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Rotation curve for the Milky Way galaxy in
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Abstract. Galactic rotation curves have proven to be the testing ground for dark matter
bounds in galaxies, and our own Milky Way is one of many large spiral galaxies that must
follow the same models. Over the last decade, the rotation of the Milky Way galaxy has been
studied and extended by many authors. Since the work of conformal gravity has now successfully
fit the rotation curves of almost 140 galaxies, we present here the fit to our own Milky Way.
However, the Milky Way is not just an ordinary galaxy to append to our list, but instead
provides a robust test of a fundamental difference of conformal gravity rotation curves versus
standard cold dark matter models. It was shown by Mannheim and O’Brien that in conformal
gravity, the presence of a quadratic potential causes the rotation curve to eventually fall off after
its flat portion. This effect can currently be seen in only a select few galaxies whose rotation
curve is studied well beyond a few multiples of the optical galactic scale length. Due to the
recent work of Sofue et al and Kundu et al, the rotation curve of the Milky Way has now been
studied to a degree where we can test the predicted fall off in the conformal gravity rotation
curve. We find that – like the other galaxies already studied in conformal gravity – we obtain
amazing agreement with rotational data and the prediction includes the eventual fall off at large
distances from the galactic center.

1. Introduction
Since its inception over seventy five years ago, the concept of dark matter has been widely
accepted as the explanation for the missing mass problem in spiral galaxies. Many current large
scale collaborations have been created to search for dark matter with little notable success. In
the current paradigm, the parameter space of cold dark matter is being constrained to higher
and higher degrees, but physical searches have turned up with null or conflicting results. Most
notably, the recent Cryogenic Dark Matter Search (CDMS) [1] faced the same unfortunate
conclusions as many of its predecessors. As the community further pushes technology to probe
deeper into the possible parameter space of dark matter, the lack of pure observable evidence
and reliance on the rotation curves of galaxies has opened the door for many alternative theories
to standard Einstein Gravity. Many of these alternative theories attempt to solve the rotation
curve problem without the need for invoking dark matter. Although many of these theories
have had success in fitting the rotation curves of spiral galaxies in the past, such as Modified
Newtonian Dynamics (MOND) [2], Scalar Tensor Vector Gravity (STVG) [3], and more recently
the Luminous Convolution Model (LCM) [4], still many of these theories struggle with the
universality of galactic rotational dynamics. However, recently one of the authors has fit a
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diverse set of over 130 rotation curves of various galaxies using Conformal Gravity (CG) as
an alternative gravitational model [5]. Mannheim and O’Brien have successfully fit the most
recent data of the THINGS survey [6] as well as the Ursa Major galaxies of Verheijen et al [7].
Their research continued with less studied low surface brightness galaxies of Kim et al [8] and a
very recent survey of dwarf galaxies by Swaters [9]. To further diversify the studies performed
by Mannheim and O’Brien, they have fit conformal gravity to the three Tidal Dwarf Galaxies
(TDG) of NGC 5291 with an astonishing degree of success [10]. We note that the TDG galaxies
are a unique testing ground of gravitational physics in the sense that they offer an observable
rotation curve [2] despite the fact that they should not be in existence due to the parameter
space defined by ΛCDM .

With these surveys fully populating the spectrum of studied galactic rotation curves,
Conformal Gravity emerges as an alternative gravitational theory that can universally explain
the rotation curve problem, and unlike theories such as MOND the creation of CG was not
formulated to address the rotation curve problem alone. For the discussion of this paper, the
outstanding difference between conformal gravity and the other alternative gravitational theories
is the presence of a quadratic potential, which neither forces rotation curves to forever remain
flat or allows rotation curves to infinitely rise. Instead as shown in [11] the presence of the
quadratic term begins to compete at large distance scales and eventually forces the stable orbits
of particles in the presence of the gravitational potential of the galaxy to terminate. Hence,
extremely large galaxies, viz. ones whose outermost data points are well beyond the optical
scale lengths, serve as a perfect testing ground for this prediction of the conformal theory. In
this paper, we discuss how the latest rotation curve data of the Milky Way galaxy provides us
with a great comparison of various rotation curve models, with conformal gravity being able to
once again explain the rotation observed without invoking copious dark matter. Moreover, due
to the shape of the rotation curve of the Milky Way galaxy, conformal gravity’s predication of
an eventual fall off of the rotational velocity can be illuminated and discussed.

2. The Milky Way Galaxy Data
The Milky Way has long been a galaxy studied by astronomers. For many years the rotation
curve of the Milky Way has been known, but was not of particular interest to the missing mass
problem due to its relatively low density of data points, and its early termination of optical data.
The standard rotation curve can be obtained as seen in [12] where the observable parameters
are: the distance to the galactic center, R, the adopted distance from the Sun to the galactic
center, RS0, the relative velocity of the Local Standard of Rest, VLSR, and the angular direction
of the tracer stars, (l, b). The rotation velocity, VROT , is then explained by the formula

VROT =
R

RS0

(
VLSR

sinl · cosl
− 220

)
. (1)

With the advent of recent observational techniques, many new types of radio tracers can be
used to increase the validity and density of the Milky Way rotation curve. In 2009, Sofue [13]
published a unified rotation curve of the Milky Way galaxy synthesizing data from over eight
different tracer sources (including the aformentioned [12]) to build one of the densest rotation
curves ever produced, consisting of 610 data points. The vast data points observed by Sofue
highlight the structure of the Milky Way, including a bulge in the inner region, and extend the
data to 20 kpc.

The work of Sofue allowed for the structure of the Milky Way for R ∼ 20 kpc [13] to be well
established. The high density of points for R < 20 kpc can easily be seen in Fig. 1(a). The
need to extend the rotation velocity past the disk region is expressed throughout the current
literature [12]. Xue et al was able to then extend the Milky Way rotation curve to approximately
60 kpc [14]. Recent work by Kundu et al [15] has extended the rotation curve from the local
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(a) (b)

Figure 1. (a) The dense number of observations taken by Sofue. Note that the uncertainty
increases when tracing objects away from the galactic center. (b) The full synthesized data set
of the rotation curve.

disk region to the outer regions of the galaxy, continuing far past the galactic disk using Blue
Horizontal Branch tracers (BHB) to an astonishing distance. They note that the rotation curve
is slowly declining as R increases. Here we synthesized the data sets from [13], [14] and [15]
which accumulate to a total of 636 observed data points for the rotation curve as shown in Fig.
1(b). The falloff of the observed rotation velocity serves as a testing ground for the predictions
of competing theories, and separates the conformal theory in its unique prediction of eventual
falloff.

3. Models of the Milky Way rotation curve
3.1. General Relativity Prediction
Similar to all other observed rotation curves, the Milky Way suffers from the same missing mass
problem. The prediction set forth by general relativity (GR) can be found by starting with a
single point mass solution to the Einstein field equations, and then modeling the galaxy as a
collection of point masses arranged in a disk in superposition. We assume for simplicity that
the disk is infinitely thin, and the distribution of mass falls exponentially as

Σ(R) = Σ0e
− R

R0 (2)

where R0 is the luminous scale length, and Σ0 is the central density. Upon integrating over the
disk in cylindrical coordinates, one arrives at the familiar

vGR(R) =

√
N∗β∗c2R2

2R3
0

[
I0

(
R

2R0

)
K0

(
R

2R0

)
− I1

(
R

2R0

)
K1

(
R

2R0

)]
, (3)

where I0, I1, K0, and K1 are Bessel functions. This is the well established Freeman curve, and
is assumed that each parameter is fixed. The only free parameter in this equation then is the
overall number of stars,

N∗ =
Mdisk

M�
. (4)
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Although this is a free parameter for fitting purposes, it is physically bounded by the preservation
of the mass to light ratio to be on the order of unity.

3.2. Lambda Cold Dark Matter (ΛCDM) Model
To solve the missing mass problem, one can assume that since the velocity is a function of R
and M, then more mass at the appropriate locations from the galactic center could rectify the
GR prediction to match the data and hence cold dark matter can be introduced. In order to
make the data match the prediction of equation (3), we can assume the total rotational velocity
would be given as

vtotal(R) =
√
v2GR + v2dark. (5)

The question then arises as how to put the dark matter into the galaxy as to match the prediction,
but not force the inner region to then overshoot in turn. Following the prescription described
in [6] the dark matter contribution can take the form

vdark(R) =

√
4πβ∗c2σ0

[
1− r0

R
arctan

(
R

r0

)]
(6)

where σ0 is the dark matter density and r0 is the dark matter halo radius. Since we have not
yet physically observed dark matter, these two parameters have to be fit to the data using a χ2

test against vtotal. The two free parameters effectively shape the modeled rotation curve, and
when coupled with the free parameter of the total luminous mass, Mdisk, the theory has three
total free parameters. It should be noted that although this is only two extra free parameters for
the Milky Way, this process must be arbitrarily done for any studied galaxy, making the number
of fitting parameters for a given sample twice the number of galaxies studied. Due to the nature
of equation (6), the dark matter contribution for a given galaxy can cause the rotation curves
to become asymptotically flat, hence can never predict an overall fall off. As described by the
work in [11], we believe it is this very observation that can lead to overall departures from dark
matter fitting in the largest of the studied galaxies. Since the Milky Way data is now the largest
diameter galaxy we have studied, it makes our own galaxy an ideal test of conformal gravity
against dark matter.

3.3. Conformal Gravity Prediction
The conformal gravity theory originally derived from Weyl, was later re-studied by Mannheim
and Kazanas [5]. Conformal gravity retains a completely covariant metric theory of gravity but
also includes the feature of local conformal invariance, where the action is unchanged due to local
transformations gµν(x)→ e2α(x)gµν(x) with local phase α(x). It should be noted that although
it is an alternative theory of gravity, since it is still a metric theory of gravity, many of the
familiar properties of General Relativity such as curvature of space and time, and the coupling
of electromagnetic fields to gravity (bending of light) are retained. Moreover, the conformal
theory was not originally studied to solve the rotation curve problem, but instead one may use
the rotation curve problem as a testing ground for the overall theory. Conformal gravity assumes
a scalar action which is described by

IW = −αg
∫
d4x(−g)1/2CλµνκC

λµνκ = −2αg

∫
d4x(−g)1/2

[
RµκR

µκ − (1/3)(Rαα)2
]

(7)

where

Cλµνκ = Rλµνκ −
1

2
(gλνRµκ − gλκRµν − gµνRλκ + gµκRλν) +

1

6
Rαα (gλνgµκ − gλκgµν) , (8)
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4αgW
µν = 4αg

[
2Cµλνκ;λ;κ − C

µλνκRλκ

]
= 4αg

[
Wµν

(2) −
1

3
Wµν

(1)

]
= Tµν , (9)

and

Wµν
(1) = 2gµν(Rαα);β;β − 2(Rαα);µ;ν − 2RααR

µν +
1

2
gµν(Rαα)2,

Wµν
(2) =

1

2
gµν(Rαα);β;β +Rµν;β;β −R

µβ;ν
;β −R

νβ;µ
;β − 2RµβRνβ +

1

2
gµνRαβR

αβ. (10)

Since the goal is to construct a galaxy in the same procedure as done in the GR prediction,
we note that Wµν vanishes when Rµν vanishes. However, Mannheim and Kazanas noted that
the vanishing solutions may not be the only solutions to the fourth order theory. Hence
they solved the metric outside a static, spherically symmetric source of radius a. They
found, as described in [5], that in the conformal theory the exact line element is given by
ds2 = −B(r)dt2 +B(r)−1dr2 + r2dΩ2 where the exterior metric coefficient B(r > a) is given by

B(r > a) = 1− 2β

r
+ γr − kr2. (11)

We can immediately see the departures from the GR prediction, where as the two new factors
γ and k arise due to the fact that the conformal theory is fourth order and thus must contain
two additional terms. It should also be noted that when γ and k are small, we return the exact
Schwarzchild solution. For a more rigorous treatment of the derivation see [6]. Now that we have
the “Schwarzchild like” solution for conformal gravity, we can effectively follow the procedure
above by noting that a galaxy is a disk with exponential density falloff in the radial direction.
The only other issue that conformal gravity needs to account for is local vs. global effects. Since
the theory is fourth order in construction, we no long possess the power of a global guess law.
Hence, the integration must be made both locally and globally [6] which gives rise to the total
rotational prediction of the galaxy as

vCG(R) =

√
v2GR +

N∗γ∗c2R2

2R0
I1

(
R

2R0

)
K1

(
R

2R0

)
+
γ0c2R

2
− κc2R (12)

where the integration constants are set as

γ∗ = 5.42e−41cm−1,

γ0 = 3.06e−30cm−1,

κ = 9.54e−54 cm−2.

As can be seen in equation (11) and (12), the presence of the linear and quadratic potential
terms are negligible on solar system scales, but would begin to dominate at galactic scales. The
key feature of the solution is the requirement that the k term be negative [11] which forces the
quadratic term to compete and eventually dominate over the linear term. The result is the
termination of stable orbits in the galaxy and the ultimate fall off of a galactic rotation curve
very far from the center. It is this feature that was tested in a sample of the fourteen largest
studies galaxies [11], and due to the recent Milky Way data described above, can now be tested
in our own galaxy.
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4. Milky Way as a test of Conformal Gravity
4.1. Input Parameters for the Milky Way
For the Milky Way galaxy, we use the same set of input parameters as per a normal rotation
curve as discussed in [6]. The gas mass of the Milky Way is adopted from McGaugh 2008 [16]
as Mg = 1.18 ∗ 1010M� which is inclusive of the HI as well as helium. For the scale length,
as will be shown in the figures, we adopt the range of scale lengths from Porcel 1997 [17] as
R0 = 2.1 ± 0.3 kpc. To be able to best compare our fits with the MOND fits of [16], we will
plot the Milky Way galaxy for the range of scale lengths from 2.0 ≤ R0 ≤ 2.5. The luminosity
is adopted from Spruit [18] as L = 1.62 ∗ 1010L� and will be used to compute the mass to light
ratios. For the gas scale length we adopt the same fitting procedure as in [6] where we use a gas
scale length four times the optical scale length. Lastly, we implement a bulge contribution for
the noted galactic bulge as in [6] such that,

vbulge(R) =

√
2N∗

b β
∗c2

πR

∫ R/t

0
dz z2K0(z). (13)

The total contribution of rotation for the Milky Way galaxy in the conformal theory is then
given by:

vtCG(R) =
√
v2CG + v2gas + v2bulge (14)

It should be noted that for comparison, the gas contribution and bulge contribution are also
added to the other respective theories in the final fits that will be presented.

4.2. Fits
Here we present the fits for equations (3), (6), and (14). To produce the fits we have made use
of a new computational tool called the Rotation Curve Modeler (RoCM) which was developed
recently by the two authors [19]. The specific input and output parameters are listed in Table
1. We see that due to the synthesized rotation curve shown in Fig. 2, the outermost points
are the ones where the predictions of conformal gravity can truly be tested. As seen in all of
the plots, the essence of the inner most points including the bulge are well described by general
relativity, ΛCDM , and conformal gravity alike. In all of the fits, general relativity falls far too
quickly to account for the data as described in the missing mass problem. However, due to the
nature of the dark matter equation (6), the outermost points of the rotation curve prediction
will continue to remain flat even as the data begins to show a falloff. The falloff for each point
of the Milky Way is predicted and captured by the conformal theory.

Plot R0 Mdisk M/L
(kpc) (1010M�) (M�/L�)

Fig. 2(a) 2.0 5.4738 3.38
Fig. 2(b) 2.1 5.189 3.2
Fig. 2(c) 2.2 5.1738 3.19
Fig. 2(d) 2.3 5.2831 3.26
Fig. 2(e) 2.4 5.3262 3.29
Fig. 2(f) 2.5 5.2122 3.22

Table 1. List of parameters used to fit the rotation curve with varying scale length, R0, and
disk mass, Mdisk, to satisfy an acceptable mass to light ratio, M/L.

As another subject of comparison, we include in each figure, the dotted vertical line which
is representative of where our sun lies in the Milky Way galaxy. For the dark matter theory,
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(a) (b)

(c) (d)

(e) (f)

Figure 2. The scale length ranging from 2.0-2.5 kpc. These fits were produced using the RoCM
software [19], and the colored predictions are described in the legend

we see that the fits are roughly generated by a 40− 50 percent dark matter contribution. This
poses a problem for nearby neighborhood dark matter searches which have returned null results,
such as the recent work illustrated in [20]. The conformal theory once again can establish the
predicted rotation even at the location of our sun with only baryonic matter. It should also
be noted that we chose to plot the six figures of various scale length since MOND [16] seems
to prefer only a smaller scale length for the Milky Way galaxy. In our fits, it’s shown that the
conformal theory is much less sensitive to the scale length. Instead, conformal gravity provides
a model of the galaxy at any of the accepted scale lengths without the need for copious amounts
of dark matter while still preserving a physically acceptable mass to light ratio.

5. Analysis
In order to better capture the overall power of the conformal gravity fit versus the standard
theory or ΛCDM we produce a density plot of the velocity discrepancy. Here we take a point
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(a) (b)

Figure 3. (a) The density plot of the velocity discrepancy relative to the galactocentric
distance. (b) The frequency distribution of the velocity discrepancy which illustrates the
aggregate comparison of each model to the observational data without the dependence of the
galactocentric distance. Note that the vertical axis represents the frequency of the binned
∆V/Vobs.

by point analysis of the 600+ points surveyed for the Milky Way and for each point compute
∆V/Vobs for each of the theories, where ∆V = |Vobs − Vtheory|. This gives us a more concrete
comparison than a pure eyeball argument as to which prediction fits the data more precisely.
The statistical fit is given in Fig. 3(a) and is shown for the Milky Way at scale length of R0 = 2.1.
This particular R0 was chosen since it is the central value given in the literature. We see that
much like the eyeball comparison of the fits, conformal gravity yields similar desirable statistics
without the need for invoking dark matter.

To eliminate the dependency of the galactocentric distance from our analysis, we’ve generated
a distribution of the velocity discrepancy for the Milky Way galaxy in Fig. 3(b). To clarify the
comparison of each theory relative to the observations, the distribution can be used as an overall
measure for the quality of the models. When comparing the distribution of conformal gravity vs.
ΛCDM , it’s straightforward to understand that conformal gravity predicts the observations to
a higher degree. Each plot in Fig. 3 was generated by the RoCM tool [19] and can be produced
for any arbitrary galaxy, and its data bin can be output. Future analysis will focus on comparing
sets of galaxies with the density and distribution of the velocity discrepancy in order to achieve
an aggregate analysis of each model. This can be accomplished using the power of RoCM and
will result in a direct comparison of various models over entire sets of data.

6. Conclusion
In this work we presented the various rotation models of the synthesized data of the Milky Way
galaxy. We leveraged the new tool developed by Moss and O’Brien [19] to simultaneously fit and
analyze the rotation curve data for the Milky Way in the standard theory, conformal gravity,
and the standard dark matter theory. We find that the Milky Way can now be added to the large
galaxy survey of [11] as one of the largest galactic rotation curves currently in the literature.
We find that like the other large galaxies in [11] the Milky Way can be fit by conformal to a
high degree of precision without the need for dark matter. Further analysis will be to revisit
the work of [11] with the current modeling power of [19] in order to build an overall velocity
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discrepancy analysis of an unbiased survey of galaxies without reference to particular distances
as in Fig. 3(b). The authors are pleased to note that the tool [19] used in analyzing the data
has currently been made open to the public domain at www.wit.edu/rotationcurve.
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