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Abstract. The Color Glass Condensate is a theory of the dynamical properties of partons
in the Regge limit of QCD: xBj → 0, Q2 >> Λ2

QCD = fixed and the center of mass energy
squared s → ∞. We provide a brief introduction to the theoretical ideas underlying the Color
Glass Condensate. We also discuss how these ideas provide a unified framework to discuss both
Deeply Inelastic Scattering (DIS), and hadronic collisions (from pp to AA) in QCD.

1. Introduction
The study of the properties of the strong interactions in the asymptotic Bjorken limit of
momentum transfer squared Q2 → ∞, the center of mass energy squared s → ∞, and the
Bjorken variable xBj ≈ Q2/s = fixed has proved to be one of the most creative ideas in theoretical
physics [1]. Relatively little work has been done in the other high energy limit, namely, xBj → 0,
s → ∞ and Q2 = fixed. This limit of the strong interactions, which we shall call the Regge
limit, was studied intensively in the 60’s and indeed led eventually to string theory. The reason
these studies fell into disfavor in the strong interactions was that there was no small parameter
in these studies (in modern parlance, Q2 ≤ Λ2

QCD).
With the advent of the collider era, we can now probe a wide window of physics where

s >> Q2 >> Λ2
QCD. In fact, this ”window” describes the bulk of the high energy cross-section.

One therefore has finally the possibility of studying the properties of the Regge limit of the
theory using weak coupling methods. In this limit, the hadron behaves like matter that’s dense
but weakly coupled-not dissimilar to much of condensed matter physics [2].

In Regge asymptotics, the number of partons increases rapidly due to QCD bremsstrahlung.
This growth is described, in the leading logarithmic approximation in x, by the BFKL
equation [3]. Since the typical size of the partons in this limit is of order 1/Q2, the hadron
becomes closely packed when the number of partons is of order R2Q2. In fact, this corresponds
to an occupation number f ∼ 1/αS . When the density of partons is of this order, repulsive
many body ”recombination” and screening effects compete with QCD Bremsstrahlung leading
to a saturation of the number of partons in the hadron’s wavefunction [4, 5, 6]. The saturation
of partons of different sizes happens at different values of x. The scale at which this occurs is
the saturation scale Qs(x)–a dynamically generated semi-hard scale that controls the dynamics
of physics in this regime of QCD.

In the language of the Operator Product Regime (OPE), the line Q ≡ Qs(x) in the x-Q2

plane denotes the regime beyond which (when approached from high Q2) higher twist effects
become important. Recall that the OPE is best formulated in the Bj-limit where higher twists
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are power suppressed and can be forgotten. The opposite is true in the Regge limit. Since the
number of twist operators grows (nearly) exponentially with the twist, the OPE quickly becomes
unwieldy. Thus to describe physics in this regime we need a new organizing principle in QCD
beyond the OPE.

In the following section, we shall describe an effective field theory formalism which provides
such an organizing principle. We shall discuss key features of this theory which are best
summarized by the label Color Glass Condensate (CGC). The quantum evolution of the theory
at high energies is described by renormalization group equations. These have remarkable features
which we shall outline. We next discuss the applications of this theory to both DIS and hadronic
scattering. The theory predicts novel universal observables which can be measured in both.
Finally, we discuss the consequence of this approach for a theoretical description of the quark
gluon plasma.

2. A classical effective theory for high energy QCD
There is a formal Born-Oppenheimer separation between large x and small x modes [8] for a
quantum field theory on the light cone. These are respectively the slow and fast modes in the
effective theory. Thus on the time scale of the ”wee” parton small x fields, the large x partons
can be viewed as static charges. Since these are color charges, they cannot be integrated out of
the theory but must be viewed as sources of color charge for the dynamical wee fields. With this
dynamical principle in mind, one can write down an effective action for wee partons in QCD at
high energies [7]. The generating functional of wee partons has the form

Z[j] =
∫

[dρ] WΛ+ [ρ]

{∫ Λ+

[dA]δ(A+)eiS[A,ρ]−j·A∫ Λ+
[dA]δ(A+)eiS[A,ρ]

}
(1)

where the wee parton action has the form

S[A, ρ] =
−1
4

∫
d4x F 2

µν +
i

Nc

∫
d2x⊥dx−δ(x−) × Tr

(
ρ(x⊥)U−∞,∞[A−]

)
. (2)

In Eq. 1, ρ is a classical color charge density of the static sources and W [ρ] is a weight functional
of sources (which sit at momenta k+ > Λ+: note, x = k+/P+

hadron). The sources are coupled to
the dynamical wee gluon fields (which in turn sit at k+ < Λ+) via the gauge invariant term 1

which is the first term on the RHS of Eq. 2. The second term in Eq. 2 is the QCD field
strength tensor squared-thus the wee gluons are treated in full generality in this effective theory,
formulated in the light cone gauge A+ = 0. The source j is an external source-derivatives taken
with respect to this source (with the source then put to zero) generate correlation functions in
the effective theory.

The argument for why the sources are classical is subtle and follows from a coarse graining
of the effective action to only include modes of interest. For large nuclei, or at small x, the wee
partons couple to a large number of sources. For a large nucleus, it can be shown explicitly that
this source density is classical [10]. Further, it was conjectured that the weight functional for
a large nucleus was a Gaussian in the source density (corresponding to the quadratic Casimir
operator) [7, 11]. This was shown explicitly recently to be the correct-albeit with a small
correction proportional to the cubic Casimir operator which generates Odderon excitations [10].
For a large nucleus, the variance of the Gaussian distribution, the color charge squared per unit
area µ2

A, proportional to A1/3, is a large scale-and is the only scale in the effective action 2. Thus

1 An alternative form is obtained in Ref. [9]-it reproduces the BFKL equation more efficiently.
2 µ2

A is simply related in the classical theory to the saturation scale Q2
s via the relation Q2

s =
αSNcµ

2
A ln(Q2

s/Λ2
QCD)
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for µ2
A >> Λ2

QCD, αS(µ2
A) << 1, and one can compute the properties of the theory in Eq. 1 in

weak coupling.
The Yang-Mills equations can be solved analytically to obtain the classical field of the nucleus

as a function of ρ: Acl.(ρ) [7, 11, 12]. From the generating functional in Eq. 1, one obtains for
the two point correlator,

< AA >=
∫

[dρ] WΛ+ [ρ] Acl.(ρ)Acl.(ρ) . (3)

From this expression, one can determine (for Gaussian sources) the occupation number φ =
dN/πR2/dk2

⊥dy of wee partons in the classical field of the nucleus. For k⊥ >> Q2
s, one has the

Weizsäcker-Williams spectrum φ ∼ Q2
s/k2

⊥, while for k⊥ ≤ Qs, one has a resummation to all
orders in k⊥, which gives φ ∼ 1

αS
ln(Qs/k⊥). (The behavior at low k⊥ can, more accurately, be

represented as 1
αS

Γ(0, z) where Γ is the incomplete Gamma function and z = k2
⊥/Q2

s.) A nice
expression for the classical field of the nucleus containing these two limits is given in Ref. [13].

We are now in a position to discuss why a high energy hadron behaves like a Color Glass
Condensate [2]. The ”color” is obvious since the degrees of freedom, the partons, are colored.
It is a glass because the stochastic sources (frozen on time scales much larger than the wee
parton time scales) induce a stochastic (space-time dependent) coupling between the partons
under quantum evolution (to be discussed in the next section)-this is analogous to a spin glass.
Finally, the matter is a condensate since the wee partons have large occupation numbers (of order
1/αS) and have momenta peaked about Qs. As we will discuss, these properties are enhanced
by quantum evolution in x. The classical field retains its structure-while the saturation scale
grows: Qs(x′) > Qs(x) for x′ < x.

Small fluctuations about the effective action in Eq. 2 were computed in Ref. [14]. These
gave large corrections of order αS ln(1/x) which suggested that the Gaussian weight functional
was fragile under quantum evolution of the sources. A Wilsonian renormalization group (RG)
approach systematically treats these corrections [15]. The basic recipe is as follows. Begin
with the generating functional in Eq. 1 at some Λ+, with an initial source distribution W [ρ].
Perform small fluctuations about the classical saddle point of the effective action, integrating
out momentum modes in the region Λ′+ < k+ < Λ+, ensuring that Λ′+ is such that
αS ln(Λ+/Λ′+) << 1. The action reproduces itself at the new scale Λ′+, albeit with a charge
density ρ′ = ρ + δρ, and WΛ+ [ρ] −→ WΛ′+ [ρ′]. The change of the weight functional W [ρ] with
x is described by the JIMWLK- non-linear RG equation [15] which we shall not write explicitly
here.

The JIMWLK equations form an infinite hierarchy (analogous to the BBGKY hierarchy
in statistical mechanics) of ordinary differential equations for the gluon correlators <
A1A2 · · ·An >Y , where Y = ln(1/x) is the rapidity. The expectation value of an operator
O is defined to be

< O >Y =
∫

[dα]O[α]WY [α] , (4)

where α = 1
∇2

⊥
ρ. The corresponding JIMWLK equation for this operator is

∂ < O[α] >Y

∂Y
=<

1
2

∫
x⊥,y⊥

δ

δαa
Y (x⊥)

χab
x⊥,y⊥ [α]

δ

δαb
Y (y⊥)

O[α] >Y . (5)

χ here is a non-local object expressed in terms of path ordered (in rapidity) Wilson lines of
α [2]. This equation is analogous to a (generalized) functional Fokker-Planck equation, where Y
is the ”time” and χ is a generalized diffusion coefficient. This equation illustrates the stochastic
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properties of operators in the space of gauge fields at high energies. For the gluon density, which
is proportional to a two-point function < αa(x⊥)αb(y⊥) >, one recovers the BFKL equation in
the limit of low parton densities. The theory is conformal so it is not inconceivable that the full
hierarchy is exactly solvable. Preliminary numerical solutions exist [16] but much work remains
in that direction. A mean field solution deep in the saturation regime [17] shows that the weight
functional there is a non local Gaussian with a variance proportional to k2

⊥ for k2
⊥ < Q2

s.
For large Nc and large A (α2

SA1/3 >> 1), the expectation value of the product of traces of
Wilson lines factorizes into the product of the expectation values of the traces:

< Tr(VxV †
z )Tr(VzV

†
y ) >−→< Tr(VxV †

z ) > < Tr(VzV
†
y ) > , (6)

where Vx = P exp (
∫

dz−αa(z−, x⊥)T a). Here P denotes path ordering in x− and T a is the
SU(3) generator in the adjoint representation. In Mueller’s dipole picture 3, the cross-section
for a dipole scattering off a target can be expressed in terms of these 2-point dipole operators
as [18]

σqq̄N (x, r⊥) = 2
∫

d2b NY (x, r⊥, b) , (7)

where NY , the imaginary part of the forward scattering amplitude, is defined to be NY =
1 − 1

Nc
< Tr(VxV †

y ) >Y . Note that the size of the dipole, 	r⊥ = 	x⊥ − 	y⊥ and 	b = (	x⊥ + 	y⊥)/2.
The JIMWLK equation for the two point Wilson correlator is identical in this large A, large Nc

mean field limit to an equation derived independently by Balitsky and Kovchegov-the Balitsky-
Kovchegov equation [20], which has the operator form

∂NY

∂Y
= ᾱS KBFKL ⊗

{
NY −N 2

Y

}
. (8)

Here KBFKL is the well known BFKL kernel. When N << 1, the quadratic term is negligble and
one has BFKL growth of the number of dipoles; when N is close to unity, the growth saturates.
The approach to unity can be computed analytically [21]. The B-K equation is the simplest
equation including both the Bremsstrahlung responsible for the rapid growth of amplitudes at
small x as well as the repulsive many body effects that lead to a saturation of this growth.

A saturation condition, say N = 1/2, determines the saturation scale. One obtains
Q2

s = Q2
0 exp(λY ), where λ = cαS with c ≈ 4.8. The saturation condition affects the overall

normalization of this scale but does not affect the power λ. In fixed coupling, the power λ is
large and there are large pre-asymptotic corrections to this relation-which die off only slowly
as a function of Y . BFKL running coupling effects change the behavior of the saturation
scale completely-one goes smoothly at large Y to Q2

s = Q2
0 exp(

√
2b0c(Y + Y0)) where b0 is

the coefficient of the one-loop QCD β-function. The state of the art computation of Qs is the
work of Triantafyllopoulos, who obtained Qs by solving NLO-resummed BFKL in the presence
of an absorptive boundary (which corresponds to the CGC) [22]. The pre-asymptotic effects
are much smaller in this case and the coefficient λ ≈ 0.25 is very close to the value extracted
from saturation model fits to the HERA data [23]. No analytical solution of the BK equation
exists in the entire kinematic region but there have been several numerical studies at both fixed
and running coupling [25, 24, 26]. These studies suggest that the solutions have a soliton like
structure and that the saturation scale has the behavior discussed here. Geometrical scaling of
solutions is seen for a wide window in rapidities. Running coupling effects, as suggested, are
important and make the results of the computations more physically plausible.

The soliton like structure is no accident, as was discovered by Munier and Peschanski [27].
They noticed that the BK-equation, in a diffusion approximation, bore a formal analogy to

3 See also Ref. [19].
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the FKPP equation describing the propagation of unstable non-linear wavefronts in statistical
mechanics [29]. In addition, the full BK-equation lies in the universality class of the FKPP
equation. This enables one to extract the universal properties such as the leading pre-
asymptotic terms in the expression for the saturation scale. It was realized [28] that a stochastic
generalization of the FKPP equation-the sFKPP equation-could provide insights into impact
parameter dependent fluctuations [30] in high energy QCD beyond the BK-equation. This is a
very active area of research now, with several groups hunting for the Pomeron loops responsible
for these fluctuations.

To summarize, the Color Glass Condensate is a weak coupling effective theory describing
the properties of hadron wavefunctions in QCD at high energies. Renormalization group
equations-the JIMWLK equations-describe the behavior of multi-parton correlations in the
hadron wavefunction as a function of rapidity. The theory has stochastic features closely
analogous to the propagation of unstable non-linear wave fronts in statistical mechanics. Recent
work is focused on trying to understand possible corrections beyond JIMWLK at low parton
densities-which may be responsible for Pomeron loops. We now turn to the applications of this
theory to hadronic scattering.

3. Hadronic scattering and k⊥ factorization in the Color Glass Condensate
At collider energies, a new window opens up where Λ2

QCD << M2 << s. In principle, cross-
sections in this window can be computed in the usual collinear factorization language-however,
one needs to sum up large logarithmic corrections in s/M2. An alternative formalism is that of
k⊥-factorization [31, 32], where one has a convolution of k⊥ dependent “un-integrated” gluon
distributions from the two hadrons with the hard scattering matrix. In this case, the in-coming
partons from the wavefunctions have non-zero k⊥. The rapidity dependence of the unintegrated
distributions is given by the BFKL equation. However, unlike the structure functions, it has
not been proven that these unintegrated distributions are universal functions.

At small x, both the collinear factorization and k⊥ factorization limits can be understood in
a systematic way in the framework of the Color Glass Condensate. Rather than a convolution
of probabilities, one has instead a collision of classical gauge fields. The expectation value of an
operator O can be computed as

< O >Y =
∫

[dρ1] [dρ2] Wx1 [ρ1] Wx2 [ρ2]O(ρ1, ρ2) , (9)

where Y = ln(1/xF ) and xF = x1 − x2. All operators at small x can be computed in the
background classical field of the nucleus at small x. Quantum information, to leading logarithms
in x, is contained in the source functionals Wx1(x2)[ρ1(ρ2)]. The operator O can be expressed in
terms of gauge fields Aµ[ρ1, ρ2](x).

Inclusive gluon production in the CGC is computed by solving the Yang-Mills equations
[Dµ, Fµν ]a = Jν,a, where Jν = ρ1 δ(x−)δν+ + ρ2 δ(x+)δν−, with initial conditions given by the
Yang-Mills fields of the two nuclei before the collision. These are obtained self-consistently by
matching the solutions of the Yang-Mills equations on the light cone [33]. The initial conditions
are determined by requiring that singular terms in the matching vanish. Since we have argued
in Section 2 that we can compute the Yang-Mills fields in the nuclei before the collision, the
classical problem is in principle completely solvable. Quantum corrections not enhanced by
powers of αS ln(1/x) can be included systematically. The terms so enhanced are absorbed into
the weight functionals W [ρ1,2]. As we will now discuss, hadronic scattering in the CGC can be
studied through a systematic power counting in the density of sources in powers of ρ1,2/k2

⊥;1,2.
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3.1. Gluon and quark production in the dilute/pp regime: (ρp1/k2
⊥ ρp2/k2

⊥ << 1)
The power counting here is applicable either to a proton at small x, or to a nucleus (whose
parton density at high energies is enhanced by A1/3) at large transverse momenta. The relevant
quantity here is Qs, which, as one may recall, is enhanced both for large A and small x. As long
as k⊥ >> Qs >> ΛQCD, one can consider the proton or nucleus as being dilute.

To lowest order in ρp1/k2
⊥ and ρp2/k2

⊥, inclusive gluon production was computed in the CGC
framework in Aτ = 0 gauge [33] and subsequently in the Lorentz gauge ∂µAµ = 0 [34]. For
Qs << k⊥, the inclusive cross-section is expressed as the product of two unintegrated (k⊥
dependent) distributions times the matrix element for the scattering. This well known result for
gluon production is substantially modified, as we shall discuss shortly, by high parton density
effects in the nuclei.

k⊥ factorization is a good assumption at large momenta for quark pair-production. This was
worked out in the CGC approach by François Gelis and myself [35]. The result for inclusive
quark pair production can be expressed in k⊥ factorized form. The matrix element can be
shown to be identical to the result derived in the k⊥–factorization approach [31, 32]-thereby
establishing that well known results can be recovered in the limit of low parton densities.

3.2. Gluon and quark production in the semi-dense/pA region (ρp/k2
⊥ << 1 ρA/k2

⊥ ∼ 1).
The power counting here is best applicable to asymmetric systems such as proton-nucleus
collisions, which naturally satisfies the power counting for a wide range of energies. Of
course, as one goes to extremely high energies, it is conceivable that the parton density
locally in the proton can become comparable to that in the nucleus. In the semi-dense/pA
case, one solves the Yang–Mills equations [Dµ, Fµν ] = Jν with the light cone sources Jν,a =
δν+ δ(x−) ρa

p(x⊥) + δν− δ(x+) ρa
A(x⊥), to determine the gluon field produced-to lowest order in

the proton source density and to all orders in the nuclear source density.
Inclusive gluon production in this framework was first computed by Kovchegov and

Mueller [36] and shown to be k⊥ factorizable in Ref. [37]. In Ref. [38], the gluon field produced
in pA collisions was computed explicitly in Lorentz gauge ∂µAµ = 0. . Our result is exactly
equivalent to that of Dumitru & McLerran in Aτ = 0 gauge [43]. The well known “Cronin” effect
is obtained in our formalism and can be simply understood in terms of the multiple scattering of
a parton from the projectile with those in the target. The Cronin effect, its quantum evolution
and comparison with experiment was discussed at this meeting in Yuri Kovchegov’s talk and
will therefore not be discussed here.

Quark production in p/D-A collisions can be computed with the gauge field in Lorentz
gauge [39]. The field is decomposed into the sum of ‘regular’ terms and ’singular’ terms; the latter
contain δ(x+). The regular terms are the cases where a) a gluon from the proton interacts with
the nucleus and produces a qq̄-pair outside, b) the gluon produces the pair which then scatters
off the nucleus. Naively, these would appear to be the only possibilities in the high energy limit
where the nucleus is a Lorentz contracted pancake. However, in the Lorentz gauge, one has terms
identified with the singular terms in the gauge field which correspond to the case where the quark
pair is both produced and re-scatters in the nucleus! 4. Unlike gluon production, neither quark
pair-production nor single quark production is strictly k⊥ factorizable. The pair production
cross-section can however still be written in k⊥ factorized form as a product of the unintegrated
gluon distribution in the proton times a sum of terms with three unintegrated distributions, φg,g,
φqq̄,g and φqq̄,qq̄. These are respectively proportional to 2-point, 3-point and 4-point correlators
of the Wilson lines we discussed previously. For instance, the distribution φqq̄,g is the product of
fundamental Wilson lines coupled to a qq̄ pair in the amplitude and adjoint Wilson lines coupled
to a gluon in the complex conjugate amplitude. For large transverse momenta or large mass

4 Related work for single quark production has been discussed in Refs. [41, 42].
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pairs, the 3-point and 4-point distributions collapse to the unintegrated gluon distribution, and
we recover the previously discussed k⊥-factorized result for pair production in the dilute/pp-
limit. Single quark distributions are straightforwardly obtained and depend only on the 2-point
quark and gluon correlators and the 3-point correlators. For Gaussian sources, as in the MV-
model, these 2-,3- and 4-point functions can be computed exactly as discussed in Ref. [39]. In
Ref. [40], we used these results to explicitly study the magnitude of violation of k⊥-factorization.

Our results, coupled with the previous results for inclusive and diffractive distributions in DIS
suggest that at small x dipole and multipole correlators of Wilson lines can be extracted in both
DIS and hadronic collisions. These operators are gauge invariant and process independent. The
renormalization group running of these operators will be a powerful and sensitive harbinger of
new physics.

3.3. Gluon and quark production in the dense/AA region (ρA1/k2
⊥ = ρA2/k2

⊥ ∼ 1).
In nucleus-nucleus collisions, ρ1,2/k2

⊥ ∼ 1. Unlike gluon production in the pp and pA cases,
k⊥-factorization breaks down in the AA-case [46, 45]. This is because the classical field comes
in with a factor 1/g-thus each insertion on the gluon is of order O(1). One cannot therefore
factor the quantum evolution of the initial wavefunctions into unintegrated gluon distributions
unlike the pA case.

Nevertheless, the problem of nuclear collisions is well defined in weak coupling and can
be solved numerically [46, 47]. The numerical simulations thus far assume Gaussian initial
conditions as in the MV model. These are good initial conditions for central Gold-Gold collisions
at RHIC where the typical x is of order 10−2. They are not good initial conditions at the LHC
where the typical x at central rapidities will be at least an order of magnitude lower. In that
case, one has to use solutions of JIMWLK RG equations [16]. The numerical lattice formalism
of Ref. [46] is ideal for computing particle production in the forward light cone by matching the
Wilson lines from each of the nuclei on the light cone.

We restrict ourselves to discussing numerical solutions with Gaussian initial conditions. The
saturation scale Qs (which is an input in the numerical solutions in this approximation) and the
nuclear radius R are the only parameters in the problem. The energy and number respectively
of gluons released in a heavy ion collision of identical nuclei can therefore be simply expressed
as

1
πR2

dE

dη
=

cE

g2
Q3

s ;
1

πR2

dN

dη
=

cN

g2
Q2

s , (10)

where (up to 10% statistical uncertainity) we compute numerically cE = 0.25 and cN = 0.3.
Here η is the space-time rapidity. The number distributions of gluons can also be computed in
this approach. Remarkably, one finds that a) the number distribution is infrared finite, and b)
the distribution is well fit by a massive Bose-Einstein distribution for k⊥/Qs < 1.5 GeV with a
“temperature” of ∼ 0.47Qs and by the perturbative distribution Q4

s/k4
⊥ for k⊥/Qs > 1.5.

The MV model when applied to heavy ion collisions correctly predicted the initial multiplicity
at RHIC [46] and was remarkably successful in explaining rapidity distributions and the
centrality dependence of multiplicities [48]. However, it soon became clear that the CGC alone
was not sufficient to explain the RHIC data since a) it could not explain the RHIC v2 data
and b) it predicted a suppression in D-A collisions at RHIC which disagreed with the RHIC
data [44]. This failure of the CGC (here meaning quantum evolution as opposed to the MV
model-which has no evolution) strongly suggested that final state interactions are important at
RHIC. This corroborates the remarkable success of hydrodynamic models. Why do predictions
of bulk features-the multiplicity [46] and rapidity and centrality dependence [48] do so well then?
If hydrodynamic behavior sets in early, and viscous effects are small, the bulk features from the
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initial conditions will be preserved by hydrodynamic flow [49]. Many puzzles remain. We don’t
understand early thermalization or why viscous corrections are small.

The RHIC data on the multiplicity and transverse energy of produced hadrons combined with
Eq. 10 place strong constraints on what Qs can be. If Qs is too small, we find, absurdly, that
the initial transverse energy is less than the final measured transverse energy. If Qs is too large,
we find that the initial multiplicity of gluons is greater than the final multiplicity of hadrons.
These constraints therefore allow us to place the bound that 1.3 < Qs < 2 GeV. This bound
is consistent with an A1/3 extrapolation of the Golec-Biernat–Wusthoff fit of Q2

s to the HERA
data [23]. A simple extrapolation gives Qs ≈ 1.4 GeV.

The transition to the QGP from the CGC remains as an outstanding theoretical problem.
Due to the rapid expansion of the system, the occupation number of modes falls well below one
on time scales of order 1/Qs. A necessary condition for thermalization is that momentum
distributions should be isotropic. The CGC initial conditions are very anisotropic with
< p⊥ >∼ Qs and < pz >∼ 0. How does this isotropization take place? All estimates of
final state re-scattering of partons formed from the melting CGC give longer times than what
the RHIC collisions seem to suggest [50].

Collective instabilities [51], analogous to the well known Weibel instabilities in plasma physics,
can speed up themalization [52, 53]. Starting from very anisotropic (CGC-like) initial conditions,
these instabilities drive the system to isotropy on very short time scales, of order 1/Qs in some
estimates. An equally interesting problem is that of chemical equilibration. One would expect,
in weak coupling, the production of quarks to be suppressed. However, since the CGC produces
strong fields of order 1/g, it could drive the system to chemical equilibrium. First steps have
been taken to study this problem [54, 55] by numerically solving the Dirac equation in the
background field of the two nuclei.

4. Open Issues in the CGC
The CGC is a framework to think about problems in high energy QCD. A topic of much
excitement among theorists recently is whether there are contributions beyond the JIMWLK
equations-in particular those that generate ”Pomeron loops”. We addressed the issue of k⊥-
factorization and why ”dipole” and ”multipole” operators are relevant variables at high energies.
Can one derive factorization theorems in this framework analogous to those derived previously
for Collinear Factorization? Turning to phenomenology, we have the beginnings of a consistent
phenomenological picture of the CGC and the QGP in D-A and A-A collisions. For this to
become a quantitative science, we need to understand the problem of thermalization from first
principles in QCD. It is a difficult task but by no means an impossible one.
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