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Abstract

We discuss three examples of nonperturbative phenomena in the topological string.

First, we consider the computation of amplitudes in N = 4 super Yang-Mills theory

using the B model topological string as proposed by Witten. We give an argument

suggesting that the computations using connected or disconnected D-instantons of

the B model are in fact equivalent. Second, we formulate a conjecture that the

squared modulus of the open topological string partition function can be defined

nonperturbatively as the partition function of a mixed ensemble of BPS states in

d = 4. This conjecture is an extension of a recent proposal for the closed topological

string. In a particular example involving a non-compact Calabi-Yau threefold, we

show that the conjecture passes some basic checks, and that the square of the open

topological string amplitude has a natural interpretation in terms of 2-dimensional

Yang-Mills theory, again generalizing known results for the closed string case. Third,

we discuss an action for an abelian two-form gauge theory introduced by Hitchin

which describes variations of G2 structures in seven dimensions. Upon reducing to

six dimensions this action splits into two pieces, one related to the complex structure

and one related to the symplectic structure; we argue that these two pieces are related

to the A and B model topological string theories. In this sense Hitchin’s gauge theory
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is a candidate for a “topological M-theory” in seven dimensions. We also note that

upon reduction to lower dimensions this two-form gauge theory naturally reduces to

gauge theory descriptions of lower-dimensional gravity theories.
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Chapter 1

Introduction and summary

The perturbative topological string can be viewed from several different perspec-

tives. On the one hand it is a string theory in its own right, defined on target spaces

with a rather special structure, which happens to have a very restricted set of ob-

servables and is (at the moment) mathematically more tractable than the physical

superstring. On the other hand, the perturbative topological string can be viewed as

an embedded subsector of the superstring, in the sense that the integral over mod-

uli of Riemann surfaces which one does to compute any particular correlator in the

perturbative string corresponds directly to a computation of some correlator in the

superstring. In this identification it turns out that the topological string on M is

related to the Type II superstring on M × R3,1, with the topological string coupling

related to the self-dual part of the graviphoton field strength in the physical string

theory, gtop = F+; schematically, if we write the topological string free energy as F ,

and the vector multiplet moduli of M as X, there is a term in the N = 2 effective

1
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action of the form
∫

d4x
∫

d4θF(gtop = F+, X). (1.1)

Through this term, the perturbative topological string turns out to contain a lot

of information about quantities in the superstring which are in some sense “BPS

saturated.” A recent review of this embedding and some of its consequences has

appeared in [95].

On the other hand, there is by now fairly strong evidence that the perturbative

superstring is the gs → 0 approximation of a theory which makes sense even at finite

values of gs. Given the embedding we just discussed, it is natural to ask whether

the same might be true of the topological string. This is related (perhaps equivalent)

to asking whether the physical string theory makes sense at finite values of F+. No

comprehensive answer to this question has yet emerged, but there are indications that

the topological string indeed exhibits some nonperturbative phenomena. This thesis

consists of an exploration of some of these phenomena.

Chapter 2: A computation in the twistor-string

A first indication that the nonperturbative topological string ought to make sense

comes from Witten’s twistor-string theory, proposed in [133]. That paper conjectures

a correspondence between the perturbative N = 4 super Yang-Mills theory in d = 4

and a string theory in twistor space CP3|4. More precisely, Witten conjectured that

the string theory in question is the topological B model, and more precisely still, it is

the nonperturbative physics of the B model which plays a crucial role: the perturbative

B model corresponds to the self-dual sector of the N = 4 super Yang-Mills theory,
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and contributions from D1-string instantons enhance it to the full theory including

both helicities.

In Chapter 2 we consider a puzzle which arose in this context: which sorts of D1-

string instantons should be included in the relation to N = 4 super Yang-Mills? Do

we consider only connected instantons, only disconnected instantons, or all of them?

In fact, we give an argument which suggests that — at least for tree level ampli-

tudes — considering disconnected instantons could give the same result as consider-

ing connected ones. The argument runs basically as follows: to evaluate a scattering

amplitude one has to do a kind of contour integral over the moduli of the instan-

tons under consideration. By Cauchy’s theorem this integral can be localized on the

divisor where the integrand has poles. Irrespective of whether we study connected

or disconnected instantons, we see that there is a pole corresponding to degenerate

configurations where the D-instantons form a “tree” of lines in CP3|4, so contour in-

tegration can be reduced to integrating the residue over the moduli of such trees.

This residue turns out to be independent of whether we started with the connected

or disconnected instantons.

This argument can be viewed as an ingredient in understanding how to compute in

the nonperturbative topological B model string theory on CP3|4. However, it has not

yet been converted into a rigorous proof of equivalence between the two computations

of the tree level Yang-Mills amplitudes, because the words “a kind of contour integral”

in the previous paragraph need to be given a definite meaning. At tree level, there

are now rigorous formulas for the Yang-Mills amplitudes which morally represent the

result of this contour integration (given in [107] for the connected instantons and [31]
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for the disconnected ones), but nobody has yet obtained these formulas rigorously

from an integral over moduli space. The problem of defining this integral precisely

can be viewed as the problem of defining the nonperturbative B model in this context.

The arguments given in this chapter were obtained in collaboration with Sergei

Gukov and Luboš Motl. The text has appeared previously in

S. Gukov, L. Motl and A. Neitzke. “Equivalence of twistor prescriptions
for super Yang-Mills,” http://arxiv.org/pdf/hep-th/0404085.

I also want to acknowledge Michal Fabinger, Peter Svrček, Cumrun Vafa, Anas-

tasia Volovich and Edward Witten for discussions related to the material in this

chapter.

Chapter 3: BPS microstates and the open topological string wave function

A second indication that the topological string might make sense beyond pertur-

bation theory comes from a rather different direction, namely the conjecture of [98].

This paper argues that the squared modulus of the partition function of the topologi-

cal string partition function on a Calabi-Yau threefold M , |Ztop|2, can be interpreted

as computing the partition function of a particular ensemble of BPS black hole states

in the Type II superstring on M×R3,1. Because this relation involves the value of the

partition function at a particular finite value of the moduli and couplings (essentially

fixed by the attractor mechanism of d = 4, N = 2 supergravity) it is essentially non-

perturbative in character, and one could argue that it really defines what one should

mean by the nonperturbative topological string.

This gives a candidate definition for |Ztop|2, but not for Ztop itself! This is presum-

ably related to the fact that if one wants to turn on a finite graviphoton field strength
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F in Minkowski signature one has to turn on both F+ and F−, with F− = F+, so

that in the N = 2 effective action one gets not just (1.1) but also its complex conju-

gate. Indeed, in one example studied in [124, 10], one sees that Ztop seems to make

sense only in perturbation theory around gtop = 0, while |Ztop|2 has an extension to

finite values of gtop; namely, it is the partition function of a 2-dimensional Yang-Mills

theory,

|Ztop|2 = ZYM. (1.2)

In Chapter 3 we explore the possibility of extending this conjecture to give a

nonperturbative definition of the open topological string. By reconsidering the same

example studied in [124, 10], we find that such an extension seems to exist; namely,

we find that if we introduce branes in the topological string theory, the resulting Zopen
top

still satisfies

|Zopen
top |2 = Zopen

YM , (1.3)

where Zopen
YM represents a 2-dimensional Yang-Mills partition function with a particular

observable inserted. This then gives a nonperturbative completion of the square of

the open topological string in this particular case. (More precisely, we give this

completion only for a fixed value of the real part of the open string moduli — in

other words, we consider branes wrapped on a particular Lagrangian cycle L which

is not allowed to move, and give a completion of the dependence of the partition

function on gs and on a Wilson line around L.)

It is natural to expect that by an extension of the logic of [124, 10] this Zopen
YM

will also have an interpretation as counting BPS states, so at least in this case we

would find that |Zopen
top |2 counts BPS states; using the wave function property of the
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open topological string we in fact formulate a more general conjecture, in the spirit

of [98]. The BPS states in question are states in a 1 + 1 dimensional gauge theory

obtained by wrapping D4-branes over a Lagrangian subspace of M . This conjecture

is necessarily more tentative than that of [98], because we are lacking the analog of

the attractor mechanism for these BPS states, so we have no spacetime argument for

what their entropy should be.

The results in this chapter were obtained in collaboration with Mina Aganagic

and Cumrun Vafa. The text has appeared previously in

M. Aganagic, A. Neitzke, and C. Vafa. “BPS microstates and the open
topological string wave function,” http://arxiv.org/pdf/hep-th/0504054.

I also want to acknowledge Jacques Distler, Noam Elkies, Sergei Gukov, Marcos

Mariño, Shiraz Minwalla, Luboš Motl, Hirosi Ooguri and Natalia Saulina for discus-

sions related to the material in this chapter.

Chapter 4: Topological M-theory?

The last chapter of this thesis is somewhat more speculative than the first two.

It concerns the possibility that the nonperturbative formulation of the topological

string might be similar to that of the physical string, in the sense that the target

space develops an extra dimension whose size is related to the coupling constant.

We focus on the critical case, in which the target space is a Calabi-Yau threefold; in

that case, it is natural to guess that after the extra dimension grows we should get

a theory describing variations of G2 structures. In Chapter 4 we collect some ideas

and observations about the form such a theory might take, and how it fits into the

broader context of theories of gravity where the basic fields are p-forms.
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As with physical M-theory, we do not expect to understand topological M-theory

directly from a microscopic perspective; instead we set our sights somewhat lower and

look for the 7-dimensional analogue of the 11-dimensional supergravity action. This

should be a theory for which the classical solutions are metrics of G2 holonomy. Luck-

ily, a natural candidate action has been provided by Hitchin in [74], which describes

a kind of 2-form gauge theory in which the action is a complicated nonlinear function

of the 3-form field-strength Φ. At the critical points in a fixed flux sector one finds

that Φ is the associative 3-form of a G2 holonomy metric. Furthermore, if we take

the G2 manifold to be of the form X = M × S1, the action on M roughly reduces

to a sum of two pieces, one having to do with the holomorphic 3-form on M and

one having to do with the symplectic structure. We argue that, at least classically,

these two pieces are related to the B model and the A model topological strings on M

respectively; they seem to correspond to reformulations of those theories which are

naturally adapted to the problem of counting black hole states. In the B model case

the reformulation that appears is essentially the one described in [98] which gives the

squared modulus of the partition function. In the A model case the situation is less

clear, but the action which one gets seems to be related to the “dual” description of

that theory in terms of a U(1) gauge theory in six dimensions, described in [80].

One surprising feature, essentially already noted in [74], is that in the Hamiltonian

quantization of the seven-dimensional theory the A model and B model degrees of

freedom show up as canonically conjugate variables. It is natural to suppose that

this could be related to the S-duality of topological strings discussed in [94, 96, 83,

17]. At the moment, however, this is only a speculation; indeed, we have not even
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written a precise statement about the relation between the partition functions in

seven dimensions and in six.

The ideas in this chapter were developed in collaboration with Robbert Dijkgraaf,

Sergei Gukov and Cumrun Vafa. The text has appeared previously in

R. Dijkgraaf, S. Gukov, A. Neitzke, and C. Vafa. “Topological M-theory
as Unification of Form Theories of Gravity,”
http://arxiv.org/pdf/hep-th/0411073.

I also want to acknowledge Michael Atiyah, Jan de Boer, Robert Bryant, Claude

LeBrun, Jan Louis, Hirosi Ooguri, Martni Roček, Lee Smolin, Cliff Taubes, Erik

Verlinde, and Shing-Tung Yau for discussions related to the material in this chapter.

After the text of this chapter appeared on the Web archive, Vasily Pestun and

Edward Witten [103] performed a one-loop test of the proposed relation discussed in

Section 4.5.2 between the B model partition function and the holomorphic volume

functional in six dimensions. They found that in order to obtain agreement one has to

replace the holomorphic volume functional by an “extended” version which includes

some additional fields. These additional fields can be understood as describing vari-

ations of generalized complex structures in the sense of [75, 65]. In retrospect this

modified version of the conjecture is more natural than the one we originally proposed;

indeed, the B model contains observables describing variations of these generalized

complex structures [84]. It is likely that the conjecture in seven dimensions should

be similarly modified, so that one considers generalized G2 manifolds in the sense of

[128] rather than ordinary ones.



Chapter 2

Equivalence of twistor

prescriptions for super Yang-Mills

2.1 Introduction

Recently in [133] Witten proposed a new approach to perturbative gauge theories

in four dimensions which, among other things, implies remarkable regularities in the

perturbative scattering amplitudes of N = 4 super Yang-Mills and leads to new ways

of computing them. The scattering amplitudes in question depend on the momentum

and polarization vectors of the external gluons, and are devilishly difficult to com-

pute using the standard Feynman diagram techniques. For example, even computing

a tree level amplitude with 4 external gluons of positive helicity and 3 gluons of nega-

tive helicity (such an amplitude will be denoted A[++++−−−]) requires summing over

hundreds of different diagrams!

According to the conjecture of [133], perturbative N = 4 super Yang-Mills theory

9
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can be described as a string theory in twistor space CP
3|4. In this reformulation, the

Yang-Mills scattering amplitudes are given by certain integrals over moduli spaces of

holomorphic curves in CP3|4, which can be interpreted as D1-brane instantons. More

precisely, for a tree level process involving q negative helicity gluons, the amplitude

is given by an integral over moduli of curves of total degree d, where

d = q − 1. (2.1)

For example, the simplest non-vanishing amplitude with q = 2 gluons of negative

helicity1 — the so-called maximally helicity violating (MHV) amplitude [101, 90] —

can be computed by integrating over the moduli space of degree 1 curves in CP3|4

[133].

However, when one considers the next simplest case, q = 3, there is a puzzle.

In the prescription of [133] this amplitude seems to involve a sum over two distinct

contributions: one from an integral over connected degree 2 curves, and another from

an integral over disconnected pairs of degree 1 curves; see Figure 2.1. Surprisingly,

in the case of A[++−−−], it was found that the contribution from connected degree

2 curves alone gives the full Yang-Mills amplitude, at least up to a multiplicative

constant [106]. This computation was extended to all googly [108] and some non-

MHV [107] amplitudes, again with the surprising result that connected degree d curves

already account for the full Yang-Mills amplitude, without adding any disconnected

curves.

On the other hand, there is some evidence that these tree level amplitudes can

also be computed by considering only the contribution of curves which are “maximally

1We follow the conventions of [133] where a n-gluon scattering amplitude is called MHV if n−2
external gluons have positive helicity, and MHV (or “googly”) if n−2 gluons have negative helicity.
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a) b)

Figure 2.1: An instanton contribution: (a) from a connected curve of degree 2; (b)
from a pair of degree 1 curves. The dotted line represents a propagator in holomorphic
Chern-Simons theory.

disconnected,” namely, they consist of d distinct degree 1 lines. Since degree 1 curves

are associated with MHV amplitudes, this result suggests an alternative method of

computing generic tree amplitudes from graphs with MHV vertices [31]. The number

v of vertices is determined by the number of gluons with negative helicity; it is actually

equal to the degree (2.1),

v = q − 1. (2.2)

This approach leads to a spectacular simplification of the computations. For example,

the 7-gluon amplitude A[++++−−−] mentioned earlier can be computed using only 8

diagrams with MHV vertices. However, it also leads to a puzzle.

As we just discussed, the evidence so far in the literature suggests that rather

than one prescription for Yang-Mills amplitudes there are at least two: one involving

connected curves only, another involving maximally disconnected ones. We will refer

to these as the “connected prescription” and the “disconnected prescription” respec-
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tively. These different prescriptions have so far not been related directly. In a sense,

they seem to have complementary virtues: the connected prescription expresses the

whole amplitude as a single integral, and from this form it is easier to prove some

properties of the amplitude, such as the parity symmetry; on the other hand, the

disconnected prescription leads to concrete and immediately useful formulas for the

tree level amplitudes.

The purpose of this note is to argue that the connected and disconnected prescrip-

tions are equivalent, at least for an appropriate choice of the integration contours, and

to give an a priori explanation for this agreement. The explanation is that, in both

prescriptions, the integral over the moduli space is localized to poles on a particular

submoduli space. This submoduli space parameterizes configurations of intersecting

degree 1 curves.

Let us illustrate this explanation in the simplest case of degree 2 curves. We have

two different moduli spaces, M0,n,2 and Mlines, parameterizing respectively connected

degree 2 curves in CP3|4 and disconnected pairs of lines in CP3|4, and integrands ωconn

and ωdisc on the two spaces (we will review the construction of these integrands in

Section 2.2). Our job is to explain the equality

∫

M0,n,2

ωconn =
∫

Mlines

ωdisc. (2.3)

The explanation begins by noting that both Mlines and M0,n,2 contain a codimension-

one “degeneration locus” Mint parameterizing the moduli of pairs of intersecting lines

in CP3|4. In the case of Mlines we get such a degenerate configuration just by taking

two lines in CP
3|4 which happen to intersect. For M0,n,2 we get such a degeneration

by considering a hyperbola xy = C in the limit C → 0, appropriately embedded
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in CP
3|4. The crucial point is that both ωconn and ωdisc turn out to have a simple

pole along Mint, and furthermore the residue is the same in both cases.2 Therefore,

provided that the integration contours on Mlines and M0,n,2 are chosen compatibly

(so that they both encircle Mint and reduce to the same contour along it), the desired

agreement follows.

The argument for general degree d proceeds along similar lines. In the moduli

space M0,n,d we find a pole where a degree d curve degenerates into two intersecting

curves of degrees d1 and d2; the integral over M0,n,d localizes to this sublocus; then

inside this sublocus there is a pole where one of the two curves degenerates further,

and so on until we reduce finally to the moduli space Mint of connected trees built

from degree 1 curves. On the other hand, the integral over Mlines also reduces to the

same Mint, because the propagators connecting the different lines have poles when

the lines intersect. Furthermore it turns out that the integrands on Mint coming from

the two prescriptions are proportional. This establishes the agreement between these

two prescriptions, again provided that the contours are chosen appropriately, and up

to an overall constant which we do not fix.

This iterative argument pays a surprising dividend: for any K = 0, . . . , d− 1, we

can define an “intermediate prescription,” in which we integrate over configurations

of K + 1 curves with total degree d. We will show that all of these intermediate

prescriptions agree with the connected and disconnected prescriptions. They can also

be understood diagrammatically: one sums over tree diagrams with K + 1 vertices,

where each vertex is decorated with a degree. In these notations, vertices of degree 1

are the MHV vertices of [31], whereas vertices with d > 1 could be called “non-MHV

2We learned of the possibility of such an explanation from Edward Witten.
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vertices”. These intermediate prescriptions deserve further study.

For other recent work on the twistor string approach to Yang-Mills, see [106, 108,

107, 20, 21, 134] for the connected prescription, [31, 135, 55] for the disconnected

prescription, and [13, 96, 94] for related topics.

2.1.1 Notation and moduli spaces

We always consider scattering amplitudes of n external gluons associated with the

particular trace factor Tr (T1T2 . . . Tn).

We use a coordinate representation for the super twistor space C4|4. We unify the

bosonic and fermionic indices into a superspace index A taking values in

A ∈ {1, 2, 3, 4 |1′, 2′, 3′, 4′}. (2.4)

The components of all objects with bosonic values of the superspace index are com-

muting, while components with fermionic (primed) values of the superspace index are

anticommuting. The coordinates on the super twistor space will be denoted by ZA,

which are related to the coordinates in the literature by

(Z1, Z2, Z3, Z4|Z1′, Z2′ , Z3′, Z4′) = (λ1, λ2, µ1, µ2|ψ1, ψ2, ψ3, ψ4) ∈ C
4|4. (2.5)

We will also be considering various moduli spaces of curves in CP3|4 with marked

points. We use the standard notation

M0,n,d(CP
3|4) (2.6)

for the moduli space of “genus 0, n-pointed curves of degree d in CP
3|4.” This moduli

space has dimension (4d + n)|(4d + 4). As in [133] we realize it as the space of
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Figure 2.2: A curve of degree 2 can degenerate into a pair of intersecting lines.

automorphism classes of maps CP1 → CP3|4, of degree d, with n marked points on

CP
1. Since the target space is always CP

3|4 in this chapter, sometimes we abuse

notation and write simply M0,n,d.

We will be interested in integrating over M0,n,d(CP3|4), so we need to understand

the properties of this moduli space. First, M0,n,d(CP
3|4) is non-compact, due to cer-

tain degenerations that a degree d curve with n marked points can have which are not

simply described by a map CP1 → CP3|4. One type of degeneration that will be im-

portant below is when a curve develops a node, i.e. splits into two components. There

is a standard way of incorporating these degenerate curves into our moduli space of

maps; one then obtains a larger compact space M0,n,d(CP3|4), called the “moduli

space of stable maps.” This moduli space is a smooth algebraic variety, except for

certain orbifold points which will not play an important role in this chapter.3

In particular, the “boundary” of this moduli space,

M0,n,d(CP
3|4) \M0,n,d(CP

3|4), (2.7)

contains a codimension 1 divisor which parameterizes curves which have split into

3Strictly speaking this theorem has been proven when the target space is CP3 [53], not for the
supermanifold CP3|4, but we do not expect any important differences.
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two components. Similarly, for any K there is a subspace MK
int of codimension K

that parameterizes reducible curves with K nodes, i.e. curves which have split up

into K+1 intersecting components which intersect in a tree. This MK
int can be further

decomposed into irreducible pieces,

Mint =
⋃

Γ

MΓ
int, (2.8)

where the different Γ label different shapes of the tree, together with different de-

compositions of d into individual degrees {di}, i = 1, 2, . . .K+1, di ≥ di+1,

and different ways in which the n marked points can be distributed over the K+1

components. Some of these MΓ
int will play an important role in our discussion below.

2.2 Review of connected and disconnected prescrip-

tions

Suppose we want to use the twistor prescription of [133] to evaluate a Yang-Mills

amplitude with q = d+1 negative helicity gluons. All contributions to this amplitude

are expected to involve holomorphic curves of total degree d, but a priori these can be

either connected or disconnected. In this section we review the contributions which

would be expected from the two most extreme cases: connected degree d curves and

completely disconnected families of d degree 1 curves.

In both cases we will consider the Yang-Mills amplitude with arbitrary external

scattering states. Via the Penrose transform these scattering states are described

by twistor space wavefunctions,4 which are ∂-closed (0, 1) forms φi (i = 1, . . . , n) on

4Actually, the wavefunctions are not defined on all of CP3|4, but this distinction will not be
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CP
3|4. We always treat these φi as generic. In our computation, we will be focusing

on poles which arise in integrals over moduli spaces of curves; we emphasize that the

poles in question never come from the φi.

The prescriptions as we write them below are not gauge invariant. To make the

amplitudes gauge invariant we would probably have to include additional diagrams in

both prescriptions, involving cubic Chern-Simons interaction vertices. Nevertheless,

both prescriptions make sense provided we choose a specific gauge for the gauge field,

such as an axial gauge. In this gauge one expects that the cubic vertices do not

contribute [133].5

2.2.1 Connected prescription

We first review the connected prescription for computation of n-point Yang-Mills

amplitudes. The amplitude is obtained as an integral over degree d maps

P : CP
1 → CP

3|4. (2.9)

Such a map P can be written explicitly, in terms of the inhomogeneous coordinate σ

on CP1, as

PA(σ) = ZA =
d∑

k=0

βA

k σ
k (2.10)

The supermoduli of the degree d map P are βA
k ; these span a space C4d+4|4d+4, which

comes equipped with the natural measure

µd =
∏

k,A

dβA

k . (2.11)

important for us.
5We thank Peter Svrček for reminding us of this point.
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We also have a holomorphic n-form on (CP
1)n given by the free-fermion correlator,

ω(σ1, . . . , σn) =
n∏

i=1

dσi

σi − σi+1
, σn+1 ≡ σ1. (2.12)

Note that both µ and ω are invariant under the group GL(2,C) that acts linearly

on the homogeneous coordinates on CP1. Its action on σ is given by the usual

expression

σ 7→ σ′ =
aσ + b

cσ + d
, ad− bc 6= 0 (2.13)

while its action on βA

k is dictated by the invariance of ZA in (2.10): the coefficients

βA

k may be reorganized (up to some combinatorial factors suppressed for simplicity)

into a rank d tensor under GL(2,C),

{βA

k } = {βA

I1I2...Id
}, Il = 1, 2, (2.14)

where the number of indices Il = 2 equals k, so that the action of GL(2,C) on βA

k

becomes

βA

I1I2...Id
7→ β ′A

I1I2...Id
= M

I′1
I1 M

I′2
I2 . . .M

I′
d

Id
βA

I′
1
I′
2
...I′

d
, M I′

I =




d −b

−c a


 . (2.15)

Along with µ and ω we also have to include the external wavefunctions,6

Φ =
n∏

i=1

φi(P (σi)). (2.16)

Putting everything together, the Yang-Mills amplitude is formally7

∫

M0,n,d

µd ∧ ω(σ1, . . . , σn)

vol(GL(2,C))
∧ Φ. (2.17)

6We write φ(P (σi)) for the pullback of φ to moduli space via the evaluation map sending P to
P (σi).

7Here and below, by vol(GL(2, C)) we really mean the volume form on that group; this is just
the standard quotient, when written in terms of an integral over the quotient space.
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The expression (2.17) is formal for several reasons. The first and most serious

reason is that we have to choose a contour for the integral over the coordinates βA

k in

M0,n,d, and the proper choice of contour is not yet well understood. (We do not have

to choose a contour for the integrals over σ, because the integrand includes both dσ

from ω and dσ̄ from the external wavefunctions.) We will have more to say about

the contour below; to match the disconnected prescription we will essentially use a

contour around infinity (suitably defined) so that all residues are counted.

Second, we have to divide out by the action of GL(2,C). A convenient gauge-

fixing will be chosen below, but of course the amplitude is independent of the choice of

gauge. We should perhaps mention that we consider GL(2,C) over C, i.e. we divide

by the “holomorphic” volume form. This means that

• this symmetry will always be fixed by a set of holomorphic conditions;

• we will sum over all inequivalent solutions;

• only the holomorphic Jacobian will be included in the integrals.

These rules are compatible with the computations of [106, 108, 107].

2.2.2 Disconnected prescription

Now we describe the disconnected prescription for the same amplitudes, formu-

lated in twistor space along the lines of the derivation given in [31]. In this prescrip-

tion a tree level amplitude involving d+ 1 negative helicity gluons, with a particular

cyclic ordering, is obtained as a sum over various tree diagrams with d vertices. In

Figure 2.3 we show a representative example of a diagram Γ which contributes to
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Figure 2.3: A contribution to Yang-Mills amplitudes with 5 positive and 5 negative
helicity gluons, represented (a) as four disconnected lines in twistor space, (b) as a
graph Γ with four MHV vertices.

amplitudes with 5 positive and 5 negative helicity gluons. The 10 external gluons

are arranged cyclically around the index loop, and since there are 5 negative helic-

ity gluons there are 5 − 1 = 4 vertices. The vertices have arbitrary valence.8 We

have not specified which gluons have which helicities; the twistor space computation

yields superspace expressions which generate the answers for all possible choices when

suitably expanded in the fermionic coordinates.

Each vertex of Γ corresponds to a CP1 in CP3|4, equipped with marked points

corresponding to internal or external lines attached to the vertex. To compute the

8Ultimately, it turns out that any diagram containing a vertex of valence ≤ 2 does not contribute
to the amplitude [31].
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Figure 2.4: A different version of Figure 2.3, representing the same single-trace am-
plitude with the index line made manifest. The circles represent degree 1 curves in
twistor space.

contribution of Γ to the amplitude we have to integrate over the moduli of these

curves, given by d degree 1 maps

Qi : CP
1 → CP

3|4. (2.18)

Each such map can be written

QA

i (σ) =
1∑

k=0

βA

k,iσ
k (2.19)

so there are a total of 8d|8d supermoduli βA

k,i for these d maps, reduced to 4d|8d by

the GL(2,C)d symmetry. We also have to integrate over the moduli for the marked

points; if in the diagram Γ there are ni marked points on the i-th CP
1, then the full

moduli space is

MΓ
lines =

d∏

i=1

M0,ni,1(CP
3|4). (2.20)
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As in the connected case there is a natural measure for the moduli of the curves,

µlines =
∏

k,A,i

dβA

k,i. (2.21)

There are several factors in the integrand which depend on the marked points. First,

there is a free-fermion correlator for each curve; the points on the i-th CP1 come with

a cyclic ordering as indicated in Figure 2.3, and if we label them σ1, . . . , σni
, they

contribute

ωi = ω(σ1, . . . , σni
) (2.22)

with ω defined in (2.12). These free-fermion correlators contain dσ for each marked

point.

Next we have to include the external wavefunctions: each external wavefunction

φj is connected to a marked point σ on the i-th CP1, for some i, and the integrand

includes the factor

φj(Qi(σ)) (2.23)

just as in the connected prescription. But unlike the connected prescription, here we

also have some marked points which are connected to internal propagators. Let us

write D(·, ·) for the twistor space propagator, which is a (0, 2)-form on CP3|4 ×CP3|4.

Each internal propagator is connected to two marked points σ, σ ′ on the i-th and

i′-th CP1’s respectively, for some i, i′, and contributes to the integrand a factor

D(Qi(σ), Qi′(σ
′)). (2.24)

Let us write Φ ∧ D for the product of all the wavefunctions and propagators from

(2.23), (2.24). Since every marked point is attached either to a propagator or to an

external wavefunction, this Φ ∧D includes one factor dσ̄ for each marked point.



Chapter 2: Equivalence of twistor prescriptions for super Yang-Mills 23

Then the amplitude in the disconnected prescription is given by the sum over tree

diagrams,

∑

Γ

∫

MΓ
lines

µlines ∧
(∏d

i=1 ωi

)
∧ Φ ∧D

vol(GL(2,C))d
. (2.25)

As with the connected prescription, to make this integral concrete we have to

do two more things. First, we must gauge-fix the symmetry GL(2,C)d which acts

separately on each CP1. Second, we must choose a contour for the integrals over the

moduli βA
k,i.

In [31] it was argued that if one makes a particular choice of contour, and chooses

external wavefunctions corresponding to gluons of fixed helicity and momentum, then

the integral over MΓ
lines in (2.25) can be evaluated by a simple rule. Namely, one first

assigns (+) and (−) helicities to the endpoints of each propagator, consistent with

the rule that each vertex should have exactly two (−) helicities on it; for given Γ,

there is at most one way to do this. (If there is no way to do it, then the diagram

Γ just contributes zero.) Then each vertex gives a copy of the MHV amplitude —

continued off-shell in a specific way to accommodate the internal lines — while each

propagator carrying momentum q gives 1/q2.

For future use in section 2.4.2 we also mention a natural generalization of the

disconnected prescription: instead of using d degree 1 curves we could use K + 1

curves for some K, with total degree d, connected into a tree by K propagators. The

integrand is then defined in a way precisely analogous to (2.25), except that the sum

over Γ includes all choices for the degrees of the curves in addition to distributions of

the marked points.
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2.3 Matching the prescriptions in degree 2 case

2.3.1 The argument in degree 2 case

How can the disconnected and connected prescriptions give the same result? Let

us consider next-to-maximally helicity violating amplitudes, q = 3, which come from

degree 2 curves. We postpone the discussion of curves of higher degree to section 2.4.

The contribution of disconnected instantons comes from pairs of degree 1 curves

connected by a single propagator, with n marked points distributed over the pair

of curves. This moduli space has dimension (8 + n)|16 (which includes 4|8 for each

degree 1 curve plus n for the marked points.) Different distributions of the marked

points correspond to different MHV diagrams Γ.9

It was shown in [31] that for each Γ the integrand in (2.25) has a simple pole on the

submoduli space MΓ
int, parameterizing degenerate configurations of intersecting lines

of degree 1. This submoduli space has dimension (7 + n)|12, because the condition

that there exists an intersection in the bosonic space removes one bosonic modulus,

and the condition that all four fermionic coordinates of the two lines coincide at this

point removes four fermionic moduli.10

After contour-integrating to localize to MΓ
int, the sum (2.25) can be written as

∑

Γ

∫

MΓ
int

1

vol(GL(2,C))2


µint ∧

(
n1∏

i=1

dσi

σi − σi+1

)
∧



n2∏

j=1

dσ′
j

σ′
j − σ′

j+1




 ∧ Φ. (2.26)

Here i and j run over the marked points on each CP1, including the point of inter-

9There are n(n + 1)/2 such diagrams, although once we fix the external wavefunctions not every
diagram gives a nonzero contribution to the sum (2.25); if the helicities are − − − + + + · · · + +,
then there are 2(n − 3) diagrams which contribute.

10This fermionic delta-function guarantees the opposite helicity of the two endpoints of the prop-
agators when one expands in fermions to evaluate a particular amplitude.
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Figure 2.5: A degenerate configuration of two intersecting lines in CP3|4 can be de-
formed into a smooth connected curve of degree 2 or into two disconnected lines.
The transition between the two branches of moduli space is reminiscent of a conifold
transition.

section; so for a diagram with m external wavefunctions attached to the first line,

n1 = m+ 1 and n2 = n−m+ 1. Also, σn1+1 ≡ σ1 and σ′
n2+1 ≡ σ′

1. The measure µint

is completely determined by the symmetries of CP
3|4.

On the other hand, from the connected prescription (2.17) we find

∫

M0,n,2

1

vol(GL(2,C))

(
µ2 ∧

(
n∏

i=1

dσi

σi − σi+1

))
∧ Φ. (2.27)

We will reorganize the integral (2.27) over the (8+n)|12-dimensional space M0,n,2 of

conics in the following way: Locally, to any conic we will associate a pair of intersecting

lines which are its “asymptotes.” The moduli space of pairs of intersecting lines with

n marked points is the Mint which occurred in the disconnected prescription. This

Mint has dimension (7+n)|12, so in M0,n,2 there is one more coordinate, which we call

C; C = 0 corresponds to the singular conics, which coincide with their asymptotes.
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This C can be thought of as a “deformation parameter” which resolves the singularity.

We will find that the integrand has a pole at C = 0, i.e. along Mint.

More precisely, Mint includes only those degenerations in which the marked points

are distributed in a way corresponding to some MHV tree graph Γ. This just means

the points are broken into two groups which are cyclically ordered — so e.g. if n = 6,

there is a component of Mint with points 1, 2, 3 on one line and 4, 5, 6 on the other,

but we do not include the degeneration which has 1, 2, 4 on one line and 3, 5, 6 on the

other. Indeed, we will see that the latter degeneration does not give a pole. We will

find poles only along n(n + 1)/2 distinct components MΓ
int, which are in one-to-one

correspondence with the diagrams Γ contributing to (2.26).

Moreover, we will show that the residue along MΓ
int is precisely such that the

integral (2.27) agrees with (2.26) after localizing. This will complete the argument

for the equivalence in the degree 2 case.

2.3.2 Computing the residue in degree 2 case

In this section we show that the integral (2.27) over the moduli space M0,n,2 of

genus zero, degree 2 curves in CP3|4 with n marked points has a pole at the subspace

Mint describing pairs of intersecting lines, and that it has the desired residue as

discussed in the last section.

Let us start by fixing part of the GL(2,C) symmetry reviewed in section 2.2.1.

We use three generators of GL(2,C) to impose the constraints

P 4(σ) = σ i.e. (β4
0 , β

4
1 , β

4
2) = (0, 1, 0). (2.28)

In other words, we are imposing the conditions that the two intersections of the
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hyperplane Z4 =0 with the curve have coordinates11 σ=0 and σ=∞, and normalizing

the coefficients β4
0,1,2. There is one more generator of GL(2,C) to be fixed, the matrix

M =



λ 0

0 λ−1


 , (2.29)

which acts as

βA

k → λ2−2kβA

k , σ → λ2σ. (2.30)

This transformation preserves the gauge choice (2.28).

Factors from the measure on the moduli space

Using the freedom to divide all twistor coordinates ZA by σ, we can write (2.10)

as

PA(σ) = ZA =
2∑

k=0

βA

k σ
k−1 = βA

0 σ
−1 + βA

1 + βA

2 σ, (2.31)

which using (2.28) implies P 4(σ) = 1. As σ → ∞ or σ → 0, we can neglect the first or

the last term in (2.31), respectively. So (2.31) describes a hyperbola that approaches

two asymptotic lines in the superspace C3|4:

ZA = βA

0 σ
−1 + βA

1 , ZA = βA

1 + βA

2 σ. (2.32)

These two lines intersect at the point ZA = βA

1 , while βA

0 and βA

2 with A 6= 4 are the

tangent vectors along these lines. It is important that for every conic Σ := P∗(CP1) ⊂

CP3|4 we can find a singular conic Σ′ (a pair of intersecting lines) in Mint defining

the asymptotes of Σ. This rule is not canonical; it depended on our choice to single

out the points at infinity, i.e. the hyperplane Z4 =0.

11The point σ = ∞ can be written as (1 : 0) in homogeneous coordinates, and therefore is
completely nonsingular.
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We want to express M0,n,2 locally as a product of Mint and C, with the extra C pa-

rameterized by the deformation parameter C. What are the appropriate coordinates?

The 3|4 parameters

βA

1 , A 6= 4, (2.33)

describing the position of the intersection of the asymptotes, give coordinates on Mint.

The remaining 4|8 coordinates on Mint are the directions of the two asymptotes; each

asymptote gives us 2|4 moduli. We want to describe these directions by “unit vectors”

in a suitable sense. As we approach a generic point of Mint, β
3
0 and β3

2 are nonzero, and

we may use them to normalize the direction vectors. In other words, the remaining

2|4 plus 2|4 coordinates on Mint may be chosen as

βA

0

β3
0

and
βA

2

β3
2

, A ∈ {1, 2 |1′, 2′, 3′, 4′}. (2.34)

(Choosing different coordinates on Mint instead of (2.33) and (2.34) would not change

the result below; the only change would be a C-independent Jacobian.)

Looking at our original coordinates on M0,n,2, we still have two more bosonic

components of β which are independent of our coordinates on Mint, namely β3
0 and

β3
2 themselves. We also have one unfixed generator of GL(2,C) given in (2.30). This

generator simply multiplies the ratio β3
0/β

3
2 by λ4, so we can use it to fix that ratio

to a constant, such as

β3
0

β3
2

= 1. (2.35)

Now having fixed the full GL(2,C) symmetry we can write the measure µ2 from (2.11)

as

(J/4)
∏

k,A

dβA

k δ(β3
0/β

3
2 − 1) δ(β4

0) δ(β
4
1 − 1) δ(β4

2). (2.36)
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Here J is the determinant of the Jacobian matrix of variations of the constraints with

respect to the GL(2,C) generators. If we parameterize the generators of GL(2,C) by

M =




1 + a b

c 1 + d


 (2.37)

then this matrix is

δ




β4
0

β4
1

β4
2

β3
0/β

3
2




=




1 0 0 0

0 1 0 0

0 0 1 1

∗ ∗ 2 −2







b

c

a

d




(2.38)

and hence we get simply

J = −4. (2.39)

The factor J/4 in (2.36) represents 1/vol(GL(2,C)); we had to divide by 4 because

the Z4 ⊂ GL(2,C) generated by

M =




i 0

0 −i


 (2.40)

is left unfixed by our gauge condition.

The three delta functions in (2.36) involving β4
k just eliminate the integrals over

those variables, imposing (2.28). Let us also use δ(β3
0/β

3
2−1) to eliminate β3

0 , imposing

(2.35). Integrating over β3
0 gives a factor β3

2 , so the measure becomes

−β3
2 dβ3

2

∏

A6=4

dβA

1

∏

k∈{0,2}

∏

A6=3,4

dβA

k . (2.41)

We rewrite this as a measure for the single transverse coordinate β3
2 , times a measure

on Mint, for which a full set of 7|12 coordinates were given in (2.33), (2.34):

(
−(β3

2)
1−4dβ3

2

)
×


∏

A6=4

dβA

1

∏

k∈{0,2}

∏

A6=3,4

d

(
βA

k

β3
k

)
 . (2.42)
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The extra power (−4) in (β3
2)

−4 was calculated as 2k=0,2 × (2B − 4F ); the terms

2B and −4F arise from the redefined bosonic and fermionic measures involving βA

k ,

respectively.

The coordinate β3
2 is related to the deformation parameter C — we will see that

the natural definition of C is (β3
2)

2. The measure (β3
2)

−3dβ3
2 occurring in (2.42) will

be corrected to dβ3
2/β

3
2 — the desired pole — once we include an extra factor (β3

2)
2

which comes from the free-fermion correlator ω. We now turn to the analysis of this

factor.

Factors from the fermion correlator

The integrand (2.27) contains the factor

ω(σ1, . . . , σn) =
n∏

i=1

dσi

σi − σi+1

, σn+1 ≡ σ1. (2.43)

We would like to investigate how this form behaves on conics that are degenerating

into a pair of lines (i.e. near Mint.) The result will be that along Mint, ω factorizes

into a product of two copies of ω defined on the two lines separately (with an extra

marked σ on each line at the point of intersection), while transverse to Mint, ω

vanishes like (β3
2)

2.

As the curve degenerates to a pair of lines, some of the n insertions approach one

line and some approach the other. We consider the case where

σ1, . . . , σm (2.44)

approach one asymptote while the remaining (n−m) insertions

σm+1, . . . , σn (2.45)
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approach the other. This is not the most general choice, since the σi come with a

fixed cyclic ordering which is built into (2.43); our choice is characterized by the fact

that as we run through the cyclic ordering we jump from the first line to the second

and back only once. We will comment on other possibilities at the end.

With the GL(2,C) gauge-fixing we chose above, as we approach some point of

Mint, the coordinates σi do not remain finite; one of the lines is σ → 0 while the

other line is σ → ∞. So we need to rescale the σi to get new coordinates σ̂i on Mint

which label the positions of the marked points; we define σ̂i so that ZA defined in

(2.32) remains constant as σ̂i is kept fixed and β3
0 , β

3
2 → 0. The correct redefinition is

σi =





(β3
2)

−1σ̂i for i ∈ {1, 2, . . .m}

β3
0(σ̂

′
i)
−1 for i ∈ {m + 1, m+ 2, . . . n}




. (2.46)

(We use two different symbols σ̂i and σ̂′
i to distinguish the coordinates on the two

different lines.) Rewriting ω from (2.43) in terms of σ̂i and σ̂′
i, we obtain

ω(σ̂1, . . . σ̂
′
n) = β3

0β
3
2

(
m−1∏

i=1

dσ̂i

σ̂i − σ̂i+1

)
dσ̂m

σ̂1σ̂m




n−1∏

i=m+1

dσ̂′
i

σ̂′
i − σ̂′

i+1


 dσ̂′

n

σ̂′
m+1σ̂

′
n

+ . . . (2.47)

where the intersection was defined to be at σ̂ = σ̂′ = 0. The dots in (2.47) indicate

terms suppressed by powers of β3
0β

3
2 .

Most of the powers of β3
0 and β3

2 have canceled, but there is an extra factor of

β3
0β

3
2 , which equals (β3

2)
2 because of our gauge choice (2.35). Also, we obtained the

expected free fermion contractions, including the 2 + 2 contractions involving the

intersection of the two lines at σ̂ = σ̂′ = 0.

Note that β3
0 and β3

2 always appeared in the combination

C = β3
0β

3
2 (2.48)
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that is invariant under (2.30). This is the same C that we used in Figure 2.5; in fact,

one can rewrite our curve in the form

xy = C (2.49)

where x,y are coordinates on a plane in CP3|4. The limit C → 0 describes the singular

conics. Note that it is C rather than β3
2 that is a good coordinate — this is because

a simultaneous sign flip on β3
0 and β3

2 is the gauge transformation (2.30) with λ = i,

which preserves our gauge choices (2.35).

Finally, it is easy to check that if we choose a different distribution of the marked

points, the result comes out suppressed by additional powers of C. We are only

interested in the leading terms, which are linear in C and will give the coefficient of

dC/C.

2.3.3 Finishing the proof in degree 2 case

Now we can collect the results from the previous two subsections. The powers of

β3
2 from (2.42) and (2.47) combine to give ∫ dβ3

2/β
3
2 , which is proportional to ∫ dC/C.

So as advertised, the integral (2.27) localizes after contour integration to an integral

over Mint. The symmetries of CP3|4 determine the measure for the moduli of the

two lines in Mint, which therefore agrees with the measure µint in (2.26) up to an

overall constant; as for the integral over the marked points, comparing (2.47) and

(2.26) we see that these measures are also identical. This completes the argument for

equivalence in the d = 2 case.

Incidentally, one can also compare the measures on Mint directly, without recourse

to a symmetry argument. We have already computed the measure which arises from
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the connected prescription, in (2.42), so the job is to compute the measure µint which

arises from the disconnected prescription. This computation is given (in greater

generality) in section 2.4.4.

2.4 Higher degree

Now let us consider the connected prescription for general degree d. We will see

that the fully disconnected description and the fully connected prescription are not

only equivalent, they are just two extreme cases of a more general class of rules to

calculate the amplitude. We will find d a priori different expressions for the scattering

amplitude with d+1 negative-helicity gluons,

A[K], K = 0, 1, 2, . . . , d− 1, (2.50)

where K+1 denotes the total number of curves involved in the prescription.12

The organization of this section is as follows:

• subsection 2.4.1 outlines the argument that the completely connected and com-

pletely disconnected prescriptions agree;

• subsection 2.4.2 discusses the intermediate prescriptions with arbitrary K and

their diagrammatic interpretation;

• subsection 2.4.3 generalizes the residue calculation of subsection 2.3.2 to the

case of a degree d curve splitting into two curves of degrees d1 and d2;

12Later we will see that K also represents the codimension in moduli space on which the prescrip-
tion is localized, or equivalently the number of internal propagators which appear in the prescription.
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• subsection 2.4.4 shows that the residues occurring for any degeneration are

actually independent of the chosen prescription, completing the argument.

2.4.1 The proof in higher degree case

Rather than showing directly that the connected prescription arising from a single

connected degree d curve is equivalent to the disconnected prescription involving d

lines, we will first show that it is equivalent to a computation involving two discon-

nected components of degrees d1, d2, such that

d1 + d2 = d. (2.51)

The proof is a generalization of the computation we did in section 2.3.2: namely, in

subsection 2.4.3 we will find a pole on each boundary divisor MΓ
int, corresponding to

a degeneration into intersecting curves,

Σd −→ Σd1
∪ Σd2

, d1 + d2 = d, (2.52)

with a particular distribution of the marked points.

Next we want to show iteratively that this integral over curves with 2 irreducible

components is equivalent to one over curves with 3 components, and so on until even-

tually we reach d components (all of which must have degree 1.) The idea which makes

this iteration possible is the following: consider some locus MΓ
int, corresponding to a

particular degeneration of Σ into K+1 components, with a particular distribution of

the marked points. This locus can be obtained as an intersection of K boundary divi-

sors, MΛj

int, each of which is associated with a degeneration of Σd into two irreducible
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Figure 2.6: A degeneration of a degree 3 curve into three intersecting lines can be
viewed as a two-step process. The moduli space of degree 3 maps with 5 marked
points, M0,5,3, contains divisors, MΛ1

int and MΛ2

int, associated with degenerations into
a degree 2 curve and a line, shown at the intermediate stages. The moduli space MΓ

int

of three intersecting lines (shown in the lower right corner) can be identified with the
intersection MΛ1

int ∩MΛ2

int.

components,13

MΓ
int = MΛ1

int ∩ · · · ∩MΛK

int . (2.53)

An example is shown in Figure 2.6. In this sense, the problem of studying a general

degeneration boils down to understanding the basic process (2.52).

So let’s start with the integral over K-component curves and try to prove it agrees

with an integral over (K + 1)-component curves. In the K-component case we have

13We use Γ to denote a general degeneration into K+1 components, and Λ to denote a degeneration
into just two components.
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to integrate over various loci MΓ
int as in (2.53). Since the various divisors MΛ

int meet

transversally [53], in integrating over each such MΓ
int we will encounter poles wherever

MΓ
int intersects another divisor MΛ

int.
14 We choose our contour so that it picks up

the residues at these poles. In this way we reduce the integral over MΓ
int to the

sum of integrals over all intersections MΓ
int ∩ MΛ

int. Then we have to sum over all

Γ describing K-component degenerations. What is the result of all this summation?

From the perspective of the (K+1)-component degenerations — which we label by

Γ′ — the answer is clear: given some

MΓ′

int = MΛ1

int ∩ . . . ∩MΛK

int , (2.55)

there are K ways to make it by intersecting some MΓ
int with some MΛi

int. Therefore

we get a sum over all (K+1)-component degenerations, with an overall multiplicative

factor K.

Finally, after repeating this process d − 1 times, we arrive at an integral over

the moduli space of connected trees consisting of d lines, with all possible shapes for

the tree and all allowed distributions of marked points. But the arguments of [31]

show that the disconnected prescription also reduces to such an integral, by a similar

process of localization to poles. Furthermore, in section 2.4.3 we will see that the

residues in these two computations agree; this will complete the proof.

14One way to understand this is to note that if we start with the full M0,n,d and look near such
an intersection of K divisors, the integrand looks like

dC1

C1
∧ · · · ∧ dCK

CK

∧ (regular). (2.54)

We have already contour-integrated over C1, . . . , CK−1 and thus restricted to C1 = · · · = CK−1 = 0,
i.e. to MΓ

int; after doing this we get simply dCK/CK , with a pole at CK = 0, i.e. at MΓ
int ∩MΛ

int.
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2.4.2 Intermediate prescriptions

In subsection 2.4.1 we encountered d − 1 different moduli spaces MK
int of singu-

lar curves, characterized by the number K + 1 of components, which interpolated

between the nonsingular degree d curve (K = 0) and the tree of degree 1 curves

(K = d− 1). Furthermore we obtained integrals over each MK
int by starting with the

connected prescription (K = 0) and successively localizing to poles. As a result of this

localization all these integrals are equal; now we want to argue that the intermediate

cases K = 1, . . . , d − 2 can be naturally interpreted as coming from “intermediate

prescriptions,” involving integrals over the moduli of K + 1 disconnected curves with

K propagators connecting them. We defined these prescriptions at the end of section

2.2.2.

The argument is a generalization of the “heuristic” derivation of the computational

rules for the disconnected prescription, given in [31]. Namely, starting from the

intermediate prescription, note that the propagator D(·, ·) by definition satisfies

∂̄D = ∆. (2.56)

Here ∆ is a (0, 3)-form on (CP3|4)2 which is concentrated on the diagonal CP3|4: in

inhomogeneous coordinates with Z4 = Z ′4 = 1 it may be written

∆ = δ(Z1 − Z ′1) δ(Z2 − Z ′2) δ(Z3 − Z ′3) δ4(ψ − ψ′), δ(f) := δ2(f)df̄ . (2.57)

The equation (2.56) means that D(·, ·) is meromorphic with a pole along the diagonal.

The integral over MK
int in the disconnected prescription containsK propagators (2.24);

these factors therefore have poles when Qi(σ) = Qi′(σ
′).

As in [31], we assume that K of the integrals over moduli of the disconnected
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curves are evaluated on contours which encircle these poles, in a suitable sense. Using

(2.56), performing these contour integrals is equivalent to filling in the contour and

replacing D by ∆. This localizes the integral to the sublocus of moduli space where

all propagators have shrunk to zero length, which is exactly MK
int.

So finally we have d different prescriptions, involving summing over configurations

with 1 curve (connected case), 2, 3, . . . , d curves (maximally disconnected case); and

we have argued that each of these prescriptions is equivalent, up to an overall rescaling.

In this sense any of them can be used to calculate the Yang-Mills amplitudes.

Of course, another possibility is that the correct amplitudes are obtained by sum-

ming different contributions from various sorts of diagrams with various numbers of

curves. We have argued that all such contributions are proportional to one another,

so such a modified rule would only change the overall prefactor. Although we will

not try to make the final verdict in this chapter, we believe that a more detailed

analysis of the prescriptions (including the coefficients) should be able to resolve this

uncertainty.

Diagrammatic interpretation and an example

Now let us discuss the diagrammatic interpretation of the intermediate prescrip-

tions. We have seen that the K-th intermediate prescription is naturally localized on

MK
int, which is a union of various MΓ

int. Here Γ describes the decomposition of the

curve Σd into K + 1 components and the distribution of marked points along these

components. Equivalently, we could say that Γ describes a slight generalization of

an MHV tree diagram: namely, it is a tree diagram with K + 1 vertices, where each
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Figure 2.7: An MHV tree diagram contributing to A[+−+−−−].

vertex now carries an internal index di, subject to the rule that
∑
di = d. The MHV

diagrams are the case where all di = 1.

It would be very useful if we could give a compact formula for the contribution of

a general vertex with arbitrary di, analogous to the off-shell continuation of the MHV

amplitude given in [31]. At the moment we do not possess such a formula, so we can

only define the diagram Γ to be the integral over MΓ
int which we considered above.

In this language, our localization argument relating different prescriptions becomes

the statement that the contribution from a diagram Γ agrees with the sum over all

Γ′ obtained by “splitting a vertex” in Γ. In other words, Γ′ should be obtained by

replacing a vertex with index d by a pair of vertices with indices d1, d2, such that

d1 + d2 = d, with a propagator connecting them. This is the diagrammatic analog of

a degree d curve which degenerates into two curves with degrees d1, d2.

We can also repeat the combinatorics from subsection 2.4.1 in this language. Start

with a diagram with K+1 vertices. This diagram contains K propagators. Therefore
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Figure 2.8: Two types of tree diagram with one MHV and one non-MHV (degree
2) vertex that contribute to the A[+−+−−−] amplitude. In total, there are six dia-
grams of each kind. The number attached to each vertex represents the degree of the
corresponding curve in twistor space.

there are K ways to shrink a single propagator and obtain a “parent” diagram with

K vertices. Because a diagram with K+1 vertices has K parents, the sum over

the daughters with K+1 vertices equals K times the sum over the parents with K

vertices.

To illustrate how all this works when external wavefunctions of fixed helicity are

included, let us consider a 6-gluon amplitude A[+−+−−−]. If we were to use the

connected prescription, we would have to integrate over the moduli space M0,6,3 of

degree 3 curves. On the other hand, in the disconnected prescription one has to

consider three degree 1 curves, which can be interpreted as MHV vertices in Yang-

Mills theory [31]. Therefore, in this case one has to sum over all tree graphs with
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three MHV vertices connected by Yang-Mills propagators — see Figure 2.7. In total,

there are 19 such graphs contributing to A[+−+−−−].

Now let us consider the intermediate prescription with K = 1. This prescription

leads to a sum over tree graphs with two vertices, one MHV and one non-MHV (the

non-MHV vertex involves three insertions of negative helicity). Examples of such

graphs with non-MHV vertices are shown in Figure 2.8. There are 12 such diagrams

which contribute to A[+−+−−−]. Since each non-MHV vertex itself can be represented

as a sum over tree diagrams with two MHV vertices, we should be able to reproduce

the disconnected prescription if we split all non-MHV vertices into MHV ones. More

precisely, in this decomposition we should encounter each MHV diagram twice (since

in the disconnected prescription K = 2). Indeed, it is straightforward to check that

the 12 non-MHV diagrams lead to 38 MHV graphs, in agreement with the general

rule.

2.4.3 Computing the residue in higher degree case

Returning from our digression to discuss the intermediate prescriptions, in this

section we show that the integral (2.17) over the moduli space M0,n,d which arises in

the connected prescription has a pole along the codimension 1 divisor M1
int describing

curves that are degenerated into 2 components. We further verify that the residue is

the same as that which arises after localization of the K = 1 prescription on M1
int,

thus establishing the equivalence between connected and K = 1 prescriptions.

We want to study a degeneration in which the curve Σd degenerates into a pair of

intersecting curves, Σd1
and Σd2

, of degree d1 and d2, as in (2.52). Using the projective
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Figure 2.9: The organization of the coefficients βA

k for a degree d curve degenerat-
ing into curves of degrees d1 and d2. The symmetry GL(2,C) is fixed by setting
three bosonic coefficients to the values (0, 1, 0) and two others to

√
C; this C is the

deformation parameter, which approaches zero in the degeneration limit.

symmetry to divide by σd1 , we can write the degree d map (2.10) as

ZA(σ) =
d2∑

k=−d1

βA

d1+kσ
k. (2.58)

We fix the GL(2,C) symmetry similarly to the degree 2 case, namely by conditions

based on (2.28) and (2.35):

(β4
d1−1, β

4
d1
, β4

d1+1) = (0, 1, 0),
β3

d1−1

β3
d1+1

= 1, (2.59)

and define the deformation parameter C := β3
d1−1β

3
d1+1. As in degree 2, the singular

limit will be C → 0, or equivalently β3
d1+1 → 0, and the question is how the other

coefficients should scale in this limit.

The correct scaling is as follows: we take β3
d1−1 = β3

d1+1 → 0 while holding finite

the quantities

αA

k :=
βA

d1−k

(β3
d1−1)

k
, 0 ≤ k ≤ d1; α′A

k :=
βA

d1+k

(β3
d1+1)

k
, 0 ≤ k ≤ d2. (2.60)
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In that limit we obtain two curves,

Σd1
: ZA(σ̂) =

d1∑

k=0

αA

k σ̂
k,

Σd2
: ZA(σ̂′) =

d2∑

k=0

α′A
k σ̂

′k. (2.61)

Namely, we obtain the points ZA(σ̂) on Σd1
by holding fixed σ̂ = σ/β3

d1−1 in the limit,

and we obtain the points ZA(σ̂′) on Σd2
by holding fixed σ̂′ = σβ3

d1+1 in the same

limit. See Figure 2.9.

Therefore the parameters αA

k , α
′A
k give coordinates on M1

int, specifying the moduli

of the degenerated curve. (Note that αA

0 = α′A
0 ; these shared coordinates specify the

intersection point of Σd1
and Σd2

.)

Now we want to study how our integral (2.17) behaves near M1
int. As in section

2.3.2, we have to compute the Jacobian J from the gauge-fixing of GL(2,C). The

matrix of variations generalizing (2.38) is

δ




β4
d1−1

β4
d1

β4
d1+1

β3
d1−1/β

3
d1+1




=




d2 (d1 + 2)β4
d1+2 0 0

(d2 + 2)β4
d1−2 d1 0 0

0 0 d1 d2

∗ ∗ 2 −2







b

c

a

d




. (2.62)

In the singular limit, the β4
d1±2 terms in (2.62) vanish, and we get

J → −2d1d2d. (2.63)

The gauge-fixed integral includes the factor J/2d; the 2d comes from an unfixed

subgroup of GL(2,C), analogous to (2.40), which is Z2 × Zd if both d1 and d2 are

even and Z2d otherwise. Next we have to rewrite the integrand in terms of the new
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coordinates (2.60). One might be worried that switching to these coordinates will

generate extra powers of C beyond what we had in the degree 2 case, spoiling the

conclusion that there is a pole along M1
int. But this does not occur; if we increase d1

by 1, for example, the integrand just acquires an extra integral over 4|4 variables:

µ→ µ ∧
∏

A

dβA

0 = µ ∧
∏

A

dαA

d1
(2.64)

The powers of β3
d1+1 simply cancel between the 4 bosons and 4 fermions! Unlike the

coefficients βA

d1
and βA

d1±1, among which 5 special bosonic components have been used

to gauge-fix the GL(2,C) symmetry or to describe the parameter C, the additional

moduli βA

d1±k with k > 1 come in full “supermultiplets” containing 4 bosons and 4

fermions. Therefore no new powers of C are generated in rescaling β’s to α’s, so the

measure for the moduli of the degenerating curve still behaves as dC/C2 near C = 0.

Similarly, the free fermion correlator ω factorizes,

ω(σ) → C ω1(σ̂) ∧ ω2(σ̂
′), (2.65)

just as in degree 2.

So we have a pole along M1
int, as in the degree 2 case, and after integrating around

this pole the fully gauge-fixed measure for the moduli of the degenerate curve is

−d1d2

∏

A




d1∏

k=0

′
dαA

k

d2∏

k=1

′
dα′A

k


 . (2.66)

Here the symbol Π′ indicates that we omit the 5 factors

dα4
1, dα′4

1 , dα4
0, dα3

1, dα′3
1 ; (2.67)

there are no such α’s among the coordinates on M1
int, because their corresponding
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β’s were used up in the gauge-fixing and in the transverse coordinate C, as shown in

Figure 2.9.

2.4.4 Finishing the proof in higher degree case

Finally we have to check that the measure (2.66) agrees with the one coming from

localization of the K = 1 prescription. From section 2.4.2 we know that the latter

measure is obtained as follows: start with two curves of degree d1, d2,

QA(σ) =
d1∑

k=0

αA

kσ
k,

Q′A(σ′) =
d2∑

k=0

α′A
k σ

′k. (2.68)

(The notation αA
k , α′A

k we use here agrees with the notation we used above for the

moduli of the curves obtained by a degeneration; compare (2.68) with (2.61), (2.60).

The only difference is that here we do not necessarily have αA

0 = α′A
0 .) Then we have

the standard measure (2.11) on the two curves separately, which before gauge-fixing

is

µd1
∧ µd2

=
∏

A




d1∏

k=0

dαA

k

d2∏

k=0

dα′A
k


 . (2.69)

As explained in section 2.4.2, the requirement that the two curves actually intersect

is enforced by a delta function which is coupled to one marked point on each curve,

∆(Q(σ), Q′(σ′)). (2.70)

To compare the measures (including this delta function) we have to gauge-fix the

GL(2,C)2 symmetry acting on the coefficients αA

k , α
′A
k . There are many ways to do

this; we choose a way that is as similar as possible to the gauge-fixing we used for the
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degenerating degree d curve, so that the unfixed moduli will match directly. Namely,

we take

αi
0 = α′i

0 for i ∈ {2, 3}, (2.71)

α4
0 = α′4

0 = 1, (2.72)

α4
1 = α′4

1 = 0, (2.73)

α3
1 = α′3

1 = 1. (2.74)

The matrix of variations from this gauge-fixing is similar to (2.62), but since it is an

8 × 8 matrix we just write the answer here:

J = (d1d2)
2(α2

1 − α′2
1 ). (2.75)

The gauge-fixing factor is J/d1d2, because of the subgroup Zd1
× Zd2

⊂ GL(2,C) ×

GL(2,C), roots of unity acting on each curve separately; since this subgroup acts

trivially it is unfixed by our gauge condition. Next we must include the integral over

the delta function (2.70), which we write as

∫
dσ dσ′ δ(3|4)

(
QA(σ)

Q4(σ)
− Q′A(σ′)

Q′4(σ′)

)
. (2.76)

With our gauge choice, it is easy to study the behavior of this delta function in the

vicinity of σ = σ′ = 0.15 One uses the Z2 and Z3 components of the delta function

to set σ = σ′ = 0, obtaining

1

(α2
1 − α′2

1 )
δ(α1

0 − α′1
0 )

4′∏

A=1′
δ(αA

0 − α′A
0 ). (2.77)

15Although our gauge choice was rigged so that studying σ = σ′ = 0 would recover the desired
moduli space of intersecting curves, it is not clear a priori from our arguments why one should
consider only this region; this is related to the issue of the exact contour choice in the intermediate
prescription, which we will not settle here. We are also integrating over the delta function as if it
were real instead of holomorphic; similar manipulations were used in [134].
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Note that the 1|4 delta functions in (2.77), combined with the gauge conditions (2.71),

(2.72), are enough to set all α′A
0 = αA

0 . This was the main motivation for this gauge-

fixing; the point αA

0 represents the intersection of the two curves, and the remaining

moduli are precisely the ones we had for the degenerating degree d curve in (2.66).

Therefore we easily see that the measures agree, including the prefactor d1d2. (Al-

though we have not been careful about overall constant factors, the absence of a

relative factor here is important — it corresponds to the absence of prefactors weigh-

ing different diagrams in the intermediate prescriptions.)

This completes the argument for the equivalence between the connected andK = 1

prescriptions. It also sets up the iteration we described in section 2.4.1 to prove the

equivalence of all prescriptions, by successive localization to poles in higher and higher

codimension, corresponding to more and more degenerate curves.

One detail remains: we have to check that the residues we obtain are always in-

dependent of which prescription we started with. In other words, we have to prove

that the measure for the integral over K + 1-component trees obtained by some de-

generation process always agrees with the measure coming from the disconnected

prescription. As we know from section 2.4.2, the latter measure can be written as

a product of measures for the individual curves, with delta-functions that guarantee

the curves intersect. We just proved the agreement for K = 1. For general K we can

work inductively; given a K+1-component tree on which some curve is further degen-

erating, just focus on the measure for that curve, and note that the delta-functions

from the other curves are well behaved on moduli space near the degeneration we are

studying. In this sense the degenerating curve can be isolated from the rest of the
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tree. The computation done above in the K = 1 case then shows that the measure

after this degeneration agrees with that from the disconnected prescription. This

then completes the argument for the equivalence of all prescriptions.

2.5 Conclusions and open questions

We have argued for the equivalence of the connected and disconnected twistorial

formulae for the tree level scattering amplitudes of N = 4 super Yang-Mills, provided

that the contours are appropriately chosen. Using this equivalence we can now exploit

the complementary virtues of the two prescriptions simultaneously. As we remarked

in the introduction, the connected prescription minimizes the number of diagrams one

has to sum, namely, there is only one; the amplitude is expressed as a single integral,

which was the starting point for several theoretical developments [20, 21, 134]. The

disconnected prescription involves more diagrams, but still a manageable number

for some interesting amplitudes, and the contribution from each diagram can be

immediately written down.

To conclude, we summarize some of the many remaining open problems in this

area:

• Contours I. Is there a rigorous justification of the choice of contours in all

these calculations? In our argument for the equivalence between connected

and disconnected prescriptions we identified specific poles in the integral over

moduli, and we roughly wanted a contour which encircles all of these poles. We

believe it should be possible to show by a deformation argument that our choice

of contour is equivalent to the one used in [107], thus completing the proof of
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equivalence, but this seems to be nontrivial; the computations in [107] depend on

a particular method of evaluating the integral in the connected prescription by

saturating delta-functions, and it is difficult to see which contour it corresponds

to.

• Contours II. Once the residues are isolated in both prescriptions, we must still

integrate over the degeneration locus Mint, which requires yet another choice

of contour; for example, the integration over t from 0 to ∞ in section 6 of [31]

should have some a priori justification. This chapter has not addressed this

question. Our argument for the equivalence requires that the contours on Mint

are chosen to be equivalent in all prescriptions.

• Explicit external wavefunctions. Our derivation was rather formal. It did

not depend on the particular form of the wavefunctions. Of course, it would be

interesting to verify the picture by calculating the amplitudes involving particles

with well-defined momenta i.e. (λ, λ̃, ψ) using our generalized prescriptions.

Unlike the MHV vertices in [31], one might expect that the d > 1 vertices will

be ratios of polynomials involving both λ and λ̃. (Of course, it is also possible

that one will not obtain any compact formula for the d > 1 vertices in this way.)

• Derivation from the B-model. Both connected and disconnected contri-

butions seem to arise in the topological B-model of [133] as long as we use

not only the degree d D1-instantons but also the propagators (and vertices) of

the holomorphic Chern-Simons theory. Does our equivalence suggest that the

D1-instantons are not independent of the Chern-Simons degrees of freedom?
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• Real versions. The framework first proposed by Berkovits [20] and the topo-

logical A-model of [94] seem to prefer the real version of the twistor space, RP
3|4,

and correspondingly real values of the moduli. Is there a real variation of our

procedures? One can imagine that the disconnected rules for the amplitudes

might be derived from the cubic twistorial string field theory of [21] if K stringy

propagators are expanded in component fields, so that the different parts of the

worldsheet become effectively disconnected.

• Choice of prescriptions. According to our analysis, there is significant free-

dom to choose a twistor prescription for tree diagrams; we gave d different rules,

all of which agree up to overall prefactors. Is this all one can say, or would a

more sensitive study give more information about which is the “correct” pre-

scription? Does this proliferation of prescriptions persist beyond tree level?

• Loops and higher genus. We only studied tree diagrams, corresponding to

genus zero curves. What are the exact rules and equivalences between various

formulae for loop and nonplanar amplitudes? Our analysis suggests that an

investigation of possible degenerations of genus g curves should be relevant for

the understanding of loop diagrams in the twistor string.



Chapter 3

BPS microstates and the open

topological string partition

function

3.1 Introduction

The connection between topological strings and 4-dimensional BPS black holes has

been studied in recent years [42, 43, 44], leading to a conjecture [98] that identifies the

mixed grand canonical partition function of BPS black hole states with the squared

norm of the topological string wave function: ZBH = |ψtop|2. This conjecture has been

checked for certain Calabi-Yau threefolds [124, 10, 40]; see also the recent related work

[112, 41, 111]. It is natural to ask how the conjecture generalizes to the case of open

topological strings. Our primary aim in this chapter is to advance a conjecture about

what the open topological string counts, and to check it in the case of certain non-

51
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compact Calabi-Yau spaces.

We will mainly concentrate on the Type IIA superstring (and correspondingly the

topological A model) on a non-compact Calabi-Yau threefold. In the closed string

context, one defines the mixed black hole ensemble by fixing the number of D4 and

D6-branes (magnetic charges) while summing over all possible numbers of D2 and D0-

branes bound to them (electric charges), weighed by chemical potentials; this was the

setup investigated in [124, 10]. In our case the Type IIA background will additionally

include a finite number of “background” D4-branes, which wrap Lagrangian 3-cycles

of the Calabi-Yau and fill a 1+1 dimensional subspace of Minkowski spacetime. In the

presence of these background D4-branes one gets a gauge theory in 1+1 dimensions,

containing new BPS states. The role of the electric charges is played by open D2-

branes, wrapped on holomorphic discs ending on the Lagrangian 3-cycles, while the

magnetic charges are domain walls in the 1+1 dimensional theory. We conjecture

that the full topological string amplitude, including contributions from open strings,

is counting degeneracies of these BPS states, bound to D6, D4, D2 and D0-branes:

Zopen
BPS = |ψopen

top |2. (3.1)

Here Zopen
BPS is the partition function of a mixed grand canonical ensemble; in this en-

semble the D6 and D4-brane charges, as well as the domain wall charge, are fixed (and

related to the real part of the topological string moduli), while chemical potentials

are turned on for the D2 and D0-branes (giving the imaginary parts of the moduli),

including the open D2-branes.

Our proposal is necessarily more tentative than the one given in [98], because one

of the major planks supporting the conjecture there is missing here: the large-charge



Chapter 3: BPS microstates and the open topological string partition function 53

macroscopic/gravitational description of the BPS states we are counting has not been

studied, nor has the analogue of the attractor mechanism for these states, so we do

not even have a classical derivation of the entropy. Further investigations in this

direction would be extremely useful to check our conjecture.

Although we do not understand the macroscopic description of these BPS states,

we can still compare |ψopen
top |2 to a partition function computed from their microscopic

description, in cases where such a description is available. In this chapter we use

such a description to check our proposal on a particular non-compact Calabi-Yau

space supporting a compact Riemann surface. This case was previously discussed in

[124, 10] where the closed string conjecture was verified. We find that our conjecture

also holds in this case.

The organization of this chapter is as follows. In Section 3.2 we review the con-

jecture in the closed string case and review its confirmation in the context of local

Riemann surfaces inside a Calabi-Yau. In Section 3.3 we explain the unexpected ap-

pearance of open topological string amplitudes in [10], reinterpreting them in terms

of purely closed topological strings along the lines of the original conjecture [98]. In

Section 3.4 we discuss the wave function nature of the open topological string. In

Section 3.5 we introduce additional branes in our physical string background and

state our main conjecture. In Section 3.6 we check the conjecture in the context

of a local Calabi-Yau geometry near a Riemann surface with Lagrangian D-branes

included. Most of the computations are relegated to the appendices: In Appendix

3.7 we fix some group theory conventions and review some basic group theory facts.

In Appendix 3.8 we review the q-deformed Yang-Mills theory in 2 dimensions and
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the computation of its amplitudes by gluing, including insertion of some eigenvalue

freezing operators important for this chapter. In Appendix 3.9 we express the wave

function of q-deformed 2d Yang-Mills on the disc in terms of theta functions. Finally,

Appendix 3.10 discusses many issues related to the large N limit of our computations,

and the factorization of the BPS partition function at large N in terms of topological

and anti-topological contributions. In particular, we give a physical explanation of

the factorization of the q-deformed Yang-Mills amplitudes in the large N limit.

3.2 The closed string case

In [98] a duality was conjectured which relates counting of microstates of super-

symmetric black holes which arise in compactification of type II string theory on a

Calabi-Yau threefold X and closed topological string theory on X. In this section we

review this conjecture and one case in which it has been explicitly checked.

Consider Type IIA on X × R3,1. One can obtain charged BPS black holes in R3,1

by wrapping D6, D4, D2 and D0-branes over holomorphic cycles in X. The charges

of the black hole are determined by the choice of holomorphic cycles; the intersection

pairing in X gives rise to the electric-magnetic pairing in R3,1, and we refer to D6

and D4-brane charges as “magnetic” while D2 and D0-brane charges are “electric.”

Then one can define a mixed ensemble of BPS black hole states by fixing the D6 and

D4-brane charges Q6, Q4, and summing over D2 and D0-brane charges with fixed

chemical potentials ϕ2, ϕ0. One can write a partition function for this ensemble,

ZBH(Q6, Q4, ϕ2, ϕ0) =
∑

Q2,Q0

ΩQ6,Q4,Q2,Q0
e−Q2ϕ2−Q0ϕ0 . (3.2)
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Here ΩQ6,Q4,Q2,Q0
is the contribution from BPS bound states with fixed D-brane

charge.

The conjecture of [98] is that

ZBH(Q6, Q4, ϕ2, ϕ0) = |ψtop(gtop, t)|2, (3.3)

where ψtop(gtop, t) denotes the A model topological string partition function, evaluated

at the topological string coupling1

gtop =
4πi

iϕ0

π
+Q6

, (3.4)

and Kähler parameter

t =
1

2
gtop

(
i
ϕ2

π
+Q4

)
. (3.5)

The real parts of the parameters (3.4) and (3.5) are dictated by the “attractor mech-

anism” of N = 2, d = 4 supergravity [52, 117], which relates the moduli of X near a

black hole horizon to the black hole charges.

One can (at least formally) invert the relation (3.3) to recover the microcanonical

degeneracies Ω from |ψtop|2, via the integral formula

ΩQ6,Q4,Q2,Q0
=
∫
dϕ2 dϕ0 e

Q0ϕ0+Q2ϕ2 |ψtop|2. (3.6)

This formula has a natural interpretation from the point of view of the wave function

interpretation of ψtop developed in [131, 45] as an interpretation of the holomorphic

anomaly [23, 24]. Namely, (3.6) expresses Ω as the “Wigner function” (phase-space

density) associated to ψtop. The background-independent generalization of this trans-

form and its relation to the counting of black hole states has been further elucidated

in [126].

1Q4 is naturally a class in H4(X, Z), which we are relating to t ∈ H2(X, C), and Q6 is naturally
a class in H6(X, Z), which we are relating to H0(X, C) = C.
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The formula (3.6) also illustrates a crucial point about the conjecture: in order to

use it to compute Ω, one would need to know the full |ψtop|2, not only its asymptotic

expansion for gtop � 1. Put another way, knowing the BPS degeneracies Ω is in some

sense equivalent to having a nonperturbative completion of |ψtop|2.

A solvable example

In this section we review the work of [124, 10] which argued that the conjecture

(3.3) holds in the case where X is a particular non-compact Calabi-Yau threefold,

namely the total space of a holomorphic vector bundle over a compact Riemann

surface Σ of genus g,

X = L−p ⊕ Lp+2g−2 → Σ, (3.7)

for some p > 0.2

The idea is that for thisX one can use 2-dimensional Yang-Mills theory to compute

ZBH, as follows. Suppose we wrap N D4-branes on the holomorphic 4-cycle

D = L−p → Σ. (3.8)

Then the theory on the D4-branes (in the Calabi-Yau directions) is the N = 4 su-

persymmetric Yang-Mills theory, or more precisely a topologically twisted version of

that theory, as explained in [26]. The path integral in this theory includes configura-

tions in which D0-branes, and D2-branes wrapping Σ, are bound to the D4-branes.

Hence the partition function of the 4-dimensional twisted supersymmetric gauge the-

ory computes a sum over the mixed ensemble of BPS states which we considered

2By Lk we mean a holomorphic line bundle of degree k over Σ.
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above. The D4 and D6-brane charges are

Q4 = N [D], (3.9)

Q6 = 0. (3.10)

The chemical potentials for the brane charges are roughly given by the masses of the

branes (for the D2-branes we turn on a Ramond-Ramond field θ):

ϕ0 = 4π2/gs, (3.11)

ϕ2 = 2πpθ/gs. (3.12)

Since the gauge theory sums over all brane charges we can now write3

ZYM = ZBH. (3.13)

It was argued in [124] that, for the purpose of computing ZYM, we can restrict to

field configurations in the N = 4 theory which are invariant under the U(1) action

on the fibers of L−p. One then obtains ZYM as the partition function of a q-deformed

Yang-Mills theory on Σ (see Appendix 3.8), where Σ has area p and the parameters

are fixed by

θYM = θ, g2
YM = gs, q = e−gs. (3.14)

The q-deformed Yang-Mills theory is a relative of the ordinary Yang-Mills theory in

two dimensions, and shares with that theory the property of being exactly solvable;

the topological string on X is also exactly solvable to all orders in perturbation

theory (using recent results of [28] in the case g > 1). Hence we can use X as a

3There are some subtleties because of the non-compactness of X , as noted in [10]: ZYM turns
out to give a sum over finitely many sectors, each with a gs-dependent prefactor.



Chapter 3: BPS microstates and the open topological string partition function 58

testing ground for (3.3). More precisely, since we do not have a good understanding

of the nonperturbative topological string, what we can do is look at the asymptotic

expansion of |ψtop|2 in the limit gs � 1, with t fixed. On the physical side this

corresponds to taking ϕ0, ϕ2, and N to infinity with fixed ratios (this is a ’t Hooft

limit in the Yang-Mills theory.)

In this limit one finds that ZYM factorizes into a sum of “conformal blocks,” each

given by the topological string on X, with some D-branes inserted as we will explain

below:

ZYM(ϕ0, ϕ2, N) =

∑

R′
1
,...,R′

|2g−2|

∑

l∈Z

ψ
R′

1,...,R′
|2g−2|

top (gtop, t+ lpgtop)ψ
R′

1
,...,R′

|2g−2|

top (gtop, t− lpgtop) + O(e−N).

(3.15)

Here t and gtop are as dictated by (3.4) and (3.5), namely,

gtop = 4π2/ϕ0 = gs, (3.16)

t =
1

2
gtop (#(Σ ∩ D)N + iϕ2/π) =

1

2
N(p+ 2g − 2)gs + ipθ. (3.17)

The index l was interpreted in [124] as measuring the Ramond-Ramond flux through

Σ. The labels R′
i are subtler; they appear only when g 6= 1, in which case they were

interpreted in [10] as running over boundary conditions on |2g − 2| infinite stacks of

D-branes (which we christen “ghost” D-branes) in the topological string. Each stack

lies on a Lagrangian submanifold of X, intersecting D in an S1 in the fiber of Lp+2g−2

over a point. The boundary conditions on each stack are specified by a choice of a

Young diagram R′.4

4All primed quantities which appear in this chapter are associated to these ghost D-branes.
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The form of (3.15) looks different from that of (3.3). Nevertheless, as we will

explain in the next section, the sum over Young diagrams R′
i is indeed consistent

with (3.3), when we take into account extra closed string moduli at infinity.

3.3 Revisiting the closed string theory

In this section we revisit the relation between 2-d Yang-Mills theory and the closed

topological string, with the aim of giving a better interpretation to the sum over chiral

blocks and the appearance of “ghost” D-branes.

As we reviewed in Section 3.2, the partition function of the twisted U(N) Yang-

Mills theory on D = L−p → Σ factorizes at large N as a sum of blocks, each of which

can be interpreted as the square of a topological string amplitude involving 2g − 2

infinite stacks of ghost branes. Introducing a U(∞)-valued holonomy U ′
i = eu′

i on

each stack of ghost branes, we can rewrite (3.15) as

ZYM =
∑

l∈Z

∫
dHu

′
1 · · ·dHu

′
2g−2 ψ

g
top(gtop, u

′, t+ lpgtop)ψ
g
top(gtop, u′, t− lpgtop), (3.18)

where

ψg
top(gtop, u

′, t) =
∑

R′
1,...R′

2g−2

ψ
R′

1,...,R′
2g−2

top (gtop, t)e
− 1

2
Ngs

∑2g−2

i=1
|R′

i
|
2g−2∏

i=1

sR′
i
(eu′

i). (3.19)

For g = 0 the formula is similar, except that the role of ghost branes and ghost

antibranes are reversed in the antitopological amplitude:

ZYM =
∑

l∈Z

∫
dHu

′
1dHu

′
2 ψ

g
top(gtop, u

′, t+ lpgtop)ψa
top(gtop, u′, t− lpgtop), (3.20)
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where

ψg
top(gtop, u

′, t) =
∑

R′
1,R′

2

ψ
R′

1,R′
2

top (gtop, t)e
− 1

2
Ngs(|R′

1|+|R′
2|)sR′

1
(eu′

1)sR′
2
(eu′

2), (3.21)

ψa
top(gtop, u

′, t) =
∑

R′
1
,R′

2

(−)|R
′
1|+|R′

2|ψ
R′

1,R′
2

top (gtop, t)e
− 1

2
Ngs(|R′

1|+|R′
2|)sR′t

1
(eu′

1)sR′t
2
(eu′

2).

(3.22)

The change from branes to antibranes is reflected in the signs (−)|R
′| and the switch

R′ → R′t between ψg and ψa, as in [7].

Now note that (3.18) and (3.20) look like the integral (3.6), that computes the

microcanonical degeneracies by integrating over the imaginary part of each Kähler

modulus while the real part is fixed by the corresponding magnetic charge. Indeed,

the factor e−
1
2
Ngs

∑2g−2

i=1
|R′

i
| could be absorbed in U ′, at the expense of making it non-

unitary: this just amounts to giving u′ a real part. This is reminiscent of the “at-

tractor” formula (3.5), which says the real part of the Kähler modulus is related to

the charge. So indeed, (3.18) could be consistent with the conjecture (3.3), if we

somehow regard u′ as an extra closed string modulus; then there would be electric

and magnetic charges corresponding to it, and (3.18) says that ZYM is the partition

function of an ensemble in which we have fixed these charges. As we will now explain,

this interpretation of u′ is indeed plausible.

Open vs. closed

We explained above that the nonperturbative completion of the closed topological

string appears to involve Lagrangian D-branes on the Calabi-Yau manifold. The

appearance of open string amplitudes in this context is surprising, since in the physical
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string this would have half as much supersymmetry as we have available. As we will

now argue, the correct interpretation involves not open but closed strings.

Namely, as was shown in [5], in the topological string, inserting non-compact

D-branes is equivalent to turning on certain non-normalizable deformations of the

Calabi-Yau. This is an open-closed duality of the topological string, generalizing

the well-known duality for D-branes on compact cycles. This means that, at the

level of the topological string, we can interpret the modulus U ′ in (3.18) as either

corresponding to an open string configuration or to a boundary condition at infinity

of the closed topological string. In the physical string theory, however, we do not

have this freedom; since there are no Ramond-Ramond fluxes turned on, the only

interpretation available is the closed string one.

The torus symmetries of the Calabi-Yau manifold can be used to constrain the

types of deformation that we consider. Namely, the Lagrangian D-branes to which

(3.19) corresponds respect the torus symmetries, and the gravitational backreaction

they create does so as well. Such torus invariant deformations, normalizable and not,

were studied in [5], so we can borrow the results of that paper. The topological string

theory in [5] was described as the theory of a chiral boson on a Riemann surface, and

the Lagrangian D-branes were coherent states of this chiral boson. (Note here that

we are using the mirror B-model language. The global action of mirror symmetry on

X is not relevant for us; this is merely a convenient language in which to describe

the behavior near an asymptotic infinity.) The non-normalizable deformations of the

Calabi-Yau near an asymptotic infinity5 can be parameterized by the coherent states

5In the cases studied in [5] there is a clear notion of what “an asymptotic infinity” means: it
means a toric 2-cycle which extends to infinity. In the cases we are considering here the situation is
not as rigorously understood, but we will make some comments below.
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of the chiral boson:

|τ〉 = exp

(
∑

n>0

τnα−n

)
|0〉, (3.23)

where αn are the chiral boson creation and annihilation operators.

The parameters τ are related to the D-brane holonomies by

τn = gsTrU ′n, (3.24)

where Tr denotes the trace in the fundamental representation, The factor of gs is

needed to convert an open string amplitude in terms of U to a closed string amplitude

in terms of t; it appears because a trace of U in the fundamental representation couples

to a hole in the string worldsheet, and the hole is in turn weighted by gs in the string

perturbation expansion. In this sense the open string modulus U can be traded for

the infinite collection of closed string moduli τn.

Actually, it is more convenient to reparameterize slightly by taking a logarithm,

writing τn = e−tn . The point is that the A model partition function turns out to be an

expansion in e−tn , so the moduli tn appear on the same footing as the Kähler volumes

t of compact cycles. Indeed, we can think of them as representing Kähler volumes of

classes in H2(X,Z) (with some appropriate notion of what H2(X,Z) means for this

non-compact X.) What can we say about these classes? In the cases considered in

[5], for each asymptotic infinity there is a holomorphic disc C which “ends” on it,

and tn represents a class which contains n[C] as well as some extra contributions at

infinity. In the open string language, the disc C can be thought of as ending on the

Lagrangian branes which represent the deformations at this asymptotic infinity.
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Figure 3.1: The disc C in the fiber of Lp+2g−2 over a point P on the Riemann surface
Σ; C meets D only at P , and the boundary of C lies on the Lagrangian submanifold
representing this asymptotic infinity.

The attractor mechanism and ghost D-branes

Now we come to the interpretation of the shift U ′ → U ′e−
1
2
Ngs, or equivalently

Re tn =
1

2
nNgs. (3.25)

Such shifts have frequently appeared in the topological string in the presence of D-

branes. Here we can understand the shift as a reflection of the attractor mechanism

on the closed string moduli. Namely, in the case we are considering here, C is a disc

in the fiber of Lp+2g−2, which intersects D at one point, as shown in Figure 3.1. Then

1
2
nNgs is exactly the expected attractor value for the Kähler modulus tn, as follows

from (3.5), the fact that the D4-brane charge is Q4 = N [D], and #(C ∩ D) = 1.

(Whatever the extra contributions at infinity to the class represented by tn are, they

have zero intersection number with D, so they do not affect the attractor modulus.)
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Why 2g − 2 asymptotic infinities

The discussion of the last few sections raises a natural question: why are there

precisely |2g − 2| asymptotic infinities on X where we can have deformations?

In general we should have expected that in a non-compact Calabi-Yau we should

include some closed string moduli coming from infinity. However, in problems with

symmetries, it is natural to conjecture that the only relevant extra moduli from

infinity are invariant under the corresponding symmetries. We will assume this here,

and look for symmetries in our problem which simplify the task of specifying the

closed string moduli coming from infinity.

A priori, one might have expected boundary moduli associated to the C2 fiber over

each point of the Riemann surface. Here we have in addition D4-branes wrapping a

line bundle over the Riemann surface. We claim that this implies that effectively we

should view that direction as “compact,” or more precisely, we should view it as a

degenerate limit of a compact 4-cycle. After this reduction, we would expect to find

boundary moduli corresponding to a C fiber over each point on the Riemann surface.

However, there are symmetries of the problem coming from meromorphic vector

fields on the Riemann surface. Hence the variation of the data at infinity can be

localized at poles or zeroes of such a vector field (deleting these points would give a

well defined free action). A generic holomorphic vector field on a Riemann surface of

genus g > 1 is nonvanishing and well defined away from 2g−2 poles, which we identify

with places where the asymptotic boundary condition at infinity can be localized. The

local picture is as shown in Figure 3.2.

So the closed string moduli at these 2g− 2 asymptotic infinities may be identified
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Figure 3.2: A rough toric representation of the behavior of X in a neighborhood of a
singularity of the vector field v described in the text. Two of the three U(1) actions
making up the toric fiber are the rotations of the line bundles L−p ⊕Lp+2g−2 and the
third is the action of v. The toric base of the divisor D on which the D4-branes are
wrapped is indicated, as is the base of the Lagrangian submanifold representing the
asymptotic infinity. The disc C ends on this Lagrangian submanifold, meeting D at
the single point P .

with the “ghost D-brane” contributions, as discussed above. In the case of genus 1

there are no fixed points, which is consistent with the fact that no ghost D-branes

were needed in this case. For genus 0 we have a holomorphic vector field with 2

zeroes, which again suggests that we can localize the contribution from infinity at 2

points.

This is a heuristic argument, but we feel that it captures the correct physics.

3.4 The quantum mechanics of open strings

In Section 3.2 we reviewed the conjecture of [98] and its relation to the wave

function nature of the closed topological string. In this section we recall the parallel
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statement for the open topological string. The fact that the open topological string

partition function including non-compact branes is a wave function was first noticed

in [5], and was crucial in that paper for the solution of the B model. In this section

we will give two ways of understanding this wave function property: a direct route

via canonical quantization of Chern-Simons theory, and a more indirect one via the

holomorphic anomaly (background dependence) for open strings.

Canonical quantization in Chern-Simons

Recall that the topological A model string theory on M D-branes wrapped on

a Lagrangian cycle L is the U(M) Chern-Simons theory deformed by worldsheet

instanton corrections:

S = SCS + Sinst, (3.26)

where

SCS =
4πi

k

∫

L
Tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (3.27)

and Sinst is the contribution from worldsheet instantons with boundaries on L. If L

is non-compact, then we should consider it as having a boundary ∂L at infinity; the

path integral on L then gives a wave function in the Hilbert space of Chern-Simons

on the boundary. The case of interest for the rest of this chapter is L ' R
2 × S1,

which has ∂L = T 2; from now on we specialize to that case, although the discussion

could be made more general.

To find which state the topological open string theory picks, we need to recall

some facts about canonical quantization of the U(M) Chern-Simons theory on T 2×R,

viewing R as the “time” direction. We will be brief here; see e.g. [48] for more details.
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Integrating over the time component of the gauge field localizes the path integral to

flat connections on T 2:

∫
DA′ δ(F ′) exp

(
2πi

k

∫

T 2×R
TrA′ ∂t A

′dt
)
. (3.28)

Above A′ is a connection on T 2, which we can write (up to conjugation) as

A′ = u dθu + v dθv, (3.29)

where u and v are the components of A′ along two linearly independent cycles of T 2,

with intersection number 1. From the action (3.28) we see that u and v are conjugate

variables: upon quantization we thus expect

[u, v] = igtop, (3.30)

where gtop = 2π
k+M

. The familiar shift of k by M can be seen by carefully integrating

over massive modes [48].

Since u and v are conjugate variables, in computing the Chern-Simons path inte-

gral on a manifold with T 2 boundary, we should fix either u or v on the boundary, but

not both, and the wave function will depend on the variable we have chosen to fix.

More generally, we could consider a mixed boundary condition where we fix v + τu

where τ is some parameter (the motivation for this notation will become clear later).

Note that in the present context L ' R2 × S1 is a solid torus, so there is a

unique 1-cycle η ∈ H1(T
2,Z) which collapses in the interior of L. There is thus a

canonical choice of polarization for the wave function; namely, one can express it

in terms of the holonomy around η, which we call v. In the next subsection we

will relate this choice to the background dependence (“holomorphic anomaly”) of the
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open topological string. We could have tried to choose the “cycle that survives” in

the interior of L (corresponding to the holonomy u), but this is ambiguous up to the

shift u 7→ u + nv. This ambiguity will be related to the framing ambiguity of the

open topological string.

It can be shown [48, 6] that the Chern-Simons path integral on the solid torus,

without any insertions and with u fixed on the boundary, is given simply by

ψopen
top (u) = 〈L|u〉 = 1. (3.31)

In the present context, the Chern-Simons action is deformed by worldsheet instantons

wrapping holomorphic curves with boundaries on L [132]. Their contribution to S is

given by the free energy of the gas of topological open strings:

Sinst(u) = iF open
top (u). (3.32)

We now want to compute the path integral on L with the operator insertion

expSinst(u). (3.33)

Since we are we are working in the basis of eigenstates of u, the insertion just acts by

multiplication:

ψopen
top (u) = 〈L|eSinst(u)|u〉 = eiF open

top (u)〈L|u〉 = eiF open
top (u). (3.34)

So we have identified the topological string partition function eiF open
top (u) with a wave

function.

Although v is the canonical choice, we will sometimes find it natural to write the

wave function in terms of one of the holonomies u+nv instead. The relation between
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different choices of variable in which to write the wave function is given by a Fourier

transform: for example, to transform from u to v, one has

ψopen
top (v) =

∫
dHu e

i
gtop

Truv
ψopen

top (u), (3.35)

where dHu is the measure induced from the Haar measure on U(M).

The freedom to choose a variable is crucial because there are some cases in which

the Lagrangian cycle L can make a “flop transition.” From the perspective of the

boundary ∂L = T 2 nothing special happens at the transition, but in the interior of

L the topology changes and in particular the cycle that collapses in the interior is

different after the transition. An example of this phenomenon can be seen when X is a

toric Calabi-Yau manifold. Moreover, in that case one can use the mirror B model to

see that worldsheet instanton corrections eliminate the sharp transition: the different

phases are smoothly connected. Thus, in the B model language there is a continuous

change of variables which takes us from one choice of holonomy to another. This is

related to the background dependence of open topological string amplitudes, to which

we now turn.

Background dependence for the open topological string

In this section we take a brief detour to explain the background dependence of

the open string topological string. It was conjectured in [5] that the open topological

string partition function depends on a choice of “background” moduli, or equivalently,

depends on the antiholomorphic coordinates of the moduli as well as the holomor-

phic ones. This conjecture was advanced in order to explain the fact that the open

topological string behaves like a wave function, by analogy to what is known for the
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closed string case [131]. In the case considered in [5], the geometry of the Calabi-Yau

is given (in the mirror B model) by a hypersurface in C4,

F (u, v) − xy = 0, (3.36)

and the mirror of the Lagrangian brane is a brane on a holomorphic curve, specified

by the condition x = 0 together with fixed choices of u, v satisfying F (u, v) = 0. As

noted in [6, 5] the geometry with this D-brane included can be viewed as a special

(degenerate) limit of a closed string geometry, with the D-brane serving as a source

for the holomorphic 3-form; this source changes the usual equation dΩ = 0 to

dΩ = gtopδ(D), (3.37)

where δ(D) denotes a delta function at the locus of the D-brane. We have already

used this correspondence in Section 3.3, where we discussed how the “ghost branes”

can be viewed as closed string moduli. Similarly, we can use it to interpret the holo-

morphic anomaly of closed strings as inducing a holomorphic anomaly (or equivalently

a background dependence) for the open string partition function. Here we view the

modulus of the open string, given by the choice of (u, v) on the surface F (u, v) = 0,

as a closed string modulus. In fact, borrowing the closed string technology for back-

ground dependence developed in [131, 45] we immediately deduce that for a given

background (u0, v0) the natural variable for the open string wave function is

v + τu, (3.38)

where

τ = −∂v
∂u

∣∣∣∣
(u0,v0)

. (3.39)
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Here we are considering v as a function of u through the implicit relation F (u, v) = 0,

so τ is the slope of the tangent plane to the Riemann surface at (u0, v0). Note that

τ = ∂2F/∂u2.

The form (3.38) of the natural variable can be connected to our earlier discussion

of the wave function nature of the Chern-Simons theory embedded in the open string;

there too we claimed that there is a natural variable for the wave function, namely the

holonomy around the cycle of T 2 which shrinks in the interior of the solid torus. In

that classical picture (which neglects the effect of worldsheet instantons) the holonomy

around the vanishing cycle is simply v; and choosing the background point near an

asymptotic infinity of the quantum moduli space, where the classical picture becomes

exact, one indeed gets τ → 0, so v + τu → v. More invariantly, the value of τ near

an asymptotic infinity of the B model Riemann surface approaches the slope of the

corresponding line in the A model toric diagram, and this slope indeed determines

the collapsing cycle of the toric fiber.

Note that in order to go off the real locus τ = τ we need to recall that the Chern-

Simons holonomies are complexified in the context of topological strings (to include

the moduli which move the brane); in the geometric motivation we gave before we

had essentially turned those off. It would be interesting to understand this relation

off the real locus.

3.5 The open string conjecture

As we reviewed in Section 3.2, the closed topological string wave function on a

Calabi-Yau space X is believed to compute the large-charge asymptotics of an index
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which counts BPS states in four dimensions, and this index has an interpretation as

the Wigner function of ψtop. On the other hand, we just saw in Section 3.4 that the

open topological string partition function ψopen
top with non-compact D-branes is also

naturally considered as a wave function. So we could construct a Wigner function

from this wave function, and then a natural question is whether this Wigner function

also has an interpretation as counting BPS states. We will argue that it does.

We embed the open topological string in the superstring in a familiar way [100].

Namely, consider D4-branes wrapping a special Lagrangian cycle L ⊂ X. Then there

are open D2-branes ending on these D4-branes. These give rise to BPS particles in

the 2-dimensional supersymmetric gauge theory on the non-compact directions of the

D4-branes; we will interpret the charge Qe as counting these BPS particles. The

gauge theory in question also supports BPS domain walls; we will interpret Qm as

measuring the domain wall charge.

Altogether then, we will conjecture below that the open topological string, on

a Calabi-Yau space X with Lagrangian branes included, computes the large-charge

asymptotics of an index which counts open D2-branes, and their domain wall coun-

terparts, bound to any number of closed D0, D2, D4 and D6-branes. Furthermore,

we will describe one context in which some aspects of this proposal can be checked.

Calabi-Yau spaces with branes and BPS particles

Consider a Calabi-Yau manifold X containing a special Lagrangian 3-cycle L. We

consider the Type IIA superstring on X×R3,1, with M D4-branes on L×R1,1, which
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we will call the “background branes.” For simplicity, we assume L has the topology

L ' R
2 × S1. (3.40)

The dimensionally reduced theory on the R1,1 part of the background branes is

a (2, 2) supersymmetric gauge theory. Its field content can be understood as follows

[100]. Since b1(L) = 1 it follows [92] that L has one real modulus r; this modulus

pairs up with the Wilson line of the worldvolume gauge field
∮
A to give a complex

field

u = r + i
∮
A. (3.41)

One also gets a gauge field in R1,1 by integrating the world-volume two-form B (which

is the magnetic dual to the gauge field A on the D4-brane, defined by d∗A = dB)

over the S1 of L. Since there are M D4-branes, the theory has (at least) a magnetic

U(1)M gauge symmetry. The field u should be viewed as the lowest component of a

twisted chiral multiplet, whose top component is the field strength of the magnetic

gauge field in two dimensions.

There is an obvious way of getting BPS particles in this theory. Suppose for a

moment that M = 1 (a single Lagrangian brane.) Let γ ∈ H1(L,Z) denote the

homology class of the S1 in L. Since the Calabi-Yau has no non-contractible 1-cycles,

this γ is a boundary in X; so there exists some D with

[∂D] = γ. (3.42)

Open D2-branes wrapped on D give rise to particles charged under the U(1) gauge

field of the 2-dimensional theory; if D is a holomorphic disc, then these particles are

BPS.
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The conjecture

Now, to motivate our conjecture, recall from Section 3.2 that in the closed string

case (without the background branes) we have the relation

ZBH(Q6, Q4, ϕ2, ϕ0) =
∑

Q0,Q2

ΩQ6,Q4,Q2,Q0
e−Q2ϕ2−Q0ϕ0 = |ψtop(gtop, t)|2, (3.43)

where ϕ2 = Im 2πt/gtop and ϕ0 = Im 4π2/gtop as given in (3.4), (3.5). We wish to

generalize this conjecture to the open topological string. What is the appropriate

ensemble to consider? Since the closed D2-branes are “light electric states” in the

closed string ensemble, which we sum over with chemical potentials, it is natural to

try treating the open D2-branes in the same way. Thus, in formulating our conjecture

we consider these BPS states as “electric charges,” and sum over them with a chemical

potential ϕopen
e . We also expect to have a “magnetic charge,” which we fix to the some

value Qopen
m ; we will discuss these charges further below.6 The partition function of

the ensemble thus obtained is a simple generalization of (3.43),

Zopen
BPS (Q6, Q4,Qopen

m , ϕ2, ϕ0, ϕ
open
e ) =

∑

Q0,Q2,Qopen
e

ΩQ6,Q4,Q2,Q0,Qopen
e ,Qopen

m
e−Q2ϕ2−Q0ϕ0−Qopen

e ϕopen
e .

(3.44)

We conjecture that the relation of Zopen
BPS to the topological string is a direct general-

ization of (3.43),

Zopen
BPS (Q6, Q4,Qopen

m , ϕ2, ϕ0, ϕ
open
e ) = |ψopen

top (gtop, t, u)|2, (3.45)

where ψopen
top is the topological A model partition function on X, including open strings

ending on M D-branes on L as well as closed strings.

6The terminology “electric” and “magnetic” here is chosen by analogy to the closed string case.
The charges we are discussing here are both associated to point particles, which are not electric-
magnetic duals in the theory on R1,1.
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In this conjecture the closed string moduli gtop, t are determined by the attractor

mechanism as before. What about the open string modulus u? The formula ϕ2 =

Im 2πt/gtop for the closed D2-brane chemical potential suggests that the open D2-

brane chemical potential should be related to u by

ϕopen
e = Im 2πu/gtop. (3.46)

We will verify this identification of Im u in an explicit example below. The real part

of u should be fixed by the charge Qopen
m , as we now discuss.

Adding magnetic charges

What is the spacetime meaning of the “magnetic” charge Qopen
m , and its relation

to the real part of the modulus u? We can make a plausible guess by exploiting

the symmetry between u and its conjugate v. Namely, as noted in Section 3.4, it is

possible for L to undergo a flop transition to a new phase parameterized by a different

parameter v (representing the holonomy of the gauge field around a new S1 which

was contractible in the old phase). The two phases are smoothly connected in the

quantum topological string theory and also in the physical one, but they correspond

to different classical descriptions of the physics. The most economical assumption

would then be that the excitations which we are calling “electric” in one description

are the same as the ones which we are calling “magnetic” in the other. In this section

we explore the consequences of this assumption (without being too careful about the

factors of i which appear.) We discuss only the open string sector, suppressing the

closed strings, and drop the label “open” from our notation for simplicity.

First, we can write down the precise form of u, using the fact that ψtop(v) is



Chapter 3: BPS microstates and the open topological string partition function 76

related to ψtop(u) by the Fourier transform (3.35), or equivalently

[u, v] = igtop. (3.47)

The dictionary between our statistical ensemble and the quantum-mechanical picture

requires the relations

[Qe, ϕe] = 1 = [Qm, ϕm], (3.48)

since we cannot fix the charges and the chemical potentials at the same time. On the

other hand, we can fix the charges simultaneously, so

[Qe,Qm] = 0 = [ϕe, ϕm]. (3.49)

The consistency of (3.47), (3.48), (3.49) with Im u = gtopϕe/2π then requires

Re u = πQm, Re v = πQe. (3.50)

The equation (3.50) completes our conjecture (3.45), except that we have not been

precise about how to fix the zero of Re u or Re v. We do not have a general proposal

for how this should be done, although we will see how it works in an example below.

Note that the expectation value of v in the state corresponding to the open string

wave function ψtop(u) = exp(iFtop(u)) is given by

v = gs∂uFtop(u) (3.51)

(the semi-classical version of this equation was discovered in [8]). This is precisely

analogous to the special geometry relations of the closed string. In this sense (3.50)

seems to describe an open string analogue of the attractor mechanism that fixes the

moduli to values determined by charges of BPS states. It would be interesting to

study this attractor mechanism directly in the physical theory.
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Our identification of the parameters leads to two formulas for the Wigner function,

i.e. the degeneracies of BPS states,

ΩQe,Qm
=
∫
dϕe e

−Qeϕe ψ(u =
igtop

2π
ϕe + πQm)ψ(u =

igtop

2π
ϕe + πQm), (3.52)

=
∫
dϕm e−Qmϕm ψ(v =

igtop

2π
ϕm + πQe)ψ(v =

igtop

2π
ϕm + πQm). (3.53)

(The arguments we gave above about commutation relations are equivalent to the

statement that these two formulas are indeed related by Fourier transforming ψ(u) ↔

ψ(v).) Put another way, ψ(u) and ψ(v) sum over conjugate ensembles,

|ψ(u =
igtop

2π
ϕe + πQm)|2 =

∑

Qe

ΩQe,Qm
e−Qeϕe, (3.54)

|ψ(v =
igtop

2π
ϕm + πQe)|2 =

∑

Qm

ΩQe,Qm
e−Qmϕm . (3.55)

In the above we implicitly chose some framing for the open string wave function ψ(u),

and one could ask what is the meaning of changing the framing. As discussed in [5],

the effect of shifting the framing by k units is ψ(k)(u) = e−ikgtop∂2
uψ(u). From this

and (3.54) it follows that ψ(k) sums over an ensemble in which we have a chemical

potential for dyons of charge (1, k):

|ψ(k)(u =
igtop

2π
ϕe + πQm)|2 =

∑

Qe

ΩQe,Qm+kQe
e−Qeϕe . (3.56)

So far we have discussed the magnetic charge Qm abstractly in terms of its relation

to the real part of the topological string modulus, but our assumption also leads to

a natural description of the meaning of the magnetic charges in the physical theory.

To understand this, note first that turning on electric charge Qe, arising from open

D2-branes ending on γ ⊂ L, can be equivalently described as turning on magnetic

flux on the background D4-brane. This is because the D2-brane ending on L looks
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Figure 3.3: The 1-cycle γ and its dual cycle D inside L.

like a monopole string from the point of view of the gauge theory on the D4-brane.

So, letting D denote any 2-cycle in L dual to γ (see Figure 3.3), we have

∫

R×D
dF = 2πQe, (3.57)

where R denotes the spatial x-direction in R1,1. In particular, we could choose D to

be the disc obtained by filling in the 1-cycle S1 corresponding to v, which opens up

after the flop transition. Then (3.57) is equivalent to

∫

R×∂D
Fxθv

dx dθv = 2πQe. (3.58)

Alternatively, as Fxθv
= ∂xAθv

and

∮

∂D
Aθv

dθv = Im v, (3.59)

we see that as we cross the D2-branes in the x direction v jumps by 2πiQe. Since

exchanging electric and magnetic charges corresponds to exchanging u and v, it follows

that turning on Qm units of magnetic charge corresponds to having a domain wall

where u jumps by 2πiQm in going from x = −∞ to x = +∞. Hence these domain

walls are the magnetic charges we were seeking.
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Multiple Lagrangian branes

In the above discussion we have been assuming that we have a single background

D4-brane. Let us now return to more general case M ≥ 1. In this case Qopen
e,m label

representations of U(M).7 By a straightforward generalization of the arguments given

above, we see that the attractor values of the eigenvalues of u and v are (generalizing

(3.50))

Re ui = π(Q̂open
m )i, Re vj = π(Q̂open

e )j. (3.60)

Here Q̂open
m,e denote the highest weight vectors of the corresponding representations,

shifted by the Weyl vector ρ (see Appendix 3.7). The rest of the discussion generalizes

similarly.

3.6 A solvable example

After these general considerations we now return to the example we described in

Section 3.2, where X is a rank 2 holomorphic vector bundle over Σ, and add back-

ground D4-branes on L×R1,1 to the Type IIA theory. In this section we want to argue

that one can use 2-dimensional Yang-Mills theory to compute Zopen
BPS , generalizing the

discussion of Section 3.2. Our arguments will be heuristic, but they lead to a definite

prescription which is natural and fits in well with our conjectures.

How is the discussion of Section 3.2 modified by the introduction of the background

branes? The L we will consider meet D along a circle, which we call γ. Hence in the

gauge theory on D there will be extra massless string states localized along γ, in the

7The gauge theory has at least a U(1)M symmetry, and since the degeneracies are symmetric
under the symmetric group SM , we can organize them into characters of representations Qopen

e of
U(M) (possibly with negative multiplicities.)
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bifundamental of U(M) × U(N). By condensing these string states (going out along

a Higgs branch), i.e. turning on a vacuum expectation value of the form




1

. . .

1

0 · · · 0

...
...

0 · · · 0




(3.61)

one can break the gauge symmetry along γ to U(M)×U(N−M), where the surviving

U(M) is the diagonal in [U(M)×U(M)]×U(N −M).8 We conjecture that from the

point of view of the gauge theory on D, the only effect of the interaction with the

background branes comes from the fact that the U(M) part of the gauge field along

γ is identified with the U(M) gauge field on the background branes, via this Higgsing

to the diagonal. We can account for this by inserting a δ-function in the theory on

D, which freezes M of the eigenvalues of the holonomy e
i
∮

γ
A
, identifying them with

the holonomy on the background branes, which we call eiφ. The Weyl invariant way

to write this delta function is

δM

(
e

i
∮

γ
A
, eiφ

)
= D(

∮

γ
A)−1

∑

σ∈SN

(−)σ
M∏

j=1

δ
(
(e

i
∮

γ
A
)σ(j), e

iφj

)
, (3.62)

where D denotes the Vandermonde determinant (3.109).

Let us write Zopen
YM (ϕ0, ϕ2, φ) for the partition function with this operator inserted

(here “open” refers to the fact that it is related to the open topological string.) This

8We are considering only the case M < N ; ultimately we will be interested in taking N large
while M stays finite.
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partition function sums over the open D2-branes which end on the Lagrangian branes,

as well as over the D0 and D2-brane charges which one had without the Lagrangian

branes; so altogether we should have

Zopen
YM = Zopen

BPS . (3.63)

In this ensemble the chemical potential ϕopen
e for the open D2-branes should roughly

be their mass. This mass is given by the area of the disc on which they are wrapped,

which is related by supersymmetry to the Wilson line on the background branes; with

this as motivation we write

ϕopen
e = 2πφ/gs. (3.64)

To compute Zopen
YM it is convenient to reduce from the twisted N = 4 theory on

D to a q-deformed Yang-Mills theory on Σ, as was done in [124, 10]. How does the

operator insertion δM

(
e

i
∮

γ
A
, eiφ

)
translate to the reduced theory? There are two

cases to consider:

1. γ lies in the fiber of L−p over a point P ∈ Σ.

2. γ lies on the Riemann surface Σ.

In either case these Lagrangian branes can be locally modelled by the ones studied

in [11, 8]. In case 1, where γ is in the fiber over P , the situation is basically straight-

forward: as explained in [124], the flux
∮
γ A shows up in the q-deformed Yang-Mills

theory on Σ as a field Φ. The operator we have to insert in the q-deformed theory is

therefore

δM(eiΦ(P ), eiφ). (3.65)
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Figure 3.4: The operator δM

(
e

i
∮

γ
A
, eiφ

)
cuts Σ into two pieces.

The path integral gets localized on configurations where Φ is locally constant, so when

there are no other operator insertions we can drop the P and write δM(eiΦ, eiφ).

In case 2 the situation is a bit trickier, because of a subtlety which also appeared

in [124]: namely, in performing the reduction one has to choose p points Pi on Σ,

and at each such point one gets an operator corresponding to one unit of area in the

Yang-Mills theory. The operator δM

(
e

i
∮

γ
A
, eiφ

)
reduces to

δM

(
e

i
∮

γ
A
, eiφ

)
(3.66)

in two dimensions, but we have to specify how many of the p points go on each side of

γ. Therefore there is a Z-valued ambiguity in defining which operator we insert in the

physical theory, parameterized by a choice of p1 and p2 with p1 + p2 = p. See Figure

3.4. This ambiguity should be understood as related to infrared regularization arising

from the non-compactness of the situation; in the connection to the open topological

string below, we will see that it is identified with the framing ambiguity.
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Specializing to genus zero

Next we will investigate in detail the case when Σ has genus zero. So we specialize

to Type IIA on X × R3,1, where

X = O(−p) ⊕O(p− 2) → CP
1, (3.67)

with background D4-branes added on L×R1,1. As we just explained, we can compute

a mixed ensemble partition function Zopen
BPS for this system by inserting an appropriate

operator into the q-deformed Yang-Mills theory on an S2 of area p. The parameters

of the Yang-Mills theory are as in the closed case,

θYM = θ, g2
YM = gs, q = e−gs. (3.68)

We will show that for all p1, p2 we indeed have Zopen
YM = |ψopen

top |2 + O(e−N). We

will also show that the identification of Zopen
YM with Zopen

BPS is consistent; namely, Zopen
BPS

should have an expansion where φ appears only in the form e−2πφ/gs, and we will verify

that Zopen
YM indeed has such an expansion at least in the special case p1 = p2 = 1. These

two results together give evidence for our conjecture (3.45).

Large N factorization on O(−p) ⊕O(p− 2) → CP
1

We want to establish that

Zopen
YM = |ψopen

top |2 + O(e−N). (3.69)

We compute Zopen
YM using the gluing procedure described in Appendix 3.8: namely, we

construct the sphere by gluing two discs together with the operator δM(ei
∮

A, eiφ) in

the middle. We use the fact that the Hilbert space of the 2-dimensional Yang-Mills
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theory is factorized at large N , H ' H+⊗H−, and furthermore each component of the

gluing procedure can be written in a factorized form. This factorization is described

in detail in Appendix 3.10; the computation of Zopen
YM we give below basically consists

of fetching various results from that appendix and putting them together. We then

compare this with the known form of the topological string amplitude and find the

desired factorization; the final result is given in (3.81).

Branes in the base

Let us first discuss case 2, where to compute Zopen
YM we have to insert a Wilson line

freezing operator δM(ei
∮

A, eiφ). This operator cuts the sphere into two pieces, with

discrete areas p1, p2 such that p1 + p2 = p. The gluing computation of Zopen
YM involves

a zero area disc, an annulus of area p1, the operator δM(ei
∮

A, eiφ), an annulus of area

p2, and another zero area disc:

Zopen
YM (N, gs, θ, φ) = 〈Ψ0|Ap1

δM(ei
∮

A, eiφ)Ap2
|Ψ0〉. (3.70)

Each of these pieces has been written in the factorized basis for H in Appendix

3.10: the disc is given in (3.172), the annulus in (3.170), and the Wilson line freezing

operator in (3.171). Plugging in these factorizations and doing a little rearranging, we

obtain the factorized form of Zopen
YM , schematically Zopen

YM = Z+Z−, or more precisely

(writing q = e−gs)

Zopen
YM (N, gs, θ, φ) = Z0

YM(N, gs, θ, φ)M(q)2η(q)2N×
∑

l∈Z,R′
1,R′

2

(−)|R
′
1|+|R′

2|q
1
2
(p1+p2)l2eiNlpθZ

R′
1,R′

2,l
+ Z

R′
1,R′

2,l
− + O(e−N ), (3.71)
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where

Z
R′

1,R′
2,l

+ (N, gs, θ, φ) = q
1
2
N(|R′

1|+|R′
2|)×

∑

R1+,R2+,A+

q
1
2
p1κR1+

+ 1
2
p2κR2+

+( 1
2
N(p1−1)+lp1)|R1+|+( 1

2
N(p2−1)+lp2)|R2+|×

C0R′
1R1+

CR′t
2 R2+0sR1+/A+

(e−iφ)sR2+/A+
(eiφ)eiθ(p1|R1+|+p2|R2+|), (3.72)

and similarly

Z
R′

1,R′
2,l

− (N, gs, θ, φ) = q
1
2
N(|R′

1|+|R′
2|)×

∑

R1−,R2−,A−

q
1
2
p1κR1−

+ 1
2
p2κR2−

+( 1
2
N(p1−1)−lp1)|R1−|+( 1

2
N(p2−1)−lp2)|R2−|×

C0R′t
1 R1−

CR′
2R2−0sR1−/A−(eiφ)sR2−/A−(e−iφ)e−iθ(p1|R1−|+p2|R2−|). (3.73)

The normalization factor Z0
YM(N, gs, θ, φ) will be fixed below.

Now we want to interpret the chiral blocks Z
R′

1,R′
2,l

± (φ) in terms of the topological

string on X. This X can be represented torically by the picture in Figure 3.5, on

which we also indicate the Lagrangian cycle L supporting M branes, one supporting

a stack of infinitely many ghost branes, and one with a stack of infinitely many ghost

antibranes. (See e.g. [11] for a review of the meaning of toric pictures such as this

one.) The results of [7] give the topological string amplitude on this geometry as9

(with q = e−gtop)

ψg
top(gtop, t, u, u

′) = ψ0
top(gtop, t, u)

∑

R1,R2,A,R′
1,R′

2

(−)|R
′
2|sR′

1
(eu′

1)sR′
2
(eu′

2)×

q
1
2
p1κR1

+ 1
2
p2κR2C0R′

1R1
CR′t

2 R20sR1/A(e−u)sR2/A(eu)(−)p1|R1|+p2|R2|e−t|R2|, (3.74)

9Using the result as it appears in [7] one would actually get something slightly different from
(3.74), namely, R2/A would be replaced by Rt

2/A
t, and there would be an extra overall factor

(−)|R2|+|A|. This difference is due to a typo in [7].
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t

UU ′
1 U ′

2

Figure 3.5: The vertex representation of X = O(−p)⊕O(p− 2) → CP1, with a stack
of M branes with complexified holonomy U = eu, a stack of infinitely many ghost
branes with complexified holonomy U ′

1 = eu′
1 , and a stack of infinitely many ghost

antibranes with complexified holonomy U ′
2 = eu′

2 .

with the choice of p1 and p2 (subject to the constraint p1 + p2 = p) related to the

choice of framing on the Lagrangian branes.10 Similarly, if one swaps the ghost branes

for ghost antibranes, one gets

ψa
top(gtop, t, u, u

′) = ψ0
top(gtop, t, u)

∑

R1,R2,A,R′
1,R′

2

(−)|R
′
1|sR′

1
(eu′

1)sR′
2
(eu′

2)×

q
1
2
p1κR1

+ 1
2
p2κR2C0R′t

1 R1
CR′

2R20sR1/A(e−u)sR2/A(eu)(−)p1|R1|+p2|R2|e−t|R2|. (3.75)

Now to relate the chiral blocks Z± which make up ZYM to the topological string

amplitudes, we define

t =
1

2
Ngs(p− 1) − ipθ̂, (3.76)

u =
1

2
Ngs(p1 − 1) − i(p1θ̂ − φ), (3.77)

u′1 =
1

2
Ngs + iφ′

1, (3.78)

u′2 =
1

2
Ngs + iφ′

2, (3.79)

gtop = gs. (3.80)

10Strictly speaking, [7] considers the case M = ∞; but one can get finitely many branes by setting
all but M components of the eu and e−u appearing in (3.74) to zero.
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Here we introduced θ̂ = θ + π; this shift is meant to cancel the factor (−)p|R| in

(3.74).11

The desired factorization is then basically straightforward to check. One begins

with (3.71) which expresses ZYM in terms of the chiral blocks, then relates the chiral

blocks to ψg
top and ψa

top with the above choice of parameters, and converts the sums

over R′
1, R

′
2 into integrals over φ′

1, φ
′
2 as discussed in Section 3.3. This essentially

gives

ZYM(N, gs, θ, φ) =
∑

l∈Z

∫
dHφ

′
1dHφ

′
2×

(
ψg

top (gs, t+ lpgs, u+ lp1gs, u
′)
) (
ψa

top (gs, t− lpgs, u− lp1gs, u′)
)
. (3.81)

In order to match the l-dependent terms in (3.71), though, one has to examine care-

fully the normalizations for the topological string and Yang-Mills amplitudes, as was

done in [124, 10]. For the topological string we write

ψ0
top(gtop, t) = M(q)η(q)2t/(p−2)gtop exp

(
− 1

6p(p− 2)g2
top

t3 +
p− 2

24p
t

)
. (3.82)

The meaning of this normalization factor was discussed in [10]. For the Yang-Mills

theory, we write

Z0
YM(N, gs, θ, φ) = exp

(
gs(p− 2)2

24p
(N −N3) +N

θ̂2p

2gs

)
. (3.83)

Then the two chiral normalization factors multiply together to give the Yang-Mills

11The apparent asymmetry between p1 and p2 comes from the fact that we chose u to represent
the complexified area of the disc which ends on the Lagrangian branes from the left; the disc which
ends on them from the right has area t − u = 1

2Ngs(p2 − 1) − i(p2θ̂ + φ).
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normalization, up to some crucial l-dependent corrections:

ψ0
top(gs, t+ lpgs, u+ lp1gs)ψ0

top(gs, t− lpgs, u− lp1gs) =

Z0
YM(N, gs, θ, φ)M(q)2η(q)2Nq

1
2
pl2eiNlpθ. (3.84)

These terms match the l-dependent terms in (3.71); they are exactly what is needed

to make the factorization (3.81) work. So we have completed the factorization in case

2, corresponding to D-branes which intersect the base CP1 in X.

Branes in the fiber

We can also consider case 1, corresponding to D-branes which meet the fiber of

O(−p) → CP1. In this case, in the Yang-Mills theory we insert the dual Wilson line

freezing operator δM(eiΦ, eiφ) at a point of CP1. Our discussion here will be more

brief since the proof of the factorization runs along the same lines as case 2 above.

Again, we compute the Yang-Mills amplitude by gluing: we have to glue a disc

containing the operator δM (eiΦ, eiφ), an annulus of area p, and another disc, obtaining

Zopen
YM (N, gs, θ, φ) = 〈Ψφ|Ap|Ψ0〉. (3.85)

Using the factorization results (3.170), (3.172) and (3.173) this becomes

Zopen
YM (N, gs, θ, φ) = Z0

YM(N, gs, θ, φ)M(q)2η(q)2N×
∑

l,m∈Z,R′
1,R′

2

(−)|R1|+|R2|q
1
2
pl2eiNlpθ det(eimφ)Z

R′
1,R′

2,l,m
+ Z

R′
1,R′

2,l,m
− + O(e−N ), (3.86)

with

Z
R′

1,R′
2,l,m

+ (N, gs, θ, φ) = q
1
2
N(|R′

1|+|R′
2|)

∑

R+,T+

q
1
2
pκR+

+ 1
2
κT+

+( 1
2
N(p−2)+lp−m)|R+|+(− 1

2
N−l)|T+|×

CT+R′
1
R+
CR′t

2
R+0sT t

+
(e−iφ)eiθp|R+|, (3.87)
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t

V

U ′
1 U ′

2

Figure 3.6: The vertex representation of X, with a stack of M Lagrangian branes
with complexified holonomy V = ev, a stack of infinitely many ghost branes with
complexified holonomy U ′

1 = eu′
1 , and a stack of infinitely many ghost antibranes with

complexified holonomy U ′
2 = eu′

2 .

and similarly

Z
R′

1,R′
2,l,m

− (N, gs, θ, φ) = q
1
2
N(|R′

1|+|R′
2|)

∑

R−,T−

q
1
2
pκR−

+ 1
2
κT−

+( 1
2
N(p−2)−lp+m)|R−|+(− 1

2
N+l)|T−|×

CT−R′t
1

R−
CR′

2
R−0sT t

−
(eiφ)e−iθp|R−|. (3.88)

As in case 2, we can now interpret these chiral blocks in terms of the topological

string on X with M Lagrangian branes, now inserted on the external leg as indicated

in Figure 3.6. Again from [7], the topological partition function in this geometry

(with a particular choice of framing on the M external branes) is

ψg
top(gtop, t, v, u

′) = ψ0
top(gtop, t, v)

∑

R,T

CTR′
1RCR′

2R0sR′
1
(eu′

1)sR′
2
(eu′

2)×

(−)p|R|q
1
2
pκR+ 1

2
κT e−t|R|sT t(e−v), (3.89)

and similarly one can compute ψa
top with the ghost branes exchanged for antibranes.
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Now define

t =
1

2
Ngs(p− 2) − iθp, (3.90)

u′1 =
1

2
Ngs + iφ′

1, (3.91)

u′2 =
1

2
Ngs + iφ′

2, (3.92)

v = −1

2
Ngs + iφ, (3.93)

gtop = gs. (3.94)

With this substitution and a suitable normalization one can relate (3.89) to the chiral

blocks appearing in the factorization (3.86), similarly to what was done above in case

2, obtaining

ZYM(N, gs, θ, φ) =
∑

l,m∈Z

∫
dHφ

′
1dHφ

′
2×

(
ψg

top (gs, t + lpgs, v − lgs, u
′
1 −mgs, u

′
2)
) (
ψa

top (gs, t− lpgs, v + lgs, u′1 +mgs, u′2)
)
.

(3.95)

So finally we have found that Zopen
YM = |ψopen

top |2 + O(e−N ), both for branes in the

fiber and in the base.

Summing open D2-branes on O(−1) ⊕O(−1) → CP1

Next we want to verify that Zopen
YM can indeed be interpreted as counting open

D2-branes with the chemical potential ϕopen
e = 2πφ/gs. We consider case 2, where

we have a Wilson line freezing operator δM

(
e

i
∮

γ
A
, eiφ

)
cutting the sphere into two

pieces, with discrete areas p1, p2 such that p1 + p2 = p, and further specialize to the

case p1 = p2 = 1.
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As we did in the previous section, we compute the partition function Zopen
YM of this

Yang-Mills theory using the gluing procedure described in Appendix 3.8: namely, we

construct the sphere by gluing two discs together with the operator δM(ei
∮

A, eiφ) in

the middle. However, unlike above where we used the splitting H = H+ ⊗H− to see

the large N factorization of Zopen
YM , in this section we will write the explicit formula

for Zopen
YM at finite N .

The wave function of the q-deformed 2-dimensional Yang-Mills theory on the disc

is a function of the eigenvalues ξ of the Wilson line around the boundary, evaluated

in Appendix 3.9:

Ψ(ξ) = e−Ngs/24ΘN

(
1

2π
(ξ + θ),

igs

2π

)
, (3.96)

where ΘN denotes the theta function of ZN ,

ΘN(z, τ) =
∑

γ∈ZN

eπiτ‖γ‖2

e2πi〈γ,z〉, for z ∈ R
N , Im τ > 0. (3.97)

In our case we want to glue two such disc wave functions Ψ1(ξ), Ψ2(ξ) to one another

with δM(ei
∮

A, eiφ) sandwiched in the middle. The result of this gluing is given in

(3.128), but we need a little notation first: we divide the lattice ZN into ZN−M ⊕

ZM , and correspondingly divide ξ into ζ and φ, with N − M and M components

respectively. Then the result of the gluing is

Zopen
YM (N, gs, θ, φ) =

∫

[0,2π]N−M

dζ

2π
|D(ζ)|2Ψ1(−ζ,−φ)Ψ2(ζ, φ). (3.98)

Because of the simple form of the wave function, the ζ dependence and φ dependence

decouple, namely

Ψ(ζ, φ) = e−Ngs/24ΘN−M

(
1

2π
(ζ + θ),

igs

2π

)
ΘM

(
1

2π
(φ+ θ),

igs

2π

)
. (3.99)
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So write

fN−M (θ, gs) =
∫ dζ

2π
|D(ζ)|2ΘN−M

(
1

2π
(ζ + θ),

igs

2π

)
ΘN−M

(
1

2π
(−ζ + θ),

igs

2π

)
.

(3.100)

Then (3.98) becomes

Zopen
YM (N, gs, θ, φ) = e−Ngs/12fN−M(θ, gs)ΘM

(
1

2π
(φ+ θ),

igs

2π

)
ΘM

(
1

2π
(−φ+ θ),

igs

2π

)
.

(3.101)

Now we can use the Poisson resummation property of the theta function,

ΘM(z, τ) =
(
i

τ

)M/2

e−πi‖z‖2/τΘM(z/τ,−1/τ), (3.102)

to obtain

Zopen
YM (N, gs, θ, φ) = e−Ngs/12fN−M(θ, gs)

(
2π

gs

)M

e−
1

2gs
(‖φ+θ‖2+‖φ−θ‖2)×

ΘM

(
− i

gs

(φ+ θ),
2πi

gs

)
ΘM

(
− i

gs

(−φ + θ),
2πi

gs

)
. (3.103)

Expanding out these theta functions then gives Zopen
YM (N, gs, θ, φ) as an expansion

in e−2πφ/gs , up to a prefactor e−
1
gs

‖φ‖2

. So up to this prefactor, we have verified

that Zopen
YM can indeed be interpreted as counting open D2-branes with the chemical

potential ϕopen
2 = 2πφ/gs.

For completeness, let us briefly consider the leftover factor fN−M(θ, gs). Writing

out using (3.109)

|D(ζ)|2 =
∑

σ,σ′∈SN−M

(−)σσ′

ei〈ζ,σ(ρ)−σ′(ρ)〉 (3.104)

(where ρ = ρN−M ) and evaluating the integral using the definitions of the theta
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functions gives

fN−M(θ, gs) =
∑

σ,σ′∈SN−M

(−)σσ′

e−
1
2
gs‖σ(ρ)−σ′(ρ)‖2

ΘN−M

(
1

2π
(−2θ + igs(σ(ρ) − σ′(ρ))),

igs

π

)
.

(3.105)

So this can also be resummed to give an expansion in e−4π2/gs and e−2πθ/gs , as one

expects from the closed string sector of the conjecture.

3.7 Group theory

In this appendix we summarize our group theory conventions and a few useful

formulas.

We use script letters R,P,Q, . . . to denote representations of unitary groups

such as U(N), and capital letters R,P,Q, . . . to denote Young diagrams. Often

Young diagrams will appear as the chiral and anti-chiral parts R± of a representation

R = R+R−[l], as described in Appendix 3.10.

The weight lattice of U(N) is ZN , with its standard inner product 〈, 〉. A highest

weight representation R is characterized by a weight (r1, . . . , rN) ∈ ZN , in a particular

Weyl chamber; we make the standard choice of Weyl chamber, given by the constraint

r1 ≥ · · · ≥ rN . With this choice, the entries ri correspond to the lengths of the rows of

the extended Young diagram for the representation R. The Weyl group W of U(N)

is the symmetric group, W ' SN , which permutes the entries of ZN in the obvious

way.

We will use the symbol R both for the representation and for its highest weight.

It is also convenient to introduce the symbol R̂ for R+ ρ, where ρ is half the sum of
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the positive roots of U(N), concretely

ρ =
1

2
(N − 1, N − 3, . . . , 3 −N, 1 −N). (3.106)

We also write 1 for the “unit” vector,

1 = (1, 1, . . . , 1, 1). (3.107)

With this notation we can write the Weyl character formula,12

TrR(eiξ) = D(ξ)−1
∑

σ∈SN

(−)σei〈R̂,σ(ξ)〉, (3.108)

where the denominator D(ξ) is

D(ξ) =
∑

σ∈SN

(−)σei〈ξ,σ(ρ)〉 =
∏

i<j

(ei(ξi−ξj)/2 − e−i(ξi−ξj)/2). (3.109)

In computing the q-deformed Yang-Mills amplitudes we will need to use the Hopf

link invariant SPQ of the level k Chern-Simons theory with gauge group U(N). Define

gs = 2π
N+k

. There is a formula expressing SPQ as a sum over the Weyl group W ' SN :

SPQ = e−gs(‖ρ‖2+N/24)
∑

σ∈SN

(−)σegs〈P̂ ,σ(Q̂)〉. (3.110)

(The standard formulas for SPQ include a different normalization, but in the context

where we will use SPQ we will absorb this in other normalization factors.)

For any N1, N2 with N1 +N2 = N , let Q label a representation of U(N1) and A

a representation of U(N2), while R is a representation of U(N); then we define the

branching coefficients BR
QA by the rule that R decomposes under U(N1) × U(N2) as

R →
⊕

Q,A

BR
QA[Q,A]. (3.111)

12When N is odd, D(ξ)−1 and
∑

σ∈SN
(−)σei〈R̂,σ(ξ)〉 are not quite well defined as functions of

the eigenvalues eiξ — they change sign under ξi → ξi + 2π. Nevertheless their product is still well
defined.
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We fix the normalization of the Casimir operators of U(N) as follows: in a repre-

sentation R with highest weight (r1, . . . , rN),

C1(R) = 〈R̂, 1〉 =
∑

i

ri, (3.112)

C2(R) = ‖R̂‖2 − ‖ρ‖2 =
∑

i

ri(ri +N + 1 − 2i). (3.113)

We writeNR
R1R2

for the usual Littlewood-Richardson numbers, and also use a slight

generalization which we write NR
R1···Rk

. These numbers can be defined in various

equivalent ways — for example, if we think of the Young diagrams Ri and R as

representations of GL(∞), they are the tensor product coefficients, i.e.

R1 ⊗ · · · ⊗ Rk =
⊕

R

NR
R1···Rk

R. (3.114)

In particular, NR
R1···Rk

= 0 unless
∑k

i=1|Ri| = |R|, where |R| denotes the total number

of boxes in the diagram R.

We write sR(x) for the “Schur function” associated with the Young diagram R:

this is a symmetric polynomial in infinitely many variables, x = (x1, x2, . . . ). It can

be defined in various equivalent ways; one convenient way to think of it is as the

character of the Mat(∞,C) representation associated to R, evaluated on the diagonal

matrix with entries (x1, x2, . . . ). There is a bilinear inner product 〈, 〉 on the ring

of symmetric polynomials for which the Schur functions form an orthonormal basis,

〈sR, sS〉 = δRS ; in terms of this inner product NR
R1···Rk

= 〈∏k
i=1 sRi

, sR〉. Viewing

the xi as eigenvalues, the inner product can be written as a formal integral of class

functions over U(∞) (interpreted as an inverse limit of finite-dimensional groups with

their normalized Haar measures),

〈f, g〉 =
∫
dHξ f(e−iξ)g(eiξ). (3.115)
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We also use the “skew Schur functions” sR/A(x), defined by

sR/A(x) =
∑

Q

NR
QAsQ(x). (3.116)

See [89] for much more on Schur functions and skew Schur functions.

We also introduce an analog of the skew Schur function, a “skew trace” involving

the branching U(N) → U(N1) × U(N2) where N1 +N2 = N : this is a rule by which

a representation of U(N) and a representation of U(N2) induce a class function on

U(N1), which we define by

TrR/A(U) =
∑

Q

BR
QATrQ(U). (3.117)

Here R,Q,A denote representations of U(N), U(N1), U(N2) respectively; B denotes

the branching coefficients defined in (3.111); and U ∈ U(N1).

We will frequently encounter sums
∑

R′ over the set of all Young diagrams. A

particularly useful identity for reducing such sums is

∑

R′,S′

(−)|R
′|NA

R′S′A1···Aa
NB

R′tS′B1···Bb
= NA

A1···Aa
NB

B1···Bb
. (3.118)

One can prove (3.118) using the “Cauchy identities” for Schur functions, given e.g.

in [89],

∑

S′

sS′(x)sS′(y) =
∞∏

i=1

∞∏

j=1

(1 − xiyj)
−1, (3.119)

∑

R′

(−)|R
′|sR′(x)sR′t(y) =

∞∏

i=1

∞∏

j=1

(1 − xiyj). (3.120)
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3.8 The q-deformed 2-d Yang-Mills theory

In this section we review some facts about 2-dimensional Yang-Mills theory and its

q-deformed cousin. We begin with the 2-dimensional Euclidean Yang-Mills action13

for gauge group G = U(N),

SYM =
1

2g2
YM

(∫

Σ
d2x TrF ∧ ∗F + θYM

∫

Σ
TrF

)
. (3.121)

It is often convenient to rewrite (3.121) by introducing an additional adjoint-valued

scalar field Φ, which enters the action quadratically: namely, (3.121) is equivalent to

SYM =
1

2g2
YM

(
2
∫

Σ
TrΦF −

∫

Σ
µ TrΦ2 + θYM

∫

Σ
µ TrΦ

)
, (3.122)

where µ is the area element on Σ. Once we have introduced this Φ we can define the

q-deformed theory: we use the same action SYM, but we consider the fundamental

variables to be the gauge connection and eiΦ, rather than the gauge connection and Φ.

More precisely, since there is an ambiguity in recovering Φ from eiΦ, SYM is not well

defined as a function of Φ; to get a well defined expression inside the path integral

one has to sum e−SYM over all “images” Φ. Equivalently, we integrate over all Φ, not

just a fundamental domain, but we use the measure appropriate for an integral over

eiΦ. This construction gives the q-deformed theory with q = e−g2
YM, which is the one

that naturally occurs in this chapter; to get a different value of q one would change

the periodicity of Φ.

The partition function can be computed in various ways; here we will focus on

the computation by cutting and pasting. In the case of the undeformed Yang-Mills

theory, this procedure was reviewed in [38]; our treatment will be briefer, and is

13Note that our convention for θYM is not the usual one; θusual
YM = iπ

g2

YM

θYM.
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intended mostly to recall the new features that appear in the q-deformed case, as

described in [10].

To get the cutting-and-pasting procedure started one first needs to know the

Hilbert space H of the theory on S1; as for the usual 2-d Yang-Mills theory, it is

simply the space of class functions Ψ(g), with g ∈ G interpreted as the holonomy of

the connection around S1. The path integral over a surface with boundary S1 thus

gives a state Ψ(g). Two such surfaces can be glued using the rule14

〈Ψ1|Ψ2〉 =
∫

G
dHgΨ1(g

−1)Ψ2(g), (3.123)

with dHg the Haar measure. When G = U(N) we can write these wave functions

more concretely as functions of the eigenvalues eiξi , totally symmetric under the

permutation group SN , and the gluing rule becomes

〈Ψ1|Ψ2〉 =
∫

[0,2π]N

dξ

2π
|D(ξ)|2 Ψ1(−ξ)Ψ2(ξ), (3.124)

where as in (3.109)

D(ξ) =
∏

i<j

(ei(ξi−ξj)/2 − e−i(ξi−ξj)/2). (3.125)

A convenient basis of H (which in particular diagonalizes the Hamiltonian) is given

by the characters TrR(g) as R runs over all representations of G. In that basis the

gluing rule becomes

〈R1|R2〉 = δR1R2
. (3.126)

Next we need the partition function on a few elementary surfaces, from which any

Σ of interest to us can be pasted together:

14We will always use the notation 〈|〉 to stand for the (linear) gluing rule rather than the (sesquilin-
ear) inner product on the Hilbert space. The two are the same when acting on real linear combina-
tions of the characters TrR(g) but differ for complex linear combinations.
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The annulus. The annulus of area a has two boundaries, so it gives an operator

Aa : H → H. The gluing rule for an annulus can be obtained directly from the action

by working out the Hamiltonian; it is [10]

〈R1|Aa|R2〉 = δR1R2
e−a( 1

2
g2
YM

C2(R)−iθYMC1(R)). (3.127)

The Wilson line freezing operator. As discussed in Section 3.5, we will be par-

ticularly interested in computing amplitudes involving a particular operator, written

δM(ei
∮

A, eiφ), which has the effect of freezing M of the eigenvalues along a Wilson

loop to the values eiφ1 , . . . , eiφM . A natural guess for the gluing rule with δM(ei
∮

A, eiφ)

inserted can be obtained by splitting up the N eigenvalues ξi into ( ζ︸︷︷︸
N−M

, φ︸︷︷︸
M

): namely,

one freezes the φ eigenvalues in the gluing rule (3.124) and integrates only over the ζ

eigenvalues, obtaining

〈Ψ1|δM(ei
∮

A, eiφ)|Ψ2〉 =
∫

[0,2π]N−M

dζ

2π
|D(ζ)|2 Ψ1(−ζ,−φ)Ψ2(ζ, φ). (3.128)

This integral has an interpretation in the representation basis. Namely, suppose

Ψj(ξ) = TrRj
(eiξ). Then decomposing Rj under U(N −M) × U(M) gives

Ψj(ξ) =
∑

Aj ,Qj

BRj

AjQj
TrAj

(eiζ)TrQj
(eiφ). (3.129)

The integral over ζ then picks out the terms with A1 = A2, giving

〈R1|δM(ei
∮

A, eiφ)|R2〉 =
∑

Q1,Q2,A

BR1

AQ1
BR2

AQ2
TrQ1

(e−iφ)TrQ2
(eiφ). (3.130)

If we define the skew trace TrR/S as in (3.117), we can rewrite this as

〈R1|δM(ei
∮

A, eiφ)|R2〉 =
∑

A

TrR1/A(e−iφ)TrR2/A(eiφ). (3.131)
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The disc. The disc of zero area gives a simple state Ψ0 ∈ H on its boundary,

Ψ0 =
∑

R

SR0|R〉, (3.132)

as was computed in [10]. (This should be compared to the analogous expression in the

non-q-deformed Yang-Mills theory — there one would have replaced SR0 by dimR

up to overall normalization. Indeed, SR0/S00 is the quantum dimension dimq R.)

The dual Wilson line freezing operator. Also as discussed in Section 3.5, we

need the operator δM(eiΦ, eiφ) which freezes M of the eigenvalues of the dual Wilson

line Φ at a point of Σ. The disc of zero area with this operator inserted gives a state

Ψφ ∈ H on its boundary, for which the natural formula is

Ψφ =
∑

R,S

SRSTrS/0(e
iφ)|R〉. (3.133)

This is a straightforward generalization of the result of [10] in the case M = N , along

the lines of what we did above for the Wilson line freezing operator. (In the special

case M = N , the result of [10] just replaces TrS/0 by TrS in the above.)

The trinion (pair of pants). The trinion has three boundaries, so it gives an

element in H⊗H⊗H, namely

T =
∑

R

|R〉 ⊗ |R〉 ⊗ |R〉
S0R

. (3.134)

It was computed in [10]; we include it here just for completeness since it would be

relevant for Riemann surfaces of genus g > 1.

In addition to these local ingredients we will include an overall normalization

factor Z0
YM in the partition function of this q-deformed theory; we do not give a
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general rule for this normalization here, but in the example we consider in the text,

it can be found in (3.83).

A q-deformation of 2-dimensional Yang-Mills theory has also been considered in

[30] where it was formulated using a lattice regularization. That formulation is likely

to be equivalent to the one discussed here and in [10]; at least the partition function

appears to be the same on an arbitrary surface.

3.9 The disc wave function

Consider the q-deformed 2-d Yang-Mills theory on a disc of area p, with parameters

fixed by

θYM = θ, g2
YM = gs, q = e−gs. (3.135)

The path integral on this disc gives a state Ψ(ξ) on the boundary, for which one can

give a formula using the rules of Appendix 3.8; namely, it is a sum over irreducible

representations R of U(N),

Ψ(ξ) =
∑

R

SR0e
− 1

2
pgsC2(R)eiθpC1(R)TrRe

iξ. (3.136)

Our purpose in this section is to express this Ψ(ξ) in terms of theta functions. As

reviewed in Appendix 3.7, the irreducible representations of R can be labeled by their

highest weights R = (r1, . . . , rN) ∈ Z
N , subject to the constraint r1 ≥ r2 ≥ · · · ≥

rN . We also write R̂ = R + ρ. Now we use the Weyl character formula (3.108),

the modular S matrix formula (3.110), and the Casimirs (3.112), (3.113); altogether
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(3.136) becomes

Ψ(ξ) =
∑

R


e−gs(‖ρ‖2+N/24)

∑

σ∈SN

(−)σegs〈σ(R̂),ρ〉


 e−

1
2
pgs(‖R̂‖2−‖ρ‖2)+iθp〈R̂,1〉×


D(ξ)−1

∑

σ′∈SN

(−)σ′

ei〈σ′(R̂),ξ〉


 . (3.137)

Writing σ̃ = σσ′−1, and using the Weyl invariance of 〈, 〉 and 1, we can rewrite this

as

Ψ(ξ) = e−gs(‖ρ‖2+N/24)D(ξ)−1e
1
2
pgs‖ρ‖2 ∑

R

∑

σ,σ̃∈SN

(−)σ̃e−
1
2
pgs‖R̂‖2+i〈σ(R̂),σ̃(ξ)+θp1−igsρ〉.

(3.138)

Now we want to express this as a theta function. If R runs over all weight vectors

in a given Weyl chamber, then it is easy to see that R̂ runs over all weight vectors

in the interior of that chamber.15 Since the Weyl group acts transitively to permute

the Weyl chambers, the sum over σ and R can be combined into a single sum over

γ = σ(R̂), where γ runs over the weight lattice ZN , or more precisely over those

vectors in ZN which are not in the boundary of any Weyl chamber. In terms of γ the

sum becomes

Ψ(ξ) = e−gs(‖ρ‖2+N/24)D(ξ)−1e
1
2
pgs‖ρ‖2 ∑

γ

e−
1
2
pgs‖γ‖2+i〈γ,θp1−igsρ〉

∑

σ̃∈SN

(−)σ̃ei〈γ,σ̃(ξ)〉.

(3.139)

But now note that the sum over σ̃ vanishes if γ is fixed by some Weyl reflection σ̃, i.e.

if it lies on the boundary of a Weyl chamber. Therefore we can extend the sum over

γ to run over the whole weight lattice ZN . The sum can be written (now dropping

15If N is even, the weight lattice has to be shifted by 1
21. This subtlety modifies some of our

intermediate expressions but cancels out in the final result (3.143).
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the˜on σ for notational simplicity)

Ψ(ξ) = e−gs(‖ρ‖2+N/24)D(ξ)−1e
1
2
pgs‖ρ‖2 ∑

σ∈SN

(−)σΘN

(
1

2π
(σ(ξ) + θp1 − igsρ),

ipgs

2π

)
.

(3.140)

Here we have introduced the theta function of ZN ,

ΘN(z, τ) =
∑

γ∈ZN

eπiτ‖γ‖2

e2πi〈γ,z〉, for z ∈ R
N , Im τ > 0, (3.141)

which obeys the functional equation

ΘN (z + τλ, τ) = e−πiτ‖λ‖2

e−2πi〈λ,z〉ΘN (z, τ) for λ ∈ Z
N . (3.142)

One can simplify (3.140) in the case p = 1; namely, in this case, one can apply (3.142)

with λ = −ρ. After some straightforward algebra using (3.109) the sum over σ cancels

the denominator D(ξ), leaving

Ψ(ξ) = e−gsN/24ΘN

(
1

2π
(ξ + θ1),

igs

2π

)
. (3.143)

3.10 Factorization

In this appendix we give some mathematical results which are used in the text to

establish the factorization of the 2-dimensional Yang-Mills amplitude with operator

insertions into chiral and anti-chiral parts.

Coupled representations

An essential technical tool in studying the factorization of 2-d Yang-Mills into chi-

ral and anti-chiral sectors, introduced in [64], is the notion of a coupled representation

of U(N). Here we review the notion of coupled representation.
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Figure 3.7: An extended Young diagram representing a representation of U(N) (for
N = 9) constructed by symmetrization and antisymmetrization over both fundamen-
tal representations (white boxes) and antifundamental representations (grey boxes).

Recall that the irreducible representations of SU(N) correspond to Young dia-

grams with no more than N rows. Such a diagram can be specified by giving the

lengths of the rows, (λ1, . . . , λN), with λ1 ≥ λ2 ≥ · · · ≥ λN , and all λi ≥ 0. Denote

the fundamental representation by V . Then the representation of SU(N) correspond-

ing to λ is obtained as a particular subspace of V ⊗|λ|, roughly by symmetrizing over

the rows and antisymmetrizing over the columns. In the case of SU(N) one can

obtain all representations in this way, but for U(N) one also needs to include copies

of the antifundamental representation V . This corresponds to considering “extended

Young diagrams” which can include “antiboxes” as well as boxes, i.e. removing the

constraint that all λi ≥ 0, as shown in Figure 3.7.

Now we can describe the coupled representations of U(N). The extended Young

diagram for a coupled representation R is built from two Young diagrams R+, R−,

just by putting boxes in the shape R+ at the upper left, antiboxes in the shape of

an upside-down version of R− at the lower right, and zero-length rows in between
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R = R+R̄−R+

R−

R = R+R̄−[1]

Figure 3.8: A coupled representation of U(N) (for N = 9).

so that the total height of the diagram is N . An example is shown in Figure 3.8.

(Note that this procedure only makes sense for sufficiently large N , namely, N has to

be greater than the combined number of rows in R+ and R−. We consider coupled

representations for which one of R± has more than 1
2
N rows to be undefined.) We

write the coupled representation R = R+R−. We will also need a slight generaliza-

tion of this construction: denote by R+R−[l] the representation obtained by tensoring

R+R− with l powers of the determinant representation of U(N). This is equivalent

to shifting the lengths of all rows by l.

The representations R+R−[l], where R+ and R− are Young diagrams with ≤ 1
2
N

rows, are a basis for the representation ring of U(N) (at least for N even.) Another

such basis would be obtained by taking instead R+ ⊗R−. The two are not the same,

although R+R− is the principal component of R+ ⊗R−; the relation between the two
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is given by

R+ ⊗ R− =
⊕

S±

[
∑

S′

N
R+

S+S′N
R−

S−S′

]
S+S− (3.144)

(so long as R± each have ≤ 1
2
N rows; otherwise the right side would include S+S−

where one of S± has more than 1
2
N rows, which we have not defined.) Here S ′ and

S± run over all (ordinary) Young diagrams. Note that the only S+ that contribute

are ones which are contained in R+, and similarly for S−, so the sum in (3.144) is

finite. It gives the decomposition of R+ ⊗ R− into irreducibles.

We will also need the inverse of (3.144). To get it, we use the fact that the sum

over S ′ can be undone by summing over another auxiliary Young diagram R′, using

formula (3.118), here in the form

∑

R′,S′

(−)|R
′|N

A+

B+R′S′N
A−

B−R′tS′ = δ
A+

B+
δ

A−

B−
. (3.145)

Applying this to (3.144) one obtains

S+S− =
⊕

R±

(
∑

R′

(−)|R
′|N

S+

R+R′N
S−

R−R′t

)
R+ ⊗ R−. (3.146)

Again here, R′ and R± run over all ordinary Young diagrams, but only those R±

which are contained in S± contribute, so the sum is finite.

One can also rewrite (3.144) in terms of characters as

∑

R±

TrR+⊗R−
(U)sR+

(V+)sR−(V−) =
∑

S±

(
∑

S′

sS+⊗S′(V+)sS−⊗S′(V−)

)
TrS+S−

(U),

(3.147)

and (3.146) as

∑

S±

TrS+S−
(U)sS+

(V+)sS−(V−) =
∑

R±

(
∑

R′

(−)|R
′|sR+⊗R′(V+)sR−⊗R′t(V−)

)
TrR+⊗R−

(U).

(3.148)
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It is useful to know how to decompose the Casimir operators for R = R+R−[l],

C1(R+R−[l]) = |R+| − |R−| +Nl, (3.149)

C2(R+R−[l]) = κR+
+ κR− +N(|R+| + |R−|) + 2l(|R+| − |R−|) +Nl2. (3.150)

Here we introduced

κR =
∑

r2
i −

∑
c2i , (3.151)

where ri are the lengths of the rows of the Young diagram R and ci are the lengths

of the columns. (So κR = −κRt , where Rt denotes the transpose of the diagram.)

Branching rules

To understand the behavior of Yang-Mills theory when some eigenvalues are

frozen, we need to understand the branching rules for coupled representations: how

does a coupled representation of U(N) decompose under U(N) → U(N1) × U(N2),

for N1 +N2 = N? In this section we will give formulas for these branching rules.

We begin with the case of a representation R of U(N) which is given by an

ordinary Young diagram, R = R (i.e. it can be constructed using only fundamental

indices, without the need for antifundamentals.) In this case the branching rule is

well known (it is given e.g. in [89] in the language of Schur functions),

R →
⊕

R1,R2

NR
R1R2

[R1, R2]. (3.152)

Here R1 and R2 run over all Young diagrams (but of course the coefficient NR
R1R2

is only nonzero if |R1| + |R2| = |R|.) The same rule holds for representations R

constructed only from antifundamentals. Combining these two rules we can find the
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branching rule for tensor products,

R+ ⊗ R− →
⊕

R1±,R2±

N
R+

R1+R2+
N

R−

R1−R2−
[R1+ ⊗ R1−, R2+ ⊗R2−]. (3.153)

Now we can convert (3.153) into a branching rule for coupled representations. We

start with a coupled representation R+R−, apply (3.146) to write it in terms of

tensor products, then apply (3.153) to decompose it under U(N1) × U(N2), then

apply (3.144) to write the U(N2) part in terms of coupled representations again.

This leads straightforwardly to

R+R− →
⊕

A±,Q±



∑

S′,A′

(−)|S
′|N

R+

A+Q+S′A′N
R−

A−Q−S′tA′


 [Q+ ⊗Q−, A+A−]. (3.154)

But using (3.118) the sums over S ′ and A′ cancel one another, and we are left with

R+R− →
⊕

A±,Q±

(
N

R+

A+Q+
N

R−

A−Q−

)
[Q+ ⊗Q−, A+A−]. (3.155)

Note that for this formula to make sense we need that the A+A− that appear are all

well defined, which requires that R± are shorter than 1
2
N2 rows.

Tensoring with powers of the determinant representation is also straightforward

— writing this representation [1], it has the simple branching rule [1] → [[1], [1]]. This

leads to

R+R−[l] →
⊕

A±,Q±

(
N

R+

A+Q+
N

R−

A−Q−

) [
Q+ ⊗Q− ⊗ [l], A+A−[l]

]
. (3.156)

The form of (3.156) that we ultimately use will be, when R = R+R−[l] and A =

A+A−[l],

TrR/A(eiφ) = sR+/A+
(eiφ)sR−/A−(e−iφ) det(eilφ). (3.157)

Here eiφ ∈ U(N1), and we emphasize again that (3.157) holds only when R± are

shorter than 1
2
N2 rows.
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Factorization of SPQ

In order to understand the large-N factorization of the q-deformed Yang-Mills

with insertions, we need to study the properties of the modular matrix SPQ of the

U(N) Chern-Simons theory in the case where P and Q are coupled representations,

P = P+P−[l], (3.158)

Q = Q+Q−[m]. (3.159)

The most naive expectation would be that SPQ would be factorized into a piece

depending on P+, Q+ and a piece depending on P−, Q−. As we will show below, the

correct formula is a sum of such terms,

SPQ = M(q)η(q)Nq−
1
2
(κQ+

+κQ−
)+(− 1

2
N−m)|P+|+(− 1

2
N+m)|P−|+(− 1

2
N−l)|Q+|+(− 1

2
N+l)|Q−|−2lmN×

∑

R′

(−)|R
′|qN |R′|CP+Qt

+R′CP−Qt
−R′t , (3.160)

where C is the topological vertex of [7] (in canonical framing.) This formula was

already obtained in [10], in the special case P± = 0, by direct computation using

results from [79].

Here we will give a physical argument which explains the reason for the factor-

ization in the more general case of arbitrary P± and Q±.16 We restrict to the case

l = m = 0, i.e. P = P+P− and Q = Q+Q−; the dependence on l and m is easily

restored using (3.110) and (3.149). The idea is to realize the left side of (3.160) as the

partition function of the A model topological string on the resolved conifold T ∗S3,

with N branes wrapped on S3 and four infinite stacks of non-compact branes. Via

16Our argument is not completely rigorous, but we hasten to add that the final result has been
checked on a computer for a variety of representations P± and Q±.
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the geometric transition of [62] this is equal to the partition function of the A model

on the deformed conifold O(−1) ⊕ O(−1) → CP1, including the four infinite stacks

of non-compact branes [100]. The latter partition function can be computed using

the topological vertex techniques of [7], which (as we will see) gives the right side of

(3.160).17

So we begin with the geometry T ∗S3. As in [9], we represent it as a T 2 × R

fibration over R3. There are two lines l, l′ in R3 over which an S1 of the T 2 × R

fiber degenerates, which are shown in Figure 3.9. Also shown in that figure is the

Lagrangian submanifold S3, which is a T 2 fibration over a line interval connecting l

and l′. Finally, we also indicate four Lagrangian submanifolds of T ∗S3, constructed

as described in [11]. Each such submanifold has topology S1 × R2.

We will consider the topological A model on this geometry. On each Lagrangian

submanifold we place an infinite stack of A model D-branes. There is then a GL(∞)-

valued complexified Wilson line on each stack, which couples to the open strings and

thus enters the partition function. We write these four Wilson lines U± and U ′
±, as

indicated in the figure. We also include N D-branes on the Lagrangian submanifold

S3.

The A model partition function in this geometry can be computed following

[100, 9]. The closed string partition function is essentially trivial — it just gives

an overall function of q, which is potentially ambiguous due to the non-compactness

of the Calabi-Yau. We set it to 1 here. The open string partition function receives

contributions from annulus diagrams running along the lines l and l′. On each line

17Although the geometry O(−1)⊕O(−1) → CP1 is also considered in the main text, the role the
topological string is playing here is quite different from the way it appears there. We are using it
here only as an auxiliary tool to prove the factorization of SPQ.
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l

l′

U−U+

U ′
+

U ′
−

Figure 3.9: A toric representation of the resolved conifold geometry T ∗S3, with the
Lagrangian submanifold S3 indicated, as well as four noncompact Lagrangian sub-
manifolds with topology S1×R2. Each noncompact submanifold supports an infinite
stack of branes with the GL(∞)-valued complexified holonomy indicated.

there are three kinds of annuli which contribute: one kind with the two boundaries

on the two infinite stacks of branes, and two kinds with one boundary on an infinite

stack and one boundary on the N branes on S3.

Integrating out the open string sector connecting the two infinite stacks, one gets

a contribution to the partition function

∑

R

(−)|R|sR(U+)sRt(U−), (3.161)

while the sectors connecting the infinite stacks to the N branes on S3 contribute

operators 
∑

P+

sP+
(U+)TrP+

(V )




∑

P−

sP−(U−)TrP−(V †)


 , (3.162)

with V representing the holonomy around the S1 where the annuli over l meet S3.

Combining (3.161) and (3.162), one obtains for the open string contribution from
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the branes on l

∑

R,P±

(−)|R|sR⊗P+
(U+)sRt⊗P−(U−)TrP(V ). (3.163)

Using the formula (3.148), (3.163) becomes

∑

P±

sP+
(U+)sP−(U−)TrP(V ). (3.164)

Similarly, from the branes on l′ we obtain

∑

Q±

sQ+
(U ′

+)sQ−(U ′
−)TrQ(V ′), (3.165)

where V ′ is the holonomy on the S1 where the annuli over l′ meet S3. Altogether,

then, the contribution from open strings which involve the four infinite stacks of

branes is

∑

P±,Q±

[
sP+

(U+)sP−(U−)sQ+
(U ′

+)sQ−(U ′
−)
]
TrP(V )TrQ(V ′). (3.166)

We view this sP (V )sQ(V ′) as a product of Wilson line operators deforming the open

string theory on the N branes on S3, namely the U(N) Chern-Simons theory; these

operators are arranged so as to give a Hopf link in S3. The Chern-Simons amplitude

with this link inserted is simply SPQ [130], so the topological string partition function

is finally

ψtop =
∑

P±,Q±

[
sP+

(U+)sP−(U−)sQ+
(U ′

+)sQ−(U ′
−)
]
SPQ. (3.167)

To get the desired factorization of SPQ we now compute this partition function

in another way: namely, we consider the geometric transition [62] to the deformed

conifold O(−1)⊕O(−1) → CP
1, with the volume of CP

1 given by t = Ngs, and with

four infinite stacks of branes, as shown in Figure 3.10. Using the topological vertex
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of [7], the A model partition function in this geometry can be computed as18

ψtop = M(q)η(q)N
∑

P±,Q±

[
sP+

(U+)sP−(U−)sQ+
(U ′

+)sQ−(U ′
−)
]
×

q−
1
2
(κ(Q+)+κ(Q−)+N(|P+|+|Q+|+|P−|+|Q−|))

∑

R′

(−)|R
′|qN |R′|CP+Qt

+R′CP−Qt
−R′t . (3.168)

More precisely, the factors M(q)η(q)N in (3.168) do not appear in [7], so they deserve

some extra comment. The factor M(q) is associated with the closed string sector;

namely, in the large volume limit, it was shown in [59, 49] that the closed A model

partition function reduces to M(q)χ/2 on a Calabi-Yau threefold with Euler charac-

teristic χ. In the non-compact case we are considering here χ is ambiguous, but the

change in χ that occurs due to the geometric transition would naturally be ∆χ = 2

(a 3-cycle gets replaced by a 2-cycle). Thus, since we took χ = 0 before the transi-

tion (we chose the closed string contribution in ψtop to be 1), we should take χ = 2

after the transition, which accounts for the factor M(q). The factor η(q)N is not

as easily understood, but is presumably associated with the fact that N D3-branes

have disappeared in the transition; the same factor appeared in [110] associated to a

single noncompact D3-brane. Comparing (3.167) and (3.168) one obtains the desired

formula (3.160).

One can also compute a factorization formula for 1/S0P , as was done in [10]:

1

S0P
= M(q)−1η(q)−Nq

1
2
N(|P+|+|P−|)

∑
R CP+0Rq

N |R|CP−0R

C2
00P+

C2
00P−

(3.169)

It would be interesting to know whether there is a physical argument for this factor-

ization formula along the lines of the argument given above for (3.160).

18One could determine the framing factors in (3.168) from first principles; we determined them
by requiring that the large N limit of our factorization formula be correct.
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U−

U+

U ′
+

U ′
−

Figure 3.10: The geometry of Figure 3.9 after the geometric transition.

Factorization of q-deformed Yang-Mills amplitudes

Now we are ready to consider the large N factorization of the q-deformed Yang-

Mills amplitudes with operator insertions. We will approach the problem by factor-

izing each of the elementary ingredients from Appendix 3.8 separately.

In the large N (’t Hooft) limit, a convenient basis for the Hilbert space H is

given by the characters of the “coupled representations” which we introduced in

Appendix 3.7; we write R = |R+R−[l]〉 for the states corresponding to the coupled

representations. As was argued in [64], these representations are the only ones which

contribute to the large N amplitudes, to all orders in 1/N ; the reason is that they are

the only ones with C2(R) ∼ N . All other representations are exponentially suppressed

in the ’t Hooft limit by the factors e−
1
2
ag2

YM
C2(R) which appear on a surface of area a

as in Appendix 3.8 — in the large N limit they give contributions which are O(e−N).

In this factorized basis, the ingredients of the amplitudes can be written as follows:
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The annulus. Using (3.127) together with (3.149) and (3.150), we obtain easily

〈R1+R1−[l1]|Aa|R2+R2−[l2]〉 = δR1+R2+
δR1−R2−δl1l2e

−a 1
2
g2
YM

Nl2eiNaθYMl×

e−a( 1
2
g2
YM

(κR+
+N |R+|+2l|R+|)−iθYM|R+|)e−a( 1

2
g2
YM

(κR−
+N |R−|−2l|R−|)+iθYM|R−|). (3.170)

The Wilson line freezing operator. From (3.131) and (3.157) we find

〈R1+R1−[l1]|δM(ei
∮

A, eiφ)|R2+R2−[l2]〉 =

δl1,l2



∑

A+

sR1+/A+
(e−iφ)sR2+/A+

(eiφ)





∑

A−

sR1−/A−
(eiφ)sR2−/A−

(e−iφ)


 . (3.171)

The disc. From (3.132) and (3.160) this is

Ψ0 = M(q)η(q)N
∑

l∈Z,R±

q−
1
2
N(|R+|+|R−|)

[
∑

R′

(−)|R
′|qN |R′|CR+0R′CR−0R′t

]
|R+R−[l]〉.

(3.172)

The dual Wilson line freezing operator. From (3.133), (3.160) and (3.157) we

get

Ψφ = M(q)η(q)N×
∑

l,m∈Z,R±,S±

q−
1
2
(κS+

+κS−
)+(− 1

2
N−m)|R+|+(− 1

2
N+m)|R−|+(− 1

2
N−l)|S+|+(− 1

2
N+l)|S−|−2lmN×

[
∑

R′

(−)|R
′|qN |R′|CR+St

+R′CR−St
−R′t

]
sS+

(e−iφ)sS−(eiφ) det(eimφ)|R+R−[l]〉. (3.173)

The trinion (pair of pants). From (3.134) and (3.169) this is

T =
∑

l∈Z,R±

[
∑

R′

q
1
2
N(|R+|+|R−|)CR+0R′qN |R′|CR−0R′

C2
00R+

C2
00R−

]
|R+R−[l]〉⊗ |R+R−[l]〉⊗ |R+R−[l]〉.

(3.174)



Chapter 4

Topological M-theory as unification

of form theories of gravity

4.1 Introduction

The search for a quantum theory of gravity has been a source of puzzles and

inspirations for theoretical physics over the past few decades. The most successful

approach to date is string theory; but, beautiful as it is, string theory has many

extra aspects to it which were not asked for. These include the appearance of extra

dimensions and the existence of an infinite tower of increasingly massive particles.

These unexpected features have been, at least in some cases, a blessing in disguise;

for example, the extra dimensions turned out to be a natural place to hide the mi-

crostates of black holes, and the infinite tower of particles was necessary in order for

the AdS/CFT duality to make sense. Nevertheless, it is natural to ask whether there

could be simpler theories of quantum gravity. If they exist, it might be possible to

116
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understand them more deeply, leading us to a better understanding of what it means

to quantize gravity; furthermore, simple theories of gravity might end up being the

backbone of the more complicated realistic theories of quantum gravity.

In the past decade, some realizations of this notion of a “simpler” theory of gravity

have begun to emerge from a number of different directions. The common thread in

all these descriptions is that, in the theories of gravity which appear, the metric is not

one of the fundamental variables. Rather, these theories describe dynamics of gauge

fields or higher p-forms, in terms of which the metric can be reconstructed. These

theories generally have only a finite number of fields; we shall call them form theories

of gravity.

Notable examples of form theories of gravity are1 the description of 3-dimensional

gravity in terms of Chern-Simons theory, the description of 4-dimensional gravity in

terms of SU(2) gauge theory coupled to other fields, the description of the target space

theory of A model topological strings in terms of variations of the Kähler 2-form, and

the description of the target space theory of the B model in terms of variations of the

holomorphic 3-form.

Meanwhile, recent developments in the study of the topological A and B models

suggest that we need a deeper understanding of these theories. On the one hand,

they have been conjectured to be S-dual to one another [94, 96]. On the other hand,

the A model has been related to a quantum gravitational foam [97, 80]. Moreover,

their nonperturbative definition has begun to emerge through their deep connection

1One could also include in this list, as will be discussed later in this chapter, the case of 2-
dimensional gravity in the target space of the non-critical c = 1 string; in that case one gets a theory
involving a symplectic form on a 2-dimensional phase space, defining a Fermi surface, in term of
which the metric and other fields can be reconstructed.
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with the counting of BPS black hole states in 4 dimensions [98, 124]. There is also

a somewhat older fact still in need of a satisfactory explanation: it has been known

for a while that the holomorphic anomaly of topological strings [24] can be viewed

as the statement that the partition function of topological string is a state in some

7-dimensional theory, with the Calabi-Yau 3-fold realized as the boundary of space

[131] (see also [45]).

Parallel to the new discoveries about topological strings was the discovery of new

actions for which the field space consists of “stable forms” [74]. The critical points

of these actions can be used to construct special holonomy metrics. A particularly

interesting example is a 3-form theory which constructs G2 holonomy metrics in 7

dimensions. Interestingly enough, as we will explain, the Hamiltonian quantization

of this theory looks a lot like a combination of the A and B model topological strings,

which appear in terms of conjugate variables. All this hints at the existence of a

“topological M-theory” in 7 dimensions, whose effective action leads to G2 holonomy

metrics and which can reduce to the topological A and B models.

The main aim of this chapter is to take the first steps in developing a unified

picture of all these form theories of gravity. Our aim is rather modest; we limit

ourselves to introducing some of the key ideas and how we think they may be related,

without any claim to presenting a complete picture. The 7-dimensional theory will

be the unifying principle; it generates the topological string theories as we just noted,

and furthermore, the interesting gravitational form theories in 3 and 4 dimensions

can be viewed as reductions of this 7-dimensional form theory near associative and

coassociative cycles.



Chapter 4: Topological M-theory as unification of form theories of gravity 119

We will also find another common theme. The form theories of gravity naturally

lead to calibrated geometries, which are the natural setting for the definition of su-

persymmetric cycles where branes can be wrapped. This link suggests an alternative

way to view these form theories, which may indicate how to define them at the quan-

tum level: they can be understood as counting the BPS states of wrapped branes of

superstrings. Namely, recall that in the superstring there is an attractor mechanism

relating the charges of the black hole (the homology class of the cycle they wrap

on) to specific moduli of the internal theory (determining the metric of the internal

manifold). We will see that the attractor mechanism can be viewed as a special case

of the general idea of obtaining metrics from forms.

The organization of this chapter is as follows. In Section 4.2, we provide evidence

for the existence of topological M-theory in 7 dimensions. In particular, we use the

embedding of the topological string into the superstring to give a working definition

of topological M-theory in terms of topological strings in 6 dimensions, with an extra

circle bundle providing the “11-th” direction. We also give a more extensive discussion

of how the very existence of topological M-theory could help resolve a number of

puzzles for topological strings in 6 dimensions. In Section 4.3, we give a short review

of some form gravity theories in dimensions 2, 3, 4 and 6. In Section 4.4, we discuss

some new action principles constructed by Hitchin, which lead to effective theories of

gravity in 6 and 7 dimensions. These gravity theories are related to special holonomy

manifolds and depend on the mathematical notion of “stable form,” so we begin by

reviewing these topics; then we introduce Hitchin’s actions in 6 and 7 dimensions, as

well as a classical Hamiltonian formulation of the 7-dimensional theory. In Section
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4.5, we argue that these new gravity theories in 6 dimensions are in fact reformulations

of the target space dynamics of the A and B model topological string theories. In

Section 4.6, we show how the 7-dimensional theory reduces classically to the 3, 4 and

6-dimensional gravity theories we reviewed in Section 3. In Section 4.7, we discuss

canonical quantization of the 7-dimensional theory; we show that it is related to

the A and B model topological strings, and we argue that this perspective could

shed light on the topological S-duality conjecture. In Section 4.8, we reinterpret

the gravitational form theories as computing the entropy of BPS black holes. In

Section 4.9, we discuss a curious holographic connection between twistor theory and

the topological G2 gravity. In Section 4.10, we discuss an interesting connection

between the phase space of topological M-theory and N = 1 supersymmetric vacua

in 4 dimensions. Finally, in Section 4.11 we discuss possible directions for further

development of the ideas discussed in this chapter.

4.2 Evidence for topological M-theory

In order to define a notion of topological M-theory, we exploit the connection

between the physical superstring and the physical M-theory. Recall that we know

that topological strings make sense on Calabi-Yau 3-folds, and topological string

computations can be embedded into the superstring. It is natural to expect that the

dualities of the superstring, which found a natural geometric explanation in M-theory,

descend to some dualities in topological theories, which might find a similar geometric

explanation in topological M-theory. Thus a natural definition of topological M-

theory is that it should be a theory with one extra dimension relative to the topological
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string, for a total of 7. Moreover, we should expect that M-theory on M × S1 is

equivalent to topological strings on M , where M is a Calabi-Yau manifold. More

precisely, here we are referring to the topological A model on M . The worldsheets of

A model strings are identified with M-theory membranes which wrap the S1. Later we

will see that in some sense the M-theory formalism seems to automatically include the

B model along with the A model, with the two topological string theories appearing

as conjugate variables. The topological string should be a good guide to the meaning

of topological M-theory, at least in the limit where the S1 has small radius. One

would expect that the radius of the S1 gets mapped to the coupling constant of the

topological string. Of course, topological M-theory should provide an, as yet not

well-defined, nonperturbative definition of topological string theory.

So far we only discussed a constant size S1, but we could also consider the situation

where the radius is varying, giving a more general 7-manifold. The only natural class

of such manifolds which preserves supersymmetry and is purely geometric is the class

of G2 holonomy spaces; indeed, that there should be a topological theory on G2

manifolds was already noted in [71], which studied Euclidean M2-brane instantons

wrapping associative 3-cycles. So consider M-theory on a G2 holonomy manifold X

with a U(1) action. This is equivalent to the Type IIA superstring, with D6 branes

wrapping Lagrangian loci on the base where the circle fibration degenerates. We

define topological M-theory on X to be equivalent to A model topological strings on

X/U(1), with Lagrangian D-branes inserted where the circle fibration degenerates.

This way of defining a topological M-theory on G2 was suggested in [8, 12].

In this setting, the worldsheets of the A model can end on the Lagrangian branes;
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when lifted up to the full geometry of X these configurations correspond to honest

closed 3-cycles which we identify as membrane worldvolumes. Moreover, string world-

sheets which happen to wrap holomorphic cycles of the Calabi-Yau lift to membranes

wrapping associative 3-cycles of the G2 holonomy manifold. So, roughly speaking,

we expect that topological M-theory should be classically a theory of G2 holonomy

metrics, which gets quantum corrected by membranes wrapping associative 3-cycles

— in the same sense as the topological A model is classically a theory of Kähler met-

rics, which gets quantum corrected by strings wrapping holomorphic cycles. We can

be a little more precise about the coupling between the membrane and the metric:

recall that a G2 manifold comes equipped with a 3-form Φ and a dual 4-form G = ∗Φ,

in terms of which the metric can be reconstructed. We will see that it is natural to

consider this G as a field strength for a gauge potential, writing G = G0 + dΓ; then

Γ is a 3-form under which the membrane is charged.

So we have a workable definition of topological M-theory, which makes sense on

7-manifolds with G2 holonomy, at least perturbatively to all orders in the radius of

the circle. Thus the existence of the theory is established in the special cases where

we have a U(1) action on X; we conjecture that this can be extended to a theory

which makes sense for arbitrary G2 holonomy manifolds. This is analogous to what

we do in the physical superstring; we do not have an a priori definition of M-theory

on general backgrounds, but only in special situations.

Now that we have established the existence of a topological M-theory in 7 dimen-

sions (more or less at the same level of rigor as for the usual superstring/M-theory

relation), we can turn to the question of what new predictions this theory makes. In-
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deed, we now suggest that it may solve two puzzles which were previously encountered

in the topological string.

There has been a longstanding prediction of the existence of a 7-dimensional topo-

logical theory from a very different perspective, namely the wavefunction property of

the topological string partition function, which we now briefly recall in the context

of the B model. The B model is a theory of variations δΩ of a holomorphic 3-form

on a Calabi-Yau 3-fold X. Its partition function is written ZB(x; Ω0). Here x refers

to the zero mode of δΩ, x ∈ H3,0(X,C) ⊕ H2,1(X,C), which is not integrated over

in the B model. The other variable Ω0 labels a point on the moduli space of com-

plex structures on X; it specifies the background complex structure about which one

perturbs. Studying the dependence of ZB on Ω0 one finds a “holomorphic anomaly

equation” [24, 23], which is equivalent to the statement that ZB is a wavefunction

[131], defined on the phase space H3(X,R). Namely, different Ω0 just correspond to

different polarizations of this phase space, so ZB(x; Ω0) is related to ZB(x; Ω′
0) by a

Fourier-type transform. This wavefunction behavior is mysterious from the point of

view of the 6-dimensional theory on X. On the other hand, it would be natural in

a 7-dimensional theory: namely, if X is realized as the boundary of a 7-manifold Y ,

then path integration over Y gives a wavefunction of the boundary conditions one

fixes on X.

Another reason to expect a 7-dimensional description comes from the recent con-

jectures that the A model and B model are independent only perturbatively. Namely,

each contains nonperturbative objects which could naturally couple to the fields of

the other. The branes in the A model are wrapped on Lagrangian cycles, the volume
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of which are measured by some 3-form, and it is natural to identify this 3-form with

the holomorphic 3-form Ω of the B model; conversely, the branes in the B model are

wrapped on holomorphic cycles, whose volumes would be naturally measured by the

Kähler form k of the A model. This observation has led to the conjecture [94, 96]

that nonperturbatively both models should include both types of fields and branes,

and in fact that the two could even be S-dual to one another. One is thus naturally

led to search for a nonperturbative formulation of the topological string which would

naturally unify the A and B model branes and fields. Such a unification is natural

in the 7-dimensional context: near a boundary with unit normal direction dt, the 3-

and 4-forms Φ, G defining the G2 structure naturally combine the fields of the A and

B model on the boundary,

Φ = Re Ω + k ∧ dt, (4.1)

G = Im Ω ∧ dt+
1

2
k ∧ k. (4.2)

Later we will see that the A and B model fields are canonically conjugate in

the Hamiltonian reduction of topological M-theory on X × R. In particular, the

wavefunctions of the A model and the B model cannot be defined simultaneously.

4.3 Form theories of gravity in diverse dimensions

The long-wavelength action of the “topological M-theory” we are proposing will

describe metrics equipped with a G2 structure. In fact, as we will discuss in detail,

the 7-dimensional metric in this theory is reconstructed from the 3-form Φ (or equiv-

alently, from the 4-form G = ∗Φ). This might at first seem exotic: the metric is not
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a fundamental field of this theory but rather can be reconstructed from Φ. However,

similar constructions have appeared in lower dimensions, where it is believed at least

in some cases that the reformulation in terms of forms (“form theory of gravity”)

is a better starting point for quantization: we know how to deal with gauge theo-

ries, and perhaps more general form theories, better than we know how to deal with

gravity. Of course, rewriting a classical theory of gravity in terms of classical forms

is no guarantee that the corresponding quantum theory exists. We are certainly not

claiming that arbitrary form theories make sense at the quantum level!

Nevertheless, in low dimensions some special form gravity theories have been

discussed in the literature, which we believe do exist in the quantum world — and

moreover, as we will see, these theories are connected to topological M-theory, which

we have already argued should exist.

In this section we review the form gravity theories in question. They describe var-

ious geometries in 2, 3, 4 and 6 dimensions. Here we will discuss mainly their classical

description. It is more or less established that the theories discussed below in dimen-

sions 2, 3, and 6 exist as quantum theories, at least perturbatively. In dimensions

2 and 6, this is guaranteed by topological string constructions. In dimension 3 also,

the quantum theory should exist since it is known to lead to well defined invariants

of 3-manifolds. The 4-dimensional theory, which gives self-dual gravity, is not known

to exist in full generality, although for zero cosmological constant, it is related to the

Euclidean N = 2 string, which is known to exist perturbatively [99]. For the case of

nonzero cosmological constant, we will give further evidence that the theory exists at

the quantum level by relating it to topological M-theory later in this chapter.
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4.3.1 2D form gravity

By the 2D form theory of gravity we have in mind the theory which appears

in the target space of non-critical bosonic strings, or more precisely, the description

of the large N limit of matrix models in terms of the geometry of the eigenvalue

distribution. The basic idea in this theory of gravity is to study fluctuations of a

Fermi surface in a 2-dimensional phase space. The dynamical object is the area

element ω, representing the phase space density, which is defined to be non-zero in

some region R and vanishing outside. By a choice of coordinates, we can always write

this area element as ω = dx ∧ dp inside R and zero elsewhere. Hence the data of the

theory is specified by the boundary ∂R, which we can consider locally as the graph

of a function p(x). The study of the fluctuations of the boundary is equivalent to

that of fluctuations of ω. Actually, in this gravity theory one does not allow arbitrary

fluctuations; rather, one considers only those which preserve the integral

∮
p(x) dx = A. (4.3)

Such fluctuations can be written p(x) = p0(x)+∂φ(x). In other words, the cohomology

class of ω, or “zero mode,” is fixed by A, and the “massive modes” captured by the

field φ(x) are the dynamical degrees of freedom.

This gravity theory is related to the large N limit of matrix models, where x

denotes the eigenvalue of the matrix and p(x) dx denotes the eigenvalue density dis-

tribution. A gets interpreted as the rank N of the matrix. One can solve this theory

using matrix models, or equivalently using W∞ symmetries [5].

This theory can also be viewed [5, 7] as the effective theory of the B model topo-

logical string on the Calabi-Yau 3-fold uv = F (x, p), where F (x, p) = 0 denotes the
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Fermi surface. In this language, ω = dx ∧ dp is the reduction of the holomorphic

3-form to the (x, p) plane. In the B model one always fixes the cohomology class of

the 3-form; here this reduces to fixing the area A as we described above.

4.3.2 3D gravity theory as Chern-Simons gauge theory

Now we turn to the case of three dimensions. Pure gravity in three dimensions is

topological, in a sense that it does not have propagating gravitons. In fact, we can

write the usual Einstein-Hilbert action with cosmological constant Λ,

Sgrav =
∫

M

√
g
(
R− 2Λ

)
, (4.4)

in the first-order formalism,

S =
∫

M
Tr
(
e ∧ F +

Λ

3
e ∧ e ∧ e

)
, (4.5)

where F = dA+A ∧A is the field strength of an SU(2) gauge connection Ai, and ei

is an SU(2)-valued 1-form on M . Notice that the gravity action (4.5) has the form

of a BF theory, and does not involve a metric on the 3-manifold M . A metric (of

Euclidean signature) can however be reconstructed from the fundamental fields —

namely, given the SU(2)-valued 1-form e, one can write

gab = −1

2
Tr(eaeb). (4.6)

The equations of motion that follow from (4.5) are:

DAe = 0, (4.7)

F + Λe ∧ e = 0. (4.8)
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The first equation says that A can be interpreted as the spin connection for the

vielbein ei, while the second equation is the Einstein equation with cosmological

constant Λ.

Gravity in three dimensions has a well-known reformulation in terms of Chern-

Simons gauge theory [4, 129],

S =
∫

M
Tr
(
A ∧ dA +

2

3
A∧ A ∧A

)
, (4.9)

where A is a gauge connection with values in the Lie algebra of the gauge group G.

The gauge group G is determined by the cosmological constant, and can be viewed

as the isometry group of the underlying geometric structure. Specifically, in the

Euclidean theory, G is one of SL(2,C), or ISO(3), or SU(2) × SU(2), depending on

the cosmological constant:

Cosmological Constant Λ < 0 Λ = 0 Λ > 0
Gauge group G SL(2,C) ISO(3) SU(2) × SU(2)

The equations of motion that follow from the Chern-Simons action (4.9) imply

that the gauge connection A is flat,

dA + A∧ A = 0. (4.10)

Writing this equation in components one can reproduce the equations of motion (4.7).

For example, if Λ < 0, one can write the complex gauge field A as Ak = wk + iek.

Substituting this into (4.10) and combining the real and imaginary terms, we recognize

the equations (4.7) with Λ = −1. Finally, we note that, in the Chern-Simons theory,

the gauge transformation with a parameter ε has the form

δεA = dε− [A, ε]. (4.11)
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One can also describe the quantum version of 3D gravity directly via various

discrete models. For example, given a triangulation ∆ of M one can associate to

each tetrahedron a quantum 6j-symbol and, following Turaev and Viro [122], take

the state sum

TV (∆) =
(
− (q1/2 − q−1/2)2

2k

)V ∑

je

∏

edges

[2je + 1]q
∏

tetrahedra

(6j)q, (4.12)

where V is the total number of vertices in the triangulation, and [2j + 1]q is the

quantum dimension of the spin j representation of SU(2)q,

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
(4.13)

One can prove [122] that the Turaev-Viro invariant is independent on the triangulation

and, therefore, gives a topological invariant, TV (M) = TV (∆). Furthermore, it has

been shown by Turaev [120, 121] and Walker [127] that the Turaev-Viro invariant

is equal to the square of the partition function in SU(2) Chern-Simons theory (also

known as the Reshetikhin-Turaev-Witten invariant [130, 105]):

TV (M) = |ZSU(2)(M)|2 (4.14)

There is a similar relation between the SL(2,C) Chern-Simons partition function and

quantum invariants of hyperbolic 3-manifolds [66].

4.3.3 4D 2-form gravity

In dimension four, there are several versions of “topological gravity”. Here we

review a theory known as 2-form gravity [104, 78, 118, 119, 2, 88, 93, 1], which also

describes the self-dual sector of loop quantum gravity [115].
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We begin by writing the action for Einstein’s theory in a slightly unconventional

way [81, 104, 32]:

S4D =
∫

M4
Σk ∧ Fk −

Λ

24
Σk ∧ Σk + ΨijΣ

i ∧ Σj. (4.15)

Here Ak is an SU(2) gauge field, with curvature F k = dAk + εijkAj ∧Ak, and Σk is an

SU(2) triplet of 2-form fields, k = 1, 2, 3. The parameter Λ will be interpreted below

as a cosmological constant. Finally, Ψij = Ψ(ij) is a scalar field on M , transforming

as a symmetric tensor of SU(2).

To see the connection to ordinary general relativity, one constructs a metric out

of the two-form field Σk as follows. The equation of motion from varying Ψij implies

that Σk obeys the constraint

Σ(i ∧ Σj) − 1

3
δijΣk ∧ Σk = 0. (4.16)

When (4.16) is satisfied the two-form Σk may be reexpressed in terms of a vierbein

[32],

Σk = −ηk
abe

a ∧ eb. (4.17)

Here ea are vierbein 1-forms on M 4, a = 1, . . . , 4, and ηk
ab is the ‘t Hooft symbol,

ηk
ab = εkab0 +

1

2
εijkεijab. (4.18)

In other words,

Σ1 = e12 − e34,

Σ2 = e13 − e42,

Σ3 = e14 − e23,
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where eij = ei ∧ ej. The vierbein in turn determines a metric in the usual way:

g =
4∑

a=1

ea ⊗ ea. (4.19)

With respect to this metric g, the two-forms Σk (k = 1, 2, 3) are all self-dual in the

sense that Σk = ∗Σk. (This just follows from their explicit expression (4.17) in terms

of the vierbein.)

One can also write the metric directly in terms of Σ without first constructing the

vierbein [32]:

√
g gab = − 1

12
Σi

aa1
Σj

ba2
Σk

a3a4
εijkεa1a2a3a4 . (4.20)

Having constructed the metric g out of Σ, we now want to check that it obeys

Einstein’s equation on-shell. The equations of motion which follow from (4.15) are

DAΣ = 0, (4.21)

Fi = ΨijΣ
j +

Λ

12
Σi. (4.22)

The first equation DAΣ = 0 says that A is the self-dual part of the spin connection

defined by the metric g. The second equation then contains information about the

Riemann curvature2 acting on self-dual 2-forms Λ2
+. Namely, since the Σk appearing

on the right side are also self-dual two-forms, the Riemann curvature maps Λ2
+ → Λ2

+.

By the standard decomposition of the Riemann tensor, this implies that the trace-free

part of the Ricci curvature vanishes. Then Ψij is identified with the self-dual part

of the Weyl curvature, and the last term gives the trace part of the Ricci tensor,

consistent with the cosmological constant Λ.

2Here we are considering R with all indices down, Rabcd, as a symmetric map Λ2 → Λ2.
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So far we have seen that the action (4.15) reproduces Einstein’s theory of gravity,

in the sense that the classical solutions correspond exactly to Einstein metrics on M

with cosmological constant Λ. Now let us consider the effect of dropping the field

Ψij, giving

S4D =
∫

M4
Σk ∧ Fk −

Λ

24
Σk ∧ Σk. (4.23)

One can consider (4.23) as obtained by starting from (4.15), multiplying the last term

by ε, and then taking the ε → 0 limit. Just when we reach ε = 0 we seem to lose the

constraint (4.16), which was the equation of motion for Ψij and was crucial for the

description of Σk in terms of the vierbein. However, at ε = 0 something else happens:

the action develops a large new symmetry,

δAk =
Λ

12
θk,

δΣk = DAθk. (4.24)

This new symmetry can be used to reimpose the constraint (4.16), so in this sense

the ε → 0 limit is smooth and sensible to consider. The only change to the equations

of motion is that the term ΨijΣ
j disappears from the right side of (4.21), leaving

DAΣ = 0,

Fi =
Λ

12
Σi. (4.25)

As we mentioned above, the Ψij term represents the self-dual part of the Weyl cur-

vature; so (4.25) imply that the metric constructed from Σ is not only Einstein but

also has vanishing self-dual Weyl curvature. In this sense the action (4.23) gives rise

to anti-self-dual Einstein manifolds,

Rab = Λgab, W
(+)
abcd = 0. (4.26)
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Note that such manifolds are rather rare compared to ordinary Einstein manifolds;

for example, with Λ > 0 there are just two smooth examples, namely CP2 and S4

[72]. With Λ = 0 the solutions are hyperkähler metrics in 4 dimensions; these are

target spaces for the N = 2 string (or equivalently the N = 4 topological string),

which provides a completion of the self-dual gravity theory in that case.

4.3.4 6D form theories: Kähler and Kodaira-Spencer gravity

In dimension 6, two different form theories of gravity arise in (N = 2) topological

string theory. One, known as the Kähler gravity theory [25], describes the target

space gravity (string field theory) of the topological A model. The second theory,

called the Kodaira-Spencer theory of gravity [24], is the string field theory of the

topological B model and describes variations of the complex structure. Below we

review each of these theories in turn.

We begin with the B model. The basic field of the Kodaira-Spencer gravity theory

is a vector-valued 1-form field A, for which the action is given by [24]

SKS =
1

2

∫

M
A′ 1

∂
∂A′ +

1

6

∫

M
(A ∧ A)′ ∧ A′. (4.27)

Here, we use the standard notation A′ := (A·Ω0) for the product with the background

holomorphic (3, 0) form. The field A then defines a variation of Ω, given by the formula

Ω = Ω0 + A′ + (A ∧ A)′ + (A ∧ A ∧ A)′. (4.28)

This expression for the variation of Ω follows from its local expression in complex

coordinates, Ω = Ωijkdz
i ∧ dzj ∧ dzk, where A is interpreted as giving a variation of
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the 1-form dzi:

dzi 7→ dzi + Ai
jdz

j. (4.29)

In order that the “non-local term” 1
∂
∂A′ in the action (4.27) make sense, A is not

allowed to be an arbitrary vector-valued 1-form; rather, there is a constraint

∂A′ = 0. (4.30)

Using this constraint we write

A′ = x+ ∂φ, x ∈ H2,1(M,C). (4.31)

Here the harmonic x ∈ H2,1(M,C) represents the massless modes (moduli) of Ω,

which are frozen in the Kodaira-Spencer theory, while φ ∈ Ω1,1(M,C) represents the

massive modes, which are the dynamical degrees of freedom. Substituting (4.31) into

(4.27), we can write the Kodaira-Spencer action without non-local terms:

SKS =
1

2

∫

M
∂φ ∧ ∂φ+

1

6

∫

M
(A ∧ A)′ ∧ A′ (4.32)

The equation of motion that follows from the action (4.32) is

∂A′ + ∂(A ∧ A)′ = 0. (4.33)

Using (4.30) and (4.33) together one finds that the holomorphic 3-form (4.28) is closed

on-shell,

dΩ = 0. (4.34)

Hence solutions to the Kodaira-Spencer field equations correspond to deformations

Ω of the holomorphic 3-form Ω0.
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When we view φ as the dynamical degree of freedom we must note that it has a

large shift symmetry,

φ 7→ φ+ ε, (4.35)

where ∂ε = 0. This symmetry can be used to set the anti-holomorphic part of φ to

zero, i.e. ∂φ = 0. In other words, φ should be viewed as the analog of the chiral boson

in 2 dimensions; in this sense the Kodaira-Spencer theory is really a chiral theory.

In fact, in the local geometry we discussed in Section 4.3.1, φ gets identified with a

chiral boson on the Riemann surface F (x, p) = 0.

Although A′ and the Kodaira-Spencer action depend on ∂φ rather than on φ itself,

it turns out that D1-branes of the B model are charged under φ directly. To see this,

consider a D1-brane wrapped on a 2-cycle E which moves to another 2-cycle E ′.

There is a 3-chain C which interpolates between E and E ′, and the variation of the

action is given by (absorbing the string coupling constant into Ω)

δS =
∫

C
Ω =

∫

C
∂φ =

∫

C
dφ =

∫

E
φ−

∫

E′
φ. (4.36)

This coupling also explains the fact that a D1-brane is a source for Ω (and hence shifts

the integral of Ω on a 3-cycle linking it.) Namely, including such a source localized

along E would modify the equations of motion to [5]

∂A′ = ∂∂φ = δ4
E, (4.37)

so that the kinetic term φ∂∂φ from (4.32) becomes precisely
∫
E φ.

The fact that D1-branes couple to φ has an important consequence: there is an

extra H1,1(M,C) worth of degrees of freedom in φ, corresponding to the freedom
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to shift φ by a harmonic form b, which does not affect A′ but does figure into non-

perturbative aspects of the B-model. Namely, the amplitudes involving D1-brane

instantons, which should presumably be included in the nonperturbative definition of

the B model, are sensitive to this shift. Thus the partition function of the B model

is nonperturbatively a function both of x ∈ H2,1(M) and of b ∈ H1,1(M,C). The

necessity of the extra field b was also recently noted in [22].

As we will discuss later in more detail, it is natural that in a nonperturbative

definition the periods of Ω are quantized in units of gs. There is an overall 1/g2
s in

front of the closed string action, so this will then give the appropriate 1/gs coupling

of the field φ to the D-branes. Because of this flux quantization, the corresponding

“Wilson lines” b will be naturally periodic or C∗ variables.

Having discussed the Kodaira-Spencer theory, let us now turn to another 6-

dimensional form theory of gravity, namely the Kähler gravity theory, which describes

variations of the Kähler structure on M . Its action is [25, 132]

SKahler =
∫

M

(
1

2
K

1

dc†
dK +

1

3
K ∧K ∧K

)
, (4.38)

where K is a variation of the (complexified) Kähler form on M , and dc = ∂− ∂. The

Kähler gravity action (4.38) is invariant under gauge transformations of the form

δαK = dα− dc†(K ∧ α), (4.39)

where α is a 1-form on M , such that dc†α = 0. The equations of motion in the Kähler

gravity theory are

dK + dc†(K ∧K) = 0. (4.40)

As in the Kodaira-Spencer theory, we can decompose K into massless and massive
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modes,

K = x+ dc†γ, x ∈ H1,1(M,C) (4.41)

where x ∈ H1,1(M,C) represents the Kähler moduli, which are not integrated over,

and γ ∈ Ω3(M) contains the massive modes of K. Using (4.41), we can write the

Kähler gravity action (4.38) without non-local terms,

SKahler =
∫

M

(
1

2
dγ ∧ dc†γ +

1

3
K ∧K ∧K

)
. (4.42)

Just as in the B model, Lagrangian D-branes of the A model are charged under

γ, implying that these branes are sources for K and hence modify the integral of K

on 2-cycles which link them. This also implies that the partition function of the A

model depends nonperturbatively on the choice of a cohomology class in H3(M) as

well as on x ∈ H2(M). Here the same remarks about flux quantization hold as in the

B model.

4.4 Hitchin’s action functionals

In the previous section, we discussed various form theories of gravity which have

appeared previously in the physics literature. Now we turn to some new ones. We will

describe actions constructed by Hitchin [74, 73] for which the equations of motion yield

special geometric structures: either holomorphic 3-forms Ω and symplectic structures

k in 6 dimensions, or G2 holonomy metrics in 7 dimensions. As for the form theories

we considered above, the classical fields in these theories are real p-forms, from which

the desired geometric structures can be reconstructed. In 6 dimensions one has a

3-form ρ and a 4-form σ; these forms will be interpreted as ρ = Re Ω, σ = 1
2
k ∧ k.
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In 7 dimensions, one just has a single 3-form Φ (or its dual 4-form G), interpreted as

the associative 3-form (resp. coassociative 4-form) of the G2 metric.

These action functionals have been used in the physics literature to construct

new metrics with special holonomy [67, 36, 39]. In the present context, they should

be regarded as effective actions for gravity theories. In 6 dimensions, we will see

in Section 4.5 that these gravity theories are related to topological strings. The 7-

dimensional action defines a new gravity theory which we identify as the low energy

limit of topological M-theory.

4.4.1 Special holonomy manifolds and calibrations

In this subsection we briefly review the notion of special holonomy, which plays an

important role in supersymmetric string compactifications, and which we expect to

be important for topological string/membrane theories. In particular, we emphasize

that the geometric structure on a special holonomy manifold X can be conveniently

characterized by certain p-forms, invariant under the holonomy group, Hol(X).

Recall that for any n-dimensional Riemannian manifold X we have

Hol(X) ⊆ SO(n). (4.43)

The manifolds with special (reduced) holonomy are characterized by the condition

Hol(X) ⊂ SO(n). Below we list some examples of special holonomy manifolds that

will be relevant in what follows.
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Metric Holonomy n SUSY Invariant p-forms

Calabi-Yau SU(3) 6 1/4 p = 2: K (Kähler)

p = 3: Ω

Exceptional G2 7 1/8 p = 3: Φ (associative)

p = 4: ∗Φ (coassociative)

Spin(7) 8 1/16 p = 4: Ψ (Cayley)

Table 2: Examples of special holonomy manifolds.

All of these structures can be characterized by the existence of a covariantly

constant spinor,

∇ξ = 0 (4.44)

The existence of this ξ guarantees that superstring compactification on X preserves

some fraction (also listed in the above table) of the original 32 supercharges, which

is what makes such manifolds useful in string theory.

Another characteristic property of special holonomy manifolds is the existence of

invariant forms, known as calibrations. Using the covariantly constant spinor ξ one

can construct a p-form on X,

ω(p) = ξ†γi1...ipξ. (4.45)

By construction, such forms are covariantly constant and invariant under Hol(X).

They are non-trivial only for special values of p: see Table 2 for a list of the invariant

forms on manifolds of SU(3), G2, and Spin(7) holonomy. These invariant forms
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play an important role in geometry and physics; in particular, they can be used to

characterize minimal (supersymmetric) cycles in special holonomy manifolds. Indeed,

if S ⊂ X is a minimal submanifold of real dimension p, then its volume can be

determined by integrating the invariant form ω(p) over S,

Vol(S) =
∫

S
ω(p). (4.46)

Such a manifold S is called calibrated, and the form ω(p) is called a calibration.

Notice the simplification that has occurred here. Ordinarily, in order to compute

the volume, Vol(S) =
∫
dpx

√
g, we need to know the metric g; but the volume of a

calibrated submanifold S is given by the simple formula (4.46) which does not involve

the explicit form of the metric.

This phenomenon is a prototype of various situations in which the important

geometric data can be characterized by differential forms rather than by a metric.

This is essentially the same principle that was underlying the constructions of Section

4.3, where we discussed form theories of gravity in which the space-time geometry is

encoded in tensor forms and/or gauge fields.

To illustrate further the idea that forms can capture the geometry, let us consider

an example which will play an important role below. Let X be a manifold with G2

holonomy. The existence of a G2 holonomy metric is equivalent to the existence of

an associative 3-form, Φ, which is closed and co-closed,

dΦ = 0

d ∗ Φ = 0, (4.47)
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and which can be written in terms of an orthonormal vielbein ei, i = 1, . . . , 7, as

Φ =
1

3!
ψijke

i ∧ ej ∧ ek. (4.48)

Here ψijk are the structure constants of the imaginary octonions: σiσj = −δij+ψijkσk,

σi ∈ Im (O). Conversely, writing Φ locally in the form (4.48) defines a metric g by

the formula

g =
7∑

i=1

ei ⊗ ei. (4.49)

This g can be written more explicitly by first defining

Bjk = − 1

144
Φji1i2Φkj3j4Φj5j6j7ε

j1...j7 , (4.50)

in terms of which the metric has a simple form,

gij = det(B)−1/9Bij. (4.51)

Evaluating the determinant of Bij, we get det(g) = det(B)2/9, so (4.51) can be written

in a more convenient form,

√
g gjk = − 1

144
Φji1i2Φki3i4Φi5i6i7ε

i1...i7 . (4.52)

Notice that even if the 3-form Φ does not obey (4.47), we can still use (4.52)

to construct a metric on X from Φ, as long as the 3-form Φ is non-degenerate in a

suitable sense. (Of course, this metric will not have G2 holonomy unless (4.47) is

satisfied.) This construction naturally leads us to the notion of stable forms, which

we now discuss.
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4.4.2 Stable forms

Following [74], in this section we review the construction of action principles from

p-forms. It is natural to define the action of a p-form ρ on a manifold X as a volume

form φ(ρ) integrated over X. One might think that such a φ(ρ) is hard to construct,

as one might have in mind the usual wedge product of ρ with itself, which gives a

nonzero top-form only in rather special cases. In fact, this is not the only way to

build a volume form out of p-forms; as we will see, all the actions of interest for us

turn out to involve a volume element constructed in a rather non-trivial way from the

p-form. For example, on a 7-manifold with G2 holonomy, the volume form cannot be

constructed as a wedge product of the associative 3-form Φ with itself; nevertheless,

one can define φ(Φ) as a volume form for the metric (4.51) constructed from Φ, as

we will discuss in detail later.

The most general way to construct a volume form φ(ρ) from a p-form ρ is as

follows: contract a number of ρi1,...,ip’s with a number of epsilon tensors εi1,...,in, to

obtain some W (ρ). Suppose we use k epsilon tensors in W ; then W transforms as the

k-th power of a volume, and we can define φ(ρ) = W (ρ)1/k which is a volume form.

It is easy to see that φ(ρ) scales as an n/p-th power of ρ (if W has q factors of ρ it

will need k = pq/n factors of ε).

Given such a volume form, one can define the action to be the total volume,

V (ρ) =
∫

X
φ(ρ). (4.53)

This V (ρ) is a homogeneous function of ρ of degree n
p
:

V (λρ) = λ
n
pV (ρ) λ ∈ R. (4.54)
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In this chapter we will not be interested in arbitrary ways of putting together ρ

and ε symbols to make φ(ρ). Rather, we will focus on cases in which there exists a

notion of “generic” p-form. In such cases the generic p-form ρ defines an interesting

geometric structure (e.g. an almost complex structure or aG2 structure) even without

imposing any additional constraints. Hence arbitrary variations of ρ can be thought

of as variations of this structure, and as we will see, critical points of V (ρ) imply

integrability conditions on these geometric structures.

The notion of genericity we have in mind is known as stability, as described in

[73] and reviewed below. The requirement of stability has drastically different con-

sequences depending on the dimension n of the manifold and the degree p of the

form. In most cases, as we will see, there are no stable forms at all; but for certain

special values of n and p, stable forms can exist. Moreover, all the calibrations in 6

and 7 dimensions that we discussed earlier turn out to be stable forms. This deep

“coincidence” makes the technology of stable forms a useful tool for the study of

special holonomy. Nevertheless, possessing a stable form is far less restrictive than

the requirement of special holonomy, needed for supersymmetry.

Let us now define the notion of stability precisely. Write V for the tangent space

at a point x, so the space of p-forms at x is ΛpV ∗. Then a p-form ρ is said to be

stable at x if ρ(x) lies in an open orbit of the GL(V ) action on ΛpV ∗. We call ρ a

stable form if ρ is stable at every point. In other words, ρ is stable if all forms in a

neighborhood of ρ are equivalent to ρ by a local GL(n) action.

Some special cases of stability are easy to understand. For example, there are no

stable 0-forms, because under coordinate transformations the value of a function does
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not change. On the other hand, any nonzero n-form is stable, because by a linear

transformation one can always map any volume form to any other one. Similarly, any

nonzero 1-form or (n− 1)-form is stable.

A less trivial case of stability is that of a 2-form, on a manifold of even dimension.

In this case, viewing the 2-form as an antisymmetric matrix, stability just means that

the determinant is nonzero; namely, this is the usual characterization of a presymplec-

tic form, and any such form can be mapped to any other by a linear transformation,

so they are indeed stable. Given such a stable form we can now construct its asso-

ciated volume form: namely, we write φ(ω) = ωn/2. Note that the stability of ω is

equivalent to φ(ω) 6= 0.

To understand the geometric structures defined by stable forms, it is useful to

study the subgroup of GL(n) which fixes them. In the case of a stable 2-form in

even dimension this stabilizer is Sp(n), corresponding to the fact that the 2-form

defines a presymplectic structure. More generally, given a stable p-form, we can

easily compute the dimension of the stabilizer: it is simply the dimension of GL(n)

minus the dimension of the space of p-forms. In the case p = 2, this counting gives

n2 − n(n−1)
2

= n(n + 1)/2, as expected.

Next we consider the case p = 3. The dimension of the space of 3-forms is

dim Λ3V ∗ = n(n− 1)(n− 2)/6. (4.55)

Already at this stage we see that there cannot be any stable 3-forms for large n,

because dimGL(n) = n2 has a slower growth than n3/6, so that GL(n) cannot act

locally transitively on the space of 3-forms. However, for p = 3 and small enough

n the stability condition can be met. We have already discussed the cases n = 3, 4,
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and stable 3-forms also exist for n = 6, 7, 8. These special cases lead to interesting

geometric structures; for example, consider the case p = 3, n = 7. Here the dimension

counting gives

dimGL(V ) = n2 = 49,

dim ΛpV ∗ =
n!

p!(n− p)!
= 35,

14 = dimG2. (4.56)

Indeed, the stabilizer of the 3-form in this case isG2, so a stable 3-form in 7 dimensions

defines a G2 structure.

As we just discussed for p = 3, generically dim ΛpV ∗ is much larger than dimGL(V ) =

n2. Hence stable forms exist only for special values of n and p [73]. The cases of in-

terest for us in this chapter are n = 7 with p = 3, 4 and n = 6 with p = 3, 4. We now

turn to the construction of volume functionals from stable forms in these cases.

4.4.3 3-form and 4-form actions in 6D

We begin with the 6-dimensional case. In this case Hitchin constructed two ac-

tion functionals VH(ρ) and VS(σ), depending respectively on a 3-form ρ and 4-form σ.

When extremized, VH and VS yield respectively holomorphic and symplectic struc-

tures on M . In this section we introduce these action functionals and describe some

of their properties.

Let us first construct VS(σ). Suppose σ is a stable 4-form; the stability condition

in this case means there exists k such that σ = ± 1
2
k ∧ k. We consider the + case

here. Interpreting this k as a candidate symplectic form, VS(σ) is defined to be the
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symplectic volume of M :

VS(σ) =
1

6

∫

M
k ∧ k ∧ k. (4.57)

This action can also be written directly in terms of σ:

VS(σ) =
1

6

∫

M
σ3/2 =

=
∫

M

√
1

384
σa1a2b1b2σa3a4b3b4σa5a6b5b6ε

a1a2a3a4a5a6εb1b2b3b4b5b6 , (4.58)

where εa1...a6 is the Levi-Civita tensor in six dimensions. As discussed before, the need

to take a square root arises because to define a volume form we need to have exactly

one net ε tensor.

We will be considering VS(σ) as the effective action of a gravity theory in six

dimensions. We treat σ as a 4-form field strength for a 3-form gauge field γ: in other

words, we hold the cohomology class of σ fixed,

[σ] ∈ H4(M,R) fixed, i.e.

σ = σ0 + dγ, (4.59)

where dσ0 = 0. Now we want to find the classical solutions, i.e. critical points of

VS(σ). Write

VS(σ) =
1

3

∫

M
σ ∧ k =

1

3

∫

M
(σ0 + dγ) ∧ k. (4.60)

Varying γ then gives a term

δVS =
1

3

∫

M
d(δγ) ∧ k = −1

3

∫

M
δγ ∧ dk. (4.61)

This is not the whole variation of VS, because k also depends on σ; but it turns out that

the extra term from the variation of k is just 1/2 of (4.61). This is a consequence
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of the fact (4.54) that VS(σ) is homogeneous as a function of σ. Altogether, the

condition that VS(σ) is extremal under variations of γ is simply

dk = 0. (4.62)

Hence the classical solutions of the gravity theory based on VS(σ) give symplectic

structures on M .

Having discussed VS(σ), we now turn to VH(ρ). Suppose ρ is a stable 3-form.

Provided that ρ is “positive” in a sense to be defined below, it is fixed by a subgroup

of GL(6,R) isomorphic to (two copies of) SL(3,C); this ρ therefore determines a

reduction of GL(6) to SL(3,C), which is the same as an almost complex structure

on M . More concretely, we can find three complex 1-forms ζi for which

ρ =
1

2
(ζ1 ∧ ζ2 ∧ ζ3 + ζ1 ∧ ζ2 ∧ ζ3), (4.63)

and these ζi determine the almost complex structure. If locally there exist complex

coordinates such that dzi = ζi, then the almost complex structure is integrable (it

defines an actual complex structure.) Whether it is integrable or not, we can construct

a (3, 0) form on M , namely

Ω = ζ1 ∧ ζ2 ∧ ζ3. (4.64)

This Ω can also be written

Ω = ρ + iρ̂(ρ), (4.65)

where ρ̂ is defined as

ρ̂ = − i

2
(ζ1 ∧ ζ2 ∧ ζ3 − ζ1 ∧ ζ2 ∧ ζ3). (4.66)

Through (4.63), (4.64) and (4.66), we can regard Ω and ρ̂ as functions of ρ. The

integrability condition is equivalent to the requirement that dΩ = 0.
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So far we have explained how a positive stable 3-form ρ determines an almost

complex structure and a holomorphic 3-form Ω. Now VH(ρ) is defined to be the

holomorphic volume:

VH(ρ) = − i

4

∫

M
Ω ∧ Ω =

1

2

∫

M
ρ̂(ρ) ∧ ρ. (4.67)

More concretely, using results from [74], this can be written

VH(ρ) =
∫

M

√
−1

6
Ka

bKb
a, (4.68)

where3

Ka
b :=

1

12
ρa1a2a3

ρa4a5aε
a1a2a3a4a5b. (4.69)

As we did with VS, we want to regard VH as the effective action of some gravity theory

in which ρ is treated as a field strength. So we start with a closed stable 3-form ρ0

and allow it to vary in a fixed cohomology class,

ρ = ρ0 + dβ. (4.70)

Then varying β, we obtain two terms, one from the variation of ρ and one from the

variation of ρ̂(ρ). As in the case of VS, the homogeneity of VH(ρ) implies that these

two terms are equal, and they combine to give

δVH =
∫

M
d(δγ) ∧ ρ̂ = −

∫

M
δγ ∧ dρ̂. (4.71)

Hence the equation of motion is

dρ̂ = 0.

3Having written this formula we can now explain the positivity condition on ρ to which we alluded
earlier: the square root which appears in (4.68) should be real.
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From (4.70) we also have dρ = 0. So altogether on-shell we have dΩ = 0, which is

the condition for integrability of the almost complex structure, as explained above.

In this sense, VH(ρ) is an action which generates complex structures together with

holomorphic three-forms.

Finally, let us make one more observation about the functionals VH and VS. So far

we have discussed them separately, but since they both exist on a 6-manifold M , it

is natural to ask whether the structures they define are compatible with one another.

Specifically, we would like to interpret k as the Kähler form on M , in the complex

structure determined by Ω. For this interpretation to be consistent, there are two

conditions which must be satisfied:

k ∧ ρ = 0, (4.72)

and

2VS(σ) = VH(ρ). (4.73)

The condition (4.72) expresses the requirement that k is of type (1, 1) in the com-

plex structure determined by Ω, while (4.73) is the equality of the volume forms

determined independently by the holomorphic and symplectic structures. Requiring

(4.72)–(4.73), Ω and k together give an SU(3) structure on M ; if in addition dΩ = 0,

dk = 0, then M is Calabi-Yau, with Ω as holomorphic 3-form and k as Kähler form.

When we discuss the Hamiltonian quantization of topological M-theory in Section

4.7, we will see one way in which these constraints could arise naturally.



Chapter 4: Topological M-theory as unification of form theories of gravity 150

4.4.4 3-form and 4-form actions in 7D

Now let us discuss the 7-dimensional case. We will construct two functionals

V7(Φ), V7(G) depending on a 3-form or 4-form respectively, both of which generate

G2 holonomy metrics on a 7-manifold X.

The two cases are very similar to one another; we begin with the 3-form case.

A stable 3-form Φ ∈ Ω3(X,R) determines a G2 structure on X, because G2 is the

subgroup of GL(7,R) fixing Φ at each point, as we explained in Section 4.4.2. There

we gave the explicit expression for the metric g in terms of the 3-form Φ:

gjk = Bjk det(B)−1/9, (4.74)

where from (4.50),

Bjk = − 1

144
Φji1i2Φki3i4Φi5i6i7ε

i1...i7 . (4.75)

We can thus introduce a volume functional, V7(Φ), which is simply the volume of

X as determined by g:

V7(Φ) =
∫

X

√
gΦ =

∫

X

(
detB

)1/9
, (4.76)

where B is the symmetric tensor defined in (4.75).

In order to identify the critical points of the action functional (4.76), it is con-

venient to rewrite it slightly. For this we use the fact that since Φ determines the

metric, it also determines any quantity which could be derived from the metric; in

particular it determines a Hodge ∗-operator, which we write ∗Φ. Using this operator

we can rewrite (4.76) as

V7(Φ) =
∫

X
Φ ∧ ∗ΦΦ. (4.77)
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As we did in the 6-dimensional cases, we regard Φ as a field strength for a 2-form gauge

potential; in other words, we assume Φ is closed and vary it in a fixed cohomology

class:

[Φ] ∈ H3(X,R) fixed, i.e.

Φ = Φ0 + dB, (4.78)

with dΦ0 = 0, and B an arbitrary real 2-form on X. Using the homogeneity property

(4.54) of the volume functional (4.77), we find

δV7(Φ)

δΦ
=

7

3
∗Φ Φ. (4.79)

Hence critical points of V7(Φ) in a fixed cohomology class give 3-forms which are

closed and co-closed,

dΦ = 0,

d ∗Φ Φ = 0. (4.80)

These are precisely the conditions under which Φ is the associative 3-form for a G2

holonomy metric on X.

So far we have discussed stable 3-forms, but the G2 holonomy condition can also

be obtained from a dual action based on a stable 4-form G,

V7(G) =
∫

X
G ∧ ∗GG. (4.81)

It is this V7(G) which we propose to identify as the effective action of the 7-dimensional

topological M-theory. As in the previous cases, we vary the 4-form G in a fixed
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cohomology class:

[G] ∈ H4(X,R) fixed, i.e.

G = G0 + dΓ, (4.82)

where Γ is an arbitrary real 3-form on X, and G0 is closed, dG0 = 0. The condition

that (4.81) is extremal under variations of Γ is then simply

dG = 0,

d ∗G G = 0, (4.83)

which is again the condition (4.80) that X has G2 holonomy, now written in terms

of the coassociative 4-form G = ∗ΦΦ. Just as with Φ, one can reconstruct the G2

holonomy metric from G, using the expression of G in terms of an orthonormal

vielbein,

G = e7346 − e7126 + e7135 − e7425 + e1342 + e5623 + e5641. (4.84)

The 4-form action (4.81) can also be written in a slightly different form. One

introduces a fixed basis of the space ∧2V of bivectors in 7 dimensions: eij
a = −eji

a .

Here i, j = 1, . . . , 7 and a = 1, . . . , 21, since the space of bivectors is 21-dimensional.

Then define the matrix Qab by

Qab =
1

2
eij

a e
kl
b Gijkl. (4.85)

The action for G can then be written as

V7(G) =
∫

X
(detQ)

1
12 . (4.86)

Note that since Q is a matrix of rank 21, this action is indeed homogeneous of degree

21
12

= 7
4

in G. It is a tempting thought that this action could be interpreted as
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a membrane version of Born-Infeld obtained by integrating out open (topological)

membranes, since the exponent 1
12

reminds one of a stringy one-loop determinant.

4.4.5 Hamiltonian flow

Now we shift gears to discuss a bridge between the SU(3) structures and G2

holonomy metrics considered in the last two subsections: we will describe a flow

which constructs G2 holonomy metrics from the SU(3) structures which appeared

there. This flow is essentially a Hamiltonian version of the Lagrangian field theories

described in Section 4.4.4.

Suppose given a 6-manifoldM , with stable forms ρ ∈ Ω3(M,R) and σ ∈ Ω4(M,R).

As we discussed above, if ρ and σ satisfy the compatibility conditions (4.72) and

(4.73), they define an SU(3) structure on M and a corresponding metric. If ρ and

σ are also both closed, one can extend the metric on M uniquely to a G2 holonomy

metric on X = M×(a, b) for some interval (a, b). Hitchin gave an elegant construction

of this metric [74]: one takes the given ρ and σ as “initial data” on M × {t0} and

then lets ρ and σ flow according to

∂ρ

∂t
= dk,

∂σ

∂t
= k ∧ ∂k

∂t
= −dρ̂. (4.87)

Here, as usual, σ = 1
2
k ∧ k, and t is the “time” direction normal to M .

The evolution equations (4.87) are equivalent to theG2 holonomy conditions (4.80)

for the 3-form

Φ = ρ(t) + k(t) ∧ dt.
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Moreover, (4.87) can be interpreted as Hamiltonian flow equations. Namely, one con-

siders the variations of σ and ρ as spanning a phase space Ω4
exact(M,R)×Ω3

exact(M,R);

writing δσ = dβ and δρ = dα, the symplectic pairing on the phase space is

〈δσ, δρ〉 =
∫
α ∧ dβ = −

∫
β ∧ dα. (4.88)

Then (4.87) are precisely the Hamiltonian flow equations with respect to

H = 2VS(σ) − VH(ρ), (4.89)

where VH(ρ) and VS(σ) are the volume functionals (4.57) and (4.67) which we used

to obtain SU(3) structures in 6 dimensions.

4.5 Relating Hitchin’s functionals in 6D to topo-

logical strings

In the last section we introduced two functionals VH(ρ), VS(σ) which, when ex-

tremized, generate respectively a symplectic form k and a closed holomorphic (3, 0)

form Ω on a 6-manifold M . This is reminiscent of the topological A and B models,

and one might wonder whether there is some relation. In this section we point out

that such a relation does exist. Our arguments will be rigorous only at the classical

level, but they suggest a natural extension to the quantum theories, which we will

describe. One partcularly interesting feature will emerge: namely, VH(ρ) turns out to

be equivalent not to the B model itself but to a combination of the B and B models.
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4.5.1 Hitchin’s VS as the A model

We begin by discussing a relation between Hitchin’s action functional (4.57),

VS(σ) =
∫

M
σ3/2 (4.90)

based on the closed 4-form σ, and the A model onM . As we discussed in Section 4.4.3,

the solutions to the classical equations of motion coming from VS(σ) involve Kähler

geometries, which are also the classical solutions of the A model Kähler gravity. In

fact, more is true: the classical actions in both cases compute the volume of M . So

at least at a superficial classical level, the two theories are equivalent. Moreover, we

can argue that the small fluctuations in the two theories can be identified with one

another. Namely, recall that in Hitchin’s theory we write σ = σ0 +dγ; then the action

at quadratic order for the fluctuation γ includes
∫
dγ ∧ dc†γ, which nicely matches

the action for the quadratic fluctuations in the Kähler gravity theory. So one would

expect that the two should be identified.

Here we would like to take one more step in connecting the two theories: specifi-

cally, it has been recently argued [80] that the A model can be reformulated in terms

of a topologically twisted U(1) gauge theory on M , whose bosonic action contains

the observables

S =
gs

3

∫

M
F ∧ F ∧ F +

∫

M
k0 ∧ F ∧ F. (4.91)

The partition function in this theory is a function of the fixed class k0. The path

integral can be defined as a sum over a gravitational “quantum foam” [80], i.e. over
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Kähler geometries with quantized Kähler class,4

k = k0 + gsF, (4.92)

or, equivalently, as a sum over ideal sheaves [91].

We claim that in the weak coupling (gs → 0) limit, the theory based on the

action (4.91) is equivalent to the “gravity theory” based on Hitchin’s action (4.90).

Moreover, we show that fixing the BRST symmetries of the Hitchin action naturally

leads to the description of the A model as a topologically twisted supersymmetric

U(1) gauge theory.

In order to show this, we begin with the action

S = α
∫

M
F̃ ∧ F̃ ∧ F̃ − β

∫

M
σ ∧ F̃ , (4.93)

where α and β are some coefficients (which will be related to gs below), F̃ is a 2-form

on M , and σ is a 4-form that varies in a fixed cohomology class,

[σ] ∈ H4(M) fixed, i.e.

σ = σ0 + dγ. (4.94)

At this point we do not make any assumptions about the 2-form F̃ ; in particular, it

need not be closed or co-closed.

First, let us integrate out the 2-form F̃ in the action (4.93). The equation of

motion for F̃ has the form

3αF̃ ∧ F̃ − βσ = 0. (4.95)

4We choose our normalization so that F is integrally quantized:
∫

C
F ∈ Z for any closed 2-cycle

C ⊂ M .
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This equation implies that the 2-form F̃ is a ”square root” of σ, i.e. σ is a stable

4-form. Substituting F̃ back into the action (4.93), we obtain precisely Hitchin’s

action (4.90), with the remaining path integral over a stable, closed 4-form σ. It is

important to stress here that, since the action (4.93) is cubic in F̃ , the relation to

Hitchin’s action (4.90) holds only in the semi-classical limit. We return to this issue

below, and show that this is precisely the limit gs → 0.

Similarly, starting with the action (4.93) and integrating out σ one can obtain

the U(1) gauge theory (4.91). In order to see this, one has to eliminate σ through

its equations of motion, and then make a simple field redefinition. The equations of

motion for σ are very simple. Since the dynamical variable γ appears as a Lagrange

multiplier in (4.93), it leads to the constraint

dF̃ = 0, (4.96)

which means that the 2-form F̃ is closed and, therefore, can be interpreted as a

curvature on a line bundle. The resulting action for F̃ is

S = α
∫

M
F̃ ∧ F̃ ∧ F̃ − β

∫

M
σ0 ∧ F̃ . (4.97)

In order to bring this action to the familiar form (4.91), it remains to do a simple

change of variables. We introduce

F = F̃ − ξk0, (4.98)

where ξ is a parameter and k0 is the background Kähler form, such that σ0 = k0∧k0.

Substituting (4.98) into (4.97), we get (up to a constant term) the action

S = α
∫

M
F ∧ F ∧ F + 3ξα

∫

M
F ∧ F ∧ k0 +

∫

M

(
3ξ2αk0 ∧ k0 ∧ F − βσ0 ∧ F

)
. (4.99)
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Comparing (4.99) with (4.91) determines the parameters α, β, and ξ:

α =
gs

3
,

ξ =
1

gs
,

β =
1

gs

. (4.100)

With this choice of parameters, we find complete agreement between (4.99) and the

U(1) gauge theory action (4.91), including the numerical coefficients and the relation

between the Kähler form k and the field F . Indeed, substituting ξ = 1/gs into (4.98),

we get

δk = gsF, (4.101)

which is precisely the required quantization condition (4.92).

Summarizing, we find that (4.93) is equivalent to the gauge theory action (4.91)

and, in the semi-classical limit, is also equal to Hitchin’s action (4.90). In order to see

when the semi-classical approximation is valid, it is convenient to write both terms

in the action (4.93) with the same overall coefficient 1/~. To achieve this, we rescale

F̃ → γF̃ , (4.102)

and set the coefficients in the two terms to be equal:

1

~
= αγ3 = γ. (4.103)

In particular, the latter equality implies α = 1
γ2 . From the relations (4.100) and

(4.103) it follows that the semiclassical limit, ~ → 0, corresponds to the limit gs → 0.

Hence we conclude that the gauge theory action (4.91) is equivalent to Hitchin’s

action (4.90) precisely in the weak coupling limit.
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BRST Symmetries and Gauge Fixing

As noted before, we really want to connect Hitchin’s theory to the topologically

twisted version of the supersymmetric U(1) gauge theory. In order to do this let us

describe the BRST symmetries of the theory (4.93), which, as we just established, is

equivalent to the U(1) gauge theory (4.91). First, notice that the partition sum over

the quantum foam can be viewed as a vacuum expectation value,

〈exp
(
gs

3

∫
O1 +

∫
O2

)
〉, (4.104)

in the topological U(1) gauge theory on M , where Oi are the topological observables:

O1 = F ∧ F ∧ F,

O2 = k0 ∧ F ∧ F,
... (4.105)

Following [16], one can reconstruct the action of this topological 6-dimensional theory

by studying the BRST symmetries that preserve (4.104)–(4.105). Writing (locally) F

as a curvature of a gauge connection A,

F = dA, (4.106)

it is easy to see that (4.104)–(4.105) are invariant under the usual gauge transforma-

tions

δA = dε0, (4.107)

as well as under more general transformations

δA = ε1 (4.108)
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where the infinitesimal parameter ε1 is a 1-form on M . The gauge fixing of the lat-

ter symmetry leads to a 1-form ghost field ψ. Since ε1 itself has a gauge symmetry,

ε1 ∼ ε1 + dλ, one also has to introduce a commuting 0-form φ associated with this

symmetry. Hence, already at this stage we see that the 6D topological theory in

question should contain a gauge field and a scalar. The only such theory is a maxi-

mally supersymmetric topological gauge theory in six dimensions, i.e. a theory with

NT = 2 topological supersymmetry. Equivalently, it is a theory with 16 real fermions,

which can be identified with holomorphic (p, 0)-forms on M . Remember that on a

Kähler manifold

S(M) ∼= Ω0,∗(M). (4.109)

The complete BRST multiplet in this theory looks like:

Bosons : 1 − form A

cplx. scalar φ

(3, 0) − form ϕ

Fermions : ψp,0 , ψ0,p p = 0, 1, 2, 3 (4.110)

Under the action of the BRST operator s, these fields transform as [15, 76]:

sϕ0,3 = 0 sϕ3,0 = ψ3,0

sA0,1 = ψ0,1 sA1,0 = 0

sψ0,1 = 0 sψ1,0 = −∂Aφ

sψ0,0 = (k · F 1,1) sψ2,0 = F 2,0 (4.111)

This NT = 2 6-dimensional topological U(1) gauge theory has been extensively stud-

ied in the literature, see e.g. [15, 76, 46, 3, 27]. A reduction of this theory on a Kähler
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4-manifold M4 ⊂M leads to the NT = 4 topological gauge theory studied in [125].

Finally, we identify the symmetry of Hitchin’s action (4.90) that corresponds to

the BRST symmetry (4.108). In order to do this, we need to find how this symmetry

acts on the 4-form field σ. Since in the gs → 0 limit the field F is identified with the

variation of the Käher form (4.101) it follows that

δk = dε1, (4.112)

where σ = k ∧ k. It is easy to check that Hitchin’s action (4.90) is indeed invariant

under this symmetry,

δSH =
3

2

∫

M
k ∧ δσ = 3

∫

M
k ∧ k ∧ δk = 3

∫

M
σ ∧ dε1 = 0. (4.113)

We have thus recovered the topologically twisted U(1) theory which was conjec-

tured in [80] to be equivalent to the quantum foam description of the A model.

4.5.2 Hitchin’s VH as the B model

Now we want to discuss the relation between Hitchin’s “holomorphic volume”

functional VH(ρ) and the B model (see also the recent work [56], which proposes

a relation similar to what we will propose below.) Classically, there is an obvious

connection between the two, since solving the equations of motion of either one gives

a closed holomorphic 3-form Ω. What about quantum mechanically? In order to

understand this question we must first recall a subtle feature of the B model partition

function.

Consider the B model on a Calabi-Yau 3-fold M . This model is obtained by topo-

logical twisting of the physical theory with a fixed “background” complex structure,
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determined by a holomorphic 3-form Ω. The topological observables in this model

are the marginal operators φi representing infinitesimal deformations of the complex

structure, where i = 1, . . . , h2,1. The partition function ZB was defined in [24] to be

the generating functional of correlations of marginal operators: namely, introducing

h2,1 variables xi, ZB(x, gs,Ω0) obeys

Di1 · · ·DikZB(x, gs)|x=0 = 〈φi1 · · ·φik〉Ω0
. (4.114)

More intrinsically, we can think of x as labeling an infinitesimal deformation, so that

for fixed Ω0, ZB(x, gs,Ω0) is a function on the holomorphic tangent space TΩ0
M to

the moduli space M of complex structures. By construction this ZB is holomorphic in

its dependence on x. But one gets one such function of x for every Ω0, corresponding

to all the different tangent spaces to M, and one can ask how these different functions

are related. This question was answered in [24], where the effect of an infinitesimal

change in Ω0 was found to be given by a “holomorphic anomaly equation.”

This Ω0 dependence of ZB was later reinterpreted in [131] as the wavefunction

property. To understand what this means, it is convenient to combine gs and x

into a “large phase space” of dimension h2,1 + 1. Changing gs is equivalent to an

overall rescaling of Ω0 (which does not change the complex structure on X). So for

fixed Ω0, we can consider ZB as a holomorphic function on H3,0(X,C) ⊕H2,1(X,C).

Equivalently, ZB is a function on the “phase space” H3(X,R), which depends only

on the complex combination of periods

xI = FI − τIJ(Ω0)X
J , (4.115)
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and not on the conjugate combination

xI = FI − τ IJ(Ω0)X
J . (4.116)

This is similar to the idea of a wavefunction which depends only on q but not on

its conjugate variable p; indeed, xI and xI are coordinates on H3,0 ⊕ H2,1 and on

H1,2 ⊕H0,3 respectively, and they are indeed conjugate with respect to the standard

symplectic structure on H3(X,R). Note that since τ depends on Ω0, changing Ω0

changes the symplectic coordinate system.

Now, if one is given a wavefunction ψ(q) as a function of q and one wants to

express it as a function of p, there is a simple procedure for doing so: just take

the Fourier transform. In fact, more generally, given ψ(q) one can construct various

different representations of the state, e.g. ψ(p), ψ(p + q), ψ(p + iq) and so on.

Each such representation corresponds to a different choice of symplectic coordinates

inside the (p, q) phase space, and each can be obtained from ψ(q) by an appropriate

generalized Fourier transform. In [131] it was shown that the Ω0 dependence of ZB

can be understood in exactly this way: starting from ZB(x,Ω0) one can obtain any

other ZB(x,Ω′
0) by taking an appropriate Fourier transform! In this sense ZB is

a wavefunction obtained by quantization of the symplectic phase space H3(X,R),

which has various different representations depending on one’s choice of symplectic

coordinates for H3(X,R).

Now what about Hitchin’s gravity theory? Consider the partition function ZH([ρ])

of Hitchin’s 6-dimensional gravity theory, formally written

ZH([ρ]) =
∫
Dβ exp(VH(ρ + dβ)). (4.117)
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We do not expect that the formal expression (4.117) really captures the whole quan-

tum theory, but the statement that ZH depends on a class [ρ] ∈ H3(X,R) should be

correct, as should the classical limit of (4.117). In comparing ZH to ZB we notice two

points. First, unlike ZB, ZH does not depend on a choice of symplectic coordinates

for H3(X,R). Second, ZH depends on twice as many degrees of freedom as does ZB

(because ZB depends on only half of the coordinates of H3(X,R) as explained above.)

So ZH cannot be equal to ZB.

The situation changes drastically, however, if we combine the B model with the

complex conjugate B model. In that case we have two wavefunctions, ZB and ZB,

and we can consider the product state

Ψ = ZB ⊗ ZB. (4.118)

(One could more generally consider a density matrix that is a sum of such pure

product states.) This product state sits inside a doubled Hilbert space, obtained

from quantization of a phase space which is also doubled, from H3(X,R) to H3(X,C).

This doubled phase space has a polarization which does not depend on any arbitrary

choice: namely, one can divide it into real and imaginary parts, and it is natural

to ask for the representation of Ψ as a function of the real parts of all the periods,

Ψ(Re XI ,Re F I). This gives a function on H3(X,R) which does not depend on

any choice of symplectic coordinates. This is actually a standard construction in

quantum mechanics: the function one obtains expresses the density in phase-space

corresponding to the wavefunction ZB, and is known as the “Wigner function” of ZB.

It is this Wigner function which we propose to identify with ZH([ρ]).

We can give an explicit formula for the Wigner function if we start from a partic-
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ular representation of ZB, namely the one corresponding to a basis of A and B cycles

{AI , B
I} in H3(X,Z). (This choice of polarization corresponds to a certain limit in

the space of possible Ω0; from now on we suppress Ω0 in the notation.) Then ZB can

be written as ZB(XI), a function of the A cycle periods XI , and we denote the B

cycle periods F I . Writing PI = Re XI , Q
I = Re F I, the Wigner function is given by

Ω(PI , Q
I) =

∫
dΦI e

−QIΦI |ZB(PI + iΦI)|2. (4.119)

This can be identified with ZH([ρ]) if we identify PI and QI as the (real) periods of

the class [ρ] ∈ H3(X,R).

At least at string tree level (which in this context means large ρ) we can verify

that this identification is correct. Namely, in that limit, ZB is dominated by the

tree level free energy F0, and writing ZB = e−
i
2
F0, we can make a steepest descent

approximation of the integral over Φ in (4.119). The argument of the exponential is

− i

2
F0(PI + iΦI) +

i

2
F0(PI + iΦI) −QIΦI . (4.120)

The value of Φ which extremizes (4.120) occurs when QI = Re ∂F0/∂XI = Re F I(P+

iΦ). At this Φ, (4.120) becomes

− i

4
XIF

I +
i

4
XIF I − (Re F I)(Im XI) =

i

4
XIF I − i

4
XIF

I . (4.121)

But this is exactly the classical Hitchin action VH = − i
4

∫
Ω∧Ω, evaluated at the value

of Ω for which Re XI = PI and Re F I = QI . This establishes the desired agreement

between ZH and the Wigner function of ZB at tree level. In fact, the above relation

between the topological string and and
∫

Ω ∧ Ω was already noted and used in [98],

for the purpose of relating the topological string to 4D black hole entropy. We will

discuss this connection in Section 4.8.
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It seems likely that the agreement between ZH and the Wigner function will also

persist at one loop. The B model at one loop is known [24] to compute the Ray-

Singer torsion of M , which is a ratio of determinants of ∂ operators acting on forms

of various degrees; these determinants should agree with those which appear in the

quadratic expansion of VH around a critical point. This basically follows from the fact

that the kinetic term is given by
∫
∂φ∂φ, where φ is a (1, 1) form and the complex

structure is determined by the choice of critical point. The difference from the B

model is just that here φ is not viewed as a chiral field, so we get both the B and B

contributions; the one-loop contribution in the B model alone is a chiral determinant,

the holomorphic square root of the determinant of the Laplacian.

Finally, we note that, by introducing an extra 3-form field H, we can write the

action functional VH(ρ) in a form that does not involve square roots, just as we did

in (4.93) for the A-model,

S =
∫

M
ρ ∧H +

∫

M
α ·Ka

bKb
a +

∫

M
(1 − α · (ρ ∧H))φ, (4.122)

where Ka
b is defined in (4.69). It is easy to see that integrating out the 3-form H and

the Lagrange multiplier φ leads to the holomorphic volume action VH(ρ) of (4.68).

The action (4.122) could be useful for a “quantum foam” description of the B model

parallel to the one discussed above for the A model.
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4.6 Reducing topological M-theory to form gravi-

ties

In this section, we want to argue that the various form gravity theories we reviewed

earlier arise naturally on supersymmetric cycles in topological M-theory. We will

discuss various examples, but the basic idea is always the same: we consider a “local

model” of a complete 7-manifold X, obtained as the total space of an m-dimensional

vector bundle over an n-dimensional supersymmetric (calibrated) cycle M ⊂ X, such

that m + n = 7,

Rm → X

↓

M

. (4.123)

This non-compact local model is intended to capture the dynamics of the 7-dimensional

theory when the supersymmetric cycle M shrinks inside a global compact X. This

idea is natural when one recalls that the geometry of X in the vicinity of a super-

symmetric cycle M is completely dictated by the data on M . Thus the local gravity

modes induce a lower-dimensional gravity theory on M . This is similar to what is

familiar in the context of string theory: near singularities of Calabi-Yau manifolds

one gets an effective lower-dimensional theory of gravity.

After making an appropriate ansatz, the three-form Φ on X induces a collection

of p-form fields on M ; the equations of motion of topological M-theory,

dΦ = 0,

d ∗Φ Φ = 0, (4.124)
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lead to equations of motion for the p-form fields on M . These equations of motion

can be interpreted as coming from a topological gravity theory on M .

Depending on the dimension n of M and the vector bundle we choose over it,

we will have various ansaetze for Φ, leading to various gravity theories on M . For

example, the cases n = 3 and n = 4 correspond respectively to associative and

coassociative submanifolds, which are familiar examples of supersymmetric cycles in

manifolds with G2 holonomy. In these two cases, the corresponding vector bundle

over M is either the spin bundle over M (when M is associative) or the bundle of

self-dual 2-forms over M (when M is coassociative). In order to obtain the other

two gravity theories, namely the cases n = 2 and n = 6, one has to assume that the

bundle (4.123) splits into a trivial line bundle over M and a bundle of rank m − 1.

In this case the holonomy group of X is reduced to SU(3), so that locally X looks

like a direct product,

X = R × Y, (4.125)

where Y is a Calabi-Yau 3-fold of the form (4.123), with n + m = 6. Notice that

apart from supersymmetric 2-cycles and 6-cycles, Calabi-Yau manifolds also contain

supersymmetric 3-cycles and 4-cycles. A priori, the form gravity induced on the latter

may be different from the gravity theory obtained on associative and coassociative

cycles in a 7-manifold with the full holonomy G2.

In the cases n = 3, m = 4 and n = 4, m = 3 we will be closely following two con-

structions of local G2 manifolds given in [29, 57] and recently discussed in [39]. These

two constructions have some common features which can be conveniently summarized

in advance. We let yi denote a local coordinate on the fiber Rm, and write r = yiy
i.
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The ansatz is SO(m) invariant, so that Φ depends only on r and the coordinates on

M . We construct a basis of 1-forms in the fiber direction as

αi = DAy
i = dyi + (Ay)i, (4.126)

where A is the 1-form induced by a gauge connection on M which acts on the yi in

some representation.

The fact that Φ is a stable 3-form means that there exists a 7-dimensional vielbein

ei such that

Φ = e567 + e5 ∧ (e12 − e34) + e6 ∧ (e13 − e42) + e7 ∧ (e14 − e23).

In the metric g determined by Φ, the ei form an orthonormal basis. We define a

triplet of 2-forms Σi by the formula (4.17) as in the 2-form gravity:

Σ1 = e12 − e34,

Σ2 = e13 − e42,

Σ3 = e14 − e23. (4.127)

Then Φ is written

Φ = e567 + ei ∧ Σi. (4.128)

To verify the equations of motion, we will also need the expression for ∗ΦΦ, derived

straightforwardly by expanding in the ei:

∗ΦΦ = −1

6
Σi ∧ Σi +

1

2
εijkei ∧ ej ∧ Σk. (4.129)

In fact, it is convenient to consider a slightly more general form of Φ: namely, rescaling

the first three ei by f and other four by g, we obtain

Φ = f 3e567 + fg2ei ∧ Σi, (4.130)
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and

∗ΦΦ = −1

6
g4Σi ∧ Σi +

1

2
f 2g2εijkei ∧ ej ∧ Σk. (4.131)

4.6.1 3D gravity on associative submanifolds

One local model for a G2 space X is obtained by choosing X to be the total

space of the spin bundle over a 3-manifold M . In this case, with our ansatz, the

field content and equations of motion of topological M-theory on X reduce to those

of Chern-Simons gravity on M ; in particular, the condition that X has G2 holonomy

implies that M has constant sectional curvature.

First, let us show that the field content of topological M-theory on X can be nat-

urally reduced to that of Chern-Simons gravity on M . This amounts to constructing

an ansatz for the associative 3-form Φ in terms of forms on M . We write it in the

general form (4.130) and then impose the condition that e1, e2, e3, e4 are constructed

out of an SU(2) connection on M acting on the spin bundle, as we explained earlier

in (4.126): ei = αi, i = 1, . . . , 4. For convenience we also relabel e5, e6, e7 as e1, e2, e3,

so finally the form of Φ is

Φ = f 3e123 + fg2ei ∧ Σi, (4.132)

where

Σ1 = α12 − α34,

Σ2 = α13 − α42,

Σ3 = α14 − α23. (4.133)
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Further assume that f , g depend only on the radial coordinate r, with f(0) = g(0) =

1. Then along M , the only fields (undetermined functions) in our ansatz are the

dreibein ei and the SU(2) connection Ai. These are exactly the fields of 3-dimensional

gravity in the first-order formalism, and they can be organized naturally into a com-

plexified gauge field, as we discussed before.

Now we want to check that the equations of motion of topological M-theory reduce

with our ansatz to those of 3-dimensional gravity. This amounts to evaluating dΦ

and d ∗Φ Φ directly, using (4.131). One finds that if

f(r) =
√

3Λ(1 + r)1/3,

g(r) = 2(1 + r)−1/6, (4.134)

then dΦ = 0 becomes equivalent to

de = −A ∧ e− e ∧ A,

dA = −A ∧ A− Λe ∧ e. (4.135)

The conditions (4.135) are precisely the equations of motion in 3D Chern-Simons

gravity,

dA + A∧ A = 0, (4.136)

based on the gauge group G as indicated in Table 1. Furthermore one can check

that d ∗Φ Φ = 0 is automatic provided that (4.134)–(4.135) are satisfied. So with this

particular ansatz, the equations of motion of topological M-theory do indeed reduce

to those of 3-dimensional gravity.
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4.6.2 4D gravity on coassociative submanifolds

Another local model of a G2 manifold is obtained by choosing X to be the bundle

of self-dual 2-forms over a 4-manifold M . We will see that in this case the effective

gravity theory on M is the 2-form gravity we considered in Section 4.3.3.

First, let us show that the field content of topological M-theory on X can be

naturally reduced to that of 2-form gravity on M . This amounts to constructing an

ansatz for the associative 3-form Φ in terms of forms on M . We write it in the general

form (4.130) and then impose the condition that e5, e6, e7 are constructed out of an

SU(2) connection on M acting on the bundle of self-dual 2-forms, as we explained

earlier: e5 = α1, e
6 = α2, e

7 = α3. Further assume that Σi are purely tangent to M ,

and that f , g depend only on the radial coordinate r, with f(0) = g(0) = 1.

Thus along M the associative 3-form Φ can be simply written:

Φ = α123 + α1 ∧ Σ1 + α2 ∧ Σ2 + α3 ∧ Σ3. (4.137)

Since we constructed both Φ and Σ from the vielbein, which determines the metric,

the metrics onM which can be reconstructed from Φ and Σ must agree. It is gratifying

that this can be seen explicitly, as we now do: recall the expression for the G2 metric

in terms of Φ from (4.52),

√
g gjk = − 1

144
Φji1i2Φki3i4Φi5i6i7ε

i1...i7 . (4.138)

We wish to consider the components of the metric along M , gjk, where j, k = 1, . . . , 4.

Normalizing the normal directions to have length scale 1, we can view g in (4.138) as

the determinant of the 4-dimensional metric onM 4. Also, notice that if j, k = 1, . . . , 4,
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then none of the Φ-components can be e567. Hence, all the components of Φ in (4.138)

should contain Σi, cf. (4.137).

Now, let us consider the combinatorial factors in (4.52). Since indices j and k are

assumed to take values from 1 through 4, one of the indices i1 or i2 in Φji1i2 can take

values 5, 6, or 7. Similarly, there are two choices to assign a normal direction to i3 or

i4, and three choices in the last factor, Φi5i6i7. In total, we get a combinatorial factor

12 = 2 · 2 · 3 and we can write the metric in the form

√
g gab = − 1

12
Σi

aa1
Σj

ba2
Σk

a3a4
εijkεa1a2a3a4 . (4.139)

This is exactly the expression (4.20) for the metric on M in the 2-form gravity.

So we have written Φ in terms of an SU(2) triplet of two-forms Σi, which by

construction obey the constraint (4.16), and an SU(2) gauge connection, which we

used to define the αi. These are precisely the fields of the two-form gravity theory we

considered above, which has self-dual Einstein metrics on M as its classical solutions.

Note that from the viewpoint of the 4-dimensional form theory of gravity, the SU(2)

gauge indices i = 1, 2, 3 and the 4-dimensional spacetime indices of Σi
ab are unrelated.

However, we have seen that in the context of topological M-theory the 3 SU(2) gauge

indices are unified with the 4 spacetime indices to give a 3-form in 7 dimensions. This

by itself is rather satisfactory, and suggestive of a deep role for topological M-theory

in the context of 4-dimensional quantum gravity.

Next we want to argue that the field equations of topological M-theory reduce to

those of the two-form gravity theory on M . First consider the equation dΦ = 0. A
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direct computation shows that with the choice

f(r) = (1 + r)−1/4,

g(r) =
√

2Λ(1 + r)1/4, (4.140)

the condition dΦ = 0 becomes equivalent to

DAΣ = 0,

F ∧ Σ = 0. (4.141)

In fact, the latter equation follows from the former by applying DA to both sides; so

we just have to impose DAΣ = 0, which means that A is the SU(2)+ part of the spin

connection. Note that this also implies that F is self-dual in the metric induced by

Σ, F = F+; this follows from the fact that F is SU(2)+ valued, and the symmetry

Rabcd = Rcdab of the Riemann tensor, which is shared by F .

Similarly, one finds that d ∗Φ Φ = 0 can be satisfied provided that

F+ =
Λ

12
Σ. (4.142)

So altogether, the equations of motion of topological M-theory imply

DAΣ = 0,

F =
Λ

12
Σ. (4.143)

These agree precisely with (4.25). In sum, the field content and equations of motion

of the self-dual version of two-form gravity agree with those of topological M-theory,

when we make a special ansatz for Φ.
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4.6.3 6D topological strings

Finally let us consider the case n = 6. In this case X is a real line bundle over

the 6-dimensional M , and we choose it to be trivial — either X = M × R or its

compactification X = M × S1. Let R be parameterized by t. Then a natural ansatz

for Φ is

Φ = ρ+ k ∧ dt, (4.144)

where ρ and k are respectively a 3-form and 2-form on M . If Φ is a stable 3-form on

X, then ρ and k are stable on X, so as we discussed earlier, they define respectively

an almost complex structure and a presymplectic structure on X, and if we impose

also the conditions (4.72)–(4.73) then these two structures are compatible. In that

case they give an SU(3) structure on X. The condition that this SU(3) structure is

integrable,

dk = 0,

d(ρ+ iρ̂) = 0, (4.145)

is equivalent to the 7-dimensional equations of motion dΦ = 0, d ∗Φ Φ = 0. So

with this ansatz, topological M-theory on X reduces to a theory on M , describing

variations of k and ρ, for which the classical solutions are Calabi-Yau 3-folds.

What 6-dimensional theory is this? As they are usually conceived, neither the

topological A model nor the topological B model alone fits the bill: at least pertur-

batively, the A model just describes variations of k, and the B model those of the

holomorphic 3-form Ω = ρ + iρ̂. The theory we are getting on M is a combination

of the A and B models — with a slight coupling between them, expressed by the
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constraints (4.72)–(4.73). In support of this point of view, note that after imposing

(4.72)–(4.73) the action V7(Φ) can be simply expressed in terms of ρ and k: it becomes

simply

V7(Φ) = 3VS(k) + 2VH(ρ), (4.146)

where VS and VH are the 6-dimensional symplectic and holomorphic volume func-

tionals introduced in Section 4.4.3. As we discussed in Section 4.5, these functionals

correspond respectively to the A model and the B + B model.

It is natural to conjecture that this 7-dimensional construction is in fact related

to the nonperturbative completion of the topological string, which we expect to mix

the A and B models, and to related phenomena such as the topological S-duality

conjectured in [94, 96] (see also [83]). While this picture is far from complete, there

is one encouraging sign, which we will describe further in the next section.

4.7 Canonical quantization of topological M-theory

and S-duality

In the last section we discussed a possible relation between topological M-theory

on X = M × S1 and topological string theory on M . In particular, we found that

the classical reduction, obtained just by considering fields which are independent of

the coordinate along S1, leads to a combination of two systems, which are in the

universality classes of the topological A and B models. Recently, there have been

some hints that the A and B model could be coupled to one another. In this section

we discuss how such a coupling could arise through canonical quantization, and how
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this relates to the notion that the topological string partition function is a wave

function.

We begin by considering the 4-form version of topological M-theory. To perform

the canonical quantization of Hitchin’s action V7(G) is a nontrivial problem, because

of the usual subtleties involved in quantizing a diffeomorphism invariant theory. More-

over, we should note that we are viewing Hitchin’s action only as an effective action,

which we are using just to extract some basic facts about the Hilbert space. For

this purpose it is enough to work roughly, although a more precise treatment would

certainly be desirable.

So let us consider the 7-dimensional gravity theory (4.81) on a manifold X =

M×R, whereM is a compact 6-manifold and R is the “time” direction. We decompose

the 3-form gauge field Γ as

Γ = γ + β ∧ dt,

where γ and β are a 3-form and 2-form respectively, with components only along M .

Similarly decompose G and ∗GG as

G = σ + ρ̂ ∧ dt,

∗GG = ρ+ k ∧ dt. (4.147)

Then write

G = G0 + dΓ

= (σ0 + dγ) + (ρ̂0 + dβ + γ̇) ∧ dt, (4.148)
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so that

ρ̂ = ρ̂0 + dβ + γ̇,

σ = σ0 + dγ. (4.149)

The configuration space is spanned by the components (γ, β) of the gauge field Γ.

Their conjugate momenta are

πγ =
7

4
ρ, πβ = 0. (4.150)

The longitudinal component β is an auxiliary field; it imposes the constraint

δV7

δβ
= dρ = 0, (4.151)

which generates the spacelike, time-independent gauge transformations γ → γ + dλ.

Hence the reduced phase space which we obtain from canonical quantization of the

4-form theory is parameterized by (γ, ρ), where

γ ∈ Ω3(M)/Ω3
exact(M), ρ ∈ Ω3

closed(M). (4.152)

Now let us compute the Hamiltonian. Suppose that we impose the conditions

(4.72)–(4.73) (we will comment more on the role of these constraints later.) Then it

is straightforward to verify that ρ and ρ̂ are related as in Section 4.4.3, and σ = 1
2
k∧k.

The action V7 from (4.81) becomes

V7 =
∫

X
dt (2VH(ρ) + 3VS(σ(γ))) . (4.153)

Using (4.150) we can construct the Hamiltonian,

H = 2VH(ρ) + 3VS(σ(γ)) − γ̇ ∧ πγ =
3

2
(2VS(σ(γ)) − VH(ρ)). (4.154)
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Although our treatment has been rough, we can gain some confidence from the fact

that the Hamiltonian we ultimately obtained at least gives classical equations of mo-

tion agreeing with the Lagrangian formulation; namely, it agrees with (4.89), which

indeed defines a flow giving G2 holonomy metrics. A more precise treatment (possibly

starting from a different classically equivalent action) would require a better under-

standing of the constraints (4.72)–(4.73); we believe that they will turn out to be the

diffeomorphism and Hamiltonian constraints, as usual in diffeomorphism invariant

theories. Indeed, note that (4.73) is simply the constraint H = 0.

As usual in the Hamiltonian formalism, we treat ρ, γ as the canonical variables,

where ρ is “momentum” and γ is “position.” From (4.150) we see that they have

canonical commutation relations

{δγ, δρ} =
∫

M
δγ ∧ δρ. (4.155)

Recalling that VH and VS were identified respectively with the B and A models, we

see that the Hamiltonian has split into a “kinetic term” involving the B model and a

“potential term” involving the A model. Despite this splitting the A and B models

are not independent; the fact that ρ and γ do not commute at the same point of M

suggests that, for the quantum Calabi-Yau, the uncertainty principle would prevent

measurements of the complex structure and Kähler structure at a given point from

being done simultaneously. This is an interesting result which deserves more scrutiny.

One can also ask about the commutation relations between the zero modes of the A

and B model fields, which might be of more direct interest, because these zero modes

are observables on which the partition function depends. Some of these zero modes are

already present in the heuristic construction of the phase space which we gave above.
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For example, one can consider variations of γ which are closed, d(δγ) = 0; these

induce no variation in the Kähler form, but nevertheless affect the nonperturbative A

model partition function (via the coupling to Lagrangian branes) as we discussed in

Section 4.3. These variations of γ up to gauge equivalence parameterize an H 3(M,R)

in the phase space, which via (4.155) is canonically conjugate to the H3(M,R) given

by the cohomology class of ρ. This means that the A model variables and B model

variables mix; the parameter playing the role of the Lagrangian D-brane tension in

the A model is conjugate to the 3-form of the B model.

There is a dual version of the above discussion: if we had started from the 3-form

version of topological M-theory instead of the 4-form version, we would have written

ρ = ρ0 + dB, (4.156)

where B is a 2-form on M . (This field is very closely related to the field that we

denoted as φ that appeared in the B model topological string.) The phase space then

turns out to be spanned by B and σ with the Poisson bracket given by

{δB, δσ} =
∫

M
δB ∧ δσ. (4.157)

This pairing agrees with the one we obtained above, except that it includes different

zero modes: instead of having two copies of H3(M,R) we now have the variations

of B up to gauge equivalence which do not change ρ, parameterizing an H 2(M,R),

canonically conjugate to the H4(M,R) given by the cohomology class of σ. Hence

the B-field which couples to the D1-brane of the B model is conjugate to the Kähler

parameter of the A model.

In sum, we seem to be finding that even at the level of the zero modes, i.e. the

observables, there is a sense in which the fields of the A and B models are conjugate to
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one another. It is natural to suspect that this is related to the conjectured S-duality

between the A and B models, which would be interpreted as position/momentum

exchange or electric/magnetic duality in topological M-theory. In particular, the fact

that nonperturbative amplitudes of the B model involve the D1-brane and the B-field,

and the fact that the nonperturbative amplitudes of the A model involve Lagrangian

D-branes and the γ field, suggest that the full nonperturbative topological string is a

single entity consisting of the A and B models together.

Clearly these ideas should be developed further, but we feel that there is a beautiful

connection here, between the conjectured S-duality between the A and B models

and the fact that topological M-theory treats their degrees of freedom as conjugate

variables.

One might ask how this Hamiltonian quantization is related to the fact that the B

model partition function is a wavefunction, reviewed in Section 4.5.2, which was one

of our original motivations for introducing a 7-dimensional topological M-theory. In

the zero mode sector we have found two conjugate copies of H3(X,R), which would

be sufficient to account for both the phase spaces underlying the B model partition

function and the B model partition function. This is reminiscent of Section 4.5.2

where we saw that we could interpret the Wigner function as a wavefunction for the

combined B and B models, with the zero mode phase space H3(X,C), parameterized

by the conjugate variables Re Ω = ρ and Im Ω = ρ̂. On the other hand, as dicussed

above, in the 7-dimensional theory γ is conjugate to ρ. We are thus naturally led

to identify ρ̂ = γ. This identification was in a sense predicted by the topological

S-duality conjecture, since it says precisely that the Lagrangian D-branes of the A
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model are coupled to the imaginary part of Ω. It indeed follows semiclassically if we

identify the wavefunction as being given by the Hitchin functional, Ψ(ρ) ∼ exp VH(ρ);

then we get the necessary relation

γ|Ψ〉 = ρ̂(ρ)|Ψ〉 (4.158)

using δVH/δρ = ρ̂. This relation between the potential and the wavefunction is not

unexpected, since the function VH is quadratic in ρ.

4.8 Form theories of gravity and the black hole

attractor mechanism

In the previous sections we have discussed various theories of gravity in which

one reconstructs geometric structures from p-forms on the spacetime M . Although

this might seem like an unusual way to get these structures, a similar phenomenon

occurs in superstring theory compactified on M : given a black hole charge, which

can be represented as an integral cohomology class on M , the attractor mechanism

fixes certain metric data gµν of M at the black hole horizon [117, 52, 50, 51]. In other

words, it provides a map5

Q 7→ gµν . (4.159)

In this section, we will discuss a relation between black holes and Hitchin’s func-

tionals. In particular, we argue that these functionals also lead to the map (4.159).

In a sense, the metric flow of the internal manifold from spatial infinity to the black

5More precisely, it fixes some of the components of g; not all of the moduli are fixed by the
attractor mechanism.
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hole horizon can be viewed as a geodesic flow with respect to Hitchin’s action. In fact,

Hitchin’s picture is more general: it does not assume the metric to be of the Calabi-

Yau form, but derives that from the same action principle which leads to the relation

between the charge and metric. The usual attractor mechanism only discusses the

zero mode sector of the metric, whereas Hitchin’s action also deals with the massive

modes.

This link between form theories of gravity and BPS black holes can, in fact,

lead to a fundamental nonperturbative definition of the gravitational form theory as

counting black hole degeneracies with a fixed charge, as in the recent work [98, 124].

This interpretation of the gravitational form theories also “explains” why one fixes the

cohomology class of the form and integrates only over massive modes; this corresponds

simply to fixing the black hole charge. At least in the cases of 4D and 5D BPS black

holes, we will show that this interpretation is correct at leading order in the black

hole charge; this amounts to the statement that the value of the extremized classical

action agrees with the semiclassical black hole entropy.

4.8.1 BPS black holes in 4 dimensions

We begin with the case of 4D BPS black holes in Type IIB string theory compact-

ified on a Calabi-Yau 3-fold M . In Section 4.4.3 we defined Hitchin’s “holomorphic

volume” (4.67), a functional of a 3-form ρ in six dimensions:

VH(ρ) =
1

2

∫

M
ρ̂ ∧ ρ = − i

4

∫

M
Ω ∧ Ω. (4.160)

Furthermore we noted that, if we hold the cohomology class [ρ] fixed (writing ρ =

ρ0 + dβ), the critical points of VH(ρ) yield holomorphic 3-forms on M with real part
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ρ. So the process of minimizing VH produces the imaginary part of Ω as a function of

its real part. Remarkably, this is exactly what the attractor mechanism does: fixing

the black hole charge C for the theory on R4, the attractor mechanism produces the

value of Ω of the Calabi-Yau at the black hole horizon, and the real part of Ω is equal

to C∗, the Poincare dual of C. Therefore it is natural to identify

[ρ] = C∗. (4.161)

Note that the quantization of C matches the fact that ρ is naturally quantized, if we

view it as the field strength of the 2-form potential β. So the holomorphic volume

functional VH is related to the attractor mechanism at least classically.

Furthermore, the classical value of the action also has a natural physical meaning:

namely, after fixing C, the value of
∫

Ω ∧ Ω at the critical point gives the leading-

order contribution to the black hole entropy at large C. Now consider the quantum

theory with action VH . The path integral formally defines a partition function ZH(C)

depending on the charge,

ZH(C) =
∫

[ρ]=C∗
Dρ exp(VH(ρ)). (4.162)

We conjecture that this path integral computes the exact number of states of the

black hole (or more precisely the index ZBH(C) defined in [98], which counts the

states with signs):

ZBH(C) = ZH(C). (4.163)

The main evidence for this conjecture is that if the path integral (4.162) exists, it

would be a function of C whose leading asymptotics agree with the black hole entropy

— it would be remarkable if there were two such functions with natural physical
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definitions and they were not equal. Conversely, one could define the nonperturbative

quantum theory by the black hole entropy.

Additional evidence for the conjecture (4.163) comes by noticing that it is es-

sentially the conjecture of [98], which identified ZBH(C) with a Wigner function

constructed from the B model partition function ZB. Namely, choose a splitting of

H3(M,Z) into A and B cycles. Then splitting C into electric and magnetic charges,

C = (P,Q), one has [98]

ZBH(C) =
∫
dΦ eiQIΦI |ZB(P + iΦ)|2. (4.164)

On the other hand, as we already discussed in Section 4.5.2, there is indeed a relation

(4.119) between the B model and Hitchin’s theory,

ZH(C) =
∫
dΦ eiQIΦI |ZB(P + iΦ)|2. (4.165)

Recall that Hitchin’s theory based on VH is related not to the B model but to the B

plus B model; this agrees well with the fact that this B plus B model also appears in

the counting of black hole entropy. This makes one more confident that the connection

between Hitchin’s theory and the black hole is direct and deep.

4.8.2 BPS black holes in 5 dimensions

So far we have discussed a relation between VH and counting of 4-dimensional

BPS black hole states obtained from Type II string theory on M . But as described

in Section 4.4.3, there is also the functional VS which makes sense on the 6-manifold

M ; one could ask whether it is also related to black hole entropy. In this section we

will argue that it is, and the black holes in question are the ones in the 5-dimensional
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theory obtained by compactifying M-theory on M . These BPS black holes can be

constructed by wrapping M2-branes over 2-cycles of M , and are characterized by a

charge Q ∈ H2(M,Z) = H4(M,Z) and a spin j. At first let us set j = 0. To connect

the black hole counting to Hitchin’s theory based on VS, we identify

Q∗ = [σ]. (4.166)

The attractor value of the moduli in this case is given [51, 37] by a Kähler form k,

such that 1
2
k2 = σ; with this value of k, the volume of the Calabi-Yau is proportional

to the entropy of the black hole,

SBH ∼
∫

M
k3 =

∫

M
σ3/2. (4.167)

In other words, the black hole entropy is given by the classical value of VS(σ). This is

automatically consistent with the fact that the black hole entropy in five dimensions

scales asQ3/2. So, in parallel with what we did for VH , we conjecture that the partition

function ZS([σ]) of the theory based on VS counts BPS states of 5-dimensional black

holes.

It is possible to extend the foregoing discussion to spinning black holes, by intro-

ducing an additional 6-form field J in the Hitchin action VS. We denote the integral

cohomology class of J by j = [J ] ∈ H6(M,Z); this j can be naturally identified with

the spin of the black hole. We consider the action

VS(σ, J) =
∫ √

σ3 − J2, (4.168)

where

σ3 − J2 = (σi1i2i3i4σj1j2j3j4σk1k2k3k4
− Ji1i2j1j2k1k2

Ji3i4j3j4k3k4
)εi1i2j1j2k1k2εi3i4j3j4k3k4 .
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It is easy to see that this modification does not change the attractor value of the

Kähler form k, but changes the classical value of the action to
√
Q3 − j2, which

agrees with the entropy of the spinning black hole.

We have just argued that the quantum theory based on the extended functional

(4.168) should count the degeneracies of BPS black holes in five dimensions. On the

other hand, since the perturbative A model counts exactly these degeneracies [60],

one might expect a direct relation between the A model and (4.168). At least for

j = 0, we have already encountered this relation in Section 4.5.1, where the quantum

foam description of the A model was related to a Polyakov version of VS.

4.8.3 Other cases

It is natural to conjecture that the relation between BPS objects and form grav-

ity theories goes beyond the examples discussed above. In particular, it would be

interesting to develop this story for the case of G2 manifolds. For example, in M-

theory compactified on a G2 manifold, we can consider BPS domain walls formed

from M5-branes wrapped on associative 3-cycles. It is natural to conjecture that the

quantum version of Hitchin’s 4-form theory is computing the degeneracies of these

domain walls. In the Type IIB superstring compactified on a G2 manifold, one can

similarly ask about the degeneracy of BPS strings obtained by wrapping D5-branes

on coassociative 4-cycles; one might expect a relation between this counting and the

quantum version of Hitchin’s 3-form theory.
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4.9 Topological G2, twistors, holography, and 4D

gauge theories

In this section, we discuss possible dualities relating three different theories:

1. gauge theory on a Riemannian 4-manifold M ;

2. topological A model on the twistor space, T (M), of a 4-manifold M ;

3. topological M-theory on a 7-manifold X,

R3 → X

↓

M

(4.169)

As we reviewed earlier, the 7-manifold X admits a natural metric with G2 holonomy

if M is a self-dual (i.e., with self-dual Weyl tensor) Einstein 4-manifold.6 In that case,

the R3 bundle (4.169) is the bundle of self-dual 2-forms on M . Let us compare this

to the corresponding geometric structure on the twistor space T (M).

First, let us recall the definition of the twistor space T (M). Consider the space

of self-dual 2-forms of norm 1. For each point on M this gives rise to a 2-sphere.

The total space is the twistor space, T (M), which has a canonical almost complex

structure and also a canonical map to M , with fiber being the twistor sphere P1.

There is a remarkable connection between self-dual metrics on M (not necessarily

Einstein) and the integrability of the almost complex structure on T (M): T (M) has

an integrable complex structure if and only ifM is self-dual [14, 102]. Moreover, T (M)

6Such manifolds are also known as quaternionic Kähler manifolds of dimension 1.
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admits a Kähler structure if and only if M is Einstein [72] (see also [87]). These are

the necessary conditions for the existence of topological A and B models on T (M).

In order to complete this to a string theory we also need conformal invariance,

which is usually guaranteed by a Ricci flatness condition. This is not the case, how-

ever, for the twistor space T (M), which is not Ricci-flat. One can complete T (M) to

a Ricci-flat supermanifold by including extra fermionic directions [133]. We want to

explore another way of obtaining Ricci-flatness. As discussed above, the bundle X

of self-dual 2-forms over M has a natural G2 holonomy metric, so in particular it is

Ricci-flat. On the other hand, the boundary of X is precisely the twistor space,

T (M) = ∂X. (4.170)

In this sense we could view X as obtained by adjoining a radial direction to T (M).

So we could define a topological string theory on the twistor space T (M) as a

holographic dual to topological M-theory on X. We note that the A model can be

defined on 3-folds which are not necessarily Calabi-Yau; it has been studied in the

mathematical literature on Gromov-Witten theory [58, 86, 18, 47]. Conversely, using

the Gromov-Witten theory on T (M) we can define topological M-theory on X, at

least perturbatively.

This holographic duality is reminiscent of our original motivation to look for a

7-dimensional theory, which would naturally explain the observation that topological

string partition function should be viewed as a wavefunction. We also note that, in the

present case, the boundary 6-manifold is not stationary under Hitchin’s Hamiltonian

flow equations; this reflects the fact that T (M) is not a Calabi-Yau.

Large N Holography and Gravitational Holography
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We are familiar with examples of holography in the context of open-closed string

dualities, where in the large N limit D-branes wrapping some cycles disappear and

the theory is best described by a new geometry obtained by deleting the locus of the

D-branes, replaced by suitable fluxes. Via this holographic duality, the open string

gauge theory provides an answer to questions of gravity in a geometry obtained by a

large N transition.

Another kind of duality — which is somewhat similar to holography — is a duality

between M-theory on an interval and the heterotic E8 × E8 theory living on the

boundary [77]. In this duality, the coupling constant of the heterotic string controls

the size of the interval. Even though the heterotic string “lives” on the boundary, it

can be used, at least in principle, to study gravitational physics in the bulk.

The relation between the 7-dimensional topological M-theory on X and the topo-

logical string on a 6-manifold T (M) is more similar to the heterotic/M-theory duality.

In this sense, when we say that the partition function of a topological string theory

on the twistor space can be regarded as a wave function in a 7-dimensional theory on

X, what we mean is a “gravity/gravity holography.”

Having said that, it is natural to ask: is there an open-closed string holographic

duality in the present context? Given that we do not yet have a deep understanding

of topological M-theory, we will limit ourselves to some string-motivated speculations

below.

In order to have an open/closed duality, we need to be working in some context

where D-branes exist. From the point of view of embedding of the G2 theory in the

physical M-theory, it is natural to compactify on one more circle and obtain a Type
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IIA string theory compactification on a G2 manifold. So let us consider Type IIA on

a non-compact G2 manifold X of the form (4.169), with N D-branes wrapped over

the coassociative 4-manifold M (in the full superstring theory these could be viewed

for example as spacetime-filling D6-branes). By analogy with geometric transitions

in Calabi-Yau 3-folds [62, 61], in the large N limit we expect a transition to a new

geometry which can be obtained by removing the locus of the D-branes,

X \M.

This space is a real line bundle over T (M). From the discussion earlier in this section,

we expect topological M-theory on this 7-manifold to be related to topological string

theory on T (M). This leads to a natural conjecture that topological gauge theory

on a 4-manifold M is a holographic dual to topological string theory on the twistor

space T (M). This dovetails in a natural way with the idea that the topological

string partition function should be viewed as a wave function on the boundary of the

7-dimensional manifold with G2 holonomy.

What kind of topological gauge theory in four dimensions should we expect? The

most natural conjecture is that it is the self-dual Yang-Mills theory, which is related

to the D-brane theory for N = 2 strings. In other words, one might conjecture that

the self-dual Yang-Mills on M is dual to topological strings on T (M), so that the

Kähler class of P1 ∈ T (M) is identified with the ‘t Hooft parameter of the dual gauge

theory, t = Ngs. Below, we consider this duality in more detail for M = S4 and

T (M) = CP3.

Topological string theory on T (M) = P3 is rather trivial due to the U(1) charge

conservation on the worldsheet. In particular, the free energy is simply given by
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the cubic classical triple intersection of CP3. This agrees with the fact that self-dual

Yang-Mills is also trivial in perturbation theory. However, it is known that topological

strings can be made more interesting by turning on higher charge (q, q) form operators

with q = 2, 3. The most natural one is the volume form with q = 3, which preserves all

the symmetries of P3. Once we add an operator sΦ3,3, the topological A model string

on P3 becomes non-trivial and receives all order corrections. Thus, the partition

function of the perturbed A model is a function of two independent variables,

Ztop(gs, s
2e−t). (4.171)

The fact that the combination s2e−t appears follows from charge conservation of the

topological A model.

One possibility is to look for a deformation of the self-dual Yang-Mills corre-

sponding to the deformation of the topological A model by the operator sΦ3,3. In a

realization á la Siegel [113, 114, 34],

S =
∫
d4xTrF ∧G, (4.172)

the self-dual Yang-Mills is written in terms of a U(N) adjoint valued self-dual 2-form

G and the curvature of a U(N) connection, F . We can deform the action (4.172)

by the term εG ∧G, which (perturbatively) leads to the full Yang-Mills theory. It is

natural to ask whether this deformation is dual to the deformation of the A model

on P3 by sΦ3,3. Notice, that bosonic Yang-Mills on S4 has partition function which

depends on the radius of the 4-sphere, R, the coupling constant of Yang-Mills theory,

g2
Y M , and the rank N of the gauge group. Due to the running of the coupling constant

only one combination of g2
Y M and R appears. It is not unreasonable to suppose that



Chapter 4: Topological M-theory as unification of form theories of gravity 193

with a suitable choice of the parameter map (which should involve some kind of

Fourier transform) we have

Ztop
P3 (gs, s

2e−t) ↔ ZY M
S4 (g2

Y M , N) (4.173)

It would be very interesting to further develop and check this conjecture. If correct,

it would allow one to place the appearance of the higher-dimensional twistor space

T (M) in the large N limit of gauge theory on M into the context of more familiar

largeN dualities, e.g. the duality between Chern-Simons theory on S3 and topological

strings on the 6-dimensional resolved conifold [62, 61].

4.10 Hitchin’s Hamiltonian flow and geometry of

N = 1 string vacua

The geometric structures which appear in the 7-dimensional topological gravity

are reminiscent of the geometries that arise in N = 1 superstring compactifications.

For example, 7-manifolds with G2 holonomy are classical solutions in 7-dimensional

topological gravity and, on the other hand, are N = 1 vacua of M-theory. This

relation can be extended to 6-manifolds with SU(3) structure which play an important

role in understanding the space of string vacua with minimal (N = 1) supersymmetry,

and which we briefly review in this appendix; see [68, 33, 82, 70, 85, 19, 54, 63, 69]

for more details.

Let M be a 6-manifold with SU(3) structure. Such M are characterized by the

existence of a globally defined, SU(3) invariant spinor ξ, which is the analog of the

covariantly constant spinor one has on a Calabi-Yau manifold. In general, instead of
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∇ξ = 0 we have

∇(T )ξ = 0, (4.174)

where ∇(T ) is a connection twisted by torsion T . Roughly speaking, the intrinsic

torsion T represents the deviation from the Calabi-Yau condition. Its SU(3) repre-

sentation content involves five classes, usually denoted Wi [109, 35]:

T ∈ W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5. (4.175)

In order to describe the geometric meaning of each of these components, it is conve-

nient to introduce a 2-form k and a 3-form Ω,

k = −iξ†ΓmnΓ7ξ,

Ω = −iξ†Γmnp(1 + Γ7)ξ, (4.176)

which satisfy

k ∧ Ω = 0. (4.177)

On a Calabi-Yau manifold, the 2-form k would be the usual Kähler form, while Ω

would be the holomorphic volume form. In particular, M is a Calabi-Yau manifold

if and only if dk = 0, dΩ = 0. On a general manifold M with SU(3) structure, these

equations are modified by the components of torsion,

dk = −3

2
Im (W1Ω) +W4 ∧ k +W3,

dΩ = W1k
2 +W2 ∧ k +W 5 ∧ Ω, (4.178)
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where

W1 ∈ Ω0(M),

W2 ∈ Ω2(M),

W3 = W 3 ∈ Ω2,1
prim(M) ⊕ Ω1,2

prim(M),

W4 = W 4 ∈ Ω1(M),

W5 ∈ Ω1,0(M). (4.179)

A particularly interesting class of manifolds with SU(3) structure are the so-called

half-flat manifolds. In superstring theory, they play an important role in constructing

realistic vacua with minimal (N = 1) supersymmetry, and can be viewed as mirrors

of Calabi-Yau manifolds with (a particular kind of) NS-NS fluxes [68]. Since under

mirror symmetry 3-forms are mapped into forms of even degree, on half-flat manifolds

one might expect “NS-NS fluxes” represented by forms of even degree [123]. In fact,

as we explain in a moment, on a half-flat manifold M we have

d(Im Ω) ∼ FNS
4 .

Half-flat manifolds are defined by requiring certain torsion components to vanish,

Re W1 = Re W−
2 = W4 = W5 = 0. (4.180)

It is easy to see from (4.178) that this is equivalent to the conditions

d(k ∧ k) = 0,

d(Re Ω) = 0. (4.181)
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If as usual we define σ = 1
2
k ∧ k and Ω = ρ+ iρ̂, we can write these equations in the

familiar form

dρ = 0,

dσ = 0, (4.182)

with an additional constraint ρ ∧ k = 0. This is precisely the structure induced on

a generic 6-dimensional hypersurface inside a G2 manifold, where ρ is the pull-back

of the associative 3-form Φ and σ is the pull-back of the coassociative 4-form ∗Φ. In

particular, using Hitchin’s Hamiltonian flow which we reviewed in Section 4.4.5, a

half-flat SU(3) structure on M can always be thickened into a G2 holonomy metric

on X = M × (a, b).

So the phase space underlying Hitchin’s Hamiltonian flow consists precisely of the

half-flat manifolds which appear in N = 1 string compactifications with fluxes and/or

torsion,

PHitchin = {M6
half−flat}. (4.183)

Moreover, the ground states are related to stationary solutions of Hitchin’s flow equa-

tions, namely Calabi-Yau manifolds,

|vac〉 ⇔ M6 = Calabi − Yau. (4.184)

It is tempting to speculate that all N = 1 string vacua can be realized in topo-

logical M-theory.
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4.11 Directions for future research

In this chapter we have discussed the fact that many theories of gravity fall into

the general class of “form gravity theories,” and that they seem to be unified into a 7-

dimensional theory of gravity, topological M-theory, related to G2 holonomy metrics.

We have seen in particular that this 7-dimensional theory contains the A and B

model topological strings, which appear as conjugate degrees of freedom. We have

also seen connections with 3-dimensional Chern-Simons gravity and a 4-dimensional

form theory of gravity — the topological sector of loop quantum gravity.

Intriguing as this list is, we view this as only a modest beginning: the connec-

tions we have outlined raise many new questions which need to be answered. In

order to understand better the non-perturbative aspects of the A and B models, and

particularly their implementation in the context of topological M-theory, we need to

understand better the relation between these models and M-theory. In particular,

it seems natural to try to explain the S-duality relating the A and B models using

the S-duality of Type IIB superstrings. This could be embedded into the present

discussion if we include one more dimension and consider 8-dimensional manifolds

of special holonomy. The natural candidate in that dimension are manifolds with

Spin(7) holonomy. It seems that we also need to include this theory in our discussion

of dualities to get a better handle on the S-duality of the A/B models.

Another natural question we have raised relates to the interpretation of the topo-

logical M-theory: does it indeed count domain walls? This is a very natural conjecture

based on the links we found between form theories of gravity and the counting of black

hole states. It would be important to develop this idea more thoroughly.
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Another question raised by our work is whether one can reformulate the full M-

theory in terms of form theories of gravity. This may not be as implausible as it

may sound at first sight. For example, we do know that N = 2 supergravity in 4

dimensions, which is a low energy limit of superstrings compactified on Calabi-Yau

manifolds, has a simple low energy action: it is simply the covariantized volume

form on (4|4) chiral superspace [116]. In fact, more is true: we could include the

Calabi-Yau internal space as and write the leading term in the effective action as the

volume element in dimension (10|4). The internal volume theory in this case would

coincide with that of Hitchin. Indeed, this is related to the fact that topological

string amplitudes compute F-terms in the corresponding supergravity theory. Given

this link it is natural to speculate that the full M-theory does admit such a low energy

formulation, which could be a basis of another way to quantize M-theory — rather

in tune with the notion of quantum gravitational foam.

We have also discussed a speculation, motivated by topological M-theory, relating

gauge theories on M 4 to topological strings on its twistor space. This connection, even

though it needs to be stated more sharply, is rather gratifying, because it would give a

holographic explanation of the fact that in the twistor correspondence a 4-dimensional

theory gets related to a theory in higher dimensions. It would be very interesting to

develop this conjectural relation; the potential rewards are clearly great, as a full

understanding of the duality could lead to a large N solution of non-supersymmetric

Yang-Mills.
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