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In the article we investigate the sets of orthogonal projections which satisfy the linear relation
n∑

i=1

αiPi = I, αi > 0, up to unitary equivalence. A problem of unitary classification of four

projections that satisfy the linear relation α1P1 + α2P2 + α3P3 + α4P4 = I, αi > 0 is
considered in [1–4]. We present a new method for solving this problem that is based on
functors of Coxeter, which are analogous to those introduced in [5].

Let Pn,�α = C〈p1, p2, . . . , pn | p2
i = pi = p∗i ,

n∑
i=1

αipi = e〉 be a ∗-algebra, where the vector

�α = (α1, α2, . . . , αn), αi > 0, i = 1, . . . , n; A =
n∑

i=1
αi. We study its representations, up to

unitary equivalence, in the category of Hilbert spaces. Define Σn as a set of �α such that the
category of representations Rep Pn,�α is not empty.

1. Let us consider some properties of Pn,�α.

Lemma 1. If �α ∈ Σn then A ≥ 1.

Proof. Let π be a representation of the algebra Pn,�α:
n∑

i=1
αiπ(pi) = I then

n∑
i=1

αi(I − π(pi)) =

(A − 1)I. Since the operator at the left hand-side is positive then A ≥ 1. �

Lemma 2. If A = 1 then �α ∈ Σn and the algebra Pn,�α has (up to unitary equivalence) only one
irreducible representation π : π(pi) = 1.

Proof. If A = 1 then
n∑

i=1
αi(I − π(pi)) = 0 and for all i = 1, . . . , n: π(pi) = I. �

Definition 1. The algebra Pn,�α and the vector �α are called reduced if there exists such a number
i0 that for all representations π of the algebra we have π(pi0) = 0 or there exists a number j0

that for all representations π of the algebra we have π(pj0) = I.

Remark 1. In the case of mapping of a reduced algebra to its enveloping C∗-algebra the
elements pi0 and pj0 − e belong to the ∗-radical, and the corresponding C∗-algebra will be
generated by less than n linear connected projections.

Lemma 3. If �α ∈ Σn : ∃ αi0 > 1 then for all representations π of the algebra Pn,�α: π(pi0) = 0,
e.g. the algebra Pn,�α is reduced.

Proof. Take an arbitrary representation π of the algebra Pn,�α then
∑
i�=i0

αiπ(pi) = I−αi0π(pi0).

The operator at the left-hand side is positive. But the operator at the right-hand side is positive
when π(pi0) = 0 only. �
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Lemma 4. If �α ∈ Σn and the algebra Pn,�α is not reduced then A ≤ n.

Proof. If A > n, then there exists a number i0 : αi0 > 1 and according to the Lemma 3 the
algebra Pn,�α will be reduced. �

Let Σ1
n = Σn

⋂
(0, 1)n e.g. Σ1

n consists of such points �α ∈ Σn that 0 < αi < 1.
Our aim is to describe the set Σ1

n (1 ≤ A < n) and the set of representations of corresponding
algebras. There are reduced and nonreduced ones among such class of algebras.

We define functors S and T (analogy with [5]), which act on the set of categories RepPn,�α.
They are equivalences of categories (if RepPn,�α is not empty, then S(Rep Pn,�α) (or T (Rep Pn,�α))
is not empty and they are equivalent).

Let us define the functor T (functor of hyperbolic reflection).

Let α ∈ Σn, A > 1, π ∈ Rep Pn,�α, then
n∑

i=1
αiπ(pi) = I and

n∑
i=1

αi(I − π(pi)) = (A − 1)I or
n∑

i=1

αi
A−1(I − π(pi)) = I. Define T (π)(pi) = I − π(pi). Thus, we obtain the functor

T : RepPn,(α1,α2,...,αn) → Rep Pn,( α1
A−1

,
α2

A−1
,..., αn

A−1)

which is defined when A > 1.
It is easy to check that this functor is equivalence of categories (the corresponding algebras

are isomorphic).
Let us define the functor S (functor of linear reflection).

Let �α ∈ Σ1
n,

n∑
i=1

αiπ(pi) = I and π be a representation of the algebra Pn,�α in the Hilbert

space H0. Since π(pi) is a projection then π(pi) = ΓiΓ∗
i , where Γi is the natural isometry of the

space Hi = Im π(pi) to H0.
Let H = H1 ⊕ H2 ⊕ · · · ⊕ Hn. Define the linear operator Γ : H → H0 that is given by the

matrix

Γ =
(√

α1 Γ1
√

α2 Γ2 · · · √
αn Γn

)
.

Since ΓΓ∗ =
n∑

i=1
αiΓiΓ∗

i =
n∑

i=1
αiπ(pi) = IH0 , Γ∗ is a partial isometry from H0 to H. Let

Ĥ0 = (Im Γ∗)⊥ and ∆∗ is the natural isometry of Ĥ0 to H then U∗ = (Γ∗, ∆∗) be a unitary
operator from Ĥ0 ⊕ H0 to H. As H = H1 ⊕ H2 ⊕ · · · ⊕ Hn, the operators ∆ and U have the
Peirce decomposition

∆ =
( √

1 − α1∆1
√

1 − α2∆2 · · · √
1 − αn∆n

)
,

U =

( √
α1 Γ1

√
α2 Γ2 · · · √

αn Γn√
1 − α1∆1

√
1 − α2∆2 · · · √

1 − αn∆n

)
.

Since U is a unitary operator and Γ∗
i Γi = IHi , it is easy to obtain that ∆∗

i ∆i = IHi and
∆i∆∗

i = Qi are orthoprojections in the space Ĥ0. From ∆∆∗ = IĤ0
(∆ is an isometry) it follows

that
n∑

i=1
(1 − αi)∆i∆∗

i = IĤ0
,

n∑
i=1

(1 − αi)Qi = IĤ0
.

Define S : π → π̂, where π̂(pi) = Qi. From the condition
n∑

i=1
(1 − αi)Qi = I we have

π̂ ∈ Ob RepPn,(1−α1,1−α2,...,1−αn). One can see (in analogy with [5]), that the functor

S : Rep Pn,(α1,α2,...,αn) → Rep Pn,(1−α1,1−α2,...,1−αn),

where 0 < αi < 1 (therefore, 0 < A < n), is an equivalence of categories.
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Let π be a representation of the algebra Pn,�α in a finite-dimensional space H. We shall call
the vector (d; d1, d2, . . . , dn), where d = dimH, di = dim Im π(pi), the generalized dimension of
the representation π.

The functors T and S induce actions on the set of vectors �α, on sums of their coordinates A
and on generalized dimensions of representations of algebras Pn,�α.

It it easy to check that

T (α1, α2, . . . , αn) =
(

α1

A − 1
,

α2

A − 1
, . . . ,

αn

A − 1

)
, T (A) =

A

A − 1
,

T (d; d1, d2, . . . , dn) = (d; d − d1, d − d2, . . . , d − dn),
S(α1, α2, . . . , αn) = (1 − α1, 1 − α2, . . . , 1 − αn), S(A) = n − A,

S(d; d1, d2, . . . , dn) =

(
n∑

i=1

di − d; d1, d2, . . . , dn

)
.

Define the functors of Coxeter as Φ+ = TS and Φ− = ST . Φ+ is defined when A < n − 1,
�α ∈ Σ1

n. Φ− is defined when A > 1, T (�α) ∈ (0, 1)n. Since T 2 = Id, S2 = Id, then Φ+Φ− = Id
and Φ−Φ+ = Id.

Let Φ+(k) = Φ+Φ+(k−1).

Lemma 5. lim
k→∞

Φ+(k)
(
1 + 1

n−2

)
= n−√

n2−4n
2 and intervals[

1, 1 + 1
n−2

)
,

[
1 + 1

n−2 , Φ+
(
1 + 1

n−2

))
, . . . ,

[
Φ+(k−1)

(
1 + 1

n−2

)
, Φ+(k)

(
1 + 1

n−2

))
, . . .

do not intersect and cover the interval
[
1, n−√

n2−4n
2

)
.

Proof. It is easy to show that Φ+(1) = 1+ 1
n−2 and the sequence Φ+(k)

(
1 + 1

n−2

)
is increasing.

Since it is bounded by 2, the limit a of the sequence exists and it is a fixed point of the map
Φ+(A) = 1 + 1

n−A−1 . From the equation 1 + 1
n−a−1 = a (taking into account that a < 2) we

obtain a = n−√
n2−4n
2 . �

Lemma 6. �α ∈ Σ1
n, 0 < A ≤ n

2 , if and only if T (�α) ∈ Σ1
n and n

2 ≤ T (A) < n.

Proof. Obviously, the map S sets one-to-one correspondence between points of Σ1
n with the

sum A < n and points Σ1
n with the sum n − A. �

Lemma 7. If n − 1 < A < n then �α /∈ Σ1
n.

Proof. If n−1 < A < n then 0 < S(A) < 1, whence, by the Lemma 1, S(�α) /∈ Σn and it means
that �α /∈ Σ1

n. �

Lemma 8. If �α ∈ Σn, A �= 1 and Pn,�α is not reduced then αi
A−1 ≤ 1 and A ≥ n

n−1 .

Proof. If there exists a number i0 that αi0
A−1 > 1, then the algebra Pn,T (�α) will be reduced.

Take any representation π of the algebra Pn,�α. Denote π̂ as the correspondent representation
of the algebra Pn,T (�α) then by the lemma 3 π̂(pi0) = 0, so π(pi0) = I and Pn,�α is reduced.

If for all i : αi
A−1 ≤ 1 then A

A−1 ≤ n and from here A ≥ n
n−1 . �

2. Now we describe Σ1
n, when n = 3 and n = 4.

Lemma 9. Let �α = (α1, α2, α3) ∈ Σ3. Then for some subset J ⊆ {1, 2, 3} :
∑
i∈J

αi = 1 or

α1 + α2 + α3 = 2. To every pointed subset J , there corresponds a unique one-dimensional
irreducible representation π: π(pi) = 1, i ∈ J , and π(pi) = 0, i /∈ J . If α1 + α2 + α3 = 2 then,
furthermore, the algebra has a unique, up to unitary equivalence, irreducible two-dimensional
representation.
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Proof. The proof reduces to an easy computation, when taking into account that an irreducible
pair of orthoprojections is a one-dimensionally or unitary equivalent to a pair

P1 =
(

1 0
0 1

)
, P2 =

(
τ

√
τ − τ2√

τ − τ2 1 − τ

)
, 0 < τ < 1. �

Lemma 10. If �α ∈ Σ1
4, 0 < A < 2, is reduced then the following condition, which we will call

the R-condition, is satisfied: ∃ J ⊂ {1, 2, 3, 4} : Σi∈Jαi = 1 or ∃ αi0 : 2 − A = αi0 .

Proof. There are two possible cases.
1) Let π(pi0) = 0 then

∑
i�=i0

αiπ(pi) = I. Let �α′ be obtained from �α by omitting the coordi-

nate αi0 . Obviously, �α′ ∈ Σ3. So
∑
i∈J

αi = 1, for some subset J ⊂ {1, 2, 3, 4}\{i0}, (if
∑
i�=i0

αi = 2,

then A > 2).
2) If for all π : π(pi0) = I then

∑
i�=i0

αiπ(pi) = (1−αi0)I. The operator at the left hand-side is

positive. From here αi0 ≤ 1. If αi0 = 1, then the R-condition is satisfied, else
∑
i�=i0

αi
1−αi0

π(pi) = I.

From the previous lemma we have either: a)
∑
i∈J

αi
1−α4

= 1, for some subset J ⊂ {1, 2, 3, 4}\{i0},
hence

∑
i∈J

αi +α4 = 1 or b) α1
1−α4

+ α2
1−α4

+ α3
1−α4

= 2, α1 +α2 +α3 = 2(1−α4) and 2−A = α4. �

Note, that if �α satisfies R-condition then �α is not necessary reduced.

Lemma 11. If �α ∈ Σ4 \ Σ1
4 then T (�α) satisfies R-condition.

Proof. From the condition �α ∈ Σ4 \ Σ1
4, we obtain αi0 ≥ 1 for some i0. Suppose αi0 > 1,

π ∈ Rep P4,T (�α) then, by the Lemma 3, T (π)(pi0) = 0. From here π(pi0) = I, so �α is reduced.

Assume αi0 = 1. From T (�α) =
(

α1
A−1 , α2

A−1 , α3
A−1 , α4

A−1

)
=


 α1∑

i�=i0

αi

, α2∑
i�=i0

αi

, α3∑
i�=i0

αi

, α4∑
i�=i0

αi


, the

sum
∑

j �=i0


 αj∑

i�=i0

αi


 = 1, so T (�α) satisfies R-condition. �

From Lemmas 2, 3, 8, 10, it follows

Lemma 12. If 1 ≤ A < 1 + 1
n−2

∣∣
n=4

= 3
2 then �α satisfy R-condition.

Using the lemmas proved above, we obtain:

Theorem 1. Let �α = (α1, α2, α3, α4), 0 < αi < 1, A =
4∑

i=1
αi, Σ1

4 be the set of such �α that the

algebra P4,�α has a nonzero representation.
1) Dimensions of all irreducible representations of the algebra P4,�α are finite.
2) If A = 1 then �α ∈ Σ1

4 and the corresponding algebra P4,�α has a unique irreducible repre-
sentation π, which is a one-dimensional representation and π(pi) = 1.

3) If A = 2 then �α ∈ Σ1
4 and all irreducible representations has dimension one or two (their

description see in [4]).
4) The functor S is equivalence of categories of representations of “symmetry” algebras

P4,(α1α2,α3,α4) and P4,(1−α1,1−α2,1−α3,1−α4), �α ∈ Σ1
4, with the center of symmetry A = 2.

5) Every point �α ∈ Σ1
4, 1 < A < 2, or satisfies R-condition or Φ−(α) belongs to Σ1

4.
6) �α ∈ Σ1

4, 1 < A < 2 if and only if Φ−(k)(�α) satisfy R-condition for some k.The number
k is bounded by N : Φ−(N)(A) ∈ [1, 3

2). The functor Φ−(k) is equivalence of categories of
representations of algebra Pn,�α and reduced algebra Pn,Φ−(k)(�α).

The theorem allows us to reduce the solution of the problem about belonging of a point �α to
Σ1

4 to verifying R-condition for some another point.
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