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Abstract. I discuss some properties of the algebraic cluster model which is based on the
introduction of a spectrum generating algebra for the relative motion of the clusters. Particular
attention is paid to the permutation symmetry of identical clusters. As an example, it is shown
how the method can be used to study α-cluster configurations in 12C and 16O with point group
symmetries, D3h and Td, respectively.

1. Introduction
The binding energy per nucleon for light nuclei shows large oscillations with maxima for nuclei
with A = 4n and Z = N , indicating the importance of α-cluster phenomena in these nuclei.
There exists a large literature on α cluster models to describe the spectral properties of nuclei
like 12C and 16O [1, 2, 3, 4] (for a recent review on cluster models see [5]).

Recently, there has been a lot of renewed interest in the structure of 12C with the measurement
of a new lowlying 2+ state around 10 MeV with a width of approximately 0.8 MeV [6, 7, 8] which
was interpreted as a rotational excitation of the Hoyle state, thus providing the first evidence of
a collective band structure built on top of the Hoyle state.

In view of the new experimental information, in this contribution I revisit an algebraic
treatment of α-cluster nuclei, called the Algebraic Cluster Model [9], discuss the permutation
symmetry of identical clusters, as well as two special solutions which are relevant to the α-cluster
nuclei 12C and 16O.

2. The Algebraic Cluster Model
The Algebraic Cluster Model (ACM) is an interacting boson model to describe the relative
motion of n clusters based on the spectrum generating algebra of U(ν + 1) with ν = 3(n − 1).
As special cases the ACM contains the vibron model [10] for two-body problems (n = 2), the
U(7) model for three-body clusters (n = 3) with applications in hadronic physics [11], molecular
physics [12] and nuclear physics [9], and the U(10) model for four-body clusters (n = 4) [13].

The building blocks of the ACM consist of a dipole boson b†k for each independent relative
Jacobi coordinate k = 1, . . . , n − 1 and an auxiliary scalar boson s† which is added under the
restriction that the total number of bosons N = ns +nb = ns +

∑
k nk is conserved. The bilinear

products of creation and annihilation operators span the Lie algebra of U(3n−2). All operators
of interest, such as the Hamiltonian and electromagnetic transition operators, are expanded
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into elements of this algebra. This procedure leads to a compact spectrum generating algebra
of U(3n − 2) whose model space contains the oscillator shells with nb = 0, 1, 2, . . . , N . The
introduction of the scalar boson makes it possible to investigate the mixing of oscillator shells.

For n identical objects, the Hamiltonian has to be invariant under the permuation group Sn.
The transformation properties under Sn of all operators in the model follow from those of the
building blocks. The scalar boson s† transforms as the symmetric representation [n], whereas
the dipole bosons b†k transform as the n− 1 components of the mixed symmetry representation
[n− 1, 1] [14]. Next, one can use the multiplication rules for Sn to construct physical operators
with the appropriate symmetry properties. As a result, the most general one- and two-body
Hamiltonian that describes the relative motion of a system of n identical clusters, is a scalar
under the permutation group Sn, is rotationally invariant, conserves parity as well as the total
number of bosons, is given by

H = ε0 s†s̃− ε1
∑

k

b†k · b̃k + u0 s†s† s̃s̃− u1

∑

k

s†b†k · b̃ks̃ + v0

[∑

k

b†k · b†k s̃s̃ + h.c.

]

+
∑

L

[
wL T

†(L)
[n] · T̃ (L)

[n] + xL T
†(L)
[n−1,1] · T̃

(L)
[n−1,1]

+yL T
†(L)
[n−2,1,1] · T̃

(L)
[n−2,1,1] + zL T

†(L)
[n−2,2] · T̃

(L)
[n−2,2]

]
, (1)

with b̃k,m = (−1)1−mbk,−m and s̃ = s. The coefficients ε0, ε1, u0, u1, v0, wL, xL, yL and zL

parametrize the interactions. The operators T
(L)
[f ] are spherical tensor operators with respect to

the rotation group as well as irreducible tensor operators with respect to the permutation group

T
†(L)
[f ]k =

n−1∑

i,j=1

c
[f ]k
ij (b†i × b†j)

(L) . (2)

Here L represents the angular momentum (L = 0, 2 for i = j and L = 0, 1, 2 for i 6= j) and the
coefficients c[f ] denote the Clebsch-Gordan coefficients for Sn

c
[f ]k
ij = 〈[n− 1, 1]i, [n− 1, 1]j|[f ]k〉 , (3)

with

[n− 1, 1]⊗ [n− 1, 1] = [n]⊕ [n− 1, 1]⊕ [n− 2, 1, 1]⊕ [n− 2, 2] for n ≥ 4 . (4)

For n = 3 the last term is absent. Recently, the Clebsch-Gordan coefficients of Eq. (3) were
derived in closed analytic form [15], in agreement with the expressions obtained in [14].

The eigenvalues and corresponding eigenvectors are obtained numerically by diagonalizing
the Hamiltonian in a coupled harmonic oscillator basis. By construction, the wave functions are
characterized by the total number of bosons N , angular momentum and parity LP , and their
transformation property [f ] under the permutation group Sn. For the case of the harmonic
oscillator the construction of states with good permutation symmetry was studied by Kramer
and Moshinsky [14]. In particular, it was shown that for the n-body problem, the reduction
U(3n − 3) ⊃ U(3) ⊗ U(n − 1) with U(3) ⊃ SO(3) and U(n − 1) ⊃ O(n − 1) ⊃ Sn provides a
basis for an explicit construction of states with good permutation symmetry. Here U(3) denotes
the symmetry group for the coupled harmonic oscillator and U(n − 1) is the symmetry group
associated with the transformation of the indices of the n− 1 relative Jacobi vectors.

However, in the application to the ACM the number of oscillator shells can be large
(nb = 0, 1, . . . , N with N ∼ 10 − 20), and moreover the v0 term in Eq. (1) mixes different
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oscillator shells with ∆nb = ±2. For this reason, there is need for a general procedure to
create a set of basis states with good permutation symmetry which is easy to implement. One
possible solution is to generate these symmetry-adapted basis states numerically by diagonalizing
Sn invariant interactions for each oscillator shell separately and to determine the permutation
symmetry [f ] of a given basis state from the transformation properties under the interchange
P (12) and the cyclic permutation P (12 · · ·n). Since the Hamiltonian of Eq. (1) is invariant
under P (12), basis states with n1 even and n1 odd do not mix, and can therefore be treated
separately. In operator form, one has

〈
ψ[f ]k

∣∣∣ P (12)
∣∣∣ψ[f ]k

〉
=

〈
ψ[f ]k

∣∣∣ eiπb†1b1
∣∣∣ψ[f ]k

〉
. (5)

Next, the permutation symmetry [f ] of the wave functions can be determined by evaluating the
matrix elements of the cyclic permutation P (12 · · ·n)

〈
ψ[f ]k

∣∣∣ P (12 · · ·n)
∣∣∣ψ[f ]k

〉
=

〈
ψ[f ]k

∣∣∣ eiπ
∑n−1

i=1
b†i bi

n−2∏

j=1

eθj(b
†
jbj+1−b†j+1bj)

∣∣∣ψ[f ]k

〉
, (6)

with θj = arctan
√

j(j + 2). The first term depends on the total number of oscillator quanta
nb and gives rise to a factor +1 (−1) for states with even (odd) parity. The other terms can
be interpreted as a change of oscillator coordinates, and hence their matrix elements can be
expressed in terms of Talmi-Moshinksy brackets [16, 17] which are calculated with the program
TMB developed by Dobeš [18]. Finally, the relative phases of the degenerate representations
can be determined from the off-diagonal matrix elements

〈
ψ[f ]k

∣∣∣ P (12 · · ·n)
∣∣∣ψ[f ]k′

〉
(7)

by requiring that they transform like the components of the degenerate representations.
This numerical technique was developed for systems of three identical clusters [11] and later

generalized to four identical clusters [13].

3. Special solutions
The ACM has a rich algebraic structure, which includes both continuous and discrete
symmetries. It is of general interest to study limiting cases of the Hamiltonian in which the
energy spectra can be obtained in closed form. The Sn invariant ACM Hamiltonian of Eq. (1)
has dynamic symmetries corresponding to the group chains

U(3n− 2) ⊃




U(3n− 3)

SO(3n− 2)
. (8)

These dynamic symmetries were studied in general for the n-body problem and were shown
to correspond to the (3n − 3)-dimensional (an)harmonic oscillator and a deformed oscillator,
respectively [13].

In addition, there are several other limiting cases of Sn invariant Hamiltonians for which
approximate solutions can be obtained in a semiclassical mean-field analysis and which are of
interest for the application to α-cluster nuclei. For the case of three-body clusters I discuss the
oblate symmetric top with three particles located at the vertices of an equilateral triangle, and for
four-body clusters the spherical top with four particles at the vertices of a regular tetrahedron.
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Figure 1. Schematic spectrum of an oblate symmetric top. The rotational bands are labeled
by (v1, v

l
2) (bottom). All states are symmetric under S3 ∼ D3.

3.1. Three-body clusters: oblate top
For the case of three identical clusters the spectrum generating algebra of the ACM is given by
U(7). Here I consider a Hamiltonian which is a special case of Eq. (1)

H1 = ξ1 (R2 s†s† − b†1 · b†1 − b†2 · b†2) (R2 s̃s̃− b̃1 · b̃1 − b̃2 · b̃2)

+ξ2

[
(b†1 · b†1 − b†2 · b†2) (b̃1 · b̃1 − b̃2 · b̃2) + 4 (b†1 · b†2) (b̃2 · b̃1)

]

+2κ1 (b†1 × b̃1 + b†2 × b̃2)(1) · (b†1 × b̃1 + b†2 × b̃2)(1)

+3κ2 (b†1 × b̃2 − b†2 × b̃1)(0) · (b†2 × b̃1 − b†1 × b̃2)(0) . (9)

For R2 = 0, this Hamiltonian has U(7) ⊃ U(6) symmetry (anharmonic oscillator), whereas for
R2 = 1 and ξ2 = 0 it has U(7) ⊃ SO(7) symmetry (deformed oscillator). The general case with
R2 6= 0 and ξ1, ξ2 > 0 corresponds to a geometric configuration in which the α particles are
located at the vertices of an equilateral triangle [9]. The corresponding point group symmetry
is D3h whose subgroup D3 is isomorphic to the permutation group S3. Even though in this
case the energy eigenvalues cannot be derived in closed form, an approximate expression for the
energy levels can be obtained by making use of the method of intrinsic or coherent states (valid
in the limit of large N) [11, 12]

E1 ≈ ω1 (v1 +
1
2
) + ω2 (v2 + 1) + κ1 L(L + 1) + κ2 (K ± 2l)2 , (10)

with frequencies ω1 = 4NR2ξ1 and ω2 = 4NR2ξ2/(1 + R2). The quantum numbers have the
following meaning: v1, v2 are vibrational quantum numbers: v1 corresponds to a symmetric
one-dimensional stretching vibration, and v2 represents a two-dimensional bending vibration;
l = v2, v2−2, . . . , 1 or 0 is the vibrational angular momentum of the doubly degenerate vibration;
L is the angular momentum, and K its projection on a body-fixed axis [9].

Fig. 1 shows the rotation-vibration spectrum of a triangular configuration with D3h symmetry
which is characterized by a series of rotational bands labeled by (v1, v

l
2). It is assumed that the

spin of the identical clusters is zero, as is relevant for the description of the 12C nucleus as a
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cluster of three α particles. As a consequence, all states in Fig. 1 are symmetric under S3. For this
case, the bands with (v1, 00) can have angular momenta and parity LP = 0+, 2+, 3−, 4±, 5−, . . .,
whereas the angular momentum content of the doubly degenerate vibrations (v1, 11) is given by
LP = 1−, 2∓, 3∓, . . ., in agreement with Ref. [19]. The structure of the rotational bands can
be considered as the fingerprint of the underlying D3h symmetry of three identical structureless
particles at the vertices of an equilateral triangle.

3.2. Four-body clusters: spherical top
As a second example, I discuss the spherical top with tetrahedral symmetry Td as a special case
of the ACM for four identical clusters. The spectrum generating algebra is given by U(10). Let
us consider a S4 invariant Hamiltonian of the form

H2 = ξ1 (R2 s†s† − b†1 · b†1 − b†2 · b†2 − b†3 · b†3) (h.c.)

+ξ2

[
(−2

√
2 b†1 · b†3 + 2b†1 · b†2) (h.c.)

+ (−2
√

2 b†2 · b†3 + (b†1 · b†1 − b†2 · b†2)) (h.c.)
]

+ξ3

[
(2b†1 · b†3 + 2

√
2 b†1 · b†2) (h.c.)

+(2b†2 · b†3 +
√

2 (b†1 · b†1 − b†2 · b†2)) (h.c.)

+(b†1 · b†1 + b†2 · b†2 − 2b†3 · b†3) (h.c.)
]

+κ1
~L · ~L + κ2 (~L · ~L− ~I · ~I)2 , (11)

where ~L denotes the angular momentum in coordinate space and ~I the angular momentum in
index space. For R2 = 0, this Hamiltonian has U(10) ⊃ U(9) symmetry (anharmonic oscillator),
whereas for R2 = 1 and ξ2 = ξ3 = 0 it has U(10) ⊃ SO(10) symmetry (deformed oscillator). The
general case with R2 6= 0 and ξ1, ξ2, ξ3 > 0 corresponds to a geometric configuration in which
the four clusters are located at the vertices of a regular tetrahedron [13]. The corresponding
point group symmetry is Td which is isomorphic to the permutation group S4. Just as in the
previous case of the oblate top, also for the Hamiltonian of Eq. (11) an approximate energy
formula can be derived in a semiclassical mean-field analysis by making use of the methods of
intrinsic or coherent states which is valid in the limit of large N . The resulting energy spectrum
is that of the vibrational and rotational excitations of a spherical top with tetrahedral symmetry

E2 ≈ ω1(v1 +
1
2
) + ω2(v2 + 1) + ω3(v3 +

3
2
) + κ1 L(L + 1) , (12)

with frequencies ω1 = 4NR2ξ1, ω2 = 8NR2ξ2/(1 + R2) and ω3 = 8NR2ξ3/(1 + R2). Here v1

represents the vibrational quantum number for a symmetric stretching A vibration, v2 denotes
a doubly degenerate E vibration, and v3 a three-fold degenerate F vibration.

Whereas the angular momentum L is an exact symmetry of H2 of Eq. (11), the angular
momentum in index space I in general does not commute with the Hamiltonian. Only if ξ2 = ξ3

in Eq. (11), does I become a good quantum number. The rotational excitations of the ground
state vibrational band of H2 with (v1, v2, v3) = (0, 0, 0) are characterized by L = I. This
property is a consequence of the fact that the operator ~L · ~L− ~I · ~I annihilates the coherent (or
intrinisic) state corresponding to the rigid equilibrium shape of a regular tetrahedron.

Fig. 2 shows the structure of the spectrum of a spherical top with tetrahedral symmetry
according to the approximate energy formula of Eq. (12). The energy spectrum consists of a
series of rotational bands labeled by (v1, v2, v3). It is assumed that the spin of the identical
clusters is zero, as is relevant for the description of the 16O nucleus as a cluster of four α
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Figure 2. Schematic spectrum of a spherical top with tetrahedral symmetry. The rotational
bands are labeled by (v1, v2, v3) (bottom). All states are symmetric under S4 ∼ Td.

particles. As a consequence, all states in Fig. 2 are symmetric under S4. For this case, the
bands with (v1, 0, 0) can have angular momenta and parity LP = 0+, 3−, 4+, 6±, . . ., whereas
the angular momentum content of the doubly degenerate E vibration (v1, 1, 0) is given by LP =
2±, 4±, 5±, . . ., and for the triply degenerate F vibration (v1, 0, 1) by LP = 1−, 2+, 3±, 4±, . . .,
in agreement with Ref. [19]. The structure of the rotational bands can be considered as the
fingerprint of the underlying Td tetrahedral symmetry of four identical structureless particles at
the vertices of a regular tetrahedron.

4. Summary and conclusions
In this contribution, I discussed the interplay of continuous and discrete symmetries in the
framework of the Algebraic Cluster Model (ACM). The ACM incorporates all vibrational and
rotational degrees of freedom from the outset. In addition, the permutation symmetry of
identical clusters can be taken into account in an exact manner.

It was shown that for systems with identical clusters the structure of rotational bands is
determined by the underlying point-group symmetry of the geometric configuration of the α
particles. For the case of three-body clusters with the three α particles located at the vertices of
an equilateral triangle (oblate top), the rotational structure of the ground state band is given by
the sequence LP = 0+, 2+, 3−, 4±, 5−, . . ., whereas for the case of four-body clusters with the
four α particles located at the vertices of a regular tetrahedron (spherical top), the rotational
sequence is given by LP = 0+, 3−, 4+, 6±, . . ..

If a physical system, like an α-cluster nucleus, is claimed to consist of identical structureless
particles at the vertices of an equilateral triangle (as in 12C) or a regular tetrahedron (as in
16O), then its spectrum must be as shown in Figs. 1 or 2, respectively. The rotational structure
provides a fingerprint of the underlying point-group symmetry of the geometric configuration of
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the α particles.
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