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In this article I review duality symmetries in string
theory and quantum field theories.

1. Introduction

One of the questions which has been around almost
since the beginning of civilization is: what are we and
everything around us made of? The conventional ap-
proach to our search for the answer to this question has
been based on the so-called reductionist approach. Ac-
cording to this approach we try to describe matter by 1ts
elementary constituents, and develop a theory which
describes various properties of these constituents. Given
a complete understanding of the dynamics of these
constituent particles, we should in principle be able to
derive the various properties of all other matter. Thus
for example, the property of a hydrogen molecule can be
explained by knowing the properties of its constituents,
the hydrogen atoms; the property of a hydrogen atom 1s
explained from the property of its constituent proton and
electron; and the property ot a proton itself 1s explained
in terms of its constituents, namely the quarks. Of
course 1n practice it 1s almost never possible to carry out
such analysis exactly, and one needs vartous approxi-
mation schemes. This problem is particularly significant
while dealing with systems with large number of con-
stituent particles, as in condensed matter physics; and
there we need to develop new techniques to analyse such
systems. But in principle (e.g. if we had a large enough
computer) there is no obstruction to deriving the prop-
erties of matter from those of its constituents.

The above approach requires us to make a clear dis-
tinction between particles which are elementary and
those which are composite: made of two or more clc-
mentary particles. After the advent of rclativistic quan-
tum mechanics, particularly quantum f{icld theory we
were forced to modify this viewpoint somewhat due to
the possibility of particle production in collisions (note
1), Thus for example 1f we bring together an clectron
and a positron, they can annthilate and produce photons.
This might lead us to behieve that a photon should be
considered as being made ol clectron and positron, In-
deed, according to the principles of relativistic quantum
mechanics, the photon can, for a short time, extst as an
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electron—positron pair. Similarly, the mediators of weak
interaction, W* and Z, can decay into other elementary
particles. As a concrete example we can take the Z
boson, which can decay into an electron—positron pair.
Due to such phenomena, strictly speaking there is no
concrete experiment possible even in principle which
can distinguish a composite particle from an elementary
particle. Our present understanding of the physics of
elementary particles, based on the standard model, treats
electron, positron, various quarks and antiquarks (which
are the building blocks of the proton, neutron and the 7
mesons) as well as Wi, Z, and the photon as elementary
particles. This theory has been enormously successsful
in explaining all known experimental results involving
these particles to a very high degree of accuracy. Still,
we should keep in mind that 1t 1s 1n principle possible to
devise a theory in which some of these particles are
bound states of the other particles. For example, one
might have a theory in which the Z-boson appears as a
bound state of the electron and the positron (note 2).
The success of the standard model can be reproduced
since 1t 1s 1n principle possible to ensure, by choosing
suitable interaction between the electrons, positrons,
quarks and other elementary particles in this new theory,
that all the predictions of this new thcory agree exactly
with that of (he standard modcl. Such a theory will in-
volve a very complicated interaction between the cle-
mentary particles, including action at a distancce also
known as non-local interactions (note 3). On the other
hand, the standard model 1s based on a very simple set
of intcractions between the particles which are consid-
ercd as clementary in this model. Hence, even if we
have such an alternative thcory where the Z boson s
regarded as a bound state of the clectron and the posi-
tron, we would still regard the standard modcel, and nol
this (hypothetical) alternative theory, as {fundamcental.
This in turn would require us to regard the Z0 boson (as
well as the clectron and the posittron) as elementary par-
ticle, as this is how the standard model ts formulated.

To summarize this discussion, in relativistic quantum
mechantes we distinguish between elementary and com-
posite particles by demanding that the theory lormulated
in terms of elementary particles has simple iteractions.
This scems to be a highly subjective notion, but there
are delinite ¢riteria for what we call simple interactions:
the interactions  described by renormalizable  local
quantum field theories. For understanding the rest ot
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this article it 1s not necessary to know the precise deli-
nition of a renormalizable local quantum field theory,
but one should remember that these are special kind of
theories, and not all quantum ficld theorites fall into
this category. The standard model 1s based on such a
quantum ficld theory. In this theory the elefmntary par-
ticles include electrons, quarks, photon, W™ and Z bos-
ons etc. On the other hand the proton 1s a composite
particle made of quarks 1nteracting via the exchange of
cluons.

String theory 1s based on the same reductionist ap-
proach, although the clementary constituents, instead of
betng particles, are strings (note 4). According to this
vicwpoint, the spectrum of particles in string theory can
be divided into two classes: the elementary particles
which are just different excitations modes of a single
string, and the composite particles which are made of
more than one (quite often infinite number of) strings.
The theory 1s completely described by specifying the
interaction between the elementary constituents, namely
the strings. The interactions involving composite objects
can be derived by knowing the interaction between the
clementary strings, although the calculations involved
may be quite difficult in some cases.

Before 1 conclude this section I would like to make a
note of the terminology without which this article may
be somewhat confusing. By elementary particles in a
quantum ficld theory I shall refer to only those particles
which are the elementary quanta associated with the
ficlds of the quantum field theory. In a layperson’s lan-
guage this amounts to taking a wave assoclated with the
field (e.g. the electromagnetic wave in case of electro-
dynamics) and associating a particle with it using the
wave-particle equivalence of quantum mechanics. Any
other kind of particle in the theory which is not associ-
ated with the fields in this fashion will be refered to as
composite particle. Examples of such composite parti-
cles will involve bound states of two or more elementary
particles, e.g. the hydrogen atom which is a bound state
of electron and proton (which in turn is a bound state of
quarks), and also solitons. Solitons are solutions of the
classical field equations (analog of Maxwell’s equation
in electrodynamics) with energy localized around a
given point in space. When we make the classical field
theory into a quantum theory, these solitons behave like
particles composed of infinite number of elementary
particles. There is no known particle which can be iden-
tificd as a soliton in the standard model, but many
quantum field theortes have such particles in their spec-
trum.

In string theory by elementary particles I shall refer to
those ‘particle’-like states which arise as quantum states
of a single string. All other particles will be referred to
as composite particles. These will include bound states
and solitons, and also the Dirichlet branes described in
the previous article.
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2. Duality

In this section I shall describe the basic ideas of duality
and then discuss some examples. Let us start with the
dctinition.

2.1 Definition

In order to understand the notion of duality in quantum
field theory or string theory, we need to first recall the
steps which are normally followed in defining a quan-
tum theory. These are as follows:

¢ Begin with a classical system described by a certain
set of dynamical degrees of freedom with a certain
Hamiltonian (note 5).

e Quantise the system by replacing the Poisson brack-
ets between the canonically conjugate variables by
commutator brackets (note 6).

Duality 1n its most general form is a statement of
equivalence between two or more ‘apparently different’
quantum theories. Here by apparently different theories
we refer to theories whose corresponding classical
theories are genuinely different, i.e. there is no change
of variables which can relate these classical theories.
Two such theories will be called dual to each other if
they are identical as quantum theories, 1.e. if there is a
unitary transformation relating the Hilbert spaces of the
two theortes under which all correlation functions in one
theory are mapped exactly to the corresponding correla-
tion functions in the other theory. Thus a dual pair of
theories represent two theories which are identical as
quantum theories, but yet their classical limits are
genuinely different.

One might wonder how this could be possible. The
classical limit of the theory can be regarded as the
i — 0 Iimit of the quantum theory, and so if two theo-
riecs are the same as quantum theory, i.e. they are same
for finite s, how can they look different in the & — 0
Iimit? The key to understanding this phenomenon is to
note that /i = 0 does not define a unique limit. In order
to define this limit uniquely, we must also specify which
quantities are kept fixed in this limit. In general, we may
be able to define different classical himits by holding
fixed different sets of quantities as we take # — 0 limit.
The resulting classical theories are very different, and
yet they are the classical limits of the same underlying
quantum theory (note 7).

I shall tllustrate this through an example. There are
quantum field theorics (as well as string theories) which
contain particles carrying electric charge as well as par-
ticles carying magnetic charge in their spectrum. If e
denotes the quantum of electric charge, g denotes the
quantum of magnetic charge, and ¢ denotes the speed

CURRENT SCIENCE, VOL. 77, NO. 12, 25 DECEMBER 1999



of light in the vacuum, then they satisfy a quantization
rule:

cg = 2nhc. (2.1)
There are many examples of quantum field theories and
string theories of this type which admit two possible
classical limits. We can take /i —» 0 keeping g fixed, or
i > 0 keeping e fixed. These classical theories are not
equivalent, although they are different limits of the same
underlying quantum theory. For example in the first
limit, the magnetically charged particles arise as soh-
tons, while electrically charged particles arise as ele-
mentary particles. On the other hand in the second limit,
the electrically charged particles arise as solitons, while
the magnetically charged particles arise as elementary
particles. For future reference, I shall describe the
h— 0 limit with g fixed as the first classical theory,
while the # — O limit with e fixed as the second classi-
cal theory. Also I shall refer to the quantization of these
theories as the first and the second quantum theories
respectively, although they describe the same theory. In
this notation, the first and the second theories are dual
to each other. This particular kind of duality 1s known as
electric-magnetic duality.

From the above discussion we see that under duality,
the elementary particles of first theory gets mapped to
the composite particles of the second theory and vice
versa. In other words the same particle may be consid-
ered elementary in one description and composite in the
other description. Thus in theories possessing dual de-
scriptions; the question of whether a given particle
is elementary or composite has different answers, de-
pending on which description we use for the theory
(note &).

Typically in a quantum field theory, or a string theory
we compute scattering amplitude/cross section for scat-
tering involving various particles in the spectrum. Such
an amplitude can be expressed as a power series in 7, with
the leading contribution known as the classical contribu-
tion, and the other terms known as quantum corrections. It
is clear that such a rearrangement of terms depends cru-
cially on what quantities are considered to be /i independ-
ent (e.g. kept fixed in the ‘classical limit” i — 0). In
particular in the example of the previous paragraph, if K
denotes some physical quantity, then quantization of the
{irst theory will give a power scrics expansion 1n /i with
coefficients regarded as functions of g:

K = ZK;;(,;);;"_ (2.2)

#=(}

On the other hand, quantization of the second theory
will give a power series expansion of the sume quantity
with coeflicients regarded as functions ot é:
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K=Y K,(eh" (2.3)
n=0

Although these two expansions describe the same
quantity K, they look very different. In particular the
[cading term Kj in the expansion (2.3) will contain 1n-
formation about the non-leading terms in the expansion
(2.2). Thus we see that the classical result in one theory
may contain information about quantum effects in the
dual theory, i1.e. duality mixes up classical and quantum
effects!

Since 7 is not a dimensionless parameter, it is useful
to reanalyse the situation in terms of cxpansion 1n di-
mensionless parameters. For this, let us introduce di-
mensionless parameters:

¢ =el2nhc, g =gl 2nkc. (2.4)
For future reference we note that the parameter € I
known as the coupling constant of the first theory, since
1t measures the strength of the interaction or coupling
between two elementary particles. (As stated earlier, in
the first theory the electrically charged particles appear
as elementary particles.) By the same token, g 1s the
coupling constant of the second theory. In terms of @
and g, eq. (2.1) takes the form

eg =1. (2.5)
Let us now consider the expansion given in (2.3). Since
h is a dimensionful paramecter, different terms 1n the

expansion (2.2) or (2.3) have different dimensions. We
can remedy this situation by defining new coeflicients

L, =K, (e)e* 1 2nre)", L, =Kig)e™1@2rc)", (2.6)
so that (2.2) and (2.3) now take the form:
K=Y L™, (2.7)
and
(2.8)

K = 2 LH:‘.EFE”
n

respectively, Since @ and ¢ are dimcenstonless parames-
ters, cach term in the expansion must have the same di-
mension. Furthermore since ¢ orematns fixed in the
I = 0 limit of the fiest theory, all the coctticients Ly
arce finite in this limit, Similarly all the coctherents K,
are {inite in the = 0 Himit of the sceond theory. This
shows that the expansion (2.2) can be regarded as an
cxpansion in the dimensionless parameter @, while ex-

Lo



SPECIAL SECTION: STRING THEORY

nansion (2.3) can be regarded as an expansion in the
dimensionless parameter §. Since € and g are related
by eq. (2.5). it is clear that the individual coeflicients of
expansion in the two serics are going to be very differ-
ent. although both series represent the cxpansion of the
same physical quantity. In future discussion, 1 shall al-
ways use these dimensionless coupling constants in the
perturbation expansion, although one can always convert
this to an expansion in /i by reversing the procedure
followed here.

At this point the reader may recall our discussion in
the last section. There T pointed out that in relativistic
quantum mechanics, there is no strict distinction be-
tween elementary and composite particles; for example
it may even be possible to regard the Z boson as a bound
state of electron and positron by introducing suitably
complicated interaction among the electron, positron
and the quarks. In principle this can also be taken as an
example of duality — duality between the standard model
and the (hypothetical) new theory where the Z boson is a
bound state of electron and the positron. However such
alternative descriptions, although possible, are not par-
ticularly useful or illuminating, since this hypothetical
dual theory will involve very complicated interaction
between its elementary particles and will not be usetul
for anything. In this article we shall focus on only those
kinds of dualities which relate two apparently different
theories, each with simple interaction rules. In case of
quantum field theories this would require that each of
the two theories correspond to a renormalizable local
quantum field theory (note 9), whcreas 1n the case of
string theory, this would require that each of the two
theortes 1s governed by simple interactions of the kind
described in the previous article.

Finally, for readers tamiliar with thc Ising model in
statistical mechanics, one can draw an analogy with the
duality in the Ising model. There the duality relates the
high tempcrature phase of the theory to the low tempera-
ture phase, and under this duality the order and the dis-
order paramcters get exchanged. The role of temperature
in the Ising model i1s played here by A, or, in terms of
dimensionless numbers, the coupling constant ¢ . The
order parameter 1s the analog of the field associated with
an elementary particle, whereas the disorder parameter
is the analog of the ficld associated with a composite
particle. Duality transformation exchanges them.

2.2 Examples

I shall now give some concrete examples of dualitics. As
I have already said, such examples exist both in quan-
tum ficld theortes and in string theorics (and as you will
lcarn from a subsequent article, also between quantum
field theory and string theory). Since you have already
learned about many string theories in the previous arli-
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cle, I shall begin with examples of dualities involving
string theories. At the end I shall give an example of
duality in a quantum field theory,

1. You have learned that in ten (9 épace, I time) di-
mensions there are five different consistent siring
theories, two of which are Type-I and SO(32) het-
erotic string theories. In the classical limit these
theories appear to be very different. Indeed, the
Type-I theory contains both closed and open strings
in its spectrum of elementary particles, whereas the
heterotic string theory has only closed strings. How-
ever, it has been found that as quantum theories they
are the same. This implies, among other things, that
the complete spectrum of states (including elemen-
tary and composite particles) in the two theories are
identical, The dimensionless coupling constants tn
the two theories are related by a formula simifar to
eq. (2.3) (note 10).

2. You have also learned that starting with a string the-

ory tn ten dimenstons, we can get a lower-
dimensional theory by compactification, in which
some of the space directions are curled up into a
small compact manifold. The example that I am go-
ing to discuss now Involves string theories in which
some of the dimensions have been compactified. The -
first of these 1s the SO(32) heterotic string theory,
with four of the directions compactitied on a four
dimensional space known as T'—the four-
dimensional torus. This space 1s not very ditticult to
describe; take a four dimensional Euclidean space,
pick four mutually orthogonal directions, and make
each of these four directions into circles instead of
infinite line. The resulting thcory has 5 infintte
space-like dimension and one time dimension (which
Is always infinite). The second theory involves Type-
ITA string theory, with four dimensions compactified
on another four-dimensional space called K3. Unlike
the space T which is simple to describe, K3 is a very
complicated space. Indeed, many of the geomeltric
properties of this space (e.g. the distance betwecn a
pair of points in this space) are unknown to this date.
The resulting theory again has five infinite space-like
directions and one time direction.
It turns out that these two theories are quantum me-
chanically equivalent, although classically they look
very different. The dimensionless coupling constants
of the two theories are again related by an equation
analogous to (2.5).

3. This example will again involve compactiftied string
theories, but with stmpler compact spaces. Consider
Type-HA string theory, with onc direction compacti-
fied on a circle. The resulting thecory has 8 infinite
space-like dimensions and | time dimension. Now
consitder Type-IIB string theory, and again compac-
tily on a circle. The resulting theory again has 8 1n-
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finite space-like dimensions and 1 time dimension. It
turns out that these two theories describe the same
quantum theory. But in this case something special
happens; they also describe the same classical the-
ory! In fact, if we compare the % expansion of the
two theories, they agree to each order in A. Put an-

other way, the dimensionless coupling constants of

the two theories are the same!

From this discussion it would seem that this example
does not quite fit 1n our scheme; if the theories are
the same as classical theories then it seems almost
inevitable that quantization will also give the same
theory; so where 1s the surprise? The surprise here
lies in the fact that they are the same as classical
theories! Type-IIA and Type-I1B string theories 1n ten
dimensions are very different theories. So it 1s cer-
tainly a nontrivial fact that upon compactitying two
different theories on a circle we get the same theory.
The surprise becomes deeper when one compares the
radir of the circle of compactification of the two theo-
ries. Let R, denote the radius of the compact circle in
the first theory, and Ry denote the radius of the com-
pact circle in the second theory. It turns out that the
two theories describe the same classical (and quan-
tum) theory only if these two radii satisty the relation
RiRg=a’, (2.9)
where a’ is a constant of dimension length square,
and 1s related to the mass per unit length T of the
string via the relation:

- h
2acT

(2.10)

a.f

From this relation we see that smaller 1s the value of

Ra, larger is the value of Rp (and vice versa). Thus
for this theory there 1s no single answer to what is the
radius of the compact direction. It depends on
whether we use the description based on the Type-
ITA string theory, or the description based on the
Type-I1B string theory.

What this example teaches us is that even in classical
string theory, there 1s no invariant notion of geome-
try of a compact space-time. The same classical
string thcory may have two different descriptions
with very dilferent gecometrics. Thus in string theory
not only the notion of c¢clementary particles and clas-
sical ftmit is picture dependent, but the notion of ge-
ometry is also picture dependent!

Dualitics of the kind discussed here, which do not
mix up classical and quantum cfiects or elementary
and composite particles, but mvolves map between
different gecomelries, have a specral name. These are
known as T-dualities.
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Another example of T-duality is the duality between
SO(32) heterotic string theory with one direction
compactified on a circle of radius R, and Eg X E5 het-
erotic string theory with one direction compactified
on a circle of radius (a¢'/R). Due to this duality, the
duality between the SO(32)-heterotic string theory
compactified on 7% and Type-IIA string theory com-
pactified on K3 also holds if we replace the SO(32)-
heterotic string theory by the Eg X Eg heterotic string
theory.

. S0 far I have discussed examples of dualities which

map one string theory to another string theory. But
there are also examples of duality transformations
which take a particular string theory to the same
string theory, but different value of the coupling
constant labelling the theory. These theories are
known as self-dual theories. An example of this is the
Type-1IB string theory 1n 9 + 1 dimension. Besides
the fundamental constants #, ¢ and a’, Type-1IB
string theory 1s parametrized by a dimensionless
coupling constant (note 11). It turns out that for any
two values of this coupling constant, say ¢ and &’,
related by the relation

o=l (2.11)
¢

the corresponding Type-IIB string theories are
quantum mechanically equivalent. However, if one
considers perturbation expansion of any physical
quantity in the coupling constant, clearly the coetfi-
cients of expansion in powers of € will be very dif-
ferent from the coecfficients of expansion i1n powers
of ¢’ = & ~'. By following the example of electric-
magnetic duality discussed carlier, the expansion iIn
¢ can be reagrded as an expansion in /i in the first
theory, and the expansion 1n ¢’ can be regarded as
an cxpansion in /i in the sccond thecory. Thus this
transformation mixes up the classical and quantum
effects in the two theoriecs, and 1s an example of a
duality transformation in the same sensc as defined 1n
the last subsection.

Finally let mc give an example of duahity 1n a quan-
tum field theory. There is a special supersymmetric
gauge theory, known as N =4 supcersymmetric
SU(2)-gauge theory, in four-dimensional space-time
(3 space, | time). This theory has electrically
charged particles as clementary particles and mag-
nctically charged particles as solitons. The strength
ol the interaction between the clementary electrically
charged particles is controlled by o dimensionless
coupling constant € =e¢/J2ahc where ¢ is the
quantum ol clectric charge, This theory turns out to
be sceif-dual under an electric-magnetic duality trans-
formation of the Kind desenibed earhier. In other
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words, the theory at coupling constant € 18 equiva-
lent to the same theory at coupling constant
g’ = (1/¢). We shall refer to the theory with cou-
pling constant € as the first theory, and the theory
with coupling constant €’ as the sccond theory. The
duality transformation relating the two theories maps
an electrically charged elementary particle of the first
theory to a magnetically charged soliton of the sec-
ond theory. Note that the value of one quantum of
magnetic charge (after rescaling according to eq.
(2.4)) in this second theory is (1/¢’) = € — the same
as the value of the electric charge quantum in first
theory. Similarly the duality transformation maps a
magnctically charged soliton of the first theory to the
electrically charged elementary particle of the second
theory.

3. Testing duality conjectures

So far I have discussed the basic notion of duality sym-
metries, and have given some examples in the context of
string theory. However 1 have not addressed one basic
question: how do we guess, test or prove the existence
of duality between two apparently different theories? At
a conceptual level the answer is simple; since duality 18
a statement of quantum equivalence between two appar-
ently different classical theories, one should compute
various physical quantititics in both quantum theories
and compare answers. If the two theories are dual to
each other then the answers should agree. The problem
however is that typically in a quantum field theory or a
string theory one can never perform an exact calcula-
tion. Instead what one has is a perturbation expansion In
h, which, by following the procedure outlined in the last
section, can be converted into a perturbation expansion
in some dimensionless coupling constant, But there 1s no
reason for the individual terms i1n the perturbation ex-
pansion in a pair of dual theories to agree. Indeed, 1n the
electric-magnetic duality example discussed tn the last
section, one description of the theory gives an expansion
in the dimensionless coupling constant € defined in eq.
(2.4), while the other description gives a perturbation
expansion in (1/¢ ). By knowing the first few terms in
both the perturbation series we cannot determine 1f the
two answers are the same. In fact, not only can we not
prove duality this way, we cannot even test duality, as
duality does not predict any simple relationship between
the two scts of expansion coefficients (note 12).

This 1s where supersymmetry comes to our rescue. As
you have learncd from the previous article, supersymme-
try is not a symmetry that is observed in nature and
hence must be broken below some energy scale, but it is
a property of a wide class of (compactified) string theo-
rics. In theories with supersymmetry, there are often
restrictions on the kind of quantum corrections which
can modify a classical answer. In particular in some su-
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persymmetric string thcories there are special physical
quantities for which there are no quantum corrections;
thus the classical answer (the leading term in A expan-
sion) is the complete quantum answer. The theorems
which guarantee absence of quantum corrections are
usually referred to as nonrenormalization theorems, and
such physical quantities are known as nonrenormalized
quantities. For such theories we are in a better position
to test duality, since we can now compute some physical
quantities exactly and hence compare their values in the
two different descriptions to see if they agree. In some
cases a given physical quantity may be exactly comput-
able in one description due to absence of quantum cor-
rections in that description, but can only be computed as
a perturbation expansion in the dual description. In this
case one can take the exact answer from the first de-
scription, expand it in Taylor series in the coupling
constant of the theory in the dual description, and check
if each term in the Taylor series expansion agrees with
the explicit computation in the second description using
perturbation theory.

[t should be clear from this discussion that such
analysis can never provide a proof of duality, since in
these theories the nonrenormalization theorems hold
only for a small subset of physical quantities. In order to
prove duality between two theories we need to show that
all physical quantities in the two theories agree. Never-
theless, many nontrivial tests of duality have been pro-
vided by these nonrenormalization theorems. Also we
should emphasize that although supersymmetry 1s neces-
sary for testing duality, in general there is no reason why
duality should only be a property of supersymmetric
theories. In fact there are several conjectured dualities
between nonsupersymmetric theories which have been
derived by starting from a dual pair of supersymmetric
theories, and then breaking supersymmetry 1n both
theories by following a specific set of rules. Thus the
conjectured dualities involving these nonsupersymmetric
theories are on a reasonably solid footing, although we
cannot directly carry out a test of duality involving these
theories.

We shall now discuss two examples of such non-
renormalized quantities.

3.1 Spectrum of BPS states

One of the intrinsic properties of a quantum theory is the
spectrum of states in the theory. Thus if there are two
different descriptions of the same theory, the spectrum
of states must be identical in the two descriptions. But
since in general the spectrum depends on the coupling
constant labelling the theory (e.g. the parameter € ap-
pearing in the electric-magnetic duality example) we
nced to ensure that when we compare the spectrum of
the two theories, we choose the corresponding coupling
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constants in a way that they are related to each other by
the duality relation analogous to eq. (2.5). This, how-
ever, 1s not possible in general, since typically we know
the spectrum only as a perturbation expansion in the
coupling constant. Thus for example 1n the example in-
volving electric-magnetic duality, 1n one description the
spectrum 1s known as a series expansion in € , and In
the other description i1t is known as a series expansion in
(1/€ ). Since we only know the first few coefficients in
each series expansion, it 1s in general impossible to
compare the spectrum in the two theories, and determine
if it 1s the same.

But 1n special supersymmetric (field or string) theo-
ries there is a special class of single particle states with
the property that the dependence of the mass of the par-
ticle on the coupling constant of the theory 1s known
exactly. These special states are known as BPS states,
named after Bogomol’nyi, Prasad and Sommerfeld.
Furthermore, if a BPS state carrying a given set of
charge quantum numbers 1s part of the spectrum for one
value of the coupling constant, then 1t remains part of
the spectrum for any other value of the coupling con-
stant (note 13). Thus the spectrum of BPS states in a
given theory can be computed by first computing the
spectrum of BPS states for a small value of the coupling
constant (where perturbation theory is valid), and then
using the known BPS mass formula to compute the mass
of each of these BPS states at any arbitrary value of the
coupling constant. This gives us a method for computing
the spectrum of BPS states in a theory for all values of
the coupling constant. Thus given a pair of theories, we
can explicitly compute the spectrum of BPS states in
each theory, and compare the answers. If they do not
agree then the two theories cannot be dual to each other.
On the other hand if they agree then there is strong rea-
son to believe that they are indeed dual to each other.

Let us now look at an example. As stated earlier, the
N =4 supersymmetric SU(2) gauge theory has been
conjectured to be dual to 1itself under an electric-
magnetic duality transformation. Under this duality the
clectrically charged states of the first theory get mapped
to the magnetically charged states in the second theory
and vice versa. Now 1t can be checked explicitly that at
small € the theory contains 16 BPS states carrying one
quantum (e = &/2alc) of electric charge (note 14). Duc
to the BPS nature of the state, we can conclude that
there arc 16 BPS states with one quantum of electric
charge for all values of the coupling constant @, and
furthermore, their mass can be determined using the
BPS mass formula. Under duality mup this theory goes
to the samc theory, but with coupling constant
¢’ =(1/é’y, and the 16 BPS states carrying one quan-
tuin of electric charge becomes 16 BP’S states carrying
one quantum of magnetic charge. Thus the self-duality
of the N =4 supersymmetric ficld theory predicts that
the theory must have 16 magnetically charged BPS
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states carrying one quantum of magnetic charge for all
values of €’. The mass of these states is determined by
the BPS mass formula.

So the question 1s: are these states present in the the-
ory? If they are present, then it will lend support to the
conjectured self-duality of the theory. On the other hand
if these states are not present then this will tell us that
this conjecture 1s false. Since the spectrum of BPS states
can be computed for any value of the coupling constant
¢, we can do the analysis for small €/ where we can
use perturbation theory. One finds that these states are
indeed present in this theory, lending support to the
conjectured duality.

Incidentally, 1t turns out that this N = 4 supersymmet-
ric SU(2)-gauge theory has a much larger (in fact infi-
nite set) of duality transformations. A typical
transformation is characterized by four integers p, g, r
and s satisfying the relation

ps—qr=1, (3.1)
and transforms a BPS state carrying one quantum of
electric charge to a BPS state carrying p quanta of elec-
tric charge and r quanta of magnetic charge. This also
transforms the coupling constant in a complicated way,
but we do not need to know 1t for this discussion. Now it
1s a simple exercise to show that given four integers p,
g, r and s satifying eq. (3.1), p and r cannot have a
common factor. Such pair of integers are known as
relatively prime integers. Furthermore, it can also be
shown that given a pair of relatively prime integers p
and r, we can always find integers s and g satisfying eq.
(3.1). Thus duality predicts that for every pair of rela-
tively prime integers (p, r) the N =4 supersymmetric
gauge theory must have 16 BPS states carrying r quanta
of magnetic charge and p quanta of electric charge.

This prediction has been explicitly verified for all
staics carrying one or two quanta of magnetic charge,
1.e. for r=1 and r=2. For r=1 this requires showing
the existence of BPS states with one quantum of mag-
netic charge and arbitrary integer quanta of electric
charge, whereas for r =2 it involves showing the cxis-
tence of BPS states carrying two quanta of magnetic
charge and arbitrary odd integer quanta of clectric
charge. Extending these results to higher values of r
requires highly sophisticated mathematical analysis.
Although there 15 no conclusive proof of the existence of
these states yet, the progress has been quite encourag-
ing. But already the existence of appropriate BPS states
with one and two quanta of magnetic charge and appro-
priate quanta of clectric charge gives us strong evidenee
that the self-duality conjecture of this theory is indeed
correct., The BPS states with two quanta of magnetic
charge appear as guantum mechanical bound states of
two BPS states, each carrying one gquantum of magnetic
charge. Thus here we scee an explicit example where a
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duality transformation takes an elementary particle to a
bound statc of two particles and not just a singlc soliton.

The procedure of using BPS states to test duahity has
heen used extensively in many examples, involving
quantum ficld theories as well as string theories. In
string theory duality transformations map an elementary
particle not only to solitons and their bound states, but
also to D-branes, and various bound states of D-branes
and solitons. This is a fascinating subject, but the gen-
eral principle remains the same, and so I shall not dis-
cuss them here. Instead I shall turn to another kind of
test of duality — based on the study of interactions rather

than the spectrum.

3.2 Effective lagrangian density

In the previous subsection I discussed a method of test-
ing duahity by comparing the spectrum of particles in the
two theories. But a quantum field theory or a string the-
ory 1s characterized not only by the spectrum of parti-
cles that 1t contains, but also by how these particles
interact. These interactions control, for example, how
two particles scatter or how a particle decays into other
particles. If two theories are dual to each other, then
they must have identical interactions. The difficulty in
checking explicitly if this i1s so lies again in the fact that
in a quantum theory the interaction between particles
can only be computed as a perturbation expansion in the
coupling constant of the theory; and the individual terms
in the perturbation expansion in a dual pair of theories
nced not agree.

Information about interactions involving massless
particles with small external momenta can be encoded in
a function of various fields and their derivatives known
as the effective lagrangian density (henceforth denoted
by Lew). If two theories are dual, then they must be de-
scribed by the same L (possibly after suitable change
of variables). In general L. cannot be computed ex-
actly, but can only be computed using perturbation the-
ory. As discussed earlier, by knowing the first few terms
in the perturbation expansion of L.+ of two theories, we
cannot compare them to see if they are dual to each
other. However in certain supersymmetric theories, cer-
tain terms in their Leg have the property that they do not
get corrected by quantum effects, and hence the answer
to the leading order in the perturbation theory is the ex-
act answer. Thus in these cases we can test a duality
conjecture by comparing these particular terms in L. in
the two theories. If they are the same then there is a
good chance that they might be dual to each other. On
the other hand if they are not the same, then the two
theories are definitely not dual to each other.

There are also cases where supersymmetry prevents
quantum correction to a set of terms in L. in only one
of the two theories which we are comparing. Let us call
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this theory the first theory, and the other theory the sec-
ond theory. In this case we can compute these terms in
Legr €xactly in the first theory, and then expand this in
Taylor series in the coupling constant of the second the-
ory. The individual terms in this series can then be com-
pared with the perturbation expansion of L. of the
second theory. If they agree, the theories are likely to be
dual to each other. If they do not agree then the two
theories cannot be dual to each other. Turning this pro-
cedure around, we see that if we find such a dual pair of
theories, then information about the quantum effects in
the second theory (higher order terms in the perturbation
series in L. 18 encoded in the purely classical contri-
bution to L. in the first theory.

There are many example involving supersymmetric
string and field theories where comparison of L. has
led to tests of duality. In fact many of the duality conjec-
tures were arrtved at by comparing the L. of the two

theories.

4. Application of duality

As already discussed earlier, discovery of duality sym-
metries have radically changed our understanding of the
constituents of matter by bringing in a sort of democracy
between all particles — elementary and composite. But
besides this 1t has improved our understanding of string
theory in several other ways. I shall mention a few of
them here.

4.1 Computational application

Duality implies the existence of two or more descrip-
tions of the same theory. This allows us to get more in-
formation about a theory than is possible by using a
single description. As discussed earlier, in any given
string theory we can calculate a physical quantity only
as a perturbation expansion in the coupling constant.
This gives results for small values of the coupling con-
stant, but does not tell us anything about what happens
at large or fimte values of the coupling constant. The
only exceptions are quantities satisfying non-
renormalization theorems. But now, for theories which
admit a dual description, we can compute the same
physical quantities as a perturbation expansion in the
coupling constant of the dual theory. These results are
valid when the coupling constant of the dual theory 1s
small. but this typically correspond to large or finite
value of the coupling constant of the original theory.
Thus by exploiting duality symmetries we can get in-
formation about a given theory for large or finite values
of the coupling constant — a task which was thought to
be almost impossible before the advent of duality.

Quite often for supersymmetric theories we can re-
cover remarkable amount of information by combining
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the results from duality with various nonrenormalization
theorems. As an example we can mention certain class
of supersymmetric string theories — known as N = 2 su-
persymmetric string theories in four dimensions — which
have two different descriptions; as a compactification of
one of the heterotic string theories, and also as a com-
pactification of one of the Type-II string theories. Cer-
tain terms in L. are not modified by quantum effects in
the Type-II description but are modified in the heterotic
description. Certain other kind of terms in £.¢ are not
modified by quantum effects in the heterotic description,
but are modified in the Type-II description. Thus com-
bining the results from the two descriptions, we can find
an exact answer for both kinds of terms in /i This

certainly would not have been possible in absence of

duality.

4.2 Emergence of M-theory

As you have seen in the previous article, there are five

consistent string theories in ten dimensions. This is not a

satisfactory situation; tf there are five consistent theo-
ries, then how does nature choose between these theo-
ries? After the advent of duality we have seen that these

five theories are not distinct theories, but they (and their
various compactifications) often describe equivalent

theories. Thus all these five string theories can be re-
garded as different limits of a single unified theory. This
theory has been given the name M-theory.

The situation has been schematically illustrated in
Figure 1. This diagram shows the parameter space of M-
theory (note 15). We can identify the five corners as the
classical limit of the five different string theories and
their various compactifications. (Thus a given corner,
instead of representing just one theory, represents a
whole host of theories obtained by compactifying the
parent theory.) The shaded region near the corners can
be regarded as the weakly coupled version of the corre-
sponding string theory where perturbation theory in the
coupling constant can be trusted. The white region in the
middle is the domain where the coupling constants of all
the descriptions are large (or of order 1) so that the
perturbation expansion of none of the string theories is a
good description of the theory in this region. Under-
standing the theory in this region remains an open
problem. If string theory describes nature, then pre-
sumably our umiverse corresponds to some point in the
parameter space of M-theory. Finding this point, as well
as understanding why we live at this point in the pa-
rameter space and not at any other point, also remains a
challenging problem for the future.

Upon examining the parameter space of M-theory one
discovers that there 18 one particular limit in which the
theory behaves like an eleven (10 space, | time)- di-
mensional theory. This particular limit can be under-
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ES8 X E8 heterotic
SO(32) heterotic

Figure 1. Unified picture of all string theories.

stood by starting with Type-IIA string theory in ten di-
mensions, and taking the limit in which its coupling
constant approaches infinity (note 16). In this limit the
spectrum and various scattering amplitudes involving
particles carrying small energy and momentum agree
with those computed from a well-known field theory,
known as the N =1 supergravity theory in eleven di-
mensions (note 17). Unfortunately the latter is a classi-
cal field theory, and one only knows how to compute the
leading order terms in the # expansion of various quan-
tities 1n this theory. Unlike a renormalizable quantum
field theory or a string theory, one does not have a well-
defined set of rules for computing this amplitude as a
power series expansion in A. Fortunately the same kind
of dimensional analysis which we carried out in the ex-
ample of electric-magnetic duality, when applied here,
shows that the A expansion coincides with an expansion
in powers of the energy and momenta of various exter-
nal particles. Thus in the limit when the encrgy and
momentum of each of the external particles are very
small, the leading order terms in /s expansion give the
dominant contribution. The agrcement between the
leading order terms in the A expansion of the eleven di-
mensional supergravity theory and M-theory in this Himit
shows that 1n this particular ‘classical limit’, M-theory
reduces to the eleven-dimensional N = 1 supergravity
theory.

Although there 1s no well-defined quantum theory for
the eleven-dimensional supergravity theory, M-theory is
presumably a well-defined quantum theory. In other
words in M-theory one should be able to compute cor-
rections of order A and higher to the various scattering
amplitudes. These corrections are important when the
energy and momenta of the external particles are not
small. Thus one can use M-theory as a definition of the
qgquantum theory whose classical limit s the eleven-
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dimensional N = 1 supergravity theory. Thus not only
does M-theory encampass all the known string theories,
but it also defines novel gquantum thcories whose classi-
cal imits are well known classical field theortes.

N. Conclusions

We conclude by summarizing the main points once
nore.

» Duality is an equivalence relation between two string
theories or two quantum field theories whose classical
limits are genuinely different. The classical limits of
the two theories correspond to the # — 0 limit of the
same underlying quantum theory, but keeping fixed
different combinations of parameters.

 Under this equivalence, elementary particles in one
theory may appear as composite particles in the dual
theory, and vice versa. Thus the distinction between
elementary and composite particles can no longer be
regarded as a fundamental distinction.

- Typically in any string theory or quantum field the-
ory, a physical quantity 1s computed using perturba-
tion theory, as a series expansion in the coupling
constant. Since duality only requires that the complete
answer in the two theories should agree, but individ-
ual terms 1n the perturbation series need not agree, it
1s in general very difficult to test if a pair of theories
are dual to each other. This 1s overcome by working
with supersymmetric string theories or quantum field
theories. In some of these theories there are special
theorems which allow us to compute some of the
physical quantities exactly by knowing the first term
in the sertes expansion. Since these special physical
quantities can be computed exactly in both theories,
we can compare them in the two theories to check if
they agree.

Once we are convinced that a pair of theories are dual
to each other, duality can be used to extract new in-
formation about any physical quantity in the theory.
Since a given physical quantity can be computed in
both theories as a series expansion in the respective
coupling constants, and since the coupling constants
in the two theories are not the same, these two series
expansions contain complimentary information. Thus
by combining these two series expansions we can
learn more about the physical quantity than is possi-
ble by using any single description. In some special
cases, this allows us to determine the quantity com-
pletely.

In string theory duality also serves the purpose of
unifying all five apparently different string theories.
According to our present understanding, all of these
string theories are simply different limits in the pa-
rameter space of a single underlying theory. This the-

644

ory has been given the name M-theory, although at
present our knowledge of M-theory has mostly been
Iimited to those corners of the parameter space where
it corresponds to a weakly coupled string theory.

Notes

1.
2.

o0

10.

Il

12.

I3.

14,

! wish to thank R. Rajaraman for discussion on this point.
One could also try this exercise for the photon, but there are
special problems In treating a massless particle as a bound state.

. We can also try to do the reverse. According to the standard

model, the proton, neutron and the 7z-mesons are considered as
bound states of quarks and antiquarks, But we can in principle
describe their interaction by an alternative theory in which each
of them is considered as elementary particle. In order that the
predictions of this new theory agree with those of the standard
model, we need to introduce extremely complicated interaction
between the elementary particles of the new theory,

. Historically string theory started as an alternative to this reduc-

tionist viewpoint in which all particles were considered to be on
equal footing, and the interaction between these particles were
supposed to be governed by the requirement of consistency
rather than as a result of interaction among some elementary
constituents, It was realised only later that these interactions
follow from the simple hypothesis that these various particles
are different excitation modes of a string.

. The number of degrees of freedom could be finite or infinite. It

does not matter for our discussion.

. There are other methods of quantising the system, e.g. using

Feynman path integrals. For our discussion it does not matter
which definition we choose.

. I'wish to thank B. Julia for a discussion on this point.
. Although 1n this particular class of examples duality maps an

elementary particle to a soliton, there are other examples where
duality maps an elementary particle to a bound state of two or
more particles. [ shall discuss such an example later.

. However, in many cases such effective dualitics, relating a

renormalizable quantum field theory to a nonrenormalizable
quantum field theory have also played an itmportant role in un-
derstanding bebaviour of quantum field theories at low energies.
As was discussed in the previous article, in string theory the
coupling constant is given by the value of a scalar field known
as the dilaton. Whenever | refer to the coupling constant of a
string theory, I shall mean the value of the dilaton field.
Actually, besides the coupling constant, Type-1IB string theory
has another dimensionless parameter, but [ shall consider the
case where this parameter is set to zero. Like the coupling con-
stant, this parameter is also related to the value of a scalar field
of the theory.

Note that this kind of difficulty does not arise for testing T-
duality. Since T-duality does not mix classical and quantum
effects, the individual terms in the perturbation expanston
should agree in the two theories. For this reason T-dualities are
much easier to test, and were historically the first to be discov-
ered.

Actually this property does not hold for all BPS states, but holds
for a special class of BPS states. The analysis described in the
text can be applied only to this special class of BPS states.

It is a consequence of supersymmetry that the number of BPS
states in this theory always comes as a multiple of 16,

. These parameters include the coupling constant, as well as the

shape and size of the compact manifold if we are considering
the case where some of the space-like dimensions have been
compactified. Like the coupling constant 1n string theory, €ach
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of these parameters in M-theory can be identified as the value of
a scalar field of the theory.

. At a finite but large value of the coupling constant the theory
behaves like the eleven dimensional supergravity theory with
one of its dimensions compactified to a circle of large radius. As
the coupling constant of the Type-lIA string theory decreases,
the radius of the corresponding circle also decreases.

. Since this himit corresponds to strong coupling limit of Type-11A
string theory, no direct calculation is possible. But supersymme-
try non-renormalization theorems guarantee that certain quanti-
ties computed at small value of the coupling can be trusted even
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for large value of the coupling. The comparison is done only for
these quantities,

1. For a review and other references see A. Sen, An Introduction to
- Non-Perturbative String Theory, hep-th/9802051 (can be down-
loaded from http://xxx.lanl.gov/abs/hep-th/9802051).
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