
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

2007 

The spin structure of helium-3 and the neutron at low momentum The spin structure of helium-3 and the neutron at low momentum 

transfer: A measurement of the generalized GDH integrand transfer: A measurement of the generalized GDH integrand 

Vincent Anthony Sulkosky 
College of William & Mary - Arts & Sciences 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

Recommended Citation Recommended Citation 
Sulkosky, Vincent Anthony, "The spin structure of helium-3 and the neutron at low momentum transfer: A 
measurement of the generalized GDH integrand" (2007). Dissertations, Theses, and Masters Projects. 
Paper 1539623521. 
https://dx.doi.org/doi:10.21220/s2-ewc7-q961 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M 
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized 
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623521&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-ewc7-q961
mailto:scholarworks@wm.edu


THE SPIN STRUCTURE OF 3He AND THE NEUTRON AT LOW Q 2 

M EASUREM ENT OF THE GENERALIZED GDH INTEGRAND

A Dissertation 

Presented to 

The Faculty of the Department of Physics 

The College of William and Mary in Virginia

In Partial Fulfillment 

Of the Requirements for the Degree of 

Doctor of Philosophy

by

Vincent Anthony Sulkosky 

August 2007

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



UMI N u m b er : 3 2 8 2 5 1 6

IN F O R M A T IO N  TO  U S E R S

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignm ent can adversely affect reproduction.

In the unlikely event that the author did not send a com plete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3282516  

Copyright 2007  by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Com pany  
300 North Zeeb  Road 

P.O. Box 1346  
Ann Arbor, Ml 481 06 -1 34 6

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



APPROVAL SHEET

This dissertation is submitted in partial fulfillment of 

the requirements for the degree of

Doctor of Philosophy

Vincent Anthony Sulkosky 

Approved by the Committee, April 2007

Committee Chair 
Associate Professor Todd Averett, Physics 

The College of William & Mary

~CP
Professor David S. Armstfong, Physics 

The College of William & Mary

Professor J. Michael Finn, Physics 
The College of William & Mary

Emeritus Professor J. Dirk Walecka, Physics 
ne College of William & Mary

Dr. Jian-ping Chen, Staff Scientist 
Jefferson Laboratory

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



ABSTRACT

Since the 1980’s, the study of nucleon (proton or neutron) spin structure has been an 
active field both experimentally and theoretically. One of the primary goals of this work is 
to test our understanding of Quantum Chromodynamics (QCD), the fundamental theory 
of the strong interaction. In the high energy region of asymptotically free quarks, QCD 
has been verified. However, verifiable predictions in the low energy region are harder to 
obtain due to the complex interactions between the nucleon’s constituents: quarks and 
gluons. In the non-pertubative regime, low-energy effective field theories such as chiral 
perturbation theory provide predictions for the spin structure functions in the form of sum 
rules.

Spin-dependent sum rules such as the Gerasimov-Drell-Heam (GDH) sum rule are 
important tools available to study nucleon spin structure. Originally derived for real pho­
ton absorption, the Gerasimov-Drell-Heam (GDH) sum rale was first extended for virtual 
photon absorption in 1989. The extension of the sum rale provides a unique relation, 
valid at any momentum transfer (Q2), that can be used to study the nucleon spin structure 
and make comparisons between theoretical predictions and experimental data.

Experiment E97-110 was performed at the Thomas Jefferson National Accelerator 
Facility (Jefferson Lab) to examine the spin structure of the neutron and 3He. The Jeffer­
son Lab longitudinally-polarized electron beam with incident energies between 1.1 and
4.4 GeV was scattered from a longitudinally or transversely polarized 3He gas target in the 
Hall A end station. Asymmetries and polarized cross-section differences were measured 
in the quasielastic and resonance regions to extract the spin structure functions gi(x, Q2) 
and g2(x, Q2) at low momentum transfers (0.02 < Q2 < 0.3 GeV2). The goal of the 
experiment was to perform a precise measurement of the Q2 dependence of the extended 
GDH integral and of the moments of the neutron and 3He spin structure functions at low 
Q2. This Q2 range allows us to test predictions of chiral perturbation theory and check 
the GDH sum rale by extrapolating the integral to the real photon point. This thesis will 
discuss preliminary results from the E97-110 data analysis.
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CHAPTER 1

Introduction

The historical background of this thesis begins with the discovery of intrinsic spin by 

Stem and Gerlach in the 1920’s. We consider the classical example of a rigid object that 

has two types of angular momentum: orbital and spin. The orbital angular momentum is 

related to motion of the center of mass about an external point and the spin with rotation 

around the object’s center of mass. For a classical body such as a planet, the spin is 

associated with the planet’s rotation about its polar axis. In the case of a particle such as 

an electron, there are analogous orbital and spin angular momenta. The orbital angular 

momentum is due to the electron’s motion around the nucleus. Whereas the spin angular 

momentum S  cannot be associated with rotation and is an intrinsic property of the particle, 

since as far as we know the electron is a point-like particle without structure.

A particle’s spin is related to its magnetic moment by

( l . i )

where eQ and M  are the particle’s charge and mass, respectively. For a structureless
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3

spin- \  particle, the magnetic moment was predicted by Dirac to be:

^ =  ( 1.2) P 2M  ’ V >

which agrees well, but not perfectly with the experimentally measured value for the elec­

tron. In 1933, Estermann and Stem measured the magnetic moment of the proton [1,2] 

and discovered that the proton’s magnetic moment was considerably different compared 

with Dirac’s prediction. This was the first indication that the proton and neutron had 

composite structure and marked the beginning of hadronic physics, where hadrons are 

subatomic particles which interact via the strong force. The difference in the magnetic 

moment compared with Dirac’s prediction is referred to as the anomalous part o f the 

magnetic moment k .

A couple of decades later, electron scattering experiments were used to confirm that 

the nucleon has a spatial distribution. Later on, an extensive study of the nucleon’s struc­

ture [3] was performed using deep inelastic scattering experiments at the Stanford Linear 

Accelerator Center (SLAC). From these measurements, it was concluded that the nucleon 

is composed of point-like particles known as partons, which are now associated with 

quarks and gluons. Quantum Chromodynamics (QCD) has emerged as the theory that 

describes the strong interactions of quarks by the exchange of gluons. In the high energy 

region, predictions from perturbative QCD have been verified by comparison with exper­

imental results. However, at low energies, QCD calculations become difficult due to the 

large coupling constant in this regime. Therefore low-energy effective field theories such 

as chiral perturbation theory have been utilized to make predictions.

A key remaining question is how the transition from partonic to hadronic degrees 

of freedom occurs. One way to approach this issue is to experimentally investigate the 

non-perturbative region. In the 1980’s the nucleon’s spin degrees of freedom were stud­
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ied at SLAC and CERN [4]. The purpose of these measurements was to examine how the 

total nucleon spin is distributed among its constituents. The results gave rise to the “spin 

crisis”; only ~  30% of the nucleon’s spin is carried by the quarks. The rest of the spin 

is expected to be carried by the gluons and orbital angular momentum of the nucleon’s 

constituents. These studies have continued at CERN, DESY and Jefferson Lab. Measure­

ments have been performed specifically at low and intermediate momentum transfers to 

study the non-perturbative regime at Jefferson Lab.

Experiment E97-110 has followed these measurements by providing precise data 

in the low energy region to test sum rule predictions from chiral perturbation theory. 

This thesis describes the theoretical formalism, experimental details, data analysis and 

preliminary results from this experiment.
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CHAPTER 2

Inclusive Electron Scattering

Lepton scattering provides a powerful tool to probe the internal structure of the nu­

cleon. Lepton interactions are well understood and described by the theory of Quantum 

Electrodynamics (QED). In this chapter, the process of inclusive electron-nucleon scat­

tering, where only the scattered electron is detected, will be discussed. The relevant kine­

matic variables, the differential cross section, and the types of inclusive electron scattering 

are presented.

2.1 Kinematic Variables

The process of lepton-nucleon scattering is

l(p) + N (P ) -> l ( J/)  + X ( P ' ) ,  (2.1)

in which a charged lepton I, in our case an electron, scatters from a nucleon N.  In the 

Bom approximation, the scattering occurs by the exchange of a virtual photon as shown 

in Fig. 2.1. The relevant kinematic variables are the incident and scattered electron four-

5
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To detectors

X

FIG. 2.1: Lowest order diagram for inclusive electron scattering.

—♦ —*

momenta j f  = (E, k) and p>tl = (E', k') respectively and the target four-momenta =
     _

(Et , P).  The scattering angle is given by 6. For inclusive scattering, the final hadronic

system X goes undetected. The exchanged virtual photon carries four-momentum =

(p ~  p' Y  =  O) and transfers an energy v  =  ^  and momentum q to the target.

The scattering process is a function of two Lorentz invariants and the scattering

angle. Typically either the energy transfer, the squared four-momentum transfer Q2 or the

invariant mass of the residual hadronic system W  are used. These variables are defined

below with =  (M , 0) in the laboratory system. The electron mass is neglected, since

E  and E'  3> m e.

v = E - E '  (2.2)

Q2 = - q 2 ~ 4 E E '  sin2 ^ (2.3)

W  = y / (P  + q)2 =  M 2 + 2M u  -  Q2 (2.4)

Two additional scalar invariants are sometimes used:

2P  q 2M v ’ ' ’
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the Bjorken scaling variable and

9 ' P  vV =  — 5  =  > ( 2 - 6 )p • P  F

the fraction of lepton energy loss.

2.2 Differential Cross Section and Structure Functions

The inclusive cross section for electron-nucleon scattering is proportional to the 

product of a leptonic and an hadronic tensor, LIIV and W tiv, respectively:

^  a — — — L W ^  (2 7)
dndE' Q4 E lw ’ { )

where a  ~  1/137 is the electromagnetic fine structure constant. The formalism includes

the possibility that both the electron and target are polarized.

The lepton tensor is calculable from QED:

L,iu = '^ 2 u 8(phnUs'(p')us>(p')jl/us(p) (2.8)
s '

=  2 [p^pu +  p'(p„ -  g ^ p  ■ p' +  i e ^ a!jsacf] , (2.9)

where u(p) are the Dirac spinors, =  u ' y ^ u  is the lepton spin vector, and the Levi- 

Civita tensor e0i23 = +1 uses the convention in [5].

In the inelastic process, one needs to consider all possible transitions of the nucleon 

from the ground state \N(P )) to any excited state |X (P ')). In this case, the hadronic 

tensor becomes

W„U =  ^  j  ̂ < ( N . ( P ) \ J „ ( Q J . ( 0 ) \ N . ( P ) ) , (2.10)

where (  is the spatial four-vector, s is the target spin and J^(C) is the electromagnetic 

current. In Eq. (2.10), completeness of the states \X) was used. The tensor can be further
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split into symmetric and antisymmetric parts + W^v. The most general forms

of these terms are obtained from Lorentz and gauge invariance and parity conservation of 

the electromagnetic interaction:

and

M 2 y  * q 2 y  " q 2

Gi(v, Q2)S» +  G2^ 2) (S»P q - P ^ S q )
M 2

where the hadronic spin vector is given by =  u { P ) ^ ^ u { P ) /2 M.  The internal struc­

ture of the hadron is described by the four response functions: W lj2 and G i:2.

Usually the response functions are replaced with dimensionless structure functions 

that are dependent on the Bjorken variable x  and Q2\

Fi(x, Q2) =  MW\{v, Q2) , (2.12)

F2(x ,Q 2) = »W2(v,Q2) , (2.13)

9 i(x, Q2) =  Mi/Gi(v, Q2) , (2.14)

g2(x, Q2) =  v2G2{v, Q2) . (2.15)

The structure functions are measured experimentally by using different combinations 

of the beam and target polarizations. If one averages over the incident electron and target 

spins, then the differential cross section for unpolarized scattering in the lab frame is

<Pa r d a \  (^7Fl (x,Q2)ts,n2G ^ F 2(x,Q2)]  (2.16)
dFldE' \ d f l J  Mott \ M  2 v

where the Mott cross section describes relativistic electron scattering from a point-like 

Dirac particle:
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d a \  a W f
4 £ 2sin4 f  <■ >

The structure functions F\ and F2 parameterize information about the target’s internal 

structure and cannot be separated using different beam and target polarization directions.

The spin-dependent structure functions g\ and g2 can be measured by using two dif­

ferent target spin orientations with respect to the electron beam polarization: longitudinal 

and perpendicular. In the former case, the electron has spin |  or J, either along or oppo­

site to the beam direction, and the target spin ft is along the direction of the electron’s 

momentum. The cross section difference between the two spin states is 

An2 FJ
&all = j ^ - [ ( E  + E'cosO)g1(x,Q2) - 2 M x g 2(x ,Q 2)\ , (2.18)

where
d V *  P a ™

^  “  dndE' dndE1' (  ^

For a transversely polarized target, =» denotes that the target spin is perpendicular (while 

in the scattering plane) to the electron beam direction. The polarized cross section differ­

ence for this process is

4a2 E'2 
a± ~  M vQ 2~E

with

2E
9i (x ,Q2) +  — g2(x,Q2) sin 9 , (2.20)

( P a ^  P a ^  
a± dildE' dPldE'' (  ‘ )

2.3 Types of Inclusive Electron Scattering

The inclusive differential cross sections described in Section 2.2 are rather general. 

When investigating inclusive scattering, separating the different kinematic regions is often
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useful. In this section, three types of scattering are discussed: elastic, quasi-elastic and 

inelastic. The discussion on inelastic scattering includes both resonance production and 

deep inelastic scattering. Figure 2.2 from [6 ] shows a typical cross section spectrum 

for inclusive scattering from a light nuclear target. As Q2 and v  vary, different nucleon 

resonances (A, and N£) are seen at specific invariant masses W.  The mass of the 

nucleus and nucleon are given by M t  and M.  If the target is a nucleon, then there is no 

quasi-elastic peak.

Cross section

W * 2 GeV 
(Deep Inelastic Scattering)

w = mt
(elastic)

Constant W  
(resonances)

W  = M 
(quasi-elastic)

FIG. 2.2: Inclusive cross section (arbitrary units) versus Q2 and u for scattering off a nuclear 
target.
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2.3.1 Elastic Scattering

In elastic scattering, the nucleon (or nucleus) remains in its ground state after the 

process, and the energy and momentum transfer are absorbed by the recoil nucleon. For 

elastic scattering, the invariant mass W  is equal to the mass of the nucleon or nucleus 

so that v  =  Conservation of energy and momentum constrain the scattered electron 

energy to the following equation:

E' =    , f  , . (2.22)
l  +  f s m 2 f

The differential cross section for unpolarized elastic scattering is a special case of 

Eq. 2.16. In the elastic scattering limit, the response functions Wi#  reduce to combina­

tions of the Sachs form factors [5]:

W i = J f g « (q2) ’ (2-23)

and
w  _  g e (Q2) +  mP g m (Q2) r

 m s  • ( '

Then Eq. 2.16 can be expressed as the Rosenbluth cross section [7] in terms of the electric 

and magnetic form factors Ge and Gm , respectively:

♦ * < * " - ! ) ■  <“ >
The two form factors carry information on the charge and current distributions of the 

nucleon and are normalized at Q2 = 0 to the nucleon charges and magnetic moments:

G ^(0 ) =  1 and GPM( 0) = /ip =  2.793, (2.26)

for the proton and:

G£(0) =  0 and GnM(0) = / / „  =  -1.913, (2.27)
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for the neutron. The magnetic moments are given in terms of the nuclear magneton

The behavior of the proton and neutron magnetic form factors follow a dipole form 

over a sizable range of Q2, with deviations less than 10% for GPM at Q2 < 5  GeV2. The 

dipole parameterization is as follows:

The proton electric form factor follows the same dipole fit but only for Q2 <  1 GeV2. At 

higher Q2 significant differences are seen between the proton electric and magnetic form 

factors [8 ,9]. The transition between the low and high Q2 regions provides information on 

the non-perturbative structure of the nucleon and where the onset of perturbative behavior 

begins.

2.3.2 Quasi-Elastic Scattering

For a nuclear target, quasi-elastic scattering involves the incident electron elastically 

scattering from one of the nucleons within the nucleus. In this process, the nucleon is 

knocked out of the nucleus and can be considered initially as quasi-free. Compared to 

elastic scattering from a free nucleon, the quasi-elastic peak is shifted and broadened due 

to the nuclear binding energy and Fermi motion of the nucleons inside the nucleus.

For quasi-elastic scattering, the Rosenbluth cross section [10] becomes

(2.28)

where A = 0.84 GeV, so that

Gl,(Q2) = g»(Q2) = Gd(q2) (2.29)

dQ.dE'
cPcT

(2.30)
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where R l (v,Q 2) and R t {v,Q 2) are the longitudinal and transverse virtual photon re­

sponse functions.

2.3.3 Resonances

As the energy transfer increases, we leave the elastic region and enter the process 

of inelastic scattering. Inelastic scattering from nucleons has revealed a rich spectrum of 

excited states known as the resonances. The existence of these states was further evidence 

that the nucleon is a composite system. The resonances have been observed in the invari­

ant mass region between the pion production threshold (W*. = Mp +  m„) 1.072 GeV and 

the onset of deep inelastic scattering at 2 GeV. Their properties have been studied using 

beams of leptons, photons and hadrons.

Beyond the elastic peak, we typically see three significant resonance features; the 

first peak is the A(1232) resonance, the second peak consists of the iV*(1520) and iV*(1535) 

resonances and the third peak contains many resonances with the iV*(1680) being the 

strongest at low Q2. The iV* (1440) resonance also exists between the A and the second 

maximum. The A is a dominant spin-| resonance in 7r- N  scattering and has only a small 

amount of overlap with other states. Table 2.1 summarizes some of the properties of these 

resonances: invariant mass, width (T), total angular momentum and parity ( J p) and the 

orbital angular momentum (/). The total angular momentum is given by J  = |/ ±  | | .  The 

nomenclature used to denote the resonances is given by L212J ■

• L = S (for I = 0), P (for I = 1), D (for I = 2), F (for I = 3).

• I  is the isospin, either \  or f .

Using this notation the A is expressed as P33. Several other resonances exist that con­

tribute to the cross section; however, these resonances cannot be isolated with inclusive
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electron scattering.

Resonance W (MeV) T (MeV) Jp I

P33 1232 1 2 0 3 +
9 1

Pn 1440 350 1 +
2 1

D\3 1520 1 2 0 3 -
2 2

S n 1535 150 1 -
2 0

P 15 1680 130 5 +
..2 . 3

TABLE 2.1: Nucleon resonance properties. Reproduced from [5].

2.3.4 Deep Inelastic Scattering

The deep inelastic scattering (DIS) regime is typically defined as Q2 > 1-2 GeV2 

and W  > 2  GeV. In this region, the resonance peaks become indistinguishable and the 

scattering process occurs from an incoherent sum over the nucleon’s constituents. The 

phenomenon known as scaling was discovered at the Stanford Linear Accelerator; at large 

momentum transfers, the structure functions are independent of Q2 and essentially “only” 

depend on the dimensionless variable x  =  Q2/2Mu.  Figure 2.3 shows the experimental 

Q2-variation of the proton F f  (x, Q2) structure function for a large range of x  [1 1 ]. For 

plotting purposes, a constant1 c(x) = 0.6(ix — 0.4) is added to Ff.

Scaling of the structure functions was predicted by Bjorken [12], and the parton 

model of Feynman [13] provides a clear explanation for this phenomenon. Any particle 

with a finite size must have a form factor that introduces some Q2 dependence. The fact 

that the structure functions are independent of the momentum transfer implies that the 

nucleon contains point-like objects, which Feynman named partons. The partons are now

*ix is the number of the x  bin ranging from ix = 1 (x = 0.32) to ix = 21 (x = 0.000032).
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FIG. 2.3: The F$ structure function Q2-dependence for a range of Bjorken x  values. Reproduced 
from [Hi-
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identified as the quarks and gluons of QCD. The parton model is typically formulated in 

the infinite momentum frame, where v and Q2 go to infinity while x  remains finite. The 

scattering process can be treated using the impulse approximation (IA), since there is no 

time for interactions to occur between the partons. Hence, the DIS process can be viewed 

as the incoherent sum of elastic scattering from non-interacting partons.

In the parton model, the fraction of the nucleon’s momentum carried by the struck 

quark can be associated with Bjorken’s scaling variable x  [5]. The nucleon cross section 

then becomes the sum of the cross sections for scattering from individual partons; the 

cross sections are then weighted by their respective number densities. Since the scattering 

process occurs through the electromagnetic interaction, the cross sections are additionally 

weighted by the parton’s charge squared. The structure functions then take the form:

^ i(z ) = \ Y 1  =  \  5 Z e? + qlf (2-31)

F2(x) = 2 xFx{x) (2.32)

9v(*)= \  e/Â (x) = I J2ef [qf(x) ~ qif ’ (2-33)
/  /

where q/(x) and Aq/(x)  are the unpolarized and polarized parton distribution functions 

with parton flavor / .  The distribution functions involve the two cases where the quark

spin is aligned parallel (f) or anti-parallel (j) to the nucleon spin. Eq. (2.32) is known

as the Callan-Gross relation [14]. There is no simple interpretation of g2 in the parton 

model, but it carries information about the quark-gluon interactions that occur inside the 

nucleon.

Bjorken scaling is only an approximation, since quarks can radiate gluons before and 

after the scattering process. These processes cannot be separated from electron scattering 

off a quark without gluon radiation. This causes the structure functions to develop a loga­

rithmic dependence on Q2, and hence, Bjorken scaling is only a “a good approximation”.
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This variation of the structure functions with the momentum transfer squared is referred 

to as QCD evolution. The DGLAP equations developed by Dokshitzer [15], Gribov, Li­

patov [16], Altarelli and Parisi [17] provide a method to calculate the Q2-evolution of 

the parton distributions. Once the parton distributions are know at one scale, they can be 

calculated at any other scale where perturbative QCD is applicable.
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CHAPTER 3

Sum Rules

In Chapter 2, we have seen that the internal structure of the nucleon is parameterized 

by structure functions; however, the available theoretical tools are unable to calculate the 

structure functions. Instead, these tools are used to provide predictions of the moments of 

the structure functions. In addition to the moments, there are several dispersive sum rules 

that link the Compton scattering amplitudes to integrals of the inclusive photoproduction 

cross sections of the target under investigation. These sum rules are based on universal 

principles such as causality, unitarity and gauge invariance. The interest in sum rules 

lies in the fact that they provide a useful testing ground to study the internal degrees of 

freedom of the system. The extension from real to virtual photons provides a probe with 

variable resolution. At small Q2, the long range phenomena are sampled and described 

by effective degrees of freedom (hadrons), whereas at large Q2, the primary degrees of 

freedom (quarks and gluons) become visible.

The first part of this chapter provides an overview of the formalism of virtual pho­

toabsorption cross sections. In the second part, we derive an important spin sum rule

18
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known as the GDH sum rule. In the third part, the GDH sum rule is generalized for virtual 

photons along with a few other Q2-dependent sum rules that are relevant for experiment 

E97-110.

3.1 Virtual Photoabsorption Cross Sections

In Section 2.2, we have seen that the inclusive differential cross section can be de­

scribed in terms of four structure functions. The cross section can also be written equiva­

lently as a cross section for the absorption of a virtual photon, which involves four partial 

cross sections [18,19]:

= r  \?T +  6<TL ~  ^ W 2 e ( l  -  f )aLT ~  hPzV l -  €2(Ttt  , (3.1)

where t  and V are the ratio of the longitudinal to transverse polarization of the virtual 

photon and the virtual photon flux factor given by Eq. (3.2) and Eq. (3.3):

(  v 2 \  9 9
+  (  2

-1

(3.2)

and

r  =  —- — —  K  (3  3 )
2n2Q2 E l - e  K }

The flux factor T is proportional to the virtual photon flux K,  which is convention depen­

dent. A few of the common conventions follow below:

K a = u (3.4)

W 2 -  M 2

k ”  = — k <3 -5 >

Kc. = [<?1 =  V ' ' 2 + Q2 ■ (3.6)
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The first convention connects the flux to the virtual photon energy u [10]. The second 

convention is Hand’s convention [20] and associates the flux with the “equivalent photon 

energy”. The third convention by Gilman [21] uses the photon momentum in the lab 

frame. At the real photon point, all the conventions reduce to v, but at intermediate Q 2, 

the photon flux is strongly convention dependent.

The four partial cross sections consists of the longitudinal transverse (pr) and 

two interference terms: longitudinal-transverse (oLT) and transverse-transverse (oTT) and 

are functions of v  and Q2. The two interference terms involve a spin-flip and can only

be measured by double-polarization experiments. The longitudinal and transverse terms

involve the absorption of a longitudinal and transverse virtual photon on a nucleon re­

spectively. In the real photon limit (Q2 = 0), o L vanishes and the total photoabsorption 

cross section is given by o(v) = In Eq. (3.1), h =  ±1 refers to the helicity of

the longitudinally polarized electron, and Pz (Px) denote that the target polarization is 

parallel (perpendicular) to the virtual photon momentum q. The helicity is defined as:

ft = T f  <37>
where a are the Pauli spin matrices, and p  is the particle’s momentum.

The partial cross sections a t  and o T t  can be expressed in terms of the helicity- 

dependent photoabsorption cross sections ai  and <T|. The subscripts refer to the total 

helicity projections of the photon plus target helicities. The projections are illustrated in 

Fig. 3.1 for a spin-1 target. These helicity cross sections are related to the transverse (spin- 

averaged) and transverse-transverse (spin-dependent) interference terms via the following 

expressions:

2(tt =  <xi +  <73, 2c t t  = o'i — 0 3  . (3.8)
2 2 2 2

The virtual photoabsorption cross sections are also related to the structure functions
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h =
- e -

S = -1/2

a 3 /2

h = +1 S = -1/2

a1/2

FIG. 3.1: Schematic of the helicity-dependent cross sections eri and era. The virtual photon 
helicity and target spin projections are denoted by h and S  respectively

F\, F2, g\ and g2, which are dependent on v and Q2

An2 a

<?l  =

<TX

Ar2a
~K~

M K Fi

AtF'o.
^  =  - ^ 7 ( 5 1 + 5 2 )  

A7r2a , n  \

° T T  =  M F  ( 91  ~  7  ^  ’

(3.9)

(3.10)

(3.11)

(3.12)

where 7  = Q/v ,  and the correspondence is dependent on the virtual photon flux K.  The 

interference terms can also be defined as <7lt{tt) = —°'lt(tty

3.2 The GDH Sum Rule

The Gerasimov-Drell-Heam (GDH) Sum Rule [22-25] relates a particle’s anoma­

lous magnetic moment k to an energy-weighted integral over its photoabsorption cross
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section. The sum rule’s significance is that it relates static properties of the particle’s 

ground state to dynamic properties of all its excited states. It also divulges that a non-zero 

anomalous magnetic moment requires that a particle have a finite size and hence an exci­

tation spectrum [19]. Consequently, the discovery that the nucleon had a large anomalous 

magnetic moment provided a strong indication that the nucleon has an intrinsic structure 

and is not a point-like particle. The sum rule for spin-| particles is

where uq = m n (1 +  fj j )  ~  150 MeV is the threshold energy for pion production. This 

sum rule provides an ideal testing ground to study the nucleon’s internal structure, since 

the right hand side is given by the nucleon’s ground state properties that are known rather 

precisely. In addition, the sum rule was generalized for virtual photoabsorption on a

the spin observables. The following discussion provides a derivation of the GDH sum 

rule based on dispersion relations, which follows Refs. [23] and [24].

The general assumptions used in the derivation of the sum rule are Lorentz and 

gauge invariance, unitarity and causality. We begin with the forward Compton amplitude 

T(u, 6 = 0) for real photon scattering from a nucleon:

where e and s'* are the incident photon and outgoing photon polarization vectors respec­

tively. Crossing symmetry requires that the T-matrix is symmetric under exchange of 

incoming and outgoing photons, s'* s and v  —> — v, which implies that /  is an even

(3.13)

nucleon, which allows us to study the Q2-evolution and hence the spatial distribution of

3.2.1 Derivation of the GDH Sum Rule

T{y) = s'* • s f ( v )  +  ia • (s'* x s) g{v) (3.14)
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function and g is an odd function of is. The amplitudes can be separately determined by 

using circularly polarized photons incident on a nucleon that is polarized either parallel 

or anti-parallel with respect to the photon momentum q. The polarization vectors can take 

the following form for a photon moving along the 2 -axis:

e± =  T- j=  (e* ±  iiy) , (3.15)

which corresponds to right-handed (+1) and left-handed (-1) circularly polarized light. 

For the above description the transverse gauge (e ■ q = 0) was used with the photon four- 

momentum and polarization defined as q =  (is, q) and £ = ((},£) with q ■ q = 0.

Unitarity of the scattering matrix relates the imaginary part of the amplitudes to the 

photoabsorption cross sections by the optical theorem:

lmf( is)  = i l  ( a i { v ) + *}{*))  =  ^ o T (3.16)

and

Im g(u) = ^  (a i  (is) -  az (i/)) =  £ - aTT. (3.17)

The helicity-dependent cross sections were defined in Section 3.1.

At small photon energies, the amplitudes can be expanded in powers of is, and the 

low energy theorem (LET), of Low [26] and Gell-Mann & Goldberger [27], based on 

Lorentz and gauge invariance gives the leading order terms:

Z 2p2
/ H  =  +  (a  +  z?)"2 +  0 ( i /4) , (3.18)

s M  =  - ^ j >' +  7 ô  +  0 (1/5 ) , (3.19)

where Z  is the target’s charge (1 for the proton and 0 for the neutron). The leading term 

/(0) is the classical Thomson scattering result. The 0 ( u 2) term describes Rayleigh scat­

tering and introduces the electric (a) and magnetic (/?) dipole polarizabilities. For the
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spin-flip amplitude g, the leading term is associated with k, the anomalous magnetic mo­

ment, and the 0 ( v :i) term is related to the forward spin polarizability 7 0 , which contains 

information on the spin structure.

The final piece needed to form the sum rule is a dispersion relation. Dispersion 

relations can be derived for f (v )  and g(v) by using the analytic properties of the forward 

Compton scattering amplitudes with unitarity and crossing symmetry. The dispersion 

relation for the spin-averaged amplitude /  is the Kramers-Kronig relation from optics, 

which connects the real part of /  with an integral over the imaginary part of / :

With the optical theorem, the imaginary part is replaced by the total cross section so the 

dispersion relation becomes

where P  denotes the principal value integral. Since the total cross section has a slow 

logarithmic increase beyond the resonance region, a subtraction is made at u = 0  to ensure 

that the integral converges. The term /(0 ) is the Thomson limit that was encountered in 

the LET above.

Applying the same general principles, an unsubtracted dispersion relation can be 

derived for the spin-flip amplitude:

where the optical theorem was used to replace the imaginary part of g with the helicity- 

dependent cross section difference. In this relation, it is assumed that the cross section 

difference decreases fast enough at large v' so that the integral converges without a sub­

traction. This assumption is called the non-subtraction hypothesis.

(3.20)

(3.21)

(3.22)
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Using the result from the LET from Eq. (3.19) and Eq. (3.22), we can now form the 

GDH integral by comparing the 0(v)  terms such that

1 55 “ 2 W^2 = h M -  ■ (3-23)

where a  = e2/47r. Sum rules have also been formed for the electric and magnetic polar- 

izabilities and the forward spin polarizability. These will not be discussed further in this 

document. More information on these sum rules is available in Refs. [5] and [19].

3.2.2 GDH Sum Rule Measurements

The GDH sum rule given by Eq. (3.23) connects a non-zero anomalous magnetic 

moment to the excitation spectrum of the target being investigated. This in turn provides 

a link to the target’s internal degrees of freedom, which we are attempting to understand 

in the context of QCD. We expect that the low energy region including the lower mass 

resonances must have a significant contribution to the sum rule because of the ir 1 weight­

ing. Table 3.1 provides, for selected targets, the anomalous magnetic moment, the GDH 

sum mle values for the right hand side /rh s  and the measured values for the left hand side 

/lh s  of Eq. (3.24). All the targets listed except the deuteron have spin = The sum rule

Target k {hn ) fRHS O^b) fLHS (a4b)
Proton

Neutron
Deuteron

3He

1.793
-1.916
-0.143
-8.371

-204.8
-233.2
-0.65

-497.9

-211 ±  15 

-440 ±  21(stat) ±  25(syst)

TABLE 3.1: Anomalous magnetic moments and GDH sum rule values for select targets. The 
anomalous moments are given in units of the nuclear magneton, //,,v =  e/2Mp.
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can be generalized for a target of spin-S. In this case, the GDH sum rule becomes

du k2
J  aJL _  ffA{u)] = -47r2a S ^  , (3.24)

where the helicity-dependent cross sections ap  and oa are for the photon helicity parallel 

or anti-parallel to the target spin. For nuclear targets, the energy threshold begins at the 

photo-disintegration threshold, 2.2 MeV and 5.5 MeV for the deuteron and 3He nucleus 

respectively [1 0 ].

Measurements have been conducted for the proton and neutron GDH sum rules. The 

first proton measurement was performed at MAMI (Mainz) [28] for photon energies be­

tween 200 MeV and 800 MeV. The GDH Collaboration extended the measurement up to 

2.9 GeV at ELSA (Bonn) [29]. With the two sets of data combined and an estimate for the 

unmeasured regions, the proton sum rule was found to be-211 ±  15 /xb [19] implying that 

the sum rule is valid for the proton. Results on the deuteron GDH sum rule are available 

between 200 MeV and 1800 MeV from MAMI and ELSA [30, 31] with a value of -440 

±  21(stat) ±  25(syst) //b. For the deuteron sum rule to hold, these measurements indicate 

that the contribution from photo-disintegration has to be significantly large to cancel the 

resonance contributions. The neutron sum rule can be evaluated from the measured pro­

ton and deuteron results; however, the neutron extraction has yet to be performed. The 

region between the breakup threshold to pion production will be measured at the High 

Intensity Gamma Source (HI7 S) [32]. There are other measurements planned, which are 

discussed in Ref. [19].
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3.3 Dispersive Sum Rules for all Q2

Using the framework developed in Section 3.1, we will now discuss the generaliza­

tion of the GDH sum rule for virtual photons. In addition to the GDH sum rule, other 

important spin sum rules will be discussed. The extension of the sum rule was originally 

proposed to investigate the “spin crisis” of the 1980’s by Anselmino et. al. [33]. The spin 

crisis was later resolved by taking into account the gluon spin, the sea quarks (q-q pairs) 

and the angular momentum of the partons. Various methods have been proposed to gen­

eralize the sum rule [34, 35], and we have chosen to follow the generalization discussed 

in Refs. [19] and [36].

In addition to the transverse polarization vectors s±, the virtual photon has a third 

polarization vector £q. The polarization four-vector can be defined as

£o =  ^(k1,0,0,<Zo) > (3-25)

where the z-axis was chosen to be in the direction of the photon propagation,

q = ( q o A O , m  • (3-26)

The three polarization vectors and the photon momentum are orthogonal in the Lorentz 

metrics. The forward Compton amplitude of Eq. (3.14) is then generalized for doubly- 

virtual Compton scattering (VVCS) by adding the longitudinal polarization vector q:

T(u,Q2) — s '*  • efr{v, Q2) +  / i ( ^ ,  Q2) +  ia • (s'* x Q2)

+ i(e t* -  e) • (<? x q)gLT(v ,Q2) ■ (3.27)

For the following, we are only interested in the spin-flip amplitudes (jt t  and §l t - 

Alternatively the spin-flip amplitudes can be cast into a covariant form involving the am-
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plitudes Si(v, Q2) and S2(u, Q2):

Si (u,Q2) =

S2M 2) =

v M
v 2 + Q2 

M 2

Qt t W, Q2) +  —9l t {v, Q2)
V

9t t (v, Q2) ~  q 9l t (v, Q2) (3.28)
v2 +  Q2

Under the crossing transformation, the W C S  amplitude has to be symmetric, which 

leads to the following properties:

S l {u,Q2) = S 1( - u , Q 2), S2(v,Q2) = - S 2( - u,Q2) , (3.29)

9t t {v, Q2) =  —g r r i—v, Q2), guriy, Q2) =  9l t {—v, Q2) • (3.30)

The inelastic contributions can be related to the inclusive electroproduction cross sections 

via the optical theorem:

t / K ( v ,Q2)
l m g TT(y,Q ) =  — ^  <7t t {v , Q ) ,

t i K ( v , Q 2) , rti \l m g LT{ v ,Q )  =  — ^ — v l t (v, Q ) - (3.31)

Then the imaginary parts of the covariant spin amplitudes follow from Eqs. (3.28) and 

Eqs. (3.31) so that

lm S \ (u ,Q 2) = 

Im S2(u,Q 2) -

u M  K{y , Q2) 
v2 +  Q2 4tt 

M 2 K(v, Q2)

&t t (v , Q2) +  —CTl t {v, Q2)
V

. (3.32)
u2 +  Q2 47T

Consider the spin-dependent amplitude 9t t \ assuming it has an appropriate conver­

gence at high energy, we obtain the following unsubtracted dispersion relation:

Re Q2) -  9i ¥ ( ", Q2) = T ^ P  f
K W , Q ^ r r W , Q 2J d^  ^

j /2  _  y l
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where the elastic contribution g ^ e was separated from the inelastic contribution u' > pq. 

A low energy expansion can then be used

Re [ffrr(u, Q2) -  g r r ( v ,  Q2) = ~ ITt (Q2)v +  7t t {Q2)v3 + 0 (u 5) , (3.34)

that yields a generalization of the GDH sum rule for the leading term,

It t (Q2) —
M 2

fJvn
K {p, Q2) crTT(u, Q2)

4tt2a  JUQ 
2  M 2 rxo

p

j P  [ s i M 2)

P

4 M 2

d p ,

x 2g2(x ,Q2) d x ,
Q2 Jo L Q2

and the second term leads to a generalized form of the forward spin polarizability,

(3.35)

7TT(°2) = i / „ V0

16aM2 rxo
p

Q6 fJo
X

-dp ,

9i(x, Q2) -  ^ ~x2g2(x, Q2) d x , (3.36)

where x  is the Bjorken scaling variable and x0 =  corresponds to the pion production 

threshold. In the real photon limit (Q2 —> 0), It t (0) -  — and 7 t t ( 0 ) = 7 0 , i.e., the 

real photon sum rules are recovered for GDH and the forward spin polarizability.

With the same assumptions, we can construct an unsubtracted dispersion relation for 

the amplitude gLT'■

Re \gLT(v, Q2) -  s g V ,  Q2)] =  ^ QIlt(Q2) +  QSw ( Q V  +  0 (u ' ) . (3.37)

The leading term results in a sum rule for Il t (Q2)'

Il t{Q2) =
M 2

47T2q;fJ VO
K ( p,Q2) ctl t (p ,Q2)

v Q
2  M 2 rX0

d p ,

Q 2

rxo
/  [(^(a;, Q2) +  Q2)] da;. (3.38)

Jo
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The 0{u2) term gives the generalized longitudinal-transverse polarizability:

K(u, Q2) aLT{v, Q2)r 1 f°° K(y, Q2) Q ) j
=  2 ^ 1  “  0 * - * '

1 fin- M2 r*0
=  —gg I  x 2 [g1(x,Q2) + g 2(x ,Q 2)]dx.  (3.39)

We can also construct unsubtracted dispersion relations for the covariant amplitudes 

S\ and S2:

Re
-I 9rv

S1(̂ ,Q2)-Sr'>,<32) = -jf/i(QJ)+7»i(QV + <V), (3.40)M

where the leading order term leads to the sum rule:

2Af2 f xo
h(Q 2) = - g r  jo 9 i (x ,Q 2)dx,  (3.41)

and the second term’s coefficient can be expressed as

On
Igi(Q2) = MSl t (Q2) + m q 2(It t (Q2) ~  h(Q 2)) ■ (3.42)

A “super-convergence relation” can be formed that is valid at any Q2 by considering 

the S2 amplitude, which is odd in u. Assuming the behavior for this amplitude as u —*■ oo 

is given by S2 —> u°2 with a 2 < —1, then there should be a dispersion relation for uS2, 

which is even. By subtracting the dispersion relations for S 2 and vS 2 we obtain:

I

i
i2)g2{x, Q2)dx =  0. (3.43)

This result is known as the Burkhardt-Cottingham (BC) sum rule [37] and indicates that 

the sum of all elastic and inelastic contributions should vanish. The elastic and inelastic 

contributions can be separated and the sum rule can be written in terms of the Sachs form 

factors

2 M 2 r \ .  G m (Q2) G m {Q2) — G e {Q2)
*2[Q ) — Q2 J 92\x iQ )dx —  ^ \  T ’ (3.44)

with t = Q2/AM 2.
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3.4 Summary

In this chapter, the formalism of the virtual photoabsorption cross sections and var­

ious spin-dependent sum rules were introduced. The generalization of the sum rules to 

Q2 > 0 provides a unique tool to test theoretical predictions with experimental data over 

the entire range of the four-momentum transfer. In Chapter 3, the theoretical methods 

to perform QCD predictions will be discussed and then a comparison will be conducted 

with the available data. Finally the motivation for experiment E97-110 will be unveiled 

with respect to theoretical calculations in terms of the sum rules discussed in this chapter. 

For this dissertation, the measurement of the generalized GDH sum rule of Eq. (3.35) is 

the main result.
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CHAPTER 4

Theoretical Methods

Over the past couple of decades, the spin structure of the nucleon has been exper­

imentally mapped out for a large range of Q2. Recently, experiments at Jefferson Lab 

have contributed to the low and intermediate Q2 region between 0.02 and 2 GeV2. In this 

chapter, we will examine some of the more common theoretical methods that are used 

to predict the Q2 -variation of the structure functions. At low Q2, predictions are calcu­

lated using chiral perturbation theory, whereas the operator product expansion is utilized 

at large Q2. The predictions are usually made in regards to the virtual photon-nucleon 

amplitudes Si(u, Q2) and Q2). However experimentally, these amplitudes cannot 

be measured for a space-like virtual photon, Q2 > 0. This is where the dispersive sum 

rules from Chapter 3 become important, since they relate the Compton amplitudes to in­

tegrals o f the structure functions. Using the various sum rules, theoretical predictions of 

the amplitudes can be tested against measurements of the structure functions, provided 

the dispersion integrals converge [35].

In the first part of this chapter, we give an overview of the theoretical methods avail-

32
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able with an emphasis on chiral perturbation theory, since the results of this thesis are in 

the low Q2 regime where it is expected to be applicable. In the second half, the current 

data will be compared to the different predictions in the low to intermediate Q2 region.

4.1 Chiral Perturbation Theory

4.1.1 Chiral Symmetry

At low energies and four-momenta, Q2 < 1 GeV2, the strong interaction’s running 

coupling constant a s(Q2) is of order one. This makes expansions in powers of a s no 

longer useful. In this region, different techniques are relied upon to make QCD predic­

tions. At low energies, the relevant degrees of freedom in QCD are composite hadrons 

instead of the quarks and gluons of the DIS region. One approach to tackle the non- 

perturbative region is to make use of basic QCD symmetries and conserved currents. 

These serve as guiding principles to construct effective Lagrangians, which approximate 

QCD at low energy.

We begin with the QCD Lagrangian [38]:

£qcd =  -  + qiYD„q — q M q , (4.1)

where G is the gluon field strength, q is the quark field, and M  is the diagonal quark mass 

matrix. The absolute values of the running quark masses ra* at the scale of 1 GeV are [5]:

m u{lGeV) = (4 ±  2)MeV, (4.2)

m d(lGeV)  =  ( 8  ±  4)MeV, (4.3)

These masses are small compared to the characteristic hadronic scales, such as the pro­

ton’s mass, i.e., m u/M p ~  5-10-3. So we now consider the limit where the ra* vanish and
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then treat the light quark masses as perturbations. In this approximation, the c, b and t 

quarks can be treated as infinitely heavy. For massless fermions, chirality or handedness is 

identical to the particle’s helicity as defined in Eq. 3.7. This results in an extra symmetry 

of the QCD Lagrangian, so we can introduce left and right handed quark fields:

qL,R = ^{lTl?>)q,  (4.4)

which do not interact with each other. The theory admits a S U (3)i  x S U (3)r symmetry, 

and the invariance of the Lagrangian under this group is referred to as chiral symmetry. 

The existence of the small but non-zero quark masses explicitly breaks chiral symmetry.

4.1.2 Chiral Symmetry Breaking and Perturbation Theory

In the limit of massless quarks, the theory admits an £7(3)l  x  U (3)r symmetry; 

however, the ground state of QCD does not have the full symmetry. Otherwise, all the 

known hadrons would have a partner of the same mass but with opposite parity, which is 

contrary to the observed hadron spectrum. As a matter of fact, the physical QCD ground 

state is asymmetric under chiral symmetry [38]; hence, chiral symmetry is spontaneously 

broken down to the flavor group SU(3)v,  i-e, the vector charge. Goldstone’s theorem 

[39, 40] requires the existence of eight massless pseudoscalar mesons [5]. In nature, 

the eight lightest hadrons are the pseudoscalar mesons, which include the pions (n±,7r°), 

kaons ( K ±,K°,K°)  and eta (r/). The Goldstone bosons have mass, since the non-zero 

quark masses explicitly break chiral symmetry.

We can now construct an effective Lagrangian, which replaces Eq. (4.1) in the low 

energy limit with two parts:

£ q c d  — C q  + £ sb , (4.5)
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with

£ sb =  - q M q , (4.6)

which can now be regarded as a perturbation to the chiral symmetric part of the La­

grangian £ 0- The effective Lagrangian still retains the symmetries and symmetry break­

ing patterns of the fundamental theory of QCD. This approach is reasonable because the 

light quark masses are small compared to the 1 GeV hadronic gap, which is a consequence 

of the spontaneous breaking of chiral symmetry.

A low energy expansion is used to order the energies and momenta (p) of the in­

teracting particles such that any matrix element or amplitude derived from the effective 

Lagrangian is organized in a power series, J2n cnPn- The framework for the expansion is 

called chiral perturbation theory (xPT) [38]. We note that the radius of convergence is ex­

pected to be quite limited; however within this limit, rigorous statements are possible [5].

4.1.3 Baryon Chiral Perturbation Theory

Over the past 15 years, there has been very productive theoretical activity in re­

gards to xPT calculations. Here we highlight the main theoretical work [41-44] relevant 

to this thesis involving the spin-dependent structure functions and their moments. The 

theoretical effort is limited to the two flavor case of the up and down quarks. The predic­

tions have typically examined the Q2-dependence of the Compton amplitudes Si(u, Q2) 

and S2(v, Q2) in the low energy and momentum regions. In Section 3.3, we saw that 

the Compton amplitudes can be connected to integrals of the spin structure functions via 

dispersion relations.

As mentioned in the previous section, the low-energy expansion is made in powers 

of small momenta and quark (pion) masses, which involves pion loops of the effective
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theory. The introduction of baryons to the theory creates a complication: the baryon 

mass is nonvanishing in the chiral limit and adds a new scale to the theory [45]. The 

implications of this are that there is no guarantee that all next-to-leading-order corrections 

at order pA are given completely by one-loop graphs. Theorists have considered two 

main approaches for dealing with these complications: Heavy Baryon xPT (HBxPT) and 

Relativistic Baryon xPT (RBxPT).

Heavy Baryon xPT

In the Heavy Baryon approach, the baryons are considered as very heavy and the 

theory is expanded in inverse powers of the baryon mass, which results in a consistent 

counting scheme. However the authors in Ref. [45] warn that the expansion in the ratio 

of pion to nucleon masses m ^ /M N is not expected to converge very fast. In fact, a signif­

icant Q2-variation was seen for the generalized GDH sum rule when the next-to-leading 

(0(p4)) order was calculated in xPT [41].

Lorentz-invariant Baryon %PT

Recently Bernard et al. [42, 44] have studied the Compton amplitudes for low Q2 

in a Lorentz-invariant formulation of baryon %PT. A complete one-loop (fourth order) 

calculation was performed that showed significant differences from the previous results 

based on HBxPT. The underlying method of this approach involves “infrared regulariza­

tion”, where any dimensionally regularized one-loop integral can be split into an infrared 

singular and a regular part depending on a particular choice of Feynman parameteriza­

tion. The contributions from the regular part can be absorbed into low-energy constants 

of the effective Lagrangian, whereas the chiral expansion of the infrared part leads to the 

non-trivial momentum and quark-mass dependences of xPT. Results obtained from this
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approach are compatible with expectations from naive-dimensional analysis, which was 

not the case for the HB^PT calculations.

Resonance and Vector Meson Contributions

So far we have only discussed the pion-nucleon contributions. However there are 

expected to be reasonably sized resonance contributions to the Compton amplitudes, es­

pecially from the A(1232) resonance. Ideally, the A resonance would be included as 

a dynamical degree of freedom in the effective Lagrangian, but an effective field the­

ory of the relativistic pion-nucleon-delta system does not exist. So the A contribution 

has only been added systematically in the heavy baryon approach. In this approach, the 

nucleon-delta mass difference is treated as an additional small parameter. In RB^PT, the 

A contribution is estimated by calculating relativistic Bom graphs, which are dependent 

on a few experimental parameters that are not well known. The predictions with this con­

tribution included have a band of values due to the uncertainties in these parameters. The 

authors of Ref. [44] have also included contributions from the vector mesons.

One possibility to get around the resonance contributions is to consider quantities 

involving the difference between proton and neutron observables. In the difference, the 

resonance contribution largely cancels out and a reduced Q2 dependence is expected [46], 

generating a quantity for which xPT predictions are expected to be more reliable.

4.2 Operator Product Expansion

In 1969, Wilson originally introduced the Operator Product Expansion (OPE) [47] as 

an attempt to formulate a substitute for quantum field theory. The expansion can provide 

model-independent QCD predictions for the moments of the structure functions via sum
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rules. The OPE method separates the perturbative part of the product of two operators 

from the non-perturbative part. The product of the two operators can be written in the 

small distance limit d —► 0  as

lim aa(d)ab(0) =  Y ]  Cabk(d)ak{0), (4.7)d—> 0 1 Jk
where Cabk are known as the Wilson coefficients, which contain the perturbative part 

and are calculable perturbatively in QCD. The operators ak contain the non-perturbative 

information and hence are not calculable in perturbative QCD. In the DIS region, this for­

malism is used to develop a product of currents on a local operator basis. The contribution 

of any operator to the cross section is of the order:

/ M \ T~ 2

* (o') (4-8)
where Q = y/Q2, and r  = D — n is defined as the “twist”. The dimensionality (in powers 

of mass or momentum) and spin of the operator are represented by D  and n, respectively. 

At large Q2, the leading twist term known as twist-2 dominates, since higher twists are 

suppressed by increasing powers of For small values of Q2, higher twist contributions 

are expected to be important.

When the parton model was discussed in Section 2.3.4, we claimed that the g2 (x, Q2) 

structure function had no simple interpretation. Now we will explore the g2 structure 

function in terms of the twist expansion. This structure function can be separated into 

twist-2  and higher twist terms:

g2(x, Q2) =  g™w (x, Q2) + g2(x, Q2) , (4.9)

where g ^ w (x, Q2) is purely a twist-2 contribution and is entirely determined by g\ (x, Q2) 

from the Wandzura-Wilczek relation [48]:

g ^ ( x ,  Q2) =  - 9 l(x, ( ? )  +  [ '  g- ^ l d y . (4.10)
Jx y
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The second term of Eq. (4.9) contains information on higher twist effects which are related 

to quark-gluon interactions.

We now consider the first moment of the structure function gi(x, Q2) defined by

with the coefficients g T are a perturbative series in a a. The coefficients are related to 

nucleon matrix elements of twist <  r . The application of the OPE requires summation 

over all hadronic final states, so the elastic contribution at x  = 1 is included [49].

The leading-twist term /x2 can be expressed into flavor triplet (g^), octet (a8) and 

singlet (AS) axial charges:

where +(-) denotes the proton (neutron) and the 0 ( a s) terms are the Q2 evolution due to 

QCD radiative effects. These higher order terms are calculable from perturbative QCD. 

The gA axial charge is known precisely from neutron /3-decay and a8 can be extracted 

from hyperon /3-decay assuming SU(3) flavor symmetry. Within the parton model, A S 

is the amount of spin carried by quarks. This quantity has been extracted from a global 

analysis of the world data from DIS experiments [50].

The difference between the first moments of the proton and neutron gx spin structure 

function gives rise to the well-known Bjorken sum rule as Q2 —> oo:

First Moment of gi(x, Q2)

Using the OPE leads to the twist expansion for the first moment:

(4.11)

(4.12)

M Q 2) = ( ± ^ 9 a  + +  jA E  +  0 (a , (Q 2)) (4.13)

rf(Q2) -  r;(Qa) = \ 9a + o(a,(Q2))+ o(i/q2) . (4.14)
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Bjorken first derived this sum rule using the current algebra method [51], so it provides 

a fundamental test of the structure of QCD. With the perturbative QCD corrections in­

cluded, the Bjorken sum rule has been tested and verified to the level of 10%.

4.3 Lattice Gauge Theory

Lattice QCD [5] provides a framework for non-perturbative calculations of hadronic 

structure. The difficulties of solving QCD analytically are avoided by discretizing QCD 

on a finite space-time lattice. In principle, the technique involves a simulation of QCD; 

however, the calculations are numerically intensive. To ensure that the calculation pro­

vides the desired observable, the lattice spacing a needs to be small and the finite volume 

needs to be large. However a compromise needs to made, since the calculations are com­

putationally costly. Lattice QCD is a rapidly developing field and important conceptual 

and technical progress is being made to improve this method’s current capabilities.

The hope is one day lattice calculations will bridge the gap in the intermediate Q 2 

regime, where neither OPE or xPT can make predictions. A strong connection between 

lattice calculations and x?T has recently developed. The results from lattice QCD have 

to be extrapolated to the value of the observable in the limit of infinite volume and as the 

lattice spacing becomes infinitesimal. One approach has been to use the predictions from 

xPT to make these extrapolations [52, 53]. Hence, lattice QCD results are now tied to 

xPT, and the verification of xPT predictions with data is essential.
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The unitary isobar model MAID [54] utilizes phenomenological fits to photo- and 

electroproduction data on the nucleon from the pion-production threshold to W  = 2  GeV. 

Resonance contributions are included by taking into account unitarity to provide the cor­

rect phases of the pion photoproduction multipoles. The model also assumes the reso­

nance contributions have Breit-Wigner forms with contributions to the helicity-dependent 

cross sections given by

° M  = W T - Ak > B M 2) ’ <4 I 5 >res1 res *  *

where Wres and rres are the mass and width of the resonance, respectively. The helicity- 

dependent amplitudes are given by A \ . 3., and B(v, Q2) represents the generalization to 

electroproduction of the Breit-Wigner form. The model includes the resonances men­

tioned in Table 2 .1  plus the P n ( 1 4 4 0 )  and D 33( 1 7 0 0 ) .  Contributions from vector mesons 

and a non-resonant background are also included.

With this model, good agreement has been obtained with pion photo- and electropro­

duction data on the nucleon for both polarized observables and differential cross sections 

(see [ 1 8 ,  1 9 ,  54]). The model validates the proton GDH sum rule; however, the model 

does not verify the neutron GDH sum rule at the real photon point. The neutron dis­

crepancy may be caused by neglecting final state interactions for pion production from 

deuterium or 3He targets, a larger than expected two-pion contribution for the neutron, or 

possible multipole expansion modifications due nuclear binding effects for the neutron.
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4.5 Data and Theoretical Prediction Comparisons

In the last decade, experimental results have become available in the low and in­

termediate Q2 regions which allows us to test our understanding of QCD in the non- 

perturbative and transition regimes. In this region, the effective degrees of freedom are 

the hadrons rather than the quarks and gluons of perturbative QCD . In this section, we dis­

cuss the experimental data and make a comparison to the available theoretical predictions. 

The discussion will be restricted to measurements of the neutron spin structure from a po­

larized 3He target. However data are also available for the proton [55] and deuteron [56]. 

An overview of the recent data on sum rules and moments of the nucleon spin structure 

functions is available in Ref. [49]

Results for the neutron generalized GDH sum rule (red squares) from Eq. (3.35) 

are shown in Fig. 4.1. The results were extracted from JLab experiment E94-010 [57] 

from pion threshold to W  = 2 GeV. For the virtual photon flux factor, the convention in 

Eq. (3.4) was used to make comparisons with the theoretical predictions. The uncertain­

ties on the data are statistical only. The systematic uncertainties are represented by the 

green band. The blue squares include an estimate of the unmeasured W  > 2  GeV contri­

bution. The data illustrate a smooth Q2-variation from large negative values at low Q2 to 

smaller values at higher Q2. The data approach the HERMES neutron results [58], which 

only include contributions from the DIS part of the integral. At the real photon point, the 

value of the GDH sum rule (—232.8 /zb) is represented by the asterisk. Two x?T pre­

dictions are shown for Q2 > 0 using HB^PT [41] and RBxPT [42]. The band indicates 

the RBxPT calculation with resonance and vector meson effects included [44], where the 

large uncertainty is due to the parameters used as discussed in Section 4.1.3. The lowest 

Q2 point overlaps the band from the RBxPT calculation with resonance contributions.
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Above Q2 = 0.3 GeV2, the xPT predictions are much more negative than the data. Also 

shown is the MAID model calculation, which is more positive than the data and should 

only be compared to the red squares.

.a -100

S -200

O Hermes (DIS)
%  GDH Sum Rule
■ Resonance
■ Resonance+DIS

Bernard et al. (VM+A) 
Bernard et al.(J(PT)
Ji et at.
MAID (Resonance)

Q*(GeV2)

FIG. 4.1: Results for the neutron generalized GDH sum rule I t t { Q 2) from experiment E94-010.

The generalized spin polarizabilities as defined in Section 3.3 provide bench mark 

tests for the xPT predictions. The integrands for the polarizabilities are weighted by an 

additional factor of v~2, which suppresses the DIS contribution from the unmeasured 

region W  > 2 GeV2. One of the biggest questions in xPT is how to handle the nucleon 

resonance contributions, especially the dominant A resonance. The authors in Refs. [43] 

and [44] have pointed out that the 8lt  spin polarizability should be insensitive to the A 

resonance, whereas 7 0  is much more sensitive.

In Fig. 4.2, the spin polarizabilities for the neutron [59] are shown between Q2 of 

0.1 and 0.9 GeV2. The solid squares show the data with statistical uncertainties, and the
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systematic uncertainties are given by the dark band. Predictions from HBxPT [43] and 

RBxPT [42] are compared with the experimental data. The calculation with resonance 

contributions [44] is indicated by the light gray bands. First we consider the lowest Q2 

points at 0.1 and 0.26 GeV2. For the 7 0  spin polarizability (top, left panel), the RBxPT 

calculation with resonance contributions agrees well with the data for Q2 = 0.1 GeV2. 

However the HBxPT shows significant differences even at this low Q2. The MAID model 

shows good agreement with the higher Q2 point, whereas a sizable difference is seen for 

the lower point.

The 5i t  spin polarizability, which is expected to be less sensitive to the resonance 

contributions, is shown in the bottom left panel. Surprisingly the data show a significant 

disagreement with both predictions even at the lowest Q2 point. The MAID model on the 

other hand is in good agreement with these results.

_o.o

T_

3.0

t§2.0 
To
XlO

0 0 ,

FIG. 4.2: Results for the neutron spin polarizabilities 7 0  (Q2) and &l t (Q2) from experiment 
E94-010.

In the right panel of Fig. 4.2, the polarizabilities are shown multiplied by Q6. The 

MAID and xPT calculations are shown for comparison. The Q6-weighted polarizabilities

—1 tauio---------
MAID estimate 

—■* — » Kao et al. 0(/>3)+0(/A  
—  •  • Bernard etal.

Bernard et al. (VM + A)

 • ' eM6ir ' 11,1  ...
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o Lattice QCD
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are expected to exhibit scaling (become independent of Q2) at large Q2. Clearly neither 

spin polarizability shows this below 1 GeV2. The world data from Ref. [60] and a lattice 

QCD calculation [61] are shown at Q2 = 5 GeV2.

The above results are only a sample of the quantities that provide comparisons be­

tween the data and theoretical predictions. Comparisons have also been made for the 

BC sum rule and the first moment of g\(x ,Q2). As mentioned previously, data are also 

available for the proton and deuteron. From the discussion in this section, it becomes 

clear that with the available data at Q2 > 0.1 GeV2 that the x?T predictions have some 

success as in the extended GDH sum rule and also for the proton results. However the 

Slt spin polarizability, which was expected to be a solid testing ground, shows significant 

differences with the current calculations for the neutron. The predictions from xPT are 

expected to have a limited range, perhaps only up to 0.1 GeV2. At present, the data is at 

the limits of this range, and further measurements at very low Q2 are required to provide 

definitive tests of the xPT predictions.

4.6 Summary

In this chapter, the theoretical tools that are commonly employed to predict the sum 

rules and the moments of the spin structure functions were presented. At high Q2, the 

operator product expansion is used to make non-perturbative calculations. Ji and Osbome 

[35] have argued that OPE is expected to be a good approximation down to Q2 ~  0.5 

GeV2. In the low Q2 region, predictions from low-energy effective field theories such as 

xPT have grown into a mature field. However the predictions from %PT are expected to be 

valid in a limited range from Q2 = 0 to 0.1 GeV2. For observables that involve a difference 

between proton and neutron observables, the range maybe extended up to 0.2-0.3 GeV2.
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A small gap region exists between the two methods that may possibly be filled by lattice 

QCD calculations, which have shown promise in the past decade. Of course, theoretical 

predictions are complemented by the experimental data, which help guide the theoretical 

process in the transition region between perturbative and non-perturbative QCD.
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CHAPTER 5

The Experiment

Experiment E97-110 was conducted at the Thomas Jefferson National Accelerator 

Facility (TJNAF) in experimental Hall A in April-May and July-August 2003. TJNAF, 

also known as Jefferson Lab (JLab), is located in Newport News, VA. The experiment 

was performed to provide a precise measurement of the inclusive polarized cross sections 

for electron scattering from 3He. The data was acquired at low momentum transfers (0.02 

< Q2 <  0.3 GeV2) in the quasi-elastic and resonance regions. The goal of the experi­

ment was to extract the 3He and neutron spin-dependent structure functions gi(x, Q2) and 

g2(x, Q2) and their relevant moments. This low-Q2 range allows us to make a definitive 

test of the xPT predictions presented in the previous chapter. The kinematic coverage is 

shown in Fig. 5.1. Longitudinally polarized electrons with nine incident energies between 

1.1 and 4.4 GeV were scattered from a high-pressure polarized 3He target. The target was 

polarized in both longitudinal and transverse directions, which allows us to extract both 

structure functions. The scattered electrons were detected in the right Hall A high resolu­

tion spectrometer (HRS) at angles of 6 ° and 9°. The small scattering angles were reached

47
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with the addition of a septum magnet [62] located in front of the spectrometer.

10 ' r  2.82 GeV 6 Deg

; 2.13 GeV 6 deg

’ 2.24 GeV 6 deg 

1.15 GeV 9 deg
4.21 GeV

. 1.54 GeV 6 deg 

1 0 -2  1.15 GeV 6 deg

1 9 deg, run 2 
H  6 deg, run 2 
Hi 6 deg, run 1

1 . . I . — I. I . ..I  • 1...... ........................ ■— 1— l - L .

0 0.5 1 1.5 2 2.5
W (GeV)

FIG. 5.1: Kinematic coverage of experiment E97-110.

The experimental data were acquired in two separate run periods denoted as the 

first (green regions) and second periods (blue and red regions) in Fig. 5.1. E97-110 was 

the first experiment to use the septum magnet, and the magnet was found to be mis-wired 

during the commissioning period. In particular, this caused a significant loss in acceptance 

but not in statistics due to the forward scattering angle and low beam energies. Between 

the two run periods, the magnet was repaired and successfully commissioned during the 

second period. However due to the complications of the mis-wired magnet, the analysis 

presented in this document is only concerned with the eight incident beam energies shown 

in blue and red. The first period analysis is being conducted by other collaborators [63].
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This chapter will discuss the polarized electron beam, the Hall A beamline com­

ponents and the details of the polarized 3He target. Various beamline components are 

available to monitor the beam current, position, polarization and energy in the hall. Un­

derstanding the systematics from these components is crucial in performing a precise 

measurement of the polarized cross sections.

5.1 The Electron Accelerator

North Linac 
(400 MeV, 20 cryomodules)

Injector 
(45 MeV, 2 1/4 cryomodules)

Helium
refrigerator

South Linac 
(400 MeV, 20 cryomodules)Injector

Extraction
elements

Halls

FIG. 5.2: Schematic of the Jefferson Lab accelerator and experimental halls.

The accelerator consists of a polarized source, an injector, two linacs, two re-circulation 

arcs and extraction elements to send beam into the three experimental halls: A, B and C.

A diagram of the accelerator and its components is shown in Fig. 5.2. The polarized 

electron source will be discussed in the next section (Section 5.1.1).

Once the polarized electron beam is generated, the electrons enter into the accelera­

tor. The polarization angle of the electrons is set with a Wien filter so that the electrons are
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longitudinally polarized in the halls. The g — 2 precession through the accelerator is taken 

into account when the polarization angle is set. The injector then accelerates the electrons 

up to 45 MeV before they enter the first linac. Each linac consists of 20 superconducting 

cryomodules that are composed of eight superconducting radio-frequency (RF) cavities. 

The cavities produce field gradients o f ~  7 MeV/m. The electrons then enter a recircu­

lation arc and are sent into the second linac where they are accelerated again. After the 

second linac, the beam can either enter the second recirculation arc and be accelerated up 

to five passes, or it can be extracted and sent into the experimental halls. The extraction 

is performed using RF separators and magnets.

Originally the accelerator was designed to accelerate the electrons up to 4 GeV. How­

ever the maximum achieved beam energy is slightly less than 6  GeV due to the high 

performance of the cavities. The accelerator can provide beam to all three halls simul­

taneously at three different energies. It is also possible for the accelerator to deliver the 

maximum beam energy to all three halls at the same time. The maximum beam current 

available among the three halls is 200 //A, which is split arbitrarily between three inter­

leaved 499 MHz bunches. Each of the bunches can then be peeled off to any one of the 

halls. Halls A and C are capable of taking beam currents greater than 100 //A, whereas 

Hall B typically runs at less than 100 nA.

5.1.1 Polarized Electron Beam

The polarized electron beam is produced by illuminating a gallium arsenide (GaAs) 

photocathode with circularly polarized photons. The photons excite electrons from the 

valence band to the conduction band in the photocathode. The electrons are pulled from 

the conduction band into the accelerator by holding the crystal at a bias voltage of - 1 0 0
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kV [64]. The GaAs cathode crystal structure contains a P 3/ 2 valence band and a S 1/2 

conduction band. The degeneracy of the GaAs valence band is broken by introducing

of GaAs on a GaAsP substrate. With the degeneracy broken, it becomes (theoretically) 

possible to produce a beam of 100% polarized electrons. The energy levels and band gaps 

of a strained GaAs cathode is shown in Fig. 5.3. Right (left) circularly polarized light 

excites electrons from the valence band into the m j  = +(—) 1 /2  state of the conduction 

band.

FIG. 5.3: Energy level and bandgap diagram for a strained GaAs cathode. Reproduced from

To enable the measurement of helicity-dependent observables such as asymmetries 

and cross-section differences, the beam helicity is reversed. This process is performed 

frequently with the aid of a Pockels cell to minimize the impact of time-dependent sys­

tematic effects. Pockels cells are electro-optic devices that are birefrin'gent. Their bire­

fringence is linearly proportional to the electric field applied. At Jefferson Lab, they are 

used to provide fast reversal of the beam helicity and to convert linearly-polarized laser

a strain on the crystal. A “strained” GaAs cathode is created by growing a thin layer

~ 50 meV

[64].
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light into circularly-polarized light. The beam helicity is pseudorandomly flipped at 30 

Hz by switching the sign of the voltage in the Pockels cell. An insertable half-wave plate 

(IHWP) located upstream of the Pockels cell also provides a means to reverse the beam 

helicity. Insertion of the half-wave plate is done to check and to help cancel helicity- 

dependent systematic effects.

5.1.2 Beam Helicity

For experiment E97-110, the “GO helicity scheme” [65] as shown in Fig. 5.4 was 

used. The characteristics of this scheme are as follows:

QRT

MPS

helicity

0.5 ims
33.33 ms

FIG. 5.4: Beam helicity sequence used during experiment E97-110.

• The macro-pulse trigger (MPS signal at 30 Hz) is used as a gate to define periods 

when the helicity is valid.

• The helicity sequence has a quartet structure (either H-------- b or — (- H— ). The

helicity of the first MPS gate is chosen pseudorandomly.
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•  Quartet trigger (QRT) defines when a new random sequence of four helicity states has 

begun.

• The helicity information sent to the halls are typically delayed by eight MPS.

A blank-off period of approximately 0.5 ms exists for each 33.3 ms gate period. During 

this blank-off period, the Pockels cell has time to change and settle. The quartet sequence 

provides for exact cancellation of linear drifts over the sequence’s timescale, and the delay 

in helicity reporting breaks any correlations with the helicity of the event by suppressing 

crosstalk. For the experiment, two different delays were used. For the first period, the 

helicity reporting was delayed by 8  MPS; whereas for the second period, the helicity was 

reported in-time, i.e., with no delay.

5.1.3 Charge Asymmetry Feedback

Though the Pockels cell produces highly circularly polarized light, the cells con­

tain imperfections that generate a small linear component causing the polarization to be­

come elliptical. When the helicity is reversed, the angle of the ellipse changes creating 

an helicity-correlated asymmetry known as Polarization Induced Transport Asymmetry 

(PITA) [6 6 ].

An helicity feedback system was used to minimize this effect for the physics data. 

The Hall A Proton Parity Experiment (HAPPEx) data acquisition system was used to 

monitor the charge asymmetry and adjust the Pockels cell voltage accordingly. A rotatable 

half-wave plate (RHWP) was also placed downstream of the Pockels cell. This half-wave 

plate can rotate the direction of the residual linear polarization to reduce its effect on the 

helicity-correlated beam parameters. For this experiment, a charge asymmetry less than 

200 ppm was sufficient to suppress this effect as a source of systematic error. Typically
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the charge asymmetry was better than this. However there were a few times when the 

feedback system failed. These instances are discussed in Section 7.2.3.

5.2 Hall A Beamline

5.2.1 Beam Current Measurement

The beam current is measured by two beam current monitors (BCMs), which are 

located 25 m upstream from the target. The BCMs are stainless steel cylindrical high-Q 

(~  3000) waveguides that are tuned to the beam’s frequency (1497 MHz) [67]. Their 

outputs’ voltage levels are proportional to the beam current. The RF output signals from 

the cavities are split into two parts: sampled and integrated data. In between the two 

BCM cavities is an Unser Monitor (Parametric Current Transformer) which provides an 

absolute measurement of the current and can be used to calibrate the cavities. However 

since the Unser’s output signal drifts over a time period of several minutes, it is not used 

for continuous current monitoring. For this experiment, the Faraday cup was used in the 

calibration [6 8 ], and the Unser was used as a crosscheck of the calibration.

The sampled data are processed by a high-precision digital AC voltmeter. The digital 

output of the voltmeter represents the RMS of the input signal once every second. The 

output is then recorded every 1-2 s by the data logging process. The integrated data are 

sent to an RMS-to-DC converter and then to a voltage-to-frequency converter. The output 

frequency is then sent to the VME scalers and injected into the data stream. The scalers 

accumulate during the run and each BCM scaler provides a number proportional to the 

time-integrated voltage level, which represents the total beam charge. The RMS-to-DC 

output is linear for currents between 5 to 200 /tA. A set of amplifiers was introduced with
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gain factors of 1, 3 and 10 to extend the linearity below 5 //A.

The beam current and hence charge, Qa = Iat, is obtained from the BCM scaler 

reading as follows:

where a = 1, 3, 10 is the gain factor, t is the time for each run (in seconds) and N a is the 

BCM scaler reading for each gain factor. The calibration constants ka and BCM offsets 

f a are determined from calibration runs. For E97-110, the calibration was performed 

during the experiment in August 2003 [69]. The calibration constants for the upstream 

and downstream cavities are given in Table 5.1, and compared to earlier calibrations [6 8 ]; 

these results differ by < 1%.

Amplification Upstream Cavity Downstream Cavity
1 1338.4 1335.5
3 4100.7 4140.9

1 0 12467.5 13015.1

TABLE 5.1: The E97-110 BCM calibration constants [69].

The BCM offsets are determined from the calibration runs during the periods without 

beam delivery to the experimental hall. The time dependence of the offsets were checked 

by using runs with periods without beam or cosmic runs and were expected to be reason­

ably stable during the experiment. Unfortunately the offsets were not stable during the 

experiment, so a careful analysis was conducted to determine the offsets throughout the 

second run period. Details of this analysis can be found in Ref. [70].

For experiment E97-110, the data were taken with beam currents between 0.5 and 

10 //A. For currents above 5//A, the x3 gain signals were used, and below 5//A, the xlO
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gain signals were used. The x l gain signals were not used in the data analysis.

5.2.2 Beam Position Measurement

Two beam position monitors (BPMs) located 7.524 m and 1.286 m upstream of the 

target are used to determine the position and direction of the beam at the target location. 

The BPMs provide a non-invasive measurement when beam is present in the hall. Each 

BPM consists of four wire antennas contained within a cylinder, which is parallel to the 

beam direction. When the beam passes through the BPM system, a signal is induced in 

the antennas that is inversely proportional to the distance from the beam.

The absolute position of the beam is determined by calibrating the BPMs with two 

superharps (wire scanners) that are located adjacent to the BPMs. The superharps provide 

an invasive measurement of the beam position and consist of three wires oriented verti­

cally and at ±  45°. The wires are scanned across the electron beam resulting in a shower 

of particles that are then detected. The superharps are routinely surveyed with respect to 

the Hall A coordinate system. The BPMs have a resolution of 20 fim at 10 fiA.

5.2.3 Raster

The experiment used high-pressure glass cells with thin glass end windows (100-300 

fim). The beam position was rastered to avoid overheating the glass windows, since the 

electron beam is typically focused to 100-200 fim when it enters the hall. For experiment 

E97-110, a new triangular raster was used, which copied the Hall C design [71]. The new 

raster provides a major improvement over the sinusoidal raster [1 0 ] reducing dwell time 

at the peaks. A uniform density distribution of beam on the target is achieved by moving 

the beam position with a time-varying dipole magnetic field with a triangular waveform.
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The raster contains two dipole magnets, one vertical and one horizontal, which are located 

23 m upstream from the target.

In the electronics design, an “H-bridge” is used that allows one pair of switches to 

open and another pair to close simultaneously and rapidly at 25 kHz. The current is drawn 

by HV supplies and rises according to

where r  = ^  is the time constant with resistance R  and inductance L. The time and 

applied voltage are t and e, respectively. In Fig. 5.5, a sample raster pattern using the 

triangular waveform is shown. For the experiment, different raster sizes were used. Early 

in the experiment a 2 mm x 2 mm raster was used. After one of the target cells ruptured, 

the raster size was increased to 3 mm x 3 mm for the 4.209 GeV data, and the majority 

o f the second period data were taken with a 4 mm x 4 mm raster size.

5.2.4 Beam Energy

There are two independent methods to measure the absolute beam energy in Hall 

A. The eP measurement [67] utilizes the elastic ^ ( e je ’P) reaction. The beam energy is 

determined by measuring the scattered electron angle 9e and the recoil proton angle 9P, 

which are constrained by

where Mp and m e are the proton and electron masses, respectively. The schematic of the 

eP system is shown in Fig. 5.6. The eP target consists of a rotating thin film (10-30 yum) 

of CH2 located about 17 m upstream of the Hall A pivot. The electron and proton are 

measured in coincidence by two sets of detectors [72], which are placed symmetrically

(5.2)

ta n  6, (5.3)
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FIG. 5.5: Raster pattern (~  3mm x 3 mm) showing the horizontal (xi)eam) and vertical beam 
( l/b e a m ) positions in mm.

Scintillators

CherenkovSSD proton

CH2 target
Beam Axis

SSD proton
SSD Electro:

Time Flight

FIG. 5.6: Diagram showing the components of the eP energy measurement system. Reproduced 
from [67],
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about the beamline. The proton detectors are located at an angle of 60° with respect to 

the beamline. On the other hand, the electron detectors are located at a range of angles 

from 9° to 41°, which corresponds to an incident energy range of 0.5 to 6.0 GeV. The 

proton detectors consists of two scintillator planes and a silicon micro-strip detector. The 

electron detector consists of silicon strip detectors, a scintillator plane and a Cerenkov 

counter. The achieved uncertainty from the eP method is < 2 x 10- 4  GeV.

The second method to measure the beam energy is called the Arc energy measure­

ment [72]. The energy is determined by measuring the deflection angle of the beam in the 

40 m arc section of the beamline. The momentum of the electron deflected by a magnetic 

field is related to the field integral of the eight dipoles and the bend angle 9 through the 

arc section by

P - k L ^ - ,  (5-4)

with k = 0.299792 GeV rad T_ 1  m_1/c. The nominal bend angle of the electron beam 

in the arc section is 34.3°. Two measurements are performed simultaneously. The field 

integral o f the eight dipoles in the arc is measured using a 9th identical dipole (reference 

magnet) that is connected in series with the others, and the actual bend angle of the arc 

is measured using two pairs of wire scanners (superharps), one before and one after the 

arc. The Arc energy measurement also provides an absolute measurement to the 2 x 10- 4  

GeV level.

The beam energy is also monitored continuously online using the Tiefenback mea­

surement [73]. This method is non-invasive and uses the relation between the field integral 

value and the set current in the eight dipoles of the arc section. Corrections are made us­

ing the arc BPMs and the transfer functions for the Hall A beamline magnets. The energy 

from this method is accurate to the 5 x 10~ 4 GeV level.
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Angle Beam Energy (MeV) Target Cell
6 ° 2134.2 Penelope
6 ° 4208.8 Priapus
6 ° 2134.9 Priapus
6 ° 2844.8 Priapus
9° 1147.3 Priapus
9° 2233.9 Priapus
9° 3318.8 Priapus
9° 3775.4 Priapus
9° 4404.2 Priapus

TABLE 5.2: The average beam energy from Tiefenback measurements for the second run period.

Beam Energy for E97-110

During the experiment, only one beam energy measurement was performed using 

the eP measurement system. That measurement was performed at the end of running for 

the 2.135 GeV beam energy. The result from this measurement was 2135.67 MeV ±  0.20 

MeV ±  0.46 MeV, where the first uncertainty is statistical and the second from system- 

atics. The Tiefenback measurement is relied on for the remaining energies. Table 5.2 

summarizes the average beam energies for the experiment’s second run period. Details 

on the energy determination are available in Ref. [74]. Two periods of data taking exists 

for the 2.135 GeV beam energy. The first four momentum settings at this energy were 

taken with the polarized 3He cell Penelope. After a week of running, the cell ruptured 

and was replaced with the cell Priapus. The rest of the data at this energy were taken with 

Priapus. Both the Tiefenback and eP energy measurements indicate that beam energy for 

the Priapus data was about 0.7 MeV higher than for the Penelope data. Within the total 

uncertainty, the eP measurement agrees with the Tiefenback measurement.
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5.2.5 Beam Polarization

The typically electron beam polarization is 75—85%. Two polarimeters exist in Hall 

A to measure the beam polarization: the Moller and Compton polarimeters. The two 

polarimeters provide partially overlapping and complementary measurements.

Moller Polarimeter

The Moller polarimeter [67] exploits Moller scattering of polarized electrons off 

polarized atomic electrons in a magnetized foil:

e +  e —► e +  e . (5.5)

The Moller scattering cross section depends on the beam and target polarization 

PI along the i th axis:

<r=CT„ i +  y  O4^ )  - <5-«)
i= X ,Y ,Z

where i defines the polarization projections. The analyzing powers of the polarization 

projections are given by An, and a0 is the unpolarized Moller cross section:

tT0 =
tt(l +  cos0cm)(3 +  cos2 0cm)

(5.7)
2 rae sin2 9cm

where 0cm is the scattering angle in the center of mass frame.

If we take the beam direction to be along the z-axis and the y-axis is normal to the 

scattering plane, then the analyzing powers become:

sin2 9cm (7 +  cos2 0cm)
A z z  =

A x x  = - A

(3 +  cos2 9cm ) 2

sin4 9C
Y Y

(5-8)

(5.9)
(3 +  cos2 9cm)2 '

The longitudinal polarization is extracted from A z z  and from the knowledge of the target 

polarization. The analyzing power has its maximum value of 7/9 for 9cm = 90°.
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The polarization measurement is invasive and conducted at very low beam currents. 

An asymmetry is measured rather than the cross section, since the asymmetry, which is 

a ratio of cross sections, is insensitive to many of the systematics related to cross-section 

measurements. The target foil, which is oriented at an angle of ±  20° with respect to 

the beam in the horizontal plane, provides sensitivity to both longitudinal and transverse 

beam polarizations. The transverse component then cancels out when the average is taken. 

False asymmetries are also partially canceled by taking measurements with the target foil 

polarized in the opposite direction.

40
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FIG. 5.7: Schematic of the Moller Polarimeter with the top plot presenting a side view and the 
bottom a top view. Reproduced from [67],

Figure 5.7 shows the schematic of the Moller polarimeter and magnetic spectrometer 

that is used to detect two scattered electrons in coincidence. The spectrometer consists of 

three quadrupoles and a dipole. The detector system contains two lead-glass calorimeter
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modules that are split into two arms for the coincidence measurement. The statistical ac­

curacy is typically 0.2% [67], whereas the systematic error is dominated by the knowledge 

of the foil polarization, which has a 3% relative uncertainty.

Compton Polarimeter

The Compton polarimeter [67] is located at the entrance of Hall A and consists of a 

magnetic chicane, polarized photon source, electromagnetic calorimeter and an electron 

detector. The polarimeter measures the asymmetry in the scattering of circularly polarized 

photons off of the polarized electron beam. The beam polarization P*, is extracted from

Pb = 4 i r ’ (5-10)* 7  A h

where Aexp is the experimentally measured asymmetry, P1 is the photon polarization and 

Ath is the Compton analyzing power. The photon polarization has been measured to be 

greater than 99%.

The electron beam is deflected vertically by the four dipole magnets in the Compton 

chicane so that the beam will cross the photon beam at the Compton interaction point. The 

interaction point is located at the center of the chicane. A resonant Fabry-Perot cavity is 

used to increase the photon density. The scattered electrons are detected in the silicon 

strip detector, and the backscattered photons are detected by the calorimeter. The data 

acquisition system can be triggered either by single electrons, single photons, or with 

electrons and photons detected in coincidence.

The polarization measurement is non-invasive, so it can be performed while the pri­

mary beam is delivered on the experimental target. The polarization of the photon beam 

can be reversed with a half-wave plate in order to reduce beam helicity-correlated effects. 

The figure of merit of the Compton polarimeter is proportional to Eleam, the electron
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beam energy squared, which leads to less accurate measurements at low beam energies. 

The relative systematic error is approximately 1 — 1.5%, with the main contribution com­

ing from the detectors’ resolution in the determination of the analyzing power [67]. A 

statistical accuracy of 1% has been achieved with an hour of running the polarimeter. For 

experiment E97-110, the statistical accuracy from the Compton polarimeter was 3-5% 

because of the low beam currents used. Hence, the Moller polarimeter was the main 

source of beam polarimetry for the experiment.

Beam Polarization for E97-110

a
■sA
1

6 5 -

60 L

•  Moller Measurements 
▼ Compton Measurements

15 20 25 30 35 40 45

Days from  July  15,2003

FIG. 5.8: The average beam polarization from the Moller and Compton polarimeters for the 
second run period.

The beam polarization measurements from both polarimeters are shown in Fig. 5.8. 

The average Moller and Compton polarizations were 74.7% and 74.9%, respectively [69].
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A summary of the beam polarization measurements are available from Ref. [74].

During the first run period, a sizable bleedthrough from the Hall C beam was dis­

covered in the Hall A beamline. Since the Hall C beam polarization has the opposite sign 

to the Hall A beam polarization, this bleedthrough can result in a large correction to the 

beam polarization. When the Moller measurements were performed, the bleedthrough 

from Hall C was measured and corrected. However typically only one Moller measure­

ment was performed at each beam energy, whereas several measurements were made with 

the Compton polarimeter, which can only measure the polarization of the Hall A beam 

and the Hall C bleedthrough together.

The bleedthrough from Hall C in Hall A is dependent on the beam currents from 

the two halls and the Hall A slit position. The Hall A slit can be closed to reduce the 

bleedthrough from Hall C. Since the Hall A and Hall C currents vary, the bleedthrough 

also varies. During the second run period, dedicated measurements were performed to 

measure the Hall C bleedthrough. If the Hall C bleedthrough was more than a few percent, 

then the Hall A slit was closed to reduce the bleedthrough to an acceptable level.

The corrected beam polarization in Hall A P cg rr is determined by

p c o r r  =  p ^ e  _  ^  ( p V u r ,  _  p y  ( J _,

where P ‘™re is the beam polarization in Hall A with the Hall C laser off, and B  is the 

percentage of the Hall C current in Hall A measured by the Hall A BCM. Pc is the 

polarization in Hall A with the Hall A laser off. The polarizations used in Eq. (5.11) are 

taken from the Moller measurements. The bleedthrough from Hall C was empirically 

determined from the Hall A current, the Hall C current and the Hall A slit position [74].

There are two cases that had to be considered: with the Hall A slit out and with the
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Time Period Hall A Slit a P
Before August Maintenance OUT -0.1885 0.431

IN -0.01776 10.53 x 10~ 5

After August Maintenance OUT 0.0125 0.1902
IN -0.01776 8.962 x 10~ 5

TABLE 5.3: The bleedthrough coefficients for Eqs. (5.12) and (5.13).

Hall A slit partially inserted. The bleedthrough formulas take the following forms:

B  = a + (3 -R ,  (5.12)

for the slit out and

B  = a + p - R - S 2 , (5.13)

for when the slit is partially closed. The ratio of the Hall C to Hall A current is given by R, 

and the slit position is denoted by S. The empirically determined fit coefficients are given 

by a  and [3, which are listed in Table 5.3. There are two sets of coefficients, since the 

bleedthrough’s dependency changed after the accelerator maintenance period in August 

2003. These coefficients provide an accuracy for the bleedthrough calculation to better 

than 1%. However, the dominant systematic uncertainty comes from the measurement of 

the polarizations from the Moller polarimeter, which is at the 3% level.

5.3 The Polarized 3He target

Ideally, we would use a free polarized neutron target to study the spin-dependence

of the neutron. However the neutron’s short half-life of 886.7 ±  1.9 s [11] and neutral

charge make the creation of a free neutron target impractical so that precise spin structure
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measurements can be conducted. Instead polarized nuclear targets such as deuterium and 

3He have been used as a substitute.

For experiment E97-110, a polarized 3He gas target provides an effective neutron 

target, since in the ground state configuration the wave function is dominated by the S- 

wave. In this configuration, the two proton spins in the 3He are paired, so the lone neutron 

spin is aligned with the spin of the 3He nucleus. This target has been used successfully 

for several Jefferson Lab Hall A experiments (E94-010 [57], E95-001 [75], E99-117 [76], 

E97-103 [77] and E01-012 [73]) prior to E97-110. The target has demonstrated reason­

able polarizations (35-42%) with electron beam currents up to 15 //A. More details about 

the Jeffreson Lab polarized 3He target are available in Ref. [78].

5.3.1 Overview of the Polarized Target

A diagram of the polarized 3He target is illustrated in Fig. 5.9. The two chambered 

target cell is placed in the center of the target system. The top chamber, known as the 

pumping chamber, resides inside an oven heated to 170° C. The lower target chamber is 

where the electron beam interacts with the polarized 3He and is centered in two orthogonal 

sets of Helmholtz coils. The Helmholtz coils produce a 25 Gauss field that can be oriented 

in any direction (in-plane).

Rubidium (Rb) alkali vapor is optically pumped inside the pumping chamber using 

circularly polarized light from three 30 W diode lasers, which are tuned to a wavelength 

of 795 nm. The Rb polarization is then transferred to the 3 He nuclei via a spin-exchange 

process. The laser light is circularly polarized with a series of optical elements, which 

include a polarizing beam-splitter and quarter-wave plates.

Two independent polarimetry methods are used to reduce the systematic uncertainty
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FIG. 5.9: Diagram of the polarized 3He Target system. The transverse Helmholtz coils are not 
shown to provide clarity.

in the polarization. For the nuclear magnetic resonance (NMR) method, the signal ampli­

tude of 3He nuclei is detected to measure the polarization in the target chamber while the 

holding field is swept through resonance. The second method of electron paramagnetic 

resonance (EPR) detects the change in the Zeeman frequency of rubidium when the 3He 

polarization direction is flipped.

5.3.2 Target Cell

The target cells used in experiment E97-110 are highly pressurized (10—12 atm un­

der operating conditions) glass cells with 130—140 micron thick end windows. The glass 

walls of the cells were approximately 0.7 mm thick. The thin glass walls were needed to 

reduce the radiation length of the electrons passing through the glass at scattering angles
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of 6 ° or 9°. The amount of glass traversed by the scattered electron goes as (sin#sc)-1, 

where 0HC is the scattering angle. The two-chambered cells consists of a pumping chamber 

and a target chamber connected by a transfer tube as shown in Fig. 5.10. The spherical 

pumping chamber contains the Rb vapor and is where optical pumping occurs. The elec­

tron beam passes through and interacts with the polarized 3He in the cylindrical target 

chamber. Typical cell dimensions are as follows:

For hinh beam energy 

and at 9 degrees

FIG. 5.10: A standard 40 cm long target cell used during E97-110.

• Target chamber diameter: 1.9 cm.

•  Transfer tube length: 6  cm.

•  Transfer tube diameter: 1.2 cm.

• Pumping chamber diameter: 6.5 cm.

For the low beam energies at 6 °, even the thin 0.7 mm walls was not sufficient to 

reduce the electron’s energy loss, so a new cell design was developed that consisted of 

an asymmetric cone for the downstream part of the target chamber. The “ice cone” cell
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is depicted in Fig. 5.11, where the scattered electrons at 6 ° pass through the thin end 

windows instead of the glass walls. The exit end window is only 200-250 microns thick 

suppressing the amount of glass traversed by almost a factor of 30. The length of the new 

cells were 35 cm long compared to the standard cells. The “ice cone” cell Proteus was 

used for the first period, and the two standard cells Penelope and Priapus were used for 

the second period.

FIG. 5.11: An “ice cone” target cell used during E97-110.

Table 5.4 gives the main characteristics that are crucial in determining the target po­

larization during operation. The three target cells used during the experiment were char­

acterized at the University of Virginia (UVa) [74]. The pumping chamber volume, transfer 

tube volume, target chamber volume and total volume of the cell in cm3 are represented 

by Vvc, Kt, Kc and Kot, respectively. The cell density and lifetime (see Section 5.3.4) 

are respectively given in units o f amagats1 and hours. The lifetime uncertainties are large,

11 amagat = 2.6868 x 1019 atoms per cm3. The unit is dimensionless and is the ratio of the number 
density of a gas to the number density of an ideal gas at 0° C and 1 atm.
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cell Vpc K t K c K o t Vo Lifetime
proteus 89.2 3.1 139.9 236.0 6.85 74
penelope 100.8 4.0 98.6 204.4 8.90 56
priapus 109.9 3.9 96.3 208.7 8.72 54
Uncertainty 0.7% 0.7% 0.7% 0.5% 1.5% 10-20%

TABLE 5.4: Target cell characteristics for experiment E97-110. Cell volumes are given in cm3, 
and densities are in amagats at room temperature.

since polarization loss corrections were not applied and the polarization time evolution 

was not measured over a full lifetime of the cell.

5.3.3 Optically Pumped Rubidium

The 3He nuclei are polarized using a two step process commonly called spin ex­

change optical pumping (SEOP). The first stage involves optically pumping the rubidium 

vapor with circularly polarized light. Neglecting the spin of the rubidium nucleus, the 

energy levels of the rubidium atoms placed in an external magnetic field depend on the 

quantum numbers of the system and the magnetic field’s magnitude. The presence of the 

external field separates the energy levels. The following notation will be used to designate 

the different energy levels:

N2S+1Lj , (5.14)

where N represents the electron shell, S is the intrinsic electron spin, L is the orbital 

angular momentum, and J is the total angular momentum L + S. Other useful quantities 

are the angular momentum of the rubidium nucleus, denoted as I, the angular momentum 

of the atom F with F  =  I  +  J ,  and m F the z-component of F.

At Jefferson Lab, right circularly polarized light tuned to 794.8 nm induces a transi­

tion of the 85Rb valence electrons from the 52Si/ 2 (m = -1 /2 ) ground state to the 5 2Pi/2
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(m  = +1/2) excited state2 subject to the selection rule A m  = +1. Left circularly polar­

ized light could also be used, but instead the m = + 1 /2  ground state sublevel would be 

excited to the m  = —1/2 sublevel. After the electrons are excited, they can decay by emit­

ting photons. These photons are unpolarized and can be reabsorbed by other rubidium 

atoms, which would reduce the polarization efficiency. A small amount of nitrogen gas 

is added to the system, which allows a non-radiative decay by absorbing the energy into 

the nitrogen’s rotational and vibrational degrees of freedom via collisions. The excited 

electron will then decay into either the m  = +1/2 or m  = - 1 /2  52Si/ 2 state. Since the 

m  = —1 /2  state is continuously being pumped, eventually the majority of the atoms will 

collect in the m  = + 1 /2  state causing the rubidium gas to become magnetically aligned. 

This process of optical pumping is depicted in Fig. 5.12.

C ollisional M ixing

i.l =

N onradiative
Q uenching

D i Light

Spin  R elaxation

FIG. 5.12: Diagram of the optical pumping technique to polarize rubidium (Rb) vapor. Provided 
by [79],

2The energy splitting between the Si/ 2  and Pi/2 levels is referred to as the Dl line.
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5.3.4 Spin Exchange and Relaxation Rates

The rubidium electrons can transfer their polarization to the 3He nuclei by a hyperfine 

like interaction between the Rb electron and 3He nucleus. The transfer of polarization 

primarily occurs in binary collisions between the Rb atoms and 3He nuclei as illustrated 

in Fig. 5.13.

FIG. 5.13: Diagram of spin exchange between a Rb atom and 3He nucleus. Provided by [79].

The spin exchange rate with 3He is given by the formula:

7 s e  =  kSE[Rb] , (5.15)

where kse is the spin exchange coefficient and [Rb] is the rubidium number density. A 

factor o f two uncertainty has existed for &se, but recently the spin exchange coefficient 

was measured and found to have a value of (6 .8  ±  0.2) x 10-2 0  cm3/s [80]. The Rb 

density is given by the Killian formula [81], but a more commonly used formula [82] 

provides the rubidium density with a 5% accuracy:

[Rb] =  (io 26 178 - 404°/r ) / T , (5.16)

where T  is the temperature in Kelvin. For the operating temperature o f 170 °C, Eq. (5.16) 

gives a Rb vapor density of 2.58 x 1014 cm-3, and hence a spin-exchange rate of (16h)_1.
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This slow exchange rate makes the polarization of 3He via spin exchange an inefficient

process.

The time evolution of the 3He polarization is described by

(5.17)

with (Pub) the volume averaged Rb polarization with (Pnh) > 90%. The 3He nuclear

spin relaxation is represented by T. Since the spin exchange rate is small, quite a bit of 

effort is made to minimize this quantity. The relaxation rate can be obtained from a spin- 

down measurement, where the 3He polarization versus time is measured in the absence 

of optical pumping and the electron beam. The exponential decay constant r  is called the 

lifetime of the target cell and is related to the spin relaxation by T = r -1. Cell lifetime is 

one of the primary characteristics that determines the cell’s maximum polarization.

Spin Relaxation

The spin relaxation rate can be expressed in terms of the main sources of depolariza­

tion:

In Eq. (5.18), T^poie represents the relaxation due to the 3He-3He magnetic dipole inter­

action at 23 °C [83] and is expressed as

where [3He] is the 3He density in amagats. For the typical operating density during E97- 

110, the dipole relaxation rate was about (70h)_1. The authors of Ref. [83] did not provide 

the analytical form of the temperature dependence. However a parameterization of the 

temperature dependence was performed [84], which results in a ~  14% correction to 

Eq. (5.19) at 170 °C,T dipole « (80h)-1.

r  dipole +  T v b  +  F w all ~t~ r ^ e a m (5.18)

(5.19)
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The second term in Eq. (5.18) represents the depolarization due to magnetic field 

gradients:

r VB = ftHê £ i W  ( 5 .2 0 )

B z

where Z)3He = 0.28 cm2/s is the 3He self-diffusion constant, and B z = 25 G is the holding 

field. The gradients perpendicular to the holding field are given by V B X and V B y. The 

gradients are usually kept below 10 mG/cm, which results in a negligible depolarization 

from this source.

Another source of relaxation is 3He collisions with the glass cell walls. The walls of 

the cell can contain paramagnetic impurities and microscopic fissures. Unfortunately this 

aspect of the depolarization is hard to control and depends on the fabrication of the cell, 

and r waii has been seen to vary significantly from one cell to another. The typical high 

polarization cells at Jefferson Lab have a wall relaxation rate of (90h)-1.

Finally the electron beam produces another depolarization effect by ionizing the 3He 

atoms as it passes through the target. The 3He nucleus can then be depolarized due to a 

hyperfine interaction with the remaining atomic electron spin. A study of this effect has 

recently been conducted, and details are available in Ref. [84].

5.3.5 Target Polarimetry

NMR Polarimetry

The technique of adiabatic fast passage (AFP) [85] is utilized in both target polarime­

try methods to measure the polarization of the 3He nuclei. In the AFP method, the spins 

are reversed while keeping the loss in polarization minimal. Nuclear magnetic resonance 

(NMR) AFP can be classically described for a free particle with spin I  and magnetic mo­

ment M  = 7 1, where 7  is the particle’s gyromagnetic ratio (2irx 3.243 kHz/G for 3He).
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When the particle is placed into a magnetic field, the magnetic moment experiences a 

torque:

in a rotating frame that rotates at the same frequency Q as the precession. The evolution 

of the magnetic moment then becomes

and the magnetic field H  can be replaced with an effective field He = H  —

When the NMR measurement is performed, the magnetic field is oriented parallel to

of 91 kHz is then applied perpendicular to the holding field. The effective field can be 

expressed as

and the average 3He magnetic moment will align itself with this effective field.

During the NMR measurement, the holding field is swept from 25 G to 32 G through 

resonance, ^  = 28.06 G, and back, and the 3He spins follow the effective field. As the 

field is swept, the spins go from being aligned to anti-aligned with respect to the main 

holding field, i.e, a spin flip occurs. At resonance, the motion of the spins induces an 

electromotive force that generates a signal in a pair of pick-up coils placed on both sides of 

the target chamber. The amplitude of the detected signal is proportional to the transverse

(5.21)

  —¥

The motion precesses around the magnetic field H, and we can now consider the system

(5.22)

-* a
the beamline H  = Hzk. If the frequency is chosen such that u  = 7 H0, the motion of the 

magnetic moment will vanish. This frequency in a static field is known as the Larmour 

frequency u 0. An oscillating RF field Hi = Hi cos(ut)i + Hi sin(u>t)j with a frequency

(5.23)
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magnetization MT:

M t H xS(t) = =  , (5.24)
\He\ y/(H{t) -  Ho)2 + H(

where HQ is the holding field at resonance, and H(t) is

(x t  ~h ft if  t  î gWeep
H(t)  =  (5.25)

/3 Cat if t aweep ^  i ^  2tsweep

with a = 1.2 G/s is the sweep rate, j3 is the starting holding field value (25 G) and £sweep

(5.83 s) is the length of the sweep through resonance. A typical NMR measurement is 

shown in Fig. 5.14.

The NMR signal can be fit to Eq. (5.24) with a linear background included. The sig­

nal amplitude from the fit is extracted and is proportional to the polarization of the 3He, 

Pne =  ^nmr-SW The constant of proportionality &nmr is dependent on the cell posi­

tion, density, geometry and the responsiveness of the pick-up coils and related electronics 

[8 6 ]. The NMR constant is determined by calibrating the 3He signal against the thermal 

polarization of protons in water.

AFP Condition

The holding field sweep must satisfy the AFP conditions to limit the polarization

loss during the measurement. The AFP condition requires that the holding field changes

slowly enough (adiabatic) so the 3He spins will follow the magnetic field while it is swept, 

but fast enough so that the spins will not relax during the sweep. These conditions are 

expressed by:

(5-26)

where Tlr «  435 s [8 6 ] is the 3He relaxation rate in the rotating frame, and the magnitude 

of the RF field is about 90 mG. Hence, the above conditions for 3He are easily met.
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FIG. 5.14: A typical 3He NMR AFP spectrum. Provided by [79].

Water Calibration

The 3He NMR signal is calibrated with a water cell that has similar geometry to the 

3He cell. The thermal polarization of water follows the Boltzmann distribution:

Pth =  t a n h ^ ,  (5.27)

where (ip = 2.793/in is the proton’s magnetic moment in nuclear magnetons (3.152 x 

10-1 4  MeV T_1), B  is the magnetic field, k  is Boltzmann’s constant (8.617 x 10~u  MeV 

K_1) and T  is the temperature of the water in Kelvin. At room temperature 295 K and 

the resonance field, the thermal polarization of water is only «  7.40 x 10~9, so hundreds 

of measurements are averaged together in order to increase the signal-to-noise ratio. The 

average value is then used for the calibration.

For the water NMR measurements, the field is swept from 18 to 25 G with the

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



79

resonance at 21.37 G, since the gyromagnetic ratio for protons is 27rx 4.257 kHz G -1. 

The RF frequency is the same as that used for the 3He NMR. Since the thermal relaxation 

time for water is approximately 3 s, which is the same order of magnitude as the length of 

time that the field is swept, the proton spins relax during the sweep. This affects both the 

amplitude and shape of the AFP signal, and the signal is now dependent on the speed and 

direction of the field sweep. The amplitude of the water signal is extracted based on fits 

to the Bloch equations [85] instead of Eq. (5.24). The constant of proportionality is then 

related to the ratio of the thermal polarization of protons in water and the water signal 

amplitude 5W.

The dominant source of systematic uncertainty in &nmr involves the calculation of 

the magnetic flux through the pick-up coils. The uncertainty from the flux is mostly due 

to the measurements in the cell and coil positions relative to each other and results in an 

uncertainty of 2 .0 %.

EPR Polarimetry

In the presence of a magnetic field, the Rb F  = 3 ground state splits into seven sub- 

levels m F = -3 ,  —2,..., 2, 3. The Zeeman splittings between the different sublevels are 

given by the electron paramagnetic resonance (EPR) frequency z/ E p r , which is propor­

tional to the magnetic field:

z' e p r  =  K B , (5.28)

with kz ~ 0.466 MHz G-1. The presence of the polarized 3He nuclei generates an ad­

ditional small magnetic field (100 mG) in addition to the main holding field. The EPR 

method of polarimetry measures the small increase in the Zeeman splittings due to the 

polarized 3He. The EPR frequency can be decomposed into two parts; the first part u0 is 

proportional to the holding field, and the second <^EPR is proportional to the 3He polar-

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



80

ization:

k'EPR =  ^ o i  <5^EPR • (5.29)

The sign indicates that the 3He spin is either anti-parallel (+) or parallel (—) to the external 

magnetic field.

The small component ^ EPr  is measured by applying a small RF field to excite the 

rnF = —3 to m F = —2 transition of the ground state sublevels. This transition results in 

an increase in the number of m F = —2 Rb atoms that can be pumped by the laser light. 

When these atoms decay back to the ground state, a corresponding increase occurs in 

the number of photons emitted, which can then be detected in a photodiode. Since the 

cell is illuminated with D1 light from the lasers, a D23 filter is used to instead detect the 

increase in D2 light. During the EPR measurement, the 3He spins are flipped by sweeping 

the frequency through resonance while the resonance frequency is monitored. The change 

in EPR frequency is shown in Fig. 5.15 for a typical EPR measurement. Initially the 3He 

spins will be aligned with the holding field, and after the spin flip, they are anti-aligned 

with the field. A precise measurement of the polarization can be obtained by measuring 

the frequency, and the polarization PHe is extracted from the change in EPR frequency:

where //He = 1.155 x 10 13 MeV T 1 is the magnetic moment of 3He, and k0 is a tem­

perature dependent factor measured in Ref. [87]:

A i / e p r (5.30)

k0 =  4.52 +  0.00934T(°C). (5.31)

The EPR calibration constant /cEPR is defined as

*  [3He] (5.32)

3The energy splitting between the ground state S i/2 and P3/2 levels is referred to as the D2 line.
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FIG. 5.15: A typical EPR resonance plotted versus time. Provided by [79].

and the derivative for the m F = —3 to m F = —2 transition was obtained from

Ref. [8 8 ]:

- - ■■■3—  =  0.4671 +  7.4 x 10_4S , (5.33)
a n

where B  is the magnetic field magnitude in G, and the derivative has units of MHz per 

G. The dominant systematic uncertainty from EPR is from k0 with a value of 1.5%. Of 

course, the EPR measurement provides the polarization in the pumping chamber, so the 

polarization gradient between the two chambers needs to be calculated to determine the 

target chamber polarization. The details for the determination of the polarization gradient 

are described in Ref. [84]. The effect for E97-110, which includes depolarization from 

the electron beam, was estimated to be a 5% relative difference between the pumping and 

target chamber polarizations using a 10 //A beam and a cell lifetime of 40 hr.
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5.3.6 E97-110 Target Performance

During the experiment, NMR and EPR measurements were done back-to-back every 

4-6 hours. The target polarimetry analysis is first performed for the individual measure­

ments, and then a polarization for each run is determined by using linear interpolations 

between the measurements. In Fig. 5.16, the target polarization (interpolated for each 

run) is shown from the average of the NMR and EPR measurements [79]. The vertical 

dashed line divides the data between the two target cells used for the second period. The 

relative uncertainty on the target polarization is about 7.5%. This uncertainty is about a 

factor of two larger than normal due to a discrepancy between the two polarimeters. The 

discrepancy may be related to gradient effects at the target from the septum magnet. In 

this case, the EPR measurements are more reliable and have a total uncertainty < 4%. 

The discrepancy between NMR and EPR is currently under investigation [79].

PriapusPenelope

23 24to  2800 28b0 30^0 3200 3400 360« 38(X) 40tX> 42*10
Run number

FIG. 5.16: The target polarization versus run number for E97-110. The error bars include the 
relative 7.5% uncertainty due to the discrepancy between the NMR and EPR results.
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CHAPTER 6 

The Hall A Spectrometers

In this chapter, the Hall A spectrometers and their detector packages are presented. 

The optimization of the spectrometer optics for experiment E97-110 is also discussed.

6.1 High Resolution Spectrometers

Hall A contains a nearly identical pair of magnetic spectrometers known as the high 

resolution spectrometers (HRS) [67]. Their main characteristics are summarized in Ta­

ble 6.1. For the reminder of this document, the two spectrometers will be referred to as 

HRS-L and HRS-R. The spectrometers transport charged particles in a small range of 

momenta and scattering angles to their respective detector packages. Both HRSs contain 

three quadrupoles and a dipole magnet in a QQDQ configuration as illustrated in Fig. 6 .1. 

The three superconducting quadrupoles referred to as Q l, Q2 and Q3 provide focusing: 

Q1 focuses in the vertical plane and Q2 and Q3 in the transverse plane.

The superconducting dipole has a vertical bend of 45°, which provides the momen-
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turn resolution at the 10~ 4 level. The magnetic field in the dipole magnet determines the 

momentum of the electrons that reach the detector package. The spectrometer’s central 

momentum is related to the magnetic field of the dipole by

3

p„ =  £ r i B ‘ , (6.1)
z—1

where T* are the spectrometer constants, and Bo is the dipole magnetic field. These 

constants were determined for both HRSs over their full momentum range [89]. Table 6.2 

provides the constants for the spectrometers.

HRS Design Layout
(design magnet effective lengths displayed) IstVDC Plane

Dimensions in meters
3.57

1.80

8.40—0.80 30° Q31.50
1.80-

10.37
-1.69-

-4.42-
1.25

Dipole
Q2

3.05
•20.75

FIG. 6.1: Magnet confi guration for the Hall A HRS spectrometers. In the diagram, all units are 
in meters, and the effective lengths of the magnets are displayed. Reproduced from [67].
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Bending angle 45°
Optical length 23.4 m
Momentum range (HRS-L) 0 .3 -4 .0  GeV/c
Momentum range (HRS-R) 0.3 -  3.2 GeV/c
Momentum resolution lxlO- 4

Dispersion at the focus (D) 12.4 m
Radial linear magnification (M) -2.5
Angular Range (HRS-L) 12.5-150°
Angular Range (HRS-R) 12.5-130°
Angular acceptance (horizontal) ±  30 mrad
Angular acceptance (vertical) ±  60 mrad
Angular resolution (horizontal) 0.5 mrad
Angular resolution (vertical) 1 .0  mrad
Solid angle at S = 0, y0 = 0 6 msr
Transverse length acceptance ±5 cm
Transverse position resolution 1 mm

TABLE 6.1: The characteristics [67] of the standard Hall A spectrometers.

T i (MeV/T) T2 (MeV/T2) T3 (M eW F)
HRS-L 2702 ±  1 0 -1.6 ± 0 .4
HRS-R 2698 ±  1 0 -1.6 ± 0 .4

TABLE 6.2: The spectrometer constant coefficients for HRS-L and HRS-R.

6.2 Septum Magnets

A few experimental groups in Hall A were interested in forward angle measurements 

between 6 ° and 12.5°. However, the spectrometers have a minimum achievable lab angle 

of 12.5°. The main reason for this limitation is that Q1 cannot be moved closer to the 

beamline without hitting the beam pipe. A proposal was approved that added a supercon­

ducting dipole in front of each spectrometer to reach angles down to 6 °. The schematic 

setup of the HRS with septum is shown in Fig. 6.2
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Septum

New target Old target Beam axis
position position

FIG. 6.2: A schematic diagram of the septum magnet + HRS spectrometer with the target moved 
80 cm upstream.

Horizontal-bending septum magnets [62] were designed and fabricated for experi­

ment E94-107, Hypemuclear Spectroscopy [90]. They were designed so that the perfor­

mance of the HRS would not be degraded by the addition of the magnets. The goal was 

to have a general purpose device so particles with momenta up to 4 GeV/c and angles be­

tween 6 ° and 12.5° were detectable in the spectrometers. The HRS + septum spectrometer 

would have a 4.7 msr angular acceptance and momentum resolution < 2x10~4.

The target was moved 80.0 cm upstream to accommodate the new magnets. With the 

septum magnet + HRS spectrometer the target appears situated on the optical axis of the 

two spectrometers. In Table 6.3 the dimensions of the septum magnets are summarized.

Length 8 8 .0  cm
Height of the gap 25.0 cm

Width of gap (entrance) 10.4 cm
Width of gap (exit) 18.4 cm
Angular acceptance 4.7 msr

Magnetic length 84.0 cm

TABLE 6.3: Dimensions of the septum magnets [91].

For experiment E97-110, we commissioned the HRS-R septum magnet at central

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



87

scattering angles of 6 ° and 9°. Since the HRS-L septum was unavailable, the left spec­

trometer instead detected scattered electrons from a carbon foil target. This target was 

placed ~  90.0 cm downstream from the target location for the HRS-R + septum spec­

trometer. The data from HRS-L was used to monitor false asymmetries and the beam 

luminosity. The reminder of this document will only address data from HRS-R.

6.3 Detector Package

The detector packages for the two spectrometers were almost identical during E97- 

110 and were utilized for electron detection. Here only the HRS-R package will be dis­

cussed. The configuration is shown in Fig. 6.3. A pair of vertical drift chambers determine 

the particle trajectory for the target reconstruction and, coupled with the dipole, provides 

the momentum resolution. Then the particles pass through a pair of plastic scintillator 

planes, which form the trigger for the data acquisition. Particle identification (PID) is 

provided by a gas Cerenkov sandwiched between the scintillator planes and a two-layer 

electromagnetic calorimeter. The main difference between the HRS-L and HRS-R pack­

ages is that in the second layer of HRS-R calorimeter, the blocks are oriented parallel to 

the particle tracks, whereas in the HRS-L calorimeter the blocks in the second layer are 

oriented perpendicular to the tracks as shown in Fig. 6.5.

6.3.1 Vertical Drift Chambers

The vertical drift chambers (VDC) [92] provide tracking information that result in 

good position and angular resolution. Each spectrometer contains two chambers with two 

wire planes in a standard UV configuration, which are inclined at an angle of 45° with
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Right
Arm

FIG. 6.3: Detector package for HRS-R. Note the aerogel Cerenkov was not used or present in 
the detector stack during E97-110. Reproduced from [67].

respect to the dispersive and non-dispersive directions. In the UV configuration, the wires 

of each successive plane are orthogonal to each other [67]. The first wire plane that the 

particles traverse is located at the spectrometer focal plane. The distance between like 

wire planes is 335 mm as shown in Fig. 6.4, and each plane contains 368 active sense 

wires.

For the VDCs, the process of ionization is utilized where the incident particle col­

lides with gas molecules creating electron-ion pairs. An electric field is applied in the 

chamber with gold-plated Mylar planes powered at -4.0 kV. The chambers are filled with 

a 62/38 gas mixture of argon and ethane. The argon provides the ionizing medium, and 

the ethane absorbs the produced photons from ionization. The gas continuously flows at 5 

liters per hour per chamber to provide a homogeneous dry gas environment. The ionized 

electrons drift along the electric field lines. When the electron is near a wire, the electron

DAQ
Electronics

Preshower

Shower

Gas Cherenkov

Aerogel Cherenkov
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accelerates due to the radial electric field, which then can produce many secondary ion­

izations. The net result of the avalanche of electrons produces a detectable signal (hit) on 

the wire.

By design, electrons that traverse the VDCs with a nominal angle of 45° will fire 

between four to six wires (cluster) per plane providing accurate reconstruction of the 

electron’s trajectory. At the extreme angle of 52°, three wires will still fire. The trajectory 

is extracted by using timing information from the time-to-digital converters (TDCs) to 

determine the drift distances for each wire in a cluster. The cross-over point of the track 

is then determined by a linear fit of drift distances versus wire position. Finally the track 

positions and angles are extracted from the data. The position and angular resolution in 

the focal plane are approximately 100 fj,m and 0.5 mrad, respectively.

d^a^SSmm

duv̂ 26mm

Lower VDC

Upper VDC

Side view

nominal particle trajectory

Top view

nominal particle trajectory

2118 mm

FIG. 6.4: Schematic diagram of the Hall A vertical drift chambers. Reproduced from [67],
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6.3.2 Scintillators

The HRS-R spectrometer contains two plastic scintillator planes (Si and S2) sepa­

rated by 2 m to trigger the data acquisition. Each plane has six 5 mm thick paddles, and 

each paddle is viewed by two photomultipliers (PMT), one at each end. The edges of two 

adjacent paddles overlap to avoid gaps between the paddles. The timing resolution for 

each plane is about 0.3 ns.

The criteria for the main trigger is as follows:

• The left and right PMTs on a paddle of Si both fire.

•  The left and right PMTs on a paddle of S2 both fire.

•  The track is reasonably close to 45°.

The third requirement implies that if an event triggers paddle n  on Si, then it must trigger 

paddle n  or n  ±  1 on S2. The main trigger for the right spectrometer is referred to as Ti. 

A secondary trigger, T2, is used to measure the scintillator efficiency. The T2 trigger is 

exclusive to Ti and formed by requiring one of the scintillator planes to have fired and a 

signal was detected by the Cerenkov detector. These are possibly good events that one of 

the trigger planes failed to detect.

The triggers are then sent to the trigger supervisor (TS), which determines if the data 

acquisition (DAQ) should record the event. When the event rate is high, the DAQ system 

cannot record all the events. The fraction of events recorded by the DAQ is represented 

by a quantity called the livetime L T  or deadtime D T  =  1 — LT. Deadtime comes mostly 

from computer data processing and can be decreased by prescaling the events with a 

prescale factor ps at the TS; for every ps events, only one is sent to the DAQ system.
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Electronic deadtime is also present due to the response of the detectors. However, this is 

negligible compared to the computer deadtime.

The livetime is event type and helicity dependent and is determined by dividing the 

total number of triggers accepted by the DAQ system T;acc by the number of triggers 2] 

recorded by scalers:

rptux,±

LT*  =  ^  , (6.2)

where i = 1 or 2  is the event type, ps\ is the prescale factor for event type i and ±  denotes 

the helicity.

The speed of the particles (3 can also be measured by using the time-of-flight between 

Si and S2.

6.3.3 Gas Cerenkov Detector

The gas Cerenkov detector [93] is used for particle identification. For E97-110, the 

Cerenkov separated electrons from other negatively charged particles such as pions. The

detector is based on the detection of Cerenkov light, which is produced when a particle

is traveling faster than the speed of light in a medium. The threshold for production of 

Cerenkov light is

/? > (6.3)
n

where n is the index of refraction of the medium. The threshold’s dependency on the 

particle’s velocity, makes this a very effective method to distinguish between particles 

with different masses. Since electrons and pions have a sizable mass difference, the index
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of refraction can be chosen so that only electrons will trigger the detector over the desired 

momentum range.

The gas Cerenkov is mounted between the two scintillator planes and filled with at­

mospheric pressure C 0 2 with an index of refraction of 1.0004. The threshold momentum 

Pth for different particle species can be calculated from:

Pth =  ~ ^ = = , (6.4)
y n z — 1

where m  is the particle’s mass. The electron threshold is 18 MeV/c; whereas, the thresh­

old for pions is 4.87 GeV/c, which is well above the momentum range (0.4 GeV/c to 3.2 

GeV/c) for this experiment.

The HRS-R Cerenkov detector has a pathlength of 150 cm and contains ten spherical 

mirrors that reflect the Cerenkov radiation onto a set of ten PMTs. The signals from 

the PMTs are then sent to analog-to-digital converters (ADC) and summed. The sum 

represents the total measured light produced by the particle.

Unfortunately pions can cause a sizable background by knocking out electrons from 

material before reaching the detector. These electrons, known as 5-electrons, may produce 

Cerenkov light and hence contribute to the ADC signal. These events are removed with 

the aid of a lead-glass calorimeter.

6.3.4 Electromagnetic Calorimeter

The electromagnetic calorimeter utilizes pair production and bremsstrahlung radia­

tion, which is the emission of radiation from scattering in the electric field of a nucleus. 

When a high energy particle traverses a dense material, an electromagnetic cascade of 

photons and electron-positron pairs is generated. The light emitted from the cascade can
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then be detected by PMTs.

The HRS-L and HRS-R calorimeters consist of two segmented layers as shown in 

Fig. 6.5. The particles enter the detector through the bottom of the figure. The first layer 

is oriented perpendicular to the particle trajectories and composed of 48 (24 x 2), 10 cm 

x 10 cm x 35 cm lead-glass blocks; whereas the second layer is oriented parallel to the 

trajectories and composed of 80 (16 x 5), 15 cm x 15cm x 35 cm lead-glass blocks. Each 

block is viewed by a PMT. The HRS-R shower detector is a total absorption calorimeter, 

since it is sufficiently thick to contain the cascade for the spectrometer’s momentum range.

HRS-L
14.5 x 14.5 x 30 (35) cm50 mm

XP2050A1 25 mm

SF-5

Eoio]:oio]:oxo]:o][oio][o]:oioio][©]:oioio] |

HRS-R XP2050 14.5 x 14.5 x 35 cm
/ SF-5

f W i
A1 19 mm

K rfTbirfTii «‘\i*T*irfTS^T>WTw.rT,h«TS /rW rW v W r^  tfh id  ĥ |-fi*Auif

10 x 10 x 35 cm
A 113 mmR 3036 TF-l

FIG. 6.5: The electromagnetic calorimeter in the HRS-L (top) and HRS-R (bottom). Reproduced 
from [67].
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6.4 Spectrometer Optics

94

The target coordinates of the detected particles are reconstructed from the focal plane 

coordinates with a set of optics matrix elements. These matrix elements have been tested 

and shown to be stable over the full momentum range of both spectrometers. The addition 

of the septum magnet to HRS-R required a careful study to determine the changes to the 

optical properties of the spectrometer. To this end, optics calibration data were acquired 

over a large range of the right spectrometer’s momentum range for both angles. This 

section describes the calibration procedure used to determine the optics matrix elements 

for experiment E97-110.

6.4.1 Coordinate Systems

In this section, an overview of the target and focal plane coordinates will be pre­

sented. For a detailed description of the Hall A coordinate systems refer to Ref. [94]. 

When an event is detected by the VDCs, two angular and two spatial coordinates are 

measured. The particle’s position and the tangent of the angle made by its trajectory 

projected onto the dispersive axis are given by x (iet and 0det respectively. Analogous 

quantities projected onto the non-dispersive axis are given by i/det and c/Wt respectively. 

Focal plane coordinates are calculated by correcting for detector offsets from the ideal 

central ray of the spectrometer. These coordinates are then used to determine the target 

coordinates and relative momentum (0tg, 0tg, ytg, and 5) of the particle by using the optics 

matrix elements. S is defined as

where P  is the particle’s measured momentum and Pq is the spectrometer central momen-
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turn.

Figure 6 .6  shows a diagram of the target coordinate system (TCS) for the left spec­

trometer. The ^-axis is defined by a line passing through the midpoint of the central sieve 

slit hole. The 2 -axis is perpendicular to the sieve slit surface and points toward it. The 

sieve slit is a 5 mm thick tungsten block used in the calibration of the optics matrix ele­

ments. When the spectrometer and sieve slit offsets are zero, the 2 -axis passes through 

the hall center, and this point is the origin of the TCS. In this ideal case, L  is the distance 

from the hall center to the midpoint of the sieve slit central hole. D  is the horizontal offset 

of the spectrometer from the hall center. The ytg axis is parallel to the sieve surface in the 

transverse plane, while the x tg axis points vertically down in the dispersive plane. The 

tangent of the in-plane angle and out-of-plane angle with respect to the central trajectory 

are given by 0tg and 9tg respectively, and 0 O is the central angle of the spectrometer.

Scattered
electron

sieve

Sieve plane

Spectrometer 
central ray

Beam
react Hall center

FIG. 6.6: Target coordinate system for electron scattering from a thin foil target. The x tg coor­
dinate is not shown, since it is the vertical displacement and points into the page.
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6.4.2 Optimization Method

The optics matrix elements link the focal plane and target coordinates. The rela­

tionship between the coordinates is shown in Eq. (6 .6 ) for the first-order approximation 

without the septum magnet.

6

9

y

. ^ . tg fp

(6.6)

(<5|x> (<S|0 > 0  0

(0|ar) (0| 9) 0 0

0 0 (y\y) {y\4>)

0 0 <0 | y)  <0 |0 )

The mid-plane symmetry of the spectrometers requires the null (zero) matrix elements. 

However the addition of the septum magnet breaks mid-plane symmetry, and the full 

matrix, Eq. (6.7), was optimized up to fourth order for E97-110.

X

9

y

...li

6 <<5|ar) m w W >

9 (0\x) m m m

y (y\x) m (y\y) {y\<f>)

. ^ . *g .  (<t>\x) m (< % ) (<f>\4>)

X

9

y

. ^ . fp

(6.7)

For each of the target variables, a tensor (a set of matrix elements for a target quan­

tity) exists: Yjkh Tjkl, Pjki, D j kt. These tensors are polynomials in xfp and relate the two 

coordinate systems. For example, the relationship for 9tg is given by

^ tg  — Tyfc/^fp?/fp0fp

j,k,l
(6.8)

(6.9)
i = 0

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



97

where the Ci  are the optics matrix elements for the corresponding target coordinate. Sim­

ilar expressions exist for <̂tg, Vtg, and S. The indices indicate the power of the focal plane 

variables. The matrix elements are determined by x 2 minimization of the aberration func­

tions,

_  \ w  -  W °12
a w  = E  — ’ <610), L aw

where W is 9tg, <j)tg, ytg, or S. This process compares the reconstructed events (W) to the 

nominal target foil and sieve slit positions (W°), which are known from the experiment’s 

surveys.

Eqs. ( 6 . 1 1 ) —( 6 . 1 3 )  give the interaction position along the beam, known as zreact, 

and the horizontal and vertical sieve slit positions, ysieve and xsieVe. These variables are 

determined from the reconstructed target quantities and are uniquely determined for a set 

of foil targets and a sieve slit.

^Teact ( l/tg  "I- D')—m | , -  4" ^beam  C O t(0o  4" t a n  0 t g )  ( 6 . 1 1 )sm(©0 +  tan  1 <ptg)

•E sieve =  % tg  4” LÔ g ( 6 . 1 2 )

2/sieve =  2/tg 4“ L(j)tg ( 6 . 1 3 )

The TCS vertical position xtg is determined from the vertical beam position (yheam), spec­

trometer vertical offset, 6tg, and zreaKt.
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6.4.3 Experimental Technique 

Required Data

The optimization procedure is performed on a set of data that covers the entire ac­

ceptance of the spectrometer in <f>tg, 9tg, ytg, and S. The required data includes:

• A five step scan of the 12C elastic peak that covers the ±  4.5% spectrometer 

momentum acceptance.

• A set o f thin 12C foils that cover the ytg acceptance.

• A sieve slit collimator with well defined horizontal and vertical positions that cover 

the angular acceptance of the spectrometer.

For E97-110, the acceptance of zreact was ±  20 cm. Typically nine target foils are 

used to acquire optics data, but at 6 ° and 9°, fewer foils were used (3 and 5) due to the 

reduced resolution at small angles. The carbon foils used for E97-110 had a thickness of 

10 mils (0.0254 cm). For elastic electron scattering from carbon, a scan (across the focal 

plane) of the elastic peak was performed at relative momenta of +3%, +2%, 0%, -2%, 

and -4%. Due to the lack of statistics, +4% was not used.

Figure 6.7 shows a diagram of the thin sieve slit used to take collimator data. The 

sieve has 49 holes that are arranged in a grid pattern (7 x 7). Two of the holes are 2.7 

mm in diameter, and the remaining holes are 1.4 mm in diameter. The large holes are 

used to determine the orientation of the image at the spectrometer focal plane. Compared 

with the standard spectrometer sieve slit, the horizontal distance between sieve slit holes 

increases further away from the beamline. The four columns closest to the beamline are 

spaced 0.48 cm apart. The spacing after the fourth column increases so that the columns 

are then 0.6 cm apart. The vertical spacing between the holes is 1.3 cm.
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5
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2 

1

FIG. 6.7: Geometric confi guration of the thin sieve slit used during E97-110. The labels on the 
rows and columns are for convenience during the optimization procedure. Column A is closest 
to the beamline.

The beam energies and foil locations are given in Table 6.4 for the optics data ac­

quired at 6 ° and 9°. The sign convention used for the foil locations is negative for a foil 

located upstream from the hall center and positive for a foil located downstream. A 20 

cm downstream foil was not used at 6 ° due to the lack of acceptance at this location. At 

9°, data were taken with the ±  20 cm foils, however, these foils were not included in 

the optimization due to a lack of statistics. The 9°, 3.319 GeV data were not acquired at 

the elastic setting due to the momentum limitation of the right spectrometer. Quasielastic 

data were acquired with a thicker sieve slit to avoid elastic events that scatter through part 

of the collimator and clear the spectrometer acceptance at lower momentum.

Survey Requirements

Determination of the ideal zreact for each foil, xsieve, and ysleve positions for each 

hole require precise knowledge of the target position, spectrometer displacement from its

A B C D E GF
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Angle Beam Energies (GeV) Foil Locations (cm)
6 °
9°

1.096,2.134,2.844 
1.147,2.235,3.319

- 2 0 , 0 , + 1 0  

- 2 0 , - 1 0 , 0 , + 1 0 , + 2 0

TABLE 6.4: Optics data acquired for E97-110.

Angle Sieve L (mm) Horizontal Offset (mm) Vertical Offset (mm)
6 ° Thin 799.8 0 .1 2 .0

9° Thin 798.9 0.3 1 .8

9° Thick 798.6 -0.4 2 .0

TABLE 6.5: Sieve slit position and horizontal and vertical offsets from the central hole’s ideal 
position.

ideal position, the position of the sieve slit central hole, and location of the beam position 

monitors (BPM). These positions and their offsets from nominal positions are determined 

from survey information [95].

Typically the horizontal spectrometer offset is an important correction that needs 

to be made in order to determine the nominal sieve slit positions. For the experiment, 

the septum magnet was tuned to center the ytg position, so the spectrometer offset was 

unimportant.

The sieve slit survey information is used to calculate the offsets in x sieve and ysieve 

from their ideal positions for the midpoint of the central hole. The offsets and distance 

from the hall center to the central hole, L, are given in Table 6.5. The horizontal and 

vertical positions of the sieve slit holes are then determined from these offsets and the 

distances between the rows and columns given in the previous section.

During E97-110, there were five target positions: the polarized 3He cell, a single 

12C foil, a 12C multi-foil, empty, and reference cell. Only the polarized and reference
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Cell Target A x  (mm) A z  (mm)
Penelope Polarized 3He 0.3 - 1 .0

Single12 C 0 .1 -0.7
Multi-foil 12C 0 .0 - 0 .6

Reference Cell -0.3 0 .2

Priapus Polarized aHe 0 .2 -1.3
Single 12C 0 .2 - 1.1

Multi-foil 12C 0 .2 - 1 .0

Reference Cell 0 .1 -0.4

TABLE 6.6: The target position offsets from the hall center. The carbon foil offsets are deter­
mined by linear interpolation, and the offsets for the target cells are from the target survey.

cell positions were surveyed. The positions of the other targets were determined from the 

survey numbers and from the target ladder specifications. After the target positions were 

determined, a linear interpolation between the polarized and reference cells was used to 

determine the foil position offsets from the hall center. The offsets are given in Table 6 .6 . 

Only the offset along the beamline, Az, is important in the optimization process, since 

this offset determines the nominal position for each of the carbon foils. The vertical offset, 

A y, was effectively zeroed during the target survey.

The beam position is determined by the BPMs, which are calibrated with the super­

harps [67]. The superharp and BPM survey information are used in the BPM calibration 

procedure. The details of the calibration can be found in Ref. [96]. For each event, the 

horizontal and vertical beam positions (xbeam and j/beam) are recorded. In the optimiza­

tion, the beam positions are used to calculate the nominal target coordinates.
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6.4.4 Optimization Routine

The optics matrix elements are determined by a C++ optimization routine referred 

to as OPTIMIZE++. In this section, I will provide a brief overview of the procedure used 

to perform the optics calibration. A more detailed user manual can be found in Ref. [94].

Algorithm

OPTIMIZE++ provides the user the ability to test a current database or to optimize 

the matrix elements. The general procedure to perform the optimization involves the 

following steps:

• Analyze the raw data with the initial database.

• Select events for optimization.

• Generate an input data file for the optimization.

• Optimize the desired quantity.

• Analyze the raw data with the optimized database.

• Use the diagnostic tools to test the target reconstruction.

The above procedure usually requires multiple iterations and has to be followed for each 

of the quantities requiring optimization. For E97-110, the focal plane offsets, (ptg, #tg, ytg, 

and kinematically corrected momentum were optimized. ESPACE [97] was used 

to analyze the raw data, however the new ROOT/C++ Hall A Analyzer [98] can also be 

used. The event selection and diagnostic tests were performed with the use of PAW [99].
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Septum Magnet Related Procedural Changes

A few details of the procedure were modified to address specific concerns o f opti­

mization with the septum magnet. Since there were only three carbon foils to constrain 

the ytg acceptance, the matrix elements dependence on 0 fp was kept below fourth order. 

This helped to ensure that the target variables were reliably reconstructed within the spec­

trometer acceptance. For this experiment, individual sieve holes were optimized instead 

of entire columns, which is what was done in the past. This increased the number o f con­

straints from a possible seven columns to 49 holes for each foil. The angular optimization

is typically performed for 0 tg and #tg together. However with the increase in the num­

ber of constraints, their simultaneous optimization was not possible, so the angles were 

optimized independently.

Early in the optimization procedure, the xtg coordinate calculated within ESPACE 

was found to be defective. Though the initial matrix elements reconstructed the target 

coordinates reasonably well, xtg is more sensitive to discrepancies in the reconstruction 

at small angles. Since the nominal 0tg angle is calculated from this coordinate in OPTI- 

MIZE++, the #tg reconstruction was deficient. In the left hand-side of Fig. 6 .8 , the xSjeVe 

positions are clearly shifted above the horizontal lines. The nominal sieve slit positions 

are shown by the grid lines. To improve the out-of-plane angular reconstruction, OPTI- 

MIZE++ was modified by adding an xtg calculation [100], which is based on the survey 

information. This xtg calculation is given by Eq. (6.14),

n ^react COS © o
^tg — ~” t̂g /, _ i  , \ “  2/beamj (6.14)

6 cos(tan <ptg)

where 6tg and 0tg are the nominal angles from a specific sieve slit hole for a given foil. 

The calculated values for x tg are used by adding a flag when OPTIMIZE++ is run. This
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modification helped resolve the deficient 0tg reconstruction. Fig. 6 .8  shows the sieve slit 

reconstruction for the central foil using rrtg calculated from ESPACE and from Eq. (6.14) 

in OPTIMIZE++. Compared to Fig. 6.7, the sieve images are rotated clock-wise by 180°.
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0.01 0.02 0.03 -0.03 -0.02 -0.01 0.01 0.02 0.03
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FIG. 6.8: Reconstructed sieve slit coordinates for the central 12C foil using x tg in the optimiza­
tion calculated from ESPACE (left) and Eq. (6.14) (right). The grid lines represent the nominal 
sieve slit positions. When x tg is used from ESPACE, the a;gieVe positions are shifted above the 
nominal lines. The calculation for x tg using Eq. (6.14) centers the data with respect to the nom­
inal positions.

Typically a tight cut on the elastic peak is used to help eliminate punch-through 

events from the sieve slit. However, events from the upstream foils passed through a pair 

of NMR coils that were located upstream along 2 rea.ct. ■ This caused the scattered electrons 

to lose enough energy so that their momentum was no longer in the elastic peak. The 

x fp distributions for the upstream and central foils with a cut on the sieve slit central 

hole are shown in Fig. 6.9. In the first order approximation, x fp is directly related to the 

momentum distribution at the target. In order to obtain reasonable reconstruction for the 

upstream foil and minimize punch-through events, a tight cut on the sieve holes was used
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with a loose momentum cut. A list of momentum cuts to select events for OPTIMIZE++ 

is given in Table 6.7.

1 —  Central Foil 
—  Upstream Foil

160

140

120

100

-0.1S

x,p (m)
•0.25 •0.2 -0.15

(m)
4.1 -0.05

FIG. 6.9: The Xfp distribution is shown for the -20.0 cm upstream foil (dashed line) and for the 
central foil (solid line) with a cut on the sieve slit central hole. Both foils should have a sharp 
elastic peak at -0.04 m. However since the events from the upstream foil pass through a pair of 
NMR coils, the scattered electrons have lost energy so that their momentum appears between the 
elastic peak and the 12C fi rst excited state (-0.07 m).

6.4.5 Optimization for E97-110

For each set of optics data in Table 6.4, the focal plane offsets were optimized first, 

then the angles, yts, and finally 8. After the the optimization was completed, the raw 

data were replayed with the new matrix elements, and the target reconstruction was tested 

with the aid of PAW. Typically after the first iteration of optimization the target recon­

struction was good. Occasionally a second iteration was performed with improved cuts or 

by correcting errors in the identification of sieve slit holes. The target reconstruction for
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Angle Beam Energy (GeV) Momentum Cut (GeV/c)
6 ° 1.096 1.050-1.100

2.134 2.100-2.140
2.844 2.825-2.860

9° 1.147 1.090-1.149
2.235 2.216-2.240

TABLE 6.7: Momentum cuts used to select events for OPTIMIZE++ for the different beam 
energies and angles.

the 2.134 GeV data, after the optimization was completed, is shown in figure 6.10 for all 

three 12C foils. The grid lines show the nominal sieve slit and foil positions from the sur­

vey reports. More details about the optimization for E97-110 are available in Ref. [101].

When the 1.096 and 2.844 GeV data were replayed with the new matrix elements, 

ytg and (f>tg were shifted with respect to their nominal positions. The septum magnet 

saturation effect is the cause of the shifts and is discussed in Appendix A. At these 

energies, the shifts were removed by optimizing the optics data.

For the 9° optics data, the same procedure was followed except the order of X{p was 

kept below fourth order, since data were acquired with only three delta settings. Also the 

3.319 GeV, 9° data were not optimized since elastic data could not be acquired at this 

energy. After optimization, the target reconstruction for the 9° data was comparable to 

the reconstruction at 6 °. The optics matrix elements for all the energies at 6 ° and 9° can 

be found in [1 0 2 ].

The optimized momentum spectrum for 2.134 GeV is shown in Fig. 6.11. The design 

value of the spectrometer momentum resolution is 1 x 10- 4  FWHM, and when multiple 

scattering from the scattering chamber windows and spectrometer entrance are included 

the resolution is 2.5 x 10- 4  [67]. For E97-110, electrons from the upstream foil passing 

through the NMR coils results in significant loss of momentum resolution at low energies
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FIG. 6.10: Reconstructed sieve slit image for 2.134 GeV, 6° data. Upstream 12C foil at zreact = 
-20.0 cm (top left), central foil at 0.0 cm (top right), downstream foil at 10.0 cm (bottom left), 
and Zreact for all delta settings (bottom right). The lines represent the nominal sieve slit hole and 
foil positions.
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and small angles. For example at 2.134 GeV, the upstream foil resolution was ~  60% 

larger compared to the central and downstream foils. In addition, the scattering chamber 

was filled with 1 atm of 4He gas. The effect of scattering from 4He on the momentum 

resolution was not studied since it has a negligible effect. In Table 6 .8 , the average mo­

mentum resolution of the right spectrometer at the optimized energies is shown.

4000

3500

3000

2500

4.1 X i f f2000

1500

1000

500

-0.6 -0.4

S(%)
-0.2-0.8

FIG. 6.11: The momentum of the scattered electron for all three carbon foils with a F WHM of 
4.1 x 10-4 at S = -  0.1%. The beam energy was 2.134 GeV, and the scattering angle was 6°.

Angle (deg.) Energy (GeV) 6 Resolution (FWHM)
6 1.096 8 .8  x 1 0 - 4

2.134 4.4 x 10~ 4

2.844 4.2 x lO - 4

9 1.147 8.5 x lO" 4

2.235 5.2 x 10~ 4

TABLE 6.8: The momentum resolution of the right HRS with the septum magnet for E97-110. 
The values listed are the averages from the momentum scans for each energy.
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Appendix A discusses the reconstruction issues that were seen after the optimization 

was completed. These issues include the <j>tg shift for the central sieve-slit row, the 3.319 

GeV, 9° data, and the septum magnet saturation effect.

6.5 Spectrometer Angle

From the sieve-slit surveys, the spectrometer central angle passing through the sieve- 

slit’s central hole is determined by

tan 0 o  =  - ,  (6.15)
z

where z  is the position along the beamline, and x  is the position transverse to the beamline 

in the horizontal plane. These positions are measured relative to the center of the target. 

Table 6.9 provides the central angles for the 6 ° and 9° data. There were two surveys for 

the 9°: one before (pre) and one after (post) the data taking. The uncertainty on the angles 

is due to a 0.5 mm uncertainty on the survey results.

Nominal Angle Survey Angle
6 ° (pre) 
9° (pre) 
9° (post)

5.99° ±  0.04° 
8.98° ±  0.04° 
9.01° ±  0.04°

TABLE 6.9: The spectrometer central angle from sieve-slit surveys.
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6.6 Collimators

For E97-110, a set of collimators were used to block events coming from the target’s 

glass windows. Traditionally software cuts on the reconstructed target variables have been 

used to remove these events. However due to the small scattering angles, the transverse

worse (compared to 12.5°). The transverse position ytg ~  r̂eact sin 0 O, so a 40 cm long 

target is only 4 cm long in ytg. In addition, the cross section from scattering off the glass 

creates a sizable contamination to the physics of interest. Figure 6.12 shows a zKact nitro­

gen spectrum with and without the target collimators in place. Without the collimators, 

a significant contamination from the glass windows penetrates into the nitrogen events, 

which cannot be removed by acceptance cuts.

position acceptance is about a factor of two smaller and the resolution is a factor of two

2.134 GeV, 6
With Collimators

5000
Without Collimators

4000

i

i f  #*
i  i  }

% }

2000

1000

Z.

FIG. 6.12: Comparison of zreact with (black) and without (green) target collimators.

For the experiment, three sets of collimators were used:
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• BRI6  - 6 ° data with the ice cone cell.

• BRS6  - 6 ° data with the standard cell.

•  BRS9 - 9° data with the standard cell.

Each set of collimators consisted of an upstream (U) and downstream (D) collimator. The 

upstream collimator cuts events from the upstream window and the downstream from the 

downstream window. With the collimators in place the effective target length is approx­

imately cut in half to 20 cm. Fig. 6.13 shows the layout of the three sets of collimators 

with respect to the center of the target. Table 6.10 provides the positions of the upstream 

and downstream collimators for the second run period. The positions are measured from 

the center of the target as defined in Section 6.5. Negative x  values indicate the collimator 

was located to the right of the beamline. For the 9° data, a survey was performed before 

and after the data were taken. The two surveys agree with each other to 0.7 mm.

In addition to the target collimators, a collimator was placed around the sieve slit to

shield the septum entrance from stray events. These stray events come from the beam

on its way toward the beam dump. The collimator around the sieve slit was a 3 cm thick 

piece of tungsten. Table 6 .11 gives the location z  of the collimator’s downstream face 

along the beamline and the height and width of the collimator aperture for 6 ° and 9°.
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FIG. 6.13: Schematic of target collimator locations with respect to the target.
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Description z (mm) x  (mm)
Pre 6 ° survey

29.2
59.1

417.4
447.5

-13.8
-18.0
-37.0
-39.4

BRS6 U upstream beam left comer 
BRS6 U downstream beam left comer 
BRS6 D upstream beam right comer 
BRS6 D downstream beam left comer
Pre 9° survey

22.3
51.8 

301.0
330.8

-13.2
-18.9
-31.3
-35.3

BRS9U upstream beam left comer 
BRS9U downstream beam left comer 
BRS9D upstream beam right comer 
BRS9D downstream beam left comer
Post 9° survey

23.0
52.5 

301.6
331.5

-1 2 .6

-18.4
-31.3
-35.4

BRS9U upstream beam left comer 
BRS9U downstream beam left comer 
BRS9D upstream beam right comer 
BRS9D downstream beam left comer

TABLE 6.10: The 6 ° and 9° target collimator positions from survey results.

Angle z (mm) LCou (mm) Height (mm) Width (mm)
6 ° 828.5 833.1 99.4 55.1
9° 823.2 833.4 99.7 55.6

TABLE 6.11: Sieve-slit collimator location and aperture size. Lcoii is the distance from the hall 
center to the center of the sieve-slit aperture’s downstream face along the spectrometer’s central 
ray.
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CHAPTER 7

Analysis

For experiment E97-110, asymmetries and cross sections were measured for polar­

ized electron scattering from polarized 3He. In this chapter, the inelastic 3He asymmetry 

and unpolarized cross-section analyses for the second run period are discussed. The se­

lection of good events and data quality checks are reviewed. Sources of dilution and 

corrections to the physics data are also presented.

7.1 Asymmetries and Cross Sections

The longitudinal and transverse physics asymmetries are calculated by taking the 

ratio of the difference in polarized cross sections to their sum. The expressions are given 

by
dV*
dE 'dn

dV*
dE 'dn

d?<r  ̂ I 
dE'dU _r

d2<rTtf
dE 'dn

d V ^ d?a^
dE 'dn dE 'dn
tP a ^  | 
dE 'dn

114

d P a ^
dE 'dn

(7.1)

and

A  —  d K 'd i l  A t!'d l l  ( n-L W2„l=!. . W2„T=!. )
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where |  and j  refer to the electron spin, pointing either parallel or anti-parallel to the 

beamline, and ft designates that the target is polarized along the electron beam propaga­

tion. For the transverse case, indicates that the target is polarized perpendicular to the 

beamline.

The physics asymmetries are calculated from the raw experimental asymmetries 

given by the following equation:

where f  is the dilution factor due to the small amount of nitrogen gas in the target cell and 

Pt and Pb are the target and beam polarizations respectively. The sign on the right hand 

side of Eq. (7.3) depends on the configuration of the insertable half-wave plate (IHWP) 

and the target spin direction. The raw asymmetries are calculated from the number of 

events within the chosen acceptance and detector cuts using the following expression:

where N ±, Q± and L T ^  are the number of accepted events, the total charge and the 

correction for the computer deadtime with beam helicity ±  1. The ‘+ ’ helicity state does 

not necessarily represent an electron with spin parallel to the direction of its propagation. 

The sign convention for the asymmetries is discussed in Section 8.1.1. The charge and 

deadtime corrections are calculated and applied for each run and will be discussed further 

in Sections 7.2.3 and 7.2.4.

Finally, the Bom asymmetries are calculated by applying external and internal radia­

tive corrections:

A raw Â|| I
(7.3)

N+ N ~

A
_  LT+!Q+ L T -Q -

'raw ~  N +  _ i _  N~
LT+Q+ “t" L T -Q -

(7.4)

Born int 
RC • (7.5)
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The unpolarized raw cross sections are determined by the following:

.raw _  rf<TraW P-SiN 1.raw (7.6)
dfldE' NmpLTf Aftt A Q A E'A Z

where:

• iV is the number of scattered electrons detected within the chosen acceptance and 

detector cuts.

•  psi is the prescale factor for event type 7\.

• N in = Q /e  is the number of incident electrons determined by the charge measured 

with the BCMs.

• p is the target density.

•  L T  is the livetime correction for all helicity states.

• edet is the product of all hardware and software detector efficiencies.

• AO, AE ’ and A Z  are the solid angle acceptance, momentum acceptance for each 

spectrometer setting and the target length seen by the spectrometer.

The experimental cross section is determined by subtracting the nitrogen contribu­

tion:

where p^ and pue are the atomic densities of nitrogen and 3He, respectively, inside the 

polarized cell, and the nitrogen cross section is <rN. The unpolarized Bom cross sections 

are determined after external and internal radiative corrections have been applied:

a Born (7.8)
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Then the polarized cross section differences is calculated by taking the product of 

the experimental asymmetries and unpolarized cross sections:

When the radiative corrections are applied, the cross section difference is expressed

as

A fffT  =  +  <5(A(T||ix)ext +  S(A<rl u )'“ . (7.1 0 )

Before the radiative corrections are applied, the elastic radiative tail is subtracted, which 

has a sizable contribution for our kinematics at 6 ° and 9°.

For the analysis presented here, radiative corrections were only applied to the cross 

section differences. So the presented asymmetry and unpolarized cross sections are not 

radiatively corrected.

7.2 Data Analysis Quality Checks

7.2.1 Detectors

For the cross section analysis, the efficiencies of the various detectors are studied in 

detail. In these studies, the detector cuts are optimized to distinguish good electrons from 

background events. The background is mostly comprised of negatively charged pions and 

low-energy electrons. The detector cuts involve the VDCs, scintillators, Cerenkov and 

total shower calorimeter, and each cut has a software efficiency associated with it. Since 

these efficiencies are in most cases helicity independent, they can be safely ignored in the 

asymmetry analysis.
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VDC: One-track Efficiency

The hardware efficiency of the drift chambers is approximately 100% [67], and 

hence, its inefficiency is neligible. A good electron should have only one track in the 

detector, but multi-track events can occur when several particles pass through the wire 

chambers simultaneously or if  there are noisy wires. When this occurs, the analysis soft­

ware can find more than one possible trajectory, and distinguishing between a good and 

bad event becomes difficult. In the cross section analysis, only events with one-track are 

kept, which results in an inefficiency that needs to be corrected. The one-track efficiency 

is defined as

=  a n )

with i — 0, 1, 2, ... is the number of tracks1. The efficiency is determined by using the 

same cuts that are used in the cross section analysis. For the analysis, only the events from 

the main trigger are kept. In addition, PID cuts were chosen to reject greater than 99% 

of the background while keeping the electron efficiency higher than 99%. For E97-110, 

the total rate was typically between 4 kHz and 250 kHz, which resulted in a large number 

of events having multiple tracks for some kinematics. This especially occurred for the 

elastic and quasielastic kinematics as well as for the nitrogen data.

The 1-track efficiency is shown if Fig. 7.1. The elastic and quasielastic kinematics 

are pointed out, which have typical efficiencies greater than 90%. For the inelastic data, 

the efficiency is greater than 95% and 96% for the 6 ° and 9° data respectively. For this 

analysis, we have corrected the cross sections for 75% of events that are removed by the 

1-track cut, since there is a good chance at least one of the tracks came from a good 

electron. The full amount of the correction is then used for the systematic uncertainty on

'The analysis software is capable of reconstructing several tracks.
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this correction. Analysis is ongoing to determine how many of the multi-track events are 

good [103], which will reduce this systematic uncertainty.

Efficiency for 6 Data Efficiency for 9 Data

94

?  94 6
Elastic

Elastic

9a
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94

94

E las tic
E la s tic

91
Q u a s ie ia s tic
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84

84

39001300

FIG. 7.1: The 1-track efficiency per run for the 6 ° (left) and 9° (right) data.

Scintillator Efficiency

As discussed in Section 6.3.2, the spectrometer detector package contains two scin­

tillators planes that are used to form the data acquisition system’s trigger. Two trigger 

types were used during the experiment that are considered good events: the main T\ and 

the secondary triggers T2. Only the main triggers are used in the analysis, whereas the 

secondary triggers are used to determine the hardware efficiency of the scintillators. The 

scintillator efficiency e t rig is given by

f lr is  =  T i + % ' ( 7 ' , 2 )

In most cases, the efficiency is greater than 99.4% as shown in Fig. 7.2 and excluding the 

T2 events has a negligible impact.
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Efficiency for 6° Data Efficiency for 9° Data
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FIG. 7.2: The scintillator efficiency per run for the 6 ° (left) and 9° (right) data.

PID Efficiency

The Cerenkov and electromagnetic calorimeter detectors are typically referred to as 

particle identification detectors (PID). The majority of pions can be removed with a cut 

on the Cerenkov, since pions cannot directly trigger this detector. The detector calibration 

and efficiency determination are discussed in Refs. [63, 103]. From these analyses, edet 

> 99.85% (99.67%) and the electron cut efficiency was better than 99.26% (99.66%) for 

the 6 ° (9°) data.

A two-dimensional cut on the shower and preshower from the calorimeter removes 

the low-energy knock-out electrons caused by pions. The calibration and efficiency study 

are detailed in Ref. [104]. For the total shower calorimeter, detection efficiency was 

greater than 99.76% and the cut efficiency was chosen to be larger than 99% for both the 

6 ° and 9° data.

The PID cuts used for the asymmetry analysis are summarized in Ref [105]. Sim­

ilar cuts were chosen for the cross section analysis based on the efficiency study for the
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Cerenkov and electromagnetic calorimeter detectors.

7.2.2 Acceptance Cuts

The geometrical, or acceptance, cuts are placed on the target reconstructed vari­

ables: <j>tg, ytg and S, which are the event’s out-of-plane angle, in-plane angle, trans­

verse position and the relative momentum respectively. For the asymmetry analysis, loose 

geometrical cuts were used to remove any misreconstructed events on the edge of the ac­

ceptance. For E97-110, a set of collimators were used to block events coming from the 

windows; however, this required cuts at the collimator locations to remove events that 

passed through the collimators’ edges.

In Appendix B, a summary of the acceptance cuts used in the asymmetry and cross 

section analysis is provided. For the cross section analysis, a detailed study of the spec­

trometer acceptance was carried out and is also described in the appendix. For the analysis 

presented in this document, only the positive half of the 6tg acceptance was kept due to 

background issues. A sharp peak is present at -2 6  mrads in 9tg, which is easily removed 

by subtracting the empty reference cell yield from the 3He yield. However a depression is 

left in place of the peak after the subtraction has been performed (see Section B.3.1). The 

difference between the unpolarized cross sections for the full 6tg acceptance and the pos­

itive half is 4-5% and 2-3% for the 6 ° and 9° data, respectively. For all kinematics, the 

cross section for 0 tg > 0  mrads is larger than the cross section for the full 0tg acceptance.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



122

7.2.3 Charge Asymmetry

Significantly different amounts of charge can occur in each helicity state, which 

results in a charge asymmetry:
Q+ -  Q~

=  ( 7 ' 1 3 )

where Q± is the accumulated charge for each helicity state, and the charge is given by the 

beam current monitors (BCM). Charge asymmetry is typically caused by sources in the 

accelerator injector, such as imperfections in the Pockels cell or half-wave plate.

When the cross section or asymmetry is calculated, the charge asymmetry is cor­

rected by normalizing the charge for each helicity state independently as applied in Eq. (7.4). 

An independent data acquisition system (DAQ) and feedback system was used to to mon­

itor the charge asymmetry and adjust the Pockels cell voltage to minimize the asymmetry 

(see Section 5.1.3). The feedback system updated every two minutes during experiment 

E97-110.

Before the physics asymmetries were calculated, the helicity-gated charges and the 

charge asymmetry were calculated for each run. The 6 ° and 9° charge asymmetries are 

shown in Figures 7.3 and 7.4 respectively. For each energy, the charge asymmetry in 

parts per million2 (ppm) is plotted versus run number. The runs were also separated by 

their target orientation: black open circles for parallel kinematics and red squares for 

perpendicular. The average charge asymmetry for each energy was typically less than 

2 0 0  ppm in both target orientations.

There are a few systematic effects seen in the plots. Usually the first run after the 

beam half-waveplate was either inserted or removed has a larger charge asymmetry than 

the runs following it from the same setting. For each half-waveplate change, the HAPPEx

2The unit parts per million denotes one particle of a given substance for every 999,999 other particles.
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FIG. 7.3: Charge asymmetry (in ppm) for 6 ° data.
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FIG. 7.4: Charge asymmetry for 9° data.
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DAQ was restarted. Since the rates were high for the spectrometer DAQ, the duration 

of most production runs was less than 15 minutes, whereas the charge asymmetry feed­

back system updated every two minutes. The slow response from the feedback system 

compared to the relatively short production run time period is the suspected cause for the 

larger charge asymmetry after the half-waveplate change. The charge asymmetry usually 

converged below 2 0 0  ppm after the first run.

For the second run period, the charge asymmetry feedback system failed to converge 

three times: twice at 6 ° (2.135 GeV and 4.209 GeV), and once at 9° (3.319 GeV). The 

feedback was fixed, but about fifteen runs were affected with charge asymmetries between 

3000 and 4000 ppm. Since the asymmetry was measured, it can easily be corrected. 

The corrected asymmetries were compared to asymmetries with small charge asymmetry 

corrections and found to have good agreement after the corrections. A lists of runs for the 

second run period where the charge asymmetry was greater than 900 ppm can be found 

in [105].

7.2.4 Livetime Correction

Livetime corrections need to be applied when extracting asymmetries and cross sec­

tions from the raw data. This quantity should be helicity independent, and if so, the 

livetime is divided out in Eq. (7.4). However there are circumstances where the livetime 

can become helicity dependent [106]:

• The physics asymmetry is large and the deadtime increases rapidly with the DAQ 

rate.

• Large charge asymmetry.
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• The event size is different between the two helicity states.

•  The deadtime fluctuates during the run, and the average effect does not cancel out.

The livetime correction was checked by calculating a livetime asymmetry for each

run:
LT+ -  LT~

.Alt =  —. (7.14)
LT+ + L T -

As in the case of the charge asymmetry, the livetime asymmetries are typically less than 

200 ppm. For nine runs, the asymmetry was over 1000 ppm. A few of these runs had 

either the DAQ rate too high, which resulted in high deadtime, or the time duration of the 

run was only a few minutes long. However there are four runs at 9° that have no apparent 

reason for a large livetime asymmetry. For these runs, the event size asymmetry between 

the two helicity states was checked and found to be smaller than the livetime asymmetry 

by at least an order of magnitude. The neighboring runs from the same kinematics have 

much smaller livetime asymmetries. A lists of runs for the second run period where the 

livetime asymmetry was greater than 900 ppm is available in Ref. [105]. The four runs 

mentioned above were included in the preliminary analysis.

7.2.5 Dilution

When the raw asymmetries and cross sections are formed, they need to be corrected 

for contamination from unpolarized material in the target cells. The two main sources 

of dilution arise from nitrogen inside the cell and the glass container. The polarized 

3He cells contain about 1% nitrogen3 mixed with 3He gas, which is used to quench un­

wanted photon emissions that can cause depolarization. The nitrogen, though a small

3The ratio of the number density of nitrogen to the total number density of nitrogen plus 3He gas is 
about 1%.
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amount, contributes significantly to the unpolarized cross section and causes a dilution to 

the asymmetry. The reason for this is that the nitrogen cross section is larger than the 3He 

cross section at the same kinematic.

In the inelastic scattering region, events from the nitrogen contamination cannot be 

isolated from the 3He events using detector or acceptance cuts. The nitrogen dilution is 

instead determined with data taken with a reference cell filled with nitrogen gas. For E97- 

110, nitrogen data were taken at almost every kinematic. The nitrogen dilution factors 

were determined for each kinematic at 6 ° and 9°. Details of the analysis can be found in 

[107]. The same acceptance cuts as discussed in Appendix B were used in the dilution 

analysis.

The N2 dilution factor is defined as:

/ n 2 =  1 ~
1 n 2 ^empty 

^ H e  ^em pty.
^  (7.15)
Pref

where Yn2> F̂ mpty and l 3He are the yields from the nitrogen reference cell, empty refer­

ence cell and polarized 3He runs respectively. The nitrogen densities in the polarized 3He 

cell and reference cell are given by ppoi and pref. Here the nitrogen density is the number 

of nitrogen atoms per unit volume. The yields for each target are calculated by:

psiiV
QLTedet’ ( * }

where N  is the number o f events after all cuts have been applied, psx is the prescale factor 

for trigger T 1, Q is the charge, L T  is the T1 livetime, and eaet is the combined detector 

efficiency from all the detectors. Only the VDC one-track efficiency was corrected in the 

yield calculations. This is a reasonable approximation, since all the other detector effi­

ciencies should be similar for different targets at the same momentum setting; hence they 

will factorize out of the dilution factor. However, the one-track efficiency is dependent on 

which target is in the electron beam.
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Figure 7.5 shows the nitrogen dilution factors for the eight beam energies at 6 ° and 

9°. The dilution factors were found to be between 0.87 and 0.94 with an uncertainty less 

than 0.3%.

Since collimators were used to remove the target windows from the acceptance, the 

dilution from the glass contamination should be small. However due to a two step pro­

cess, the contamination from the glass actually increases significantly with decreasing 

spectrometer momenta. This effect was studied prior to the experimental run period [108] 

and involves the beam pipe entrance window to the scattering chamber. When the beam 

passes through the window a non-Gaussian halo occurs due to nuclear scattering. The 

halo then rescatters off the glass wall of the target cell.

Experiment E97-110 was particularly sensitive to this effect due to the small scatter­

ing angles. The glass contamination was partially reduced by decreasing the thickness of 

the beryllium entrance window to 5 mils (0.0127 cm). The remaining effect was measured 

by taking empty reference cell runs for most momentum settings. The dilution factor from 

the glass is defined as follows:

YP= i ______________:..etn|)ty______________________ n  1 7 )
( V  V  t  Pdo1 ’ V ml 1J

-™He — ( r N2 — •‘ e m p ty ) Pref

where the yields and densities are defined the same as in Eq. (7.15). Figure 7.6 shows the 

contamination from the glass for the eight beam energies at 6 ° and 9°. The dilution factor 

dropped to 0.67 for the lowest momentum settings at 6 °; whereas it dropped to 0.45 for 

the lowest momentum setting at 9°. If the 1.147 GeV, 9° data are excluded, which were 

taken for radiative corrections, then the glass dilution for the 9° data is better than 0.78. 

The glass dilution factor is included in Eq. (7.3) as an additional factor in the denominator.
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FIG. 7.5: Nitrogen dilution factors for the 6 ° (left) and 9° (right) data.
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7.2.6 False Asymmetry

Energy Label Kinematic
1 2.135 GeV, 6 °
2 2.845 GeV, 6 °
3 4.209 GeV, 6 °
4 1.147 GeV, 9°
5 2.234 GeV, 9°
6 3.319 GeV, 9°
7 3.775 GeV, 9°
8 4.404 GeV, 9°

TABLE 7.1: Kinematic correspondence to the energy labels in Figure 7.7.

The false asymmetry from the electron beam was checked by using unpolarized data 

from the empty and nitrogen reference cell runs. Additional data from the carbon foils 

target were not included in this analysis. For each momentum setting, good electrons were 

selected by applying the same PID and acceptance cuts that were used for the polarized 

3He data. Figure 7.7 shows the average false asymmetry for the eight beam energies at 6 ° 

and 9°. The energy label correspondence to the kinematic setting is give in Table 7.1. The 

average false asymmetry is small and consistent with zero. Since the correction is small, 

the total average value will be used as part of the systematic uncertainty on the results.
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CHAPTER 8

Results and Conclusions

In this chapter, preliminary results for the inelastic 3He asymmetries, unpolarized 

cross sections and polarized cross-section differences are presented. After radiative cor­

rections, the spin-dependent structure functions are extracted, and finally the generalized 

GDH integral is discussed.

8.1 Asymmetry Results

8.1.1 Asymmetry Sign Convention

As discussed in Section 7.1, the sign on the right hand side of Eq. (7.3) depends on 

the configuration of the IHWP and the target spin direction. The status of the IHWP is 

either ‘IN’ if  it is inserted or ‘OUT if retracted.’ The relative sign of the beam polar­

ization is determined from the Mailer measurements. If during the Mailer measurement 

the IHWP is ‘IN’, then the sign from Mailer should be multiplied by — 1. Then for each 

polarized 3He run, the sign should be multiplied by +1 if the IHWP is ‘OUT’, and -1

132
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if the IHWP is ‘IN’. The absolute sign is determined by measuring a known longitudinal 

and transverse asymmetry. The longitudinal sign is measured using elastic electron scat­

tering off of polarized 3He, and the transverse sign is determined by using the A(1232) 

resonance, which has a large transverse asymmetry.

The target polarization sign depends on the direction that the target spin is pointing. 

Since 3He has a negative magnetic moment, the 3He spin points in the opposite direction 

to the target holding field. For the most part, the neutron spin points in the same direction 

as the 3He nuclear spin. As mentioned previously, the target was either longitudinally or 

transversely polarized. This results in four possible target orientations: 0°, 90°, 180°and 

270°. For experiment E97-110, the 90° configuration was not used, since the target half­

wave plates could not be aligned for the longitudinal and transverse lasers at the same 

time. Based on the above information, we obtain the following sign conventions for the 

target polarization:

• 0°: longitudinal field points toward the Hall A beam dump, target spin = —1 .

•  90°: transverse field points toward RHRS, target spin = — 1.

• 180°: longitudinal field points toward the Moller polarimeter, target spin = +1.

• 270°: transverse field points toward LHRS, target spin = +1.

8.1.2 Inelastic 3He Asymmetries

Following the analysis outlined in Section 7.2, the longitudinal and transverse asym­

metries were formed for the 6 ° and 9° data. The beam and target polarizations were 

obtained from [74,79]. The physics asymmetries without radiative corrections are shown
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in Figures 8.1 and 8.2 versus the invariant mass W. The parallel configuration is repre­

sented with black open circles and perpendicular with red open squares. The quasielastic 

region is located around W = 938 MeV. As W approaches the A(1232) region, both asym­

metries cross-over near the pion production threshold. In the A region, the perpendicular 

asymmetry is typically smaller than the parallel asymmetry. Beyond the A resonance, 

the transverse asymmetries are small and consistent with zero. The parallel asymmetries, 

however, appear larger with increasing invariant mass. For incident beam energies near 4 

GeV at 9°, the asymmetry continues to grow with W. This behavior could be influenced 

by elastic radiative tails that have not been subtracted from the data. The parallel asym­

metries at the A peak appear to have a moderate dependence on the momentum transfer 

Q2 and increase with smaller Q2. On the other hand, the transverse asymmetries become 

larger with increasing Q2.

8.1.3 Target Cell Comparison

For the second run period, the first four momentum settings for the 2.135 GeV, 6 ° 

data were taken with the polarized 3He cell Penelope. After a week of running, the cell 

ruptured and was replaced with the cell Priapus. The Penelope data were taken with a W 

up to 1400 MeV, then the remaining the data were taken with Priapus. As a check, data 

were acquired for two momentum settings that overlapped the data taken with Penelope at 

low W. Figure 8.3 shows the 2.135 GeV data where the two cells have overlapping data. 

The red triangles represent the data taken with Priapus, whereas the blue circles show 

the Penelope data. The Penelope and Priapus data sets agree well within the statistical 

uncertainties. In addition, the transition at 1400 MeV between the two cells is smooth. 

This agreement helps demonstrate that the various systematics are reasonably understood.
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FIG. 8.1: E97-110 asymmetries for three incident energies at 6 ° and one at 9°.
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FIG. 8.3: Asymmetry comparison between target cells Penelope and Priapus.

8.1.4 PID Cut Study

A systematic study was performed to check the effect of the chosen PID cuts. This 

was accomplished by plotting the asymmetries with and without the PID cuts applied. 

For the low beam energies at 6 °, not many pions are produced, so the PID cuts show 

little effect for these energies. For the 4.209 GeV data, the number of pions produced 

increased, and a larger effect can be seen in the asymmetries. At 9°, the longitudinal 

asymmetries for the 2.234 GeV data already show sizable differences at large W. For the 

transverse asymmetries a smaller difference is seen with the various PID cuts. This study 

indicates that for some kinematics the pions have a sizable asymmetry. More details on
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the PID cut study are available in [105].

8.1.5 Pion Asymmetry

Unfortunately, even with good PID cuts, a small number of pions remain and con­

taminate the electron asymmetry. The pion contamination can be evaluated by using 

Eq. (7.3). In this analysis, the same cuts are used as applied on the electron asymmetries, 

except a cut on events is made that are not detected by the Cerenkov. The pion asymme­

tries are corrected for nitrogen dilution, glass dilution and beam and target polarizations.

The ratio of the number of pions to electrons is an important quantity that can be 

used to estimate the pion contamination. At low W  or v, the majority of the events are 

electrons; hence, this ratio is very small. As the invariant mass increases, the production 

of pions substantially increases and the ratio can become greater than one. In the large W  

region, the PID cuts typically reduce the pion to electron ratio by a factor of 104. Using 

this factor, the pion contamination to the electron asymmetry can be calculated by the 

following [73]:

A A e =  1 0  ~aA", (8.1)

where An is the pion asymmetry and A Ae is the variation of the electron asymmetry due 

to pions. The pion asymmetry is suppressed for the maximum pion asymmetry of 20% to 

the level of 20 ppm. In the low W  region, the suppression factor is larger than 104 due to 

the small number of pions; hence, the pion contamination is small for all kinematics.

8.1.6 Statistical and Systematic Uncertainty

The statistical uncertainty on the asymmetry is discussed in Appendix C for the case 

when the data is prescaled. The main sources of systematic uncertainty on the asymme­
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tries are the beam and target polarization, contributing a relative error of ~  4% and 7.5% 

respectively. The measured false asymmetry is small and has a negligible contribution to 

the overall uncertainty. Due to the good pion rejection factor, the contribution from pion 

contamination is also small. The systematics on the charge and livetime corrections still 

need to be determined when these corrections are large.

The uncertainty on the dilution factors is small compared to the polarimetry, since 

they are measured directly from our data. The largest source of uncertainty in the nitrogen 

yields and cross sections is due to the 1-track efficiency. However the nitrogen cross 

section is suppressed in Eq. (7.7) by the density ratio (~  2%). For most of our kinematics, 

the 3He cross section uncertainty due to the 1-track efficiency correction for the nitrogen 

data is less than 1%

8.2 Unpolarized Cross sections

The unpolarized 3He cross sections were generated following the steps in Section 7.1, 

and the acceptance cuts discussed in Appendix B were applied in the analysis. For pre­

vious experiments, the extracted cross sections represent an average over the solid angle 

defined by the acceptance cuts and spectrometer versus either the invariant mass or en­

ergy transfer. Then a finite acceptance correction is applied afterwards. Typically this 

correction is less than 2% in the resonance and DIS regions [10]. For experiment E97- 

110, this effect was expected to be larger because of the small angles. The acceptance and 

especially the cross section change dramatically over the solid angle.

The particle’s scattering angle is calculated from Eq. (8.2),

=  «**<> + (8 .2 ) 
Y 1 +  *Ss +  0 t8
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where do is the central angle of the spectrometer: 6 ° or 9°. For this analysis, the variation 

of the cross section with solid angle was handled by calculating the cross section for dif­

ferent bins in (ptg for each bin in u. The scattering angle changes by about 3° across the <ptg 

acceptance. The second order dependence for 0tg results in a 0.5° variation in the scatter­

ing angle across the (ptg acceptance. For this analysis, the variation in the acceptance with 

respect to i9tg was neglected but will be checked for the final analysis. The cross section 

variation with respect to <f>ts is shown in Fig. 8.4 for the 2.135,6° and 2.234 GeV, 9° data. 

Each of the (ptg bins represents 6  mrad. Clearly the cross section has a strong dependence

130

120

110 

*5 too

40

FIG. 8.4: E97-110 unpolarized cross section (v = 1055 MeV) versus cpts for the 2.135 GeV, 6° 
and 2.234 GeV, 9° data.

on the scattering angle at 6 °, whereas, the dependence at 9° is less significant. After the 

generation of the cross sections, a bin-centering correction was applied to determine the 

central value of the cross-section within a given bin [109]. The following assumptions 

were used:

•  The acceptance’s angular dependence is described locally by a quadratic shape within
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±  1 bin.

•  The cross section is also assumed to have quadratic dependence within ±  1 bin.

The bin centering was a less than 1% correction.

8.3 Experimental Cross Sections

The nitrogen cross sections were determined using the same procedure and then 

subtracted from the raw cross sections using Eq. (7.7). The nitrogen cross sections and 

3He experimental cross sections are shown in Fig. 8.5 for the 1.147 GeV and 2.234 GeV, 

9° data. The nitrogen correction has a 5—12% effect depending on the kinematics, which 

is in agreement with nitrogen dilution study discussed in Section 7.2.5.

1.147 GeV, s f  2.234 GeV, 7

0® • oN Dilution
• ®exp101-

tmM>

♦So 1400

« cN Dilution
• °exp10*-

(0>
10*-

v (MeV)

FIG. 8.5: E97-110 unpolarized 3He cross section for the 1.147 GeV and 2.234 GeV, 9° data.

Before the cross-section differences are formed, the cross sections were interpolated 

to the same angle as the asymmetries for each beam energy. In most cases, the scatter-
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ing angle of the asymmetry was between 0 tg bins 1 3  and 1 5  from Fig. 8 .4 .  The rare 

exceptions were for the elastic settings that have a strong dependence on the angle. For

each v bin, a linear interpolation was performed between the relevant <f>ig bins to obtain

the cross section that matched the asymmetry at the same angle. The uncertainty on the 

interpolation was determined by

^ i n t  =  \ J K 2 (5er®x p ) 2 +  M 2 ( 6 a ? p)2 , ( 8 . 3 )

where ĉr̂ xp and S cr^  are the cross-section uncertainties for two adjacent <btg bins. The 

proportionality factors are then defined:

K  =  ( 8 . 4 )
Xi -  x 2

and

M  = —— — (8.5)
X \ -  X2

where the angle being interpolated is x  between angles x \  and x 2 of the adjacent 4>tg bins.

The angle interpolated cross sections are shown in Figs. 8 .6  and 8.7 versus W  for the 

eight incident beam energies without radiative corrections. The Statistical uncertainties 

are shown on the points, and the systematic uncertainties are given by the grey band 

below each plot. For energies at 3 GeV and below, the strong quasielastic peak is seen at 

938 MeV. The A(1232) is also seen. For the lowest two beam energies, the A is swamped 

by the quasielastic peak. Above the A region, the other resonances cannot be seen. For 

higher beam energies, the elastic radiative tail begins to grow at W  > 2.2 GeV.

The unpolarized cross sections presented show discontinuities between momentum 

settings and other structures. These are particularly noticeable for the 4 GeV data sets. A 

study was conducted to investigate these 3—15% effects, however, the study was unsuc­

cessful in solving these problems. Except for the 3.775 GeV data set, the discontinuities

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



143

are < 5% but are systematically larger at higher incident energies. For the 3.775 GeV, 9° 

data, there is a 15% discrepancy between 1.4 GeV and 1.6 GeV when compared with the 

neighboring momentum settings. The large effects for this energy are possibly related to 

the septum saturation effect discussed in Section A.3 and need to be investigated further. 

The preliminary indication from this study is that these effects may not be acceptance- 

related and could be related to spectrometer optics, detector efficiencies, or backgrounds. 

Until these issues are resolved a 3-15%  systematic uncertainty will be applied on the 

cross section results, the actual value depends on the incident energy and momentum 

setting.

In Table 8.1, the estimate of the systematic uncertainty on the unpolarized cross sec­

tions is given. The uncertainty on the nitrogen dilution is primarily from the one-track 

efficiency; hence, the larger uncertainties correspond to low W  and lower incident en­

ergies. The uncertainty from the acceptance is included in the uncertainty due to the 

discontinuities and other effects mentioned above. The density, charge and PID detec-

Source Systematic Uncertainty
Target density 
Acceptance/Effects 
VDC efficiency 
Charge
PID Detector and Cut effs.
&&raw

2 .0 %
5.0% (6 °) 5.0% (9°) 15.0% (3.775 GeV, 9°) 
3.0% (6 °) 2.5% (9°)

1 .0 %
< 1 .0 %

6.4% (6 °) 6.2% (9°) 15.5% (3.775 GeV, 9°)
Nitrogen dilution 0.2-0.5%
r̂t'exp 6.5% (6 °) 6.3% (9°) 15.5% (3.775 GeV, 9°)

TABLE 8.1: Systematic uncertainties for the unpolarized cross sections. The 15% acceptance 
uncertainty for the 3.775 GeV, 9° only applies between 1.4 GeV and 1.6 GeV at this energy.

tor/cut efficiencies represent global systematic uncertainties for all kinematics. The VDC 

efficiency varies between 2% and 5% (4%) for the 6 ° (9°) data, whereas, the table shows
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FIG. 8.6: Preliminary unpolarized cross sections for the three incident energies at 6° and 1.147 
GeV at 9°.
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FIG. 8.7: Preliminary unpolarized cross sections for the incident energies at 9°.
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representative values for the uncertainty due to the multi-track events. The systematic 

uncertainty shown in the figures have this variation included.

The uncertainties presented in Table 8 .1 are preliminary and will be improved with 

further study. The expected uncertainty for the VDC one-track efficiency will be ~  1%, 

and the acceptance is expected to be known to 3% or better. With these improvements, 

the experimental cross section systematic uncertainty will be approximately 4—5% for all 

incident energies.

8.4 Radiative Corrections

Before scattering from the target, the incident electron loses energy by passing through 

materials. The main processes by which this happens are bremsstrahlung and ionization 

(Landau straggling). Hence, the electron energy at the reaction vertex is less than that 

of the incident electron that entered the hall. After scattering, the electron also passes 

through material that results in energy loss before it is detected. This means that the elec­

tron energy at the vertex is higher than what is actually detected. The external radiative 

corrections are calculated to determine the measured cross sections at the true kinemat­

ics of the reaction. Internal radiative corrections are also taken into account for internal 

bremsstrahlung, vertex corrections and the vacuum polarization.

In Fig. 8 .8  the scattered electron energy (Ep) is plotted versus the incident energy 

(Es). The plot depicts where the eight incident energies lie in this plane. The 6 ° settings 

are shown with plus signs; whereas, the 9° are represented by the open circles. For each 

of the energies and associated momentum settings, a triangle is formed and bounded by 

a line representing elastic scattering. Lines are also shown for the pion threshold and the 

major resonances with the yellow band depicting the A region.
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We can consider one of the incident energies such as 2.845 GeV, shown by the ma­

genta plus symbols. The vertical band represents the spectrometer settings where events 

are detected. When the electron radiates photons, events fall into these regions from 

distant points on the plane. The value of the energy E s (Ep) is reduced before (after) 

scattering due to radiation and causes events to move horizontally (vertically) into the 

detected region. Therefore radiative corrections need to be considered from the entire 

triangle area. However, the points nearby the detected region contribute the most to the 

radiative corrections.

9° 9° 9° 9° 9°
6°  6°  6°

N(1500)

3 . 5 -

2 . 5 -

1.5

1-

0 . 5 -

0 -
0.5 2.50 1 1.5 2 3 3.5 4.54

E, (GeV)

FIG. 8.8: Kinematic region that contributes to the radiative corrections. Provided by [79].

For the unpolarized cross section, the external and internal radiative corrections are 

determined by using Mo and Tsai’s formalism [110] with the program RADCOR.F [111]. 

For the external part of the polarized cross-section differences, Mo and Tsai’s formalism
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is also used, since the surrounding materials are unpolarized. The formalism of Aku- 

shevich [112] is used for the internal corrections in the program POLRAD [113]. In the 

RADCOR.F code, the ‘Energy Peaking Approximation’ is used, since the primary con­

tributions come from the vertical and horizontal contours along constant E a and Ep. This 

approximation allows us to reduce the two dimensional integration over all incident beam 

energies and over all final electron energies (consistent with a given E a and Ep) to two 

one dimensional line integrals. In the case of the internal corrections, the full integration 

is performed within POLRAD.

The objective of the radiative corrections is to determine the Bom cross section rrBorn 

in the first-order diagram of Fig. 2.1. When this cross section is radiated, the experimen­

tal cross section crexp is produced. The process to extract <rBom is iterative. Since the 

Bom cross section is unknown, either cross section models or data are used as an initial 

guess. An integral over the energy spectrum is performed and a radiated cross section is 

produced. The difference between the radiated and initial experimental cross section is 

applied to the input cross section. Then another iteration is performed. Typically after a 

handful o f cycles the procedure converges to the Bom cross section.

Before the radiative corrections are applied, the elastic radiative tail must be sub­

tracted from the experimental cross section. This tail is created when the electron emits a 

photon before elastically scattering from the target nucleus. The scattering process occurs 

at lower initial energy, which corresponds to a larger cross section. The radiative tail can 

result in a large rising tail at large u. These tails can be seen in the 4.209 GeV and 3.775 

GeV data in Figs. 8 .6  and 8.7.

The final error on the cross sections is determined by combining the error on the
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radiative corrections with the uncertainty from the experimental cross sections 5aexp:

( ( ^ B o r n )  =  (^ O ex p )2 +  (& T rC)2 , ( 8 .6)

where 5<trc is the cross-section uncertainty from the error on the radiative corrections. 

The systematic uncertainty due to the radiative tail subtraction also needs to be included 

in the final cross-section uncertainty.

A summary of the radiation lengths before and after scattering is available in Ref [114]. 

A first pass extraction of the radiative corrections has been performed [79], though the sys­

tematic uncertainty from the corrections has not been determined. We expect the system­

atic uncertainty on the radiative corrections to be within 1 0 —2 0 % from past experience. 

Except for the 2.135 GeV, 6 ° and 1.147 GeV, 9° data, our own data was used as the initial 

guess for the radiative corretions. For the 2.135 GeV data, a model was built by scaling 

the the 1.147 GeV cross sections to 6 °. However a model was not created to perform 

the radiative corrections for the 1.147 GeV data. Eventhough radiative corrections were 

extracted for this data, the Bom cross-section differences should be viewed as suspect at 

best. A thorough systematic study of the radiative corrections is ongoing.

8.5 Polarized Cross-section Differences

The polarized cross-section differences are generated from the experimental cross 

sections and parallel and transverse asymmetries by using Eq. (7.9). The systematic un­

certainties come from the uncertainties on the experimental cross sections, beam polar­

ization (3.5%) and target polarization (7.5%). The beam polarization uncertainty also 

includes an estimate from the bleedthrough uncertainty. The cross-section differences are 

shown in Figs. 8.9 and 8.10 with radiative corrections applied. The inner (outer) error
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bars represent the statistical (total) uncertainties. However, the total uncertainties do not 

include the uncertainty from the radiative corrections. The parallel configuration is rep­

resented by the open red squares, while the perpendicular is shown by the solid black 

circles. The size of the radiative corrections are shown for the parallel and transverse data 

by the dashed red and black curves respectively. For the lowest energies, the large con­

tribution from the quasielastic region is seen. Below an incident energy of 3.3 GeV, the 

A resonance can again be seen around 1232 MeV. Beyond the A, the transverse cross- 

section difference is small and close to zero; whereas, the parallel cross-section difference 

is small but clearly non-zero.

The uncertainty on the target polarization is still preliminary. The final uncertainty is 

expected to be ~  4%, which will improve the systematic uncertainty on the cross-section 

differences to the 7% level versus the preliminary value of 10—17%.

8.6 3He Spin Structure Functions g\ and <72

The spin structure functions are formed from the polarized cross sections differences 

from the following expressions:

9 2  =

9\

M Q 2

M Q 2 V
4a2 (1 -  y) (2 -  y)

S 'Acr|| 4 - tan -  
£

y
4a2 2(1 -  y )(2 -  y)

l +  ( l - ? / ) cos0  
- A c r i i  - I  ; — ;— - — A < 7 j _

(8.7)

(8.8)
(1  — y) sin# 

where y  =

The 3He spin structure functions are plotted versus x, as measured at constant en­

ergy, in Figs. 8.11 and 8.12. The error bars depict the total uncertainties. For the Bjorken 

variable, the 3He mass was used; hence, x  = 1 corresponds to 3He elastic scattering. Pro­

ceeding right to left along the horizontal axis, we encounter the quasielastic peak. The
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FIG. 8.9: Preliminary polarized cross-section differences for the three incident energies at 6° and 
1.147 GeV at 9°. The inner (outer) error bars represent the statistical (total) uncertainty.
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R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



153

entire peak is not included in the plots, but from the included data, the quasielastic contri­

bution is significant at these kinematics. Following the quasielastic, there is a crossover 

for both structure functions at the pion production threshold. At lower x, we find the 

A(1232) resonance and find that gx «  - g 2. The A is primarily an Mi+ transition, and 

further, the unpolarized cross section in this region is well described with only a trans­

verse contribution. This implies that the longitudinal-transverse cross section <tlt  should 

be suppressed in the A region. If we refer back to Eq. (3.11), aLT oc (gx + g2), and 

hence, a zero ctlt would indicate an equal and opposite gx and g2. For experiment E97- 

110, this is approximately seen in the data. This behavior was also seen in the E94-010 

data between 0.1 GeV2 and 0.9 GeV2.

Beyond the A region, g x is non-zero and approximately flat, whereas, g 2 is consistent 

with zero but with large uncertainty. From Eqs. (8.7) and (8 .8 ), we see that g x is dominated 

by the parallel kinematics, and g2 is primarily from the transverse data. The contribution 

from Acr± to g x is about 5% (8 %) at 6 ° (9°), whereas, the parallel contribution to g2 is 

about 2 -5%  (3-8% ) at 6 ° (9°).

8.7 Transverse-Transverse Cross Section c ftt

The spin structure functions can also be expressed in terms of the virtual photoab­

sorption cross sections of Eqs. (3.11) and (3.12). Preliminary 3He results for the gener­

alized GDH integrand <xrr/^ is shown in Figs. 8.13 and 8.14 as measured for the eight 

incident beam energies. The inner (outer) error bars represent the statistical (total) uncer­

tainties. The A(1232) resonance has a significant negative contribution, which increases 

at lower Q2. However, there is also some hint that the quasielastic contribution, which 

has the opposite sign, is sizable. This behavior can be seen for the 2.845 GeV and 3.319
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FIG. 8.11: Preliminary 3He structure functions at constant energy for the 6° and 1.147 GeV, 9° 
data. The error bars represent the total uncertainty.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



155

2.234 G«V, 9f
0.04

-0.02

Preliminary-o.oo

•o.oo
10'1

Bjorken

0.00

0.04

0.02

-0.02-

-0.04

-0.00

3.775 GeV, 5°

Preliminary

3.319 GeV, f
0.00

Preliminary
-0.00

10-’

4.404 GoV, $
0.00

o.ot

-0.02

Preliminary
-0.04

io-’

FIG. 8.12: Preliminary 3He structure functions at constant energy for the 9° data. The error bars 
represent the total uncertainty.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



156

GeV data. Beyond the A region, the integrand is small and approximately flat within the 

error bars.

Before the neutron generalized GDH integral can be extracted, a careful study needs 

to be conducted to separate the quasielastic contribution from the A region. This analysis 

is ongoing. Once the quasielastic part has been removed, the data will be interpolated to 

constant Q2 and then the integration will be performed.

8.8 Extraction of Neutron Results from 3He

In the ground state, the 3He nucleus is primarily in an S state wave function, and the 

proton contribution to spin-dependent properties cancels due to the pairing of the two pro­

ton spins. This simplistic model is complicated by an admixture of the other states: S’ and 

D. The neutron is also subject to binding effects within the nucleus and undergoes Fermi

motion, which dampens out the resonance peaks. The 3He wave function components

and their nucleon spin configurations are shown in Fig. 8.15. Since the wave function is 

in an S state about 8 8 % of the time, polarized 3He provides an effective polarized neutron 

target.

In the DIS region, the spin structure functions can be extracted by using the effective 

polarization approach:

f f ip j  (x ) =  2Pp9 i {2) (x ) +  P n 9 i{2) (x ) > ( 8 .9 )

where pp and pn are the effective nucleon polarizations in 3He and are given by [115]:

p p = - 0 .0 2 8  ±  0.004 ( 8 . 1 0 )

pn =  0 .8 6  ±  0 . 0 2 . (8 .1 1 )
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FIG. 8.13: Preliminary results for the 3He GDH integrand measured at constant energy for the 6° 
and 1.147 GeV, 9° data. The inner (outer) error bars represent the statistical (total) uncertainty.
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FIG. 8.15: The wave function components of the 3He Nucleus.

In order to include Fermi motion and binding effects, a convolution approach involving 

the proton and neutron structure functions g1̂  is used to obtain realistic nuclear structure 

functions g ^ y  ^he formalism for the convolution method is available in Ref. [116]. In 

the DIS regime, it has been found that Eq. (8.9), which neglects Fermi motion and binding 

effects, shows reasonable agreement with the convolution approach to within 5%.

Scopetta et al. have also found that the same does not hold in the resonance re­

gion. In this region, Fermi motion significantly broadens and dampens out the resonance 

peaks compared to the free neutron case. Neither the approximation of Eq. (8.9) or the 

convolution approach provide reliable neutron results in the resonance region; hence, an 

alternative approach for the extraction of the neutron spin structure functions from 3He is 

needed.

For experiment E97-110, we are interested in moments of the spin structure functions 

and sum rules, which are integrated quantities. Integrating Eq. (8.9) leads to:

f H’ (Q2) = 2pp/ p(Q2) +  PJ ‘ (Q2) , (8 .1 2 )

where I(Q 2) represents a sum rule or one of spin structure function moments. The ex­

traction of the neutron integrals is valid in both the resonance and DIS regions [116] with 

an accuracy of 10% at Q2 = 0.1 GeV2. Above 0.5 GeV2, the approach results in an error
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of 5%. The authors have checked the extraction down to 0.01 GeV2 and have concluded 

that the extraction from Eq.(8.12) should be reliable to the 10% level [117].

Theoretical work is ongoing [118] to include final state interactions and relativistic 

effects. In addition to these effects, meson exchange currents and the A excitation may 

play a relevant role.

8.9 Measurement of the GDH Integral

In Fig. 8.16 the expected quality of the results are shown for the neutron extended 

GDH integral. The vertical scale is normalized to the GDH sum rule at Q2 = 0. The 

solid circles show the data from a previous experiment, E94-010 [57]. The statistical 

uncertainties are shown on the points, and the systematic uncertainties are given by the 

band at the top of the graph. In the magnified region, the open circles show the Q2 

range, and the dark band at the top of the graph indicates the final expected systematic 

uncertainty for the integral. The solid curve shows the phenomenological MAID model 

[54], and the dotted and dashed curves are predictions from Chiral Perturbation Theory 

[41, 42, 44]. The new data are expected to show a turn-over towards the GDH sum rule 

for the neutron. Once the quasielastic contribution has been removed, the neutron integral 

will be extracted from our data down to a Q2 of 0.035 GeV2 for the second run period.

8.10 Summary and Conclusions

Experiment E97-110 was conducted to map out the (Revolution of the extended 

GDH sum rule for the neutron and 3He at low Q2 between 0.02 and 0.3 GeV2. This 

integral is a powerful tool that can be used to study the nucleon spin structure over the full
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FIG. 8.16: The expected statistical and systematic uncertainties for the neutron GDH integral.

Q2 range and provides us with a way to investigate the transition from hadronic to partonic 

degrees of freedom. This unique relation, valid at any momentum transfer (Q2), can be 

used to make comparisons between theoretical predictions and experimental data. This 

experiment was dedicated to provide an important benchmark test of chiral perturbation 

theory predictions. From these data, the generalized GDH integral, moments of the spin 

structure functions and forward spin polarizabilities will all be extracted.

In this document, the preliminary analysis and results of the E97-110 3He data were 

presented. Both the g\ and g2 spin structure functions were calculated and presented. The 

data show that the quasielastic peak and A (1232) resonance have a large contribution for 

our kinematics as was also seen in the E94-010 data. The transverse-transverse cross sec­

tion ott was also extracted from our data. This data again shows that the quasielastic and 

A regions will have the largest contribution to the GDH integral. Once the quasielastic
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contribution is removed from the data, the neutron GDH integral will be extracted. The 

lowest Q2 point (O.IGeV2) from E94-010 indicates that the integral falls below the real 

photon point. The extraction of the integral from our data is eagerly awaited to see if at 

lower Q2 the integral turns around and approaches the GDH value at Q2 = 0. Further­

more, the GDH integral and moments of the spin structure functions for 3He will also be 

extracted.
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APPENDIX A

Optics Reconstruction Issues

When the optimization was completed for the experiment, there were a few outstand­

ing issues that had to be addressed. On close inspection of the sieve slit plots in Fig. 6 .10, 

the central row is shifted toward positive (f)tg (in the direction of the beamline) for the 

upstream and central foils. The second issue involves the 3.319 GeV data at 9°. Since 

elastic data is not available at this energy, the optimization process cannot be performed 

with a clean data set. The final issue is the septum magnet saturation effect. Below we 

will discuss solutions to these issues.

A.l Fixing the </>tg Shift

At first when the <f>tg shift in the central row was seen, the optimization was suspected 

to need further improvement. However further optimization by including higher order 

matrix elements only resulted in minor improvements. The shift might be caused by 

a separation between the septum magnet coils on the beamline side [119]. Since the

163
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standard polynomials cannot reproduce the effect, the shift cannot be fixed within the 

standard framework of OPTIMIZE++.

A plot of the focal plane distribution for 0fp and y(p is shown in Fig. A.I. A cut 

was placed on the central foil to produce this image. In the first order approximation, the 

plot represents an image of dtg and 0tg in the focal plane. At positive yyfi), there is small 

second order dependence on 0 fp, but at negative ?y(p, there is a much sharper dependence 

where the slope of the distribution changes sign at 0(p = 0. If the same distribution is 

viewed for the downstream and upstream foils, the dependence at negative t/fp changes 

such that the effect is weaker for the downstream foil and stronger for the upstream foil. 

This behavior is clearly seen in the target reconstruction, and there is almost no shift in 

(j>tg for the downstream foil.

0.03 

0.02

0.01

S'
(0

£■

- 0.01

- 0.02

-0.03-0.

FIG. A.l: Focal plane distribution of 0{p and j/fp with a cut on zTeact for the central foil. The 
beam energy is 2.134 GeV.
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nomials cannot adequately compensate for this effect. Since the shape of the focal plane 

distribution is V-shaped, absolute value terms of 0£p were added to the <ptg optimization. 

Eq. 6 .8  was modified for 0tg by adding the absolute value terms to the standard terms in 

OPTIMIZE++, see Eqs. (A.l) and (A.2),

where <j)tg is calculated from the standard matrix elements, and PTAjki corresponds to the 

tensor for the 0 tg absolute value terms. The order of the focal plane variables in Eq. (A. 1) 

was kept below second order.

For the absolute value terms to be effective, the standard <$>tg matrix elements had 

to be reoptimized. The procedure followed was to revert to the initial database elements 

for (f)tg, optimize the absolute value terms, and then optimize the standard elements. The 

sieve slit image is shown in Fig. A.2 before and after optimization using the absolute 

value terms. The reconstruction for 2.844 GeV at 6 ° is shown in the top plots, and 2.235 

GeV at 9° in the bottom plots.

The (j)tg shift for most of the sieve slit holes was fixed, and the shift in the few 

remaining holes was reduced by at least a factor of two. A more complicated correction 

could be applied, but the effect of the remaining shift is expected to be a small systematic 

effect in the final cross section result. A thorough study of this effect on the cross section 

will be conducted in the future.

In the case of an extended target (such as the multi-foil target), ytg varies with </>tg 

for a foil not located at the origin of the TCS. Due to this connection between the two

(A.l)

0 tg — 0 tg + (A.2)
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variables, a similar shift is seen in ytg for the central row. This is especially evident in 

the zTeact spectra in Fig. 6.10. In particular the resolution of the central foil is a factor of 

two worse than the other foils. A similar correction using absolute value terms in the ytg 

optimization yielded only minimal improvements in the ytg reconstruction.

A.2 Target Reconstruction for 3.319 GeV

Since the 3.319 GeV optics data at 9° are not elastic, a clean data sample does not 

exist to do the optimization. In anticipation of this problem, the optics data were taken 

with a thicker sieve slit to avoid sieve slit punch-through events. The thick sieve slit 

has five columns and hence only 35 holes. The horizontal spacing of the three columns 

closest to the beamline is 0.9 cm apart. After the third column, the spacing increases so 

the columns are 1.2 cm apart. The vertical spacing between the holes is 1.8 cm and is the 

same for all the holes. Even with the thick sieve slit, the data contained punch-through 

events, so the optimization was not performed at 3.319 GeV.

The target reconstruction for 3.319 GeV was improved by adjusting a few matrix 

elements by hand in the 2.235 GeV database. First the spectrometer focal plane offsets 

for 0 fp and y{p were changed to center the sieve slit and ytg spectra with respect to their 

nominal positions. Then the 0tg and ysieve second order dependence on x^eve was re­

moved. The changes to the matrix elements for 3.319 GeV are given in [102]. The sieve 

slit image is shown in Fig. A.3 before and after the matrix elements were adjusted. After 

the corrections, the target reconstruction was found to be reasonable.
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FIG. A. 3: Angular reconstruction for the central foil before (left) and after (right) corrections to 
the matrix elements. The momentum of the spectrometer was at 3.046 GeV/c.

A.3 Septum Saturation Effect

When the 1.096 GeV and 2.844 GeV optics data were replayed with the 2.134 GeV 

matrix elements, </>tg and ytg were shifted with respect to their nominal positions. As 

mentioned in Section 6.4.5, these shifts are attributed to septum magnet saturation effects. 

These will be described along with a method to correct for the target coordinate shifts.

A.3.1 The Septum Magnet Tune

The septum bends particles scattered at small angles such as 6 ° into the spectrometer, 

which is located at 12.5°. A linear relationship exists for a dipole magnet’s field and its 

bending angle. Additionally the magnet’s current and field should also have a linear 

relationship. Since the septum’s current was set independently from the spectrometer 

momentum, the determination of the relationship between the current and momentum was
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crucial. At the beginning of the E97-110 summer run period, the septum magnet current 

was timed with the spectrometer momentum. The tune was established by centering the 

central hole of the sieve slit at the focal plane. The conversion factor used to scale the 

septum magnet current with the spectrometer momentum at 6 ° was 92.58 A (GeV/c)-1.

The scaling factor at 9° can be determined by scaling the 6 ° factor by the ratio of 

the septum horizontal bending angles at 6 ° and 9°. The factor calculated for 9° was 

128.19 A (GeV/c)-1. When the 9° tune was first established at 3.775 GeV, the conversion 

factor was found to be 131.94 A (GeV/c)-1. At this beam energy, the central foil ytg 

position was monitored as the momentum of the spectrometer was decreased. When the 

central foil position deviated from zero by at least 1 mm, the septum magnet current was 

adjusted to recenter the foil position. In Fig. A.4, the conversion factor’s dependence 

on the spectrometer momentum is plotted only for the points where the central foil’s ytg 

position was approximately zero. The data were fit to the exponential function given in 

Eq. (A.3).

CFsep =  p0 exp(Pcentp i) +  Pi (A.3)

Pcent is the central spectrometer momentum, and the fit parameters (p0, pi, and p2) are 

shown at the top of the figure. The non-linearity o f this curve represents the septum 

saturation effect. For the other beam energies at 9°, the septum magnet current was set 

based on these fit parameters.

A.3.2 Saturation at 6°

During the acquisition of the 6 ° data, the septum magnet current was believed to 

scale linearly with the spectrometer momentum. However this turned out not to be the
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X 2 1 n d f 7.082/7 
1.182 ±0.5715 
0.6442 ±0.129 
123.3 ± 0.8738
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FIG. A.4: Septum magnet conversion factor at 9° based on the central foil’s yts position. The 
beam energy was 3.777 GeV.

case. When the 2.134 GeV data were optimized, the spectrometer focal plane offsets opti­

mization centered the target coordinates at this energy, but when the tensor elements were 

applied to the other optics data sets, the target positions were shifted from their nominal 

values. When no major detector configuration changes are made during an experiment, 

the offsets in the focal plane variables are expected to be stable.

When the matrix elements were optimized at 1.096 GeV and 2.844 GeV, the focal 

plane offsets changed to recenter the target positions. If the matrix elements are used 

to reconstruct the target coordinates at momenta between the optimized settings, shifts 

occur in ytg and 0tg. When the septum current does not match the required field for the 

spectrometer momentum setting, the central scattering angle is either a little too large or 

too small compared to the desired central scattering angle of 6 °. Due to the connection 

between ytg and </>tg discussed in Section A.l, a shift in 0 tg leads to a shift in ytg. Only the
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coordinates perpendicular to the dispersive direction are affected, since the septum bends 

particles in the horizontal plane. These shifts have to be corrected in order to obtain the 

correct target coordinates.

A.3.3 Database Prescription to Correct Shifts

In order to correct the shifts seen in ytg and <f>tg between the optimized momenta, a 

correction was applied by using the difference in the focal plane offsets. At the optimized 

settings, the yXp and </>fp offsets for 6 ° and 9° were fit to an exponential. The fit parameters 

are listed in Table A.l and defined in Eq. (A.4),

<  =  C0 exp(PoCi) +  C72, (A-4>

where Pq is the central momentum of the spectrometer.

Angle Offset Co (mm) Cx (GeV/c) - 1 C2 (mm)
6 ° 2/fp -6.3E-02 1.25 -5.69

0 fp -0.82 0.62 0.25
9° Uip -1.8E-04 2.96 -5.94

^fp -3.7E-02 1.38 -1.04

TABLE A.l: Focal plane offset fit parameters for 6 ° and 9°.

From these coefficients, the focal plane offsets for each momentum setting were 

determined. Then the shift in the focal plane offsets between the optimized momentum 

and the unoptimized momentum is determined by

6y<v =  » ? - <  (A.5)
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■%, =  ~  <  (A.6 )

where and (p ^  are the optimized offsets from one of the databases. The focal plane 

offset shifts are then multiplied by the first order ytg and 0 tg matrix elements to obtain the 

shift corrections at the target.

8y < y\y > < y\(t> > 8y

8(f)
tg

< 4>\y > < <t>\(t> > 8(p
(A.7)

fp

The corrected target variables are then determined from Eqs. (A.8 ) and (A.9).

2/tg =  ytg + Sytg (A.8 )

0tg — 0tg +  <^tg (A.9)

The data acquired for E97-110 covered the full momentum range of the right spec­

trometer, and for each angle, this range was divided among the optimized databases. The 

range of validity for each database was defined in the following manner:

7?lim —
Ei — E 2

(A. 10)

where E\ and E2 are adjacent momenta at which the matrix elements were optimized, 

and i?i;m is the transition momentum between two databases. Table A.2 gives the valid 

ranges for the optimized databases.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



173

Angle Database Energy (GeV) Lower Limit (GeV/c) Upper Limit (GeV/c)
6 ° 1.096 0.872 1.60

2.134 1.60 2.489
2.844 2.489 3.40

9° 1.147 0.428 1.691
2.235 1.691 2 .6 8 6

3.319 2 .6 8 6 3.40

TABLE A.2: Database validity ranges for 6 ° and 9°.

A module named THaSeptumShiftCor.cxx was written to implement the shift cor­

rection procedure for the Hall A ROOT/C++ Analyzer. The Hall A User Software Devel­

opment Kit [120] was used to build a library for this module, which can then be loaded 

within a ROOT macro. The module requires no additional input other than what is nor­

mally required to run the Analyzer and outputs the shift corrected target coordinates for 

2/tg and (j)tg.

The database module was tested using data that covered the full momentum range of 

the spectrometer for all beam energies and at both angles. A comparison for zreact is made 

before and after shift corrections in Fig. A.5 for data taken at beam energies o f2.844 GeV 

and 4.208 GeV. Since zreact is corrected for the beam position, a direct comparison can be 

made between different momentum settings. After applying the shift corrections at 6 °, the 

Zreact position was reasonably centered for spectrometer momenta below 2.3 GeV/c. At 

the highest momentum settings, above 3.0 GeV/c, the shifts were over-corrected. For the 

4.208 GeV data, this was confirmed by determining the carbon foil central peak position. 

Carbon foil data provide a sharp peak at discrete zreact positions, which can be compared 

to the positions from optics data. The shifts between momenta of 2.3 GeV/c and 2.8 

GeV/c also appear over-corrected. However, there is no carbon data in this momentum
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range to verify this hypothesis. The shift corrections between 2.5 GeV/c and 3.2 GeV/c 

were scaled to eliminate the excess corrections at these momenta. The plots in Fig. A.5 

already have the scaled shift corrections taken into account.

2.84 GeV, 6 Degrees
 P0 = 2.48 rGeV
 P0 = 2.297 GeV
 PQ = 2.132 GeV

24
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FIG. A.5: Reconstruction for z react, before (left) and after (right) shift corrections. In the top row, 
the 2.844 GeV data is shown, and in the bottom row, 4.208 GeV.
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A.3.4 Shift Corrections at 9°

In Section A.3.1, the septum magnet conversion factor for 9° was determined by an 

exponential fit to data acquired with a carbon foil. Since the septum current was set based 

on the saturation curve, a shift correction at 9° should not be needed. However, the ytg 

spectrum was not centered at each momentum setting for the 3.777 GeV energy. Plus 

there are a few instances where the magnet current was set incorrectly by an Ampere. So 

a separate correction is needed in these cases.

To determine the corrections for the 9° data, the z react central foil peak was fit with 

a Gaussian function plus a flat background term for the non-elastic carbon runs. The fit 

was used to determine the centroid of the peak along zTeact. For each of the runs, the 

conversion factor was determined from the central spectrometer momentum (P0) and the 

septum current (/sep).

CF„ „ =  %E (A. 11)
■*0

In Fig. A .6  the difference between the actual conversion factor and the one from the 

exponential fit is shown versus the z react position. In the left plot, there are a handful of 

points below the fit. These points all use the modifications for the 3.319 GeV database 

mentioned in Section A.2. In the right plot, the spectrometer focal plane offsets in the 

3.319 GeV database were replaced by the offsets in the 2.235 GeV database. With the 

replaced offsets, the outlying points now agree with the rest of the data. For the analysis, 

the 2.235 GeV offsets will be used for the 3.319 GeV database.

The data were fit to a line without a constant term. This is because when the differ­

ence in the conversion factor (ACF) is zero, z react should also be zero. For each run, the 

z react correction is then determined from the slope of the line (pi), and the corrected z react
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S eptum  Conversion Factor (3.319 GeV O ffsets) Septum  Conversion F acto r (2.233 GeV Offsets)
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FIG. A.6: Central foil zreact positions versus the difference between the conversion factor from 
the data and one based on the exponential fi t to the saturation curve. Only 9s non-elastic data are 
included in the plots using the 3.319 GeV spectrometer focal plane offsets (left) and 2.235 GeV 
offsets (right).

position is given by Eq. (A. 13). A similar set of equations exists for the 0 tg corrections 

discussed below.

The shift corrections for 0 tg were determined in a similar manner, but without sieve- 

slit data, the <pijg distribution does not have a sharp peak. For the 3.777 GeV data, data 

exists with the same central momentum but different currents on the septum magnet. By 

using the average shift from the left and right edge of the (f>tg distribution, 0 tg’s depen­

dence on A C F  can be determined. The shift in 0 tg versus the difference in the septum 

conversion factor is shown in Fig. A.7. As in the zieaiCt corrections, the data were fit to a

'react
A C F

Pi
(A. 12)

react'react (A. 13)
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line without a constant term. Then the <j>%g correction is determined for each run based on 

the slope o f the line.

3.713/6
2.5

1.5

<J 0.5

0.5 2.5

FIG. A.7: Shift in the <6tg distribution versus the difference between the conversion factor from 
the data and one based on the exponential ft t to the saturation curve. The shift is determined from 
data with the same central momentum but different septum currents.

A database was created that contains the zreact and 0tg shift corrections for each 9° 

run. Since the saturation curve is fairly flat below 1.3 GeV/c, the shift corrections are not 

used below this momentum. The module created for the 6 ° shift corrections mentioned 

in Section A.3.3 was modified to read the database and incorporate the 9° corrections by 

using Eq. (A. 13) and the equivalent equation for 0 tg- The corrections were tested and 

found to work extremely well. The 4>t% and zreact distributions are shown in Fig. A .8  

before and after shift corrections were applied. The data are from two runs with the 

same central momentum but different septum currents. After corrections, both <j)ts and 

^eact overlap well between the two runs. For zreact, the dashed lines indicate the nominal
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positions for the carbon foils at 9°. The central foil for both runs is centered with respect 

to the central line.
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FIG. A.8: The 0 tg (top) and z reiict (bottom) distributions before (left) and after (right) 9° shift 
corrections were applied. The dashed lines represent the nominal 2react positions.
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APPENDIX B

Spectrometer Acceptance

B.l Spectrometer Acceptance

In Chapter 7, the unpolarized cross section was given by

raw =  =  P S i N ___________1 ( E  n
0 dttdE' N mpLTedet A flA E ’A Z  ’ 1 ‘ ’

which is dependent on knowledge of the spectrometer acceptance:

1
(B.2)

A Q A E 'A Z  ’

where A ll is the solid angle acceptance, A E ' the momentum acceptance for each spec­

trometer setting and A Z  the target length seen by the spectrometer. Due to the fields 

created by the spectrometer magnets, the acceptance may not coincide with the geomet­

rical apertures o f the spectrometer. The acceptance instead depends on the particle’s 

trajectory, momentum and interaction vertex. Hence, the acceptance is determined from 

a monte carlo simulation [1 2 1 ].
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In the simulation, random trajectories are generated that cover an illuminated region 

that is larger than the actual acceptance in momentum and solid angle. The simulation 

uses knowledge of the transport properties o f the spectrometer magnets and the physical 

location of the apertures to determine if a randomly generated ray passes through to the 

spectrometer’s focal plane. The acceptance is then extracted by forming the ratio of total 

generated events to those that pass through the spectrometer apertures and analysis cuts. 

The acceptance can then be expressed as

1 1
(B.3)

A Q A E 'A Z  N A n M c A E ' MCA Z Mc ’ 

where jVjJJg1 is the total number of trial events generated in the simulation. N ^ c  is the 

number of events that survive the transport through the spectrometer model and accep­

tance cuts. The illuminated solid angle, momentum and target length are given by AQmc> 

AE'mc and A Z mc, which were chosen to be larger than the actual values.

For experiment E97-110, fifty million random events ( iV ^ 1) were generated for 

each momentum setting covering a solid angle of 14 mSr. The simulated target length 

was 40 cm and covered a momentum spread of ±  7%. The simulation was updated to 

incorporate tranport functions that include the septum magnet and the collimators used 

during the experiment.

B.2 Asymmetry Acceptance Cuts

Since the asymmetry is a ratio of cross sections, the acceptance cancels out. This 

allows us to use larger acceptance cuts in the asymmetry analysis, which is statistically 

limited unlike the cross sections. For the asymmetry analysis, the following cuts were 

chosen for the 6 ° and 9° data:
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• l t̂gl < 50mrad

• |<̂ tg| < 30 mrad

•  | < W t |  <  3 0  c m

• \S\ < 4.5%

The target variables are defined in Section 6.4.1.

Additional cuts were included at the collimator locations to remove events that tra­

versed through part of the collimator. These two-dimensional cuts are based on the col­

limator positions. For the target collimators, the positions were recalculated with respect 

to the nominal 6 ° or 9° central ray. Due to the nature of the cuts, it is useful to define 

variables related to the collimators. The vertical and horizontal position at the sieve-slit 

collimator aperture are given by xsvcon and ysvcoii respectively:

where LSVCoti = 0.833 m from Table 6.11. Two additional variables are related to the 

transverse position at the target collimators:

where yucon is the transverse position at the upstream target collimator, and t/dcoii is the 

transverse position at the downstream target collimator. The lengths Lucon and Ldcoii are

•^svcoll 3?tg -^svcoll '  ^ tg  ) (B.4)

and

2/sVColl Z/tg "I-  T gvcoll '  0 tg  J (B.5)

Z/ucoll 2/tg ”t" ■f'ucoll ■ 0 t g  ) (B.6 )

and

2/dcoll y tg  4" -^dcoll '  0 t g  i (B.7)
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the distances from the center of the target to the upstream and downstream collimators 

respectively. These lengths are related to the upstream (downstream) collimator x u(d) and 

zu(d) positions given in Table 6.10:

Tucoii = z'n =  x u cos d0 +  zu sin d0 , (B.8 )

^dcoii = Zj = xd cos d0 +  zd sin 00 , (B.9)

where d0 is the central angle of the spectrometer: 6 ° or 9°.

Using the above variables, the following collimator cuts were used in both the asym­

metry and cross section analyses for both angles:

•  Kvcoiil < 0.049 m

• 12/avcoii I <  0.028 m

•  2/ucoii UCOL

•  2/dcoii ^  D COL

where UCOL  and D C O L  are related to the x  and z  positions of the upstream and down­

stream collimators respectively and calculated from:

U CO L  =  x'u =  zu cos ff0 — xn sin 90 , (B. 10)

D C O L = x'd = Zd cos90 ~  %d sin#o , (B.l 1)

These values are given in Table B.l.

B.3 Cross-Section Acceptance Study

A thorough study of the acceptance was performed testing the reproduction of the 

target quantities from the simulation. Since the collimators already reduce the target
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Angle Lucoii (cm) Ldcoii (cm) UCOL  (cm) DCOL  (cm)
6 ° 3.04 41.90 - 1 .0 1 0.59
9° 2.41 30.22 -0.85 1.52

TABLE B. 1: Target collimator parameters used for the collimator cuts.

length by almost a factor of two, we preferred to keep the acceptance cuts as loose as 

possible. However two background processes required us to use tighter acceptance cuts.

B.3.1 Background in 0tg

The first background produces a sharp peak in the out-of-plane angle (9tg) acceptance 

at —26 mrad. This peak dominates the empty reference cell spectrum as shown in Fig. B. 1 

and is present for all targets. The events from this peak are also well separated in the

30000

25000

20000

15000

10000

5000

FIG. B .l: Empty Reference Cell Spectrum for 0tg showing a peak at —26 mrad. 

spectrometer focal plane from the main events. These two facts imply that the background

Empty Reference Cell, Run # 2831

-0.00 -0.04 -0.02 0.02 0.04 0.06
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is due to some process independent of the target and is also unpolarized. The peak in 

the $tg acceptance is also seen for the 9° data but is approximately two times smaller. 

This background can easily removed from the data by subtracting the empty reference 

cell yield from the 3He yield. However a depression is left in place of the peak after 

subtraction, which is shown in Fig. B.2. The black curve represents the data, and the 

simulation, weighted by the Mott cross section, is shown in red. The data were acquired 

with an incident beam energy of 4.2 GeV and central spectrometer momentum of 1.7 

GeV/c. In this region, the invariant mass W  = 2.3 GeV is beyond the resonance region, 

and the Mott cross section is expected to approximate the acceptance reasonably well in 

this region.

1.709 GeV, Polarized 3He

10000

8000

6000

 1.709 GeV/c Data

4000

2000

<T02 (MM•0.06 0.06

FIG. B.2: Background-subtracted spectrum for 9tg.

The unpolarized cross sections were determined using the full 0tg acceptance within 

±  45 mrad and the positive half (0tg > 0 mrad) o f the acceptance. For the 6 ° data, the 

cross section from the full acceptance was smaller by 4-5%. At 9°, the effect was only
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2-3%, which agrees with the factor of two difference seen in the acceptance studies. Since 

the simulation reproduces the acceptance reasonably well for 9tg >  0  mrad, we decided 

to only use this region in the cross section analysis. The full 6tg acceptance was used in 

the asymmetry analysis. A thorough study of the effects from this background will be 

conducted in the future, and hopefully the negative half of the acceptance can be kept in 

the final analysis.

B.3.2 Collimator Background

The collimator cuts are beneficial by removing events from the target cell’s glass end 

windows. However the collimators themselves become a source of potential background. 

This background results from scattered electrons from the target passing through part of 

the collimator without being stopped. Electrons that go through this process will lose en­

ergy and produce a radiative tail. This is expected to be especially important for electrons 

scattering elastically, since the elastic cross section is large at 6 ° and 9°. A study of how 

the elastic tails are modified by collimator punch-through was studied in Ref. [122]. For 

the second run period kinematics, the size of the effect is summarized in Table B.2. The

Energy (GeV) Angle k'max (GeV) Correction
2.135 6 ° 1.25 5.0%
2.845 6 ° 1.9 3.5%
4.209 6 ° 3.2 - 2 %
1.147 9° 0.7 7.0%
2.234 9° 1.9 3.6%
3.319 9° 1.7 0.3%
3.775 9° 3.0 - 2 .1%
4.404 9° 3.0 0.9%

TABLE B.2: Collimator punch-through correction from elastic radiative tails.
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size of the correction is given for the maximum value of the energy transfer u for each en­

ergy. The correction also includes finite acceptance and target size effects. For the lowest 

energies, the size of the correction is the largest. Above 2 GeV, the correction is typically 

<  5%.

The study in [122] did not include an estimation for the inelastic contribution; how­

ever a full simulation is in preparation to investigate the effect from inelastic punch- 

through [69].

B.3.3 Acceptance Cuts

Due to the concern about effects from electrons rescattering through the collimators, 

a set of conservative acceptance cuts were chosen to reduce these effects. The collimator 

cuts discussed in Section B.2 are tighter than the physical collimator locations. For the 

cross section analysis, a tighter cut was placed on zTeact for the same reasons. Because of 

differences between the 6 ° and 9° acceptances, slightly different cuts were chosen.

The acceptance cuts for the 6 ° data are as follows:

•  0  mrad < 0 tg < 45 mrad

•  -3 0  mrad < <f>tg < 26 mrad

•  |ytg| < 1.5 cm

•  ^ r e a c t  ^  6  C U 1

• \S\ < 3.5%

• (ytg + 1.80tg) > -0 .04  m

•  (ytg -I- 1.750tg) <  0.03 m
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The acceptance cuts used for the 9° data are:

• 0 mrad < 6tg < 45 mrad

• —30 mrad < <j)tg < 27 mrad

• —1.5 cm < ytg < 2.1 cm

• r̂eact ^  9 Cm

•  \S\ < 3.5%

• (ytg +  1.80tg) > -0 .04  m

•  (ytg +  1.750tg) < 0.04 m

These cuts are in addition to the collimator cuts discussed earlier. In Fig. B.3, the 6 ° data 

at W  = 2.3 GeV are compared to the simulation weighted by the Mott cross section using 

the above cuts with the full 6tg acceptance.
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FIG. B.3: 3He target spectrum comparison for J (top,left), 8tg (top, right) d>ts (bottom, left) and 
j/tg (bottom, right).
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APPENDIX C 

Statistical Uncertainty and Prescale 

Factors

The statistical uncertainty on the asymmetry is determined from:

N+N
(C.l)

where N +( N ~) is the number of events with helicity +1(-1), and N tot = N + + N~. Here 

the uncertainties on N + and N~  are given by the Poisson distribution. In the case when 

the asymmetry is small enough such that N + «  N~, then the vmcertainty on the asym­

metry becomes:

For experiment E97-110, the majority of the data were prescaled to reduce the bur­

den on the DAQ system and keep the deadtime less than 20%. Unfortunately prescaling 

complicates the calculation of the statistical uncertainty, so Eq. (C.2) does not give the 

correct answer when the prescale factor is greater than one. The uncertainty can be cor­

rected by multiplying the number of events by the prescale factor. However this method

(C.2)
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is not applicable because the deadtime correction and acceptance cuts need to be taken

into account.

A third method was used, instead, that attempts to account for the deadtime and 

acceptance cuts [69,123]. In this method, the unprescaled triggers and detected events are 

treated using a binomial distribution. This is a reasonable assumption since the prescaled 

events are a subset of the unprescaled triggers. Plus the good events after acceptance cuts 

are a subset of the total number of detected events without cuts. The following equation 

was derived using a binomial distribution for the three sets of data:

where crN± is the uncertainty on the number of accepted events with helicity ± 1  and ps i 

is the prescale factor for T\ events. Q, L T  and Ti are the helicity-dependent charge, 

livetime and the number of main triggers, respectively. The total number of detected 

events is represented by and the number of good electron events after acceptance cuts

(C.3)

by g± for the two helicity states. If there is no deadtime and the prescale factor is equal 

to one, then ctn± = (jry/lF  and Eq. (C.2) becomes valid again.
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