
Heavy Ion Collisions, Quasinormal Modes and Non-Linear

Sigma Models

Georgios Michalogiorgakis

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Physics

September, 2007



c© Copyright 2007 by Georgios Michalogiorgakis.

All rights reserved.



ârebodifÀsin

iii



Abstract

It has been known for a long time that certain supersymmetric gauge theories can be

described by string theory. These gauge theories share common features with QCD when

the temperature of the theory is above the confinement temperature. Recently there has

been strong evidence, even though not conclusive, that a Quark Gluon Plasma (QGP) above

the confinement temperature is formed from gold on gold collisions at the Relativistic Heavy

Ion Collider. Furthermore the evidence suggests that the QGP is strongly coupled, making

a string description of the plasma possible.

We use the dual string theory of the maximally supersymmetric gauge theory to find

the profile of the gluonic fields sourced by a moving heavy quark through the plasma,

suggesting that a picture of a wake is possible in string theory. Later on, inspired by the

qualitative agreement between the measured thermalization time and the predicted time

from a dual model we calculate some low-lying gravitational modes in an asymptotically

AdS black hole. We find good agreement with the modes predicted by the boundary theory.

Finally we calculate some of the higher order corrections to the supergravity description of

heterotic non-linear sigma models.
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Chapter 1

Introduction

1.1 Motivation

For almost four decades research has been done on the connection between string theory

and gauge theories. In fact string theory was originally thought of as a theory of the strong

interactions. This was due to the stringy nature of phenomena like confinement and Regge

behavior which arise naturally in string theories. Another description of strong interactions,

QCD was later developed that is in perfect agreement with all experimental data. The fact

that QCD, as most gauge theories in four dimensions, is asymptotically free led to a good

perturbative description of the high energy behavior of strong interactions. However, for

phenomena related to low energy physics such as confinement and chiral symmetry breaking

only numerical methods are available. In the last decade it has been realized that some gauge

theories can have two different descriptions. When one description is weakly coupled the

other one is strongly coupled and vice versa. One could hope that such a duality exists for

QCD, making the low energy description of the theory more accessible to analytic methods.

There are several arguments that QCD should have such a dual description. When one tries

to separate a quark from an anti-quark, a flux tube forms between them, which in many

respects behaves as a string. The most striking indication that such a duality exists comes

from the large N ’t Hooft limit which we describe in the following section.
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2

This thesis addresses some of the aspects of this duality. It is organized as follows.

In section 1.2 we review the ’t Hooft large N limit and arguments suggesting that gauge

theories may be dual to string theories. In section 1.3 a brief introduction to the AdS/CFT

correspondence is presented. Section 1.4 contains some of the experimental results from

RHIC, along with a basic introduction of the experimental setup. In chapter 2 the Fourier

space profile of trF 2 is computed for a heavy quark moving through an N = 4 SYM quark-

gluon plasma. Chapter 3 deals with gravitational modes in the case of a black hole in AdS4.

Finally in chapter 4 higher order corrections to the supergravity action are calculated for

the heterotic string. Chapter 1 has drawn material from [7], chapter 2 is based on [8],

chapter 3 on [9] and chapter 4 on [10].

1.2 String theory and large N gauge theories

Before describing the full four dimensional model let us focus on a two dimensional analog

that exhibits similar behavior, such as asymptotic freedom and has a mass gap. Consider

a theory that has N fields and is described by the action

S =
1

2g2
0

∫
d2σ

(
(∂~n)2 + λ(~n2 − 1)

)
(1.1)

where λ is a Lagrange multiplier enforcing the constraint ~n2 = 1. We can integrate out the

fields ~n since they only appear in quadratic terms and get

S =
N

2
log det(−∂2 + λ)− 1

g0N2

∫
d2λσ . (1.2)

Taking the large N limit gives a classical theory for the field λ. Indeed computing ∂S
∂λ = 0

we derive

1 =
Ng2

0

4π
log

Λ2

λ
(1.3)

which leads to an expectation value for the field λ

λ = Λ2e
− 4π

g2
0N = µ2e

− −4π

4g2N . (1.4)

In the last equation we have defined the renormalized constant g2. We note that the

dependence of the interaction on the cutoff scale is that of an asymptotically free theory.



3

Moreover we see that the expectation value of λ introduces a mass gap for the theory as

is evident from (1.1). In this small calculation we have obtained the mass by effectively

calculating an one loop diagram and a tree level term. The large N limit the diagram set

that had to be calculated. A more complete discussion of these issues is given in sections

4.1,4.2 and 4.2.1 We go on to consider four dimensional gauge theories, that in general

exhibit similar phenomena as our two dimensional toy model, namely asymptotic freedom

and the existence of a mass gap.

A first step is to understand how to scale the coupling gY M in the large N limit [11]. A

natural choice is to do so in a manner such that the QCD scale Λ is not affected. The one

loop beta function for pure SU(N) Yang-Mills theories is given by

µ
dgY M

dµ
= −11

3
g2
Y MN

16π2
. (1.5)

It is evident that the effective coupling of the theory is g2
Y MN . Taking the limit N → ∞

while keeping g2
Y MN fixed that QCD scale does not change. The effective coupling λ =

g2
Y MN is known as the ’t Hooft coupling and the corresponding limit as the ’t Hooft limit.

As long as the theory is asymptotically free the same conclusion is valid even if we include

matter fields.

Instead of presenting arguments about a specific Yang-Mills theory, let us consider a

general theory where the basic field is a hermitian matrix. An example of such a theory

would be U(N) Yang-Mills theory with matter in the adjoint. Heuristically the Lagrangian

has the form

L =
1
g2
Tr[(∂M)2 + V (M)] . (1.6)

A standard technique is to use a double line for a propagator of the M field, each line

representing a matrix index. It is simple to derive the Feynman rules for this theory and we

see that each propagator contributes a factor of g2
Y M and each vertex contributes a factor

of 1
g2

Y M
. Each loop, because of the trace over the matrix index will contribute a factor of

N. Finally we can calculate how each diagram scales with both gY M , N . A diagram with

P propagators V vertices and L loops has a scaling factor of g2(P−V )
Y M NL. This can be
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rearranged to

(g2
Y MN)P−VNL−P+V . (1.7)

Remembering our double line notation, propagators correspond to edges and loops to faces.

The previous factor can be recast into the form

(g2
Y MN)E−VN2−2h (1.8)

where h is the genus of the two dimensional surface. We can now rearrange all Feynman

diagrams according to their N scaling and write the partition function as

logZ =
∞∑

h=0

N2−2hfh(g2
Y MN) . (1.9)

We can now take the ’t Hooft limit N → ∞, λ fixed. It is obvious that only planar

diagrams survive. This looks suspiciously similar to the expansion of string perturbation

theory. Indeed, now imagine making λ large. The planar diagrams become concentrated

on the sphere and one can think of them as a discretized worldsheet of string theory. After

this brief exposition of large N gauge theories we turn our attention to a specific theory.

Instead of starting with gauge theory and carefully taking the ’t Hooft limit we will focus

on the opposite procedure. Firstly we examine string theory in the presence of D-branes

and then briefly explain the emergence of the dual gauge theory.

1.3 Introduction to AdS/CFT

In this section a brief introduction to AdS/CFT is presented. AdS/CFT [12, 13, 14] is a

duality relating string theory in a d+ 1-dimensional negatively curved background to field

theory in d dimensions. Several review articles exist in the literature [15, 16, 17].

1.3.1 The physics of near-extremal D3-branes

D-branes are extended objects in string theory, that also have a dynamic nature. They have

a tension and therefore can be a source for gravity. Moreover they can be charged under

the fields present in ten dimensional supergravity. Similarly to black hole solutions in four
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dimensions there are black brane solutions in ten dimensions. It is instructive to consider

the physics of a stack of N D-branes. Before doing that we take a small historical detour.

AdS/CFT originated in part from attempts to characterize black hole microstates in

such a way that the famous Bekenstein-Hawking formula S = AH/4G can be reproduced

using a partition function. The most successful examples of this program, starting with

[18], are near-extremal charged black holes. The most familiar example is the near-extremal

Reissner-Nordstrom solution in four dimensions:

ds2 = −
(

1− 2M
r

+
Q2

r2

)
dt2 +

dr2

1− 2M/r +Q2/r2
+ r2dΩ2 A =

Q

r
dt , (1.10)

where dΩ2 = dθ2 +sin2 θdφ2 is the metric on the unit two-sphere S2. The extremal solution

has M = Q, and by introducing a new coordinate r̃ = r −Q one obtains

ds2 = − r̃2

(r̃ +Q)2
dt2 +

(r̃ +Q)2

r̃2
dr̃2 + (r̃ +Q)2dΩ2 . (1.11)

The near-horizon geometry is the region where 0 < r̃ � Q. The line element in this region

is

ds2 = − r̃2

Q2
dt2 +

Q2

r̃2
dr̃2 +Q2dΩ2 . (1.12)

It is notable that the geometry factorizes into an S2 of radius Q and a two-dimensional

geometry which turns out to be AdS2. The metric on AdS2 is a Wick rotation of the

natural metric on the upper half-plane, with Euclidean time playing the role of the real

part.

Embeddings of four-dimensional charged black holes in String/M-theory unfortunately

involve non-trivial intersecting brane configurations. We will not delve into this direction

here but mention some essential properties of these constructions. In one regime of param-

eters, they are well-described by line elements like (1.11), and the semi-classical formula

S = A/4G can be used. In another regime of parameters, they are well-described by a

two-dimensional CFT with large central charge. Nearly unbroken supersymmetry, together

with the special properties of CFT’s in two dimensions, permit an extrapolation from one

regime to the other, such that precise agreement is found for the entropy. While remark-

able, these and other mathematically precise comparisons with two-dimensional CFT’s do
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not appear to have immediate physical application. Fortunately, the story generalizes to

four-dimensional CFT’s, in particular N = 4 super-Yang-Mills theory, which describes the

low-energy excitations of D3-branes. The gluons of this theory, and their superpartners, are

realized as strings with each end attached to a brane. This is easy to visualize if one things

of a string that has one end on a D-brane and the other end on a different D-brane. The

string inherits group theory indices from the indices of the D-branes. Similarly to QCD one

can have a red-blue string if one associates color with D-branes. Gluons, being excitations

of this open string also inherit these group theory factors.

Near-extremal D3-branes are 10-dimensional generalizations of the Reissner-Nordstrom

solution for charged black holes. The relevant part of the type IIB string theory action is

S =
1

2κ̂2

∫
d10x

√
Ĝ

[
R̂− 1

4
F̂ 2

5 −
1
2
(∂φ̂)2

]
− 1

2πα′

∫
d2σ eφ̂/2

√
ĝ (1.13)

where for later convenience we have included the dilaton and the Nambu-Goto action for a

string worldsheet Σ. Here, ĝαβ = ∂αX
M∂βX

N ĜMN is the induced metric on the worldsheet.

The term eφ̂/2 arises because ĜMN is the Einstein metric. Hatted quantities like dŝ2 and

κ̂2 are ten-dimensional, while five-dimensional quantities will be represented by unhatted

variables like ds2 and κ2. Finally F̂5 = ∗F̂5 is imposed after other equations of motion are

derived.

The non-extremal D3-brane solution has the following line element:

dŝ2 =
(

1 +
L4

r4

)−1/2 [
−
(

1−
r4H
r4

)
dt2 + d~x2

]
+
(

1 +
L4

r4

)1/2 [
dr2

1− r4H/r
4

+ r2dΩ2
5

]
,

(1.14)

where dΩ2
5 is the metric on the unit five-sphere, S5. Taking the limit r � L and introducing

a new radial coordinate z = L2/r leads to

dŝ2 =
L2

z2

(
−hdt2 + d~x2 +

dz2

h

)
+ L2dΩ2

5 h = 1− (z/zH)4 . (1.15)

Standard arguments lead to

L4 =
κ̂N

2π5/2
= g2

Y MNα
′2 T =

1
πzH

. (1.16)
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The horizon across a coordinate volume V3 in the ~x directions is proportional to the entropy

of the gauge theory in the same volume [19]:

AH = V3
L3

z3
H

π3L5 = V3T
3L8π6

s =
S

V3
=

AH

V3κ̂2/2π
=
π2

2
N2T 3 .

(1.17)

This is 75% of the free field value

s =
2π2

3
N2T 3 . (1.18)

The mismatch is due to the fact that the semi-classical gravitational description leading to

(1.17) relies on having L� 4
√
κ and L�

√
α′—that is, N � 1 and g2

Y MN � 1. It is hard

to verify the factor of 3/4 in a way that does not involve AdS/CFT, but it is intriguing to see

that this factor is comparable to the 20% deficit in energy observed in lattice calculations

of QCD in the window 1.2Tc
<∼ T <∼ 3.5Tc. It is often supposed that f(g2

Y MN) ≡ −F/V T 4

for N = 4 super-Yang-Mills interpolates smoothly between 1 and 3/4 as g2
Y MN runs from

0 to ∞.

There is much more to AdS/CFT than the comparison of entropy. It relates the action

on the string theory side,

Istring theory =
1

2κ2
5

∫
AdS5

d5x
√
−G

[
R+

12
L2

− 1
2
(∂φ)2 + . . .

]
− 1

2πα′

∫
Σ
d2σ

√
−g eφ/2 ,

(1.19)

to the generating functional of connected Green’s functions for N = 4 super-Yang-Mills,

WN=4 ≡
〈∫

R3,1
d4x

[
φ
∣∣
bdy

trF 2 + hmn

∣∣
bdy

Tmn
]〉

connected

(1.20)

in the following manner:

WN=4

[
φ
∣∣
bdy

, hmn

∣∣
bdy

]
= −Istring theory [on shell] , (1.21)

where on the right hand side, the dilaton and metric are required to take on limiting

values near the boundary of AdS5 (at z = 0 in the coordinate system used in (1.15)). On
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shell means that once the boundary values are imposed, one extremizes Istring theory. The

resulting value of Istring theory is a connected correlator of the gauge theory. A more precise,

but more abstract statement of the duality is that the partition functions of type IIB string

theory on AdS5 × S5 and N = 4 gauge theory on the boundary of AdS5 coincide. We will

use this fact in chapter 2 to evaluate the profile of TrF 2 in a certain case.

In short, near-extremal D3-branes encode, via the AdS/CFT duality, the finite temper-

ature dynamics of N = 4 super-Yang-Mills theory in 3 + 1 dimensions, and so provide us

with an “analogous system” to the QGP over which we have good analytical control at

large N and large g2
Y MN . There are some elaborations to this statement that are worth

noting. If there is a black hole horizon inside AdS5 (as in the AdS5-Schwarzschild solution),

then infalling conditions must be imposed on classical fields at the horizon. Although many

interesting quantities can be calculated starting from the five-dimensional action (1.19), ob-

tained by making a Kaluza-Klein reduction on S5, sometimes it is important to use the full

ten-dimensional geometry, AdS5 × S5. For the purposes of this thesis, we do not consider

the complications of the complete ten dimensional space. Corrections to (1.21) arise in

inverse powers of g2
Y MN = L4/α′2 and N = 2πL3/2/κ5 due to α′ corrections and quantum

effects in string theory. It is generally accepted that objects near the boundary of AdS5 cor-

respond to well-localized, hard field configurations in the boundary theory, whereas objects

deep inside AdS5 correspond to larger, more diffuse field configurations. A great number

of variants of the duality exist in the literature, relating less supersymmetric and even non-

conformal four-dimensional gauge theories to more complicated string theory geometries.

Unfortunately, we do not yet know the “holographic dual” of pure QCD, or even if it has

one. If it does, it cannot be described wholly within supergravity because the coupling gets

weak in the UV.
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1.3.2 Viscosity in strongly coupled plasmas

The relevance of strings to RHIC started to seem possible because of a computation [20, 21]

of the ratio of shear viscosity to entropy density for near-extremal D3-branes:

η

s
=

~
4π

. (1.22)

This dovetails better with the “experimentally observed” range 0 ≤ η/s � 1 than other

first-principles calculations: for example, the leading log, weak coupling result [22, 23, 24]

for QCD with Nf = 3 is
η

s
≈ 46.1
g4
Y MN

2 log(4.17/gY M

√
N)

, (1.23)

which attains a minimum of approximately 1.66 at g2
Y MN ≈ 10.5. Additional interest

attaches to (1.22) because it saturates a conjectured viscosity bound η/s ≥ ~/4π [21] to

which there are no known exceptions. The derivation of the experimental value 0 ≤ η/s� 1

will be explained in section 1.4.

The calculation leading to (1.22) hinges on graviton absorption by branes:

SD3−brane ⊃
∫
d4xhµνTµν . (1.24)

The absorption cross-section a graviton hxy, from the coupling (1.24), is

σ(ω) = V3
8πGN

ω

∫
d4x eiωt〈[Txy(t, ~x), Txy(0)]〉 . (1.25)

The factor of V3 is because the D3-brane is extended: V3 is its (infinite) 3-volume in the ~x

directions.

In the gravitational picture where the D3-brane has a horizon, the graviton has some

classical cross-section to fall into it. It turns out that

σ(ω) → Ahorizon = 4GNS as ω → 0 . (1.26)

Using Kubo’s formula that is derived from statistical mechanics the viscosity is

η = lim
ω→0

1
2ω

∫
d4x eiωt〈[Txy(t, ~x), Txy(0)]〉

=
σ(0)

16πGNV3
=

s

4π
.

(1.27)
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So we’ve verified (1.22). The key step is (1.26). An old result [25], refreshed and extended in

[26], says that (1.26) is always true for backgrounds of two-derivative supergravity. The main

idea behind this claim of universality is that spin-two gravitons decouple from matter fields

in backgrounds of interest and so satisfy Klein-Gordon equation in dimensions transverse

to the brane. All the complications of the relevant supergravity geometries are in directions

orthogonal to indices of hµν . But higher-derivative terms (finite λ corrections) do affect η/s,

and the first of these for D3-branes (from α′3R4) makes η/s > 1/4π [21].

The smallness of η/s is now proposed by some RHIC physicists as a measure of strong

coupling [5].

1.3.3 Comparison of N = 4 SYM and QCD

The combination of the entropy deficit (1.17) and the viscosity calculation (1.22) has already

drawn considerable attention from the RHIC and string theory communities. This atten-

tion is merited. However we should not forget the differences that exist between N = 4

SYM theory and QCD. N = 4 gauge theory exhibits neither confinement nor asymptotic

freedom. The coupling doesn’t run, instead it’s a parameter that can be set at a prefered

value. There is no chiral symmetry breaking in N = 4 gauge theory. There is no sup-

persymmetry in QCD and all the fundamental matter fields in N = 4 gauge theory are

in adjoint representation. Moreover in addition to the gluons Aµ, there are four Majorana

fermions λi and six real scalars XI . These superpartners transform in representations of

SO(6), which (not accidentally) is also the symmetry group of the five sphere S5.

While serious, these points may not be fatal to the proposed connection between AdS/CFT

and heavy-ion collisions. Neither confinement nor (according to lattice calculations) chiral

symmetry breaking are operative in the QGP. Conformal symmetry is clearly an imper-

fect guide to the QGP at RHIC (although it might perhaps be a better one in the higher

energy lead-on-lead collisions planned at the LHC). More realistic equations of state can

perhaps be incorporated in the future by considering holographic renormalization group

flows. The absence of matter that transforms in the fundamental representation is perhaps



11

the most troublesome. On one hand, the absence of fundamentally charged dynamical par-

ticles means that the QCD string cannot break. On the other, the presence of unwanted

massless adjoint fields could plausibly imply O(1) deviations from the behavior of QCD

above the confinement scale.

In summary, we have to ask more of string theory before we can expect broad agreement

with QCD. Still, the worst problems relate to the vacuum, so comparisons of AdS/CFT

with RHIC are merited. It should also encourage us that lattice calculations of transport

coefficients are difficult, while perturbative methods are difficult to apply, leaving string

theory a window of opportunity. At the very least, AdS/CFT provides an analogous system

to the QGP which is richly featured and under relatively precise theoretical control. We

should not fail to ask what AdS/CFT calculations might tell us about physics in heavy ion

collisions.

1.4 Synopsis of R.H.I.C.

This small chapter briefly presents some of the experimental results from RHIC and their

interpretation. We focus on three aspects of the quark-gluon plasma. Firstly, there is

good reason to believe that the QGP thermalizes at a temperature significantly above the

deconfinement transition of QCD. Secondly, in non-central gold-gold collisions, the QGP

undergoes a collective motion, elliptic flow. Measurements of these collisions indicates that

the shear viscosity of the QGP is small. Finally, hard partons lose energy quickly when they

pass through the QGP, a phenomenon known as jet-quenching. This account depends on

the review by Muller and Nagle [5], and some parts on the authoritative account of results

through 2005 can be found in [27, 3, 28, 29].

1.4.1 The experimental setup

The primary physical process investigated at RHIC is the collision of beams of gold nuclei

in moving opposite directions. The main beam ring is roughly 3.8 km in circumference, and

has four separate experiments (BRAHMS, PHENIX, PHOBOS, and STAR) with comple-
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mentary capabilities situated at four of the six beam intersection points. The beam energy

is 100GeV per nucleon. In addition to gold, RHIC can handle other species, e.g. copper.

Gold nuclei have 79 protons and 118 neutrons, and are fairly spherical with a radius

R of about 7 fm. With respect to the center of mass frame, each nucleus moves with a

Lorentz contraction factor γ of about 100, and consequently the front-to-back length of

2R/γ ≈ 0.14 fm. The inelastic cross-section can be estimated roughly as σtot = 4πR2. This

is just the geometric overlap of the nuclei.

RHIC’s design luminosity is 2 × 1026 cm−2s−1. To date, they have achieved a total

integrated luminosity in the ballpark of 4 nb−1. An idealized version of RHIC detectors is

the ability to assign pT , φ, η (pseudorapidity), and particle identity (e.g. π, K, p, p̄, Λ, Σ, Ξ,

Ω, φ, J/ψ, D, etc.) to all hadrons coming out of the collision region, as well as to electrons,

photons, and in restricted circumstances (i.e. high rapidity) muons. In reality, acceptance

in η and φ varies: e.g. STAR accepts |η| < 1, while PHENIX accepts |η| < 0.35 with

incomplete φ coverage. Most particles come out with pT < 1 GeV, but the high-momentum

tails reach up to pT ∼ 10 GeV.

1.4.2 The quark-gluon plasma

When gold nuclei collide, about 400 nucleons go in, and about 7500 come out. A lot of

entropy gets produced. A more interesting and non-trivial claim is that a thermalized quark-

gluon plasma (QGP) is formed with a temperature as high as 300 MeV. After formation,

the QGP cools approximately isentropically and then hadronizes.

Part of the evidence for a thermalized QGP is that hadron yields at mid-rapidity can

be fit to a thermal model: even multi-strange hadrons fit. See figure 1.1. The temperature

Tch ≈ 157 MeV, which is determined by fitting hadron yields to thermal occupation num-

bers (i.e. Bose-Einstein or Fermi-Dirac statistics) is only slightly lower than the accepted

temperature for the confinement transition, Tc ≈ 170 MeV, as determined through lattice

calculations: see for example [2]. In fact, deconfinement and chiral symmetry restoration

are believed to occur not through a true phase transition but through a rapid cross-over,
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(crosses) and STAR (stars) particle ratios from central gold-gold collisions at√
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Figure 1.1: Ratios of hadron yields observed near mid-rapidity. The lines are the predictions
of the thermal model. From [1]. Note that the chemical potentials for light quarks and
strange quarks are small compared to the temperature.
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Figure 1: Figure of ε(T )/T 4, P (T )/T 4, and s(T )/T 3 for three light flavors of
quarks on the lattice.

Table 1: Table of RHIC Performance.
Run Species Particle Energy Total Delivered Average Store

[GeV/n] Luminosity Polarization
Run-1 2000 Au + Au 27.9 < 0.001µb−1 -

Au + Au 65.2 20 µb−1 -
Run-2 2001-2 Au + Au 100.0 258 µb−1 -

Au + Au 9.8 0.4 µb−1 -
pol. p + p 100.0 1.4 µb−1 14%

Run-3 2002-3 d + Au 100.0 1.4 pb−1 -
pol. p + p 100.0 5.5 pb−1 34%

Run-4 2003-4 Au + Au 100.0 3740 µb−1 -
Au + Au 31.2 67 µb−1 -
pol. p + p 100.0 7.1 pb−1 45%

Run-5 2004-5 Cu + Cu 100.0 42.1 nb−1 -
Cu + Cu 31.2 67 µb−1 -
Cu + Cu 11.2 0.02 nb−1 -
pol. p + p 100.0 29.5 pb−1 46%
pol. p + p 204.9 0.1 pb−1 30%

Figure 1.2: Lattice results for the equation of state of QCD. From [2].

above which the energy density is given approximately by

ε ≈ 6.3 GeV/fm3

(
T

250 MeV

)4

. (1.28)

See figure 1.2. The validity of (1.28) seems to extend to several times Tc. It is notable

that the value of ε/T 4 in (1.28) is about 80% of the free-field value.

Rapidity distributions of protons in central collisions indicate that 28±3 TeV of the total

39 TeV of energy winds up in heating the newly created medium (putatively the QGP) and

in its collective motion [30]. If 28TeV were entirely concentrated in the Lorentz-contacted

sphere of the gold nuclei at full overlap, the result would be an energy density of roughly

2000 GeV/fm3. This is almost certainly a substantial overestimate of the peak energy

density: simple phenomenological models (with some support from experiment) indicate

that energy densities in gold-gold collisions may reach 30 GeV/fm3 and thermalize by the

time ε ∼ 5-9 GeV/fm3 [3]—well above the QGP threshhold of 1 GeV/fm3. See figure 1.3.



15

RHIC RESULTS 41

Time (fm/c)
10

-1
1 10

)
3

E
n

e
rg

y
 D

e
n

s
it

y
 (

G
e

V
/f

m

1

10

10
2

Threshold for QGP Formation

 =
 E

a
rl

ie
s

t 
V

a
li

d
it

y
 o

f 
B

jo
rk

e
n

 F
o

rm
u

la
!

2
R

/

F
o

rm
"

F
o

rm
a

ti
o

n
 T

im
e

 

 f
ro

m
T

h
e

rm
"

R
a

n
g

e
 o

f 

h
y

d
ro

d
y

n
a

m
ic

s

3
 = 15 GeV/fm#

3
 = 5.4 GeV/fm#

Possible EO
S$
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through the Bjorken picture. Taken from (101).Figure 1.3: Energy density as a function of time in a central gold-gold collision, according

to an elaboration of the phenomenological Bjorken model. From [3].

1.4.3 Centrality, elliptic flow, and jet-quenching

An important way to classify collisions of nuclei is the impact parameter of the collision. As

described above, a crude approximation for collision rates comes from geometric overlap.

Centrality refers to the extent of the overlap. A central collision is one where the gold nuclei

hit head-on, whereas a peripheral collision is one where they almost missed.

Experiments at RHIC are capable of making an event-by-event determination of cen-

trality, as well as the reaction plane defined by the beam line and the impact parameter.

In other words, they can measure the impact parameter ~b as a vector. See figure 1.4. In

order to avoid referring to a specific model of the cross-section, centrality is described in

percentile terms. The 10% of all events that have the smallest values of b are described as

having centrality of 0 to 10%. Note that this is somewhat reversed from what you might

expect—head-on collisions have zero centrality. In the sphere-overlap model of the inelastic

cross-section, the impact parameter corresponding to 10% centrality is evaluated like this
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Figure 1.4: A gold-gold collision of intermediate centrality. The reaction plane is the plane
of the page, in which the centers of mass of both gold nuclei are assumed to lie.
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!

Figure 1.5: Cartoon of elliptic flow. From [4].

[31]:

0.1 σtot =
∫ b10

0
dr 2πr so b10 = 2R

√
0.1 . (1.29)

In non-central collisions, an important process called elliptic flow occurs. The over-

lap region is roughly ellipsoidal with all axes unequal (biggest in y, smallest in z). The

distribution of observed particles is parametrized as

dN

pTdpTdydφ
(pT , y, φ; b) =

dN

pTdpTdy
[1 + 2v2(pT , y; b) cos 2φ+ . . .] , (1.30)

Here, v2 is experimentally measured for different particle species, and φ = 0 refers to

emission in the reaction plane, so v2 > 0 means this is preferred. The sizable observed

values of v2 are in line with non-viscous hydrodynamic models of collective flow:

D

Dt
(ε~v) = −∇P (1.31)
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with ∇P bigger at φ = 0 than φ = π/2 because the ellipsoid is shorter at φ = 0 and longest

at φ = π/2.

Jet-quenching refers to the rapid loss of energy of a hard parton propagating through

the hot dense matter created in a gold-gold collision. The prima facie evidence for jet

quenching is the the suppression of high pT jets (more precisely, high pT hadrons) relative

to expectations from “binary collision scaling.” In binary scaling arguments, one replaces

each gold atom by an equivalent flux of nucleons, each carrying 100GeV of energy, which

do not interact with one another, but which collide with nucleons going the other way. The

number of collisions that would occur in this way is denoted 〈Nbinary〉. Thus a single gold-

gold collision is replaced by 〈Nbinary〉 independent nucleon-nucleon collisions. To obtain an

expected yield for a given particle species in a gold-gold collision, one scales up the yield

measured in proton-proton collisions by the factor 〈Nbinary〉. The ratio of this theoretical

quantity to the observed outgoing particles is called RAA:

RAA ≡
dN(gold-gold)/dpTdη

〈Nbinary〉dN(proton-proton)/dpTdη
. (1.32)

Binary scaling is a successful predictor of the flux of outgoing photons with pT > 4 GeV:

RAA ' 1 for most pT . This indicates that the QGP is fairly transparent to photons. For

hadrons, however, the detected flux is considerably less than what is expected: RAA ≈ 0.2.

The interpretation is that when an energetic scattering event occurs, the hard outgoing

partons tend to lose a large fraction of their energy while plowing through the QGP.

1.4.4 Summary of experiment

The essential aspects of the experiment are summarized here. In central gold-gold collisions

with 200GeV per nucleon center-of-mass energy, a thermalized QGP forms as early as

t ∼ 0.6 fm/c with T as high as 300 MeV. It expands and cools isentropically with ε ∝ 1/t (or

maybe 1/t4/3) and hadronizes at about t ∼ 6 fm/c. Sizable anisotropy v2 indicates elliptic

flow of the QGP: a collective hydrodynamic motion which can be successfully modeled via

inviscid hydro. Significant viscosity spoils the agreement: η/s� ~ seems to be a consensus

from RHIC. Measurements of RAA show that the QGP is approximately transparent to
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high-energy photons, but remarkably opaque to hadrons. Lattice simulations are quite

good at predicting the equation of state, the transition temperature, etc., but transport

properties, e.g. v2 and RAA, are hard. But, N = 3 and g2
Y MN ∼ 6 or higher, so maybe we

can make some progress with AdS/CFT.

1.5 Jet quenching in the dual picture

In this section we present the picture of a heavy quark moving through the plasma as

seen from the dual string theory. We start by considering a general background that is

asymptotically AdSd+1 [32]

ds2 = gttdt
2 + gzzdz

2 + gxxδijdx
idxj . (1.33)

As z → 0 the metric should approach the AdS metric, i.e.

gtt, gzz, gxx →
L2

z2
. (1.34)

and we also assume the existence of a horizon at zh. In addition we assume that all the

metric components only depend on the radial coordinate z. The Hawking temperature in

this background is given by

T =
√
gtt′gzz′
4π

(1.35)

and the entropy is given by the Bekenstein-Hawking formula

s =
gd−1
xx

4π
(1.36)

where both expressions are evaluated at z = zh.

In this model a quark moving through the plasma is modeled by a string with one end

attached to the boundary at z = 0. The action for the string is given by the area swept by

the string worldsheet.

S = − 1
2πα′

∫
dσsτ

√
−G G = detGαβ (1.37)

and Gαβ is the induced metric on the worldsheet. We are interested in finding the profile

of a sting that has as a boundary condition ∂X1

∂t = v, i.e. a moving quark with velocity
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v. A natural ansatz that repsects the symmetries of (1.33) and the symmetry around the

direction of motion is

τ = t σ = z X1 = vt+ ξ(z) Xi = 0 . (1.38)

The worldsheet metric then becomes

G00 = gtt + gxxv
2 G01 = gxxvξ

′ G11 = gzz + gxxξ
′2 (1.39)

The Lagrangian density then becomes

L =
√
−G

2πα′
=

1
2πα′

√
−gttgzz − gttgxxξ′2 − gzzgxxv2 . (1.40)

Note that gtt is negative in the region between the boundary and the horizon, so the La-

grangian density is real. We see that this Lagrangian does not depend on the variable ξ, so

the conjugate momentum is a constant

πξ =
∂L
∂ξ

=
1

2πα′
gttgxxξ

′√
−gttgzz − gttgxxξ′2 − gzzgxxv2

=
C

2πα′
. (1.41)

This equation can be solved to derive the profile of the string as

ξ′ = ±C

√
−gttgzz − gzzgxxv2

(gttgxx(gttgxx − C2)
(1.42)

The plus solution corresponds to a string trailing the quark, while the minus one corresponds

to a solution preceding the quark. The constant C is determined by the requirement that

the solution is real for all values of z. That means that the numerator and denominator

must have a zero at the same point, setting the value of C. This value depends on the

specific geometry in case..

It is easy to derive the loss of energy and the force acting on the quark from the mo-

mentum flow along the string worldsheet.

dE

dt
= π1

t =
1

2πα′
Cv

dP

dt
= π1

x =
1

2πα′
C (1.43)

For the specific case of AdS5 [33, 34] where the dual theory is N = 4 SYM we find as a

solution

ξ(z) = −vzh
4i

(
log

1− iz/zh
1 + iz/zh

+ i log
1 + z/zh
1− z/zh

)
(1.44)
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and the drag force is evaluated to be

dP

dt
= −

π
√
g2
Y MN

2
T 2 v√

1− v2
. (1.45)

The scaling of the force with the specific power of temperature comes from the conformal

symmetry of the CFT. We should also note that this result agrees with the calculation of

the diffussion coefficient done in [35].
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Chapter 2

Dissipation from a heavy quark

2.1 Introduction

In [33, 34], a classical solution of string theory is described that is dual in the sense of

AdS/CFT [12, 13, 14] to an external quark passing through a thermal plasma of N = 4

super-Yang-Mills theory at large N and strong ’t Hooft coupling g2
Y MN . The string is

treated in the test string approximation: its back-reaction on the geometry is not considered.

The string dangles into AdS5-Schwarzschild from an external quark on the boundary which

is constrained to move with constant velocity. The string trails out behind the quark and

exerts a drag force

dp

dt
= −

π
√
g2
Y MN

2
T 2 v√

1− v2

(2.1)

on the quark. Here v is the speed of the quark, and T is the temperature of the plasma, or

equivalently the Hawking temperature of the horizon of AdS5-Schwarzschild. The diffusion

constant D = 2/(πT
√
g2
Y MN) implied by (2.1) was derived independently in [35], also using

AdS/CFT.

In the gauge theory, energy loss results from gluons (or superpartners of gluons) radiating

off the heavy quark and interacting with the plasma. We should ask: How energetic are

these radiated gluons? At what angle do they come off relative to the velocity of the

heavy quark? To the extent that such questions can be posed in a gauge-invariant manner,

22
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AdS/CFT should be able to provide an answer. The aim of the present paper is to shed

some light on these questions by computing the profile of 〈trF 2〉 in the boundary gauge

theory. To do this we compute the linear response of the dilaton field to the string, which is

a first step in computing its back-reaction on the AdS5-Schwarzschild background. Actually,

what we will extract in the end is the vacuum expectation value (VEV) of the operator in

N = 4 super-Yang-Mills which couples to the dilaton. This is not quite trF 2, but rather

the Lagrangian density plus a total derivative: in mostly plus signature,

OF 2 =
1

2g2
Y M

tr
(
−F 2

mn + 2XID2
mX

I − 2iλ̄aσ̄mDmλa + more interactions
)
, (2.2)

where XI are the six adjoint scalars, λa are the four Weyl adjoint fermions, Dm is the

gauge-covariant derivative, and σ̄m = (−1,−~σ) where ~σ are the Pauli matrices.

The near field of the heavy quark is just the Coulomb color-electric flux, appropriately

Lorentz boosted. The contribution of this near field to 〈OF 2〉 can be computed analytically,

following [36], and it has nothing to do with energy loss. When it is subtracted away from

〈OF 2〉, the remainder is peaked at momenta many times larger than the temperature. The

information in 〈OF 2〉 is complementary to (2.1) in that it helps identify the energy scale

at which dissipative phenomena occur but does not so clearly indicate the overall rate of

dissipation. More complete information could be extracted from 〈Tµν〉, which could also

be computed via AdS/CFT but requires a more technically involved treatment of metric

perturbations.

Several related papers [37, 38, 32, 39] appeared recently, all aiming to describe at some

level energy dissipation from a fundamental quark into a thermal plasma using AdS/CFT.

The interest in this topic owes to a possible connection with relativistic heavy ion physics. A

distinctive feature of RHIC experiments [27, 3, 28, 29] is jet-quenching, which is understood

as strong energy loss as a high-energy parton passes through the quark-gluon plasma formed

in a gold-on-gold collision.

The organization of the rest of this paper is as follows. In section 2.2 we explain the

classical supergravity calculation that leads to 〈OF 2〉. Similar calculations were carried

out in [40] for a string undergoing small oscillations around certain static configurations in
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AdS5. All the supergravity computations are done in five dimensions, but the final answer is

the gauge theory quantity 〈OF 2〉 as a function of the coordinates (t, x1, x2, x3) of Minkowski

space. (Actually we will find it easier to pass to momentum space early in the computation.)

One must solve a boundary value problem in order to extract 〈OF 2〉. Numerical techniques

for doing so and results for several different choices of v are described in section 2.3. We

conclude in section 2.4 with a discussion of the possible relevance of our work to recent

experimental results. This chapter follows closely [8].

2.2 Dilaton perturbations

The background geometry is the well-known AdS5-Schwarzschild solution,

ds2 = Gµνdx
µdxν =

L2

z2
(−hdt2 + d~x2 + dz2/h) h = 1− z4

z4
H

, (2.3)

and useful relations include

L4

α′2
= g2

Y MN T =
1

πzH
. (2.4)

In static gauge, the string worldsheet is described as

Xµ(t, z) ≡
(
t X1(t, z) 0 0 z

)
X1(t, z) = vt+ ξ(z) ξ(z) = −zHv

4i

(
log

1− iz/zH
1 + iz/zH

+ i log
1 + z/zH
1− z/zH

)
.

(2.5)

To compute the dilaton response to this string, one starts with the following action:

S =
∫
d5x

√
−G

[
− 1

4κ2
5

(∂φ)2
]
− 1

2πα′

∫
M
d2σ eφ/2√−g gαβ ≡ Gµν∂αX

µ∂βX
ν . (2.6)

Here α and β refer to worldsheet coordinates σα = (τ, σ), and

κ2
5 =

4π2L3

N2
= 8πG5 (2.7)

where G5 is the five-dimensional gravitational constant. To derive the dilaton equation of

motion, it helps first to rewrite the whole action as a single volume integral (we refrain

briefly from choosing static gauge):

S =
∫
d5x

√
−G

[
− 1

4κ2
5

(∂φ)2 − 1
2πα′

∫
d2σ eφ/2

√
−g√
−G

δ5(xµ −Xµ(σ))
]
. (2.8)
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The five-dimensional delta function in (2.8) is a product of standard Dirac delta functions.

So, for instance,

δ5(xµ) = δ(t)δ(x1)δ(x2)δ(x3)δ(z) . (2.9)

The linearized equation of motion can now be straightforwardly derived as

�φ =
1√
−G

∂µ

√
−GGµν∂νφ = J ≡ κ2

5

2πα′

∫
d2σ

√
−g√
−G

δ5(xµ −Xµ(σ)) . (2.10)

and by passing to static gauge one may explicitly perform then the remaining integral in

(2.10):

J =
κ2

5

2πα′

√
−g√
−G

δ(x1 −X1(t, z))δ(x2)δ(x3) . (2.11)

In the spirit of finding the steady-state, late-time behavior, we assume that φ depends

on x1 and t only through the combination x1 − vt. After computing
√
−g√
−G

=
z3

L3

√
1− v2 , (2.12)

one can easily show that �φ = J simplifies to[
z3∂z

h

z3
∂z +

(
1− v2

h

)
∂2

1 + ∂2
2 + ∂2

3

]
φ =

κ2
5

√
1− v2

2πα′
z

L
δ(x1 − vt− ξ(z))δ(x2)δ(x3) .

(2.13)

This partial differential equation can be attacked by Fourier transforming:

φ(t, ~x, z) =
∫

d3k

(2π)3
eik1(x1−vt)+ik2x2+ik3x3

φk(z) , (2.14)

and similarly for J . Then one has[
z3∂z

h

z3
∂z −

(
1− v2

h

)
k2

1 − k2
⊥

]
φk =

κ2
5

√
1− v2

2πα′
z

L
e−ik1ξ(z) , (2.15)

where k2
⊥ = k2

2 + k2
3. All dimensionful factors drop out of the differential equation when we

introduce rescaled variables

K1 = zHk1 K⊥ = zHk⊥ y =
z

zH
φ̃K(y) =

2πα′L
κ2

5z
3
H

1√
1− v2

φk(z) . (2.16)

Then h = 1− y4 and[
y3∂y

h

y3
∂y −

(
1− v2

h

)
K2

1 −K2
⊥

]
φ̃K = ye−iK1ξ/zH = y

(
1− iy

1 + iy

)vK1/4(1 + y

1− y

)ivK1/4

.

(2.17)
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There doesn’t appear to be a solution to (2.17) in terms of known special functions. However

it can be solved in two interesting limiting regimes:

• Near the horizon, y is slightly less than 1, a better choice of radial variable is

Y = log(1− y). The leading terms in the differential equation near the horizon (that

is, for large negative Y ) are[
∂2

Y +
(
vK1

4

)2
]
φ̃K =

1
4
eY e−ivK1(Y +π/2−log 2)/4 , (2.18)

which is also the equation of motion for a simple harmonic oscillator with a complex

driving force. The solutions are

φ̃near,K =
eY /4

1− ivK1/2
e−ivK1(Y +π/2−log 2)/4 + C+

Ke
ivK1Y/4 + C−Ke

−ivK1Y/4 , (2.19)

where C±K are arbitrary constants. The standard boundary condition at a black hole

horizon is to choose a purely infalling solution. This means that in the near-horizon

limit, φ should depend on t and Y only through the combination t + zHY/4, not

t− zHY/4: the quantity zHY/4 is essentially the tortoise coordinate. Thus C+
K = 0.

• Near the boundary of AdS5-Schwarzschild, the leading terms in the differential

equation are

y3∂y
1
y3
∂yφ̃K = y , (2.20)

and the solutions are

φ̃far,K = −y
3

3
+AK +BKy

4 , (2.21)

where AK and BK are arbitrary constants. AK should be set to zero because there is

no deformation of the Lagrangian. BK is proportional to 〈OF 2〉.

It is worth noting that the relation of BK to 〈OF 2〉 involves a subtraction of contact

terms. Conventionally, it is understood that

〈OF 2(t, ~x)〉 = − L3

2κ2
5

lim
z→0

1
z3
∂zφ(t, ~x, z) , (2.22)

but in the present case, the limit doesn’t exist because of the y3 term in (2.21). Fortunately,

this term has no ~K dependence. Thus when passing back to real space, it is proportional to
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a delta function supported at the location of the quark. This delta function has an infinite

coefficient, but if it is subtracted, the remaining contribution to 〈OF 2(t, ~x)〉 indeed comes

from BK , and it is finite. The subtraction prescription has some arbitrariness: one could

subtract off any finite multiple of the delta function at the same time, which corresponds

to subtracting a K-independent quantity from every BK .

Combining (2.4), (2.14), (2.16), (2.21), and (2.22), one finds

〈OF 2(t, ~x)〉 = −π3T 4
√
g2
Y MN

√
1− v2

∫
d3K

(2π)3
e[iK1(x1−vt)+iK2x2+iK3x3]/zHBK . (2.23)

In section 2.3, we will quote results in units where zH = 1: this corresponds to T = 1/π.

For a wide range of K1 and K⊥, the dominant contribution to BK comes from the near

field of the quark, which in position space is proportional to 1/|~x|4 in the rest frame of the

quark. Consider first the case v = 0. Following [36], consider a string dangling straight

down in AdS5. One obtains

〈OF 2(t, ~x)〉 =
1

16π2

√
g2
Y MN

|~x|4
. (2.24)

This calculation is done in the absence of a horizon, or equivalently at zero temperature.

Fourier transforming (2.24) leads to

Bnear field
K =

π

16
| ~K| = π

16

√
K2

1 +K2
⊥ . (2.25)

We have expressed the result in terms of the dimensionless variables (2.16) with zH = 1/πT

finite, even though T = 0 physically. This is a bookkeeping trick to obtain a form that can

easily be compared with AdS5-Schwarzschild results.

For v 6= 0, one may apply a Lorentz boost to the AdS5 string configuration considered

in the previous paragraph. This describes an external quark moving through the vacuum

at speed v. The result for Bnear field
K in this case is

Bnear field
K =

π

16

√
(1− v2)K2

1 +K2
⊥ . (2.26)

This is the analytic form that we will subtract from numerically evaluated BK to excise the

near field but leave behind all the dissipative dynamics.
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2.3 Numerical algorithms and results

The boundary value problem described in and below (2.17) is reminiscent of both the

glueball calculations initiated in [41, 42] and of quasi-normal modes in AdS5-Schwarzschild

[43]. But there is an additional simplifying feature: all the equations are affine in φ̃K—that

is, they are linear combinations of φ̃K(y), its derivatives, and functions of y that do not

involve φ̃K(y). To see this, consider the following formulation of the horizon boundary

condition. One first expresses the asymptotic solutions φ̃near,K and φ̃far,K as a sum of

the inhomogeneous solution and the permitted homogeneous solution. Explicitly, for the

near-horizon solution,

φ̃near,K = φ̃near,P,K + C−K φ̃near,H,K

φ̃near,P,K ≡ eY /4
1− ivK1/2

e−ivK1(Y +π/2−log 2)/4

φ̃near,H,K ≡ e−ivK1Y/4 .

(2.27)

The Wronskian

Wnear(y) = (φ̃K(y)− φ̃near,P,K(y))φ̃′near,H,K(y)− (φ̃′K(y)− φ̃′near,P,K(y))φ̃near,H,K(y) (2.28)

is a measure of how close the numerically computed function φ̃K(y) is to the analytic

approximation φ̃near,K . Because the horizon is a singular point of the differential equation,

one must impose the boundary condition Wnear(y1) = 0 at a point y1 slightly less than

1, which is to say slightly outside the horizon. The quantity Wnear(y1) is indeed a linear

combination of φ̃K(y), φ̃′K(y), and a φ̃K-independent function known in terms of φ̃near,H,K(y)

and φ̃near,P,K(y). One may similarly formulate a boundary condition Wfar(y0) = 0 which is

also affine in φ̃K . The point y0 should be chosen slightly greater than 0, which is to say

close to the boundary of AdS5-Schwarzschild.

There are special methods to solve boundary value problems of the type just described,

where both the differential equation and the boundary conditions are affine, which are more

efficient than standard shooting algorithms. Mathematica’s NDSolve incorporates such

methods internally. But we have found that we achieve greater numerical accuracy using
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a home-grown shooting method where BK is guessed and then adjusted to make C+
K = 0.

Accuracy was further improved by finding power series corrections to the asymptotic forms

(2.19) and (2.21). A satisfactory choice of cutoff points was y0 = 0.01 and y1 = 0.99. The

numerical challenge increases as K1 and K⊥ increase, requiring more CPU time. As we will

see in figure 2.2, BK is significantly weighted toward K larger than 10 when an appropriate

phase space factor is included. So it would be worthwhile to have some alternative method

adapted to this regime, perhaps based on a WKB approximation.

We take advantage of the axial symmetry of the problem to express BK = B(K1,K⊥)

where K⊥ =
√
K2

2 +K2
3 . Because φ(t, ~x, z) and 〈OF 2(t, ~x)〉 are real, it must be that

B(−K1,K⊥) = B(K1,K⊥)∗. It is easy to see that this condition is enforced by the differen-

tial equation. Our results for B(K1,K⊥), with the near field (2.26) subtracted, are shown in

figures 2.1 and 2.2. A good match to the near field form (2.26) was obtained: for K⊥ > 10

the deviations are at the level of tenths of a percent. These deviations are interesting and

can be seen in magnified form in panes b, d, f, and h of figure 2.2. Much of our discussion

in section 2.4 will hinge on these high-momentum tails.

2.4 Discussion

Before attempting a comparison of our results with recent RHIC results, we will give a

brief summary of how the measurements of interest are done. The reader is warned that

we are non-experts and is referred to the experimental literature—for example [44, 45]—for

an authoritative account.

Consider the following scenario:

1. Two highly energetic partons collide near the surface of the hot dense matter pro-

duced in a relativistic heavy ion collision. After the collision, the partons have large

transverse momentum.

2. One parton escapes without interacting significantly with the quark-gluon plasma

(QGP) and fragments in vacuum into what is termed the near side jet.
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Figure 2.1: Contour plots of the real part and minus the imaginary part of B(K1,K⊥) for
several values of v. The near field contribution (2.26) has been subtracted. B(K1,K⊥) is
proportional to the K-th Fourier mode of 〈OF 2〉: see (2.23). In each plot, the white region
is closest to zero, and the black region is the most positive.
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Figure 2.2: The absolute value of B(K1,K⊥) with and without the phase space factor
K⊥. The near field contribution (2.26) has been subtracted. The green dot is the recoil
energy of a thermal gluon: see (2.30). The dashed red lines indicate the direction in which
K⊥|B(K1,K⊥)| is largest: see the discussion around (2.4). In each plot, the white region
is closest to zero, and the black region is the most positive.
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3. The other parton travels through the QGP. Its evolution into observed particles is

strongly affected by its interaction with the QGP. If it weren’t for these interactions,

this parton would simply fragment into an away side jet, approximately back-to-back

with the near side jet.

Because of difficulties in unambiguously identifying jets, a standard strategy is to look for

angular correlations between two energetic charged particles: the trigger particle, which is

presumed to be part of the near-side jet, and the partner particle, which is the putative

probe of jet-quenching. Histograms of the azimuthal angle ∆φ between these two particles

invariably show a peak at small angles, which means that the partner particle is often

part of the near-side jet. A peak at ∆φ = π is evidence for an away side jet. In central

collisions, the peak at ∆φ = π disappears [44] or even splits [45]. In [45], the trigger

particle is required to have 2.5 GeV/c < pT < 4.0 GeV/c while the partner particles has

1.0 GeV/c < pT < 2.5 GeV/c, and for central collisions a broad peak is observed roughly

between ∆φ = 1.6 and ∆φ = 2.6. (All angles will be quoted in radians.) There is actually

a minimum at ∆φ = π.

The recent theoretical literature on jet-quenching, with which we have less familiarity

than we would like, offers several possibilities. Among them are scenarios [46, 47] where

the QGP affects fragmentation by recombination of thermal quarks with the parton shower;

extensions of traditional QCD methods such as the twist expansion [48]; predictions of a

coherent high momentum ridge of color flux emanating from the quark [49, 50]; and related

discussions of a QCD “sonic boom” giving rise to conical collective flow [51, 52].

In the backdrop of these experimental and theoretical investigations, it is interesting to

say what we can about the energy flow and spectrum of particles radiated from the heavy

quark described in the previous sections. The hazards of comparing strongly coupled N = 4

super-Yang-Mills with real-world QCD are well known: for a brief summary, see [34]. To

these difficulties we must add that we have treated the quark as infinitely massive, whereas

the experimental results we have referred to do not include heavy-quark tagging. Also, it

would be better to know 〈Tµν〉 in addition to 〈OF 2〉: energy flow is most crisply captured
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in the Poynting vector Si = T0i. Finally, it would be desirable to go to larger K1 and

K⊥, which requires either CPU-intensive numerics or an improved calculational method, as

discussed near the end of section 2.3.

Objects deep inside AdS5 are understood to correspond to soft field configurations in

the dual CFT, while objects near the boundary correspond to more localized configurations.

So a reasonable expectation based on [33, 34] is that the profile of 〈OF 2〉 would have the

form of a wake, consistent with the ideas of [49, 50, 51, 52]. The Fourier space profiles

shown in figures 2.1 and 2.2 suggest a slightly different, possibly complementary picture. It

helps our intuition to use explicit numbers. Let’s set

T =
1
π

GeV = 318 MeV . (2.29)

This is in the upper range of temperatures for the QGP, and it is a convenient choice for

us because the K1 and K⊥ axes in figure 2.1 and 2.2 can then be read in units of GeV/c.

Another interesting number is the typical final energy of a free massless particle that collides

elastically with the heavy quark. To compute this we take the initial momentum of the

massless particle to be of magnitude T and directed perpendicular to the heavy quark’s

velocity. If the perpendicular component of the massless particle’s momentum doesn’t

change during the collision, then its final energy is

Ef =
1 + v2

1− v2
T = 6.2 GeV for v = 0.95. (2.30)

We have indicated Ef for the various velocities with the green dots in panes a, c, e, and g

of figure 2.2. If the gauge theory were almost free instead of strongly coupled, we would

expect the energy loss to be dominated by collisions of the type that led to (2.30).

For v = 0.95, |B(K1,K⊥)| is peaked in a range of momenta between 2 and 7 GeV/c (the

black region in figure 2.2). Because OF 2 ∼ trF 2 starts with bilinears in the fundamental

fields, this would correspond to radiated particles with momenta between 1 and 3.5 GeV/c:

less than the Ef of (2.30) by a factor of a few. For v = 0.99, half the momentum at which

|B(K1,K⊥)| is peaked is less than Ef by a similar factor. These considerations encourage

the view that dissipative events involve several quanta interacting with each other as they
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v 0.75 0.90 0.95 0.99
θ 0.58 0.41 0.30 0.17

Table 2.1: The angle between the heavy quark’s velocity and the directional peak of
K⊥|B(K1,K⊥)| for various values of the velocity.

recoil from the heavy quark. This is broadly consistent with the picture of a coherent co-

moving high momentum ridge dissipating energy from the heavy quark. But as we will see

below, the peak regions of |B(K1,K⊥)| may not dominate the dissipative physics.

Panes b, d, f, and h of figure 2.2 show that if one multiplies |B(K1,K⊥)| by the factorK⊥

that would arise in an integration over momentum space, the result is directionally peaked.

This again brings to mind the picture of dissipation through radiation carried mostly in the

high momentum ridge. The opening angle θ between the heavy quark’s velocity and the

directional peak of K⊥|B(K1,K⊥)| depends strongly on the speed as shown in Table 2.4

The values of θ in Table 2.4 were determined by setting theK⊥ derivative ofK⊥|B(K1,K⊥)|

to zero at fixed and large K1, then taking the appropriate arctangent function to find θ.

The phase space factor K⊥ makes an enormous difference to the dominant momen-

tum scale. In K⊥|B(K1,K⊥)|, momenta many times Ef dominate. Indeed, along the

preferred direction, K⊥|B(K1,K⊥)| seems to level off at a finite value as K increases. Evi-

dently we have not explored sufficiently high momenta to discern whether the region where

K⊥|B(K1,K⊥)| is above a finite threshhold has finite volume.1

To recap: the plots of K⊥|B(K1,K⊥)| not only indicate directionality, but also suggest

that highly energetic fields are an important part of the description of the radiation process.

To appreciate just how energetic, note that a charm quark moving in vacuum with v = 0.95

has energy 4.5 GeV, while a b quark with this speed has energy 15 GeV. If K⊥|B(K1,K⊥)|

can be used as an approximate guide to the spectrum of radiated particles, the single particle

energy could easily be in the 10 GeV ballpark. Recoil would obviously become an important
1Note that in the large momentum region of the plots shown, we are subtracting a quantity, Bnear field

K ,
which scales linearly with momenta. The remainder, B(K1, K⊥), scales roughly as 1/K in the region in
question. This evidently requires substantial numerical precision. All internal checks of our numerical results
suggest they are robust, but the importance of large K tails to our discussion is the reason we say it would
be value to have WKB methods in hand.
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consideration if a real-world c or b quark emitted a particle even approaching this range.

This would substantially increase the opening angle θ. And it would encourage the idea

that the QGP enhances fragmentation processes at energies close to the kinematic limit.

There are two main reasons to treat with particular caution a “prediction” from AdS/CFT

that heavy quarks should undergo fragmentation near the kinematic limit:

1. We have not made a quantitatively precise connection between 〈OF 2〉 in Fourier space

and the spectrum of radiated particles. Indeed, the peak region of B(K1,K⊥) and

its high-momentum tails send conflicting messages about the spectrum. We believe

the tails are important, but it may be that they have to do mostly with fields near

the quark rather than radiative dynamics. The question of the spectrum of radiated

particles should be revisited purely within the context of AdS/CFT with the VEV

of the stress-energy tensor in hand, and preferably with semi-analytic methods to

buttress numerical analysis of the high-momentum tails.2

2. Relating hard processes in strongly coupled N = 4 super-Yang-Mills and QCD is

especially perilous. Elementary scattering processes with large momentum transfer

can be treated perturbatively in QCD. In strongly coupled N = 4 super-Yang-Mills

the general expectation is that they cannot. But one should bear in mind that many

amplitudes of N = 4 are protected against all loop corrections. It would be inter-

esting to inquire whether amplitudes for gluons scattering off an external quark have

non-renormalization properties. This discussion recalls the basic conundrum of the

connection between AdS/CFT and RHIC: are near-extremal D3-branes merely an

analogous system to the QGP, or can they capture the dynamics of real-world QCD

above the confinement transition sufficiently precisely to be a useful guide to RHIC

physics?

Fragmentation near the kinematic limit seems to us consistent with the broad peak in

∆φ observed in [45]. But the energy ranges for the hadrons in [45] are substantially lower,
2Indeed, a computation of the stress tensor gives clear-cut evidence at smaller wave-numbers for a wake

in sense usually meant by phenomenologists [53].
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relative to the temperature, than the energies we have discussed in relation to AdS/CFT.

Recall that the upper limit on pT of the partner particle is 2.5 GeV/c. If the typical energy

of the partner particles is sufficiently low, it would be a blow to the picture of enhanced

high-energy fragmentation. Of course, without tagging most of the partons studied in [45]

may be presumed to be light quarks or gluons.

In summary, the calculations we perform are based on the trailing string picture of

[33, 34], which naively supports the notion of a coherent wake of color fields with the heavy

quark at its tip. We do find evidence for a directional “prow,” which becomes more and

more forward as the speed increases. It seems that a full description of this prow involves

high-momentum gauge fields. This may be a hint that, with a realistic cutoff on the quark

mass imposed by hand, the quark could be deflected significantly by a single radiative event.

The drag force (2.1) computed in [33, 34] is a time-averaged quantity which provides

no direct information about the energy scale of radiated particles. Calculating color-singlet

VEV’s in the boundary theory gives considerably more detailed information. Despite the

hurdles string theory faces in connecting to relativistic heavy ion collisions, we hope that

the trailing string picture can be further exploited to understand energy loss in the QGP.



Chapter 3

Low-lying gravitational modes

3.1 Introduction

Recently, a lot of attention has been devoted to the study of quasinormal perturbations

in asymptotically anti-de Sitter (AdS) backgrounds. The first quasinormal mode (QNM)

computation in AdS space was done in [54] for a conformally invariant scalar field, and

then the problem was solved in [43] for any minimally-coupled scalar field in dimensions

d = 4, 5, and 7. The gravitational perturbations of global AdS4-Schwarzschild, which is

what we are interested in, have been computed for the first time in [55]. Since then, various

properties and generalizations of these QNM’s have been considered, such as asymptotic

relations [56, 57], different anti-de Sitter backgrounds [58, 59], or other boundary conditions

[60].

We will phrase the problem in terms of the master field formalism that was developed

by Kodama and Ishibashi in [61]. Based on previous ideas developed by Regge, Wheeler

and Zerilli [62, 63] that were further extended in [55, 58, 64], Kodama and Ishibashi de-

veloped this formalism to decouple the linearized Einstein equations for the gravitational

perturbations of the global AdS-Schwarzschild in a gauge-invariant way and in any number

of dimensions. In general, the perturbations in AdSd can be divided into tensor, vector,

and scalar perturbations, depending on whether they correspond to expansions in tensor,

37
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vector, or scalar spherical harmonics on the Sd−2 section of AdSd. The basic idea then is

that we can express each of these perturbations in terms of a master field Φ and the ap-

propriate spherical harmonics, and all we have to do is solve a certain differential equation

satisfied by Φ. This equation will in general depend on both the perturbation type we are

considering and on the number of dimensions.

We will restrict our attention to the scalar sector of the perturbations in d = 4, where

most QNM-related computations in the literature use a Dirichlet boundary condition on

the master field Φ near the boundary of AdS. The purpose of this paper is to comment on

the choice of this boundary condition, and to suggest that a Robin boundary condition1

would be more appropriate, especially from the point of view of the AdS/CFT duality

([12, 13, 14]; for a review, see [65]). It follows from the AdS/CFT dictionary that a natural

expectation is to demand that the perturbations do not deform the metric on the boundary

of AdS, and this condition in turn determines the asymptotic behavior of the master field at

the boundary. While having no boundary deformations amounts in other similar situations

to imposing a Dirichlet boundary condition on Φ at the boundary, this is not the case for

the scalar sector of gravitational perturbations in AdS4, where a Robin boundary condition

is required (see section 3.3).2 Using the Robin boundary condition proposed in section 3.3,

we find a family of low-lying modes that were not seen when a Dirichlet boundary condition

was used instead (see for example [55]). In addition to the low-lying modes, we also find a

tower of modes that is similar to the tower of modes found in [55]. For details on what makes

the low-lying modes different, or for what other differences we find between our QNM’s and

the ones computed in [55], see section 3.4. It is important to note that our Robin boundary

condition doesn’t affect the vector gravitational perturbations in AdS4, because in this case

the Dirichlet boundary condition is still appropriate.
1A Robin boundary condition specifies a linear combination of a function and its derivative at the bound-

ary.
2We can anticipate some trouble in the scalar sector of AdS4 perturbations just by looking at the general

large ρ dependence of the master field Φ for any kind of perturbations and in any number of dimensions.
In general, Φ satisfies a second order differential equation whose linearly independent solutions behave like
ρ(d−6)/2+j and ρ(4−d)/2−j , where j = 0, 1, or 2 for scalar, vector, or tensor perturbations, respectively. The
scalar perturbations in d = 4 are the first ones for which the behavior of the first family is subleading to the
behavior of the second family.
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A good check on the values of the low-lying quasinormal frequencies comes from a

linearized hydrodynamics approximation on S2 × R. The rationale of this approach lies

in the observation that since M-theory on AdS4-Schwarzschild×S7 is dual to a thermal

CFT on the boundary, some QNM’s should correspond to hydrodynamic modes of the

thermal CFT. This idea has been developed in several interesting papers: in [66, 67, 68] it

was shown that the quasinormal frequencies should correspond to poles of the correlation

functions on the field theory side, and in [68, 59, 69] this result was checked by explicit

numerical computations. We follow the approach in [70], where it was noted that the

low-lying scalar and vector modes in five-dimensional AdS-Schwarzschild can be computed

through a linearized hydrodynamics approximation. Extending the argument given in [70]

to any dimension, we derive an approximate formula for the low-lying scalar and vector

modes in AdSd. We find excellent agreement between the numerically found low-lying

modes (using our Robin boundary condition) and the linearized hydrodynamics prediction

in d = 4.

The chapter is organized as follows: in section 3.2 we present an overview of the general

setup of our calculation, in section 3.3 we comment on the choice of boundary conditions

and derive the boundary asymptotics for the master field Φ, in section 3.4 we show the

results of our numerical computation of the quasinormal frequencies of the global AdS4-

Schwarzschild solution, and finally, in section 3.5 we compare our results to what one would

expect from the analysis of linearized hydrodynamics of a conformal plasma on S2 × R.

This chapter follows closely [9].

3.2 Setup of the calculation

In this section we briefly review the setup of our calculation. The global AdS4-Schwarzschild

black hole solution is given by

ds2 = −
(

1− ρ0

ρ
+
ρ2

L2

)
dτ2 +

dρ2

1− ρ0

ρ + ρ2

L2

+ ρ2dΩ2
2 , (3.1)
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where dΩ2
2 is the standard metric on the unit S2,

dΩ2
2 = γijdy

idyj = dθ2 + sin2 θdφ2 . (3.2)

This metric is a solution to the Einstein equations that follow from the action

S =
1

2κ2

∫
d4x

√
g

(
R+

6
L2

)
. (3.3)

The horizon radius of the black hole solution (3.1) is then the positive root of the equation

ρ0 = ρH

(
1 +

ρ2
H

L2

)
. (3.4)

For future reference, the mass, entropy, and Hawking temperature of this black hole solution

are:

M =
4πρ0

κ2
S =

8π2ρ2
H

κ2
T =

1 + 3ρ2
H/L

2

4πρH
. (3.5)

We are interested in linear perturbations of the background metric (3.1), of the form gab +

δgab, that satisfy the linearized Einstein equations following from (3.3). The boundary

conditions satisfied by these perturbations will be discussed in section 3.3.

The linearized equations satisfied by the perturbations can be solved by separation of

variables. We assume δgab ∼ e−iωτΦ(ρ)Sab(θ, φ), where the functions Sab depend only on

the angular variables on S2, and can be written in terms of the spherical harmonics Ylm(θ, φ)

and generalizations thereof. The exact equations describing the scalar, vector, and tensor

perturbations of the d-dimensional AdS-Schwarzschild background can be found in [61]. As

discussed previously, we will only focus on the scalar perturbations in the case d = 4. Using

the notation in [70], we split the coordinates ya = (τ, ρ, θ, φ) into yα = (τ, ρ) and yi = (θ, φ).

We denote by ∇i the covariant derivative with respect to the metric (3.2) on S2, and by

Dα the covariant derivatives with respect to the two-dimensional metric

ds22 = −fdτ2 +
1
f
dρ2 f = 1− ρ0

ρ
+
ρ2

L2
. (3.6)

The equations describing the scalar perturbations then read:

δgαβ = fαβ S(θ, φ) δgαi = ρfα Si(θ, φ)

δgij = 2ρ2 [HL(τ, ρ) γij S(θ, φ) +HT (τ, ρ) Sij(θ, φ)]
(3.7)
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Si = − 1
kS
∂iS Sij =

1
k2

S

∇i∂jS +
1
2
γijS (3.8)

H = m+ 3w w =
ρ0

ρ
m = k2

S − 2 (3.9)

Xα =
ρ

kS

(
fα +

ρ

kS
∂αHT

)
Fαβ = fαβ +DαXβ +DβXα

F = HL +
1
2
HT +

1
ρ

(∂αρ)Xα

(3.10)

Fα
α = 0 DαFαβ = 2∂βF (3.11)

Fαβ =
1
H

(
Dα∂β (ρHΦ)− 1

2
gαβDγ∂

γ(ρHΦ)
)

(3.12)(
Dα∂

α − VS(ρ)
f

)
Φ = 0 (3.13)

VS(ρ) =
f

ρ2H2

[
m3 +m2 (2 + 3w) + 9mw2 + 9w2 (2f + 3w − 2)

]
. (3.14)

where S denotes any of the spherical harmonics Ylm on S2, and k2
S is the corresponding

eigenvalue of the laplacian:

(
∇i∂

i + k2
S

)
S = 0 S(θ, φ) = Ylm(θ, φ) k2

S = l(l + 1) . (3.15)

It is worth noting that the above master field formulation is gauge invariant. So equations

(3.7)–(3.14) don’t determine the perturbations δgab uniquely: there is an implicit freedom

of choosing four of these functions through a gauge transformation of the form δgab →

δgab +∇avb +∇bva, where this time ∇a denotes the covariant derivative with respect to the

full four-dimensional metric (3.1), and va are arbitrary functions. A small discussion of our

gauge choice and the residual gauge freedom is included in the Appendix.

3.3 Boundary conditions

3.3.1 Boundary conditions at ρ = ∞

The question of what boundary conditions one should impose on the master field Φ at the

boundary of AdS does not have a well-established answer: most of the previous authors
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have set Φ(∞) = 0 (see, for example, [71, 72, 56, 57]), but other boundary conditions have

also been used (see, for example, [60]).3 As we shall see below, the AdS/CFT dictionary

relating perturbations and expectation values of operators in the dual field theory might

help clarify this point.

From the AdS/CFT perspective, there are two independent behaviors of the metric

perturbations δgab at large ρ: δgab ∼ ρ2, which corresponds to a deformation of the boundary

metric, and δgab ∼ 1/ρ, which corresponds to a non-zero VEV of the stress-energy tensor in

the boundary theory. In defining the quasinormal frequencies it is sensible to require that

the metric perturbations do not change the boundary metric, so they only produce a non-

zero VEV of the stress-energy tensor 〈Tab〉 of the thermal plasma on the boundary. This

prescription is equivalent to requiring the quasinormal frequencies to correspond exactly to

the poles of the correlation functions in the strongly coupled dual CFT in the planar limit

(see for example [66]). With this in mind, the significant challenge is to find the relation

between the asymptotic behaviors of δgab and Φ, which is what we’ll now turn to.

At large ρ, the master equation (3.13) takes the form[
Ω2

L2
+
ρ2

L4
∂ρρ

2∂ρ −
k2

S

L2
− 18ρ2

0

L4

1
(k2

S − 2)2

]
Φfar = 0 , (3.16)

where we have assumed e−iωτ behavior and denoted ω = Ω/L. Being a second order differ-

ential equation, equation (3.16) has two linearly independent solutions. Their asymptotic

behaviors at large ρ are given by:

Φfar(ρ) = e−iΩτ/L

[
ϕ(0) +O

(
L2

ρ2

)]
and

Φfar(ρ) = e−iΩτ/L

[
ϕ(1)L

ρ
+O

(
L3

ρ3

)]
.

(3.17)

As noted earlier, the boundary condition that has been mostly used in the literature

is ϕ(0) = 0. As we shall see shortly, this condition is not consistent with the idea that

δgab ∼ 1/ρ is the only behavior allowed. To argue this, we choose to work in axial gauge

(δgρa = 0), and we derive the boundary condition on Φ required by δgab ∼ 1/ρ. While

3It is not clear to us how the boundary condition that we find is related to the one proposed in [60].
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we include a detailed and more complete derivation in the Appendix, we now present the

simplest way of arriving at the proposed boundary condition.

Setting L = 1, we can plug (3.17) into equation (3.12) and obtain, for the Fτρ component

Fτρ = ie−iΩτ

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)
1
ρ

+O
(

1
ρ2

)
. (3.18)

Using axial gauge and, as discussed above, assuming δgab ∼ 1/ρ, we have:

fτρ = 0 fρρ = 0 fρ = 0

HL =
A

(3)
L e−iΩτ

ρ3
+O

(
1
ρ4

)
HT =

A
(3)
T e−iΩτ

ρ3
+O

(
1
ρ4

)
fττ =

B(1)e−iΩτ

ρ
+O

(
1
ρ2

)
fτ =

C(2)e−iΩτ

ρ2
+O

(
1
ρ3

)
.

(3.19)

By using (3.10) we can compute

Fτρ = e−iΩτ −3C(2)kS + 6iA(3)
T Ω

k2
S

1
ρ2

+O
(

1
ρ3

)
. (3.20)

This means that axial gauge and δgab ∼ 1/ρ force Fτρ to behave as 1/ρ2. By comparing

this behavior to the general expectation (3.18), we conclude that the 1/ρ term in (3.18)

must vanish:

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

= 0 . (3.21)

Thus we obtain a Robin boundary condition, involving the master field and its derivative.

3.3.2 Boundary conditions at the horizon

In contrast to the large ρ boundary conditions whose derivation was somewhat subtle and

tedious, the horizon boundary conditions are straightforward, being based on the require-

ment that classical horizons don’t radiate. So in appropriate coordinates, the perturbations

near the horizon should take the form of an infalling wave. To make this explicit, we define

the standard “tortoise” coordinate by

r∗ =
∫

dρ

f(ρ)
, (3.22)
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which puts the master equation (3.13) into the form

[
−∂2

τ + ∂2
r∗ − VS(ρ)

]
Φ = 0 . (3.23)

Here, ρ → ρH corresponds to r∗ → −∞. Noticing that VS(ρH) = 0, we can immediately

see that the near horizon behavior of the two linearly independent solutions to the master

equation are e−iΩ(τ±r∗)/L:

Φnear(ρ) = Ue−iΩ(τ+r∗)/L + V e−iΩ(τ−r∗)/L . (3.24)

The infalling boundary condition then means setting V = 0.

3.4 Numerical solutions

3.4.1 Change of variables

In order to solve the master equation (3.13) numerically, it is convenient to recast it in

terms of a different field ψ(y), defined by factoring out the near horizon behavior of the

master field Φ(ρ):

Φ = e−iΩ(τ+r∗)/Lψ(y) y = 1− ρH

ρ
. (3.25)

Setting L = 1, we can plug this ansatz into the master equation (3.13) to obtain the

differential equation satisfied by ψ. We obtain

[
s(y)∂2

y + t(y)∂y + u(y)
]
ψ(y) = 0 , (3.26)

where
s(y) = K(y)(1− y)4f2

t(y) = K(y)
[
(1− y)2f

∂

∂y

[
(1− y)2f

]
− 2iΩρH(1− y)2f

]
u(y) = −K(y)ρ2

HVS

K(y) =
1
y

[
1 + k2

S + 3ρ2
H − 3y(1 + ρ2

H)
]2
.

(3.27)

Here, K(y) has been chosen so that s(y), t(y), and u(y) are polynomial expressions in y

that don’t have any common factor and that don’t vanish for any y between 0 and 1.
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The remaining challenge before we proceed to solve the differential equation (3.26) is to

translate the Robin boundary condition for Φ (3.21) into a boundary condition for ψ. This

can be done by writing the first two terms in the series expansion of (3.25) at large ρ:

Φ(ρ) ∼ e−iΩ(τ+ρ∗)

[
ψ(1) +

iΩψ(1)
ρ

− ρHψ
′(1)
ρ

+O
(

1
ρ2

)]
. (3.28)

We get:

ψ′(1) =
1
ρH

[
3ρ0

k2
S − 2

+ iΩ
]
ψ(1) . (3.29)

Of course, the near horizon boundary condition V = 0 translates into

ψ(0) = 1 , (3.30)

and we can now turn to describing the numerical techniques that we use to solve the

differential equation (3.26) with the boundary conditions (3.29) and (3.30).

3.4.2 Numerical method and results

Following the method used in [70] for the computation of quasinormal frequencies of the

scalar modes, we integrate the differential equation (3.26) in three steps: 1) we develop a

series expansion around y = 0 and evaluate it at y = yi = 1
4 ; 2) we integrate the differential

equation numerically by using Mathematica’s NDSolve from y = yi to y = yf (to be given

below); and 3) we match our numerical solution onto a series expansion around y = 1, which

is computed using the boundary condition (3.29). In doing the matching, we compute the

Wronskian between the numerical solution and the analytical approximation near y = 1.

The Wronskian vanishes only when the two functions are linearly dependent, i.e. when ψ

satisfies the boundary condition (3.29) at y = 1.

In developing the series expansions, we should keep in mind that the series solutions

are guaranteed to converge only when s(y), seen as a function of the complex variable y,

doesn’t vanish. It is easy to obtain the zeroes of s(y) by writing

s(y) = y(y − y1)2(y − y2)2(y − ȳ2)2 , (3.31)
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Figure 3.1: The zeroes of s(y) represented as crosses in the complex plane. The red cross at
y = 0 denotes a simple zero, while the green crosses denote double zeroes. We use a series
expansion in region (i), numerical integration in region (ii), and another series expansion in
region (iii).

where

y1 = 1 +
k2

S − 2
3(1 + ρ2

H)

y2 = 1 +
ρ2

H

2(1 + ρ2
H)

+
iρH

√
4 + 3ρ2

H

2(1 + ρ2
H)

.

(3.32)

It follows that the series expansion around y = 0 converges on the whole interval between 0

and 1 (though the convergence close to y = 1 might be slow, because of the nearby zero of

s(y)). Similarly, the series expansion around y = 1 has a radius of convergence r equal to

the minimum of |y1 − 1| = k2
S−2

3(1+ρ2
H)

and |y2 − 1| = ρH√
1+ρ2

H

(see figure 3.1). Experience has

shown that a good value for yf was yf = 1− r/4.

Using the method described above, we computed the lowest nine quasinormal frequencies

for ρH = 1 and l = 2, 3, 4, 5, and 6 (see table 3.1), and for ρH = 0.2, 1, 10, and 100 at fixed

l = 2 (see table 3.2). In these tables we have included only the quasinormal modes with

ReΩ > 0; equation (3.26) implies that if Ω is a quasinormal frequency, then so is −Ω∗, so

the QNM’s with negative real parts can be trivially obtained from the ones with positive

ReΩ.

The most prominent feature of the quasinormal modes included in tables 3.1 and 3.2

is the separation of the quasinormal frequencies Ωn into two groups: a main series of fast
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freq\l 2 3 4 5 6
Ω0 2.156− 0.285 i 3.361− 0.354 i 4.487− 0.333 i 5.561− 0.298 i 6.608− 0.266 i
Ω1 3.463− 2.573 i 4.461− 2.443 i 5.528− 2.271 i 6.577− 2.106 i 7.610− 1.963 i
Ω2 5.230− 4.942 i 6.023− 4.791 i 6.964− 4.571 i 7.935− 4.340 i 8.910− 4.126 i
Ω3 7.096− 7.308 i 7.757− 7.165 i 8.592− 6.942 i 9.484− 6.685 i 10.40− 6.432 i
Ω4 9.002− 9.670 i 9.572− 9.540 i 10.32− 9.327 i 11.15− 9.064 i 12.00− 8.794 i
Ω5 10.93− 12.03 i 11.43− 11.91 i 12.12− 11.71 i 12.89− 11.45 i 13.69− 11.18 i
Ω6 12.86− 14.39 i 13.32− 14.28 i 13.95− 14.09 i 14.68− 13.84 i 15.44− 13.56 i
Ω7 14.81− 16.74 i 15.23− 16.64 i 15.82− 16.47 i 16.50− 16.23 i 17.23− 15.95 i
Ω8 16.76− 19.10 i 17.14− 19.00 i 17.70− 18.84 i 18.35− 18.61 i 19.04− 18.34 i

Table 3.1: Frequencies of scalar quasinormal modes for ρH = 1 in units where L = 1.

freq\ρH 0.2 1 10 100
Ω0 2.793− 0.0008 i 2.156− 0.285 i 1.739− 0.066 i 1.732− 0.007 i
Ω1 4.201− 0.084 i 3.463− 2.573 i 18.66− 26.63 i 185.0− 266.4 i
Ω2 5.468− 0.523 i 5.230− 4.942 i 31.84− 49.17 i 316.1− 491.6 i
Ω3 6.896− 1.121 i 7.096− 7.308 i 44.95− 71.70 i 446.5− 716.8 i
Ω4 8.416− 1.735 i 9.002− 9.670 i 58.03− 94.22 i 576.6− 941.8 i
Ω5 9.984− 2.348 i 10.93− 12.03 i 71.10− 116.7 i 706.6− 1167 i
Ω6 11.58− 2.956 i 12.86− 14.39 i 84.18− 139.2 i 836.6− 1392 i
Ω7 13.20− 3.559 i 14.81− 16.74 i 97.25− 161.8 i 966.5− 1617 i
Ω8 14.83− 4.158 i 16.76− 19.10 i 110.3− 184.3 i 1096− 1842 i

Table 3.2: Frequencies of scalar quasinormal modes for l = 2 in units where L = 1.

l\ρH 5 10 20 50 100
2 1.761− 0.129 i 1.739− 0.066 i 1.734− 0.033 i 1.732− 0.013 i 1.732− 0.007 i
3 2.547− 0.312 i 2.474− 0.164 i 2.456− 0.083 i 2.450− 0.033 i 2.450− 0.017 i
4 3.380− 0.537 i 3.219− 0.292 i 3.177− 0.149 i 3.165− 0.060 i 3.163− 0.030 i
5 4.273− 0.787 i 3.979− 0.449 i 3.900− 0.231 i 3.877− 0.093 i 3.874− 0.047 i
6 5.230− 1.043 i 4.761− 0.631 i 4.628− 0.329 i 4.590− 0.133 i 4.584− 0.067 i
7 6.246− 1.286 i 5.566− 0.836 i 5.362− 0.442 i 5.303− 0.180 i 5.294− 0.090 i
8 7.311− 1.499 i 6.399− 1.059 i 6.103− 0.570 i 6.017− 0.233 i 6.004− 0.117 i
9 8.410− 1.675 i 7.262− 1.297 i 6.852− 0.713 i 6.731− 0.292 i 6.714− 0.147 i

Table 3.3: Frequencies of some of the low-lying modes in units where L = 1.
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modes given by Ωn with n ≥ 1, and low-lying slow modes given by Ω0 (for a similar feature

of the quasinormal frequencies in AdS5-Schwarzschild see [70]). The low-lying modes differ

significantly from the fast ones in a number of ways:

• While the fast modes form a tower of modes at each value of ρH and l, the low-lying

modes stand out as not being part of this tower (see figure 3.2).

• The low-lying modes have a different ρH -scaling from the main-series ones (see fig-

ure 3.2). This feature is most clearly seen at large ρH , where the low-lying modes

approach Ω =
√
l(l + 1)/

√
2 as ρH → ∞ (see next point), while the main series

modes grow proportional to ρH : compare, for example, the columns corresponding to

ρH = 10 and ρH = 100 in table 3.2.

• The low-lying modes can be interpreted as the linearized hydrodynamic modes of a

conformal plasma on S2 × R. While we will explain this correspondence in more

detail in section 3.5, for now it is worth mentioning that a linearized hydrodynamics

approximation on S2 ×R gives, up to first order in 1/ρH , that

Ω = ± kS√
2
− i

k2
S − 2
6ρH

+O
(

1
ρ2

H

)
, (3.33)

with kS =
√
l(l + 1). A plot of low-lying modes for various values of l and ρH , together

with the hydrodynamics prediction (3.33) can be seen in figure 3.3, which is based on

the numerical values in table 3.3.

It is worth noting that while the tower-like feature of the scalar QNM’s can be observed

even if one imposes a Dirichlet boundary condition, the low-lying modes have not been

seen in either numerical computations or analytical approximations that use the Dirichlet

boundary condition (see, for example, [71, 57]).

Leaving the low-lying modes aside, we can compare the structure of the main series

modes to the structure of the modes described in [71] that come from imposing the Dirichlet

boundary condition on the master field. We find that the spacing between the main series

modes at large Ω asymptotically approaches the spacing between the modes computed in
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Figure 3.2: Quasinormal frequencies for ρH = 0.2, ρH = 1, and ρH = 10, in units where
L = 1. The black dots represent the main-series modes, while the red ones represent the
low-lying modes. It is fairly clear that for ρH = 0.2 and 1 the low-lying modes are not part
of main series tower. This is not obvious in the ρH = 10 case, because of the plot scale.
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Figure 3.3: Quasinormal frequencies for different values of ρH plotted against l, in units
where L = 1. The blue stars correspond to ρH = 5, the red triangles to ρH = 10, the
dark green diamonds to ρH = 20, the light green triangles (barely visible) to ρH = 50, and
the dark blue stars to ρH = 100. The dotted line represents the linearized hydrodynamics
prediction (3.33), which matches almost perfectly the numerical results for large ρH .

[55]. However, the initial offset of the tower is different, our modes being in between the

ones found in [55].

3.5 Linearized hydrodynamics

In [70] it was noticed that in the case of the global AdS5 black hole there was a separation in

the imaginary parts of low-lying scalar modes and the “main series” modes. The former were

interpreted as hydrodynamic modes and the latter as microscopic. So a simple treatment

of linearized hydrodynamics should be able to reproduce these low-lying modes in other

dimensions as well. The goal of this section is to develop such a treatment.

In thinking about hydrodynamics, the general setup on Sd−2×R is given by the following

relations:
Tab = (ε+ p)uaub + pg̃ab + τab

τab ≡ −η
(

∆ac∇̃cub + ∆bc∇̃cua −
2

d− 2
∆ab∇̃cuc

)
− ξ∆ab∇̃cuc

∆ab = g̃ab + uaub

∇̃aTab = 0 .

(3.34)

where g̃ab is the metric on Sd−2×R and ∇̃a is the covariant derivative with respect to this
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metric. Since the theory on the boundary of AdS is conformal we expect T a
a = 0, which

implies both ε = (d − 2)p and ξ = 0. Following the same approach as in [70], we ignore

the temperature-independent contribution from the Casimir energy to T ab. The Casimir

energy comes from considering the quantum field theory on the compact space Sd−2. For

our purposes we can think of it as a temperature-independent shift of the zero point energy,

which can be safely ignored.

The vector ua describes the velocity at each point in the fluid, and we choose to normalize

it by imposing uaua = −1. Let us denote ua = (1, ui) where i runs over the Sd−2 directions.

In the linearized approximation we consider ui to be small. Perturbing at the same time

the pressure p = p0 + δp, one can derive from (3.34) the linearized equations

(d− 2)
∂δp

∂τ
+ (d− 1)p0∇̃iu

i + η
∂

∂τ
∇̃iu

i = 0

(d− 1)p0
∂ui

∂τ
+ ∇̃iδp+ η(∂2

τu
i − ∇̃2ui)− η

d− 4
d− 2

∇̃i∇̃ju
j = 0 .

(3.35)

Note that for d = 5 equation (3.35) reduces to the linearized Navier-Stokes equation on S3,

which was analyzed in section 5.3 of [70]. We wish to examine scalar perturbations next,

which are described by the ansatz

δp = K1e
−iΩτS ui = K2e

−iΩτ ∇̃iS , (3.36)

where S satisfies
(
∇̃2 + k2

S

)
S = 0, as explained in section 3.2, and L = 1. Plugging (3.36)

into (3.35), we obtain the following system of equations for K1 and K2:

−iΩ(d− 2)K1 −K2k
2
S ((d− 1)p0 − iηΩ) = 0

K1 +K2

(
−iΩ(d− 1)p0 − ηΩ2 + 2η

d− 3
d− 2

k2
S − (d− 3)η

)
= 0 .

(3.37)

In order to have non-trivial solutions, this system must have zero determinant. This gives

a cubic equation for Ω, whose solutions can be given in terms of a series expansion in η/p0:

Ω = ± kS√
d− 2

− i
η

p0

k2
S(d− 3)− (d− 2)(d− 3)

(d− 1)(d− 2)
+O

(
η2

p2
0

)
(3.38)

We can connect this result to the AdS4 quasinormal mode problem by noting that

η

p0
=

4πη
s

ρH

1 + ρ2
H

, (3.39)
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which can be easily derived from (3.5) in the case d = 4, but it is actually true in any

number of dimensions. Using the conjectured lower bound on the viscosity η
s = 1

4π [21, 20],

that has been checked in the AdS4 case in [73], we find

Ω = ± kS√
d− 2

− i
1
ρH

k2
S(d− 3)− (d− 2)(d− 3)

(d− 1)(d− 2)
+O

(
1
ρ2

H

)
. (3.40)

It is easily seen that this reproduces the hydrodynamical modes previously discussed in the

global AdS5 black hole case in [70]. For d = 4, equation (3.40) reduces to (3.33).

Similarly, we can describe the low-lying vector modes by the ansatz:

δp = 0 ui = K3e
−iΩτV i . (3.41)

We find that the corresponding frequencies Ω are given by

Ω = −i(d− 1)
1−

√
1− 4k2

V
η2

(d−1)2p2
0

2η/p0
= −i

k2
V η

(d− 1)p0
+O

(
η2

p2
0

)
Ω = −i

k2
V

d− 1
1
ρH

+O
(

1
ρ2

H

)
.

(3.42)

It is interesting to note that the numerical value given by this formula when d = 4, l = 2

and ρH = 100 agrees within 10% with the low-lying vector mode of Table 9 in [71].

3.6 Conclusions

In this note we examine the relation between the asymptotic behavior of the master field

and the behavior of the scalar sector of metric perturbations in the global AdS4 black hole.

We argue that the boundary condition that corresponds to a non-deformation of the metric

on the boundary translates into a Robin boundary condition for the master field. With

this boundary condition, we compute the scalar quasinormal modes. We find some low-

lying modes that have not been previously observed, and compare them with the linearized

hydrodynamical modes of the boundary CFT.



Chapter 4

Heterotic non linear sigma models

and AdS target spaces

4.1 Introduction

Particular interest attaches to backgrounds of string theory involving AdSD+1 because of

their relation to conformal field theories in D dimensions [74, 75, 76] (for a review see

[15]). But because these geometries (with some exceptions) arise from the near-horizon

geometry of D-branes, formulating a closed string description is complicated by the presence

of Ramond-Ramond fields.

It was recently proposed [77] that AdSD+1 vacua might exist without any matter fields

at all. Instead of relying upon the stress-energy of matter fields to curve space, the proposal

is that higher powers of the curvature compete with the Einstein-Hilbert term to produce

string-scale AdSD+1 backgrounds. The main support for this proposal comes from large D

computations of the beta function for the quantum field theory on the string worldsheet.

Before discussing these computations, let us review the lowest-order corrections to the beta

53
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function in an α′ expansion:

bosonic: βij = α′Rij +
α′2

2
RiklmRj

klm +O(α′3)

heterotic: βij = α′Rij +
α′2

4
RiklmRj

klm +O(α′3)

type II: βij = α′Rij +
ζ(3)α′4

2
RmhkiRjrt

m(Rk
qs

rRtqsh +Rk
qs

tRhrsq) +O(α′5) .

(4.1)

These expressions are obtained using dimensional regularization with minimal subtraction,

and all derivatives of curvature are assumed to vanish as well as all matter fields. Derivatives

of curvature indeed vanish for symmetric spaces: for example,

Rijkl = − 1
L2

(gikgjl − gilgjk) (4.2)

in the case of AdSD+1. One indeed finds non-trivial zeroes for AdSD+1 from all three

beta functions in (4.1). An examination of higher order corrections in the bosonic and

type II cases shows that the zero persists in the most accurate expressions for the beta

function that are available at present; however its location changes significantly, converging

to α′D/L2 = 1 as D becomes large. One aim of the present paper is to pursue similar large

D computations in the heterotic case.

It should be clear from the outset that the question of the existence of AdSD+1 vacua

with α′D/L2 close to unity is a difficult one to settle perturbatively. Fixed order compu-

tations are not reliable guides because the scale of curvature is close to the string scale.

Large D computations with finite α′D/L2 seem to be a better guide, but they too could be

misleading, mainly because higher order effects in 1/D than we are able to compute could

change the behavior of the beta function significantly. These difficulties were discussed at

some length in [77]. Also, the vanishing of a beta function such as the ones in (4.1) is

only a necessary condition for constructing a string theory: one must also cancel the Weyl

anomaly and formulate a GSO projection that ensures modular invariance and the stability

of the vacuum.

There is a more general reason to be interested in high-order computations of the beta

function on symmetric spaces: from them we can extract information about the structure of
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high powers of the curvature that is quite different from what is available from expansions

of the Virasoro amplitude. While the latter tells us about terms involving many derivatives

but only four powers of the curvature (because only four gravitons are involved in the

collision), the former tells us about many powers of the curvature with no extra derivatives.

The organization of the rest of this chapter is as follows. In section 4.2, some general

properties of the heterotic NLσM are discussed. In section 4.3, the formalism and the

results at 1/D order are presented. In section 4.4, the critical exponents at 1/D2, the beta

function, and the central charge of the CFT are computed. The appendices include a brief

explanation of the method of the calculation for the diagrams needed and the values of

these diagrams. This chapter follows closely [10].

4.2 The heterotic non-linear sigma model

As in [77], much will be made of a connection through analytic continuation of the NLσM on

AdSD+1 and the NLσM on SD+1. If L is the radius of SD+1 and g = α′/L2, then continuing

to negative g leads to the AdSD+1 NLσM. The argument in [77] is slightly formal because

it relies on an order-by-order perturbative evaluation of the partition function.

The action for the SD+1 heterotic NLσM is

S =
1

4πg

∫
d2xdθ̄

[
D+Φ∂−Φ + Λ(Φ2 − 1)

]
+

1
4πg

∫
d2xλA∂+λA (4.3)

where

Φ = S + θ̄Ψ Λ = u+ θ̄σ D+ =
∂

∂θ̄
+ θ̄

∂

∂x+
∂± =

∂

∂x∓
. (4.4)

Λ is a spinorial superfield, and u and Ψ have opposite chirality. This leads to the action

S =
1

4πg

∫
d2x

[
(∂S)2 + Ψ̄i∂Ψ + σ(S2 − 1) + 2ūΨS

]
. (4.5)

We have omitted the fermions λA from (4.5) because they decouple from the gravitational

action when the gauge field is set to zero [78, 79] as in our case. The Feynman rules for

the theory (4.5) can be seen in figure 4.1. There is also a tadpole for σ, but we omit it
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GSS

GΨΨ

Gσσ

Guu

−

1

2πg

−

1

2πg

N N

Figure 4.1: The Feynman rules for the heterotic sigma model. The shaded circles indicate
a dressed propagator. The circles indicate that a loop involving only the components of the
Φ superfield receives a factor of N . We have suppressed the tensor structure of the rules
since only δµν appears.

because it does not contribute to the Dyson equations for the scaling parts of the dressed

propagators, as in [80].

After a change of variables that renders the kinetic terms canonical, we can continue

to negative values of g as in [77] to obtain an AdSD+1 heterotic NLσM. Quantities that

are computed locally and perturbatively, such as n-point functions, cannot distinguish be-

tween a space of positive or negative curvature. As the beta function is derived from such

quantities, it too can be continued to negative g, at least order by order in perturbation

theory.

The heterotic NLσM on SD+1 is a generalization of the O(D + 2) model, and much of

the relevant literature concentrates on an expansion in 1/(D+2) rather than 1/D. We will

therefore set

N = D + 2 (4.6)

and work with N or D, according to convenience, in the rest of this paper.
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4.2.1 Some properties of the heterotic NLσM for large D

It is known that in the bosonic sigma model a mass appears [81] in the 1/N expansion. The

same phenomenon appears in the supersymmetric extension of the sigma model [82, 83]

where also the fermions acquire the same mass, signaling chiral symmetry breaking. In the

heterotic case the bosons S also acquire the same mass, showing that the interaction term

does not destroy this effect. To understand this, let’s start from our action (4.5), and in the

partition function integrate first the fermionic fields and then the bosons, since the action

is quadratic in these. We have omitted normalization factors of the partition function in

the following.

Z =
∫
DSDΨDσDu exp

(
− i

4πg

∫
d2x[(∂S)2 + iΨ̄/∂Ψ + σ(S2 − 1) + 2ū(S ·Ψ)]

)
=
∫
DSDσDu

[
det(i/∂)

]N/4 exp
[
i

4πg

∫
d2x

(
S(∂2 − σ)S − Siū

1
i/∂
uSi

)]
=
∫
DσDu

[
det(i/∂)

]N/4
[
det
(
−∂2 − σū

1
i/∂
ū

)]−N/2

exp
(

i

4πg

∫
d2xσ

)
⇒ Z =

∫
DσDu eiSeff ,

(4.7)

where the effective action for the Lagrange multiplier fields is given by

Seff =
∫
d2x

[
1

4πg
σ − N

4
Tr log(i/∂) +

N

2
Tr log

(
−∂2 − σ − ū

1
i/∂
u

)]
. (4.8)

Since we are taking the limit N → ∞ with g0N finite, we see that all terms in the action

are of order N . We can evaluate this integral by the method of steepest descent, i.e. by

finding the classical value of σ, u that minimizes the exponent, as is done for instance in

[84, 85]. This gives the variational equations

〈x| 1
−∂2 − σ(x)− ū 1

i/∂u
|x〉 =

1
2πNg

〈x|
1

/∂u

−∂2 − σ(x)− ū 1

i/∂u
|x〉 = 0 .

(4.9)

Because the right hand sides are constant, the left hand sides must also be constant. A

solution to these equations is given by

u(x) = 0 σ(x) = −m2 . (4.10)
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It is easy to see that 1
∂u(x) = const. has as its only solution u = 0. This is in contrast to

the supersymmetric case [84], where there are three solutions. Now m2 must satisfy∫
d2k

1
k2 +m2

=
1

2πg0
. (4.11)

Using a simple-momentum cutoff, 1
2πg0N = 1

2π log Λ
m . By renormalizing at a scale M we get

1
2πg0N

=
1

2πgN
+

1
2π

log
Λ
M

. (4.12)

Solving for the mass m we get m = M exp[−1/gN ]. Since this is a physical mass we expect

that it does not depend on the renormalization scale. Using the Callan-Symanzik equation

for m, (
M

∂

∂M
+ β(g)

∂

∂g

)
m(g,M) = 0 , (4.13)

gives the beta function β(g) = −g2N . The mass is the same in the bosonic, supersymmetric,

[81, 83] and heterotic model. This could have been predicted since the first order β function

is the same in all models, βij = α′Rij . Another way to get the same result is to calculate

the effective potential for the σ field and see that the minimum of the potential is not at

zero but at σ = Me−1/gN . One can go further and examine the effective action (4.8). It is

easy to evaluate the counterterms needed for one-loop renormalization, as we have already

computed the wave function renormalization of the σ field, and doing so one finds

L0,eff =
1

4πg

(
1 + gN log

Λ2

M2

)
σ − N

4
Tr log /∂ +

N

2
Tr log

(
−∂2 − σ − ū

1
i/∂
u

)
. (4.14)

The bare and the dressed quantities are related by

σ0 = Zσ u0 = Z1/2u g0 = Z−1g Z = 1 +
gN

2
log

Λ2

M2
. (4.15)

Calculating the quadratic terms in the fields u, σ will give us the propagators for these

fields. We can easily find

Seff =
N

2
Tr

1
−∂2 −m2

ū
1

i/∂ −m
u− N

4
Tr

1
−∂2 −m2

σ
1

−∂2 −m2
σ . (4.16)

The next step is to evaluate the propagators. One finds [83, 84]

Su(k) = −2i
N

(/k − 2m)V (k2) Dσ(k) =
2i
N

(4m2 − k2)V (k2) , (4.17)
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where in d dimensions

V (k2) =
(4π)d/2

4Γ(2− d/2)

(
4m2 − k2

4

)1−d/2(
2F1(2− d/2, 1/2, 3/2;

k2

k2 − 4m2
)
)−1

. (4.18)

In two dimensions this simplifies to

V (k2) = π

√
k2

k2 − 4m2

(
arctanh

√
k2

k2 − 4m2

)−1

. (4.19)

It is easy to see that the u propagator in d = 2 dimensions has a pole at k2 = 4m2. This

means that there is a particle with this mass. Since the classical equations give u = −iS/∂Ψ,

there is a boson-fermion bound state, created by the operator S/∂Ψ. This is in agreement

with [83], but there is no supersymmetric corresponding fermion-fermion bound state, since

the Gross-Neveu interaction that is responsible for it is absent.

One can also extend the calculation of [84, 86] to show that there is no multi-particle

production in the heterotic sigma model. For example, the process 2 → 4 particles can be

shown to vanish. The reasoning is that the formalism of [86], valid for the bosonic case, can

be extended to include superfields.

4.3 Critical exponents in the 1/D expansion

4.3.1 General discussion

The method used to determine the critical exponents is the one developed in [80, 87] for

the bosonic model and extended to the supersymmetric case in [88, 89]. To this end one

writes expressions for the propagators of the fields near the critical point. In keeping with

the notation of [80, 87, 90] we assign dimensions to the fields

dim[S] = dim[Ψ]− 1
2

= ∆S = (d− 2 + η)/2

dim[σ] = dim[u] +
1
2

= ∆σ = 2− η − χ .

(4.20)

For small but non-zero x, the two-point functions may be expanded as follows:

GSS(x) =
ΓSS

x2∆S
(1 + Γ′SSx

2λ) GΨΨ(z) =
1 + γP

2
ΓΨΨ/x
x2∆S+2

(1 + Γ′ΨΨx
2λ)

Gσσ(x) =
Γσσ

x2∆σ
(1 + Γ′σσx

2λ) Guu(x) =
1− γP

2
Γuu/x
x2∆σ

(1 + Γ′uux
2λ) ,

(4.21)
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where

γP = ρ0ρ1 =

 1 0

0 −1

 (4.22)

is the chirality matrix in 2 dimensions. We have omitted the O(N) indices because both

the propagators and the vertex are proportional to δµν . So all Green’s functions can be

expressed as a scalar function times products of δµν , and one does not have to worry about

tensor structures of the form (x− y)µ(x− y)ν . Then one can write the Dyson equations in

a 1/D expansion for the propagators. Graphical expressions of these equations are shown

in figures 4.2 through 4.5. The Dyson equations impose consistency conditions on the

critical exponents that determine them completely. The graphs that appear in the Dyson

equations are the 1PI graphs with the exception of graphs which contain subgraphs that

already appear in the Dyson equations at a lower effective loop order: in other words,

we exclude diagrams that are already taken into account by expressions for the corrected

propagators. The effective loop order is the number of loops minus the number of loops

involving only the components of the Φ superfield.

The left hand side of each Dyson equation is a 1PI propagator, which is the inverse of

the connected two-point function. These inverse propagators are computed by first passing

to Fourier space using

∫
ddk

e−ik·x

k2∆
=
πµα(∆)22(µ−∆)

x2(µ−∆)
. (4.23)
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The inverse propagators are found to be1

G−1
SS(x) =

p(∆S)
ΓSSx2(2µ−∆S)

(1− q(∆S , λ)Γ′SSx
2λ)

G−1
ΨΨ(x) =

1− γP

2
p(∆S)/x

ΓΨΨx2(2µ−∆S)
(1− s(∆S , λ)Γ′ΨΨx

2λ)

G−1
σσ (x) =

p(∆σ)
Γσσx2(2µ−∆σ)

(1− q(∆σ, λ)Γ′σσx
2λ)

G−1
uu (x) =

1 + γP

2
r(∆σ − 1)/x

Γuux2(2µ−∆σ+1)
(1− s(∆σ − 1, λ)Γ′uux

2λ) ,

(4.24)

where

µ = d/2 ∆S = µ− 1 + η/2 ∆σ = 2− η − χ , (4.25)

and for arbitrary y,

α(y) =
Γ(µ− y)

Γ(y)
p(y) =

α(y − µ)
π2µα(y)

r(y) =
yp(y)
µ− y

q(y, λ) =
α(y − λ)α(y + λ− µ)

α(y)α(y − µ)
s(y, λ) =

y(y − µ)q(y, λ)
(y − λ)(y + λ− µ)

.

(4.26)

To calculate the beta function, one first evaluates the critical exponents of the model at the

fixed point in d = 2 + ε dimensions and then uses the relation

λ = −1
2
β′(gc) , (4.27)

valid at the critical point, to extract β(g). This is possible because, in dimensional regular-

ization with minimal subtraction, the only ε dependence in β(g) is an overall additive term:

see [77] for details. Expanding in 1/D with κ = gD held fixed, one finds

λ(ε) =
∞∑
i=0

λi(ε)
Di

β(g)
g

= ε− κ+
∞∑
i=1

bi(κ)
Di

(4.28)

where

λ0(κc) =
κc

2
b1(κ) = −2κ

∫ κ

0
dξ
λ1(ξ)
ξ2

b2(κ) = −2κ
∫ κ

0
dξ
λ2(ξ)− b1(ξ)λ′1(ξ)

ξ2
.

(4.29)

1Note that GΨΨ · G−1
ΨΨ does not strictly give the unit matrix but instead

1+γp

2
=

„
1 0
0 0

«
in two

dimensions, which is what we want. Also note that in the Dyson equation for Ψ in the right hand side one
encounters u propagators that give the right chiral structure, and vice versa for the Dyson equation of the
u field.
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+2

Σ0,B

Figure 4.2: The Dyson equations for the S propagator.

= + + +

+ +

Φ0 Φ1

Φ2

Figure 4.3: The Dyson equations for the Ψ propagator.

Note that the critical exponent λ is a measurable quantity and as such it should not depend

on the renormalization scheme used. Passing from the λi(κ) to the bi(κ) does introduce

significant scheme dependence.

4.3.2 Critical exponents at order 1/D

The Dyson equations can be expressed in terms of parameters

w =
Γ2

SSΓσσ

(2πg)2
v =

ΓSSΓΨΨΓuu

(2πg)2
, (4.30)

which can be regarded as dressed vertex factors for the two vertices shown in figure 4.1.

The leading non-trivial Dyson equations come from the graphs labeled Σ0,A, Σ0,B, Φ0, Π0,

and F0 in figures 4.2 through 4.5: the tree-level graphs make no contribution to the leading
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+++

Π0 Π1

Π2 Π3

Figure 4.4: The Dyson equations for the σ propagator.

= + +

+ +

F2

F1
F0

Figure 4.5: The Dyson equations for the u propagator.

scaling behavior. The quantities Γ′SS , Γ′ΨΨ, Γ′σσ, and Γ′uu describe how far one is removed

from the fixed point; so in particular one must be able to set them all to zero and get a

self-consistent set of equations. Then the dependence of each graph on the position-space

separation x is just an overall power of x. Matching these overall powers leads simply to

the constraint χ = 0. Matching other factors leads to the equations

p(∆S) + w + v = 0 r(∆S) + v = 0

1
N
r(∆σ − 1) + v = 0

2
N
p(∆σ) + w = 0 ,

(4.31)

which determine the quantities ∆S , ∆σ, w, and v as functions of µ and N . The system is in

fact over-determined if we recall the relations (4.25) and the constraint χ = 0. But we will

see in section 4.4.1 that χ = 0 is only a leading order result; thus to solve (4.31) we expand

η =
∑
i≥0

ηi

Di
χ =

∑
i≥0

χi

Di
w =

∑
i≥0

wi

Di
v =

∑
i≥0

vi

Di
. (4.32)
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Then one straightforwardly extracts from (4.31) the coefficients

η0 = 0 χ0 = 0 w0 = 0 v0 = 0

η1 = −2
Γ(2µ− 1)

(µ− 1)2Γ(1− µ)Γ2(µ− 1)Γ(µ+ 1)

w1 =
(2− µ)Γ(µ− 1)Γ(µ+ 1)

2π2µ
η1

v1 = −(1− µ)Γ(µ− 1)Γ(µ+ 1)
2π2µ

η1 .

(4.33)

Higher order coefficients receive contributions from higher order graphs. Note that χ0 = 0

could be obtained either from matching overall powers of x or from the equations (4.31).

Now consider non-zero coefficients Γ′SS , Γ′ΨΨ, Γ′σσ, and Γ′uu: this corresponds to moving

away from the fixed point. Linearizing the Dyson equations leads to the constraints

−p(∆S)q(∆S , λ)Γ′SS + w(Γ′SS + Γ′σσ) + v(Γ′ΨΨ + Γ′uu) = 0

−r(∆S)s(∆S , λ)Γ′ΨΨ + v(Γ′SS + Γ′uu) = 0

−r(∆σ − 1)s(∆σ − 1, λ)Γ′uu +Nv(Γ′SS + Γ′ΨΨ) = 0

−p(∆σ)q(∆σ, λ)Γ′σσ +NΓ′SSw = 0 .

(4.34)

Graphically, these equations arise from using the leading power-law expressions (e.g. ΓSS/x
2∆S

rather than GSS(x)) for all propagators except one, chosen arbitrarily; and for that one,

use the correction term (e.g. ΓSSΓ′SS/x
2∆S−2λ). The linear equations (4.34) must admit a

non-zero solution for Γ′SS , Γ′ΨΨ, Γ′σσ, Γ′uu in order for the correction terms to describe a

genuine deformation of the critical point. So the corresponding determinant must vanish,

which leads to[
(w + v)q(∆S , λ) + w

(
1− 2

q(∆σ, λ)

)
− v

s(∆σ − 1, λ)

]
(1− s(∆σ, λ)s(∆σ − 1, λ))

= v
(1− s(∆σ − 1, λ))2

s(∆σ − 1, λ)
.

(4.35)

Note that setting v = 0 gives the equation valid for the bosonic model as expected. To

simplify (4.35), one can use (4.33) and note that w1 = v1
2−µ
µ−1 . So far we have not used any

expansion in 1/D. Using the expansions (4.32) and

λ =
∑
i≥0

λi

Di (4.36)
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we can determine

λ0 = µ− 1 λ1 =
1
2
(2µ− 1)(µ− 1)η1 . (4.37)

Another way to compute the original determinant, is the following: one notes that r(∆S)s(∆S , λ) ∼

1/D0, while all other terms scale at least as 1/D1. This means that, in expanding the 4× 4

determinant of (4.34), the first order contribution comes only from the determinant of the

3× 3 matrix

AI ≡


−p(∆S)q(∆S , λ) + w w v

w −p(∆σ)q(∆σ, λ)/N 0

v 0 −r(∆σ − 1)s(∆σ − 1, λ)/N

 .

(4.38)

where in each element of the matrix we only keep the first term in the 1/D expansion. This

determinant provides the first 1/D term of (4.35) and thus reproduces (4.37).

It is interesting to compare with the bosonic case. It is easily seen that λhet
1 = 1

2λ
bos
1 ,

even though ηhet
1 , w1, and v1 are not so simply related to ηbos

1 and the corresponding vertex

factor for the bosonic case. The relation λhet
1 = 1

2λ
bos
1 is expected: we know that λsup

1 = 0

in the type II case, and having half the fermions in the heterotic case will cancel only half

the bosonic contribution.

4.3.3 A check of the calculation

Following [90], we see that η is the anomalous dimension of the S propagator. So far we

have computed it in the 1/D expansion using techniques in position space. One can also

straightforwardly compute η1 in momentum space using the expressions for the propagators

that we have previously found (4.17). Firstly we note that for small k,

G̃SS(k) ∼ k−2+η ∼ k−2+ηo

(
1 +

η1

N
log k +O(1/N2)

)
, (4.39)

with G̃SS the Fourier transform of the S propagator. But G̃SS(k) can also be determined

from the one-particle irreducible diagrams Σ(k2):

G̃−1
SS(k) = k2 + Σ(k2)− Σ(0) ∼ k2(1− η1

N
log k) , (4.40)
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since η0 = 0. Having calculated the propagators of the lagrange multiplier fields it is

straightforward to compute the Σ(k2) from the one-loop diagrams. We find

Σ(k2) =
∫

ddp

(2π)d

i

(p− k)2
Du(p2)−

∫
ddp

(2π)d
tr

i

(/k − /p)
Su(/k) =

2
N

∫
ddp

(2π)d

tr(/k/p)V (p2)
(p+ k)2

=
2d−2/N

√
π

2F1(2− d/2, 1/2, 3/2, 1)Γ(2− d/2)Γ(d−1
2 )

∫ M

0
dp

∫ π

0
dθ

p2k cos θ sind−2 θ

p2 + k2 + 2pk cos θ
(4.41)

where we have put m2 = 0 as usual [89], and M is the cutoff. One notes that, for small k

the k2 log k behavior comes from the small p region [90]. The integral is trivial to do, and

for the k2 log k part it gives

Σ(k2) = −2d−1

Nd

1

2F1(2− d/2, 1/2, 3/2, 1)Γ(2− d
2)Γ(d

2)
k2 log k . (4.42)

It is easy to see using d = 2µ and properties of the Gamma function that this coincides

with the expression for η1 in (4.33). An easier way to do the checking is the following. One

can write similar expressions for Σ(k2) for the bosonic and supersymmetric models [80, 89].

Then it is easy to observe that

Σbos(k2)− Σbos(0) = −Σsup(k2) + 2Σhet(k2) . (4.43)

This easily gives2

2ηhet = ηbos + ηsup . (4.44)

With [80, 89]

ηbos =
(2− µ)
µ

ηsup ηsup =
4
N

Γ(2µ− 2)
Γ2(µ− 1)Γ(2− µ)Γ(µ)

(4.45)

we find ηhet = 1
µηsup which agrees with (4.33).

4.4 Results at order 1/D2

Each graph in figures 4.2-4.5 carries an overall factor 1/DM where M is the number loops

minus the number of loops containing only S and Ψ. To see this, first note that each
2We have used that Σsup(0) = 0 and Σhet(0) = 0.
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propagator GXX carries a factor ΓXX (where X = S, Ψ, σ, or u). Next note that the

amplitude for each graph must contain an overall factor which is a product of the factors

w = Γ2
SSΓσσ/(2πg)2 and v = ΓSSΓΨΨΓuu/(2πg)2, one for each vertex in the graph. The

overall factor 1/DM arises because w and v scale as 1/D and because each loop containing

only S and Ψ carries a factor of N . The graphs in figures 4.2 and 4.3 are those with M ≤ 2,

and the ones in figures 4.4 and 4.5 are those with M ≤ 1. Together, these are all the

graphs that can contribute to η, w, v, and λ through order 1/D2, and they also determine

χ through order 1/D. Because we quote final results in terms of 1/D, we must keep in

mind the relation between expansions in 1/N and 1/D:

w =
∑
i≥0

w̃i

N i
=
∑
i≥0

wi

Di
w1 = w̃1 w2 = w̃2 − 2w̃1 , (4.46)

with similar relations for other quantities.

4.4.1 Calculation of η2

A technical complication arises in the 1/D2 corrections to the Dyson equations that was

explained and resolved in [80, 87]. The problem is that the higher-loop graphs diverge

when χ = 0. In fact, χ = 0 only up to 1/D corrections. But it convenient to regularize the

“divergence” and extract finite expressions for the two-loop Dyson equations through the

following steps:

1. Shift χ→ χ+ ∆.

2. Expand the amplitudes for individual graphs in powers of ∆.

3. Cancel 1/∆ terms against certain counter-terms in the Lagrangian.

4. Fix χ1 by setting to zero certain terms in the Dyson equation which depend loga-

rithmically on the position-space separation x and which, if non-zero, would spoil

self-consistency.

We will now go through these steps in detail for the Ψ propagator. The reader who wishes

to bypass the technical details can skip to (4.56) and (4.57), which are the two-loop Dyson
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equations with all divergences removed. But the results (4.54) and (4.58) for χ1 provide

important consistency checks.

When χ 6= 0, x dependence cannot be canceled out of the Dyson equations in a simple

way: setting Γ′SS = Γ′ΨΨ = Γ′σσ = Γ′uu = 0, one obtains for the Ψ propagator’s Dyson

equation

r(∆S) + v(x2)χ + v2(x2)2χΦ1 +Nwv2(x2)3χΦ2 = 0 . (4.47)

Here Φ1 and Φ2 are functions of ∆S , ∆σ, and µ which diverge when 2∆S + ∆σ − 2µ =

−χ = 0. Although these are in some sense an artifact of a limit (χ→ 0) which one cannot

take independently of the large N limit, it is convenient nevertheless to regulate them, as

explained above, by shifting

χ→ χ+ ∆ . (4.48)

The amplitudes Φ1,2 may then be expanded as

Φi =
Xi

∆
+ Φ′i +O(∆) , (4.49)

where both Xi and Φ′i are functions of ∆S , ∆σ, and µ, subject to 2∆S + ∆σ − 2µ = 0. In

appendix D we exhibit Φ1,2 in the form (4.49), as well as a number of related quantities

that enter into other Dyson equations. To cancel the divergent 1/∆ terms in Φ1,2, one may

rescale the lagrange multiplier fields in the original action (4.3). This rescaling amounts to

adding counter-terms to the action, and it can be expressed, to the relevant order, as

v →
(
1 +

m1

N

)
v w →

(
1 +

m1

N

)
w . (4.50)

(The factor on v and w is the same because of supersymmetry.) Subjecting (4.47) to the

shift (4.48) and the rescaling (4.50), it becomes, keeping terms up to 1/N2,

r(∆S) + (x2)χ
(
v + v2Φ′1 +Nv2wΦ′2

)
+

(x2)χ
(
v1
m1

N
+ v2

1(x
2)χX1

∆
+Nv2

1w1(x2)2χX2

∆

)
= 0

(4.51)

The last line contains all the divergent pieces. Setting χ = 0 [80] and taking the limit

∆ → 0 determines m1 as

−v1
m1

N
= v2

1

X1

∆
+Nv2

1w1
X2

∆
. (4.52)
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Plugging (4.52) back into (4.51), and now considering a finite χ we get

r(∆S) + (x2)χ
(
v + v2Φ′1 +Nv2wΦ′2

)
+ v2

1X1

(
(x2)2χ − (x2)χ

χ

)
+Nv2

1w1X2

(
(x2)3χ − (x2)χ

χ

)
= 0 .

(4.53)

When one expands χ = χ1/N + O(N−2), there are terms that behave as log x2. One gets

rid of these if χ1 obeys

χ1 = −v1X1 − 2v1w1X2 . (4.54)

We could have derived (4.52),(4.54) purely within the N →∞ limit. In this setup there is

no need for ∆ and χ is taken to be finite. Note that it behaves as χ ∼ 1/N since χ0 = 0

(4.33). The Dyson equation after the rescaling (4.50) is (4.51) with ∆ replaced with χ.

In taking the N → ∞ limit there are terms that diverge linearly with N and terms that

behave as log x2. Respectively these are

(x2)χ
(
v1
m1

N
+ v2

1

X1

χ
+Nv2

1w1
X2

χ

)
log x2

(
χv1(1 +

m1

N
) + 2v2

1X1 + 3Nv2
1w1X2

)
.

(4.55)

Setting these to zero fixes m1, χ1 as in (4.52),(4.54), with ∆ replaced by χ. We choose to

keep the ∆ shift, as is common in the literature [80, 87, 91, 6]. If one wishes to translate

our results, in the N → ∞ formalism, only a simple substitution of ∆ → χ1/N is needed

in the values of the diagrams given in Appendix D. What is left is the finite correction to

the leading Dyson equation for the Ψ propagator:

r(∆S) + v + v2Φ′1 +Nwv2Φ′2 = 0 . (4.56)

Following the same procedure for the S, σ, and u Dyson equations, one gets the finite

equations

p(∆S) + w + v + w2Σ′1 − v2Σ′2 +Nw3Σ′3 − 2Nv2wΣ′4 = 0

p(∆σ) +
N

2
w +

N

2
w2Π′1 +

N2

2
w3Π′2 −

N2

2
wv2Π′3 = 0

r(∆σ − 1) +Nv +Nv2F ′1 +N2wv2F ′2 = 0 ,

(4.57)
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where Σ′i, Π′i, and F ′i are the finite parts of Σi, Πi, and Fi, listed in Appendix D. The minus

signs in (4.57) come from fermion loops. From each Dyson equation one also gets a new

determination of m1 and χ1:

m1 =
1
∆
w2

1S1 − v2
1S2 + w3

1S3 − 2w1v
2
1S4

w1 + v1
χ1 =

−w2
1S1 + v2

1S2 − 2w3
1S3 + 4w1v

2
1S4

w1 + v1

m1 = − 1
∆

(w1P1 + w2
1P2 − v2

1P3) χ1 = −w1P1 − 2w2
1P2 + 2v2

1P3

m1 = − 1
∆

(v1Y1 + w1v1Y2) χ1 = −v1Y1 − 2w1v1Y2 ,

(4.58)

where Pi, Si, Yi are the residues of Πi, Σi, and Fi, respectively.

Fortunately, the four seemingly independent determinations of m1 and χ1 all agree, as

one can check by explicitly evaluating (4.52), (4.54), and (4.58) using expressions from Ap-

pendix D with ∆S = µ − 1 and ∆σ = 2. This provides a check that the renormalization

procedure we have chosen to cancel the divergences of higher-loop graphs is consistent.

Other schemes change the values for individual amplitudes, but the critical exponents re-

main the same [88].

Interestingly, there is yet another consistency check on χ1. One can show from (4.54)

or (4.58) that

χ1 = µ(2µ− 3)η1 . (4.59)

This is seen to comply with a scaling law formulated for the bosonic model in [90]:

2λ = 2µ−∆σ . (4.60)

That this relation is also valid in our case can be seen by applying the Callan-Symanzik

equation near the critical point for 〈σ(p)σ(−p)〉 or 〈ū(p)u(−p)〉 propagator.

Now we can solve (4.56)-(4.57) by eliminating w and v:

r(∆S) =
1
N
r(∆σ − 1) +

v2
1

N2
(F ′1 − Φ′1) +

w1v
2
1

N2
(F ′2 − Φ′2) . (4.61)

Expanding ∆S ,∆σ in (4.61), we can determine η̃2

η̃2

η2
1

=
1
2µ

+ (µ− 1)(2µ− 1) (−1 + π cotµπ +H(2µ− 2))

+
µ

µ− 2
+

1
2(µ− 1)

− 1− µ(µ− 2)
(
B(2µ− 3)−B(µ− 1)− 1

µ− 1
+

1
2µ− 3

− 2
) (4.62)
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where H(x) = ψ(x+ 1)− ψ(1) and the B(x) function is defined in the appendix. The first

line just comes from the Hatree-Fock diagrams, i.e. by iterating the 1/N Dyson equation

to the next order, the second is the contribution of Φ1, F1 and the third comes from Φ2, F2.

We also can determine the values of w2, v2 as

w̃2

η1w1
=

(2µ− 1)(µ− 1)
µ− 2

(3− µ+ (µ− 2)π cotµπ + (µ− 2)H(2µ− 3))

− µ ((7µ− 9)B(µ− 1) + (13− 10µ)B(2) + (3µ− 4)B(2µ− 3))

− µ+ 2µ(µ− 1)− µ(µ− 1)
2µ− 3

(4.63)

ṽ2
η1v1

=
η̃2

η2
1

− 1
2µ
− µ

2
+ µ(µ− 2) + 2µ(µ− 2) (B(2)−B(µ− 1)) . (4.64)

In (4.63), the first three terms come from iteration of the first order equations, while in

(4.64), the first two terms come from such iteration.

4.4.2 Calculation of λ2

As in section 4.3.2, the calculation of λ2 through order 1/D2 requires evaluating each

graph with one propagator altered from its leading power behavior (e.g. ΓSS/x
2∆S for an

S propagator) to its sub-leading power behavior (e.g. ΓSSΓ′SS/x
2∆S−2λ). The four Dyson

equations lead to four linear equations in the quantities Γ′SS , Γ′ΨΨ, Γ′σσ, and Γ′uu:

(−p(∆S)q(∆S , λ) + w + ΣS)Γ′SS + (w + Σσ)Γ′σσ + (v + Σu)Γ′uu + (v + ΣΨ)Γ′ΨΨ = 0

(−r(∆S)s(∆S , λ) + ΦΨ)Γ′ΨΨ + (v + ΦS)Γ′SS + (v + Φu)Γ′uu = 0(
−p(∆σ)q(∆σ, λ)

N
+ Πσ

)
Γ′σσ + (w + ΠS)Γ′SS + ΠΨΓ′ΨΨ + ΠuΓ′uu = 0(

− 1
N
r(∆σ − 1)s(∆σ − 1, λ) + Fu

)
Γ′uu + (v + FS)Γ′SS + (v + FΨ)Γ′ΨΨ = 0 ,

(4.65)

where for example we denote by ΣΨ all the diagrams that appear in the S propagator

where the Ψ propagator is corrected. As in section 4.4.1, the amplitudes diverge when

2∆S + ∆σ − 2µ→ 0, and the same procedure described there to regulate and subtract the

divergences and to remove terms proportional to log x2 carries over to the present case. The
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finite parts of all the quantities in (4.65) are given in Appendix E, as well as some further

remarks on their evaluation.

The system (4.65) must have a nonzero solution for the Γ’s, so the determinant must

be zero. This determines λ2. A way to calculate the determinant to sufficient accuracy

is to note that r(∆S)s(∆S , λ) ∼ 1/N0, and then expand the determinant into three 3 × 3

determinants, i.e. expanding in the line of Ψ field Dyson equation. All terms have to be

expanded up to 1/N2 accuracy. One also notes that λ2 only appears in the expansion of

p(∆S)q(∆S , λ) at this order. So λ2 is going to be a linear combination of the various sums

of diagrams given in the appendix, factors of w2 and v2, and terms that come from iterating

the 1/N equations. The final result is quite involved and we prefer to give it implicitly as

λ̃2

η2
1

= − 1
2(µ− 1)2

− 25
2(µ− 1)

+ 25− 5(µ+ 1)
2(µ− 2)

− 5
4(2µ− 3)

− µ− 2
2

+ 50(µ− 1)

+ (µ− 1)
(
−19

8
(µ− 2) +

45
2

(µ− 2)2 − 3
2
(2µ− 3)

)
− µ2(2µ− 3)2

8(µ− 1)

+ (µ− 1)2
(

21
4
− 9

4
(µ− 2)− 75(2µ− 3)− 25

(µ− 2)
− 10

(2µ− 3)

)
− 2µ(µ− 1)ṽ2 −

(µ
2

+ 2µ(2µ− 3)
)
w̃2 − 2µ(µ− 1)(µ− 2)

Fu + FS

η1v1

− µ(µ− 1)
(2µ− 3)2

µ− 2
Πσ

η1v1
− 2

µ(µ− 1)
(µ− 2)2

ΣS

η1v1
− µ

(
µ− 1
µ− 2

− 2µ
)

Σσ

η1v1

− 3µ(2µ− 3)(µ− 1)
Fσ

η1v1
− 3

2
(π cotµπ +H(2µ− 4)) .

(4.66)

The right hand side is a function of µ which can be obtained explicitly by substituting the

expressions (4.33), (4.63), (4.64), (F.1), (F.3), (F.4), (F.7), (F.8), and (F.9) into (4.66).

4.4.3 Calculation of the beta function

As explained in section 4.3.1, we can calculate the beta function once we know λ. Noting

that (4.66) gives the 1/N2 expansion term and subtracting 2λ1 we find

λ0 = ε/2, λ1(ε) =
ε2

4
+
ε3

8
− ε4

16
+O(ε5) (4.67)

λ2 =
(

5
16

+
9
4
ζ(3)

)
ε4 +O(ε5) . (4.68)
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Using (4.29), we compute the beta function for the heterotic string in a constant curvature

background:

β(g) = −Dg2 − 1
2
Dg3 − g4D

4

(
1 +

D

2

)
− g5D2

4

(
3
2
− D

3

)
− 3

2
ζ(3)g5D2 +O(

1
D3

) .

(4.69)

It is obvious that there is agreement with the first two loops of the expression (4.1), where

we use

β(g) = M
∂g

∂M
= − g

N − 1
gijβij (4.70)

and (4.2). We do not know of any calculation of the beta function of the heterotic string in

the minimal subtraction scheme that goes beyond two loops. In [92, 93] the beta function

was computed using the background field method, and found to be in three loops

β
(3)
ij =

α′3

8

(
3
2
RikjlR

kmnpRl
mnp −

1
2
RlmRi

lnpRj
m

np −
1
2
RjlR

lmnpRimnp

)
. (4.71)

The appearance of the Ricci tensor means that it is not minimal subtraction. Diver-

gences involving the Ricci tensor can only appear through closed loops where at least

one propagator starts and ends at the same vertex. Within the minimal subtraction

scheme, at more than one loop these terms combined with their counterterms never pro-

duce a simple pole [94, 95]. A small check of our result comes from the famous ζ(3)

term, ζ(3)α′4

2 RmhkiRjrt
m(Rk

qs
rRtqsh + Rk

qs
tRhrsq). This term is identical in the bosonic

[96, 97, 98], supersymmetric [94, 95], and heterotic [99] cases. In an expansion of the Vira-

soro amplitude, it is associated with the constant term in an expansion in the Mandelstam

variables s, t, and u. At loop order n + 1 in NLσM calculations, it seems likely that the

coefficient of ζ(n) is the same for the bosonic, supersymmetric, and heterotic cases (see [88]

for a comparison of the bosonic and supersymmetric cases).

In [100, 99, 101], the absence of a three-loop term of the form α′3R3 was noted. The

three-point scattering amplitudes suggest that there are also no RF 2 or F 3 in the effective

action. One knows that identifying the gauge connection with the spin connection in the

heterotic string effective action will give the superstring effective action, where there is no

α′3 term. So if there were any R3 terms in the heterotic case it would not be possible to
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cancel them. All this seems in conflict with the (4.69), where the term proportional to g4

would seem to correspond to an R3 term in the effective action. But it should be noted

that the relation between the effective action and the beta function is [102]

2κ2
Dα

′ δSeff

δgij
= Kkl

ij βkl , (4.72)

where Kkl
ij can be computed perturbatively. In the bosonic case, this was done in the

minimal subtraction scheme in [102, 103]; in the heterotic case, this was done in a different

scheme in [92, 93]; but we do not know of a minimal subtraction calculation of Kkl
ij in the

heterotic case. In the bosonic case, Kkl
ij receives contributions starting at two loops, and

it can be shown that this is compatible with an independent calculation of the effective

action using scattering amplitudes. The same thing may happen in the heterotic case: in

particular, R3 terms could indeed be absent from Seff , and the g4 term in (4.69) could come

entirely from Kkl
ij . A similar conclusion is reached in [104, 105] where it is shown that the

beta function of the heterotic string in the presence of background gauge fields has a term

at three loops that behaves as F 3, even though no corresponding term is present in the the

effective action.

Finally, it is possible to make a statement about the three-loop structure of the beta

function in the α′ expansion. Excluding the Ricci tensor and the Ricci scalar, since the

beta function is computed within the minimal subtraction scheme, the terms that are third

order in the Riemann tensor and are compatible with the g4 terms in (4.69) are given by

α′3
(

1
8
RklmnRi

mlrRj
k
lr −

1
16
RikljR

kmnrRl
mnr

)
. (4.73)

4.4.4 Singularities of the critical exponents; central charge of the CFT

Because λ involves products of Γ functions it is natural to investigate the location of its

singularities closest to the origin, as in [77]. Because λhet
1 = 1

2λ
bos
1 , the location of the pole

of λ1 coincides with the pole in the bosonic case, with half the residue. One also has to

note that η1(µ) behaves as η1 ∼ − 4
π2

1
2µ−1 i.e. it has a simple pole at ε = −1. But λ1’s first

singularity is at ε = −3, since the pole of η1 is canceled by a similar pole of χ1. Examining
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term by term the structure of λ2 it is easy to see that the singularities of λ2 come from the

η2
1 factor that multiplies the whole expression (4.66) and from the three-loop diagrams that

have the lagrange multiplier field propagator corrected, i.e. Π2σ, Π3u, F2u, and F2σ. Since

R3(µ) ∼ −1
2µ− 1

, R2(µ) ∼ 1
(2µ− 1)2

(4.74)

and λ2 has terms that behave as ∼ R2
3η

2
1 and R2η

2
1 times a µ polynomial with no zero at

µ = 1/2, we see that it has a fourth order pole. In all, one finds

λ1 = −3/(4π2)
ε+ 3

+O(1) b1 = − log(3 + κ)
2π2

+O(1) (4.75)

λ2 =
8/π4

(ε+ 1)4
+O((ε+ 1)−3) b2 = − 16/3π4

(κ+ 1)3
+O((κ+ 1)−2) . (4.76)

The 1/(κ + 1)2 term in b2 comes only from the factors R3η
2
1 and from the Hartree-Fock

diagrams. The singularities in the heterotic case are at the same locations and of the same

order as in the bosonic case.

Because of the sign of b2, there is clearly a zero of β(g) (computed through order 1/D2)

for negative g, close to κ = −1. The same caveats discussed in [77] apply: higher order terms

in 1/D could conceivably cause this zero to disappear or move significantly. In section 4.5

we will comment further on higher-order corrections. For the remainder of this section we

will assume that the computation of β(g) that we have carried out is precise enough to

describe the zero correctly.

The zero of β(g) arises through competition between the one-loop term (corresponding

to Einstein gravity) and b2 (corresponding to a combination of all α′ corrections to Einstein

gravity). Because the geometry has string scale curvatures (more precisely, L2 ∼ Dα′)

there is no reason to think that the worldsheet central charges are particularly close to the

flat-space results. Fortunately, one can calculate the central charges using Zamolodchikov’s

c-theorem:
∂c

∂g
=

3(D + 1)
2g2

β(g) . (4.77)

The result (4.77) holds for both the holomorphic and the anti-holomorphic sides: c and

c̃ differ by a constant. To derive the prefactor on the right hand side of (4.77), one can
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consider two-point functions of the graviton perturbation Oij = 1
2πα′∂Xi∂̄Xj + 1

4πΨ∂Ψ

around flat space, as is done in [77].3 This prefactor receives higher loop corrections, and

knowing Kkl
ij in higher loops, one can in principal compute them. As in the bosonic and

supersymmetric cases, the results suggest that with increasing D the critical point moves

closer to κ = −1: integrating (4.77) leads to

c = (D + 1) +
3(D + 1)

2

∫ κc

0
dκ

1
κ

(
−κ+

b1(κ)
D

+
b2(κ)
D2

)
≈ (D + 1)(1− 3

2
κc)

c̃ =
3
2
(D + 1) +

3(D + 1)
2

∫ κc

0
dκ

1
κ

(
−κ+

b1(κ)
D

+
b2(κ)
D2

)
≈ 3

2
(D + 1)(1− κc) ,

(4.79)

where we have noted that the central charge of the holomorphic side in flat space is c = D+1,

while for the anti-holomorphic side it is c̃ = 3
2(D + 1). The approximate equalities arise

from dropping the b1(κ) and b2(κ) terms from the integrand: their only role at this level of

approximation is to set κc. As κc gets closer to −1 (i.e. as D becomes large), the central

charges converge to

c =
5
2
(D + 1) c̃ = 3(D + 1) . (4.80)

The result (4.80) for c is the same as in the bosonic case, while for c̃ it is the same as the

type II case [77]. As in [77], (4.80) appears to set only an approximate upper bound on

the central charges. The dominant error in the calculation 4.79 is from the uncertainty in

the prefactor in (4.77). Analogous to the speculations in [77], it is conceivable that the

expressions (4.80) might in fact be exact. But this would require a significant conspiracy

between the prefactor in (4.77) and the beta function.

The fact that the location of the critical point at finite D is so close to the singularity

of λ means that the critical exponent λ evaluated at the critical point is large and positive.

This leads to an operator with a large and negative dimension, which appears to violate
3Another way to derive (4.77) is to use the relation of the central charge to the spacetime effective action.

At least up to two-loop order, the effective action at the fixed point is equal to −c/2κ2
Dα′ [106, 107, 108].

Also up to two loops, the Kkl
ij of (4.72) is simply given by a product of Kronecker δ’s, as in the bosonic case

[103]. Using the fact that in symmetric spaces

β(g)gij = −gβij gij ∂

∂gij
= g

∂

∂g
, (4.78)

one indeed ends up with (4.77).



77

unitarity. However, one could hope that a consistent GSO projection would project this

operator out of the spectrum.

4.5 Discussion

The existence of the AdSD+1 critical point depends on competition between one-loop and

1/D2 effects. It would therefore be instructive to compute the beta function through order

1/D3 and see whether the fixed point persists. Given that the number of diagrams needed

for the computation at the next order grows significantly, the shortest path seems to be

calculating χ3 and using (4.60) to deduce λ3. However, note that for the calculation of χ3

one needs to derive the residues of diagrams at order 1/D4, which include some six-loop

diagrams.

There is some reason to think that the singularities of λ at order 1/D3 are no worse than

at order 1/D2: examining the diagrams needed for the Dyson equations of the Lagrange

multiplier fields, we see that at order 1/D3 these come from either inserting a σ or u

propagator in the 1/D2 diagrams or inserting a loop of S or Ψ in the middle of the diagram.

The computation for the diagrams that come from inserting a σ or u propagator can easily be

seen to be reduced to the sum of diagrams similar to Π2 or Π3 with one different exponent. A

naive calculation does not produce any worse singularities than the ones already contained

in Π2 and Π3. However, one also has to compute the more difficult diagrams with the

additional S or Ψ loop.

It is evident that the methods of [80, 87], has many advantages over calculating Feynman

diagrams in momentum space. In the latter approach one encounters difficulties already in

calculating second order diagrams, since the propagators of the Lagrange multiplier fields

are in general hypergeometric functions. It is noteworthy that even though we start from

d = 2 + ε dimensions, one can calculate critical exponents of the O(N) model in any

dimension 2 < d < 4, and there is agreement with the results in three dimensions [109] in

the bosonic case.
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Perhaps the methods of [80, 87] could be applied to a related quantum field theory:

S =
∫
ddx

(
1
2
∇~Φ · ∇~Φ +

1
2
λσ~Φ · ~Φ− λN

4
σ2

)
, (4.81)

which for d = 3 is the proposed dual of an AdS4 vacuum of a theory with arbitrarily

high spin gauge fields [110]. What makes (4.81) susceptible to a position-space treatment

analogous to those in [80, 87] is that only cubic vertices are involved. It would be interesting

to compute, for example, the four point function of σ to order 1/N2 and compare it to the

corresponding AdS4 calculation, as is done for example in [111] at order 1/N .



Chapter 5

Conclusions

From the early days of both gauge theory and string theory there have been indications

of deep connections between the two. In the last decade these indications have been made

more concrete with the AdS/CFT correspondence and variants of the initial conjecture. In

this thesis we use the AdS/CFT correspondence to study aspects of quark-gluon plasmas

of a supersymmetric gauge theory.

Results from the experiments at the Relativistic Heavy Ion Collider suggest that a

strongly coupled quark-gluon plasma is formed after collisions of gold nuclei. The initial

temperature of the plasma is about 1.5 times larger than the confinement temperature of

QCD. The thermal distribution of outgoing particles suggests that the quark-gluon plasma

is almost in a state of thermal equilibrium. After the initial formation the QGP expands and

cools. Hydrodynamical simulations of the expansion are compatible with a viscosity over

entropy ratio lower than 0.2. This means that the QGP must be strongly coupled. These

two features of the QGP, strong coupling and time evolution, make standard methods of

gauge theories of limited applicability. Perturbation theory cannot attack strong coupling

problems and numerical methods on the lattice are limited to static quantities. This leaves

room for the use of string theory in order to study some of these processes, such as jet-

quenching.

One of the first simplifications done is that we choose to study a supersymmetric theory,

79
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N = 4 Yang-Mills theory, whose description in string theory is known and well studied.

Furthermore, when studying jet-quenching, we model the QGP as a static plasma. In string

theory, the QGP is modelled by a static black hole in ten dimensional space. The location

of its horizon inside AdS space sets the temperature of the theory. This geometry is known

as Schwarzschild − AdS5 × S5. We will ignore the five dimensions of S5, as the physics

associated with it has, to a large extend, to do with supersymmetry. A moving quark can

be thought of as the endpoint of a string dangling from the boundary towards the horizon.

This string can source both the graviton and the dilaton in the five dimensional background.

Both of these fields propagate to the boundary and leave an ”imprint” on the boundary. In

the language of gauge theory this can be translated into an expectation value of an operator.

For the case of the dilaton, the dual operator is a supersymmetric extension of the trace

of the field-strength squared. In chapter 2 we have calculated this expectation value and

found that that there is strong directionality. A more complete picture of jet-quenching

and the wake has to include the stress energy tensor of the boundary theory.

One should also be cautious in using these tools. First of all we examine a different the-

ory, that is supersymmetric and has all matter fields in the adjoint representation. Moreover

it does not exhibit confinement or chiral symmetry breaking. However these phenomena

are not present in QCD either above the confinement temperature. On top of that the uni-

versality of the viscosity computation gives us hope that we are not far from describing the

real physics of jet-quenching. Finally, our results are valid in the large N and large ’t Hooft

coupling g2
Y MN limit. Most quantities, such as the drag force, the jet-quenching parameter,

and the viscosity should get quantum corrections that scale as 1
N2 and (g2

Y MN)−3/2. Both

of these are about 10% and worth computing. It should be noted though that since we do

not know how to quantize string theory in a background with a Ramond-Ramond field 1
N2

cannot currently be calculated.

In chapter 3 we attack a slightly different question. Classical static black holes are

locally stable in asymptotically AdS spaces. When one slightly perturbs the shape of the

geometry, all small oscillations will die resulting in a static black hole. The linearized pro-
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cesses governing these phenomena can be described with the help of the master formalism,

enabling one to calculate all gravitational quasi-normal modes. Starting from the obser-

vation of some low-lying gravitational modes separated from a main series in the case of

a global AdS5 black hole we find some low-lying modes for AdS4 as well. In order for

the perturbation not to deform the boundary one has to use a special boundary condition

for the master field, contrary to cases in other dimensions. These low-lying modes are in

good agreement with predictions of hydrodynamics of the boundary conformal field theory.

Moreover hydrodynamics of the boundary theory suggest that these low-lying modes should

be present in all dimensions.

Finally in chapter 4 we calculate some higher order corrections for the supergravity

action of the heterotic string. One way, common in the literature is to calculate higher

order α′ corrections. We take a different path, supposing that the target space of our

theory has D dimensions and we expand in 1
D . Our results are accurate to all orders in α′.

One can then easily calculate the beta function and this has a zero close to gD = 1. This

would suggest a target space with negative curvature, but no matter fields. Conceivably,

one could imagine that cubic and higher order corrections in 1
D will make this zero disappear

or move significantly.



Appendix A

Gauge freedom and boundary

conditions

In this section we derive the asymptotic expressions for the metric perturbations δgab by

solving the system of equations (3.7)–(3.13). In doing so, it is important to realize that

equations (3.7)–(3.13) don’t determine the metric perturbations uniquely. We have seen

that the gauge freedom1

δgab → δgab +∇avb +∇bva (A.1)

present in any perturbation theory problem in general relativity enables us to set δgρa = 0

(this is what we referred to as axial gauge). However, even after we set δgaρ = 0 we still

have a residual gauge freedom left, and we would like to understand this residual gauge

freedom a bit better before we derive the asymptotic expressions for δgab.

The first thing to note is that generic gauge transformations of type (A.1) do not preserve

the form of the metric (3.7). Instead, generic transformations would just map our initial

solution onto something that doesn’t transform under the SO(3) isometry group of S2 in

any definite way. We only look at perturbations with the specific SO(3) structure defined

in (3.7). Therefore, we need to restrict the class of allowed gauge transformations to the
1In this section ∇a denotes the covariant derivative with respect to the four-dimensional metric (3.1).
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ones that preserve this SO(3) structure. Such transformations are of the form

va(τ, ρ, θ, φ) =
(
hτ (τ, ρ)S(θ, φ) hρ(τ, ρ)S(θ, φ) h(τ, ρ)Sθ(θ, φ) h(τ, ρ)Sφ(θ, φ)

)
, (A.2)

and they give

2∇(αvβ) = 2D(αhβ)S 2∇(αvi) =
[
∂αh− hαkS −

2
ρ
(∂αρ)h

]
Si

2∇(ivj) = −2hkSSij + (hkS + 2ρfhρ) γijS .
(A.3)

It is easy to see now that if we start with any scalar perturbation of the form (3.7), we can

set δgρa = 0 by solving three first order non-homogeneous differential equations for hτ , hρ,

and h. The residual freedom that remains after setting δgρa = 0 is reflected in the choice of

the three integration constants (which are functions of τ) that enter in the general solutions

of these equations. So in addition to setting δgρa = 0 we also have the freedom to prescribe

the time behavior of three of the other components of δgab at a given point. In particular, the

gauge freedom allows us to set the large ρ behavior of three such components to have no ρ2

term in a large ρ series expansion. Requiring all of these components (which are described

by the four functions HT , HL, fτ , fττ ) to have no ρ2 terms cannot be accomplished by

making a gauge transformation, and is therefore meaningful as a boundary condition on the

metric perturbations.

We now turn to the problem of finding the asymptotic expressions for the metric coef-

ficients δgab in axial gauge. We will set L = 1 throughout the entire calculation. With the

assumption

fρρ = fρ = 0 fττ = e−iΩτB(ρ) fτ = e−iΩτC(ρ)

HL = e−iΩτAL(ρ) HT = e−iΩτAT (ρ)
(A.4)



84

we first compute the quantities F and Fαβ that enter in equations (3.11) and (3.12):

F =
e−iΩτ

2k2
S

(
k2

S [2AL(ρ) +AT (ρ)] + 2ρfA′T (ρ)
)

Fττ =
e−iΩτ

k2
S

(
−2ikSρΩC(ρ) + k2

SB(ρ)− ρ2
[
2Ω2AT (ρ) + ff ′A′T (ρ)

])
Fτρ =

e−iΩτ

k2
Sf

(
kSfC(ρ)− 2iΩρf

[
AT (ρ) + ρA′T (ρ)

]
+

+ ρfkSC
′(ρ) + iΩρ2f ′AT (ρ)− kSρf

′C(ρ)
)

Fρρ =
e−iΩτρ

k2
Sf

(
A′T (ρ)

[
4f + ρf ′

]
+ 2ρfA′′T (ρ)

)
,

(A.5)

and Fρτ = Fτρ. The plan now is to plug the above expressions into equations (3.11) and

(3.12), and find a series solution for the corresponding differential equations. In order to do

this though, we need to get hold of the right-hand side of equation (3.12), perhaps in the

form of a large ρ series expansion. This can be done by solving the master equation (3.13):

Φ(ρ) = ϕ(0) +
ϕ(1)

ρ
+
ϕ(2)

ρ2
+
ϕ(3)

ρ3
+ · · · , (A.6)

where

ϕ(2) =
[

9ρ2
0

(k2
S − 2)2

+
k2

S − Ω2

2

]
ϕ(0)

ϕ(3) =
[
− 18ρ3

0

(k2
S − 2)3

−
ρ0(2 + k2

S)
2(k2

S − 2)

]
ϕ(0) +

[
3ρ2

0

(kS − 2)3
+
k2

S − 2− Ω2

6

]
ϕ(1)

(A.7)

and all higher order terms can be expressed in terms of linear combinations of ϕ(0) and ϕ(1).

The two constants ϕ(0) and ϕ(1) can thus be interpreted as the two integration constants

that appear when we integrate the master equation, which is a second order ODE. The above

expansion can then be used to find a series expansion of the right-hand side of equation

(3.12). The resulting expressions are long and not that insightful, so we will not reproduce

them here; their derivation is nevertheless straightforward.

We now solve for the functions AL(ρ), AT (ρ), B(ρ), and C(ρ) that completely determine

the metric perturbations via

δgρρ = δgτρ = δgρi = 0

δgττ = e−iΩτB(ρ) S(θ, φ) δgτi = ρe−iΩτC(ρ) Si(θ, φ)

δgij = 2ρ2e−iΩτ [AL(ρ) γij S(θ, φ) +AT (ρ) Sij(θ, φ)]

(A.8)
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in four steps:

1. We first solve for AT (ρ) from the Fρρ equation in (3.12) with the LHS given by the

corresponding expression in (A.5) and the RHS computed from the series expansion

(A.6). We find:

AT (ρ) = A
(0)
T +

A
(2)
T

ρ2
+

[
k2

Sρ0

2(k2
S − 2)

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)
+

+
k2

S(k2
S − 2Ω2)
12

ϕ(0)

]
1
ρ3

+O
(

1
ρ4

)
.

(A.9)

Here, we can think of A(0)
T and A(2)

T as integration constants: we have two integration

constants because the differential equation satisfied by AT (ρ) is second order, as can

be easily seen from the Fρρ relation in (A.5).

2. Next, we solve for C(ρ) from the Fτρ equation in (3.12). Again, the LHS of this

equation is given in (A.5), and the RHS can be computed from (A.6). We obtain:

C(ρ) = C(−1)ρ+

[
− ikSΩ

2

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)
+
kSC

(−1) + iΩ(2A(2)
T −A

(0)
T )

kS

]
1
ρ
+

+

[
ρ0(iΩA

(0)
T − kSC

(−1))
kS

−
ikSΩ(k2

S − 2)
6

ϕ(0)

]
1
ρ2

+O
(

1
ρ3

)
,

(A.10)

where C(−1) is an integration constant—we can see from the Fτρ relation in (A.5) that

the corresponding differential equation for C(ρ) is a first order ODE, so its solution

has to have one integration constant.

3. Similarly, we next solve for B(ρ) from the Fττ equation in (3.12). As can be seen from

the Fττ relation in (A.5), this equation doesn’t involve any derivatives of B(ρ), so its



86

solution doesn’t involve additional integration constants:

B(ρ) =
2(ikSΩC(−1) + Ω2A

(0)
T − 2A(2)

T )
k2

S

ρ2 +

[
k2

S − 2 + 2Ω2

4(k2
S − 2)

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)
+

+
2Ω(ikSC

(−1) + ΩA(0)
T )− 2(1 + Ω2)A(2)

T

k2
S

]
+

[
ρ0

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)
−

−
2ρ0Ω(ikSC

(−1) + ΩA(0)
T )

k2
S

+
k2

S(k2
S − 2)
6

ϕ(0)

]
1
ρ

+O
(

1
ρ2

)
.

(A.11)

4. Finally, we solve for AL(ρ) from the second equation in (3.11) with β = τ . Again,

this equation doesn’t involve any derivatives, so we have no integration constants:

AL(ρ) =

[
4A(2)

T − k2
SA

(0)
T

2k2
S

− 1
2

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)]
+

+

[
−

(k2
S − 2)A(2)

T

2k2
S

+
k2

S − 2
8

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)]
1
ρ2

+

+

[
−
ρ0A

(2)
T

k2
S

+
ρ0

4

(
ϕ(1) +

3ρ0ϕ
(0)

k2
S − 2

)
+
k2

S(k2
S − 2)
24

ϕ(0)

]
1
ρ3

+O
(

1
ρ4

)
.

(A.12)

It can be checked that the above series solutions automatically satisfy the other two

equations in (3.11) that we have not used. Also, the fact that the integration constants

A
(0)
T , A(2)

T , and C(−1) are still undetermined is a consequence of the residual gauge freedom

that we discussed at the beginning of this section: these three integration constants allow

us to set the values of three of the functions AL(ρ), AT (ρ), B(ρ), and C(ρ) at a given point

to whatever we want.

Requiring that the metric perturbations don’t grow like ρ2 at large ρ and using (A.8)–

(A.12), we get A(0)
T = A

(2)
T = C(−1) = 0, together with

ϕ(1) +
3ρ0ϕ

(0)

k2
S − 2

= 0 , (A.13)

which is the same as (3.21).

We note that the relations (A.13) and A
(0)
T = A

(2)
T = C(−1) = 0 make almost all terms
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written in the series expansions (A.9)–(A.12) disappear, and we’re left just with

HL =
k2

S(k2
S − 2)
24

e−iΩτ ϕ
(0)

ρ3
+O

(
1
ρ4

)
HT =

k2
S(k2

S − 2Ω2)
12

e−iΩτ ϕ
(0)

ρ3
+O

(
1
ρ4

)
fττ =

k2
S(k2

S − 2)
6

e−iΩτ ϕ
(0)

ρ
+O

(
1
ρ2

)
fτ = −

ikSΩ(k2
S − 2)

6
e−iΩτ ϕ

(0)

ρ2
+O

(
1
ρ3

)
,

(A.14)

which looks incredibly similar to the expressions found in section 3.3.2 of [70] in AdS5-

Schwarzschild. In light of the analysis done in [70], it is worth mentioning that the leading

coefficients in (A.14) give, up to a proportionality factor, the expectation value of the stress-

energy tensor in the boundary 2 + 1-dimensional CFT. Conservation and tracelessness of

the stress-energy tensor can then be easily checked using the same approach as in [70].



Appendix B

Anomalies

Since we have coupled only the right moving fermions to gravity it is natural to investigate

whether there are anomalies. These are related to a breakdown of general coordinate in-

variance or local Lorentz invariance. We will investigate only the latter, as is usually done

[112]. Indeed when there is a coordinate anomaly one can add a counterterm to the action

and convert it to a Lorentz anomaly [113]. It is convenient to use the tetrad formalism.

Local Lorentz transformations in this formalism are given by

e′µ
p(x) = eµ

q(x)Θp
q(x) . (B.1)

The Riemann tensor can be written Rµν
p
q, with mixed spacetime and tangent space indices,

and can be regarded as a two form R2. We only have to worry about the massless fields

of the supergravity sector [112]. The anomaly polynomials for the spinor and the gravitino

contain only terms that are proportional to polynomials in TrR∧2m
2 . In the AdS space that

we are interested in we can calculate

Rµν
a
bRκλ

c
a =

1
L2

(δc
kRµνλb + δc

λRµνbκ) (B.2)

which when antisymmetrizing to get the wedge product returns zero. So R2 ∧ R2 = 0 in

our case, and we do not have to worry about the gravitational anomalies. Another way to

view this is to say that the field strength H3 = dB2 obeys the modified Bianchi identity

dH3 =
1
4π

(TrR2 ∧R2 − TrF2 ∧ F2) . (B.3)
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A three form H3 obeying (B.3) is required for cancelation of perturbative heterotic string

worldsheet anomalies, as is briefly reviewed in [114]. Because TrR2∧R2 = 0, this is trivially

satisfied.



Appendix C

Position space methods for

calculating graphs

There are 11 diagrams needed for the calculation of η at 1/D2. We designate them by Σ,

Π, Φ, F . The way to compute them was developed in [80, 87] for the bosonic graphs and

extended to include fermionic graphs in [88, 89]. The main advantage of the method is

that there is no need to explicitly evaluate any Feynman diagram. Here we will only give a

few key observations that facilitate the evaluation of the diagrams. The first observation is

that the chain of two propagators is equal to a propagator times a prefactor. Graphically

this is shown in Fig C.1, where ν(x1, x2, x3) = πµ
∏3

i=1 α(xi). The third exponent x3 is

determined by the “uniqueness” [87] requirement
∑

i xi = 2µ, for the bosonic graphs and∑
i xi = 2µ − 1 if there are one or more fermion lines in the graph. An identity exists

for a three point vertex, which is similarly related to a “unique” triangle, where now the

uniqueness requirement is that
∑

i xi = µ. If there are one or more fermion lines the

uniqueness changes to
∑

i xi = µ + 1, and the results of [88] are unchanged in our case.

There is no similar identity for a four point function, and for the (1,1) supersymmetric

model that means that one has to retain the auxiliary field F . In computing the values

at order 1/D2, χ is set to zero [87]. For a non-zero ∆ the diagrams, for example the self

energy of Ψ designated A, lose their uniqueness. However one can subtract from A a graph
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α β

=

α + β − µ

=
α β α + β − µ

=
α β α + β − µ− 1

ν(α, β, 2µ− α− β)

ν(α−1,β,2µ−α−β)

(α−1)(2µ−α−β)

−

ν(α−1,β−1,2µ−α−β+1)

2(α−1)(β−1)

Figure C.1: Products of two propagators are related to a single propagator. So, in a two-
loop diagram,(Σ1 for example) inserting a point in one of the three propagators that connect
to one internal vertex can make this vertex unique. The dotted lines denote fermions. Since
we are dealing with chiral fermions, taking the trace in the third graph only produces one
half the full result. ν is equal to ν(x1, x2, x3) = π

∏3
i=1 α(xi).

=

α

βγ

µ− γµ− β

µ− α

ν(α, β, γ)

Figure C.2: An identity that allows the integration of a unique vertex. Only bosonic prop-
agators are shown. Similar identities with fermions can which are used in our calculation
can be found in [6]

B that has the same divergent substructure as A, but can be calculated for an arbitrary ∆.

So one has to compute (A−B)+B. Since B can be calculated for arbitrary ∆ and contains

the divergence, one can evaluate (A − B) at zero ∆ when both diagrams become unique.

A valuable first step in the calculation is the evaluation of all the self-energy graphs, which

we will not include here since it was done in detail in [87, 89]. We just note that the most

basic tool is the insertion of a point facilitated by the fact that we can write a propagator as

a product of two. Then one can choose one of the exponents in such a way that the vertex

that the propagator is attached to, becomes unique.



Appendix D

Calculation of the graphs needed

for η2

We give the results for the various graphs occurring in the 1/D2 calculation. We only give

the simple pole term and the constant term in an expansion in ∆. The purely bosonic

graphs were calculated in [87]. Compared to the calculation of the fermionic graphs in

[6], there are differences that have to do with taking the trace of fermion loops, i.e. some

factors of two in bosonic diagrams with fermion loops. Otherwise the calculation is almost

identical. We find small discrepancies with [6] in some of the diagrams, mostly factors of 2

and some minus signs. The most notable difference is Φ1, where the residue has a different

denominator. We believe that our value is correct, since it leads to the same χ1 as the

evaluations from the other equations (4.58).

B(x) = ψ(x) + ψ(µ− x) (D.1)

Σ1 =
2π2µα2(∆S)α(∆σ)

∆Γ(µ)

(
1 +

∆
2

[B(∆σ)−B(∆S)]
)

(D.2)

Σ2 =
2π2µα2(∆S)α(∆σ − 1)

∆α(∆σ − 1)Γ(µ)

(
1 +

∆
2

[
B(∆σ − 1)−B(∆S) +

1
∆σ − 1

− 1
∆S

])
(D.3)

Σ3 =
2π4µα3(∆S)α3(∆σ)α(µ+ ∆S −∆σ)

∆Γ(µ)

(
1
2

+ ∆ [B(∆σ)−B(∆S)]
)

(D.4)
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Σ4 =
π4µα3(∆S)α2(∆σ − 1)α(∆σ)α(∆S + µ−∆σ)

∆∆S(∆S + µ−∆σ)(∆σ − 1)2Γ(µ)

×
(

1 +
∆
2

[
B(∆σ) + 3B(∆σ − 1)− 4B(∆S) +

3
∆σ − 1

− 2
∆S

]) (D.5)

Π1 =
2π2µα2(∆S)α(∆σ)

∆Γ(µ)
(1 + ∆ [B(∆σ)−B(∆S)]) (D.6)

Π2 =
π4µα3(∆S)α3(∆σ)α(∆S + µ−∆σ)

∆Γ(µ)
(1 + ∆ [4B(∆σ)− 3B(∆S)−B(µ+ ∆S −∆σ)])

(D.7)

Π3 =
π4µα3(∆S)α2(∆σ − 1)α(∆S + µ−∆σ)

2∆α(µ−∆σ)∆S(∆S + µ−∆σ)(∆σ − 1)2Γ(µ)

×
(

1 + ∆
[
2B(∆σ)− 3B(∆S) + 2B(∆σ − 1)−B(∆S + µ−∆σ)

− 1
∆S

+
2

∆σ − 1
− 1

∆S −∆σ + µ

]) (D.8)

Φ1 = −π
2µα2(∆S − 1)α(∆σ)
∆∆S(∆S − 1)Γ(µ)

(
1 + ∆

[
B(∆σ)−B(∆S − 1)− 1

∆S − 1

])
(D.9)

Φ2 = −π
4µα3(∆S)α2(∆σ − 1)α(∆σ)α(∆S + µ−∆σ)

∆∆S(∆S + µ−∆σ)(∆σ − 1)2Γ(µ)

×
(

1 + ∆
[
B(∆σ)− 2B(∆S) +B(∆σ − 1) +

1
∆σ − 1

]) (D.10)

F1 = −2π2µα2(∆S)α(∆σ − 1)
∆∆S(∆σ − 1)Γ(µ)

(
1 + ∆

[
B(∆σ − 1)−B(∆S)− 1

2∆S
+

1
∆σ − 1

])
(D.11)

F2 = −π
4µα3(∆S)α(∆σ)α2(∆σ − 1)α(∆S + µ−∆σ)

∆∆S(∆S + µ−∆σ)(∆σ − 1)2Γ(µ)

×
(

1 + ∆
[
B(∆σ) + 3B(∆σ − 1)−B(∆S + µ−∆σ)− 3B(∆S)

− 1
∆S

+
3

∆σ − 1
− 1

∆S + µ−∆σ

])
.

(D.12)

Note that there is a similar three-loop diagram with Π3 with the role of the Ψ, u propagators

interchanged. But it scales as 1/N3. A very useful identity for the evaluation of various

quantities given in the text is B(x) = B(µ− x).



Appendix E

Calculation of the graphs needed

for λ2

In this section we give the formal expressions for the sums of the corrected diagrams (E.2)-

(E.11), the values of the 43 individual diagrams that contribute (E.12)-(E.30), and finally

the explicit form of the sums (F.1)-(F.9). Beforehand one has to define the functions

appearing as

R1 = ψ′(µ− 1)− ψ′(µ)

R2 = ψ′(2µ− 3)− ψ′(2− µ)− ψ′(µ− 1) + ψ′(1)

R3 = ψ(2µ− 3) + ψ(2− µ)− ψ(µ− 1)− ψ(1) ,

(E.1)

where ψ(z) = d log Γ(z)/dz.

ΣS = 2w2Σ1Sa + w2Σ1Sb − v2Σ2S+Nw3(2Σ3Sa + 2Σ3Sb + Σ3Sc)

−2Nv2w(Σ4Sa + Σ4Sb + Σ4Sc)
(E.2)

ΣΨ = −2v2Σ2Ψ − 2Nv2w(Σ4Ψa + Σ4Ψb) (E.3)

Σσ = 2w2Σ1σ +Nw3(2Σ3σa + Σ3σb)− 2Nv2wΣ4σ (E.4)

Σu = −2v2Σ2u − 2Nv2w(Σ4ua + Σ4ub) (E.5)

ΦΨ = v2Φ1Ψ +Nv2wΦ2Ψ Φσ = Nv2wΦ2σ (E.6)
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ΦS = 2v2Φ1S + 2Nv2w(Φ1Sa + Φ2Sb) Φu = 2v2Φ1u +Nv2wΦ2u (E.7)

ΠS = 4w2Π1S +Nw3(4Π2Sa + 2Π2Sb)− 4Nwv2Π3S (E.8)

Πσ = w2Π1σ + 2Nw3Π2σ ΠΨ = −2Nwv2Π3Ψ Πu = −2Nwv2Π3u (E.9)

FΨ = 2v2F1Ψ + 2Nv2w2F2Ψ FS = 2v2F1S + 2Nv2w(F2Sa + F2Sb) (E.10)

Fu = v2F1u +Nv2wF2u Fσ = Nv2wF2σ (E.11)

There are 19 diagrams associated with the S-propagator and eight for the propagator of the

other fields. The value of each graph of each graph is given below for completeness. The

bosonic ones were calculated in [87], while similar to the fermionic ones were done in [91].

Σ1Sa =
π2µ

(µ− 2)Γ2(µ)
Σ1Sb =

π2µ

(µ− 2)2Γ2(µ)
(E.12)

Σ2S = − 2(µ+ 1)π2µ

µ(µ− 1)Γ2(µ)
Σ3Sa =

(µ2 − 3µ+ 1)Γ(1− µ)π4µ

(µ− 2)3Γ(µ)Γ(2µ− 3)
(E.13)

Σ3Sb =
π4µΓ(2− µ)

(2− µ)Γ(µ− 1)Γ(2µ− 2)

(
3R1 +

2µ− 3
(µ− 2)2

)
(E.14)

Σ3Sc =
π4µΓ(4− µ)

(µ− 2)3Γ(µ− 1)Γ(2µ− 4)
Σ4Sa =

2π4µΓ(1− µ)
Γ(µ)Γ(2µ− 2)

(E.15)

Σ4Sb = − π4µΓ(2− µ)
Γ(µ)Γ(2µ− 2)

(
3R1 +

2µ− 3
(µ− 1)(µ− 2)

)
(E.16)

Σ4Sc =
2(µ− 3)(2µ− 3)Γ(1− µ)π4µ

(2− µ)Γ(2µ− 2)Γ(µ)
Σ2Ψ =

π2µ

(µ− 1)Γ2(µ)
= −Φ2S (E.17)

Σ4Ψa =
π4µΓ(1− µ)(2µ2 − 5µ+ 1)

2(µ− 2)Γ(µ)Γ(2µ− 2)
= −Φ2Sa Σ4Ψb =

π4µ3(µ− 3)Γ(2− µ)R1

2(2− µ)Γ(µ)Γ(2µ− 2)
= −Φ2Sb

(E.18)

Σ1σ =
π2µ(µ2 − 3µ+ 1)

(µ− 2)2Γ2(µ)
= Π1S Σ3σa =

π4µ(2µ2 − 7µ+ 4)Γ(1− µ)
(µ− 2)3Γ(µ)Γ(2µ− 3)

= Π2Sa (E.19)

Σ3σb =
3π4µΓ(3− µ)R1

(2− µ)3Γ(µ− 1)Γ(2µ− 2)
= Π2Sb Σ4σ =

π4µ(2µ− 5)Γ(1− µ)
(µ− 2)Γ(µ)Γ(2µ− 2)

= Π3S

(E.20)

Σ2u =
π2µ

Γ2(µ)
Σ4ua =

π4µ(4µ− 9)Γ(1− µ)
2(µ− 2)Γ(µ)Γ(2µ− 2)

= −F2sa (E.21)

Σ4ub =
3π4µΓ(2− µ)R1

2(µ− 2)Γ(µ)Γ(2µ− 2)
= −F2Sb (E.22)
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Φ1S = − π2µ

(µ− 1)Γ2(µ)
Φ1u =

π2µµ

(1− µ)Γ2(µ)
(E.23)

Φ2u =
π4µΓ(1− µ)(4µ2 − 11m+ 5)
2(1− µ)(µ− 2)Γ(µ)Γ(2µ− 2)

Π1σ =
3π2µR1

(2− µ)(2µ− 3)Γ2(µ− 1)
(E.24)

Π2σ =
π4µΓ(2− µ)

2(2− µ)3Γ(µ− 1)Γ(2µ− 1)

(
6R1 −R2 −R2

3 +
2(µ− 2)

(µ− 1)(3µ− 2)
(R3 −

1
µ− 2

)
)

(E.25)

Π3u = − Γ(2− µ)π4µ

4(µ− 2)2Γ(µ)Γ(2µ− 2)

(
6R2

1 −R2 −R2
3 +

2R3(µ− 2)− 2
(µ− 1)(2µ− 3)

)
= −F2σ (E.26)

Π3Ψ =
3Γ(2− µ)π4µR1

(2µ− 3)Γ(µ)Γ(2µ− 1)
= Φ2σ F1Ψ =

µπ2µ

(1− µ)Γ2(µ)
(E.27)

F2Ψ =
π4µ(4µ2 − 11µ+ 5)Γ(1− µ)

2(1− µ)(µ− 2)Γ(µ)Γ(2µ− 2)
(E.28)

F1S = − π2µ

Γ2(µ)
F1u =

3(µ− 1)π2µ

2(µ− 2)Γ2(µ)
(E.29)

F2u =
π4µΓ(2− µ)

4(µ− 1)2(µ− 2)2Γ(µ)Γ(2µ− 2)

(
(µ− 1)(6R1 −R2 −R2

3)

+
2(µ− 2)R3

2µ− 3
+

2
2µ− 3

− 4
µ− 1

)
.

(E.30)



Appendix F

Summing up graphs

In this subsection we give the explicit values for the various sums appearing in the λ2

calculation. We have omitted the 1/N2 factor that multiplies all of the diagrams so that

the expression (4.66) for λ̃2, does not contain any factors of N .

ΣS

η1v1
= −1 +

µ+ 2
µ− 1

+
2

(µ− 1)2
+ 2µ(2µ− 5) + 2µ(2µ− 3)(µ− 3)(2− (µ− 2)2)

− 4µ(µ− 2)− 6µ(µ− 2)R1

(F.1)

ΣΨ = −η1v1

(
µ2(µ− 2)(2µ− 3)

µ− 1
+ 3(µ− 1)(µ− 3)R1

)
= ΦS (F.2)

Σσ = −η1v1

(
µ(3 + µ(3µ− 7))

(µ− 1)2
+ 3µ(µ− 2)R1

)
=

ΠS

2
(F.3)

Σu = η1v1(µ(8− 4µ+ 3(µ− 1)R1) = FS (F.4)

Φσ = η1v1
3µ(µ− 1)(µ− 2)R1

2µ− 3
= (ΠΨ)/2 (F.5)

Φu

η1v1
= 1 + 6µ− 4µ2 − 1

µ− 1
= − FΨ

η1v1
(F.6)

Πσ

η1v1
=
(

3µ(µ− 2)
2(2µ− 3)

R1 −
µ

µ− 1

[
6R1 −R2 −R2

3 +
2((µ− 2)R3 − 1)
(2µ− 3)(µ− 1)

])
(F.7)

Πu

η1v1
=
µ(µ− 1)
µ− 2

(
6R1 −R2 −R2

3 + 2
(µ− 2)R3 − 1

(2µ− 3)(µ− 1)

)
= − 2Fσ

η1v1
(F.8)

Fu

η1v1
=

3
4
µ(µ− 1)
µ− 2

+
µ

4

(
6R1 −R2 +R2

3 −
4

(µ− 1)2
+

2
(2µ− 3)(µ− 1)

+
2(µ− 2)
2µ− 3

R3

)
.

(F.9)
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