

F3,d (s, s1, s2) = F5,d (s, s2, s1) = π2 e2

3(d − 2)(d − 1)dσ 4

{
s5

2

[− 3(d(5d − 21) + 8)s2

+ 4(d(11 − d(4d + 9)) + 8)s s1 + 3(d − 1)d(4d − 7)s2
1

]− s2(s − s1)
4[((d − 1)d + 24

)
× s2 + 8

(
d((d − 2)d + 8) − 4

)
s s1 + (d − 1)d(4d − 9)s2

1

]+ s4
2

[
2
(
5d(2d − 11) + 84

)
s3

+ (
d(d(32d − 35) − 121) + 64

)
s2 s1 + 2

(
d(3d(4d − 17) + 74) + 4

)
s s2

1 − (d − 1)d

× (8d − 13)s3
1

]+ s2
2(s − s1)

2[6((d − 6)d + 28
)
s3 + (

d(d(4d − 93) + 37) + 64
)
s2 s1

+ 2
(
(149 − 84d)d + 4

)
s s2 + 3(d − 1)d(4d − 7)s3]+ 8

(
d(d(d + 33) − 50) − 8

)
s s3
1 1 1
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− (d − 1)d(8d − 13)s4
1

]+ s3
2

[(
5(19 − 3d)d − 272

)
s4 − 8d

(
(d − 18)d − 7

)
s3 s1

+ 2
(
d(67 − d(28d + 111)) + 168

)
s2 s2

1 + s6
2

[
2
(
d(3d − 8) − 4

)
s − (d − 1)d(4d − 9)s1

]
+ (s − s1)

6[2(d − 4)s − (d − 1)ds1
]− (d − 1)ds7

2

}
B0(s,0,0) + π2e2s1

6(d − 2)(d − 1)dsσ 4

×
{
d3[s5

2

(
21s2 + 46ss1 + 21s2

1

)+ s2
(
7s2 + 10ss1 + 7s2

1

)
(s − s1)

4 + s4
2

(
19s3

− 105s2s1 − 39ss2
1 − 35s3

1

)− s2
2

(
3s3 − 17s2s1 + 25ss2

1 + 21s3
1

)
(s − s1)

2 + (s − s1)
7

+ s3
2

(− 29s4 + 68s3s1 + 50s2s2
1 + 4ss3

1 + 35s4
1

)− s6
2(17s + 7s1) + s7

2

]
+ d2[− 3s5

2

(
47s2 + 66ss1 + 39s2

1

)+ s2(s − s1)
4(25s2 − 34ss1 − 47s2

1

)+ s4
2

(
169s3

− 85s2s1 + 287ss2
1 + 205s3

1

)− 3s2
2(s − s1)

2(7s3 − 107s2s1 − 47ss2
1 − 45s3

1

)− s3
2

(
71s4

+ 20s3s1 − 38s2s2
1 + 116ss3

1 + 215s4
1

)+ s6
2(49s + 37s1) − (5s − 7s1)(s − s1)

6 − 5s7
2

]
+ 2d

[
2s5

2

(
51s2 + 32ss1 + 29s2

1

)− 2s2(s − s1)
4(11s2 − 24ss1 − 23s2

1

)− s4
2

(
169s3

− 2s2s1 + 65ss2
1 + 120s3

1

)− s2
2(s − s1)

2(3s3 + 82s2s1 + 123ss2
1 + 112s3

1

)+ 2s3
2

(
55s4

− 36s3s1 − 34s2s2
1 + 4ss3

1 + 75s4
1

)− s6
2(25s + 16s1) + (s − s1)

6(5s − 8s1) + 2s7
2

]
+ 16s1

(
s2 + s(7s2 − 2s1) + (s1 − s2)

2)(σ − 2s s2
)
γ (s − s1 + s2)

}
B0(s1,0,0)

+ π2e2s2

6(d − 2)(d − 1)dsσ 4

{
d3[s7 + 7s6(s1 − s2) − 3s5(s1 − s2)(17s1 + 7s2) + s4(115s3

1

− 73s2
1s2 − 39s1s

2
2 − 35s3

2

)+ s3(− 125s4
1 + 116s3

1s2 + 82s2
1s2

2 − 44s1s
3
2 + 35s4

2

)
+ s2(s1 − s2)

(
69s4

1 − 36s3
1s2 − 82s2

1s2
2 − 36s1s

3
2 + 21s4

2

)− s(s1 − s2)
3(17s3

1 + 5s2
1s2

+ 3s1s
2
2 + 7s3

2

)+ (s1 − s2)
7]+ d2[s7 + s6(s2 − 35s1) + s5(165s2

1 + 166s1s2 − 27s2
2

)
− s4(335s3

1 + 381s2
1s2 + 169s1s

2
2 − 85s3

2

)+ s3(355s4
1 + 100s3

1s2 + 498s2
1s2

2 + 4s1s
3
2

− 125s4
2

)− s2(s1 − s2)
(
201s4

1 − 110s3
1s2 + 452s2

1s2
2 + 62s1s

3
2 + 99s4

2

)+ s(s1 − s2)
3

× (
55s3

1 − 69s2
1s2 + 5s1s

2
2 + 41s3

2

)− (5s1 − 7s2)(s1 − s2)
6]+ 2d

[− s7 + 2s6(7s1

+ 11s2) − s5(57s2
1 + 176s1s2 + 87s2

2

)+ 2s4(55s3
1 + 190s2

1s2 + 221s1s
2
2 + 70s3

2

)
− s3(115s4

1 + 288s3
1s2 + 502s2

1s2
2 + 312s1s

3
2 + 95s4

2

)+ 2s2(s1 − s2)
(
33s4

1 + 40s3
1s2

+ 162s2
1s2

2 + 8s1s
3
2 − 3s4

2

)− s(s1 − s2)
3(19s3

1 − 7s2
1s2 + 77s1s

2
2 + 23s3

2

)+ 2(s1 − s2)
5

× (
s2

1 − 3s1s2 + 4s2
2

)]+ 16s2
(
s2 + s(7s2 − 2s1) + (s1 − s2)

2)(σ − 2s s1
)
γ (s + s1

− s2)

}
B0(s2,0,0) + 2π2e2s1s2

3(d − 2)dσ 4

{[
s4

2

(−12(d − 1)ds2 + ((d + 55)d + 16)ss1

− (d − 1)ds2
1

)+ s2(s − s1)
3(3(d − 7)ds2 − ((d + 37)d + 16)ss1 + 2(d − 1)ds2

1

)
+ 2s3

2

(
(5d − 23)ds3 + 6((d + 3)d + 8)s2s1 − (d + 8)(5d + 1)ss2

1 + 2(d − 1)ds3
1

)
− s2

2(s − s1)
(
3(d − 17)ds3 + ((13d + 59)d + 96)s2s1 + ((d − 9)d − 16)ss2

1

− (d − 1)ds3
1

)+ ds5
2(3(d + 1)s − 2(d − 1)s1) − (d − 1)d(s − s1)

5(2s + s1)

+ (d − 1)ds6
2

}
C0(s, s1, s2,0,0,0) (A.7)
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F4,d (s, s1, s2) = F6,d (s, s2, s1) = π2e2

3(d − 2)(d − 1)dσ 4s1

{
2s4[− (

(6d2 + 45d − 31)d

+ 136
)
s1s

2
2 + 5(d(3(2d − 7)d + 35) − 8)s3

1 + 4(d((d − 9)d + 9) − 34)s2
1s2 − 30

× ((d − 3)d + 4)s3
2

]+ 2s2[2(− 39d2 + d + 44
)
s2

1s3
2 + ((3(5d − 18)d + 77)d + 28)s5

1

− ((3(8d − 69)d + 205)d + 92)s4
1s2 + 2(((3d − 64)d + 19)d + 60)s3

1s2
2 + ((3d(d + 10)

− 67)d + 28)s1s
4
2 − 3(3(d − 3)d + 4)s5

2

]+ 3((d − 3)d + 8)s7 + 2s6((d((3d − 16)d

+ 35) − 52)s1 − 3(3(d − 3)d + 20)s2) + s5[((3(39 − 10d)d − 217)d + 160)s2
1

+ 2((−3(d − 17)d − 86)d + 152)s1s2 + 15(3(d − 3)d + 16)s2
2

]+ s3[− 5(((12d − 41)d

+ 63)d + 8)s4
1 + 4(((5d − 61)d + 74)d + 48)s3

1s2 + 2(d(11(2d + 5)d + 61) − 72)s2
1s2

2

+ 4(((3d − 5)d + 36)d + 8)s1s
3
2 + 15(3(d − 3)d + 8)s4

2

]− s(s1 − s2)
2[((3(2d − 9)d

+ 35)d + 16)s4
1 − 2(((11d − 78)d + 55)d + 24)s3

1s2 + 2(d(d(13d + 27) − 34)

− 24)s2
1s2

2 + 2((3d(d + 2) − 5)d + 8)s1s
3
2 − 3(d − 3)ds4

2

]− 2(d − 1)ds1(s1 − s2)
4

× [
2(2d − 3)s1s2 + s2

1 + s2
2

]}
B0(s,0,0) + π2e2

3(d − 2)(d − 1)dsσ 4

{
2d3s

[
s4

2

(
9s2 − 5ss1

+ 8s2
1

)− 2ss3
2

(
3s2 − 12ss1 + s2

1

)+ s2
(
9s2 − ss1 − 4s2

1

)
(s − s1)

3 − 2s2
2

(
3s4 + s3s1

+ s2s2
1 − 9ss3

1 + 4s4
1

)− s5
2(3s + 4s1) − 3s(s − s1)

5]+ d2[12s7 − s6(59s1 + 48s2)

+ 2s5(57s2
1 + 23s1s2 + 36s2

2

)+ s4(− 105s3
1 + 162s2

1s2 + 23s1s
2
2 − 48s3

2

)+ 4s3(10s4
1

− 69s3
1s2 − 45s2

1s2
2 + 13s1s

3
2 + 3s4

2

)+ s2s1(s1 − s2)
(
3s3

1 + 119s2
1s2 + 169s1s

2
2 + 61s3

2

)
− 2ss1(s1 − s2)

3(3s2
1 + 6s1s2 − s2

2

)+ s1(s1 − s2)
6]+ d

[− 9s7 + 16s6(2s1 + 3s2)

− s5(17s2
1 + 62s1s2 + 105s2

2

)− 4s4(s1 − s2)
(
20s2

1 + 53s1s2 + 30s2
2

)+ s3(165s4
1

+ 244s3
1s2 + 14s2

1s2
2 − 124s1s

3
2 − 75s4

2

)− 8s2(s1 − s2)
(
17s4

1 + 22s3
1s2 + 8s2

1s2
2

+ 10s1s
3
2 + 3s4

2

)+ s(s1 − s2)
3(53s3

1 + 57s2
1s2 − s1s

2
2 + 3s3

2

)− 4s1(s1 − s2)
5(2s1 − s2)

]
− 8s1(s − s1 + s2)

(
s2 − 2s(s1 + 2s2) + (s1 − s2)

2)[3s3 − 2s2(2s1 + 3s2) + s
(−s2

1

+ 8s1s2 + 3s2
2

)+ 2s1(s1 − s2)
2]}B0(s1,0,0) + π2e2

6(d − 2)(d − 1)dsσ 4s1

{
d3s

[
s5

2

(
63s2

+ 90ss1 + 79s2
1

)+ 21s3
2(s − s1)

2(5s2 + 6ss1 + 5s2
1

)+ s2(s − s1)
4(21s2 − 18ss1

+ 5s2
1

)− s4
2

(
105s3 + 87s2s1 + 23ss2

1 + 137s3
1

)− s2
2(s − s1)

2(63s3 − 63s2s1 + ss2
1

+ 31s3
1

)− 21s6
2(s + s1) − 3(s − s1)

6(s + s1) + 3s7
2

]+ d2[− 3s5
2

(
93s3 + 100s2s1

+ 89ss2
1 − 10s3

1

)− s2(s − s1)
4(69s3 + 28s2s1 + 65ss2

1 − 2s3
1

)+ s4
2

(
435s4 + 245s3s1

+ 517s2s2
1 + 475ss3

1 − 40s4
1

)+ 3s2
2(s − s1)

2(75s4 + s3s1 − 119s2s2
1 + 79ss3

1 − 4s4
1

)
+ s3

2

(− 405s5 + 210s4s1 + 186s3s2
1 + 328s2s3

1 − 477ss4
1 + 30s5

1

)+ s7
2(2s1 − 15s)

+ 3s6
2(s + s1)(33s − 4s1) + 9s(s − s1)

6(s + s1)
]+ 2d

[
s6

2

(− 3s2 + 17ss1 + 44s2
1

)
− s2

2(s − s1)
2(5s2 + 23ss1 − 4s2

1

)(
9s2 − 8ss1 + 7s2

1

)+ 2s5
2

(
9s3 + 52s2s1 + 39ss2

1

− 50s3
1

)+ 2s2(s − s1)
4(9s3 + 16s2s1 + 15ss2

1 − 2s3
1

)− s4
2

(
45s4 + 339s3s1 + 259s2s2

1

+ 373ss3
1 − 120s4

1

)+ 4s3
2

(
15s5 + 82s4s1 − 80s3s2

1 − 86s2s3
1 + 121ss4

1 − 20s5
1

)
− 3s(s − s1)

6(s + s1) − 8s1s
7]− 16s2(s + s1 − s2)

(
σ − 2s s1

)[
3s3 − 2s2(2s1 + 3s2)
2 2
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+ s
(− s2

1 + 8s1s2 + 3s2
2

)+ 2s1(s1 − s2)
2]}B0(s2,0,0) + π2e2

3(d − 2)dσ 4

×
{

6ds5
2

[− (d − 1)s2 + (d + 11)ss1 − 2(d − 1)s2
1

]− 2ds2(s − s1)
4(3(d − 5)s2

+ (d − 25)ss1 − 2(d − 1)s2
1

)− s4
2

[
3(d + 10)ds3 + 2(5d(d + 2) − 48)s2s1 + (d(11d

+ 38) − 64)ss2
1 − 8(d − 1)ds3

1

]− s2
2(s − s1)

2[3(d + 20)ds3 − 6((3d + 2)d + 16)s2s1

− ((13d + 4)d + 64)ss2
1 + 12(d − 1)ds3

1

]+ 4s3
2

[
3(d + 5)ds4 − (7(d + 5)d + 48)s3s1

+ ((7d + 55)d + 64)s2s2
1 − ((5d + 17)d + 32)ss3

1 + 2(d − 1)ds4
1

]+ ds6
2(3ds

+ 4(d − 1)s1) + 3(d − 2)ds(s − s1)
6
}
C0(s, s1, s2) (A.8)

F7,d (s, s1, s2) = − 2π2e2

3(d − 2)(d − 1)dσ 4γ

{
4(d − 4)s8 − 2(d(d + 10) − 44)s7(s1 + s2)

+ s6
(
(d(11d + 37) − 192)s2

1 + 2(d((4d − 5)d + 5) − 136)s1s2 + (d(11d + 37)

− 192)s2
2

)
− 2s5(s1 + s2)

(
(d(12d + 13) − 100)s2

1 + 2(d(4d(3d − 8) − 23) − 8)s1s2

+ (d(12d + 13) − 100)s2
2

)
+ s4[5(d(5d − 1) − 16)s4

1 + 4((3d − 7)(9d − 1)d + 8)s3
1s2

+ 2(d((20d − 177)d + 57) − 128)s2
1s2

2 + 4((3d − 7)(9d − 1)d + 8)s1s
3
2 + 5(d(5d − 1)

− 16)s4
2

]− 2s3(s1 + s2)
[
((5d − 8)d + 12)s4

1 + 4(((14d − 37)d + 36)d + 8)s3
1s2

− 2(((44d − 47)d + 20)d + 172)s2
1s2

2 + 4(((14d − 37)d + 36)d + 8)s1s
3
2 + ((5d − 8)d

+ 12)s4
2

]− s2[(d(3d + 5) − 32)s6
1 + 2(((61 − 24d)d − 129)d + 8)s5

1s2 + (((48d

− 355)d + 363)d + 448)s4
1s2

2 + 4(d(147d + 73) − 376)s3
1s3

2 + (((48d − 355)d + 363)d

+ 448)s2
1s4

2 + 2(((61 − 24d)d − 129)d + 8)s1s
5
2 + (d(3d + 5) − 32)s6

2

]+ 2s(s1 − s2)
2

× (s1 + s2)
[
(d(2d − 1) − 4)s4

1 + 8(1 − 4d)s3
1s2 + 2((69 − 2d(2d + 25))d + 12)s2

1s2
2

+ 8(1 − 4d)s1s
3
2 + (d(2d − 1) − 4)s4

2

]− (d − 1)d(s1 − s2)
4(s1 + s2)

2(2(2d − 3)s1s2

+ s2
1 + s2

2

)}
B0(s,0,0) − e2π2s1

3(d − 2)(d − 1)dsγ 2σ 4

{[− s9
2 + (28s + 5s1)s

8
2 − 2

(
79s2

+ 45s1s + 4s2
1

)
s7

2 + 2s
(
209s2 + 214s1s + 101s2

1

)
s6

2 − 2
(
316s4 + 427s1s

3 + 195s2
1s2

+ 189s3
1s − 7s4

1

)
s5

2 + 2
(
293s5 + 373s1s

4 − 46s2
1s3 + 130s3

1s2 + 217s4
1s − 7s5

1

)
s4

2 − 2s

× (s − s1)
(
169s4 + 236s1s

3 − 2s2
1s2 − 68s3

1s − 143s4
1

)
s3

2 + 2(s − s1)
3(59s4 + 75s1s

3

+ 33s2
1s2 − 67s3

1s − 4s4
1

)
s2

2 − (s − s1)
5(23s3 − 3s1s

2 − 39s2
1s − 5s3

1

)
s2 + (s − s1)

8

× (2s + s1)
]
d3 + [

5s9
2 − (98s + 27s1)s

8
2 + 2

(
278s2 + 229s1s + 24s2

1

)
s7

2 − 2
(
784s3

+ 875s1s
2 + 533s2

1s + 4s3
1

)
s6

2 + 2
(
1295s4 + 1325s1s

3 + 1790s2
1s2 + 861s3

1s − 39s4
1

)
s5

2

− 2
(
1330s5 + 618s1s

4 + 1515s2
1s3 + 743s3

1s2 + 1023s4
1s − 45s5

1

)
s4

2 + 2(s − s1)
(
854s5

+ 317s1s
4 + 185s2

1s3 + 19s3
1s2 − 803s4

1s + 4s5
1

)
s3

2 − 2(s − s1)
3(328s4 + 221s1s

3

− 358s2
1s2 − 407s3

1s − 24s4
1

)
s2

2 + (s − s1)
5(133s3 + 39s1s

2 − 211s2
1s − 33s3

1

)
s2

− (5s − 7s1)(s − s1)
7(2s + s1)

]
d2 + 2

[− 2s9 + (41s + 12s1)s
8 − (

247s2 + 198s1s
2 2
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+ 28s2
1

)
s7

2 + (
743s3 + 755s1s

2 + 706s2
1s + 20s3

1

)
s6

2 − (
1315s4 + 1048s1s

3 + 2423s2
1s2

+ 1470s3
1s − 32s4

1

)
s5

2 + (
1457s5 + 101s1s

4 + 2431s2
1s3 + 2011s3

1s2 + 1748s4
1s − 68s5

1

)
× s4

2 − (s − s1)
(
1021s5 − 213s1s

4 + 517s2
1s3 − 819s3

1s2 − 1302s4
1s + 28s5

1

)
s3

2 + (s

− s1)
3(437s4 − 20s1s

3 − 595s2
1s2 − 706s3

1s − 28s4
1

)
s2

2 − (s − s1)
5(103s3 − 41s1s

2

− 224s2
1s − 30s3

1

)
s2 + (s − s1)

7(2s + s1)(5s − 8s1)
]
d + 16s1

(
s2 − 2(s1 + 2s2)s

+ (s1 − s2)
2)(s − s1 + s2)

[
2s5 − 7(s1 + s2)s

4 + 2
(
4s2

1 + 7s2s1 + 4s2
2

)
s3 − 2(s1 + s2)

3

× s2 − 2
(
s4

1 + s2s
3
1 − 24s2

2s2
1 + s3

2s1 + s4
2

)
s + (s1 − s2)

2(s1 + s2)
3]}B0(s1)

− e2π2s2

3(d − 2)(d − 1)dsγ 2σ 4

{[
s9

2 − (6s + 5s1)s
8
2 + 2

(
6s2 − 7s1s + 4s2

1

)
s7

2 + 2ss1(71s

+ 55s1)s
6
2 − 2

(
21s4 + 151s1s

3 + 222s2
1s2 + 143s3

1s + 7s4
1

)
s5

2 + 2
(
42s5 + 110s1s

4

+ 221s2
1s3 + 75s3

1s2 + 217s4
1s + 7s5

1

)
s4

2 + 2s
(−42s5 + 35s1s

4 + 66s3
1s2 + 130s4

1s

− 189s5
1

)
s3

2 + 2(s − s1)
2(24s5 − 55s1s

4 − 149s2
1s3 − 5s3

1s2 + 93s4
1s − 4s5

1

)
s2

2

− (s − s1)
4(15s4 − 58s1s

3 − 118s2
1s2 + 70s3

1s − 5s4
1

)
s2 + (s − s1)

6(2s3 − 11s1s
2

+ 22s2
1s − s3

1

)]
d3 + [− 7s9

2 + (40s + 33s1)s
8
2 − 2

(
37s2 − 23s1s + 24s2

1

)
s7

2 − 2
(
7s3

+ 382s1s
2 + 335s2

1s + 4s3
1

)
s6

2 + 2
(
140s4 + 921s1s

3 + 791s2
1s2 + 807s3

1s + 45s4
1

)
s5

2

− 2
(
259s5 + 835s1s

4 − 98s2
1s3 + 822s3

1s2 + 1023s4
1s + 39s5

1

)
s4

2 + 2
(
245s6 + 41s1s

5

− 1002s2
1s4 − 166s3

1s3 − 743s4
1s2 + 861s5

1s − 4s6
1

)
s3

2 − 2(s − s1)
2(133s5 − 196s1s

4

− 562s2
1s3 − 796s3

1s2 + 485s4
1s − 24s5

1

)
s2

2 + (s − s1)
4(79s4 − 310s1s

3 − 188s2
1s2

+ 350s3
1s − 27s4

1

)
s2 − (s − s1)

7(10s2 − 63s1s + 5s2
1

)]
d2 + 2

[
8s9

2 − 15(3s + 2s1)s
8
2

+ (
81s2 − 74s1s + 28s2

1

)
s7

2 + (
21s3 + 779s1s

2 + 622s2
1s + 28s3

1

)
s6

2 − (
315s4

+ 1632s1s
3 + 1439s2

1s2 + 1330s3
1s + 68s4

1

)
s5

2 + (
567s5 + 1165s1s

4 + 325s2
1s3

+ 483s3
1s2 + 1748s4

1s + 32s5
1

)
s4

2 + (− 525s6 + 350s1s
5 + 582s2

1s4 + 1336s3
1s3

+ 2011s4
1s2 − 1470s5

1s + 20s6
1

)
s3

2 + (s − s1)
2(279s5 − 453s1s

4 − 409s2
1s3 − 1095s3

1s2

+ 650s4
1s − 28s5

1

)
s2

2 − (s − s1)
4(81s4 − 232s1s

3 − 83s2
1s2 + 150s3

1s − 12s4
1

)
s2

+ (s − s1)
6(10s3 − 43s1s

2 + 29s2
1s − 2s3

1

)]
d + 16

(
σ − 2s s1

)
(s + s1 − s2)s2

[
2s5

− 7(s1 + s2)s
4 + 2

(
4s2

1 + 7s2s1 + 4s2
2

)
s3 − 2(s1 + s2)

3s2 − 2
(
s4

1 + s2s
3
1 − 24s2

2s2
1

+ s3
2s1 + s4

2

)
s + (s1 − s2)

2(s1 + s2)
3]}B0(s2,0,0) + 4π2e2s1s2

3(d − 2)dσ 4γ 2

{
s6

2

[
d(17 − 11d)s2

+ 2((3d + 19)d + 8)ss1 − 4(d − 1)ds2
1

]+ 2ss5
2

(
2(13d − 22)ds2 − ((11d + 69)d

+ 16)ss1 + (5d + 1)(d + 8)s2
1

)+ 2ss2(s − s1)
4(2(4d − 13)ds2 + ((d + 7)d + 16)ss1

+ ((3d + 19)d + 8)s2
1

)− d(s − s1)
6[2(d − 4)s2 − 4(d − 1)ss1 − (d − 1)s2

1

]+ s4
2

[
5d(37

− 19d)s4 + 4(d(11d + 30) − 8)s3s1 + (d(11d + 63) − 32)s2s2
1 − 2((7d + 61)d

+ 16)ss3
1 + 6(d − 1)ds4

1

]+ 2ss3
2

[
(47d − 107)ds4 + 2(d(35 − 19d) + 32)s3s1 − 24((d

+ 9)d + 2)s2s2 + 2((11d + 61)d + 192)ss3 − ((7d + 61)d + 16)s4]− s2(s − s1)
2[(53d
1 1 1 2
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− 143)ds4 + 4((3d + 11)d + 28)s3s1 − d(19d + 239)s2s2
1 − 2((d + 45)d + 8)ss3

1

+ 4(d − 1)ds4
1

]− 2(d − 1)dss7
2 + (d − 1)ds8

2

}
C0(s, s1, s2) (A.9)

F8,d (s, s1, s2) = − 4π2e2

3(d − 2)(d − 1)dσ 4

{(
d2 + d + 16

)
s6 + (d(3(d − 4)d + 11) − 56)

× s5(s1 + s2) + s4[((3(13 − 4d)d − 55)d + 64)s2
1 + 2((d(4d + 21) − 21)d + 56)s1s2

+ ((3(13 − 4d)d − 55)d + 64)s2
2

]+ 2s3(s1 + s2)
[
(d((9d − 28)d + 45) − 8)s2

1 − 4(((5d

− 8)d + 14)d + 10)s1s2 + (d((9d − 28)d + 45) − 8)s2
2

]+ s2[− ((3(4d − 13)d + 65)d

+ 16)s4
1 + 4((3(d − 9)d + 34)d + 20)s3

1s2 + 2(d(85d − 7) − 144)s2
1s2

2 + 4((3(d − 9)d

+ 34)d + 20)s1s
3
2 − ((3(4d − 13)d + 65)d + 16)s4

2

]+ s(s1 − s2)
2(s1 + s2)

[
((3(d − 4)d

+ 19)d + 8)s2
1 − 2(((d − 36)d + 37)d + 16)s1s2 + ((3(d−4)d + 19)d + 8)s2

2

]+ (d−1)

× d(s1 − s2)
4(2(2d − 3)s1s2 + s2

1 + s2
2

)}
B0(s) + π2e2

3(d − 2)(d − 1)dsσ 4(s − s1 − s2)

×
{
s
[
3s7

2 − 5(3s + s1)s
6
2 + (

27s2 + 82s1s + 47s2
1

)
s5

2 − (
15s3 + 287s1s

2 + 105s2
1s

+ 137s3
1

)
s4

2 + (− 15s4 + 428s1s
3 − 66s2

1s2 + 92s3
1s + 137s4

1

)
s3

2 + (s − s1)
(
27s4

− 280s1s
3 − 18s2

1s2 + 32s3
1s + 47s4

1

)
s2

2 − (s − s1)
3(s + s1)

(
15s2 − 68s1s + 5s2

1

)
s2

+ 3(s − s1)
5(s + s1)

2]d3 + [− 9s8 + (53s1 + 45s2)s
7 − (

155s2
1 + 264s2s1 + 81s2

2

)
s6

+ (
297s3

1 + 691s2s
2
1 + 599s2

2s1 + 45s3
2

)
s5 − (

385s4
1 + 822s2s

3
1 + 196s2

2s2
1 + 818s3

2s1

− 45s4
2

)
s4 + (

319s5
1 + 275s2s

4
1 − 2s2

2s3
1 − 1346s3

2s2
1 + 707s4

2s1 − 81s5
2

)
s3 − (s1 − s2)

× (
153s5

1 − 59s2s
4
1 + 590s2

2s3
1 + 990s3

2s2
1 − 311s4

2s1 + 45s5
2

)
s2 + (s1 − s2)

3(35s4
1

− 42s2s
3
1 + 116s2

2s2
1 − 54s3

2s1 + 9s4
2

)
s − 2s1(s1 − s2)

6(s1 + s2)
]
d2 + 2

[
3s8 − (13s1

+ 15s2)s
7 + (

53s2
1 + 32s2s1 + 27s2

2

)
s6 − (

183s3
1 + 77s2s

2
1 + 29s2

2s1 + 15s3
2

)
s5

+ (
365s4

1 + 108s2s
3
1 − 390s2

2s2
1 + 60s3

2s1 − 15s4
2

)
s4 + (−403s5

1 + 79s2s
4
1 + 490s2

2s3
1

+ 1030s3
2s2

1 − 135s4
2s1 + 27s5

2

)
s3 + (s1 − s2)

(
243s5

1 − 37s2s
4
1 + 94s2

2s3
1 + 758s3

2s2
1

− 113s4
2s1 + 15s5

2

)
s2 − (s1 − s2)

3(73s4
1 + 30s2s

3
1 + 156s2

2s2
1 − 38s3

2s1 + 3s4
2

)
s + 4s1

× (s1 − s2)
5(2s1 − s2)(s1 + s2)

]
d + 32s2

1

(
s2 − 2(s1 + 2s2)s + (s1 − s2)

2)(s − s1 + s2)

× [
2s3 − 3(s1 + s2)s

2 + 10s1s2s + (s1 − s2)
2(s1 + s2)

]}
B0(s1)

+ π2e2

3(d − 2)(d − 1)dsσ 4(s − s1 − s2)

{
s
[− 3s7

2 + (9s + 5s1)s
6
2 − (

3s2 + 78s1s + 47s2
1

)
× s5

2 + (− 15s3 + 151s1s
2 + 15s2

1s + 137s3
1

)
s4

2 + (s − s1)
(
15s3 − 5s1s

2 + 45s2
1s

+ 137s3
1

)
s3

2 + (s − s1)
2(3s3 − 135s1s

2 − 11s2
1s + 47s3

1

)
s2

2 − (s − s1)
4(9s2 − 62s1s

+ 5s2
1

)
s2 + 3(s − s1)

6(s + s1)
]
d3 + [− 2s8

2 + 5(7s + 2s1)s
7
2 − 3

(
51s2 + 49s1s + 6s2

1

)
× s6

2 + (
319s3 + 212s1s

2 + 347s2
1s + 10s3

1

)
s5

2 + (− 385s4 + 275s1s
3 − 649s2

1s2

− 563s3s + 10s4)s4 + (
297s5 − 822s1s

4 − 2s2s3 − 400s3s2 + 561s4s − 18s5)s3

1 1 2 1 1 1 1 2
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− (s − s1)
2(155s4 − 381s1s

3 − 721s2
1s2 + 285s3

1s − 10s4
1

)
s2

2 + (s − s1)
4(53s3 − 52s1s

2

+ 73s2
1s − 2s3

1

)
s2 − 9s(s − s1)

6(s + s1)
]
d2 + 2

[
8s8

2 − (73s + 36s1)s
7
2 + (

243s2

+ 189s1s + 56s2
1

)
s6

2 − (
403s3 + 280s1s

2 + 285s2
1s + 20s3

1

)
s5

2 + (
365s4 + 79s1s

3

+ 131s2
1s2 + 489s3

1s − 40s4
1

)
s4

2 + (−183s5 + 108s1s
4 + 490s2

1s3 + 664s3
1s2 − 555s4

1s

+ 52s5
1

)
s3

2 + (s − s1)
2(53s4 + 29s1s

3 − 385s2
1s2 + 231s3

1s − 24s4
1

)
s2

2 − (s − s1)
4(13s3

+ 20s1s
2 + 31s2

1s − 4s3
1

)
s2 + 3s(s − s1)

6(s + s1)
]
d + 32

(
σ − 2s s1

)
(s + s1 − s2)s

2
2

× [
2s3 − 3(s1 + s2)s

2 + 10s1s2s + (s1 − s2)
2(s1 + s2)

]}
B0(s2,0,0)

− 2π2e2

3(d − 2)dσ 4(s − s1 − s2)

{
d2[3s5(s1 + s2) − 4s4(3s2

1 − 2s1s2 + 3s2
2

)+ 2s3(s1 + s2)

× (
9s2

1 − 20s1s2 + 9s2
2

)− 12s2(s1 − s2)
2(s2

1 + s1s2 + s2
2

)+ s(s1 − s2)
2(s1 + s2)

(
3s2

1

− 2s1s2 + 3s2
2

)+ 4s1s2(s1 − s2)
4](−s + s1 + s2)

2 − 2d
[
3s7(s1 + s2) − 2s6(9s2

1

+ 13s1s2 + 9s2
2

)+ s5(s1 + s2)
(
45s2

1 + 8s1s2 + 45s2
2

)− 2s4(30s4
1 + 5s3

1s2 + 74s2
1s2

2

+ 5s1s
3
2 + 30s4

2

)+ s3(s1 + s2)
(
45s4

1 − 120s3
1s2 + 286s2

1s2
2 − 120s1s

3
2 + 45s4

2

)− 2s2

× (
9s6

1 − 41s5
1s2 + 7s4

1s2
2 + 82s3

1s3
2 + 7s2

1s4
2 − 41s1s

5
2 + 9s6

2

)+ s(s1 − s2)
2(s1 + s2)

3

× (
3s2

1 − 32s1s2 + 3s2
2

)+ 2s1s2(s1 − s2)
4(s1 + s2)

2]+ 64ss2
1s2

2

(
2s3 − 3s2(s1 + s2)

+ 10ss1s2 + (s1 − s2)
2(s1 + s2)

)}
C0(s, s1, s2) (A.10)

F9,d (s, s1, s2) = F10,d (s, s2, s1) = 4π2e2s

(d − 2)(d − 1)dσ 3γ

{
− 2s2(s − s1)

2[(d3 − 5d + 8
)
s

− d((d − 8)d + 11)s1
]+ 2s2

2

[
(d + 4)((d − 3)d + 4)s2 + 2(d + 2)((d − 7)d + 8)ss1

− (d − 4)d(3d − 5)s2
1

]+ 2s3
2

[
(d((d − 4)d + 7) − 8)s + (3(d − 4)d + 13)ds1

]+ (d − 3)

× d(s − s1)
4 + ((5 − 2d)d − 5)ds4

2

}
B0(s) − 2π2e2

(d − 2)(d − 1)dσ 3γ 2

{
d3σ

[
s4 − 4s3

× (s1 + 2s2) + 2s2(3s2
1 + 6s1s2 + 7s2

2

)− 4s
(
s3

1 + s1s
2
2 + 2s3

2

)+ (s1 − s2)
4]

+ d2[− s4
2

(
123s2 + 112ss1 + 69s2

1

)+ 2s2(s − s1)
3(21s2 − 19ss1 − 18s2

1

)+ 4s3
2

(
43s3

+ 10s2s1 + 11ss2
1 + 24s3

1

)− s2
2(s − s1)

(
123s3 − 53s2s1 − 23ss2

1 − 79s3
1

)+ 14s5
2(3s

+ 2s1) − (5s − 7s1)(s − s1)
5 − 5s6

2

]+ 2dσ
[
s2

2

(
26s2 + 19ss1 + 23s2

1

)+ s2
(−16s3

+ 33s2s1 + 2ss2
1 − 19s3

1

)− s3
2(16s + 13s1) + 3(s − s1)

3(s − 2s1) + 3s4
2

]− 32s2
1s2

× (s − s1 + s2)
(
s2 − 2s(s1 + 2s2) + (s1 − s2)

2)}B0(s1) + 4π2e2s2

(d − 2)(d − 1)dσ 3γ 2

×
{

2(d − 1)s3
2

[
((7d − 19)d + 24)s2 + 4(d − 4)dss1 + ((5d − 21)d + 24)s2

1

]+ ds2

× (s − s1)
2[((d − 6)d + 13)s2 − 2((3d − 22)d + 27)ss1 + ((5d − 22)d + 25)s2

1

]− 2s2
2

× [
(d((5d − 18)d + 29) − 8)s3 − (5d − 3)((d − 5)d + 8)s2s1 + ((−5(d − 6)d − 57)d

+ 24)ss2 + (d((5d − 24)d + 35) − 8)s3]+ s4[(((30 − 7d)d − 55)d + 48)s − (d − 3)
1 1 2
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× ((5d − 13)d + 16)s1
]+ (d − 1)d(s − s1)

4[(d − 1)s − (d − 3)s1
]+ (d((d − 6)d + 13)

− 16)s5
2

}
B0(s2) − 4π2e2ss2

(d − 2)dσ 3γ 2

{
d2σ(s − s1 + s2)γ

2 + 2d
[− 2s2

2

(
s3 + 5s2s1 − ss2

1

+ 3s3
1

)+ s4
2(3s + 4s1) + 2ss3

2(s1 − s) + s2(s − s1)
2(s + s1)(3s + s1) − (s − 2s1)

× (s − s1)
4 − s5

2

]+ 64ss2
1s2

2

}
C0(s, s1, s2) (A.11)

F11,d (s, s1, s2) = F12,d (s, s2, s1) = 2π2e2s

(d − 2)(d − 1)dσ 3s2

{
2s2(s − s1)

[
4
(
d2 + d − 3

)
ss1

+ (d − 3)((d − 1)d + 4)s2 − d((d − 8)d + 11)s2
1

]− 2s2
2

[
3(d − 2)((d − 1)d + 2)s2

+ 2(d − 1)((d − 2)d + 6)ss1 + (3d − 5)(d − 4)ds2
1

]+ 2s3
2

[
(d − 1)((3d − 5)d + 4)s

+ (3(d − 4)d + 13)ds1
]+ (s − s1)

3[((d − 3)d + 8)s − (d − 3)ds1
]+ ((5 − 2d)d − 5)

× ds4
2

}
B0(s,0,0) − π2e2

(d − 2)(d − 1)dσ 3s2

{
d3σ

[
s2
(− s2 + 6ss1 + 3s2

1

)− s2
2(s + 3s1)

+ (s − s1)
3 + s3

2

]+ d2[− 2s3
2

(
3s2 + 10ss1 + 19s2

1

)− 2s2
2(s − 3s1)

(
3s2 + 6ss1 + 7s2

1

)
+ s2(s − s1)

(
9s3 − 11s2s1 + 11ss2

1 + 23s3
1

)+ s4
2(9s + 17s1) − (3s − 5s1)(s − s1)

4

− 3s5
2

]+ 2dσ
[
s3 − s2(2s1 + s2) + s

(
s2

1 − 8s1s2 − s2
2

)+ s2(s1 − s2)
2]+ 16s2

1

(
s2

− 2s(s1 + 2s2) + (s1 − s2)
2)(s − s1 + s2)

}
B0(s1) − 2π2e2

(d − 2)(d − 1)dσ 3

{
2d3sσ (s − s1

− s2) + d2[− 5s4 + 8s3(3s1 + 2s2) − 2s2(17s2
1 + 6s1s2 + 9s2

2

)+ 8s(s1 − s2)(2s1 − s2)

× (s1 + s2) − (s1 − s2)
4]+ dσ

(
5s2 − 8s(2s1 + s2) + 3(s1 − s2)

2)+ 8s2
(
s2 − 2s(2s1

+ s2) + (s1 − s2)
2)(s + s1 − s2)

}
B0(s2) + 2π2e2s

(d − 2)dσ 3

{
2ds2

2

(
3(d − 2)s2 + (d − 5)ss1

− 5s2
1

)+ d(s − s1)
2((d − 2)s2 − (d − 4)s2

1 + 6ss1
)+ 2s2

(−2(d − 2)ds3 + (d − 5)

× ds2s1 + 2(d + 8)ss2
1 + (d − 1)ds3

1

)− 2ds3
2(2(d − 2)s + (d − 5)s1) + (d − 2)ds4

2

}
× C0(s, s1, s2) (A.12)

F13,d (s, s1, s2) = 2π2e2s2

(d − 2)(d − 1)dσ 2

{
− 2s2

[
((d − 3)d + 4)s + [

(d − 7)d + 8
]
s1
]

+ ((d − 3)d + 4)(s − s1)
2 + ((d − 3)d + 4)s2

2

}
B0(s) − π2e2s1

(d − 2)(d − 1)dσ 2(s − s1 − s2)

×
{
d3σ 2 − d2[3s4 − 2s3(7s1 + 9s2) + 8s2(3s2

1 + 3s1s2 + 4s2
2

)− 2s(s1 − s2)
2(9s1

+ 11s2) + 5(s1 − s2)
4]+ 2d

[
2s4 − 11s3(s1 + s2) + s2(21s2

1 + 24s1s2 + 19s2
2

)
+ s

(−17s3
1 + 5s2

1s2 + 25s1s
2
2 − 13s3

2

)+ (s1 − s2)
3(5s1 − 3s2)

]+ 8s1
(
s3 − 3s2(s1 + s2)

+ 3s
(
s2

1 − s2
2

)− (s1 − s2)
3)}B0(s1) − π2e2s2

(d − 2)(d − 1)dσ 2γ

{
d3σ 2 − d2[3s4 − 2s3(9s1

+ 7s2) + 8s2(4s2
1 + 3s1s2 + 3s2

2

)− 2s(s1 − s2)
2(11s1 + 9s2) + 5(s1 − s2)

4]+ 2d
[
2s4

− 11s3(s1 + s2) + s2(19s2 + 24s1s2 + 21s2)+ s
(− 13s3 + 25s2s2 + 5s1s

2 − 17s3)

1 2 1 1 2 2
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+ (s1 − s2)
3(3s1 − 5s2)

]+ 8s2
[
s3 − 3s2(s1 + s2) − 3s

(
s2

1 − s2
2

)+ (s1 − s2)
3]}B0(s2)

+ 4π2e2s2s1s2(dσ + 8s1s2)

(d − 2)dσ 2γ
C0(s, s1, s2) (A.13)
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