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J Janicskó Csáthy15, J Jochum18, M Junker1, V Kazalov11, T Kihm7, I V Kirpichnikov12,
A Kirsch7, A Kish19, A Klimenko7,5, R Kneißl14, K T Knöpfle7, O Kochetov5,
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Abstract. Gerda is designed for a background-free search of 76Ge neutrinoless double-β decay, using
bare Ge detectors in liquid Ar. The experiment was upgraded after the successful completion of Phase I
to double the target mass and further reduce the background. Newly-designed Ge detectors were installed
along with LAr scintillation sensors. Phase II of data-taking started in Dec 2015 with approximately 36 kg
of Ge detectors and is currently ongoing. The first results based on 10.8 kg· yr of exposure are presented.
The background goal of 10−3 cts/(keV· kg· yr) is achieved and a search for neutrinoless double-β decay is
performed by combining Phase I and II data. No signal is found and a new limit is set at T 0ν

1/2 > 5.3 · 1025 yr
(90% C.L.).

1. Introduction
The Gerda experiment[1] is designed to search for the neutrinoless double-β (0νββ) decay of
76Ge into 76Se and two electrons. The detection of a signal would prove that lepton number is not
conserved and neutrinos have a Majorana mass component, as predicted by several extensions
of the Standard Model.

Gerda uses high-purity Ge detectors made from material enriched in 76Ge to ∼87%[2]. If
0νββ decays occur, the produced electrons are absorbed within a few millimeters because of the
high density and atomic number of Ge. The expected 0νββ decay signature is hence a point-like
event with a total energy of Qββ = 2039 keV, i.e. the Q-value of the decay. In addition to a
high detection efficiency, Ge detectors ensure an excellent energy resolution (� 0.2% at Qββ),
no intrinsic background, and the possibility of identifying 0νββ-like events via pulse shape
discrimination (PSD)[3].

Current best limits on the 0νββ decay half life (T 0ν
1/2) are above 1025 yr, i.e. more then 15

orders of magnitude larger than the age of the universe. Detectors must be efficiently shielded
from external background for detecting such a rare process. The innovative approach of Gerda
consists of operating the bare detectors in liquid Ar (LAr), which acts as a cooling material,
passive shielding against external natural radioactivity and scintillating veto. The cryostat
containing 64m3 of LAr is immersed in a water tank instrumented with photomultipliers (PMTs)
to detect muon Cherenkov light. The experiment is located underground at the Gran Sasso
National Laboratory of INFN in Italy.

http://creativecommons.org/licenses/by/3.0
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In the previous phase of data taking (Phase I), ten detectors have been operated for about
1.5 yr at a background level of 10−2 cts/(keV· kg· yr). No signal was found and a limit was set
at T 0ν

1/2 > 2.1 · 1025 yr (90% C.L.)[1]. The experiment was subsequently upgraded to double the

target mass and reduce the background level by a factor of 10, thanks to a new Ge detector
geometry and LAr scintillation sensors. A new data taking phase (Phase II) started in Dec 2015.
Here we present data collected during the first five months. The envisioned background level and
energy resolution have been achieved. A new search for 0νββ decay has been performed with a
sensitivity doubled compared to our previous analysis. Gerda Phase II will be a background-
free experiment througout its planned exposure of 100 kg· yr, eventually reaching the sensitivity
to observe a 0νββ signal with T 0ν

1/2 up to 1026yr.

2. Phase II: set-up and concept
The success of Phase II relies upon the deployment of 30 custom-made BEGe-type detectors [4]
and of LAr scintillation sensors. Many components of the set-up were also upgraded, including
the lock-system used for lowering detectors and LAr scintillation sensors into the cryostat, the
read-out electronics, the contacting solution and the detector holders.

The BEGe detectors have a cylindrical shape with a diameter of 7-8 cm and thickness of
3-4 cm. The read-out electrode (1 cm diameter) is created by B implantation on one of the two
flat surfaces. The second electrode covers the remaining surface and is produced by Li diffusion,
resulting in a ∼1mm surface dead layer. The electrodes are kept at a potential difference
of 4 kV to collect the electron-hole pairs generated by energy deposition inside the detector.
The BEGe geometry makes it possible to discriminate 0νββ-like from background events with
a simple mono-parametric cut based on the maximum current of an event normalized to its
integral (A/E)[5, 6]. This technique is extremely efficient in suppressing the backgrounds that
are expected at Qββ : the Compton continuum from γ-rays is reduced by a factor of �2, degraded
surface α-decays by more than a factor of 10, and surface β-decays by up to a factor of 100 [7, 3].

In total thirty BEGe-type (20 kg) and seven coaxial-type detectors (15.8 kg, Phase I-type
detectors) are mounted into strings forming a compact array that is lowered in the cryostat
together with the LAr scintillation sensors. The sensors are designed to detect scintillation
light emitted in a cylindrical volume of 0.5m diameter and 2.2m height centered on the array.
The lateral surface of the cylinder is covered by 800m of optical fibers coated with a wavelength
shifter and read-out by Si photomultipliers [8]. Sixteen radio-pure PMTs for cryogenic operation
are mounted on the top and bottom surfaces. Each detector string is enclosed in a transparent
nylon vessel that isolates the LAr volume surrounding the detectors.

PSD and the LAr scintillation veto are complementary techniques able to identify different
classes of background events [9]. PSD identifies multiple-site energy depositions inside the Ge
material (e.g. multiple Compton scattering) or single-energy depositions on the detector surface
(e.g. surface contaminations). LAr scintillation can be produced by all events in which only
part of the energy is released in the Ge material (e.g. decays in the material surrounding
the detectors). The combination of PSD and LAr veto was found to suppress 226Ra by a
factor of 27±2 and 228Th by a factor of 300±28 in measurements with calibration sources. It
should however be emphasized that the suppression efficiencies strongly depend on the source,
its location and the array configuration.

3. Data analysis and background achievements
A blind analysis is performed as in Phase I. Events with energies at Qββ±25 keV are stored and
removed from the data flow. The analysis software and procedures are described in Ref. [10, 11].

Data considered in this analysis are from Dec 2015 till May 2016. The average duty cycle
is 82%, mostly due to calibrations and hardware adjustments expected in the starting phase.
The stability and performance of the Ge detectors are monitored by injecting test pulses at a
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Figure 1. Spectra measured by coaxial and BEGe detectors before and after LAr veto.

50mHz rate. Only data recorded in stable conditions (e.g. gain stable at 0.1%) are used for
physics analysis. This corresponds to about 85% of the total. Signals from electrical discharges
or bursts of noise are rejected during the off-line event reconstruction by a set of quality cuts.
Genuine signals due to events in the Ge detectors are accepted with an efficiency above 99.9%
at Qββ , estimated with artificial samples of simulated events. Data were thoroughly inspected
and no hint for unphysical signals was found.

The energy scale and resolution are calibrated weekly by lowering 228Th sources into the
cryostat. Uncorrected instabilities of the energy scale are typically smaller than 0.1% at Qββ .
Calibrations are also used to optimize the off-line energy reconstruction that is based on a zero
area cusp-like filter [12]. The resolution at Qββ weighted by the exposure of each detector is
4.0 (2) keV for coaxial and 3.0 (2) keV for BEGe detectors.

Events are rejected as background if: a muon trigger is issued within 20μs; signals are
detected simultaneously in multiple detectors; multiple events occur in the same detector within
1ms. A LAr scintillation veto is issued during the off-line analysis if any of the light detectors
record a signal with amplitude >50% of what is expected for a single photoelectron. Events
within 5μs from a LAr veto are rejected. The dead time due to accidental coincidences and the
aforementioned cuts is about 3%.

The spectra before and after LAr scintillation veto are shown in Fig 1, separately for coaxial
(5.0 kg· yr) and BEGe detectors (5.8 kg· yr). The prominent features are due to the same
background components of Phase I [13]: 39Ar cosmogenically produced in LAr (<600 keV); two-
neutrino double-β (2νββ) decays of 76Ge (600-1700 keV); α-decays on the detector surface,
primarily from 210Po (2615-5500 keV). The γ-lines are due to 40K (1464 keV), 42K (1525 keV),
214Bi (1765 keV) and 228Th (2614.5 keV). In spite of the limited statistics of the data set, a
comprehensive background model has been developed. The background budget at Qββ is shared

by: the Compton continuum of 208Tl and 214Bi, degraded α-rays from 210Po and β-rays from
42K. This implies that the background at Qββ is well described by a flat energy distribution.

The performance of the LAr veto are proven by the 40K and 42K γ-lines. The 40K peak
survives the veto as the only γ-ray emitted in the EC decay is fully absorbed in the Ge material.
Conversely, the 42K peak is suppressed as the γ-ray is emitted in combination with a 2MeV
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β-ray in LAr. The background reduction at Qββ is primarily due to the suppression of Compton

continuum from 208Tl and 214Bi γ-lines. Similarly, the Compton continuum of 40K and 42K
γ-lines is suppressed, leaving basically only 2νββ events in the range between 600 and 1300 keV.
The background at Qββ after the LAr veto is ∼1·10−2 cts/(keV· kg· yr) for coaxial detectors

and ∼5·10−3 cts/(keV· kg· yr) for BEGe detectors. The difference can be related to the rate of
α-decays which release all energy in the Ge material and do not produce LAr scintillation.

The background is further reduced by PSD. Fig 2 shows the A/E estimator as a function
of the event energy for the BEGe detectors. The central value and resolution of A/E for
0νββ-like events is detector and energy dependent. After corrections based on calibration data,
the distribution of the A/E estimator for 0νββ-like events becomes approximately Gaussian
(centroid of 0, sigma of 1). Background events due to multiple-site energy deposition are
reconstructed below 0νββ-like events, whereas degraded α events are reconstructed above. The
PSD results are coherent with our background interpretation and corroborate it. A cut on the
A/E estimator is applied separately for each detector. Events with A/E estimator between -1.5
and 3 are on average accepted. The overall survival probability of 0νββ events is (87±2)%,
estimated from 208Tl double escaping events.

The PSD technique applied to coaxial detectors is based on two neural networks, designed
to discriminate 0νββ-like events from background multiple-site and degraded α events. The
combined survival probability of 0νββ-like events is (79±5)%, estimated from simulations and
208Tl double escaping and Compton continuum events. The survival probability of the PSD cuts
have been crossed checked against the survival of 2νββ events and found to be consistent, both
for data from coaxial and BEGe detectors.

The blinded events were eventually processed after fixing all data selection criteria and
parameters. Fig 3 shows the final spectra, including all Phase I data (23.6 kg· yr exposure).
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Table 1. Parameters of the data sets used for the search of a 0νββ signal.

data set exposure [kg·yr] signal eff BI [cts/(keV· kg· yr)] FWHM [keV]

Phase I golden 17.9 0.57 (3) 11± 2 · 10−3 4.3 (1)

Phase I silver 1.3 0.57 (3) 30± 10 · 10−3 4.3 (1)

Phase I BEGe 2.4 0.66 (2) 5+4
−3 · 10−3 2.7 (2)

Phase I extra 1.9 0.58 (4) 5+4
−3 · 10−3 4.2 (2)

Phase II coaxial 5.0 0.53 (5) 35+21
−15 · 10−4 4.0 (2)

Phase II BEGe 5.8 0.60 (2) 7+11
−5 · 10−4 3.0 (2)

The background level is computed from a energy region defined prior unblinding: from 1930
to 2190 keV excluding expected γ-lines (2104± 5 and 2119± 5 keV) and the 0νββ decay signal
region (Qββ ± 5 keV). Only one (four) events are found in this region for the data set from

BEGe (coaxial) detectors, corresponding to a background level of 7+11
−5 · 10−4 cts/(keV· kg· yr)

(35+21
−15 · 10−4 cts/(keV· kg· yr)). Gerda has therefore achieved its challenging background goal

and it is the first background free experiment of the field. Even considering the final exposure
of Phase II, the expected rate for the background in the signal region is less than one count.

4. Search for a 0νββ decay signal
A combined analysis of data from Phase I and II is performed, fitting simultaneously the six
data sets of Table 1. The number of 0νββ events in the i-th data set as a function of T 0ν

1/2 is:

NS
i (1/T

0ν
1/2) = ln 2 ·NA · εi · ηi/ma · (1/T 0ν

1/2), (1)

where NA is Avogadro’s number, εi the signal efficiency of the i-th data set, ηi the exposure,
and ma the molar mass of Ge. The exposure quoted is the total detector mass multiplied by
the data taking time. The singal efficiencies are the product of: the fraction of 76Ge in the
detector material (∼87%), the fraction of detector active volume (∼90%), the efficiency of the
analysis cuts (80-90%, dominated by the PSD), and the probability that 0νββ decay events in
the detector active volume are reconstructed correctly at Qββ (90-92%). The total number of
background events as a function of the background level BIi is:

NB
i (BIi) = ηi · BIi ·ΔE, (2)

where ΔE=240 keV is the energy region used for the fit, i.e. the one used for calculating the
background level and extended to the Qββ region.

Each data set is fitted with an unbinned likelihood function, assuming a Gaussian distribution
for the signal and a flat background:

Li(datai|1/T 0ν
1/2,BIi) =

1

NS
i +NB

i

Nobs
i∏

j=0

[
NS

i ·
1√
2πσi

· exp
(
(Ej −Qββ)

2

σ2
i

)
+NB

i ·
1

ΔE

]
(3)

where the index j runs over all events in a data set, Nobs
i is the total number of events observed

in the i-th data set, and σi = FWHMi/(2
√
2 ln 2) the energy resolution. The parameters 1/T 0ν

1/2

and BIi are bounded to positive values. The total likelihood is thus constructed as product of
Li weighted for the Poissonian extended term [14]:

L(data|1/T 0ν
1/2,BIi) =

∏
i

[
Poisson(Nobs

i |NS
i +NB

i ) · Li(1/T
0ν
1/2,BIi)

]
(4)
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Figure 4. p-value of our data and median p-value expected for no signal (median sensitivity).

Systematics uncertainties on the energy scale, resolution and efficiencies are folded into the
analysis as independent Gaussian penalty terms. The pull strength are computed using a Monte
Carlo approach which takes correlations into account.

A frequentist analysis is performed with a two-side profile likelihood as test statistic [15].
The distributions of the test statistics as a function of T 0ν

1/2 are built by a Monte Carlo method.

T 0ν
1/2 values which generate our data with a proabability below 10% are rejected (see Fig 4). The

best fit of our data is for no 0νββ signal counts and a new limit is set at T 0ν
1/2 > 5.3 ·1025 yr (90%

C.L.). The result is close to the median sensitivity expected for no signal: T 0ν
1/2 > 4.0 · 1025 yr

(90% C.L.).
In conclusion, the first data from Phase II prove that our detection and shielding concepts

work as intended: Gerda will perform a background free search for 0νββ decay and increase
its sensitivity linearly in time. Within a few years Gerda will reach the sensitivity to detect a
signal with T 0ν

1/2 up to 1026 yr.
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