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Abstract. The resonances associated with a fractional damped oscillator which is driven by
an oscillatory external force are studied. It is shown that such resonances can be manipulated
by tuning up either the coefficient of the fractional damping or the order of the corresponding
fractional derivatives.

1. Introduction

The simplest oscillating system (a harmonic oscillator) can be modeled by a mass at the end
of a spring which slides back and forth without friction. The motion is characterized by the
natural frequency of oscillation ω0 and the total stored energy E (which is a constant of motion
and defines the amplitude of oscillation) [1]. Actual oscillating systems present some loss of
energy due to friction forces so that the amplitude of their oscillations is a decreasing function
of time. However, the oscillations can be driven to avoid their damping down by the action
of a repetitive force F (t) on the system. Such a system is called driven damped oscillator [2].
An special excitation of the system arises when the frequency of the applied force matches the
natural frequency of the oscillator since the spectral energy distribution takes its maximum
value. The phenomenon, known as resonance, is a subject of study in classical mechanics,
electromagnetism, optics, acoustics and quantum mechanics, among other physical theories [3].

The present work is addressed to the study of the driven damped oscillator in the context
of fractional calculus [4–6]. That is, the second-order differential equation associated with the
Newtonian law of motion for a damped oscillator that is driven by an external force will be
substituted by a fractional differential equation of order 2α, with 0 < α ≤ 1. Special emphasis
will be placed on the resonance phenomenon.

2. Fractional Oscillator with fractional damping

Given an oscillator of natural frequency ω0, the general expression for the displacement of the
mass can be expressed as the integral equation [8, 9]

x(t) = x0 + It (ẋ0) + ω2
0It [It (x(t))] , (1)

where x0 and ẋ0 are constants of integration, and

It(x(t)) :=

∫

x(t)dt (2)

http://creativecommons.org/licenses/by/3.0
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represents the Riemman time-integration of x(t). The fractional generalization of (1) is
performed in two steps. First we replace It with the Riemman-Liouville fractional time-integral
operator Iα [4–6], and ω0 with ωα

0 . The latter for consistency of units. Then we have

x(t) = x0 + Iα (ẋ0) + ω2α
0 Iα [Iα (x(t))] , 0 < α ≤ 1. (3)

Now, a fractional differential form of (3) can be obtained by applying twice the time-fractional
derivative operator of Caputo

DαDαx(t) + ω2αx(t) = 0 (4)

(for details about the operator Dα see, e.g., [5]). Let us introduce a ‘fractional damping’ which
is proportional to the fractional time-derivative of the position Dαx(t). That is

DαDαx(t) + 2βαDαx(t) + ω2αx(t) = 0. (5)

One can show that the solution of this last equation is of the form

x(t) =
x0t

−α

√

β2α − ω2α
0

[Eα,1−α (−Ω−t
α)− Eα,1−α (−Ω+t

α)]

+
2βαx0 + x

(α)
0

√

β2α − ω2α
0

[Eα,1−α (−Ω−t
α)− Eα,1−α (−Ω+t

α)] ,

(6)

where

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
, Re(α) > 0, Re(β) > 0, z ∈ C, (7)

is the Mittag-Leffler function [7], and

Ω± = βα
±

√

β2α − ω2α
0 .

3. Driven fractional oscillator with fractional damping

Let us add a driving force at the right hand side of Eq. (5), we have

DαDαx(t) + βαDαx(t) + ω2αx(t) = f0 cos (ωt+ φ) , (8)

where f0 is a real constant. Applying the Laplace transform L and solving for X(s) = L[x(t)]
we arrive at the expression

X(s) = f0

[

s cosφ− ω sinφ

(s2 + ω2)
(

s2α + 2βαsα + ω2α
0

)

]

+
x0s

2α−1 +
(

x0 + 2βαx
(α)
0

)

sα−1

s2α + 2βαsα + ω2α
0

. (9)

Making f0 = 0 we see that the second term in (9) corresponds to transient oscillations because
there is no force present which can ensure their predominance; the corresponding inverse Laplace
transform has been evaluated in the previous section. In turn, for the inverse Laplace transform
of the firs term one has

x(t) =
f0
2πi

lim
T→∞

∫ g+iT

g−iT
est

[

s cosφ− ω sinφ

(s2 + ω2)
(

s2α + 2βαsα + ω2α
0

)

]

ds. (10)

The integrand contains a branch point at s = 0 and simple poles at s = ±iω, and s =
(

Ω±e
±iπ

)1/α
. Following [10] we find that x(t) is given as the sum of three contributions: x1(t),
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x2(t) and x3(t). The first one results from the calculation of (10) along the Hankel-Bromwich
path shown in Fig. 1 of Ref. [10], we obtain

x1(t) =
f0
π

∫

∞

0

e−rt
[

r2α sin(2πα) + 2βαrα sin(πα)
]

(r2 + ω2) [r4α + 4β2αr2α + ω4α + 4βαr3α cos(απ) + 4βαrαω2α
0 + 2r2αω2α

0 cos(2απ)]
dr. (11)

The latter expression vanishes as t → ∞. On the other hand, the sum of residues associated

with the poles s =
(

Ω±e
±iπ

)1/α
gives

x2(t) =
2etγ+ cos(π/α)

γα−1
+ (γα

−
− γα

+)

[

ω2γ+ cosφ cos
(

tγ+ sin(π/α)− π
α
(α− 2)

)

+ γ3
+ cosφ cos (tγ+ sin(π/α)− π)

ω4 + γ4
+ + 2ω2γ2

+ cos (2π/α)

]

+
2etγ− cos(π/α)

γα−1
−

(γα
+ − γα

−
)

[

ω2γ− cosφ cos
(

tγ− sin(π/α)− π
α
(α− 2)

)

+ γ3
−
cosφ cos (tγ− sin(π/α)− π)

ω4 + γ4
−
+ 2ω2γ2

−
cos (2π/α)

]

+
2etγ+ cos(π/α)

γα−1
+ (γα

−
− γα

+)

[

ω3 sinφ cos
(

tγ+ sin(π/α)− π
α
(α− 1)

)

+ ω2γ2
+ sinφ cos

(

tγ+ sin(π/γ)− π
α
(α+ 1)

)

ω4 + γ4
+ + 2ω2γ2

+ cos (2π/α)

]

+
2etγ− cos(π/α)

γα−1
−

(γα
+ − γα

−
)

[

ω3 sinφ cos
(

tγ− sin(π/α)− π
α
(α− 1)

)

+ ω2γ2
−
sinφ cos

(

tγ− sin(π/γ)− π
α
(α+ 1)

)

ω4 + γ4
−
+ 2ω2γ2

−
cos (2π/α)

]

, (12)

where γ± = Ω
1/α
± . The term x2(t) is parameterized by the order of the Caputo operator Dα,

the coefficient β of the fractional damping, and the natural frequency ω0; the appropriate
combination of these three parameters produces x2 → 0 as t → ∞. Further details will be
reported elsewhere. On the other hand, the term associated with the poles s = ±iω is of the
form

x3(t) = A cos(ωt+ δ), (13)

where the amplitude and phase are respectively given by

A = f0

√

ω4α + ω4α
0 + 2ω2αω2α

0 cos (πα− 2φ) + 4ωαβα
[

ωαβα + (ω2α + ω2α
0 ) cos

(

πα
2
− 2φ

)]

ω4α + ω4α
0 + 2ω2αω2α

0 cos (πα) + 4ωαβα
[

ωαβα + (ω2α + ω2α
0 ) cos

(

πα
2

)] , (14)

and

δ = arctan

[

−
ω2α sin (πα− φ) + ω2

0 sin (φ) + 2βαωα sin
(

πα
2

)

ω2α cos (πα− φ) + ω2
0 cos (φ) + 2βαωα cos

(

πα
2

)

]

. (15)

As in the conventional case, the amplitude A of the oscillations dictated by x3(t) is proportional
to the amplitude f0 of the driving force. At zero frequency ω (i.e., for a constant driving force),
the quotient Λ = A/f0 becomes ω

−2α
0 which, in turn, reproduces the (low frequencies) Newtonian

result for α = 1. At very high frequencies we find Λ ≈ ω−2α, so that the external driving force
is dominant. On the other hand, at ω = ω0 with β and φ fixed, we find that Λ is as larger as α
approaches the value α = 1 and becomes smaller for α ∈ (0, 1/2). That is, given the fractional
damping parameter β, the fractional system behaves as an underdamped oscillator for α → 1,
and as an overdamped one if α approximates 1/2 from above.

The behavior of Λ is depicted in Fig. 1 as a function of the frequency ω with φ, ω0 and
β fixed, and for different values of α. For α = 1 (i.e., for the Newtonian case) we find that
Λ reaches its maximum value when the driving force oscillates at the natural frequency ω0,
as expected. Such a large response of the system to the driving force is the fingerprint of a
resonance. Notice however that the maximum decreases and shifts to the left as α decreases.
That is, for α . 1 the resonance occurs at a frequency ω which is lower than ω0. The latter
means that the resonances can be controlled by fixing the fractional-damping parameter β and
tuning up the order of the fractional derivative Dα. The same holds if one fixes the value of α
and adjust the fractional-damping parameter β.
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Figure 1. (Color online) The quotient Λ = A/f0 of the amplitude of oscillation A defined in (14) and the
amplitude f0 of the driving force introduced in (8) with φ = 0, ω0 = 1, β = 0.1ω0, for α = 0.99 (dotted-black),
α = 0.95 (solid-red), and α = 0.90 (dashed-blue).

4. Conclusions

Using fractional calculus one finds that the classical harmonic oscillator is affected by an ‘intrinsic
damping’ [8,9], such a damping is also present in the quantum-fractional case [11]. The response
of the classical fractional oscillator to the presence of a driving force has been already studied
in e.g. [10]. In this paper we have presented some preliminary results of our study on a driven
fractional oscillator which is affected by a fractional damping of the form βαDαx(t), with Dα the
Caputo time-derivative operator and 0 < α ≤ 1. In particular, we have shown that the resonance
phenomenon can be controlled by tuning up either the coefficient β of the fractional-damping
or the order α of the Caputo operator. Further results will be reported elsewhere.
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