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High energy inelastic electron-nucleon scattering probes the instantaneous 

charge distribution of the nucleon and provides a method for investigating possible 

substructure. In the year that has passed since the International Symposium on 

Electron and Photon Interactions at High Energies at Liverpool, a number of im- 

portant developments have taken place in both the experimental and theoretical 

aspects of inelastic electron-nucleon scattering, ’ The Kiev conference has, in 

particular, seen the discussion of a large amount of new data from SUC, including 

data on both electron-proton and electron-neutron inelastic scattering. 2 I propose 

to discuss here these developments, with particular attention to some theoretical 

consequences of the recent experimental data and to recent work on duality and 

resonance behavior. A discussion of other aspects of inelastic lepton-hadron scat- 

tering and related processes can be found in the proceedings of the Liverpool 

Symposium and the more recent Naples meeting. 3 

The process of inelastic electron-nucleon scattering is shown in Figure 1 

where an electron (with energy E) is incident on a nucleon (of four-momentum P) 

and scatters (with resulting final energy E’) by an angle f3 due to the exchange of a 

single photon (of four-momentum q). If we do not observe the hadronic final state, 

as is the case in most of the experiments done until very recently, then the double 

differential cross section can be written as 

E 
28 2Wl(Y, q2) sin, z -t W2(vI q2) cos 28 

z 1 , (1) 

where the structure functions Wl and W2 depend on the two (Lorentz scalar) vari- 

ables v = -q-P/MN and q2, which can be written in terms of laboratory quantities 
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as (neglecting the lepton mass) 

V = E-E’ 

q2 = 4EE’ sin2 ’ 
(2) 

z l 

If we know v and q2 (from measuring the incident and scattered electron) then 

the invariant mass W of the final hadrons is fixed by 

d 

s = $ = 2MNv + M;-q2 , (3) 

The structure functions IV1 and W2 that appear in Eq. (1) arise from the quantity 

1 
wpvz4no! n c < p 1 Jtem)(o) 1 n > < nl JFm)(0) 1 J? > (2@36(4)(pn-p-q)’ P 

(4) 

= wp,,4 ) 1 + w,w s2, P*qqv /q2)(Pv - P-wv /q2)]/M; , 
which is just (1/47r2a) times the imaginary part of the Feynman amplitude for 

forward Compton scattering of photons of mass’ = -q2. Since the optical theorem 

relates the imaginary part of the forward elastic amplitude to the total cross 

section, it is no surprise that one can also define4 total virtual photon-nucleon 

cross sections for transversely and longitudinally polarized photons, (T T and OS’ 

which are related to W1 and W2 and can be used instead of them to describe the 

results of inelastic electron-nucleon experiments. The relation of W 1 and W2 to 

OT ando is S 
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K q2 w2 = - 
4n2ct q2+ v 

2 @T+ “s) ’ 
,, 

where K = v - q2/2MN = (W2- dN)/(2MN). Kinematic constraints force os to 

vanish at q2 = 0, while aT at q2 = 0 is just the total photoabsorption cross section 

for real photons. 

Although the kinematics certainly are straightforward and contain no surprises, 

the experiments on inelastic electron-nucleon scattering have yielded one surprise 

after another. First was its large size. This size may .be simply summarized as 

being roughly point-like: When the cross section at fixed q2 is integrated over v 

one obtains a result which is the same order of magnitude as the Mott cross section 

for scattering from a point proton. 

The same measurements which showed the point-like size of the scattering 

also showed a second phenomenon, the scaling behavior proposed by Bjorken5. 

“Scaling” is the statement that as v and q2 - *, vW2 and W1 become non-trivial 

functions of the dimensionless ratio w = 2MNv/q2 only, rather than functions of 

both v and q2 as would be the case a priori. We may look for the scaling behavior 

in the data where v and q2 are finite by studying the behavior of vW2 and W1 at any 

fixed value of w as we vary q2 (and therefore v ) and see if they tend to (non-zero) 

limiting values as q2 becomes large. An example of this for vW2 at w = 4 is shown 

in Figure 2, where vW2 is seen to have the same value over.almost a decade of values 

of q2. It is worth emphasizing here that since scaling is a statement of behavior 

asv andq2-w, any other dimensionless variable, w’ , such that wt - w as 
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v and q2 - 00 is, in principle, just as suitable as w for studying the scaling 

behavior of the data. Another variable could in fact lead to the scaling behavior 

sooner in the sense that vW2 and Wl could become independent of q2 (and hence 

equal to their q2 - ~0 limit) for smaller values of q2,. if they are studied as functions 

of q2 at fixed w1 rather than w. This in fact appears to be the case for inelastic 

elec.tron-proton scattering where the variable 296 

wt = 1 +s/q2 =w+M$‘q2 (6) 

results, particularly for 1 < w c 4, in a more rapid approach to the scaling behavior. 

This can be seen in Figures 3 and 4 where we have vW2 plotted versus w and w’ for 

various values of q2 (all corresponding to W? 2 GeV so that we stay away from the 

prominent N* resonances) and it is clear that vW2 is more independent of q2 for 

smaller values of q2 when plotted versus 0. In particular, we can see from 

Figure 3, that vW2 decreases toward its asymptotic value as q2 increases for fixed 

w in the range 1 *.z o < 4. Figure 4 shows that vW2 scales (i. e., is a function of w* 

only) to within the accuracy of the data for w’ in the range 1 < o* < 10 as long as 

q2 2 1 GeV2 and W > 2 GeV. Such a small value of q2 for the onset of scaling is 

rather remarkable. 

In our discussion of scaling and plots of vW2 we have used a third experimental 

finding, namely that R = aS/oT is small and does not depend strongly on v , q2, or 

w. The knowledge of R is equivalent to being able to explicitly separate the con- 

tributions of W1 and W2 to the double differential cross section, Eq. (1). This se- 

paration is accomplished by measuring scattering (or interpolating from measure- 

ments) at different angles, but the same values of v and q2, and has been reported2 

in some detail at Kiev . The value of R obtained by averaging over the 23 inter- 

polated points between o of 1 and 10 is 0.18 f 0.05. This is certainly small, and 
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given the possible systematic errors it is possible, although unlikely, that R = 0. 

In any case, it is now possible to plot W1 and vW2 at places where the separation 

has been made and roughly verify the scaling behavior for both W1 and vW2. 

Alternately, one can choose a constant (or some other functional form) for R which 

is consistent with the data, and plot vW2 and W1 for all the data points, as we have 

done above for vW2. Such plots are consistent with both vW2 and W1 scaling for 

1 < w t < 10 (again, as long as q2 > 1 Ge v2 andW>?GeV). 

Some of the most exciting new data concerns the inelastic electron scattering 

off deuterium which allows deduction of inelastic electron-neutron cross sections. 

Neglecting corrections for internal motion, final state interactions, and Glauber 

corrections, which should all be small, then the neutron cross sections are given 

by the difference of the deuterium and hydrogen cross sections. Assuming that the 

ratio of longitudinal to transverse cross sections (or Wl/vW2) is the same for the 

neutron and proton, then vW2dvW 
2P 

= D/H -1. This quantity is shown in Figure 5 

plotted versus 0. 7 Clearly vW2n/vW 
2P 

is smaller than unity in the range 

1.5 < w < 6 and further, vW~~/VW~~ is a function of w within the accuracy of the 

data, i. e. , the neutron data also appears to scale. If one plots VW 
2P 

- vWzn from 

this data plus the earlier proton data, then there appears to be a maximum between 

w of 3 and 4, at which point VW 
2P 

- vWzn M 0.1 and the ratio vWZn/vW 
2P 

= 2/3. 

The difference between neutron and proton inelastic scattering is direct evi- 

dence for an isospin dependent and therefore non-diffractive (.i. e. , not due to Pomeron ex- 

change in the language of Regge theory) component of the virtual photon-nucleon 

scattering amplitude8. Another piece of evidence for such a non-diffractive part 

lies in the behavior of vW2 and W, for large o (say w > 10). Since at large v and 
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fixed q2, vW2 CC q2 (cT + cs), one would expect vW2 to fall with increasing v at . _I 

fixed q2 if there is such a non-diffractive component. Unfortunately, there is no 

separation of vW2 and W1 for w 2 10 (no.r are there data available with large 

values of q2 for w > lo), and therefore one cannot even say for sure that there is 

scaling in this region. If we use the same small value of R found for w < 10, then 

the data are consistent with a scaling behavior and vW2 decreasing for large 

values of w. Alternately, one can consider directly the values of aT at points 

(Table III of reference 2) where a separation has been made and presented at 

Kiev. One then finds that cT appears to be a maximum between w of 3 and 4 and 

atq2 = 1.5 GeV2 falls at least as much with increasing energy as the total photo- 

absorption cross section does over the same v (or ti ) range as at q2 = 0. Thus, 

with reasonable assumptions it does appear that vW2 and aT do fall with increasing 

w, but e-xactly how much is beyond the ability of present accelerators to establish. 

Some of the striking aspects of the data discussed above, particularly the 

scaling behavior and point-like magnitude of the data, arise naturally in the parton 

model. 9 In this model one considers the electron-nucleon scattering as taking 

place in an infinite momentum frame at very large v and q2 and the electron is 

assumed to scatter instantaneously and incoherently off point constituents (partons) 

of the proton. With these assumptions one finds’ 

VW2P’ q2, = c P(N) 5 
N i=l 

Qf xfNi(x) = F2(x=q2/2mv) (7) 

where l?(N) is the probability of N partons, Qi is their charge, and fNi(x) is their 

longitudinal momentum distribution in terms of the fraction, x = l/w, of the total 

longitudinal momentum of the nucleon which they carry in the infinite momentum 
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frame. Clearly, since F2 is a function only of x = l/w in Eq. (7), we have the 

scaling behavior. The point-like magnitude has been put in through the assumption 

of point constituents. 

Several sum rules follow from Eq. (7). Ifwe assume the same momentum 

distribution for each of the N partons, then 

1 

f dxixifNi(xi) = l/N , 
0 

and the sum rule 

1 

f F2(x)dx = &(N) CQi” 
0 N i=l N 

(9) 

for the mean squared parton charge follows. 

yield f Q2/N = 1, 

Partons with Qi = f 1 of course 

i=l i 
while for a proton with three quarks as partons, c Q;/3 = l/3, ’ 

.i 
and a quark-antiquark sea with equal amounts of pb, 6, and Ax quarks gives 

c Qf/N = 2/9. Experimentally2 
i 

. 
1 

f 
0.1 

dx F2p(x) = 0.14 

(k 15%) WV 
1 

J- 
0.1 

dx F2n(x) = 9.16 

from the values of F2(w) constructed with the small angle (60 and 10’) data. The 

large angle data (with larger values of q2) and/or using o t to construct F2 from 
-4 

the small angle data yield slightly smaller values for i dx Fzp(x). Since 
0.1 0 - -- 

f 0 
dx F2(x), although unmeasured, with any reasonable extrapolation of F2 to x=0 

1 1 
is less than about 0.03, we see that SF 

0 2p 
(x)dx and SF 

0 2n 
(x)dx are too small 
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to agree with either the simple three quark or quark-antiquark sea model. One 

is forced to either disregard the sum rule because an assumption used in its 

derivation is wrong (e.g. , on the same momentum distribution for each parton), 

or to invoke the presence of neutral partons in addition to the charged ones in 

order to lower the mean square charge below 2/9. In the first case the sum rule 

is incorrect, and in the second case it leads to ad hoc models with neutral partons -- 

to patch up the discrepancy with experiment. Either way the parton model suffers 

a loss in predictive power. 

The assumption on the momentum distribution does not enter the sum rule 

1 

f 0 
$F2(xf = &W fiQ: , 

N i=l 

which simply follows by integrating Eq. (7) for vW2 with respect to x and using 

the normalization condition 1 s 0 
dxfNi(x) = 1 . w 

10 The sum rule (11) was originally proposed by Gottfried in the form 

00 

f 

dv 7 vW2(v,q2) = 1 
0 

03) 

for the proton (but not the neutron) for all q2 within the context of the quark model. 
11 

At q2 = 0 this sum rule for the proton is trivially satisfied due to the contribution 

of the Born term and vanishing (see Eq. (5)) of the continuum, The derivative 

with respect to q2- at q2 = 0 of Eq. (13) leads to 10 
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00 < r2 > 

dv v UT(V) = 4n2a I 
Flp @p) -- 

3 
2 I 4% 

= 420hb, (14) 

where a,(v) is the total photon-proton cross section at q2 = 0. Tf a,(“) is non- 

zero, the left hand side of Eq. (14) diverges logarithmically (a similar disease 

affects Eqs. (11) and (13) if F2(0) or vW2(m,q2) is not zero). The manner in which 

Eq. (13) is satisfied at q2 = 0 (by the Born term), however, suggests that if we are 

to make any sense of Eq. (14) the constant part (due Pomeron exchange in Regge 

language) of the total cross section (or vW2) corresponding to the diffractive part 

of forward Compton scattering should not be counted in the sum rule. Rather, we 

should include only the direct channel resonances and non-diffractive part of the 

amplitude. Unfortunately, it is difficult and, ‘more importantly, ambiguous to 

separate an amplitude into “resonant” and “non-resonant” or ‘non-diffractive” ano 

“diffractive,” contributions, particularly at low energies. If we proceed boldly and 

subtract from a,(v) at high energies the quantity aT (a) = 100 pb as the constant 

part of the photon-proton total cross section at high energies 12 , then we obtain 

values13 ranging from 400 to 550 pb for the integral on the left hand side of Eq. (14), 

depending on how we extrapolate the constant part of aT at high energies into the 

low energy region (W < 2.0 GeV). Thus, if we interpret Eq. (13) as being a sum 

rule for the non-diffractive part of the forward Compton amplitude, it appears to be 

quite possible that the resulting Eq. (14) is satisfied within the rather large ambi- 

guities in defining what is meant by the words “non-diffractive part”. 

Going to the opposite limit of large q2 and using the scaling property of vW2, 

Eq. (13) goes over to Eq. (ll) with the right hand side equal to 1 in the simple three 

quark model. 11 Experimentally, we have that2 



- 10 - 

1 

f $ F2p@l = 0..58 
l/l2 

(* 10%) .X15) 

from the 6o and loo data. Again, a finite valu,e of F2(,x) at x = 0 (i. e., .u or v = “) 

leads -to a ~ogarithmical2y.divergent integral9 and -if we interpret Eq. (13) as discussed 

above we must again somehow extract the non-diffractive part of ,the amplitude. 

‘This is Impossible .to ,do without more comple.te data for large values of w. ‘We 

note, however, that it is p.ossibl,e to obtain .the value of 1 given in Eq.. (13) for 

ldx, 
f 
0 

x F 
2P 

(x) with a suitable non-diffractive component .of VW 
,2P 

= Fzp above w = 12 

(below x = lJ12). ,Then -a large pa& of the observed F ,2p both .abose and below 

,w = 12 w&d have to be non-diffractive in .chara&er, something which the present 

data doesn’t d,isagree wfth, buf doesn’t necessarily show to be true either. In . 

summary, it is possible for a suitably interpreted version of Eq. (13) to be true 

from S2 .= 0 -b ~0 s but i.t is difficult to give an unambfguous definition of the part of 

“JJJQJ which. is ,to be included in the sum rul,e. 

The question of ,extra&ing’a particular component of the amplitude is avoided 

if wse cCons&der 

b,ecause ,the con&ant pa& of F2(xj as x - 0 or w - m presumably cancels between 

&he p3xah aad neutron. In a model where &he nucleon is made of three ,quarks or 

three quarks plus any number ofneutral,partons (the same neu.trd partons or quark- 

an)tQuark sea for both) >the integral .in &US] .shouM equal 1;/3, Experim\en.tally2 
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12 

- F2n(W) Fzp(x) - F2n(x)] = 0.13 (* 40%) . (17) 

A reasonable form (e. g. , cons t. / w 1’2) for Fzp- Fzn for large w (small x) could 

make the integral from 0 to 1 in x (1 to 03 in W) equal to l/3, although it requires 

pushing the values of F 2p- FZn to the upper limits of the error bars in thepresently 

available data. 2 

In brief, while the parton model is an easy way to remember certain 

features of the data, detailed qualitative comparison of the resulting sum 

rules’ leads to a fairly complicated picture. 
1 

If taken seriously, sum rules of the 

form $ dx F2 (x) indicate the need for neutral partons, while those of the form 
1 0 

f G F2(x) in any reasonable quark type parton model 14 indicate the need fcr a 
0 
large non-diffractive component to the forward virtual photon-nucleon amplitude 

both above and below w = 10. Still, the simplest way to remember the data quali- 

tatively is a parton model in which the nucleon is made of three quarks and a 

quark-antiquark sea, with possibly some neutral partons. 15 

Finally, with regard to sum rules, we note that the Bjorken inequality 16 

00 

f[ dv w,,cv, 4) +.W2J”, s2) 1 l/2 , 
0 1 08) 

which can be rewritten at large q2 using scaling as 

00 

f 
1 

$ ‘Fzp + F2J (w) 1 l/2 t (19) 

is formally satisfied by the data if the upper limit of integration is taken to be at 

w = 5. One previously worried that the Bjorken inequality would be trivially 
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satisfied due to the constant part of vW2(v, q2) as v - m P,W as w - 9, 

which leads to the logarithmic divergence of the integral discussed before. 

However, since we now know‘that between w = 1 and 5 VW 
2P 

is rather different 

than vWzn , we can have some confidence that most of the integrand in this region 

of w is not due to a diffractive part of vW2 and hence the inequality may well be 

non-trivially satisfied. Similarly the Adler sum rule 17 for inelastic neutrino 

scattering, 
co 

-U 
dv W;‘(v, q2) -w;)(v,q2) = 1 , 1 (20) 

0 

from which the Bjorken inequality is derived, now can be plausibly argued ,as being 

correct, but we shall not know for sure until actual experiments are done with 

neutrinos and anti-neutrinos. 

In our discussion of various sum rules above we have seen the importance to 

the success of several sum rules in the presence of a large non-diffractive com- 

ponent of the forward Compton amplitude for virtual photons. As noted earlier, 

direct and unambiguous experimental evidence now exists for at least some non- 

diffractive, isospin dependent component from the observation of a difference bet- 

ween electron-proton and electron-neutron inelastic scattering. The apparent 

decrease in vW2 or oT(v, q2) for large w or v is also evidence for such a component. 

Such a non-diffractive component of a forward amplitude and the corresponding 

decreasing total cross section at high energy is correlated with the presence and 

behavior of resonances at low energy,’ at least for purely hadronic processes. 

This correlation is part of the more general concept of duality and takes quantitative 

form in terms of finite energy sum rules. 18 
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Thus we might guess that the resonances, and in particular those resonances 

that give rise to prominent bumps in the total cross section, could have a behavior 

which is correlated with other features .of inelastic electron scattering. 19 In par- 

ticular, we would like to compare the behavior of the resonances to the behavior 

of vW2 and Wl in the scaling limit where v and q2-- 06. In the study of the behavior 

of the resonances, thevariable w’ introducedpreviously, which results in vW2 and WI 

exhibiting scaling for smaller values of q2, has an additional advantage. If vW2 

is considered as a function of w, the resonances occur at values of w > 1, with 

any particular resonance moving toward w = 1 as q2 increases. On the other hand, 

the nucleon pole term in vW2,corresponding to elastic scattering,always occurs at 

w = 1. With respect to w’ = 1 + w2/ q2, however, the nucleon and all other reson- 

ances all occur at values of w1 > 1 and move toward 1 as q2 increases. The nucleon 

is then not treated in a special way compared to other resonances. As we will 

shortly see, this also allows one to understand in another way the connection, 

found2’ in, the parton model between the behavior of the elastic form factors and of 

vW2 asw-1. 

The behavior of the resonances in comparison to vW2 in the scaling limit can 

be seen” * In Figure 6 where we have plotted the data for vW2 versus w1 (assuming 

R = cS/uT = 0). The dashed line, which is the same in all cases, is a smooth 

‘21 curve through the high energy 10’ data in the region beyond the prominent 

resonances (W > 2.0 GeV) and with large q2 (3 < q2 < 7 Ge 3 ). 22 We call this 

I 
dashed line, therefore, the “scaling limit curve11 vW2(w1). The solid lines are 

smooth curves through the 6’ data at various incident energies. As the incident 

energy E increases, so does $ and the resonances and elastic peak move toward 

w’=l . 
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We note two important things from Figure 6. First, as similar graphs of 

the 10’ data in the resonance region also show 23 , the prominent resonances do 

not disappear at large q2 relative to a I1 background” under them which has the 

scaling behavior. Secondly, as q2 changes the prominent resonances roughly 

follow in magnitude the scaling limit curve. Thus, both the prominent resonances 

and any “background I1 have a behavior as q2 changes which is closely correlated 

with the scaling behavior of vW2. Note that the ratio of height of resonance peak 

to background and the correlation of reson&ce peak height to the scaling limit 

curve could be seen if we plotted the data with respect to other variables (in par- 

ticular, w). However, in addition to not showing the onset of scaling behavior for 

W > 2 GeV at smaller values of q2, the other plots often require very careful 

inspection to see these relevant features of the data, while W’ plots allow one to 

see it at a glance. 24 

Thus, at least the prominent resonances do not seem to be a separate entity 

withabehavior divorcedfrom thatof the rest of thedata, but insteadappear to be an 

intrinsic part of the scaling behavior, One of course cannot determine without a 

detailed partial wave analysis of the hadronic final state exactly what the many 

broad, low spin N* resonances that we know exist are doing as a function of q2. 

But the behavior of the prominent N*‘s that we can see gives us the clue to what 

is happening. 25 Using the duality framework , we would say that the nucleon and 

other resonances at low energy build (in the sense of finite energy sum rules) the 

relevant non-Pomeron exchanges at high energy, which will result in a falling 

UT&i2 3 v) or vW2 curve and a difference between VW 
2P 

and vWzn. 

What is unique to studying duality in elec troproduction is the experimentally 

observed scaling behavior. This allows us to consider data at fixed values of wt 
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but different values of q2 and w2 , both within and outside the region of prominent 

resonances. Thus we can compare the data where there are prominent narrow 

resonances directly with da& for vW2 (w ‘). for large q2 and w2 where nature has 

accomplished the appropriate averaging of the many broad resonances and back- 

ground present there. One can give this comparison quantitative form 26 

in terms of finite energy sum rules where we find that VW (WI) acts as a smooth 
!2 

averaging function for vW2(v, q2), i. e. , the area under vW2(v, q2) should be the 

same as that under the scaling limit curve vW,(w’) if we integrate at fixed 

q2 2 1 Ge Jz up to a value of v or 0’ above which the scaling behavior, 

vW,(v,q’) = vW2(wr), is true. 

In spite of the existence of explicit models 27 of the structure functions as 

sums of resonances, there has been a point of confusion as to how resonances, 

which are known to have excitation form factors which fall rapidly with increasing 

q2, can be consistent with the “deep inelastic 11 data which is supposed to be 

characterized by a slow q2 variation. The confusion results from the fact that the 

If deep inelastic (1 data exhibit (for fixed W, say) more than one q2 dependence. If 

1 + W2/q2 corresponds to an of which is larger than @ 5, vW2(w I) varies very 

slowly and Q T CC (l/q2)vW2 a l/q2; but if 1 -t W2/q2 corresponds to wf 2 3, then 

vW2 (w I) varies rapidly with w ? and hence with q2 at fixed W. Thus the’ cross 

section at say W = 3 GeV should start falling as l/q2 for small q2, but when \ 

q2 2 4 Ge v2 , so that we are below the knee of the vW2 curve, aT should fall much 

faster. We can put this in quantitative form as follows: if G(q2) is the excitation 

form factor of the hadronic final state of mass W and 

Gts2) - CO/q 
2 n/2 

) 
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as q2 - 00, while vW2 can be parametrized as 

VW 2 (0’) - c’(w’ -1)P (22) 

as w’ - 1, then we must have 

n = p+l. (23) 

Thus each hadronic final state of mass W, if it is to participate in the scaling 

behavior, must have an excitation form factor with the same power of fall-off in 

q2asq2- to, and this power is related to the power with which vW2 rises at 

threshold, If we apply this in the low energy region to a given resonance of mass 

WR (including the nucleon) we see that all resonances which follow vW2(w I) in 

magnitude must have the same power of fall off in q2 as q2 - 43 (including the 

elastic with n = 4), and again this is related to the behavior of vW2 at threshold. 

20 Eq. (23) for the case of the elastic peak is just the relation of Drell and Yan 

first found in the parton model. 

The rather local averaging of the resonances by vW2(w1) seen in Figure 6 

encourages one to go further and make the very strong assumption that at large q2 

the elastic contribution to vW2 is averaged in the sense of finite energy sum rules 

by vW2 (tit)* SpecificaDy, one ass,umes that the area under the elastic peak (delta 

function) in “W2 is the same as the area. under the scaling limit curve uW2(w ‘) 

from wr = I to an or corresponding to a hadron mass W = Wt near physical pion 

threshold. This allows es one not o&y to again establish the connection (23) between 

the elastic form factor’s behavior as q2 - Q) and the behavior of vW2 near or = 1, 

but also a&ws a quantit&ive calculation of vW2 near wr = 1 from elastic scattering 

data. 28 Furthermore, the same assumption also, predicts from the behavior of the 



elastic form factors that R = cSS/cT - 0 as q2- 00 and of- 1, as well as 

vwznlvw 2P 
- Nn/pd2 = 0.47 in the same limit. As can be seen from Figure 5, 

the 6’ and 10’ data seem to show this last prediction is not far from the truth, 

but only the large angle deuterium data to be taken soon at SLAC will go to small 

enough values of w 1 to really tell if this is true. 

There are many other interesting aspects of inelastic electron-nucleon 

scattering and related processes which unfortunately cannot be discussed in this 

talk, but which are of great importance and will be discussed by others at this 

Symposium. As already noted, the observation of a difference between electron- 

proton and electron-neutron inelastic scattering makes it very likely that neutrino 

and anti-neutrino inelastic scattering are also different. One should also expect 

non-zero asymetries in the scattering of polarized electrons or muons on polarized 

protons, something which will likely be investigated experimentally in the near 

future. Slightly further afield is the behavior of the cross section for e--f- e+-- 

hadrons. The observation at Frascati of large (i. e., point-like) cross sections is 

very exciting and again indicates the possible relevance of parton ideas. Such. 

ideas may also be relevant in studying the behavior of muon pair production in 

hadron-hadron collisions. 29 

Altogether, the last few months have seen some real progress in inelastic 

scattering both experimentally and theoretically. Furthermore, I think that our 

theoretical progress has not all been of the negative kind, i. e. , the elimination of 

some of the proposed theories and models. We not only have direct experimental 

evidence for the presence of a substantial non-diffractive, isospin dependent 

component of the forward Compton amplitude for virtual photons but I think we have 

a much more unified understanding of the relation between the behavior of the 



-18- 

elastic form factors and the threshold behavior of vW2, the behavior of the 

resonance excitation and the scaling behavior, etc. However, we still do not 

have a detailed quantitative theory which does more than relate one kind of ob- 

served behavior to another. Perhaps this should be no surprise, since such a 

quantitative theory would probably have to come quite close to being a complete 

theory of strong interactions and of the composition of hadrons. 

s 
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Figure 1 Kinematics of inelastic electron-nucleon scattering. 

Figure 2 

Figure 3 

Figure 4 
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Figure Captions 

Values of vW2 at fixed w = 4 and various values of q2. 

Values of vW2 versus w = 2MNv/q2 for data with W > 2 GeV 

and various ranges of q2 (in Ge ti! ). 

Values of vW2 versus w T = 1 + w2/ q2 for data with W > 2 GeV and 

various ranges of q2 (in Ge v2 ). 

Figure 5 Values of (D/H-l) plotted versus w. Al1 data points have 

q2 > 1 GeV2. Assuming R = dS/gT is the same for neutron and -. 

proton and neglecting deuterium.corrections (which should be small), 

the ordinate is vW~~/VW~~. 

Figure 6 The function VW 
2P 

plotted versus w’ = (2MNv +z)/q2 with m2 = l? N. 

The solid lines are smooth curves drawn through the 6’ = 6’ data at 

various incident energies. The dashed curve, which is the same 

in all cases, is a smooth curve through large v and q2 data. All 

data is plotted assuming R = as/uT = 0. The E = 7 GeV data involves 

values of q2 all of which are considered outside the scaling region. 
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