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Abstract

The main goal of this lecture is to discuss some old and new results concerning
Kramers-Wannier Duality for spin systems with non-abelian symmetry.
In 1941 H. Kramers and G. Wannier discovered a special symmetry which relates
low-temperature and high-temperature phases in the planar Ising model. The cor-
responding transformation, the Kramers-Wannier transform, is a special nonlocal
substitution in the partition function. The existence of such transformations is a
general property of lattice spin systems. Generalization of KW transform to spin
systems with non-abelian symmetry is essential for many problems in statistical
physics and field theory. This problem is very difficult and can’t be carried out by
classical methods (like Fourier transform in commutative case). We present new
results which solve this problem for finite non-abelian groups.

Introduction

In the classical paper of Kramers and Wannier [1] a special symmetry was
discovered, which relates low-temperature and high-temperature phases in
the planar Ising model. The corresponding transformation, the Kramers-
Wannier (KW) transform, is a special nonlocal substitution of a variable in
the partition function. This substitution transforms the partition function
W defined by the initial ”spin” variables taking values in Z2 and deter-
mined on the vertices of the original lattice L to the partition function W̃
determined on the dual lattice L∗ spin variables taking values in Z2.
Furthermore, we will use the following transformation of Boltzman factor

β −→ β∗ = arth e−2β , β = (kT )−1 (0..1)

to get the correct form of the dual partition function W̃ .
The existence of such transformations is a general property of lattice spin
systems that possess a discrete (and not only discrete) group of symmetry.
The KW-transform allows the determination, for many physically impor-
tant systems, of the point of phase transition in cases when the explicit
analytical form of a partition function is unknown.
Generalizations of the KW transform in spin systems with different sym-
metry groups is essential for many problems in statistical physics and field
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theory. In fact, it is very important to carry out KW transforms for 4-
dimensional gauge theories in which corresponding phases are free quarks
and quarks confinement. In this case we need to construct KW transforms
for non-abelian groups.
The KW-transform for systems with a commutative symmetry group K,
particularly Zn and Z (like the Ising Z2-model), can be carried out by
general methods. In this case the KW-transform is a Fourier transform
from a spin system on the lattice L to the spin system on the dual lattice
L̃ with spin variables taking values in the group K̂, the group of characters
of K. This result was obtained by a number of authors, see [2,3,4] and
references cited in it. From the mathematical point of view this result is a
generalization of the classical Poisson summation formula for the group Z.
In this lecture we present some results which solve this problem for non-
commutative groups. Our lectures based on the paper [5]. For the sake of a
volume limit we omit some examples but add the outline of our construction
for the compact case. The efficacy of our approach was illustrated by
examples of KW transforms for the icosahedron I5 and dihedral groups
Dn [5]. These examples are also interesting for physical applications, for
example, to search out the line of phase transitions in quasicrystals with
the icosahedral symmetry or discotic liquid crystals with the symmetry Dn.
The main result of our paper is the definition of the generalized KW-
transform, based on the mapping of the group algebra C(G) to the space
of complex-valued functions on G. The construction of this transforma-
tion clarifies its real meaning and offers far-reaching generalization papers
[2,6,7].
The layout of the lecture is as follows. In section 1 we recall, following
the paper [2], the construction of the KW-transform for abelian groups.
In section 2 we introduce some relevant algebra notions like the group
algebra C(G) and the space of regular functions C[G]. We also construct
the canonical pairing of C(G) with C[G]. In section 3 we describe orbits
of the adjoint representation and the regular representation of the group
G. In the section 4 we carry out the generalized KW-transform for finite
groups and in the section 5 apply our general results to special cases of
subgroups of the group SO(3). In the section 6 we study the compact case.
In the conclusion we discuss some applications of these results, in particular
some connections with quantum groups.

1. KW-duality for abelian systems

Let us recall the construction of KW-duality for commutative groups. We
shall follow the paper [2]. Let us consider a planar square lattice L with unit
edge. Let x = {xμ} = {x1, x2} (where x1 and x2 are integers) represent
a vertex, and eαμ = {e1μ, e2μ} = δα

μ basis vectors of L. We will often use
the notation x + α̂ ≡ {xμ + eαμ}. A double index x, α is convenient for
denoting the edge in the lattice which connects the vertices x and x + α̂.
In what follows we shall also need the dual lattice, L̃ whose vertices are at
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the centers of the faces of the original lattice L. We denote the coordinates
of a vertex of L̃ by x̃:

x̃ = {xμ + 1/2e1μ + 1/2e2μ}.

We define spin variables sx on vertices of L, these take values in some
manifold M , which we call the spin space. We confine ourselves to the case
of a finite set M .
The simplest Hamiltonian of such a spin system involves only interactions
of nearest neighbors

H =
∑
x,α

H(sx, sx+α̂), (1..1)

where the Hamiltonian H(s, s′) is a real function of a pair of points from
M , with the properties

H(s, s′) = H(s′, s), (1..2a)

H(s, s′) � 0 for arbitrary s, s′ ∈M, H(s, s) = 0. (1..2b)

The Hamiltonian prescribes a structure similar on M to a metric structure
(which in the general case is not metric, since we nowhere require that the
triangle inequality hold), which we shall call the H structure.
Of particular interest are examples in which the manifold M is a homo-
geneous space, i.e., there exists a group G of transformations of M which
preserves the H structure: H(gs, gs′) = H(s, s′) for arbitrary s, s′ ∈M . In
this case the spin system has global symmetry with group G.
Important special cases are systems on groups. For these the spin manifold
coincides with a group G: si = gi ∈ G, and the Hamiltonian is invariant
under left and right translations:

H(hg, hg′) = H(gh, g′h) = H(g, g′) for arbitrary h ∈ G. (1..3)

The general H function of the system on the group can therefore be put in
the form

H(g1, g2) = H(g1g−1
2 ) =

∑
p

h(p)χp(g1g−1
2 ), (1..4)

where χp(g) are the characters of the p-th irreducible representations of the
group G, and the constants h(p) are chosen so that H has the properties
(1..2) and are otherwise arbitrary.
The partition function of the general spin system with the Hamiltonian
(1..1) is

Z =
∑

sx∈M

∏
x,α

W (sx, sx+α), (1..5)

where
W (s, s′) = exp{−H(s, s′)}. (1..6)
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According to Eq. (1..2) the function W has the properties

W (s, s′) = W (s′, s), 0 � W (s, s′) � 1, W (s, s) = 1. (1..7)

For the system on a group we have also

W (g1, g2) = W (g1g−1
2 ), W (g−1) = W (g). (1..8)

For a spin system on a group G the sum over states (1..5) can be put in
the following equivalent form:

Z =
∑

gx,α∈G

∏
x,α

W (gx,α)
∏
x̂

δ(Qx̃, I), (1..9)

where the summation variables gx,α are defined on the edges of the lattice

Qx̃ = gx,1 gx+1̂,2g
−1
x+2̂,1

g−1
x,2, (1..10)

and the δ-function is defined by the formula

δ(g, I) =
{

1, if g = I,

0 otherwise.

In fact, the general solution of the connection equation Qx̃ = I is

gx,α = gxg
−1
x+α̂

and this brings us back to Eq. (1..5).
Systems on commutative groups are a special case, in which the δ-function
in Eq. (1..9) can be factorized in the following way:

δ(Qx̃, I) =
∑

p

χp(Qx̃) (1..11)

=
∑

p

χp(gx,1)χp(gx+1̂,2)χ
−1
p (gx+2̂,1)χ

−1
p (gx,2).

This sort of factorization is of decisive importance and allow for a unified
presentation of the KW transform for all commutative groups.
We note that for a commutative group G all irreducible representations are
one-dimensional and their characters χp form a commutative group Ĝ (the
character group) with a group multiplication defined in accordance with
the tensor product of representations. By definition

χp1p2(g) = χp1(g)χp2(g), χp−1(g) = χ−1
p (g),
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and the unit element of G̃ corresponds to the identity representation of G.
Accordingly, the summation in Eq. (1..11) can be regarded as a summation
over the elements of the dual group Ĝ.
Substituting the expansion (1..11) in Eq. (1..9), an obvious regrouping of
factors yields

Z =
∑

sx,α∈G

∏
x,α

W (gx,α)
∏
x̃

∑
px̃

χpx̃
(gx,1)χpx̃

(gx+1̂,2)χp−1
x̃

(gx+2̂,1)χp−1
x̃

(gx,2)

=
∑

px̃∈G

∏
x̃,α

W̃ (px̃p
−1
x̃+α̂), (1..12)

W̃ (px̃p
−1
x̃+α̂) =

∑
g∈G

W (g)χpx̃
(g)χp−1

x̃+α
(g) =

∑
g∈G

W (g)χpx̃p−1
x̃+α̂

(g). (1..13)

The expression (1..12) defines a new, dual, spin system on the dual group
Ĝ with a new Hamiltonian H̃, which is defined the formula

exp{−H̃(p)} = W̃ (p). (1..14)

The result can be formulated in the following way.

Proposition 1.1. A spin system on a commutative group G with a Hamil-
tonian H(g)(g ∈ G) is equivalent to a spin system on the character group
Ĝ (and on the dual lattice) with the Hamiltonian H̃(p)(p ∈ Ĝ) given by the
Fourier transform

exp{−H̃(p)} =
∑
g∈G

exp{−H(g)}χp(g). (1..15)

This is a Kramers-Wannier transform. In contradistinction to the ”order
variables” gx the name ”disorder variables” can be given to the dual spins
px̃.

2. Algebraic constructions

For further details of exploiting algebraic constructions one can consult the
books [8,9].

A) The group algebra C(G) of G.

Let G be a finite group of order n with elements {g1 = e, ..., gn}.
Definition 1. The group algebra C(G) of G is n-dimensional algebra
over the complex field C with basis {g1 = e, ...gn}. A general element
u = c(g) ∈ C(G) is

u =
∑

αigi. (2..1)
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The product of two elements (convolution) u, v ∈ C(G) is defined as

uv =
( n∑

i=1

αigi

)( n∑
i=1

βjgj

)
=

k∑
1

(γkgk), γk =
∑

gigj=gk

αiβj . (2..2)

B) The ring of functions C[G] on G.

Definition 2. C[G] is a linear space of all complex-valued functions on G
and the product is defined pointwise:(

f1 · f2

)
(g) = f1(g)f2(g). (2..3)

C) The canonical pairing < ·, · > of spaces C(G) and C[G] is a map

< ·, · >: C(G) ⊗ C[G] −→ C,

defined as follows: for u ∈ C(G) and f ∈ C[G]

u⊗ f −→ < u, f >=
∑

αif(gi). (2..4)

We choose as a basis in C[G] functions such that < gi, g
j >= δj

i here δj
i is

the Kronecker symbol.
This pairing enables us to identify C(G) and C[G] as vector spaces.

3. Canonical actions of the Group G

We now define two canonical representations, the adjoint representation on
C(G) and the regular representation on C[G].

A) T (g) : C(G)
The adjoint representation is defined on the basis consisting of elements of
G by

g : gi −→ ggig
−1. (3..1)

The adjoint representation ad G decomposes in the direct sum of irreducible
representations and split C(G) in the sum of subspaces invariant under the
adjoint action.
Each irreducible subspace Hi relates with the orbit of ad G (3..1). The
number of Hi is equal to m, the number of elements in the space C(G)/
[C(G), C(G)], here [C(G), C(G)] denotes the commutant of C(G).

B) T̃ (g) : C[(G]

Let us define the canonical representation T̃ in the space C[G] as the (right)
regular representation as:

T (g) : f =⇒ T (g) : f(gk) = f(gkg), g ∈ G, f(g) ∈ C[G]. (3..2)
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It is well known that, in the decomposition of the regular representation
into irreducible ones all irreducible representations appear with multiplicity
equal to the dimension of the representation.

T̃ =
∑

dkVk ,

where Vk is the irreducible representation of degree k and dk is the degree
(dimension) of Vk (multiplicity of irreducible representation).

Proposition 3.1. The number m of irreducible representations T̃ is equal
to the number of orbits of T .

C) The canonical scalar product in the space C[G] is

< f1, f2 >=
1
n

n∑
k=1

f1(gk)f̄2(gk), f1, f2 ∈ C[G]. (3..3)

The characters χi(g) of the irreducible representation of G form the set of
orthogonal functions with respect to the scalar product (3..4).
Now we construct the basis in the space C[G]. Let us choose the character
χk(g) and act on χk(g) by the group G with the help of the right regular
representation:

Rgl
χk(g), l = 1, ..., n. (3..4)

We obtain the space Vk with dim Vk = |χk(g)|2. As a result we get the
factorization of C[G]:

C[G] =
∑

k∈MG

Vk, MG = {k = 1, ..,mG},

where mG is the number of irreducible representations of G.
Orthonormalizing the set of functions (3..5) we obtain the basis in the
space Vk. Since Vk are pairwise orthogonal, applying this procedure to all
characters χk we obtain the desired basis in C[G].

Definition 3. We shall call the dual space Ĝ to G the basis in C[G] which
we construct in the section C.

Motivations for such definition ensue from the case of a commutative group
K. The characters of K are one-dimensional and the action of G on charac-
ters is simply the multiplication on the scalar, the eigenvalue of the operator
Rg. The derived basis is the same as the set of elements of the group K̂.

4. The KW-transform for finite groups

Let us consider the adjoint representation ad G of G, on the space C(G),
induced by

g : gk −→ ggkg
−1.
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Let us denote by gG
k the orbit relative to the adjoint action for gk ∈ G, and

by δk ∈ C[G] it characteristic function:

δk(gs) =
{

1, if gs ∈ gG
k ,

0, otherwise.

Let mG be the number of conjugacy classes relative to the adjoint action
of G. Let us choose representations of the classes

g1, ..., gkj
.

Lemma 4.1. A linear map W : C(G) −→ C satisfies the condition

W (gk) = W (glgkg
−1
l ) (4..1)

for every gl ∈ G, off

W =
m∑

j=1

γjδkj
∈ C[G] = Hom(C(G),C), i.e.

W (gs) =
∑

γjδkj
(gs). (4..2)

We obtain a general form of the adjoint invariant linear mapping, if we
choose as γ = (γ1, ..., γm), the vector of free parameters.
Now we shall find the form of a general linear mapping:

Ŵ : C[G] −→ C

determined by the characters χi(G).

The set of characters χ1, ..., χm of the irreducible representation of G form
the orthonormalized basis (relative to the scalar product (3..4)) in C[G].
Here and further χ1 is the character of the trivial one-dimensional repre-
sentation.
We get Ŵ =

∑
γ̂jχ

j as

Ŵ (ψ) =
m∑

j=1

γ̂j < χj, ψ > (4..3)

since characters of representations by Lemma 4.1 are ad-invariant functions,
we introduce the matrix Γ = γl

j using the expansion

χl =
m∑

j=1

γl
jδkj

. (4..4)
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Let us denote by g0, ..., gm−1 the orthonormalized basis in the algebra C[G],
dual to the basis g0, .., gm−1 in the group algebra C(G), i.e. < gi, gj >= δi

j .

Let D be the duality map:

D : C(G) −→ C[G], D(gk) = gk. (4..5)

Theorem 4.1. If we pose γj =
m∑

l=1

γl
j γ̂l, (j = 1, ...,m) then by the canonical

duality D the linear map

W : C(G) −→ C, W (g) =
m∑

j=1

γjδkj
(g)

pass to the linear map

Ŵ : C[G] −→ C, Ŵ (ψ) =
m∑

j=1

γ̂j < χj, ψ >

and maps W and Ŵ themselves will be determined by the same function,
more precisely

W (gs) =
m∑

j=1

γjδkj
(gs) = n

m∑
j=1

γ̂jχ
j(gs) = nŴ (gs). (4..6)

Proof. For any gs we have

W (gs) =
m∑

j=1

γjδkj
(gs) =

m∑
j=1

m∑
l=1

γl
j γ̂lδkj

(gs) =
m∑

l=1

γ̂l(
m∑

j=1

γl
jδkj

)(gs)

=
m∑

l=1

γ̂lχ
l(gs) = n

m∑
l=1

γ̂l < χl, gs >= nŴ (gs). �

Definition 4. We shall call the transform

W (gs) =
∑

γjδkj
(gs) −→ Ŵ (gs) =

1
n

∑
l

γlχ
l(gs),

where: γj =
m∑

l=1

γl
j γ̂l (4..7)

the Kramers-Wannier transform for finite groups.
In the next section we consider several examples which confirm the coinci-
dence of our approach with former one in the known cases and enables us
to find explicit K-W transforms in some earlier unknown cases.See also for
other examples [5].
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5. Examples

A) Commutative case G = Zn.
Let us consider first the special case G = Z3 = {1, g, g2}. In this case
δj = δ(g − gj−1), j = 1, 2, 3. Then

χ1 = δ1 + δ2 + δ3 ,

χ2 = δ1 + zδ2 + z2δ3 , (5..1)
χ3 = δ1 + z2δ2 + zδ3 , as z4 = z,

where z = exp(2πi/3), and χk(gj) = z(k−1)j , (k = 1, 2, 3) are the characters
of one-dimensional representations. Hence

Γ = (γl
j) =

⎛
⎝ 1 1 1

1 z z2

1 z2 z

⎞
⎠ (5..2)

and we get γ̂ = Γ−1γ.

If we choose γ1 = 1, γ2 = γ3 = γ, we obtain

γ̂1 =
1 + 2γ

3
, γ̂2 = γ̂3 =

1 − γ

3
, (5..3)

and hence: γ̂2/γ̂1 =
1 − γ

1 + 2γ
. (5..4)

For the general case of the group Zn we have to replace the formula (5..1)
for characters χ1, ..., χn to

χ1 = δ1 + δ2 + .......... + δn ,

χ2 = δ1 + zδ2 + .......... + zn−1δn ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5..5)

χn
l = δ1 + z(n−1)δ2 + ... + zδn ,

and for Γ = (γl
j) we get

Γ =

⎛
⎜⎝

1 1 · · · 1
1 z · · · zn−1

· · · · · · · · · · · ·
1 zn−1 · · · z

⎞
⎟⎠ . (5..6)

In the special case of choosing parameters γj : γ1 = 1, γ2, ..., γn = γ we
obtain

γ̂j

γ̂1
=

1 − γ

1 + (n− 1) γ
. (5..7)
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These formulas coincide with the similar one in the paper [2].
B) The group S3.

This is the first non-trivial example of non-abelian groups which was studied
in [2]. Following our general approach we split the group S3 in 3 classes of
conjugacy elements or 3 orbits:

S3 = {Ω1 = {e}, Ω2 = {a, a2}, Ω3 = {b, ab, a2b}} .
The characteristic functions are:

δ1 = δ(Ω1) = δ(g − e), δ2 = δ(Ω2), δ3 = δ(Ω3).

Following our general procedure (see 4.4) and using

χ1 = δ1 + δ2 + δ3

χ2 = δ1 + δ2 − δ3

χ3 = 2δ1 − δ2

we get the matrix Γ = (γl
j) =

( 1 1 1
1 1 −1
2 −1 0

)

and hence γ̂ = Γ−1γ

γ̂1 =
1
6

(γ1 + 2γ2 + 3γ3), (5..8)

γ̂2 =
1
6

(γ1 + 2γ2 − 3γ3), γ̂3 =
1
3
(γ1 − γ2),

with the following relation: γ̂1 + γ̂2 + 2γ̂3 = γ1.

If we choose the free parameters γ1, γ2, γ3 as 1, γ2, γ3 we obtain two inde-
pendent parameters η̂1, η̂2

η̂1 =
γ̂2

γ̂1
=

1 + 2γ2 − 3γ3

1 + 2γ2 + 3γ3
, η̂2 =

γ̂3

γ̂1
=

2(1 − γ2)
1 + 2γ2 + 3γ3

, (5..9)

which coincide with the formula (5..7) in the paper [2].

Remark 1. Let us mention the missing of factor 2 in the nominator of η̂2
in (5..7) in the paper [2].

6. The KW transform for compact groups

In this section we give an outline of construction of KW transform for com-
pact ”gauge” groups. The corresponding construction can be carried out
parallel to the finite case. However, it is substantially more complicated.
As formerly, we restrict to the case of a square lattice L ⊂ R2. 1. All nec-
essary materials regarding the theory of representations of compact groups
can be find in [10, 11] .

1The detailed proof and some generalizations to high dimensional spaces and different
classes of lattices will be published in the joint paper with V.Buchstaber .
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A) Let G be a compact connected group. G is isomorphic to A×G1, where
A is a compact abelian group (torus T n) and G1 is a semisimple compact
group. In the case of an abelian group A the KW transform can be carried
out by the general method of section 2. Therefore, in what follows we
restrict to the case of a semisimple compact group G .

B) Group algebra C(G). The natural analog of a group algebra for finite
group will be some functional space endowed with the product operation
as a convolution. It is possible to choose as such space L1(G, dg), the space
of summable functions, or L2(G, dg), or a subspace H(G, dg) of continuous
functions on G.It is more convenient to consider a completion of these
spaces by norm:

||f || = sup
T

||T (f)||,

where T runs over all unitary representations of the group G. The algebra
C∗(G) is called the C∗-algebra of G.

C) C[G]. C[G] is a linear functional space (e.g. L1(G, dg), L2(G, dg), ...)
and the product is defined pointwise :

(f1 · f2)(g) = f1(g) f2(g) .

There is a well known theorem of I. Gelfand and D. Raikov asserting that for
any locally compact group there exist irreducible unitary representations
and the system of such representations is complete.
To construct an analog of a basis in C(G) for a compact case we need some
generalization of Schur-Frobenius theorem (see C in Sec. 4 ). In our case
we use the theorem of Peter-Weyl.

Theorem (Peter-Weyl). The set of linear combinations of matrix elements
of irreducible representation is dense in the space H(G, dg), L2(G, dg).

The orthogonal relations for matrix elements of a unitary representations
can be proved in the same way as for finite groups.

D) The basis in C(G). To construct a relevant basis in the space C(G)
we use the construction of irreducible representations by the orbit method.
Let us recall that a coadjoint orbit of a group G is an orbit in the space g∗
dual to the Lie algebra g of G. If we have an adjoint representation T of
G we can determine the coadjoint representation T ∗ of G which acts in the
space g∗. We call such a representation as a coadjoint representation.

Proposition. For a compact semisimple group G a coadjoint representa-
tion of G is equivalent to the adjoint representation.

This is evident, since exists Cartan-Killing Ad invariant form on g. For
any compact group G there exists only finite number of co(adjoint) orbits
Ωi.The stabilizers of elements x ∈ g form a finite number k of conjugate
classes of subgroups of G. Let Gi (1 ≤ i ≤ k) be a representative of these
classes. Then any adjoint orbit is isomorphic to the coset space Ωi = G/Gi.
So we can choose a basis δj(Ωi) in C(G) δj(Ωi). To complete our proof we
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use the following statement of Gelfand and Naimark [10]. We omit some
technical conditions.

Theorem (Gelfand and Naimark). There exists a one-to-one correspondence
between representations of a group algebra C(G) and unitary representation
of the group G. So as in the finite case we determine the KW transform
for a compact group as

D : C(G) → C[G] . (6..1)

Conclusion

Our approach to the KW-transform has important applications. We briefly
discuss some of them, intending to return to these problems in the forth-
coming publications.

A) KW-transforms and Quantum groups.

We refer reader to [12,13] for all notations and following references in the
theory of Hopf algebras and Quantum groups.
Let us consider the algebra C[G]. If we endow C[G] by the operation of
coproduct 	 : C[G] −→ C[G] ⊗ C[G] induced by the multiplication in
the group G, the algebra C[G] becomes Hopf algebra. Using natural dual
to C[G] the algebra C(G), we are able to construct another Hopf algebra,
(quantum) double D(G) = C[G]⊗C(G) [12]. Since transformations W and
Ŵ acts as W : C(G) −→ C and Ŵ : C[G] −→ C, i.e. W ∈ C[G] =
Hom(C(G),C) and Ŵ ∈ C[G] = Hom(C(G),C) that is W ⊗ Ŵ ∈ D(G).
The KW-transform yields to explicit solutions of Yang-Baxter equations
related with the quantum group D(G).
This observation leads to very explicit formulas in the structure theory of
quantum groups and quantum spin systems.
And last but not least.

B) In our lecture we consider spin systems with a global non-abelian sym-
metry. It is natural to ask about generalizing proposed technique to sys-
tems with a local (gauge) symmetry. The study of such systems including
Ising and Potts chiral models, abelian and non-abelian gauge fields is very
important for Quantum Field Theory and the Theory of Phase Transitions.
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