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Abstract

This thesis studies two independent aspects of M-theory. The focus of Chapter 2 is the
phenomenologically promising model of our world which relies on the effective low energy
dynamics of M-theory. The interesting background includes a Calabi-Yau 3-fold and an
interval with M5-branes inserted at points along it. We obtain the effective potential for
the scalars resulting from non-perturbative contributions due to open membrane instantons.
We also discuss conditions under which the M5-branes may be attracted to the wall; and
the chirality-changing phase transitions induced by an M5-brane hitting the wall.

In Chapter 3 we investigate the interplay between the proper quantization of RR fields
in terms of K-theory and the T-duality group, an important subgroup of the U-duality
group of M-theory. We pay particular attention to the effects of the topological phases in
the supergravity action implied by the K-theoretic formulation of RR fields, and we use
these to check the T-duality invariance of the partition function. We find that the partition
function is only T-duality invariant when we take into account the T-duality anomalies in
the RR sector, the fermionic path integral (including 4-fermi interaction terms), and 1-loop
corrections including worldsheet instantons. We also discuss some issues which arise when
one attempts to extend these considerations to checking the full U-duality invariance of the

theory.
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‘Why M-theory?.

‘not a.nswered in the frame ork f stri

Chapter

This thesis contains two independent parts. Each part studies certain aspects of M-theory

and is endowed w1th 1ts own mtroductmn and conclusion. Now we would like to give an

‘ 'M-theory.and b 3 A ‘esults denved in Chapter2 and Chapter3.
M—theorylsbeheyedto the‘; theory_that governs the laws of our Umverse This
theory incorporates lgra’,y(ity?.bpa,rtlele physics and quantum mechanics. M-theory has grown
out of string theory. In string theory all fundamental particles are excitations of strings,

the tiny lines moving in space-time. However, many basic questions about our world were

heory For example, why our Universe presently

has very sma.ll posxtlve curvature'?,-Why the observable masses of particles are so tiny in

j compa.nson to Plank ma.ss, the charactenstm scale of quantum gravity? To answer these

questlons we have to resolve the crucml problems of supersymmetry breaking and the choice

of a true vacuum.. Strmg theory, being perturbative in nature, cannot resolve these issues.

i The quest for descnptmn of string d na:rmcs ab strong couphng gave rise to the concept of

M—theory ,So far vtre

| 'other by duahty tra.nsformatmns

theory m 1ts ﬁnal form but we know 1ts low energy

- approx1mat10n and basm s mmetnes The exlstence of these symmetnes allows one to think

of the ﬁve dxﬂ'eren trmg theones as various hmJts of M-theory, which are mapped into each

M h ry Lucklly, one can a.d-

Iti isan outsta.ndmg op : ‘pr"‘-
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dress some of the ;unresolved duestlons about our. Umverse by working with 11-dimensional
supergravrty, the Iow energy 11m1t of M—theory A promrsmg model of our world relies on
the effective low energy dynamics of the Eg x Fg heterotic string theory. To understand this
dynamics at strong strrng coupling we need M-theory. The phenomenologically interesting

background includes a Calabl-Yau 3—fold and an interval with M5-branes inserted at points

ur' orld and the hrdden world These two

Hworlds live-on the walls at: the ‘opposite ends of'a,n mterval There is a hOpe tha.t know-

B S RN
L5 i

ing the dynamics of thls model it would be possible to reproduce observable physics. In
Chapter 2 we obtain the effective potential for the scalars resulting from non-perturbative
contributions due to open membrane instantons. We also discuss conditions under which

the M5-branes may be attracted to the Wall and the chuahty—cha.ngmg phase transitions

:1nduced by a.n M5—brane h1ttmg the Wa,11 Our results were used in the apalysis of modern
cosmological scenarios [1]
The focus of Chapter 3 is the partition sum of M-theory on 11-manifolds 7% x X where

T3 is a three—d1mens1onal torus, and X is an 8 dlmensmnal compact spm mamfold Duality

ak
£

i
E

| mterplay between the proper. qua.ntlza,tmn of RR ﬁelds in terms of K-theory [80 84, 86, 81,
111, 68, 72] and the T-duahty group, an 1mportant subgroup of the full U-duality group.
[ We demonstrate the cancellatmn of T-dua.hty anomaly "'We ﬁnd that the pa.rt1t1on sum is

: A }he" fermlomc path
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Chapter 2

' Instabilities in heterotic M-theory

induced by open membrane

N e

2.1 Introduction.

/ e tudyof étrbngly coupled

] heterotlc strmg theory, thanks to Vthe formula.tlon in terms of M-theory on an interval S*/Z,

l [2 3] In pa.rtlcular, the compactlﬁcatlon of M -theory on a product of an interval with a
Calabi-Yau 3-fold (denoted hereafter by X ) leads to qualitatively different physics from
that of the weakly coupled heterotic string, as first noted in [4, 5, 16].

In heterotic string compactification one must choose an instanton configuration for gauge

fields along X. The so-called “standard embedding” identifies the gauge field with the spin

:; connectlon of the metn_ ff‘Other ch01ces of gauge instantons, the so-called “nonstandard
embeddmgs,” are closely related in the strongly coupled regime, to backgrounds obtained
by including insertions of M5-branes wrapping a product of 4-dimensional spacetime with

a holomorphic curve X in &. At low energies, the physics of such backgrounds is summa-
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" potentlal energy for the :

e R

_ are ‘several sources. of nonperturba.tlve ,eﬁ'ects : Some of‘ these,

rized by a comphcated d= . 4, N =1 supergrawty theory. It has been shown in [17]-[21]
that such backgrounds ca.n lead to phenomenologlcally interesting gauge groups, and it
is therefore of mterest to understand more completely the full low energy supergravity in
such backgrounds. While several aspects of the effective Lagrangian have been worked out
in [4, 5],[17]—[21],[52; 53] (for a review see [46] ) the Lagrangian is extremely complicated,
and many details remain‘to be understood more thoroughly. The present chapter derives
some further aspects of th ylow energy Lagranglan Our mam result is a formula for the

duh' ﬁelds

vahd m certam reglons of moduli space. The detailed
expressmn is gwen in eq (2 102) et. seq below, for the case when there is a single 5-brane
insertion and A!(X) = 1. Since the derivation is rather long we explain here a few of the
ingredients of this formula.

The chiral scalars in d = 4 supergravity take values in a target space which is Kahler-
fields corres ond to. moduli for the Calabl-Yau metnc on X moduh for the

instanton gauge field along X, and moduli for the p051t10ns of the M5 branes along the
interval. In addition there are chiral fields charged under the gauge group H left unbroken
by the Eg x Eg instanton. These will generically be denoted by cl.

The superpotentlal W isa sectlon of a hne bundle on the Kahler-Hodge target space for

_the ch1ra1 _scalars There are severa.l sources for the superpotentlal in the eﬁ'ectlve super-

1bic. rn-the‘ 'calarsTC In addltlon, there

such as heterotlc worldsheet
1nstantons, glmno condensatlon, and M5 instantons (wrapping X) have been studied in
many previous papers [7]-[16]. The inclusion of the effects of open membrane instantons,
which have not been studied as thoroughly, is the main focus of this work.

' There are three kmds of open ‘membrane effects we must con31der, smce M2 branes can

end both on M5-branes ‘ _“M9 brane” [29 30] Membranes stretchmg

between the boundary M9-branes. are the M -theory versions of heterotlc worldsheet instan-

tons, and as such have been studied in the context of (0,2) compactifications of heterotic

string backgrounds [14, 15]. It is well-known that such effects often sum to zero, e.g., in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e e T A 8 8




backgrounds admitting a description by a linear sigma model [22, 23, 24]. The mechanism
by which these contributions vanish is that a given homology class can contain many dif-
ferent holomorphic curves in X. The instanton action depends only on the homology class,
but the prefactor depends on the curve, and the sum of instanton amplitudes can, and
often really does, vanish, as can already be seen in the case of the quintic. By contrast,
the M2 instantons stretching between M5 and M9, or between M5 and M5 must wrap the
particular holomorphic curve ¥ already wrapped by the M5 brane. This is obvious for the
part of the membrane worldvolume ending on the 5-brane. A study of the conditions for
the supersymmetric instanton (based on [8]) reveals that the membrane must have a direct
product structure ¥ x I where I is an interval and ¥ C X is a holomorphic curve. (The
detailed argument is given in section 3 below.) Consequently, if ¥ is a rigid holomorphic
curve in X there will be no sum over instantons, and no integral over the moduli space for
the curve. Moreover, if X is a rational curve there will be precisely two fermion zeromodes
and the fermion 2-point function determining the superpotential will be nonzero. (Our
calculation of the induced superpotential uses the technique discussed in [7, 8, 9].)

The backgrounds we study are in a regime of M-theory where we can do systematic
expansions in the long wavelength expansion. It follows from [2, 3, 4] that this is an
expansion in R/V?/® where R is the length of the interval S'/Z; and V is the volume
of X in 11-dimensional Planck units. We therefore assume R/V?? « 1. Now, gluino
condensation and 5-brane instanton effects contribute terms of order AW ~ exp[—c,V]
to the superpotential W, where c; is of order 1. By contrast, open membrane effects
contribute terms of order AW ~ exp[—coRV/3] where c; is of order 1 (or smaller). Thus,
in the backgrounds under study in this work, open membrane instantons are the leading
source of nonperturbative effects.

Our goal is to understand the physics of the moduli in heterotic M-theory, so we need
the potential, rather than just the superpotential. The potential energy for scalars in

d = 4, N = 1 supergravity is given by the famous formula [41, 40]

(54)U = X (KID;WD;W — 3WW) + Up (2.1)
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where 2x3 = 167Gy is the (four-dimensional) Newton constant, K is the Kéhler potential,
D;W = 0;W + 6; KW is the covariant derivative, and Up are “D-terms” for charged scalars
~ 2,(CT*C)2.

The potential (2.1) is extremely complicated. Moreover, K is only approximately known
only in some regions of ‘r'noduli spa,ce.: We are therefore forced to consider perturbation

expansions in several quantities. First, we will expand in two dimensionless parameters
gl RV <1 e nvifRgt (2.2)

which are necessary for the validity of the geometrical 11-dimensional picture (more precise
formulae appear in eq (2 11) below) Note that these imply that V > 1 and R > 1,
and tha.t the length of the mterval is much larger than the scale set by X. In addition
we must expand in powers of the charged scalars C!. The superpotential is a sum of two
terms W = Wpert + Whonpert, Where Wier, is a cubic expression in the charged scalars o
with coefficients that are functions of the complex structure and bundle moduli. We can

or_ga,nize'the‘terms according to whether they are order 0,1, or 2 in Whyonpert:
(ka)*U = (Up + U1 + U2) (2.3)

We will now describe the leading expressions for the three terms in (2.3) in the case
of a Calabi-Yau X with A}(X) = 1 together with a single 5-brane, inserted at z, where
0<z<1 labels the pos1t10n of the 5-brane along the M—theory interval. In addition to the

—':'ichérge dscala.rs 1ir superﬁelds are he volume superﬁeld” S =V +io,

’ ‘Wthh determines the GUT coupling, the “Kéhler superﬁeld”‘ T Ra + ix, where a is the

i

K}
W

B qua.rt1c form

Kahler modulus for X (hence V ~ a®), and the “position superfield” Z = Raz + ia for the
5-brane. The fields o, ¥ and « are axions.
The first term, Uo, in (2.3) begins with the perturbative contribution to the potential.

The leadmg order expressmn inan expa,nsmn in the cha.rged scala.rs isa positive semidefinite

: UO‘

7 ﬁ Uy JKLCI 0’0" cr (1 + 0(% getf et )) (2.4)
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Here J := Ra. The coefficients U;jg are functions of the complex structure and bundle
moduli. We will give precise formulae for them, but will not be very explicit about their
behavior.

The leading contribution to the second term in (2.3) is a one-instanton term resulting
from cross terms between the perturbative and nonperturbative superpotentials. We find

that the single instanton contribution has the form

(1-2)
V2

Uy = {e77"Re (U1K C'CTC¥ ]~/ "Re Uk CTCICR 0 4. (25)

The coefficients Uryx are functions only of the complex structure and bundle moduli.

Finally, the third term U in (2.3) begins with a 2-instanton effect

U, = %{6‘2“ + e~ 2/1=2) _ 96~ cos(2a — x) (2.6)
27 (| _gpye2-2) , AT s _ ( O gert geld >
+3V(1 2z)e +57e cos(2a — x) + 14+0( b ,E8T EXT)

where E is a positive definite function that depends only on the complex structure and
bundle moduli. (We have kept some subleading terms in the second line. The reason for
! this is explained in detail in sections 5.4 and 5.5.)

| A precise characterization of the region of validity of the above potential is given in sec-
- tion 5.4 below. The strongest constraints on the region of validity come from our ignorance
1: of the exact Kihler potential. It is also important to bear in mind that the coefficients
* of the higher order terms in the expansion in J%E, geff, Ef{f / are functions of the complex
! structure and bundlemoduh If these coefficients become singular somewhere in the moduli
space then these “higher order” terms will dominate the physics. Our working assumption

is that we are at a generic smooth point in bundle and complex structure moduli space.
Having determined the leading nonperturbative effects, and thereby the potential en-
! ergy, we investigate briefly some of the resulting classical dynamics on moduli space, at a
somewhat heuristic level. Although the M5 branes wrap all of spacetime, thanks to the
. central term in the superalgebra, their positions along the M-theory interval are in fact

‘ dynamical variables. In the regions where we can trust our answer we find two kinds of
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instabilities in the compactification, depending on whether the effects of vevs of the charged
scalars C! are important or not. When the charged scalar vevs are important, the leading
z-dependent effect is a one-instanton effect. The axions will evolve to produce an attractive

force between the M5 brane and the nearest M9-wall. This could possibly be interpreted as

! a consequence of the Witten effect: the axions evolve and continuously change an effective

brane charge in order to produce “the most attractive channel,” in particular producing an

S e ek

| ciAmE

B e e

attraction between the 5-brane and the boundary. It would be interesting to understand
the physics of this effect more fully.

The above discussion is valid for Jz > 1. As the five-brane moves towards the wall the
approximations break dowh. The limit z — 0 is extremely interesting and is related to the
chirality-changing transitions discussed in [60, 45]. In order to study this limit one needs a
multiple cover formula for the membrane instantons. This is discussed in section six below.
We make some educated guesses and conclude that the physics depends on the (unknown)
details of the covering formula.

A second kind of instability occurs when charged scalar vevs are small or zero. In this

case the potential has a local minimum in z at z = % The value of U at such points is

small and of the form S

U
17y v
where 1 is a positive function of the complex structure and bundle moduli. The M2 branes

lead to a repulsive interaction between the M5-brane and the M9-brane which induces

decompactlﬁcatlon of both the M-theory radius and the Calabi-Yau, while the M5-brane

~moves to the mlddle of the mterva.l - Of course, in thxs instability new light modes appear

as the theory becomes ﬁve-dlmenmenel and we should describe a matching to a description
in terms of five-dimensional supergramty. (As the M5 moves to the middle of the interval
there is a balancing of forces from the two boundaries and the leading terms in Uz vanish.
This is why we must include the subleading terms.)

The second kind of instability is an 11-dimensional manifestation of the Dine-Seiberg

problem; it is hardly unexpected, and in the case of the standard embedding similar instabil-
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ities have already been pointed out by Banks and Dine in [5]. Nevertheless, it is interesting
to note that in the 10-dimensional Dine-Seiberg instability the size of the M-theory interval
S'/Z, tends to shrink. There are thus different asymptotic regions of moduli space with
qualitatively different dynamics, and hence different “basins of attraction” for the classical
evolution of the moduli. One consequence is that there must be nontrivial stationary points
for the potential in the middle of moduli space. The precise nature of such stationary points
is of great interest, but remains out of reach so long as we cannot derive the Kéhler potential
in the interior of moduli space in a controlled approximation.

The Chapter2 is organized as follows. In section two we review briefly the M-theory
geometry corresponding to strongly coupled Eg x Eg heterotic strings with “nonstandard
embedding.” In section three we study supersymmetric M2-brane instantons in X' x § 1/2,.
In section four we derive the formula for the contribution to the superpotential from M2
instantons. In section five we find the potential and specify the region where we can trust it
for the simplest case of a Calabi-Yau with R(11) = 1. In section six we discuss the multiple
covering formula and its relevance to chirality-changing transitions. In section seven we
generalize the result to the case of N 5-branes on the interval. The final section contains a

discussion of some possible extensions of the present work.

2.2 Review of heterotic M-theory background with M5-branes

on the interval

In this section we review some of the results of ([4, 5],[17] - [21],[46]) which are needed for
our subsequent computations.

Our conventions for the Lagrangian of 11D SUGRA are set by the Lagrangian:
1 1
2H%1511D = —/eR - §/G4/\ * Gy — g/Cg/\G4/\G4 +... (2.7)

where GMNPQ = 46[MCNPQ]~ 2

2We have a different normalization of fields compared to ([17]). Ghifipo = \/EG% po» ChiNp =

6\/50%7\; p- We use the convention 2k2, = (2r)%(Mi11)~°, and define the 11-dimensional Planck length by
li1 = 1/My;. Our signature is mostly plus.
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The Lagrangian of the boundary E8 x E8 theory is given by

2"5%1SYM = _Zl’/;(%)% Mlm \/"_g-tq"(]-?(l))2 _ 4%(_(_’;1;_1):% M2m \/:Et'I‘(F(2))2 (2.8)

where F(1:?) are the field strengths of the two Eg gauge fields, to leading order in a long-
wavelength expansion. In the above action and below tr means 3% of the trace in the adjoint
of Eg.

We begin by describing the background solution of M-theory on R* x X x §'/Z,.
Our coordinates on R* are z#, u = 1,...,4. Complex coordinates along & have indices
m,m = 1,...,3. The factor S*/Z, in spacetime has coordinate X*'. In addition it will be
convenient to set X! = mpy where y is a dimensionless coordinate 0 <y < 1, and p is a
dimensionful constant which sets a scale.

We must now specify the metric, four-form G4, and boundary Yang-Mills fields. In
order to write the background metric we introduce a basis of harmonic (1,1) forms on X,
wii = 1,..., kY and denote the Kahler form on X' by w = a’w;. Then, the background

metric is a deformation of a metric of the form
ds?, = VIR g, datdz” + R(dX™M)? — Qiwmmdz™da™. (2.9)

In this formula R is dimensionless and Rp is the orbifold radius. Similarly, we introduce a
fiducial, dimensionful, volume v for X, and the volume of X in the metric (2.9) defines the

dimensionless parameter V by Vv := 3 [, w?. We will make a convenient choice of p,v in

~ eq. (2.12) below; they will be of the order of Iy, 1$, and are independent of moduli. Because

of the Weyl-rescaling in the first term in (2.9), gy is the four-dimensional Einstein metric

and the four-dimensional Newton constant is given by

(2.10)

1
K3 2
As we have mentioned, the actual metric we will use is a deformation of eq. (2.9), and

is only known to first order in a power series in two dimensionless expansion parameters

1
eR erV'e
geff=“'/—%'<<1, 5Ielff=—_

1 2.11
= < (2.11)
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where we choose the constants

ol
(eI

=2, =2 =5 (2.12)

€=(m)§ 27r2p_2 v
4m V3 ’ P

|

in order to simplify the normalization of the fields in the effective Lagrangian.?

The above inequalities (2.11) state, firstly, that the distortion of the background from
(2.9) is small, and secondly that the interval is much larger than the length scale of X'. These
expansion parameters can be related to the GUT scale and the 4—dimensioﬁal Newton con-
stant [4, 5. In our conventions the unified coupling aguT ~ (&et! Ef{f ! )2 ~ 1/V, while
(Mgurka)?® ~ (£7 )3(€4TY* ~ 1/(RV*/?) determines the GUT scale in terms of the New-
ton constant. The latter formula follows by computing masses of gauge bosons and scalars
associated with typical mechanisms of spontaneous symmetry breaking. 4 Unfortunately,
it turns out that when we use the experimentally measured values of agurT, Mgut and k4
the above expansion is not necessarily a good approximation. As discussed in [4, 5, 6, 17, 54],
the experimentally measured values determine szf I « g¢ff = O(1). Nevertheless, our focus
in this work is on a systematic and controlled computation of nonperturbative effects; the
restriction (2.11) is necessary since heterotic M-theory is only known as an effective theory
to order (fm)%, and for this reason we will adopt it.

To lowest order in the expansion parameter the metric for the background takes the

form

2B

ds’, =VIRM(1+ —g—)gﬂudm“dm” + R%(1 - —3—)(dm“)2 ~ 2 Jmmdz™dz™, (2.13)

1 _
Jmm = wmim + (Bmm — Wmm )s B = 2w™ By,

The deformation of the background is described by the (1,1) form Bpm. In order to write
it explicitly we must now introduce the M5 branes.

The backgrounds we study preserve N = 1 supersymmetry. Therefore the 5-branes wrap
a product of spacetime and a holomorphic curve in X. If there are N 5-branes they will

therefore have definite locations at y = =, k = 1,..., N along the interval. The k** 5-brane

3We take v = 87518, mp=2n5ly to have ¢ = 2,er” = §7
4We thank T. Banks for very helpful discussions on this point.
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wraps a curve S*) in X whose homology class may be expressed as [S*)] = ﬂﬁk)[zg] where
[2%] is an integral basis of Ha(X,Z), and ng) is a collection of nonnegative integers. These
integers are constrained by anomaly cancellation. Each of the M9 branes carries an FEg
vector bundle Vi, V3, and to each bundle we associate a degree four integral characteristic

class co(V;). Identifying Ho(X; Z) with H*(X; Z) via Poincaré duality we may define
1

Vi) - 5eX) = B0 @) - 3a@X) =S (2.14)

The anomaly cancellation condition is then

N+1
S gM=o. (2.15)
n=0
In terms of the above data, the formula for By, on the interval (z,,Zn41), n=0,...,N
is given by
Bum= bbb =2 AP w—m)— 56 &= (-8, (210
k=0 k=0

where g = 0,zy41 = 1 and the index ¢ is raised with the inverse of the metric on the

moduli space of Kahler structures on &
Gij = é-l—/ wil(*w;) = —laiﬁjln(dilizisaila”a%) (2.17)
vV Jx 2
with
diyigis = /X Wiy Awiy Awiy. (2.18)
The choice of integration constant in the solution (2.16) fixes Vv to be equal to the volume

of X averaged along the interval (to lowest order in £4/f).

The flux of the 4-form Gy is also given in terms of B:

1
GMNPQ = EEMNPQEFallBEF (2.19)

Note that it is discontinuous across the positions of the 5-branes.
Finally, we need to specify the Fy gauge bundles V; and V,. For simplicity we will
follow [18] and take the bundle V; at y =1 to be the trivial bundle. Accordingly, there is

a “hidden sector” at y = 1 with unbroken Eg gauge group. The bundle V1 at y = 0 has
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an instanton whose holonomy lives in a subgroup G C Eg. The unbroken gauge symmetry
is the commutant H of G in Fg. It is straightforward to extend our formulae to the case
when both V5 and V5 are non-trivial bundles.

When we compactify M-theory on the above background, the physics at distances large
compared to the M-theory interval is described by an effective d = 4, N = 1 supergravity
theory. We now list the massless fields corresponding to small fluctuations around the
above background. In addition to the superYang-Mills and supergravity multiplets there
are a number of massless chiral scalar fields. To begin with, there are chiral superfields

neutral under four dimensional gauge group H. These are:

T' = Rd* + i), (2.20)
S=V+io, (2.21)
Zn = R(BM 6 )z — i [An(B ") — (B 0)] (2.22)
where
Crm11 = X Wi i=1,...,h", mm=1,...,3,

o is a scalar dual to Cyp11

30,.Coa11 =V 2eumdo,

and Z, is a holomorphic coordinate constructed out of the position z, of the n-th 5-brane
on the interval. The scalar A, originates from the KK reduction of the 2-form living on the
n-th 5-brane

AR = 1pAnfr(w) (2.23)

We have included the factor mp in the above formula to make A,, dimensionless. In eq.(2.23)

fr(w) is the pullback of the Kahler form to the cycle 2&"). We denote by f, the holomor-

phic embedding of the curve Z‘é") in X. The pullback of each of the basis forms f;(w;) is

proportional to the pullback of the Kahler form w

B

‘(o) — o g™
BPa) falwg) = v3g;

falwi) =

fa(w),

=
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Finally, there are chiral multiplets charged under the unbroken gauge group H. Thanks
to the Donaldson-Uhlenbeck-Yau theorem massless modes from small fluctuations of the
gauge field can be associated with holomorphic deformations of holomorphic bundles on
X. The small fluctuations are parametrized by the space Hg’l(X , V) where V is the gauge
bundle in the 248. We assume the holonomy of the instanton is in G so the gauge bundle
decomposes as V = @Wx ® Vs corresponding to the decomposition of the adjoint of Eg

under the embedding H x G C Ej:
248=0RQ®S (2.24)

The charged scalars will be valued in ®Wr ® Hg’l(X , Vs). In order to work out the Kaluza-
Klein reduction we decompose the gauge field as:

3
2_ -
Tyl m=1,2,3, (2.25)

,

A =
Kq

In (2.25) a summation is taken over the index I which labels
f=®R,ILp), p=1,...,dmR, I=1,...dimH"(X,Vs).

The normalization factor in (2.25) was chosen to make the charged scalar fields ¢! dimen-
sionless and to normalize their kinetic term conveniently.

When writing the perturbative superpotential below it will be convenient to define
where z is an index for a basis for the representation S and u% is a basis of H'(X, Vis).
The factor Ty, is purely group-theoretic and corresponds to the generators of Eg in the
representation R ® S. The complex conjugate of these generators is denoted by 7% and
the normalization is chosen such that ¢r (Tz,,TW) = 6447,

We are not going to study four-dimensional gauge dynamics in this work. This has been

studied, for example, in [4, 5, 18]. For completeness, and to fix our normalizations, we also

give the gauge kinetic term in the 4D Lagrangian

2
— 1 a 2
Sym = _;W/MY) V94 (Ref trF* +... (2.26)
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where on the brane at y =0

Ref) =V + Ra' (8" + Z 2n)26") (2.27)

n=1

and on the braneat y =1

Ref® =V + Ra' (" (2.28)

||M2

Note, that due to the restrictions (2.11) on the moduli space, Ref* = V+O(€ effy, a=
1,2.

2.3 M2-brane instantons in X x S'/Z;

Open M2-branes ending on an M5 brane will play a crucial role in our calculation of the
non-perturbative potential. These nonperturbative effects were first discussed in [29, 30, 43].
In this section we will derive the conditions for a supersymmetric open M2-brane instanton
in the background described in the previous section. We will neglect the distortion of the
background metric from a direct product metric in solving for the membrane configuration.
This is valid in our approximation scheme.

The first step in finding the supersymmetric M2 configuration is to write the constant
spinors corresponding to the supersymmetries unbroken by the background. We use a basis

for the I'-matrices in eleven dimensions of the form
T“ = (RV)if* @97 TIm=1@9y" p=1,...,4, {7* 7}=20" (2.29)

IMmM=1®9™ I''=4% Yoy mm=1,...,3, {7 A} = 297 (2.30)

where (7m)* = —¥m = (ym) and y* is a weyl-basis in 4D.
Four dimensional anti-chiral ( chiral) spinor indices are denoted by a (&) respectively.

In this basis the surviving supersymmetry in the background & x S'/Z, is of the form:

€= (ed ®€,4Q ez), (2.31)
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where €%, ¢* are constant spinors on R* x 81/Z, and €; (e2 = (€1)* ) is the chiral( anti-chiral)

covariantly constant spinor on X, normalized as in [8]:
Ymer =0, Yumes = iWnm€l, Ymnp€1 = € X Qumpes,  eler = 1. (2.32)

Here w is the Kahler form, € is a holomorphic (3,0) form on X and K = %(KT — Kepiz)
with both Kahler functions K7 and Ky specified in section (5.2).

The surviving supersymmetry is consistent with having 5-branes wrapped over a holo-
morphic cycle & C X, as shown in [17]. One cannot have anti-5-branes on the interval and
preserve supersymmetry.

The presence of an M2-brane imposes an additional constraint on the supersymmetry
parameter €

e = (2.33)

where, (see for example [8]),

r@ = ﬁeiﬂ“a,x” XV X T g5k (2.34)
In formula (2.34) st,i = 1,2,3 are coordinates on the world-volume of the M2-brane,
xM , M = (1, m, 7, 11) are coordinates in the eleven dimensional target space and g is
the determinant of the induced metric on the M2-brane.

Substituting (2.31) into (2.33) we find, first of all, that spinors of type e* ® €3 lead to
ie X
3/
e K
/5

Since the spinors €1, €2, Yme1, Y€z are linearly independent we get four equations

R .. _ g _
e = (\—Ee”kaixmajxnakxﬂwmﬁ)62 + (=0, X0, X" p X Org )1 (2.35)

ijk - - . — =
+ (%g‘aiXmannakXpquﬁ)’)‘ﬁfz + ( e”"Bich’)jX"Gle1ng’é"y)7qel

8; X™0; X" 0 XPQrp = 0 (2.36)
R&;XmBjXﬁBkX”wmﬁ = \/Eeijk (2.37)
8 X™0; X" 0 X ' Qg9 = 0 (2.38)
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€959, X™0; X" 0 XPwynz = 0 (2.39)

The constraints (2.36, 2.39) are automatically solved by the embedding

xt=t, X™y)

where ¢t = s is a coordinate along the orbifold interval and y,7 are coordinates on a
holomorphic 2-cycle. This is our basic instanton.

We claim that if the holomorphic curve ¥ C X is isolated then the above membrane
instanton is also. Moreover, we claim that the above instanton is the only instanton solution
consistent with the boundary condition of having the M2 brane ending on £. Indeed, let
us consider the possibility of having M2-branes starting and ending on holomorphic cycles
inside X which differ from a direct product ¥ x I. Therefore we search for ¢-dependent
embeddings X™(y,1),t € [z1,72] into X. In this case equation (2.39) is not satisfied auto-

matically and gives the constraint
O X ™ 0) X "wimm = 0, (2.40)

Taking the i = y,j = 7 component of this equation and evaluating it at the boundary t = z;
or t = zo shows that the volume of the holomorphic cycle must be zero.
We conclude that an open M2-brane which starts and ends on a positive volume holo-
morphic curve preserves some supersymmetry iff it has the direct product form ¥ x 1.
One can quite analogously prove that an M2-brane which starts and ends on a holomor-

phic curve should have the direct product form
XM=t X™(y)

in order to preserve the other components € ® €; of the background supersymmetry.
Note that since the M2-brane instanton must start and end on the same 2-cycle in &
there is a requirement on the 5-brane charges ﬂz(n) = ﬂzgk) described in section 2 in order for

there to be an M2-instanton stretched in the interval [z, zg].
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2.4 Calculation of membrane-instanton-induced superpoten-

tials

In this section we will give the derivation of the non-perturbative four-dimensional super-
potential AW induced by open membranes.

We follow the procedure outlined in [8, 9]. The idea is to compute the 2-point cor-
relation function of four-dimensional fermions with the instanton sector included in the
supergravity path integral. An essential ingredient of this calcultaion is the coupling of the
four-dimensional fermions to the world-volume degrees of freedom of the membrane through
the so-called “membrane vertex operators.” The computation of the superpotential follows
from a computation of a 2-point correlation function of fermions in the four-dimensional
effective theory (xX)inst, where x are fermionic superpartners of Z. This in turn can be

reduced to a membrane path integral with corresponding vertex operator insertions.

2.4.1 Summary of the computation of AW

Since the analysis is rather long let us summarize the computation here. Most of the work
is devoted to finding the vertex operator, but the end result is very simple. The membrane
theory has a chiral doublet of fermions ¥¢ transforming in the 2 of the 4 dimensional Lorentz

group. These couple to the chiral fermions x4 in the superfield Z via the vertex operator

7 -

Using the above coupling we can compute (x(§1)x(£2)) in an instanton sector to be

[ v=sid‘€se(e ~ Sr(ea - hvesp(~2). (2.42)

Here £1, &, are points in four dimensions and Sr is the 4-dimensional fermion propagator in
the effective d = 4, N = 1 supergravity. This expression for the propagator is only valid for
(&1 =€), (61 — &), (€2 — &) > l11. The integral of &* in eq.(2.42) should be regarded as an
integral over the bosonic zero modes X* = ¢* of the M2-instanton. The integral over the

2 fermion zero-modes 9%, 92, on the M2-brane soaks up the 9% from the vertex operator.
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There are no other zero modes because the curve ¥ is a rational curve and hence has no
extra zero-modes associated with 1-forms. The prefactor h® stands for determinants of
fluctuations in 11-dimensional supergravity together with 5-branes around the background
(2.13,2.19), together with determinants associated with the degrees of freedom for the M2
instanton. While it is very complicated one can use holomorphy to extract the factor he=Z,
which depends holomorphically on the moduli. The factor & is a holomorphic section of a
line bundle over complex structure moduli space and should properly be regarded as the
true measure for the fermion zeromodes. In this work we will not be very explicit about it.

We can now extract AW by comparing (2.42) with the 2-point correlation function in

the effective 4D supergravity

(eex)x(€a)ean [ Vaiet 0205 (AW)ian (2.43)
which is equal to
[ Vaidiese(e — )r (e - Oeb 00,05(AW) (2.44)

C 2
where Ko = Kp+Kg+Kcpig+Kpundie and we drop corrections of the order O (5 eff, S;f f , %)
to the mass term for a chiral fermion in the 4D, N=1 Lagrangian {41, 40].

Using holomorphy of the superpotential it now follows that
AW = hezp(—2Z), ®= 2 ko, (2.45)

For the M2-brane stretched between the 5-brane and the other 9-brane at y = 1 analogous

considerations give
AW = hezp(— (BT — Z)). (2.46)
2.4.2 Computation of the vertex operator

In this section we describe the computation of the vertex operator.
The vertex operators can be found by expanding the action of the M2 brane in the M-

theory background fields. The action of an M2-brane ending on an M5-brane was written in
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[36], using the superembedding approach of [31, 32]. In this approach the basic ingredients

are:

e An (11/32) supermanifold M, giving the 11-dimensional supergravity background.
The supercoordinates are denoted by ZM - (X M ,0). where p is an index in the
irreducible spinor representation of so(1, 10). Using the torsion constraints of [33] on
the supervielbein one can expand an orthonormal frame for the cotangent space in

powers of ©. The expansion at low orders in © has been worked out in [9, 35, 10].

It is convenient to introduce the notation for the vielbein:
EA(Z) = dZME) 4 = (E%, B9) (2.47)

where in the second equality we have separated bosonic and fermionic cotangent vec-

tors.

e A (6|16) supermanifold M describing the world-volume of the M5-brane. We denote
supercoordinates on the worldvolume by zM = (yM,9P) and a cotangent frame on M

by e?(z). A decomposition of the frame analogous to (2.47) is given by
eA(z) = dzMepy 4 = (% ’9) (2.48)

The index @ = 0,1,...,5 is the index of the vector representation of so(1,5), while
B and g are the indices of irreducible spinor representations of s0(1,5) and so(5),

respectively.

e A (3|0) manifold ¥, to be identified with the membrane worldvolume. The boundaries
of & lie inside M or in M. We denote the coordinates on X by st,4,...,3. Coordinates

on the boundary surface are denoted by ”,r = 1,2.

The relation of the pullback of the 11-dimensional supervielbein to the 5-brane to the

supervielbein of the 5-brane itself defines the “embedding matrices” E4 4 via the equation

fr(EY) =e'Ep 2 (2.49)
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One may solve for these matrices in terms of the vielbeins
B, A = eq Moy 24 Ey 4. (2.50)

The basic superembedding condition then says that

bosonic

Efermionic = Epgq ¢=0. (2.51)

This simple equation is extremely powerful, it leads to a complete set of covariant equations
of motion for the 5-brane [31, 32].

The action of an M2-brane ending on an M5-brane, in Euclidean signature, is [47, 36]
Sma = TM2/ d33[ detgi; + if*c(s)] - Z.7'M2/ d*o¢*B®. (2.52)
z 1)

Here 7379 = (—2%1—)7M131 is the M2-brane tension. Also, B® is the super 2-form living on M
while C®) is the super 3-form living on the target superspace M. The pullback in eq.(2.52)

under the embedding f : s* = Z¥4 is

£+00 = 8,740,700, 72 pisindsiAds,

while the pullback under the embedding ¢ : o™ — 2™ is
1
¢"B®) = 26,2 8,2 Bjydo” Ado”,

We specialize the action (2.52) to the case of an M2-brane stretched between y = 0 and
y = z in the background described in section 2. The membrane is a product X x {0, z] so it
is convenient to define coordinates on the membrane s* = (t,0,5) where ¢ is a coordinate
on the interval and o is a holomorphic coordinate along the curve ¥. The embedding

coordinates of ¥ into (11]32) superspace
74(s5) = (X§41(5),03,1(5)), (2.53)
have the following structure. First, the interval coordinate

1 —_
X3h(s) = 7rP(t + 593,11I‘1193,11) (2.54)
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has an important correction quadratic in fermions, while the coordinates
X341(s) = X™(0), XT(s) = X™), (2.55)

describe the holomorphic embedding. The coordinate Xé" 11(s) is unconstrained. The

fermions O3 11(s) satisfy the physical gauge condition
P(2)®3,11(3) = —@3,11(8). (2.56)

We have omitted the coordinates describing fluctuations of the membrane within A since
we will restrict our consideration to an isolated curve ¥ and hence these degrees of freedom
will be massive.

The origin of the correction in (2.54) is continuity of embedding coordinates in super-
space. That is, the embedding of the membrane into 11-dimensional superspace (3|0) —
(11|32) must agree, on the boundary, with the embedding of the 5-brane into superspace
(6/16) — (11|32) since the membrane ends on the 5-brane in superspace. We now derive
this condition in more detail.

We choose bosonic coordinates on the M5-brane as y = (y*,y,7) where y# are real
and y is complex, and consider the static embedding of the boundary of the M2-brane into
the M5-brane

p:y=0,7=0 (2.57)

The superembedding (6/16) — (11|32) is described by superfields
ZM = (x"(2M),0(="))
Small fluctuations around static gauge are described by embeddings
XM = (y7, X (y,9)), ©=(9,%(9)) (2.58)

where ¥ is a fermionic coordinate in the (6/16) superspace. The superfields X ™ (y,9) and
1(y,9) have as their 9 = 0 component bosonic fluctuations transverse to the worldvolume
of the M5-brane X™ (y™) and physical fermions on the M5-brane (yM) respectively. m/

here denotes bosonic indices of coordinates transverse to the M5-brane.
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As was discussed, for example, in [32], the basic superembedding condition (2.51) im-

poses a relation on the superfields X™ (y,9) and (y, ), such that
X™ (M, 9) = X™ (yM) +i0T™ (y) + ... (2.59)
In particular, the superfield X! up to linear order in 9 is
Xé,ln = Wp(z + 9T ) + ) (2.60)

Recall that we introduced the factor 7p to make z dimensionless.

In the geometry of X, the spinors ¥ and 1 can be decomposed as
9={09®e,9° Qe (2.61)

Y= {«b" ®e, P @ eg}, (2.62)

Out of the 16-component spinors we only keep those components given by the covariantly
constant spinor along X. There are other physical degrees of freedom in the spinor %, but
since we are considering a rigid curve in X only the above components lead to massless
degrees of freedom.

In Euclidean space equation (2.60) becomes
11 _ _ i Q). o
Xghy = mp(e - 5 (9%%a + 9°ka) (2.63)
where now chiral and anti-chiral spinors are independent from each other. (To give the
meaning to the fermionic bilinears in Euclidean space, we first define them in Minkowskii
space, where

01
ﬁd = (ﬁa)*a ’(,bd = (";ba)*, ’YO = ( ) (264)
10

where the spinors indices are lowered via ¥4 := ¢, ﬂ-ﬁ[’ . Then we continue to Euclidean
signature by dropping the reality conditions in eq.(2.64).)

From eq.(2.54) and eq.(2.63) we see that X3}; and X§}; match each other at the
boundary of the M2-brane, i.e. at t = z, if the following boundary conditions are imposed

on the physical fermions ©3 11
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0ffilims = 0*® ¢, Offiha =106, (2.65)
where Y (Y') are chiral( anti-chiral) spinors indices on X.

One can identify zero modes living on the boundary of the M2-brane 9 ® e}', with the
supersymmetry broken by the M2-brane. This is compatible with our considerations in
section 3. Indeed, exactly these components of background supersymmetry are broken for
the instanton described by the embedding eq.(2.54).

The bosonic part of the M2-action is
Smo =2, Z=RBdz—iA, A= ABia}) - z(Bix}). (2.66)

where, as in section two, 3;[53] is the homology class of the boundary curve.
Now, by evaluating the embedding matrices for an M5-brane up to linear order in ¥ and

solving the equation in the (6|16) superspace ( see [36))
dB = H + f*C, (2.67)
we obtain the expression for B;Qy) up to linear order in ¥

B = A 40, X"0yX™ (~ 8T + C,yip D7), (2.68)

In solving equation (2.67) we have used constraints on the superform H. Specifically,
we have used the condition that the only non-vanishing components of the superform H, in
the basis e, are the components Hgp, with all three bosonic indices. This was derived in
[36] by requiring s-supersymmetry of the action of an M2-brane ending on an M5-brane.

In (2.68) we have dropped terms containing derivatives of the fluctuating fields such as
dy.A, since these terms in the vertex operator will not contribute to the fermion two-point
function we wish to compute.

Now, from eq.(2.52) and eq.(2.68), and using the properties (2.32) of covariantly constant
spinors on X, we evaluate the interaction between zero-modes of fermions living on an M2-

brane boundary ¢4 and fermions 14 to be

Vy = i(Bia)9% s (2.69)
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Note that the contribution to the interaction from the second boundary term in eq.(2.68)
was cancelled by the term from the bulk, after integrating by parts, due to the presence of
the piece in the embedding (2.54) which was quadratic in fermions.

The last step in deriving the “vertex operator” for the chiral fermion superpartner of Z,
denoted x4, is to relate 14 and x4. To achieve this we consider a supersymmetric variation

of Z with supersymmetry parameter (¢ ® €1,€® ® €3). The result is

§Z = (RBia})ox + z0(RB;a’) — i6 A | (2.70)

where
M=kﬂma=—%G%@+ﬁ%) 2.71)
5A= (Bia') (e*ba — ) (2.72)

Equation (2.72) is a direct consequence of eq.(2.68) and the definitions (2.23,2.66).

Denoting by /\g the superpartners of the bulk scalars T*, we get the desired relation
Xa = 2(8ia" ) + £(Naffi) (2.73)
and hence the “vertex operator” for x4 is

n:%mm. (2.74)

2.5 The case of one M5-brane.

In this section we will discuss the scalar potential for the case of one M5-brane located at
position y = z on the M-theory interval. The general formula has been quoted above in
(2.1). In order to evaluate this expression we need both K and W. We will describe first
W and then K, and then put them together.

2.5.1 Superpotential

In the present setting the superpotential W can be written as a sum of 5 pieces

W = Wpert + Wy + W3+ Wy + Ws. (2.75)
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which have the following origins:

o Woert is the Yukawa superpotential for the charged chiral superfields, given in ([48, 18])

(4m)V2

Wpert = —3“)\[‘11‘21“3011 012013, (2.76)

The Yukawa couplings are given by

Albyfy = / QNP Nuf? Ag? fET R - 2.77)

3/ 212223

and depend on the complex structure and bundle moduli, but are independent of T?
and S. fé@g},"%) projects onto the singlet in Ry X Rg x R ( if it exists), and 2 is a

choice of nowhere zero holomorphic (3,0) form on &'

e W, is the sum of two pieces coming from an M2-brane stretched between the M5-
brane and the boundary 9-brane at y = 0 or y = 1 respectively. We have shown in

the previous section that

Wa = h{eap(~Z) + eap(-(6:T' - 2)) }, (2.78)

(Note that the relative sign can be changed by a shift in the imaginary part of T' or
Z.)

e Wjs is the contribution to the superpotential due to gaugino condensation studied in

[16, 18, 5]. It is given by

3
Wy ~ ewp(—éb—os), (2.79)
where by is a beta-function coefficient for the gauge group on the second 9-brane.

We are working in a region of moduli space constrained by (2.11). It follows that
3V > 2bgRa'Biz, 3V > 2byRa'B;(1 - 7) (2.80)

and hence the contribution of W3 to the potential is much smaller than the contribu-

tion of Wy, and will henceforth be neglected.
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e W, is the contribution from M2-brane instantons stretched between the two “M9-

branes.” The contribution from a single membrane wrapping a holomorphic curve

¥ C X has the form

Wy ~ exp(—=FiT"), - (2.81)

In the case of the standard embedding ( with no 5-branes) the sum over all such curves
in a fixed homology class vanishes. This happens because W} is just fhe world-sheet
instanton contribution to the superpotential in the effective theory near a (2,2) vacuum
of the weakly coupled heterotic string. Such superpotentials for moduli are known
to be zero ([25, 26, 27]). Wy is also zero for the special cases of the “non-standard
embedding” arising in weakly coupled heterotic (0,2) vacua which are related to linear
sigma models. For example, W4 = 0 for the quintic in P*. Nevertheless, it is expected

that these corrections will be nonzero for generic (0,2) compactifications [14, 15].

e W is the superpotential coming from an M5-brane wrapping the whole X'.
1
Ws ~ exp (—TM5S’U) = exp (—ZS). (2.82)

WS is of the same order as W3 and again we can neglect it relative to the effects of

open membranes.

2.5.2 Kabhler potential for bulk moduli and charged scalars

[ To evaluate the scalar potential in (2.1) one also needs the Kahler potential 5

| K = Kg + K7 + Kn + Kepiz + K5 + Koundte, (2.83)

The first four pieces in this expression have already been obtained in previous papers.
We will derive a formula for K5 below. It would be interesting to learn more about Kbundie;
but we will not do so in this work. In this section we review the results for the first four

terms, obtained in [17, 18, 49, 50, 51].

SHere we are assuming that the moduli space is a product space, as is valid in our approximation.
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The first two terms in (2.83) are:

Ks=—-In(S+35), Kr= —ln(%d,-jk(Ti + (T +T)(T* + T")) (2.84)

To leading order in an expansion in C7 the charged matter has a Kihler potential of the

form

K =Z:;00 + .- | (2.85)

Here Z;; is constructed from the metric for bundle moduli Gg;; as follows. First of all,

Gp is defined by
1 _
Gij = W/X V99" " U ma UG (2.86)
and depends on the Kahler moduli a?, as well as on the complex structure and bundle

K
moduli. Next we define K;; := e 3G pij- Note that the dependence on the Kahler

moduli is only through the combination T* + T*. Then we can define

_£z2§
e 3 3~
Z15=Cpij = —5 % Lbis (2.87)
where &; was defined in (2.16), and
: i3 3KBI~J~ 62KT
IR K7 T Krij = = (2.88)

~ . X . 2 . X —k '
oty =Tty — (T'+ T)Kppy = (T +T)T* + T ) KT 5,
Kr}] denote the inverse of the matrix Kr;.

In formulae (2.87) and (2.85) the following restrictions on the scalar fields are assumed

7;;0707 <1 (2.89)
26 ~;

The Kahler function for the complex structure moduli is

chlz = —ln(ﬁiga), Go=0mG, a=1,...,ha+1 (2.91)
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and can be expressed in terms of the periods over the A-cycles I1* and the prepotential G,

with complex structure moduli expressed as 7 = %’;, a=(0,a).

2.5.3 Kahler potential for the M5-brane moduli

The last piece in (2.83) is K5, the Kahler potential giving the kinetic terms for the 5-brane
scalars ¢ and A. As we were finishing our project we found that ([42]) obtained Kj in the
special case of h(')) = 1. Since we got our result independently and in a different way, we
will explain the derivation below.

To find K5 we start from the bosonic part of the Pasti-Sorokin-Tonin action for the

M5-brane [38]

; 1 *
Sms = Tums /W dy (‘\/‘det(’YMN +illyy) = V=il LMNHMNPUP> (2.92)
6

N 1 N
+7'M5/ (Cﬁ + —dAz/\Cg),
We 2

Here the tension of the M5-brane is Ty = LM 6 . The other terms in the action are
(271')5 11
defined by
axM ox N (11) MN _ p«MNP +MNP 1 mMnPLKQ
TMN = W—@'N_QMN’ H"" =H vp, H =3 /_—76 Hrkq
M gy N gy P
_ 2) A A _0XV 90XV 0X )
Hynp =30 Ayp — (C3)unp, Cunp = 3y Gy ByP Cirxp (2.93)
axM  pxMs On®

N 1.

Crtyoits = G By Cyyits UN= \/W’ UNV

where ® is the PST scalar and C’G is the magnetic dual of Cs.
We wish to do Kaluza-Klein reduction of the above action along the holomorphic curve
5. We split the coordinates in the bulk as X™ = (¢*, X, X2, X'1) where a,a = 1,...,3
are indices for the complex coordinates, and ¢# are coordinates along the noncompact R*.

We choose p to run over = 0,1,2,5. & The coordinates along the worldvolume Ws of

5We have changed notation from section two for this computation.
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the 5-brane are taken to be y™ which we split as 4 real coordinates y*, u = 0,1,2,5 and
one complex coordinate y along the holomorphic curve ¥. A natural gauge choice for the
PST scalar is [106]

vy =03, Aspy=0 (2.94)

While the gauge choice (2.94) breaks six dimensional covariance, after the KK reduction we
will obtain a covariant 4-dimensional action.

The massless fluctuations of the M5 brane are described by fields
Xu = pr(&”)a Amn(é‘u)v A(ﬁ”), ©v= (ma5)a m=0,1,2

where A(£#) was defined in equation (2.23). Keeping only terms of quadratic order in

derivatives we obtain the following 4-dimensional action

Sis = —v3Tags /W4{.;_(7rp)z e(azgi)R(aﬂx)(aux) _ %(azeggig fV (HY7)? (2.95)
1 A i\{ ,mn A )
+§(7TP)2(7£)—R"7 [3m.»4 + 20m(Bix )]9(3) [3nA + 20n(Bix )]

5m . — ~ . —_
+(mp) % [Bm A+ 20 (Bix')| HYY + (mp) [ 85,4 + 25(Bixc) | HY?

ex - 1 i ex 1 i
+(7T,0)2W350'955 [asA + 53365(ﬁzx )] + ("Tp)2—‘/—26m0- [Hm.A + Eazam(ﬁzx )] }
where e = /—detg,,, while g°™ and ¢® are components of the inverse of the 4-dimensional

metric g*”. One should take care that g(gg‘ is the inverse of the 3-dimensional metric so that

Sm .5n
m mn , 9 9

1
g (3) 4%
Moreover, in (2.95) we have
v7 — L mnp _ 11

(where we have used (2.93)) and finally we have also introduced

A= A(ﬁiai) - z(ﬂixi), Mo =g™d,0.
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One can see from (2.95) that integrating out HYY gives

HY = (1)) 19, A + -’Eau(ﬁixi)]

T
(B RV?
Plugging the expression for HYY back into (2.95) restores 4-dimensional covariance and

results in the action

K285 = — /W4e{%(az€i)R(a,, z)(0"z) + 1( T [a A+ 28,(Bix’ )] (2.96)

T - 1 ;
+7730%0 A+ 520,(60x) }
One can now extract the Kahler potential for the 5-brane moduli. The terms in the

action (2.96) uniquely determine K5 to be

K= 242" — (2.97)
(S+ S)(BT + BT)

A check of the supergravity kinetic terms associated with K5 shows that but there are extra

terms coming from (2.97) and given by:

-/ e{—z(a"ﬁi)RV‘?(a D)(@V) - 52V HO(REE) @) (299)
Wy

(@B RV (8,V 1V + Du00"a) }

These terms are exactly cancelled by the terms coming from Kg = —In(S +35) after including

an z—dependent correction to the definition of the chiral field S

S =V + R(a'B;)z? + io (2.99)

Note, that the above correction R(a’8;)z? is of order £¢// with respect to V. There are
no z—dependent corrections to the other fields at this order.

The proper interpretation of these facts is that the complex structure on field space is
corrected at the nonlinear level by (2.99) and that the Kéhler potential Ks + Kj; should be
written as

e - _(Z2+2)
Ke=-~-log|S+8§ - ——m— 2.100
° e (BTt + ,BiTﬂ)] ( )
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It would be interesting to learn if this expression is valid at higher order in the expansion

in Z.

2.5.4 Potential in the case h(*D = 1.

In the previous sections we have given formulae valid for a generic X. We will now specialize
to the case of (1) =1 in order to simplify the analysis of the potential. As we have stressed
above, in this case there is no net contribution to the non-perturbative potential from M2-
branes stretched between the two boundary 9-branes, i.e. Wy = 0.

When A1) = 1 the dependence on the Kahler parameter a of the metric (2.86) for the
bundle moduli can be easily extracted by a scaling argument. We can choose a basis u7,,

that does not depend on a. Then the inverse of Calabi-Yau metric scales like

m 1
9oy = aw?ﬁn

where w(1) »m 1S, say, an integral generator of H LO(XYNH?(X, Z). Under these conditions
the Kahler metric for charged scalars (2.88) simplifies considerably and is given by
Z;5 = (T—fj + ggf—g)ﬂ, 5 =09 +501-2)?, (2.101)
where H;; depends only on complex structure and bundle moduli. In the case at hand
Hy(X, Z) is of rank 1 and generated by a rational curve £. We take § = 1, which corresponds
to wrapping a 5-brane only once around 2.
The perturbative potential for charged scalars was obtained in [18]. Using the formulae
from the Appendix G we have calculated the non-perturbative potential including explicit
leading dependence on Kahler moduli and charged scalars. As mentioned in the introduction

we write the full potential in the form
(ka)'U = (Vo + U + Ua) (2.102)

where, as mentioned in the introduction, we organize terms by the order in the nonpertur-
bative superpotential. Uy begins with the perturbative potential. U; results from mixing

between the perturbative and nonperturbative contributions to W, while Us is the term of
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second order in the nonperturbative superpotential. The formula for the potential contains
a prefactor eX. We have used the explicit results for Kg and K7, and we have dropped Kp,
and Kj since they contribute subleading effects to the order we are working.

We now give the leading expressions for the three terms in (2.102) in more detail. The
leading contributions to Uy are given by

47[-2 echlx+Kbundle

Uy = —
T3 VR

XCCI* + Up (2.103)

In the above formulae V = da®, J := Ra, where d = 6d is the intersection number on X.
The expression
MCCJ2 = Chghy 1 HBSS; ;5 THT”, (2.104)
comes from derivatives of W with respect to ol
The D-term is given by
Up = BT ¥ (¢ r@c?)’ (2.105)

Ve
VJ @

where T(%) are generators of the unbroken four dimensional gauge group H, and we are
assuming there are no induced FI parameters.
To leading order Uj is given by:
eKepixt Koundte(1 — 7)

=- I heion) — -701-2) 7 e
Ul - 2&‘/']2 {e R.e (Wperthe 1) e Re (Wperthe 2) } (2106)

where we define the axion fields
a1 =ImZ, as=Im(T - 2Z), (2.107)

2
There will be corrections from terms higher order in the expansion in L%l—, geft, szf !, There
are also corrections from multiply-wrapped membranes.
The leading contribution to Us is a two-instanton term

echlx+Kbundle

Uy = _
2 842

|h|2{e—2“ + e~ 2/0-2) _ 9¢7Y cos(ay — ag) (2.108)
2J

Y

4Jz
_ -2J(-z) 4 2V ~J -
(1-—2z)e + 37 ¢ cos(oq Otg)} +
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The leading piece comes from K 27[62W|2. Note that in the second line of (2.108) we
have kept terms which are formally higher order in our expression since they multiply
JIV ~ E¢ff. We have kept these because, near = 1/2, cos(a1 — a3) = 1 the leading
piece vanishes. At these points the order J/V corrections which come from KZZ and
the prefactor X multiply zero and we can legitimately say that the leading term near
T =1/2, cos(a; —ag) =1 is given by the last term in the second line of (2.108). We
will need these subleading terms in section 5.5 below. Of course, there are many other
corrections of relative order O((£¢f )p(é’;f f )4, j%‘3), where p > 1 and ¢ > 0.

The region of validity of our result for the potential, (2.102), is constrained by several

considerations.

We must assume that all sizes are much bigger than the 11D Plank length.

wpRx > 11, 7wpR(l—z)> U, azvs > 1 (2.109)

and from these conditions it follows, in particular, that Jz > 1, J(1—z)> 1.

¢ Since we are working to quadratic order in the Kéhler potential in a series expansion
in C we must have

IC1?:=CH;;C <« J (2.110)
e The effective expansion parameters should be small, or, equivalently,

V>J JE>V (2.111)

o We must be able to drop £/ corrections to each of the 9 terms in the potential. We

count all the terms wich have different sructure,i.e. 5 from Us, 2 from Uy and 2 from

Up.

iff
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9 9
el Z fauo] < | Z Ua|
a=1 a=1
Given our ignorance regarding f, we will assume that they are O(1) and impose the

stronger condition

9 9
ENTN " Jual < 1w (2.112)
a=1 a=1

¢ Finally, as mentioned in the introduction, we should stress that we are assuming that
we are working at a generic smooth point in the complex structure and bundle moduli

space.

2.5.5 5-brane dynamics

We can get some heuristic idea about the 5-brane dynamics by considering the theory
on a finite volume of 3-dimensional space and keeping only the spatially homogeneous
modes of the scalar fields. Even in this drastic approximation the resulting system is a
very complicated dynamical system described by a particle mechanics Lagrangian with the

(very) schematic form

Vo Jo (02 (Jz+iJ)?
vol(space)/dt{(v) + (J) +5 V7 U (2.113)
where the potential energy is

1 4 3),—Jz —-J(1-z)
— _ — 114
U 772 (aC Bl —2z)|ClPle™* Fe |+ (2.114)

2J 4]z
-Jz —J(1-z2)\2 _ -2J(1-x) -J
+’yV[(e Fe )+ ———3V(1 2z)e + 37 ¢ ])

We have only kept the real parts of the fields. The philosophy behind this is that by a
“Born-Oppenheimer” type approximation we expect that the axions will relax much more
rapidly than the real parts into the most attractive channel. The choice of + depends on
what term is dominating, U; or Us.

The positive constants o, 8 and -y are functions of the complex structure and bundle

moduli, but these are being held fixed in this discussion.
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While the dynamical system we must study is rather complicated we can get some

heuristic idea of what to expect in three distinct regions within the region of validity of our

potential.

e In one region the charged scalar fields are zero, while J and V are large. The leading
contributions to the potential are positive and decrease with increasing J, V. In this
region the 5-brane leads to a repulsive interaction between the M9 walls. Setting
C = 0 and choosing “- “ sign to set axions in the most attractive channel in eq.(2.114)

we get:

_1__ —Jz _ —J(1-z)\2 2J _ ~2J(1-z) 4Jz —J
U 7J2{(e e )+ 3V(1 2z)e +ge (2.115)

Note that U has a minimum in 2 at z = 5. Expanding around the minimum z = 1+y,

the resulting potential is

2 _ _
U=’y{me 7y}, (2.116)

Now we can see the need for keeping the last two terms in the expression for Us in
eq.(2.108). Although we are neglecting the £¢//-corrections to the Kahler potential,
such corrections multiply the leading three terms in eq.(2.108) which sum up to zero
at z = % On the other hand, the terms we have written, and which follow from
the leading pieces in K become the leading terms at the stationary points z = %
Consequently, J flows towards infinity and z moves towards the middle of the interval.

We must assume V/2 < J <V to stay within the region of validity.
e If the charged scalar fields are important in such a way that
U1] > U, (2.117)
then the leading z-dependent term in the potential is attractive:
U =aC* - B(1-2)|CP (e + e~701-2))

Note that in this case we have to choose the “+” sign in eq.(2.114) if the axions are in

the most attractive channel. Thus, if z < 1/2 the 5-brane moves towards the wall at
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y =0, and if z > 1/2 the 5-brane moves towards the wall at y = 1. Note, that in each
of these two subregions Uy >> |U1| as a direct consequence of (2.117). Since Uy is the
dominant term J and V will evolve to large values. Since the C field is simultaneously
evolving a more careful analysis of the dynamical system would be highly desirable.

But we will not do that here.

More generally, one can show that the potential (2.114) is non-negative at a generic point in
the bundle and complex strucure moduli space, within in our region of validity (2.109-2.112),
and thus predicts decompactification of both the Calabi-Yau and the orbifold interval. The
argument, which is straightforward but long can be found in Appendix H.

Note that (2.114) is the leading potential only under our assumption that we work at a
generic smooth point in bundle and complex structure moduli space. It would be interesting
to incorporate singularities in complex structure and bundle moduli space in the discussion.
There are potentially many new terms in the potential that must be reconsidered. It is
possible that using the known results on complex structure and bundle moduli space one

can address this problem.

2.5.6 Conflicting instabilities

One interesting consequence of the discussion in the previous section is that there is a
strong coupling dual of the Dine-Seiberg problem where the M-theory interval (and the
Calabi-Yau) tends to decompactify. In the case of heterotic M-theory with the standard
embedding (i.e. no 5-branes) this has already been discussed by Banks and Dine [6], who
noted that one can use holomorphy to extrapolate the weak coupling superpotential based
on gluino condensation. In the presence of an M5-brane (in the case h(1!) = 1) the above
formulae show that in the region specified by (2.109-2.112) there is a similar effect due to
open membrane instantons.

It is of some interest to compare the above result with what we expect for the weakly

coupled heterotic string, since our considerations are only valid at large heterotic string
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coupling. Indeed, the heterotic coupling is related to the length of the M-theory interval by

Rp ~ lll(gs)%

and we require mpR > [1;. In the regime of weak coupling and large V', the potential has
been discussed in [28]. It was shown there that the effective potential is positive and behaves
as

v

Ueps ~ e 9. (2.118)

This favors an evolution to weak coupling gs — 0 and large volume V' — co. One might
worry that the calculations of ([28]) were performed in the case of the standard embedding,
and in backgrounds with other Eg x Fg gauge instantons one must take into account the
contribution of world-sheet instantons as well [14, 15]. Nevertheless, as we have repeatedly
mentioned, these effects often sum to zero [22, 23] so once again and we can use (2.118) in
the region of small R and large V.

In view of the above, we can combine our result (2.102) with (2.118), to learn that the
"true” potential goes to zero through positive values in both limits R — 0 and R — oo.
This indicates that there must be a stationary point somewhere in the intermediate region,
i.e. at some finite value of R. The nature of the stationary points that lie in the middle of

moduli space is unknown, and is, of course, an interesting and outstanding question.

2.6  Multiple covers and chirality changing transitions

It is of considerable interest to determine the nature of the low energy theory in the limit
that the M5 moves into the the boundary 10-manifold. In this section we will make some
comments on this limit. We will need to make some guesses and the results of this section
are not as rigorous as in the previous sections. For definiteness we will consider the limit
z— 0.

One good reason for studying the limit  — 0 is that there are strong indications that
in such limits there can be very interesting chirality-changing phase transitions in the low

energy theory. This was discovered, in the present context, by Kachru and Silverstein [60].
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The theory of these transitions has been considerably extended to many new examples in
[45].

The main new ingredient that is needed to discuss the z — 0 behavior is a multiple-cover
formula for the open membrane instantons. The fact that there must be nontrivial effects
from multiply-wrapped M2 branes (at least for those stretching between two 5-branes) can
be seen by considering the holomorphy of the full superpotential W as a function of Z; — Z;
[9). The instanton effects must be suppressed by a factor proportional to the volume of the
stretched membrane and therefore must behave like exp[F(Z; — Z;)] for :l:Re(Zi —Z;) > 0.
This is only consistent with holomorphy if there is an infinite series with at best a finite
radius of convergence.

Multiply-wrapped worldsheet instanton corrections to d = 4, N = 2 prepotentials are
known to have a universal form f(n,X) for an n-times wrapped curve ¥ where f only
depends on the topology of T [61, 62, 66, 63, 64, 65]. Since worldsheet instantons are special
cases of M2-brane instantons we will make the working hypothesis that there is similarly a
multiple cover factor f(n,%) for M2-brane instanton corrections to the superpotential W.
Some evidence for this can be found in [58, 59, 57]. Unfortunately, the topologies studied
in the above papers do not contain our case of P! x [0,1]. Therefore we will take

AW =h i F(n)e ™ + €¥h i f(n)e™T-2) (2.119)
n=1

n=1

and make the rather weak assumption that the asymptotic behavior of f(n) for large n is
f(n) ~ n™e/%o" for some constants m and zg. For simplicity we set zo = 0 although there
could in principle be a shift in the location of the small instanton transition.

The constants m and § above are unknown, but we can make some comments on them.
First, the relative phase ¢ was not important in the 1-instanton sector, where we can
change the relative phase by shifting the axion I'mT. It does become a nontrivial issue in
the multi-instanton sectors. Nevertheless, for our analysis of the dynamics in the subregion
ReZ « 1 the second piece in (2.119) is negligible, so the issue need not concern us here.

Next, let us consider the power m in the asymptotic behavior of f(n). If we wish the

chiral fermion mass term in standard supergravity to be a single-valued function of Z in a
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region surrounding Z = 0, then m cannot be a negative integer such that |m| > 2. Single-
valuedness implies that the monodromy of 8;8;W around Z = 0 should be diagonalizable
thus excluding a singularity of the type Z"logZ,n > 2 in W. 7

Let us now re-consider the region of validity of our expression. The infinite series for
AW can be obtained reliably in the region ReZ > 1 (where we can use 11-dimensional
supergravity) and then analytically continued to the region where ReZ = Jr < 1. To

ensure that corrections to the Kahler function are small one must still require that
1
V1, VigJIgV, |Cl«J

Since these conditions do not imply Jz > 1 or J(1 — ) > 1 we can study the physics of
the 5-brane approaching the boundary.

For definiteness and simplicity let us now assume that f (n) = n™ for some constant m.
Then we have

8zAW = —hLi_(p11y(e%) (2.120)

where Li is a polylogarithm function

(e o]
Li_gmyyy(t) = Y n™Fln
n=1

In this case the leading order contribution to U; is given by:

echlx+Kbundle(1 — x) .

while the leading contribution to Uy is

echlx+Kbundle 2

Up="""_ i

aT7 Li_(m41y(e”%) (2.122)

In all the cases below we will assume that the axion phases are in the maximally attrac-

tive channel.

One interesting limit is Z — 0. Here we can use the behaviour of the polylogarithm

Li_myny €2y ~ 27D 7 49

"There are known examples of logarithmic superpotentials for n=0,1 that make good physical sense. This
is usually related to some kind of pair creation phenomena. We thank K. Hori for very useful discussions on
this issue.
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(for m = —2 we replace Z° by log Z) to write out (schematically ) the leading potential at

Jrkl
I T S RN (o] 14
U= VLJQ <OtC4 + BICP (1 - x)log(Jz) +'yV(logJac)2), m=—2 (2.124)

where «, 3,7 are positive functions of complex structure and bundle moduli as above and
we have set ImZ = 0.

Therefore, for small enough Jz (holding the other moduli fixed) the leading term in the
potential (2.123 ),(2.124) is

7(logJz)?
gz

v

J2(J$)4+2m’ m> =2,

m=—2 (2.125)

and there is a repulsive force on the 5-brane. Indeed there is an infinite energy barrier
forbidding the 5 brane from hitting the wall.

One should not conclude from the above that there will be no chirality changing tran-
sition, since the axionic degree of freedom in Z can change the qualitative features of the
potential drastically. Unfortunately, in order to study this question in detail just knowing
the asymptotic behavior will not suffice and one needs a precise version of the formula for
f(n) in order to work out the analytic continuation from Re(Z) > 1 to |e™?| = 1. For
definiteness we will consider f(n) = n™ where m > —2 is integral.

Let us consider first the case m > 0. We take Z = Jz + 4w, where Jx < 1 and expand

e~Z = —1 + Jz — $(Jz)%. We use the Taylor expansion for the polylogarithm

. ) . /.. .
Li— 1) (=1 +1) = Li— g1y (1) = Li ) (~1)1 + 5 (Li(ma) (=1) = Li—(ma)(~1)) 1

and the following useful relations

Bog

Liom(=1) = (2™ ~1)¢(-m), ((-2k) =0, ((1-2)=-=2,

k=1,2,...

where ( is the Riemann (-function and By, are Bernoulli numbers taken in the convention:

By

y 1 B
=1—= o

D2 4
W1 2y+2! LTI

y? +
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Substituting ¢t = Jx — %(Jx)2 in the above Taylor expansion and keeping only terms up to

(Jz)? we have

Li_(my1)(—1+1) = (1)1 (v{‘ - u§(Jz)2), m=2k k=0,... (2.126)
Li_(miny(—1+1t) = (-1 28 Jz, m=2k+1, k=0,... (2.127)
where we define positive numbers ¥, v§
Bk 1] |Bak+4
22k+2 l 2k+2 k — 22k+4 _ ____i___
Doarry 2= JiG+k)

We now analyze the potential separately for the cases of even and odd m. For even
m = 2k we have the following leading potential at Jz < 1

U= V%p (aC4 AL -z)|CP (ul — v§(Jz) )+7V((u{‘)2—2u{“u§(h)2)> (2.128)

If C # 0 then for sufficiently small z the potential is attractive. If C = 0 the potential is
repulsive.

Now, for odd m = 2k + 1 the leading potential is
1
U= vz (aC4 — 2BV (1 — 2)Jz|CP + 4V (205) (Jm)z) (2.129)

Now the situation is opposite to the previous case. For C # 0 there is a repulsive force and
if C = 0 an attractive force.

Finally we analyze what happens for the cases m = —1 and m = -2, assuming ImZ =«
and Jz < 1. If m = —1 the leading potential is

U= V%IZ ( ct— —ﬁ[C’|3(1 ~2)(1- —J )+ %(1 - Ja:)) (2.130)

The force on the 5-brane is attractive only if one allows for a large vev for |C|?
BICP > V.

This is in principle possible since we only assume that |C|® « V2 and for large V both
inequalities can be satisfied. If m = —2 the leading potential is

1 , 1
U= Ve (aC - B|C)°(1 — z) (log2 - EJ(E) +7VlogZ(log2 - J:z:)) (2.131)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43
and the force is attractive only if
BIC|3 > 2(log2)yV.

In both cases m = —~1 and m = -2, attraction is only possible for large vev of charged
scalars.

The general conclusion based on the analysis of various cases is that the physics of what
happens when the 5-brane approaches the wall depends strongly on the detailed form of
the multiple-cover formula.

Finally, let us comment on the relevance of this compututation to the examples studied
by Ovrut, Pantev, and Park in [45]. One might at first conclude that in these examples
the superpotential must vanish since the five-brane wraps a high genus curve. However,
the curve wrapped by the 5-brane is not irreducible and not isolated. It can very well
happen that in the long-distance expansion of the M5 and M2 Lagrangians there are terms
with many fermions (typically multiplying factors involving curvature tensors) which can
lift the many fermion zeromodes associated with the nonisolated high genus curve. Thus,
the question of whether or not a superpotential is generated is a complicated and difficult
one, involving a discussion of the measure on the moduli space of the curve and the integral
over that moduli space. Considerations based on the global form of the moduli space for
these curves based on the results of [67] do not appear to exclude the generation of such

superpotentials.

2.7 The case of N M5-branes.

We will now briefly consider the potential in the case that there are N M5-branes at positions
z1 < 33 < ... < zy. We will assume for simplicity that all the 5-branes are wrapped over
the same rational curve %, so that open M2-instantons can be stretched between any pair of
5-branes. Moreover, to simplify the analysis we assume that the 5-branes are more or less
evenly separated. Finally, we restrict our consideration only to the leading non-perturbative

potential, so we do not take into account 2-instanton contributions to W and we need only
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consider M2-branes between neighboring 5-branes. Similarly, we only keep the contribution
of 5-9 instantons coming from M2-instantons stretching between the boundary and the

nearest M5-brane. Under these conditions we will have
R(zp — zp—1)mp > l11, Vn=1,...,N+1.

Neglecting £/ corrections due to the distortion of the background, the Kahler function
for the collection of 5-branes will be just a sum of Kahler functions for each 5-brane.
The potential is again given by formula (2.102), with the same conditions on the region

of validity. The 2-instanton terms in the potential U, which dominate at C = 0, are:

ech[x+Kbundle

U, = i
2 842

N
|h|2 Z{e‘w(z"“_z”) 4+ e~ 2/ (@n=an-1) _ ze—J(mn+1—zn—1)cos(&n)} + .
n=1
(2.132)

where we denote
Gy = {a(zAn = Ant1 = An-1) + X(Zn41 + Tn-1 — 2ﬂ7n)},ﬂ =1...,N (2.133)
and 2o = 0,zy4+1 =1, Ag = Any+1 = 0. If instead we assume that
Z1> Tp—2Zn-1, (l—2zN)>Tp—2p-1, VI<n<N (2.134)

and choose a special subregion where cos&, = 0, Vn, then the potential has the form of
a non-periodic Toda-chain potential. (The kinetic energies are the standard ones, in our
approximation.) As is well known, Toda theory has an exact solution, where all particles
move away from each other [44]. In heterotic M-theory this signals an instability in the time
evolution of the positions of M5-branes along the orbifold interval: they tend to run away
from each other. At the same time Ra evolves to infinity. In short, the system explodes.

Using again a “Born-Oppenheimer” type approximation we expect that the axions will
relax much more rapidly than the real parts into the most attractive channel cosé, =
1, Vn. This implies that the evolution with a Toda-like potential is unstable because of
the axions.

When the charged vevs are nonzero we should consider instead the term Uj in the

potential arising from cross terms between perturbative and nonperturbative pieces. This
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is given by
echlx‘}‘Kbundlelth
2dJ2V

1:

N-1 .
=D (@n41 —zn)e™’ (x"“‘“")cos(%)}
n=1

where Wpery = (€%, h = |h|e*®* are decompositions into modulus and phase and

=ImZy + ¢~ dn, AN =Im(T — Zn) + ¢1 — ¢y, (2.136)

¢n=1m(zn+1_zn)+¢l_¢ha n=1,...,N-1

2.8 Possible future directions and applications

A central question in heterotic M-theory is the existence of isolated minima of the potential
for moduli. While most of our results predict runaway or unstable behavior (as expected) we
have seen some encouraging hints. We have argued that the potential must have nontrivial
stationary points in moduli space. We have also seen that a good place to look for interesting
behavior of the potential is at singular loci in complex structure and bundle moduli space.
For example, if one allows some of the coefficients @, 8,7 in sections 5.5 and section 6 to
vanish it is easy to imagine scenarios where the potential predicts compactification, rather
than decompactification.

There are many technical issues raised by the above computations which should be
solved and which moreover can be solved with presently available technology.

One circle of questions includes finding the appropriate generalization of the multiple-
cover formula for worldsheet instantons. A related set of questions concerns effects associ-
ated with membranes wrapping higher genus curves and nonisolated curves in X. As we
have seen in section six, results on these questions would have very interesting physical
applications.

A second circle of questions concerns the possibility of obtaining a more concrete un-

derstanding of the dependence of the membrane determinants as functions of the complex
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structure moduli. It might be possible to find classes of compactifications in which one
can give fairly explicit formulae for the dependence on gauge bundle moduli, although this
might prove to be challenging.

Beyond the extensions mentioned above, which we believe are within reach, there loom
far more difficult questions. One of the most challenging issues is to give a proper defini-
tion of Horava-Witten theory in a regime outside the validity of the expansion in (r11)%/3.
Another difficult, and pressing, problem is that of finding ways to make definite and quanti-
tative statements about the Kahler potential of the effective supergravity theory in a wider
range of validity.

Nevertheless, even given the limitations of our computations, the results do have some
interesting ranges of validity. It might be quite interesting to study more thoroughly the
dynamics, both classical and quantum mechanical of the moduli in the problem. In this
work we have limited ourselves to some very heuristic and naive pictures of the dynamics.
It might also be interesting to see if there are any distinctive features of the “modular

cosmology” resulting from the above potential for moduli [55].
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Chapter 3

T-Duality, and the K-Theoretic
Partition Function of TypellA

Superstring Theory

3.1 Introduction

1 Duality symmetries, such as the U-duality symmetry of toroidally compactified M-theory,
have been of central importance in the definition of string theory and M-theory. Topolog-
ically nontrivial effects associated with the RR sector have also played a crucial role in
defining the theory. It is currently believed that RR fieldstrengths (and their D-brane
charge sources) are classified topologically using K-theory [80, 84, 86, 81, 111, 68, 72]. Un-
fortunately, this classification is not U-duality invariant. Finding a U-duality invariant
formulation of M-theory which at the same time naturally incorporates the K-theoretic
formulation of RR fields remains an outstanding open problem.

With this problem as motivation, we investigate the interplay between the K-theoretic
formulation of RR fields and the T-duality group, an important subgroup of the full U-

duality group. While T-duality invariance of the theory was one of the guiding principles

'This chapter was done in collaboration with G.Moore and is drawn from [116].
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in the definition of the K-theoretic theta function [86, 68] we will see that the full imple-
mentation of T-duality invariance of the low energy effective action of type II string theory
is in fact surprisingly subtle, even on backgrounds as simple as T2 x X, where T2 is a
two-dimensional torus, and X is an 8-dimensional compact spin manifold. We will show
that, in fact, in the RR sector there is a T-duality anomaly. This anomaly is cancelled
by a compensating anomaly from fermion determinants together with quantum corrections
to the 8D effective action. A by-product of our computation is a complete analysis of the
1-loop determinants of IIA supergravity on X x T2.

As an application of our discussion, we re-examine a proposal of C. Hull [73] for inter-
preting the Romans mass of ITA supergravity in the framework of M-theory. We will show
that, while the interpretation cannot hold at the level of classical field theory, it might well
hold as a quantum-mechanical equivalence. In section 10 we comment on some of the issues
which arise in extending our computation to a fully U-duality invariant partition function.

This includes the role of twisted K-theory in formulating the partition sum.

3.1.1 The effective eight-dimensional supergravity, and its partition func-

tion

Previous studies of the partition function in type II string theory [86, 68] considered the
limit of a large 10-manifold. One chose a family of Riemannian metrics ¢ = t2gy with
t — oo and gy fixed. Simultaneously, one took the string coupling to zero. The focus of
these works was on the sum over classical field configurations of the RR fields. In this
chapter we consider the limit where only 8 of the dimensions are large. The metric has the
form

ds? = ds?,a + t2ds% (3.1)

where ds}, is flat when pulled back to T2. The background dilaton g2, = €* is constant.
We will work in the limit

t—=o00, eX:=e®V 300 (3.2)

where V is the volume of T2 and ¢ is 10-dimensional dilaton. Finally - and this is

Reproducedlwith permission of the copyright owner. Further reproduction prohibited without permission.



49

important -until section 10 we assume the background NSNS 3-form flux, H , is identically
zero. In particular, the 2-form potential, B, is a globally well-defined harmonic form on
X x T2

As is well-known the background data for the toroidal compactification (3.1) include a
pair of points (7, p) € H x H where H is the upper half complex plane. 7 is the Teichmuller
parameter of the torus and p := By + iV, where Bydo®Ado?® is an harmonic 2-form on T2,
While we work in the limit (3.2), within this approximation we work with exact expressions
in the geometrical data (7, p). In this way we go beyond [68]. |

It is extremely well-known that the low energy effective 8D supergravity theory obtained
by Kaluza-Klein reduction of type II supergravity on T? has a “U-duality symmetry” which
is classically SL(3, R) x SL(2, R), and is broken to D := SL(3,Z) x SL(2, Z) by quantum
effects [74, 75, 76, 77, 78]. These are symmetries of the equations of motion and not of the
action. (The implementation of these symmetries at the level of the action involves a Leg-
endre transformation of the fields.) What is perhaps less well-known is that the K-theoretic
formulation of RR fields leads to an extra term in the supergravity action which is nonva-
nishing in the presence of nontrivial flux configurations. Indeed, the proper formulation of
this term is unknown for arbitrary flux configurations with [ﬁ3] # 0, but for topologically
trivial NSNS flux the extra term is known [68] and is recalled in equations (1.14) and (1.15)
below. This term breaks naive duality invariance of the classical supergravity theory already
for the T-duality subgroup of the U-duality group, and makes the discussion of T-duality
nontrivial.

Let us now summarize the fields and T-duality transformation laws in the conventional
description of the eight-dimensional effective supergravity theory on X. The T-duality group
is Dr = SL(2,Z); x SL(2, Z),. The theory has the following bosonic fields. From the NSNS
sector there is a scalar ¢, characterizing the size of X, a unit volume metric gy n, a 2-form
potential 2 B(y), with fieldstrength H(3), and a dilaton ¢, all of which are invariant under

Dy. In addition, there is a multiplet of 1-form potentials A"(’ﬁ" transforming in the (2,2) of

2We will always indicate by the subscript (p) the degree p of a differential p-form on X
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Dr. Finally, the pair of scalars (7, p), transform under (v1,72) € Dr as (7,p) = (717,72 p)
where «- is the action by a fractional linear transformation. We therefore call the factors
SL(2,2)r,SL(2,Z),, respectively.

The fieldstrengths from the RR sector include a 0-form and a 2-form, ga,), p=0,2,a=
1,2 transforming in the (1,2) of Dr, and a 1-form and 3-form g(pym, p = 1,3,m = 8,9
transforming in the (2/,1) of Dr. Finally there is a 4-form fieldstrength g(4) on X. This
field does not transform locally under T-duality, rather its equation of motion mixes with
its Bianchi identity [78]. The fermionic partners are described in section 7 below.

The real part of the standard bosonic supergravity action takes the form
3
D
R (S22) = Swaws + 35 (o) + 5 () -
p=0

In the action (3.38) all of the terms except for the last term are manifestly T-duality

invariant. The detailed forms of the actions are:

1 1
SnsNs = 5 /X e~ % {ts(’R(g) + 4dE A dE + 28t 2dEA * dt) + 5#3@,) A+Hs

1 6 dT A *dT 1 6 dp A *dp 1 4 mo nf
- = - F F 4
ol (Im7)2 ' 2" (Imp)? + 5t gmnGapF o) A * Fy) (3.4)

where €, and g are invariant antisymmetric tensors for SL(2, Z), and SL(2, Z), respec-

tively, and * stands for Hodge dual with the metric gan. We also denote

1
R = dATY, Hg = dBip) ~ semnapA@maF(y) (3.5)
and
gmn = M(r), g™ =M(1)7}, Gap = M(p) (3.6)

where it is convenient to define

1 1 Rez
M(z): ( ) . (3.7)

Imz \Rez |2[?

The real part of the RR sector action is given by

3
> 5 (g(p)) = /X {tsgaﬂgf’é)/\ * g?o) + %™ gym A * gynt (3.8)
p=0
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t*GapglyA * gé) + 2™ g (3ym N g(3)n}

together with

S (9(4)) = 7r/XIm(P)Q(4) A xg(4). (3.9)

3.1.2 The semiclassical expansion

The vevs of the two fields ¢ and e~* (the 8-dimensional length scale of X and the inverse-
square 8D string coupling) define semiclassical expansions when they become large. We
will expand around a solution of the equations of motion on X. To leading order in our

expansion this means X admits a Ricci flat metric®

gun. We also have constant scalars
t,&,7,p, and Fgﬁ" =0, Hg) =0,s0 the background action Sygys is zero. Finally, we
expand around a classical field configuration for the RR fluxes, and to leading order these
fluxes g(,) are harmonic forms. Nonzero fluxes contribute terms to the partition function
going like O(e=*""").

Let us consider the leading order contribution to the partition function. There are several
sources of contributions even at leading order, but, since we are interested in questions of
T-duality, most of these can be neglected. ¢ The volume of X suppresses the contribution
of fluxes g¢,),p = 0,1,2,3, and, to leading order in the ¢ — oo expansion these can be set
to their classical values. Note, however, that neither the string coupling, nor the volume of
X, suppress the action for g(4), and thus we must work in a fully quantum mechanical way
with this field. This is just as well, since (not coincidentally) this is the term in the action

which is not manifestly T-duality invariant. Fortunately, in our approximation, g is a

free, nonchiral field and hence quantization is straightforward. Including subleading terms

3 Almost nothing in what follows relies on the Ricci flatness of the metric. We avoid using this condition
since a T-duality anomaly on non-Ricci flat manifolds would signal an important inconsistency in formulating
string theory on manifolds of topology X x TZ.

“In particular we are negelecting determinants of KK and string modes, and perturbative corrections
O(gs‘z;,ing). These are all T-duality invariant. The backreaction of nonzero RR fluxes on the NSNS action
simply renormalizes V to Vesy, where p = Bo +1iVesy is the variable on which SL(2,Z), acts by fractional
linear transformations.
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in the expansion parameter t involves (among other things) summing over the RR fluxes
9, »=0,1,2,3.

Finally, in order to be consistent with our approximation scheme we must allow the pos-
sibility of flat potentials in the background. ® These contribute nontrivially to the partition
function through important phases and accordingly, we will generalize our background to
include these. The real part of the action for the flat configurations vanishes, of course, and
hence in the physical partition function one must integrate over these flat configurations. In
the RR sector the flat potentials are thought to be classified by K1(Xio; U (1)) [81]. These
contribute no phase to the action and we will henceforth ignore them. ® The space of flat
NSNS potentials is H2(X;U (1)) x (H}(X;U(1)))*.

In this chapter we will work only with the identity component of this torus. Accordingly,
we will identify the space of flat NSNS potentials with the torus

1w(x) [(H(x))\
“\HL®

(3.10)

where #P(X) is a space of harmonic p-forms on X and H%(X) is the lattice of integrally
normalized harmonic p-forms on X. The first factor is for B(y) and the second factor for
the fields A7 transforming in the (2,2) of Dr.

Putting all these ingredients together the partition function we wish to study can be
schematically written as

Z(t, gy €7, ) = / duge Y Det-e~Set ... (3.11)

flat potentials RR fluxes

where dpga; is a T-duality invariant measure on the flat potentials, Det is a product of 1-loop
determinants and S,; is the classical action. Now, to investigate T-duality it is convenient
to denote by F the collection of all fields occuring in (3.11) which transform locally and
linearly under Dr. These include the flat NSNS potentials above as well as the classical

fluxes g(;),p=0,...,3. We introduce a measure [dF] on F which includes integration over

5By “flat” we mean the DeRham representative of the relevant fieldstrength is zero.
5They do contribute an overall volume factor to the partition function. This volume includes a factor of
|K°(X10)tors] and should be T-duality invariant.

o
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the flat potentials and summation over the fluxes for p = 0, 1,2, 3. This measure is T-duality

invariant, and we can write

Z(tagMN1§,7-7p) = /[d}.]Z(F, tagMNaﬁ,Tap)' (312)

The invariance of (3.68) under the subgroup SL(2, Z), of the T-duality group is essentially
trivial. The relevant actions and determinants are all based on SL(2,Z)-invariant dif-
ferential operators. The invariance of the theory under SL(2, Z), is, however, much more
nontrivial. Therefore we simplify notation and just write Z(F, p) for the integrand of (3.68).
Now, checking T-duality invariance is reduced to checking the invariance of Z(F,p). This

function is constructed from
¢ a. The K-theoretic sum over RR fluxes of g4y in the presence of F.
e b. The integration over the Fermi zeromodes in the presence of g4) and F.

e c. The inclusion of 1-loop determinants, including determinants of the 8D supergravity

fields and the quantum corrections due to worldsheet instantons.

In the following subsections we sketch how each of these elements enters Z(F, p). Briefly,
the K-theoretic sum over RR fluxes g(4) leads to a theta function O©(F,p). This function
turns out to transform anomalously under T-duality. The integration over the fermion
zeromodes corrects this to a function (:)(.7-' ,p). This function still transforms anomalously.

The inclusion of 1-loop effects, including the string 1-loop effects finally cancels the anomaly.

3.1.3 The K-theoretic RR partition function

In order to write explicit formulae for the quantities in (3.68) we must turn to the K-
theoretic formulation of RR fields. In practical terms the K-theoretic formulation alters
the standard formulation of supergravity in two ways: First it restricts the allowed flux
configurations through a “Dirac quantization condition” on the fluxes. Second, it changes

the supergravity action by the addition of important topological terms in the action. 7

It also alters the overall normalization of the bosonic determinants by changing the nature of the gauge
group for RR potentials, but we will not discuss this in the present work.
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In more detail, the K-theoretic Dirac quantization condition states that the DeRham

class of the total RR fieldstrength [G/(27)] is related to a K-theory class z € K%(X10) via

(2] = ch(a)/ (3.13)

The topological terms in the action can be described as follows. On a general 10-manifold
this term involves the mod-two index of a Dirac operator and cannot even be written as
a traditional local term in the supergravity action [86, 81, 68]. In the case of zero NS-NS

fluxes, the general expression for the phase in the supergravity theory is:
Im(SmD) =219, &=+ P (3.14)

where 2?2 is the mod-two index and ®, is given by the explicit expression

o= [ (@) (S [(2) 456D em
(@) B+ 20D 2]

where Gg;,7 = 0,1,2 are RR fluxes on X9, p1 = p1(TX10) and A is expressed in terms of
the Pontryagin classes of X719 as

- 1
A=1-=p1+ ==

% p? — 4p2) . (3.16)

5760 (
In the case that we reduce to 8 dimensions, taking our manifold to be of the form X X T?
with the choice of supersymmetric spin structure on T2 the above considerations simplify
and can be made much more concrete.

Consider first the Dirac quantization condition. We reduce RR fieldstrengths as:

GO 2
o O
G
57—? = g%o)dds/\dag + g(l)m/\dO'm -+ g(22) (3.17)

G
—2?4 =g(g) + g(3)m/\dam + g(lz)/\dos/\da9

where 0™, m = 8,9 are coordinates on 7. Recall once again the subscript (p) on g’s de-

notes form degree on X. The other sub(super)scripts indicate Dr transformation properties.
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In the K-theoretic formulation of flux quantization the fieldstrengths g(4), 9(3)m, g&) » 9(1ym> g(of,)
are related to certain integral cohomology classes which we denote as

eII

a € HY(X,Z), fm e HYX,Z)®Z% &= ( ) € H(X,Z) ® Z°, (3.18)

e

m

Ym € HY(X,Z) ® Z2, nﬂ=( >eH°(X,Z)®Z2
n

0
The explicit relation between these classes and the g is somewhat complicated and given

in equation (4.3) below. The K-theoretic Dirac quantization condition leaves all integral
classes in (3.18) unconstrained except for fp. One finds that Sq3(f,,) is fixed to be an
integral class which depends only on the topology of X. Turning on flat NSNS potentials
acts as an automorphism of the K-theory torus. These potentials modify the reduction
formulae (3.17) according to equations (5.15) to (5.18) below.

Now let us consider the phase. It turns out that on 10-folds of the form X x T2 the

phase e?™®2 arising from the mod 2 index may be expressed much more explicitly as
exp[2mi®;] = exp [ﬁ'ﬂ /X{g(s)s U Sq*(g3)0) + 9318 U ST (9(3)8) + 930 U Sa*(g(zp0)+ (3.19)
9(20) 1 2 2 p
2 2 2 1 2 1
9(0)As + (9(4) T P15 (9(2)) ) <[9(12) ~ 9092 t 9(1)89(1)9] + ‘é‘)

n

2 \3 _ (22
3 T 9wedaye (9(2)) - (9(2)) Gmng(l)mg(a)nH

This expression is cohomological although it is still unconventional in supergravity theory
since it involves Steenrod squares.

The above topological term (3.14) is deduced from the K-theory theta function ©g
defined in [86, 81, 68], and reviewed below. As explained above, it is convenient to fix the

fields F. We can define a function ©(F, p) by writing O as a sum
Ok = Ze_SB(f)@(f, 0) (3.20)

The sum is over all integral classes except a. That is, we sum over n%,yny,e®, fm subject

to the constraint on Sq®f,,. The action Sg(F) is the manifestly T-duality invariant action
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for the fluxes given in (3.8). Ok is a function of gpsy, p, 7 and the flat background NSNS
fluxes. These flat fluxes have a K-theoretic interpretation in terms of automorphisms of
the K-theory group K%(X) ® R and act naturally on the theta function. More concretely,
the inclusion of nonzero flat NSNS fields BO,B(Q),A?{S’ modifies the phase ® as shown in
equations (5.20)-(5.24) below.

Since the K-theoretic constraint Sg3a = 0,a € H*(X,Z) is automatically satisfied on
spin 8-folds X it turns out that ©(F) is, essentially, a Siegel-Narain theta function for
the lattice H*(X;Z). More precisely, there is a quadratic form on H* (X;R) given by
Q =Im(p)HI —iRe(p)I where H is the action of Hodge * and I is the integral intersection
pairing on H*(X,Z). Then

O(F,p) = eiZ“A5<f>@[ ](Q) (3.21)

&
Here @[ ;.] (Q) is the Siegel-Narain theta function with characteristics. The characteristics
B

are written explicitly in (5.20) below. Finally, the prefactor A®(F) in (3.21) is defined in
(5.23) below.

3.1.4 T-duality transformations

One of the more subtle aspects of the K-theoretic formulation of RR fluxes, is that the
very formulation of the action depends crucially on a choice of polarization of the K-theory
lattice K(X19) with respect to the quadratic form defined by the index. In the above
discussion we have chosen the “standard polarization” for ITA theory, i.e I'5 is the sublattice
of K(X10) with vanishing G4,G3, Go. Ty is then a complementary Lagrangian sublattice
such that K(Xj9) = I'; + I's. The standard polarization is distinguished for any large 10-
manifold in the following sense. When the metric of X;g is scaled up Igr — t2gM 5 the
action [y, v/g|Gop|® of the Type ITA RR 2p-form scales as t19-%7. This allows the sensible
approximation of first summing only over G4, with G2 = Gy = 0, then including G5 with
Go = 0, and finally summing over all classical fluxes Gy, G, G.

In the case of X9 = T2 x X with the metric (3.1) the standard polarization is no
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longer distinguished. Various equally good choices are related by the action of the T-
duality group D7 on ' := K(X x T?). 8 In section 4 we explain how the duality group
Dr acts as a subgroup of symplectic transformations on the K-theory lattice and we give
an explicit embeding Dr C Sp(2N,Z), where 2N = rank(k). As explained in section
4.2, since D7 acts symplectically, the function O(F,p) must transform under T-duality
as O(y - F,v - p) = j(v,p)O(F, p) where j(v,p) is a standard transformation factor for
modular forms. Nevertheless, this transformation law leaves open the possibility of a T-
duality anomaly through a multiplier system in j(7, p). In order to investigate this potential
anomaly more closely we must choose an explicit duality frame and perform the relevant
modular transformations.

We find that, in fact, the function ©(F,p) does transform as a modular form with a
nontrivial “multiplier system” under SL(2, Z),. That is, using the standard generators 7', S
of SL(2, Z), we have:

(T -F,p+1)=u(T)O(F,p) (3.22)

O(S - F,~1/p) = u(8)(~ip) 3% (i) 1% O(F, p)

where T - F,S - F denotes the linear action of Dr on the fluxes. Here b],b; is the
dimension of the space of self-dual and anti-self-dual harmonic forms on X and the multiplier

system is

u(T) = exply [ V) (3.23)

%is
u(S) = expl- / ]
X
where X is the integral characteristic class of the spin bundle on X. (So, 2A = p;). The
multiplier system is indeed nontrivial on certain 8-manifolds, for example on all Calabi-Yau

4-folds CYy with Euler characteristic x not divisible by 12. This follows from the relations

valid for any CY}

1 [ . 1
- = Ag — 44 — 3.24
4/XA 62/X s =4+ o (3.24)

8There is also a polarization on manifolds of the type S* x Xy, (in our case Xo = S x X ) where the
measure is is purely real and the imaginary part of the action is an integral multiple of in (without flat
NSNS potentials). However, this polarization does not lead to a good long-distance approximation scheme.
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An example of such a Calabi-Yau, considered in [88], is a homogenuos polynomial of degree
6 in P5, which has x = 2610.

In more physical language, the “multiplier system” signals a potential T-duality anomaly.
Such an anomaly would spell disaster for the theory since the T-duality group should be re-
garded as a gauge symmetry of M-theory. Accordingly, we turn to the remaining functional
integrals in the supergravity theory. We will find that the anomalies cancel, of course, but

this cancellation is surprisingly intricate.

3.1.5 Inclusion of 1-loop effects

We first turn to the 1-loop functional determinants of the quantum fluctuations of the
bosonic fields. We show that these are all manifestly T-duality invariant functions of F
except for the quantum fluctuations of g(4). The full bosonic 1-loop determinant Detp is
given in equation (6.20) below. The net effect of inlcuding the bosonic determinants is thus
to replace

e=58F)Q(F, p) = Zp(F, p) := Detge~*2"O(F, p) (3.25)

Inclusion of this determinant alters the modular weight so that Zg(F,p) transforms with
weight (%(X +0), %(X — o)), in close analogy to the theory of abelian gauge potentials on a
4-manifold [89, 90]. Here x,o are the Euler character and signature of the 8-fold X. The
multiplier system (3.119)is left unchanged.

Now let us consider modifications from the fermionic path integral. Recall that we
may always regard a modular form as a section of a line bundle over the modular curve
H/SL(2,Z),. On general grounds, we expect the fermionic path integral to provide a
trivializing line bundle. The gravitino and dilatino in the 8d theory transform as modular
forms under the T-duality group Dy with half-integral weights and consequently they too
are subject to potential T-duality anomalies.

The inclusion of the fermions modifies the bosonic partition function in two ways:

through zeromodes and through determinants. The fermion action in the 8D supergravity
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has the form

Sl(?‘z)rmi = Skinetic + Sfermi—ﬂux + S4—fermi (3.26)

where kinetic terms Siinetic as well as fermion-flux couplings Stermi—flux are quadratic in
fermions and Sj_ferm; denotes the four-fermion coupling. Skinetic is T-duality invariant
but Stermi—flux @nd S4_ferm; contain some non-invariant terms. The non-invariant fermion

zeromode couplings are collected together in the form
SlEmminy — 4rTmy gayN * Y(g) + 27Imp Yy A x Yy ' (3.27)

where the harmonic 4-form Y{4) is bilinear in the fermion zeromodes. The explicit expression
for Y4y can be found in equations (7.21) and (7.41) below.
The inclusion of the integral over the fermionic zeromodes of Skinetic modifies the parti-

tion function by replacing the expression ©(F, p) in (3.21) by

-

O(F,p) = / dp$™ e"%@(ﬂe[g](@ (3.28)
Here -
0 [;] @

is a supertheta function for a superabelian variety based on the K-theory theta function.
(This is explained in Appendix F.) In particular, the characteristics oi,,g differ from 5,5 by
expressions bilinear in the fermion zeromodes. Similarly, the prefactor A differs from A®
by an expression quartic in the fermion zeromodes. Finally, dpgfm) is a T-duality invariant
measure for the finite dimensional integral over fermion and ghost zeromodes. It includes

_S(zm)inv

the T-duality invariant term e from the action.
Including the one-loop fermionic determinants of the non-zero modes we finally arrive
at

Zp.r(F,p) := Det)gDet) e SBQ(F, p) (3.29)
pletp

The formula we derive for (3.29) allows a relatively straightforward check of the T-duality

transformation laws and we find:

Zp+r(T - F,p+1) = p(T)Zp1+r(F, p) (3.30)
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Zp.r(S - F,—1/p) = (~ip) X8 Jx X)) x5 [y 0=V 75 o(F, p)

Perhaps surprisingly, the fermion determinants have not completely trivialized the RR
contribution to the path integral measure. However, there is one final ingredient we must
take into account: In the low energy supergravity there are quantum corrections which
contribute to leading order in the ¢ = 0o and £ — —oo limit. From the string worldsheet
viewpoint these consist of a 1-loop term in the o' expansion together with worldsheet in-
stanton corrections. From the M-theory viewpoint we must include the one-loop correction
[ C3Xg in M-theory together with the effect [79] of membrane instantons. The net effect

is to modify the action by the quantum correction
11 0 11 ) )
Sevam = [+ 7 [ 2= A0)tog n(e)] + [5x— 3 [ (po = W]ios n(=)] (331
Where 7(p) is the Dedekind function. The final combination
Z(F,p) = €52 Zp, o (F, p) (3.32)

is the fully T-duality invariant low energy partition function.

3.1.6 Applictions

As a by-product of the above results we will make some comments on the open problem
of the relation of M-theory to massive ITA string theory. In [73] C. Hull made an interest-
ing suggestion for an 11-dimensional interpretation of certain backgrounds in the Romans
theory. One version of Hull’s proposal states that massive IIA string theory on T?x X is
equivalent to M-theory on a certain 3-manifold, the nilmanifold.

In section 9 we review Hull’s proposal. We note that when proper account is taken of
the various phases of the supergravity action the equivalence of classical actions required
in this proposal cannot be true. Nevertheless, it is not difficult to modify Hull’s proposal
so that the partition function Z(F,p) can be identified with a certain sum over M-theory

geometries involving the nilmanifold. The detailed proposal can be found in section 9.3.
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3.1.7 U-duality and M-theory

In the final section of Chapter3 we comment on some of the issues which arise in trying
to extend these considerations to writing the fully U-duality-invariant partition function.
We summarize briefly the M-theory partition function on X x T2, we comment on the
SL(2, Z), duality invariance, and we make some preliminary remarks on how one can see

K-theory theta functions for twisted K-theory from the M theory formulation.

3.2 Review of T-duality invariance in the standard formula-

tion of type ITA supergravity

We start by reviewing bosonic part of the standard 10D IIA supergravity action [91].
Fermions will be incorporated into the discussion in section 7.
3.2.1 Bosonic action of the standard 10D ITA supergravity

The 10D NSNS fields are the dilaton ¢, 2-form potential By and string frame metric §; 5,
where M , N = 0,...9. The 10D RR fieldstrenghts are the 4-form G4, 2-form G and 0-form
Gy.

We measure all dimensionful fields in units of 11D Planck length /, and set k;, = 7, so

S00 = o= [ e VamR(E) + 4dp A 3dg + 2 By n v (333)
08 21 Jxy, 2

1 ~ ~ . ~ ~ ~
+E / <G4/\=T<G4 +iBAG4AG4 + GaA*Ga + 9106%)
X10
where % stands for the 10D Hodge duality operator. The fields in (3.33) are defined as
~ " ~ . 1. - ~ A
Gy =Gy + BgGo, Gy =Gy + ByGa + EBQBQGO, H; = dBs.

We explain the relation between our fields and those of [91] in Appendix(B).
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3.2.2 Reduction of ITA supergravity on a torus

We now recall some basic facts about the reduction of the bosonic part of the 10D action

on T2. Let us consider Xi9 = T2 x X and split coordinates as X™ = (zM,0™), where
M=0,...,7 m=S809.
The standard ansatz for the reduction of the 10d metric has the form:
ds?y = t2gyndzMdzy + Vgmnw™ @ w™ (3.34)

where gy is defined in (3.6), t2gyrn is 8D metric, detgyy = 1. V is the volume of T? and

w™ =do™ + Az’l‘). The other bosonic fields of the 8D theory are listed below.

o 1. g&),g&), a=12 gaym 93m ™=38,9 and gy are defined from®

Go _
o 90
ég 1 2 1 2

G4 2 1 1
o 9@ T 9@ymw™ + (Bog(z) + 9(2)) Eemnwmw"
e 2. The 8D dilaton ¢ is defined by

e % = Y (3.36)
e 3. B(y), B(1)m, Bo are obtained from the KK reduction of the NSNS 2-form potential

in the following way

- 1 1
By = EB()Emnwmwn + B(l)mwm + B(Q) + EAH')B(I)T"' (337)

Now, the real part of the 8D bosonic action obtained by the above reduction is

Re (S82)) = Sws + 25 (o) + 54 (9 (338
: p=0

989=1’ 589=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




63

1
Sws = 5 / e—2€{t6(7z(g) + 4dE A *d€ + 28t72dtA * dt) + %t2H(3) AxHg — (3.39)

1 gdrAxdr 1 gdpAxdp 1,
P = - e Fnﬁ
2" (Imr)2 2 (Imp)? 2t grnJap N*

where G is defined in (3.6) and Afly and By, are combined into 1-form as a collection

of
ma _ (€ B
mn = m . (3.40)
(1)
Also, we denote'®
1
Hy) = dB(z) — 5emnasA)maF (y (3.41)
3
Z Sp (g(p)) = W/X{tggaﬁg(%)/\ * g’(%) + tﬁgm"g(l)m/\ * g(1)ynt (3.42)
p=0

t*Gapglsy A * gfz) + 2™ g(3ym A * g(3)n}
Finally we have
Sy (9(4)) =7 /X Im(p)g(g) A *g(a) (3.43)
It is convenient to introduce the notation Sp(F) = Z?;:o Sp (g(p)) for the value of the
actions evaluated on a background flux field configuration. Sp(F) will enter the partition

sum Zgr(F,7,p) in equation (8.1) below.

3.2.3 T-duality action on 8D bosonic fields

The T-duality group of the 8D effective theory obtained by reduction on T2 is known to
be Dr = SL(2,Z), x SL(2,Z),, where the first factor is mapping class group of T? which

actson 7
aT+b
3.44
cT+d (3.44)
and the second factor acts on p = By + iV
ap+ B
- T F 3.45
p+06 (3.49)

Ve=1, Ea=-1
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Let us denote generators of SL(2,Z), by

S:p—>-1/p, T:p—>p+1
and generators of SL(2,Z), by

S:r—=-1/r, T:r—=71+1

We now recall how T-duality acts on the remaining bosonic fields of the 8D theory [78].
First, &, t, gmn are T-duality invariant. Next, there is the collection of fields F mentioned in
the introduction. These transform linearly under T-duality. They include the NS potential
B(3), which is T-duality invariant, as well as A?{S", which transform in the (2,2). The other
components of F are the RR fieldstrengths g&)), g&),a = 1,2 which transform in the (1, 2)
of Dr and g(1ym, 9(3ym, m = 8,9 which transform in the (2',1) of Dr.

Finally, the field g4y is singled out among all the other fields since according to the
conventional supergravity 78] SL(2, Z), mixes g4) with its Hodge dual xg(4) and hence g(4
does not have a local transformation. More concretely,

( —Repg(y) + ilmp * gy )
9(4)

(3.46)

transforms in the (1, 2) of Dr. Due to this non-trivial transformation the classical bosonic

8D)

8D action Sl(mson is not manifestly invariant under SL(2, Z),.

3.3 Review of the K-theory theta function

In this section we review the basic flux quantization law of RR fields and the definition of

the K-theory theta function. We follow closely the treatment in {86, 81, 68].

3.3.1 K-theoretic formulation of RR fluxes

As found in [80]-[86] RR fields in ITA superstring theory are classified topologically by an

element £ € K%(X1¢). The relation for By=0is

{%] _icha, ¢=3°6; (3.47)

J=0
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where ch is the total Chern character and A is expressed in terms of the Pontryagin classes

as

A 1 1/,
A=1- 2P + 5760 (7101 - 4p2) (3.48)

In (3.47), the right hand side refers to the harmonic differential form in the specified real
cohomology class. The quantization of the RR background fluxes is understood in the sense

that they are derived from an element of K%(Xg).

3.3.2 Definition of the K-theory theta function

Let us recall the general construction of a K-theory theta function, which serves as the RR
partition function in Type ITA. One starts with the lattice T = K%(X10)/K°(X10)tors- This

lattice is endowed with an integer-valued unimodular antisymmetric form by the formula
w(z,y) = I(z®7), (3.49)

where for any z € K%(Xyg), I(2) is the index of the Dirac operator with values in z.

Given a metric on Xqg, one can define a metric on '

9(z,y) = /X . %(;?/\%7(:’) (3.50)

where # is the 10D Hodge duality operator.
Let us consider the torus T = (I'x ®z R) /T'k. The quantities w and g can be interpreted
as a symplectic form and a metric,respectively, on T. To turn T into a Kahler manifold one

defines the complex structure J on T as

9(z,y) = w(Jz,y) (3.51)

Now, if it is possible to find a complex line bundle £ over T with ¢;(£) = w, then T
becomes a “principally polarized abelian variety.” L has, up to a constant multiple, a
unique!’ holomorphic section which is the contribution of the sum over fluxes to the RR

partition function.

The uniqueness follows from the index theorem on T using unimodularity of w and the fact that for any
complex line bunlde M over T with positive curvature we have H' (T; M) =0, > 0.
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As explained in detail in [85] , holomorphic line bundles £ over T with constant curvature

w are in one-one correspondence with U(1)-valued functions Q on I'g such that
Qe +y) = Qz)Qy)(-1)~ ) (3.52)

In the case of weakly coupled Type II superstrings one can take  to be valued in Z,.
Motivated in part by T-duality Witten proposed that the natural Zo— valued function Q
for the RR partition function is given by a mod two index ??. For any z €K %(X10),
T ® 7% € KO(Xyq), lies in the real K-theory group on Xjg, and for any v € KO(Xy), there
is a well-defined mod 2 index ¢(v) ??7. We take

Q(z) = (—1)7) (3.53)

where j(z) = q(z ® 7).

As explained in [86, 81, 68] there is an anomaly in the theory unless Q(z) is identically 1
on the torsion subgroup of K(X1p). In the absence of this anomaly it descends to a function
on T = K%(X10)/K°(X10)tors and can be used to define a line bundle £ and hence the
RR partition function.

To define the theta function one can pick an arbitrary splitting of I'x as a sum 'y @ 'y,
where I'; and I'p are “maximal Lagrangian” sublattices. w establishes a duality between I'y

and I'z, and therefore there exists fx € I'y/2I"; such that
Qy) = (-1)CxY), WyeT, (3.54)

Following [68] we choose the standard polarization:the sublattice I'§¢ is defined as the
set of z with vanishing Gy, Ga, G4. This choice implies that Gy, Go, G4 are considered as
independent variables. This is a distinguished choice for every large 10-manifold in the
sense that it allows for a good large volume semiclassical approximation scheme on any
10-manifold ( see sec.5).

It was demonstrated in [68] that ['{*® in the standard polarization consists of K-theory

classes of the form z = ngl + z(c1,¢2). 1 is a trivial complex line bundle and z(cy, c2) is
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defined for ¢; € H?(X19,2) and c; € H*(X10,Z) with Sg3cy =0, as

ch(z(c1,c2)) =¢1 + (—cg + %c%) +.... (3.55)

The higher Chern classes indicated by ... are such that z(c;, ¢z) is in a maximal Lagrangian
sublattice I‘ftd complementary to ['§*¢. Then, fx for the standard polarization can be chosen

to satisfy
cho(0x) =0, chi1(6x) =0, cha(fk)=—A+2d9, I(6g)=20 (3.56)
where A= %p1 and dy is a fixed element of H*(X19,Z) such that
veel f(@) = /X ¢U S¢%aq (3.57)
10

where L' = {¢ € Hpyyy(X10,2)/2H},s(X10,Z),  S*(€) = 0} and f(a) stands for the mod
2 index of the Dirac operator coupled to an Eg bundle on the 11D manifold X9 x S with
the characteristic class & € H*(X19,Z) and supersymmetric spin structure on the S.

The K-theory theta function in the standard polarization is

Ok =" Y ¢mrEt30x)Q(z) (3.58)
zel
where u = % f X1o cho(0k)chs(0k) and the explicit form of the period matrix 7x is given
by
1 1
- = — — G9Gg + G4G 3.59
Retk(z + 29K) @ /Xw (GoGro — G2Gs + GaGg) (3.59)
Imri(z + 26 )—sz—l—/ Gy N3G (3.60)
KT 50K = 2 (o) [x, DO '

p=0
The RR fields which enter (3.59,3.60) are:

1 1

E?;Go(.'L‘ + 50;{) =Ny

L oo+ S0x) = ¢ (3.61)
o2 9 K~ '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




68

From (3.58) and (3.59,3.60) the following topological term was found in [68] to be the

K-theoretic corrections to the 10D IIA supergravity action.

e2mi®(no,éd) — o) [—21rz'n0 / é (@ ] (1)) 2mi®(80) (3.62)
X10 8

5 z3; 53Y  sa) 522
2mi®(8,8) — (_1)F(@0) (1)@ ggp |9 / e €a_1lex éax e 1.,
e (-1) (-1) exp{ i X10(60+ 6 VYR +48 26Ag) (3.63)

3.3.3 Turning on NSNS 2-form flux with [H;] = 0

Let us turn on By € H2(X10,R). We normalize By so that it is defined mod H?(X10,7Z)
under global tensorfield gauge transformation.
We assume that the RR fields are still classified topologically by z € K°(X1g). The

standard coupling to the D-branes implies that the cohomology class of the RR field is [104]

% = eBroh(z)/A (3.64)
If we assume that
9% = e~Bren(z)\/A (3.65)

then the bilinear form on 'y = K°(X19)/K°(X10)t0rs is still given by the index:

wiz,y) = ﬁ [, 6@n&w) =16 on) (3.66)
The metric on 'k is modified to be
§e,y) = @ [ @) (3.67)

and Zj valued function Q(z) is unchanged. If we continue to use the standard polarization
then 0k € I';/2I"; is unchanged as well.

The net effect to modify (3.58) is that the period matrix 7x should be substituted for
% = 1%(G = G).

Ok (By) = e 3 ekl 1000 ) (3.68)
el

Note, that the constant phase e®* in front of the sum remains the same as in (3.58).
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The imaginary part of the 10D Type IIA supergravity action now becomes Im(Syp) =

—27@, where
B =0+ 5 [BaG + BICKGa + 2B} (G4 + GoCy) + 2 BIGoGr + —B3GE],  (3.69)
82 3 42 207 270D

& is defined in (3.62,3.63) and Gop(z + 10x), p=0,1,2 are given in (3.61).

From (3.69) we find that corrections to ® depending on By coincide with the imaginary
part of the standard supergravity action (see, for example [76].) '

Note, that G defined in (3.65) is a gauge invariant field if the global tensorfield gauge
transformation

By — By+ fo, fo€ HY(X10,Z) (3.70)

also acts on K%(X1g) as:

o L(—f)®z, zeK'Xiy) (3.71)

where the line bundle L(~f2) has ¢; (L(—f2)) = —fa-
Thus, according to (3.71) a tensorfield gauge transformation acts as an automorphism
of 'k, preserving the symplectic form w. (3.71) acts on theta function (3.68) by the multi-

plication by a constant phase:

Ok (Ba+ o) = o8 Jxp 2020 g (82) (3.72)

3.4 Action of T-duality in K-theory

In this section we consider Xj9 = T2 x X and describe the action of T-duality on the
K-theory variables.

Let us recall [68] that the standard polarization is distinguished for any large 10-manifold
in the following sense. When the metric of Xjo is scaled up gy 5 — tng & the action
Jx10 V3|Gap|* of the Type ITA RR 2p-form scales as ¢'~*7. This allows the sensible approx-
imation of keeping only G4 whose periods have the smallest action, then including G2 and

finally keeping all G4, G2, Go.
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In the case of X19 = T2 x X with the metric (3.1), the standard polarization is no longer

distinguished. Various equally good choices are related by the action of the T-duality group
DronTg = K%T? x X)/KD,(T? x X).

We argue below that Dr can be considered as a subgroup of Sp(2N, Z), where N denotes
the complex dimension of the K-theory torus T = K%(T? x X) ®z R/T'x and Sp(2N, Z)

stands for the group of symplectic transformations of the lattice I'g.

3.4.1 Background RR fluxes in terms of integral classes on X.

To describe the action of Dy on K-theory variables, we will write RR fields in terms of
integral classes on X. Let us start from the standard polarization 2 and write a general

element of T'¥*¢ as
z=ngl + (L(nleo + e+ ymdo™) — 1) + z(ege’ + a+ hpdo™) + A (3.73)

where ey = do® Ado?, so that [r» eg = 1. L(é) is a line bundle with ¢; (L) = é € H?(X10;2Z),
1 is a trivial line bundle, and for any & € H*(X10; Z), z(a) is a K-theory lift (if it exists).

In 3.73) A puts 7 into the Lagrangian lattice I'{*® and we also introduce the notations:
a€ HYX;Z), e € H(X;Z), hm€ H}X,Z), Yme€ HY(X;Z) m=28,9 (3.74)

Note that if a9 € H*(X xT?,Z), defined in (3.57), is nonzero, it has the property Sq> # 0,
so that it must have the form Gg = apdo™, a, € H3(X,Z). It is convinient to redefine h,
by including a,, which will be assumed from now on.

The RR fields entering (3.59,3.60) are given by

1 1
ﬂGo(w + §9K) = ny,
1 1
'2—7TG2(£II -+ 59[{) =niep+e+ ’)’mddm, (375)

- =g+ —e° + + f —=(1+ 12
) G4(.’E+ 29}{) a 26 1] mda 2( no/ ))\

12pstd and T4t are defined on page 19.
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where

e =nie+e -~  fm=hm+om+evm (3.76)

From the 10D constraint S¢*a = S¢3dy, valid in the case [f[;;] = 0, we find the constraints

on the integral cohomology classes: S¢3f, = Sq3a,, m =38,9.

3.4.2 The embedding Dr C Sp(2N, Z)

From the transformation rules of the RR fields under the T-duality group [92] we find that
fm and vy, transform in the (2',1) of Dr and we can form a representation (1,2) out of

ng,n1 and e, e” in the following way:

n® = <m> ¢ = (e ) (3.77)
70 €

We would like to reformulate the transformation rules for RR fields in terms of the action
on I'k.

Firstly, we note that SL(2,Z), does not act on I'x. Secondly, the action of T on ',
is a particular case of the global gauge transformation (3.70,3.71) with fo = ey and for
this reason T' € Sp(2N,Z). Moreover, T preserves standard polarization since it maps
thd - thd:

Gap (y® L(—e9)) =0, VyeTs? p=0,1,2 (3.78)
More interesting is the action of the generator S on I'k: S is a symplectic transformation

which maps standard polarization into another polarization.

To demonstrate this let us write a generic element y € T'§! as
y=2(a)® (L(eo) - 1) + 21+ 22+ 2 ® (L(eo) 1), @€ HY(X,2) (3.79)

In (3.79) 21, 29, 23 are such that

G v .oom G ., G -
%(Zl)—]mdd , 271_(zz)—ls:, 27r(z;;)—-lc (3.80)

where jn, € H3(X,R) ® H'(X,R), k&' € HS(X,R)® H(X,R)
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According to the transformation rules of RR fields [92] S acts on y as
S:y—=y, VY=z@+un+zn—2 (L(eo) - 1) (3.81)

From (3.81) we find that T’y := S(I's¥) ( an image of the I'§*® under S ) is a maximal
Lagrangian sublattice of I'i, and as such completely determines the new polarization.
Since we have an embedding Dr C Sp(2N,Z), we can deduce the existence of well-
defined transformation laws under Dr of the function ©(F,p), related by (3.20) to the
K-theory theta function ©. This follows from the fact that O is an holomorphic section
of the the line bundle £ over the K-theory torus with ¢;(£) = w. Since £ is not affected
by symplectic transformations, and has a one-dimensional space of holomorphic sections, it
follows that under T-duality transformatons @k can at worst be multiplied by a constant.
Nevertheless, this leaves open the possibility of a T-duality anomaly, as indeed takes place.
To conclude this section we show how the multiplier system is related to the standard
8% roots of unity appearing in theta function transformation laws. Recall the general

transformation rule under Sp(2N, Z) for the theta function 8[m] (7) of principally polarized
ml

lattice A = Ay + A of rank 2N. Here m = < ) € R?VN are the characterstics and the

mll

T = 7 is a quadratic form on A;.

period matrix 7 € My(C), 7

It was found in [100] that under symplectic transformations

AT+ B
= _— .82
T=c;7p °¢E€50@N.Z) (3.82)
the general f[m](7) transforms as
Io - m] (o - 7) = k(0)e¥™ M) det(CT + D)29[m](r) (3.83)
where
1 ( (CTD) )
— -1 d
oc-m=mo + =
d
d(m,o) = —% (m’TDBTm' - 2m'TBCTm" + m"TCATm”) +
1 IT IIT T
+5 (mTD-m"TC) (4"B)
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where (A)q denotes a vector constructed out of diagonal elements of matrix A.
The factor x(c) in (3.83) has quite nontrivial properties [100]. In particular x2(o) is a

character of I'(1,2) C Sp(2N, Z), where
. T T
c€T(L,2) iff (A B)d €2z, (C D)d €27 (3.84)

One can easily check that SL(2,Z), C I'(1,2) by writing out explicit representations o(S)
and o(T) in Sp(2N,Z) . We give o(S) and o(T) in Appendix(A).

Using the explicit expressions for ¢(S) and o(T') as well as the definition of 7 (3.59,3.60)
we find that in (3.83)

det(C(S) i + D(8))\/? = e¥%(~ip) % (ip)7%, $(m,0(S)) =0  (3.85)

det(C(T)r + D(T)Y2 =1, ¢(m,o(T)) =0 (3.86)

Now comparing (3.83) and the explicit formulae (5.31) for the transformation laws of ©(F, p)

derived in the next section we find the relation between k(o) and the multiplier system

w(S), u(T)
K(S)e'i% = u(S), &(T) = p(T) (3.87)

3.5 O(F,p) as a modular form

In this section we derive an explicit expression for ©(F, p) using its relation (3.20) to the
K-theory theta function ©x and we check that ©(F,p) transforms under the T-duality
group Dr as a modular form.

3.5.1 Zero NSNS fields

We first assume that all NSNS background fields are zero. In this case O(F, p), defined in

(3.20) is given by

O(F,p) = Z ei?.vrtb(a,}')e—ﬂfx Im(p)g(a)A*g(a) (3.88)
0EH4(X,Z)
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To find the imaginary part of the 8D effective action 27®(a, F) we substitute
a=a+epe + hpdo™, é=e+niey+ yndo™ (3.89)

into the definition (3.62) of e27®(n0,:2),

We need to evaluate f(a + ege' + hmdo™). Let us use bilinear identity from [68)
flu+v)= flu)+ f(v) + / uSq?v, Vu,v € HY(X10;Z) (3.90)
X10

to find
fla+ epe’ + hpdo™) = f(a+ eoe') + f(hmdo™) (3.91)

Let us consider f(h,do™) first. Again using the bilinear identity we obtain:
f(bmda™) = f(hsde®) + f(hsdo®) + | haSg*(hs) (3.9

From (3.90) it follows that f(hdo™),m = 8,9 are linear functions of h. Moreover, from the
diffeomorphism invariance of the mod two index we see that f(hgdo®+ hgdo®) = f(hgdo® +

(hg + Lhg)do®), for any integer £ and, using the bilinear identity once more we find that

f(hdo™) = r(h),m = 8,9 where
r(h) = /X hSeh, he HY(X,Z) (3.93)

is a spin-cobordism invariant Z, valued function. r(h) is nonzero since for X = SU(3) and

h = z3 the generator of H3(SU(3), Z) we have r(h) = 1. Then, using (3.76) we obtain:

f(hmdo™) = /X (fsqu(fg) + f8S¢*(fs) + foSq(fo) + € (7o fs — V8fs) + 33’)'8’)’9> (3.94)

Now we consider f(a + epe'):
fleoe' +a) = f(a) + Fleoe) + /X eod' SqPa = (3.95)
10

= [@ =3P+ @Pa= [ ar+ a3
This uses the bilinear identity (3.90), the reduction of the mod two index along T2, and
the formula eq.(8.40) for f(u Uv) from [68]. Taking into account (3.94) and (3.95) we find
the total phase ®(a, F):
(e, F) = AD + /X (e +a)B, (3.96)
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where characteristics are defined as:

1 1 1
a=3 (e)? + 3 (1-np/12) A+ 3 (" + €) €™ VVn
1 mn2 1 1 " mn
ﬁzg(e) +§(1—n1/12))\+§(e —e) €™ YmYn (3.97)

and we recall that ¢’ = nje +¢' — %em"'ymfyn. Note that for convenience we have made a
shift of the summation variable in (3.88) a = a+ X + 1 (e + €”) €™y, 7.

The prefactor A® is given by

exp[2miAD] = (—1)/@ezp {Wi/x(fSSQQ(fg) + f3Sq°(fs) + f95112(f9))} (3.98)

. 1 2 1 1 1 1 2 1
2 M — Ze'ed+ —e3e — Zg2 et " (1 12) )22
exp[ m/X( 4(6 e) 52¢ AT gee 4e/\+48n0A(e) +4( +ng/12) A"+

+1(n— )fi—l fi+(i)2 + 2 emn fot
2 0 —"N1)Asg 2”0“1 8 2 246 TYmJn

1 " 2 01 31 _mn
+E[no(e ~e)A —12e“e" —4de) — 4e ]e 'ymfy,,)

In deriving A® we have used
S L[ A2
W= 3= (3)]

Also, in bringing A® to the form (3.98) we have used important congruences

1
/ % [(e")3e + e"e3] +3 (€")?e? - I%Ae”e €Z (3.99)
X
/ (e"¢)® € 22, / el € 22 (3.100)
X X

following from the index theorem on X :

1 4 1 2 2
et = 101
/ 54¢ ~ 3 de“ €Z,Vee H*(X,Z) (3.101)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




‘[ .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

3.5.2 Including flat NSNS potentials

Let us now take into account globally defined NSNS fields:

. 1 1
By = EBOEmnwmwn + B(l)mwm + B(z) + —2-.A?1L)B(1)m, .A?l")

and recall that .A?l‘) and B(;), are combined into the (2, 2) of Dr as in (3.40).
We define a gauge invariant fieldstrength G = P2 as in (3.64) where G are given in

(3.75) and expand G (:E + %GK) as

éo 1

2n
% <.’L‘ + 59}{) = (g(o) + g(O)Bo) Eemnwmw” + g(l)mwm + g(2) (3102)
G"l 1 2 1 1 m, n
o (w + §9K> = g(4) + gE3mw" + (309(2) + 9(2)) g Emn@ W

The first effect of including flat NSNS fields is to modify fields which enter Sp(F). These
fields g&)), 9(1)m> g&), g(3)m are now linear combinations of the integral classes ym, fm, €%, n*

defined in (3.74,3.76) with coefficients constructed from A’(ﬁ" and B(g).

n1 1
90 = (no) » o 9m =Ym +Eum, gl =€* + AT (”Ym + §§(I)m) + B2)9(y (3.103)

1 1 "
93ym = fm + B2)g(1ym + A@)ym + Ek(3)m + EfmngaﬁAz(’f)f(l)pA 1[3; (3.104)

where we denote
Em = mnasgfy AL, Aaym = cmnbage®ATD,  kaym = emnEapATSAL  (3.105)

The other effect of including flat NSNS fields is to introduce a term 47 [y Re(p)g(4)Ag(4)
and to shift the characteristics and the prefactor of ©(F, p). Now ©(F, p) has the form:

O(F,p) = e2miAd Z exp [/ (—ﬂIm(p)g(4)/\ * g4y + ine(p)g(4)Ag(4) + 27rig(4)B)j|
1 X
a€H4(X,2) (5.106




7

where g4y =a+&, a€H 4(X,Z). The shifted characteristics &, 3 are

Gd=a+¢?, B=B+¢! (3.107)
where «, 3 are defined in terms of integral classes ng, 71, Y, €% in (3.97), while ¢® transform
in the (1,2) of Dr. Explicitly,

1 1 1

5B@B@90 ~ @90

where &(1)m; A(3)m: k(3)m are given in (3.105) and we also denote

1
Sy = 6_45ﬂ1ﬁ25ﬁ3ﬁ4A?11)ﬁ1 enmzA?z)ﬁaAEn;&Emmz Azniﬂ‘; (3.109)
The shifted prefactor A® in (3.106) is given by
= 1
AD =AD - /X [ﬂAwQ + 5901/\@2] +(AD),,, (3.110)

where A is defined in terms of integral classes ng, n1Ym, €%, fm in (3.98) and (A®),,, is a

part of the phase which is manifestly invariant under the T-duality group Dr.
3 1 a B 1 mn 1 mn 1 mn
(A®),,, = /x By [ﬁgaﬂg(o)e —g¢ Mmn = 7€ Emn — g€ 5(1)m£(1)n]+ (3.111)
1 1 3 1
2
/ B [‘Zﬁmnfu)mfn - §€m">\(3)m’7n - gémn/\(3)m§(1)n 2 " k@ymé() }
1 1 1
/ Bz ’""fmfn =3¢ Aembn = 7€ AamA@n — g€ Mambi@nt
1
+ﬁf<1)mq{g‘) + _C(4)€aﬂea9é3o) + C(4)€m”7m7n] + /x [E)‘(?»)mqu) + <(4)€mn7mfn]
where g7ty = Eqp AL f,,A{';g’

3.5.3 Derivation of T-duality transformations.

Let us study transformations of ©(F, p) defined in (3.106) under Dy. First, we note that

O(F, p) is invariant under SL(2, Z),. Next,we consider the action of the generator S.
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For any function h(F) of fluxes F, we denote
S[aF)] = (s F)

where S-F means a linear action on fluxes according to their representation under SL(2,Z),
and

8s[h] = S[h] - h.

To check the transformation under S we need to do a Poisson resummation on the self-dual

lattice H4(X,Z). The basic transformation law is:

¢
] (0[7) (3.112)

19[2] (0] = 1/7) = (-2'7)1/26%%9[ 0

and its generalization to self-dual lattices (3.83).
After the Poisson resummation and shift of the summation variable ¢ = a +€? + X\ we

find that ©(F, p) transforms under S as
0(5 - F,1/p) = = SIS [831} (i) 01 (15147 (7, ) (3113)

Now using the definitions of &, § (3.107, 3.108) and A® (3.110) as well as the transformation

rules for F, we find after some tedious algebra
~ - 22
5 (28] = - / S[&)SIA] + / 24z (3.114)
X x 4
We conclude that the generator S acts as
O(S - F,~1/p) = &™x X1 (—ip) 3% (i) 1% O (F, p) (3.115)

To check how O(F,p) transforms under the generator T we use its relation (3.20) to the
K-theory theta function © g as well as the transformation of @ under global gauge trans-
formation By — By + fo (3.72) where the action of the generator T' corresponds to fo = eo.

In this way we find from (3.72) that
O(T - F,p+1) = e x¥/o(F, p) (3.116)

where we used that o = a,do™.
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3.5.4 Summary of T-duality transformation laws

Below we summarize the transformation laws of the function ©(F, p) under the generators
of T-duality group Dr.
O(F, p) is invariant under SL(2, Z),:

G(T]_—vp) =@(f,p)

(S - F,p) = O(F,p) . (3.117)

©(F, p) transforms as a modular form with a nontrivial “multiplier system” under SL(2, Z),.

That is, using the standard generators T, S of SL(2, Z), we have:
O(T - F,p+1) = u(T)O(F, p)

O(S - F,~1/p) = u(S)(=ip) 3% (ip) 2 O(F, p) (3.118)

where T+ F, S - F denotes the linear action of Dz on the fluxes. Here b],b; is the dimension
of the space of self-dual and anti-self-dual harmonic forms on X and the multiplier system

is

uT) =expl [ 02, u(s) =essly [ N (3.119)

where p; = p1(TX). These define the “T-duality anomaly of RR fields.”

3.6 The bosonic determinants

In this section we compute bosonic quantum determinants around the background specified
in section 2 (below (3.43) ).
Let us factorize bosonic quantum determinants as: Detg = DrrDns, where Drg(Dns)

denotes contribution from RR (NSNS) fields.
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3.6.1 Quantum determinants Drr for RR fields

Quantum determinants Dgg for RR fields have the form

4

Drr = [] Zrryp (3.120)
p=1

where Zrgp is the quantum determinant for 9(p)- First, we present the contribution Zgg 4

from the fluctuation dC'3) of g4). From (3.43) we find the kinetic term for Ci3,
S3,e0 = wIm(p)(dC3),dC(3)) ' (3.121)

where (,) denotes standard inner product on a space of p-forms on X constructed with the
background metric gy .

We use the standard procedure [93, 102] for path-integration over p-forms, which can be
summarized as follows. Starting from the classical action for the p-form S, s = a(dCy), dC(p))

one constructs the quantum action as!3 :

p m+1
Sp,qu = a(C(P),A Cp) z_: Z ( (p—m)» p-—mul(cp_m)) (3122)

where u?p_m), kE=1,...m+1m = 1,...p are ghosts of alternating statistics. For
example, ufp_l), k = 1,2 are fermions, u’(cp_2), k =1,2,3 are bosons, etc. In (3.122) A,
is the Laplacian acting on p-forms and constructed with gasn*

To compute Zrp 4 we take (3.122) for p=3, «a = 7wlm(p) and use the measure [DCp)]
normalized as [[DC,le~(C» %) = 1.

Zppa = (o) 2B~ BytBi-By) [det'As] -3 [det’Az] [det’Al]—s/'z [det'Ao]Z

3.123
Vs Va i Vo (8:123)
where det' A, is a regularized determinant of nonzero modes of the Laplacian acting on p-
forms. By, = Bp—bp, where B, denotes the (infinite ) number of eigen-p-forms and b, and Vj,
are the dimension and the determinant of the metric of the harmonic torus T%,,... = H? /1Y,

The appearance of V}, in (3.123) is due to the appropriate treatment of zeromodes and is

explained in Appendix(E).

13Factors am+rl should be understood as a mnemonic rule to keep track of the dependence on a which
follows from the analysis of various cancellations between ghosts and gauge-fixing fields
YA =dd' +d'd

{
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The infinite powers depending on B,, here and below, require regularization and renor-
malization, of course. These can be handled using the techniques of [112]. In particular the
expression

qg(Imp) := (Imp)"%(BrBz“"B‘_BO) (3.124)

is a local counterterm of the form e ™™ fx(")‘2+”p2), and the numbers u,v depend on the
regularization. From now on we will assume that 7Imp [ X(u>\2 + vps) is included into the
1-loop action:

S1-toop = 7rImp/ (U)\z +vp2) + :LZEReP/ (p2 - )\2) (3.125)
b'e 24 X

In section 8 we will show that T-duality invariance determines u and v uniquely.

Next, we consider the contributions to Dgg from dC(g)m, dCE’l), dé’(o)m which are
respectively the fluctuations for g(3ym, g&,), g(1)m- Let us also make field redefinition of
the quantum fields C’(O)m,m = 8,9 to the fields Cgym,m = 8,9 which have well defined

transformation properties under the full U-duality group'®

. 1 .
Cos = v72e*Crapss  Cloyg = \/—7_2650(0)9 (3.126)

From (3.42) we find classical action quadratic in the above specified fluctuations:

SO,cl = ﬂfsglmn (C(O)madtdc(o)n) ’ Slad = 7rt4g°‘ﬂ (Cﬁ)’deCg))

S2,cl = ﬂ.tQan (C(Q)ma deC(2)n)

88 _ 1 88 199

where = te~¢/3 is U-duality invariant, and g g%, ¢¥= 79%, ¢ = ¢%. Now,

using (3.122) with a = 7#%¢'™", 1t1G,p, 7t2g™ and p = 0,1,2 correspondingly we find:

Zrpy = (WF)_BE’ [de;)A"]"l (3.127)
ZRR2 = (7rt4)B{)—Bi [dei;lAl]_l [deihAgr (3.128)
e e e N

15For the discussion of U-duality see sec.10
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In computing (3.127-3.129) we also used that dety, g™ =1, detn,g"™" = 1 and dety pGap =
1.

Collecting together (3.123) and (3.127-3.129) we find that Dgr has the form:

det'Aal—% [det’Al ] -3 (3.130)

Dgpr = T'RR(tap)[ Vi 7

where
! '1' b - _'b 7 ! ! ! ! !
rea(t, p) = (€6)255 ( Im p) 3 (b3—b2tb) O)t‘232‘23'1‘430(w)“%(30+31f32+33)
and we recall that g(Imp) was included into S1—jo0p-
We have computed the quantum determinants Dgp treating RR fluctuations as differ-

ential forms. It would be more natural if these determinants had a K-theoretic formulation.

This might be an interesting application to physics of differential K-theory.

3.6.2 Quantum determinants for NSNS fields

Let us first consider fluctuations da(l) and db(y) of the NSNS field Ff’zl)“ and H(s). From
(3.39) we find the classical action quadratic in this fluctuation:

1 - m 8
Sa=1-e 2€{t4gmngag (a5, dtdaf) + ¢ (b(Z),deb@))} (3.131)

Now, again using (3.122) we find

S e = N ) (3.132
and
e R I e | R

Let us now consider fluctuations of scalars: 6¢,07,8p. From (3.39) we write the action

quadratic in these fluctuations:

(12)? (p2)

where 8 = j-e~2¢¢5. Now using the scalar measures defined as

Sscal = B / { 80M stdp6E + 8M676M6¢+ - 23M(5P(9M5ﬁ} (3.134)

A-& STA*ST

/ (Digl[Dole Jx Gk =1, / [Dé][DéFe Jx Tar =1 (3.135)
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/ (Dégle8 Ji 06mmE (3.136)
we find the quantum determinants for the NSNS scalars Zyg,o:
, rdet' Ag1-3
Znso = B35 [—de AO] : (3.137)
Vo

Finally, we consider fluctuation hpsy of the metric t?grn- Recall that we work in the limit
e~% = 00 so that in computing the quantum determinant for the metric we drop couplings
to RR background fluxes.

From (3.39) we find quadratic terms in the action:

Smetr = ﬁ/X{(DNhMP)PMPQS (DNhQs) + hMPRMNthNQ (3.138)
1 2
- (DMhMN - §DNh,>

where b = ¢gMN by and

1 1
PpMPQS _ 5 gMQgPS _ 1 gMP Qs

In (3.138) Runpg is the Riemann tensor of the Ricci-flat!® background metric gpry-
The covariant derivative Dy is performed with the background metric, and indices are
raised and lowered with this metric.

Following standard procedure [94, 95] we first insert gauge fixing condition into the

path-integral & (f‘i N —(DMhyy — %DNh)) Then, we insert the unit

1 = y/det(811) f Dy PlEwsa) (3.139)

and integrate over k() in the path-integral. This procedure brings the kinetic term for the

fluctuation hpsy to the form
'B/X hMpPMPNRIC%%hQS, K%% = —51?,5%DLDL + 2RNQRS (3.140)
Gauge fixing also introduces fermionic ghosts k1, l(;) with the action

Sgn = BY/* (l(l), Alk(l)) (3.141)

161f the background metric is not Ricci-flat there are terms involving Ricci-tensor in (3.138) as well as in
(6.22) below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




84

. - Q .
Using the measure [[Dhysyle [ harn PMNPRhpg 1 we obtain the result for the quantum

determinant Z,,.s of the metric:

—% det’A1
1

Zmetr = ()72 W55 [det'k] (3.142)

where det’K is a regularized determinant of nonzero modes of the operator K defined in
(3.140) and Nf. = Ni — ni, where Ni stands for the dimension (infinite ) of the space of
the second rank symmetric tensors and ng is the number of zeromodes of the operator .
We will explain how we regularize det'K shortly.

Let us combine all NSNS determinants together:

det’Ag ] —%

Dns =rns(t,§) [det”C]_%[ 6

(3.143)
where

Ni.+B}+2B,+2B)

rrvalt.€) = (47)3Nk+Bo+Bi+3B; et 43N —B;~4B| -8B 3.144
vs(t,€) = (4n) (3.144)

Finally, from (3.130) and (3.143) we find the full expression for bosonic determinants
-;-(b3—b2+bl —bo)

Dety = Q(t, guw) (Imp) (3.145)

where @ is a function of the T-duality invariant objects garn, t and €. Explicitly,

det'As] ~3 [det’Az] -3 [det'Al ] E (3.146)

-1
t = Tyo1 |det' K| *
Q(t,gmn) Ttot[e ] [ 7 Vi 7
where we regularized det'K in a way that eliminates dependence on ifinite numbers By and
Ny so that

Tyt = (F)3(me-Hba2b1+4bo) (3.147)

where we recall £ = te=¢/3,

Now, let us check the transformation laws of Detpg under Dr. From (3.145) it is obvious
that Detp is manifestly invariant under all generators of Dr except generator S.

Using,

Im(=1/p) = 1™42) (3.148)

pp
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we find that under S Detpg transforms as

Detg(—1/p) = spDetp(p), sB= (pp) 7 (botrrba=bs) (3.149)

3.7 Inclusion of the fermion determinants

In this section we include the effects of the fermionic path integral. We recall the fermion
content in the 10-dimensional and 8-dimensional supergravity theories and derive their
actions. In the presence of nontrivial fluxes these fermionic path integrals are nonvanishing,

even for the supersymmetric spin structure on T2,

3.7.1 Fermions in 8D theory and their T-duality transformations.

Let us begin by listing the fermionic content in the 8-dimensional supergravity theory (this
content will be derived from the 10-dimensional theory below.)

The fermions in the 8D theory include two gravitinos pA, nt, A=0,...,7 and
spinors &, A, I, p, [, .17 The relation of these fields to the 10D fields is explained
in (7.13),(7.14) below. There are also bosonic spinor ghosts by, c1, T2 and by, cp, T1 which
accompany ¢ and n“ respectively.

The fermions and ghosts transform under T-duality generators as follows. The gen-
erators T,T', S act trivially on fermions and ghosts while the under the generator S they
transform as

A o éolyh At Ao el 5% (3.150)
| etiel] [y eel], ey, i e (3.151)

and ghosts transform as

T, = Ti, Ta—re Ty (3.152)
{e1,b1} = €T {c1, b1} {c2, b2} — {c2,b2} (3.153)

where « is defined by
a=v+ %w, ip = e|p| (3.154)

17We supress 16 component spinor indices below
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and T is the 8D chirality matrix.

The above transformation rules for space-time fermions follow from the transformation
rules for the appropriate vertex operators on the world-sheet (as discussed for example in
[75]). The only generator of Dr acting non-trivially on fermions is S. The components
V%, a = 8,9 of the right-moving NS vertex are rotated by 2a, while the components Vf\‘,s
are invariant. This follows since S does not act on the left-moving components of vertex
operators. In this way we find the transformation rules for 72, ba, c2, 3, Y1, ] , which origi-
nate from R ® NS sector. To account for the transformation rules for 94, b1, ¢1, A, Yo, t, fi
we recall that these fields originate from NS ® R sector and that the right-moving R vertex
Vg transforms under S as

S : Vg — el Vp. (3.155)

3.7.2 10D fermion action

We start from the part of the 10D IIA supergravity action quadratic in fermions[91]. We

work in the string frame. 18
09 _ [ /=g |15 PAVBD g, + SAPYD R — (04 )ATAETY;
Sferm = gioe™ |59 " D + 3 Iy \/i( ¢ U
_n ~ ~ 7 ~ A -~ 3 AR A 2
/\/._—g];e ¢GAC[ F[EFACFI;-.]FH’(,&F + —EAFEPACFH'l/) + AI\ACI\IIA:I
0G| L 1B, 4 > _RPA; — AR 3.156
+ [ V=g10e Go| ¥ g + 55 Yi— g (3.156)
L [ et =B aABODA gF . L ApEpABED 4 SXpABCD}

where A and 1,5"1 are dilatino and gravitino and covariant derivatives act on them as
1
tA _q. 2A BC A
D™ = Og¥” +wy B‘/’ +qwrsel ¥

A A 1 BC
DNA = 3NA + Zwm;él“ A

18\We explain the relation between our conventions and those of [91] in Appendix(B).
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There are also terms quartic in fermions in the action. It turns out that it is important
to take them into account to check the T-duality invariance of partition sum. We recall the

4-fermionic terms in Appendix(C).

3.7.3 Reduction on 7°.

To make the reduction of the fermionic action to 8D we choose the gauge for the 10D

veilbein as

(3.157)

tEBf  ATVies,
- )

0 Vie

and use the following basis of 10D 32 x 32 matrices f‘"i,
M=, @4 A=0,...7, [*=01Q@1, [P=0y@T, T=0I%..T7 (3.158)

Here I'4 are symmetric 8D Dirac matrices, which in Euclidean signature can be all chosen
to be real and o} 2 3 are Pauli matrices.

In this basis 10D chirality I''! and charge conjugation C19 matrices have the form
Ml =0o3@1y, CU=ioy®15 (3.159)

The 8D fermions listed in section 7.1 are related to 10D fields 'J)A and A in the following

19
way 7.
¢A . A P R N
— A+ lPAFa¢a, = §A + —\/——Fad)a, (3.160)
77A 6 A 4 4
! .. . i s agoa
( ) = [ap® — %A, (l) = thg — I%g (3.161)
I

3.7.4 8D fermion action

Now we present the 8D action Sgi)ad = Skin+Sfermi— fluz quadratic in fermionic fluctuations

20 gver the 8D background specified in section 2.2. The kinetic term is standard

198 and ['y)* are mixed to give 8d “dilatino”, the superpartner of e % ="V
2Tn Minkowski signature ¢4 = 1/)1‘41’0. In Euclidean signature ¢4 and 14 are treated as independent
fields.
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1- _ _
Skin = /X e‘2§t7{§¢APAMBDM¢B + %ﬁAPAMBDMUB + gerDMz + :,z,)'AFMDMA
(3.162)

1- 1 1= ~ 1=
+ZlI‘MDMl + ZpI‘MDMu + Zzr‘MDMl + ZﬂFMDM;I}

The coupling of fluxes to fermion bilinears is:

m - ngp+n nep +n1 o
Sfermi—flum = Z/);_ € £{ts[ U 1X(o) — —guX(o)} + t7g(1)m/\ * Xinll)-l— (3.163)

vImp VImp
2 1 9 1
619()P 1912 9P+ 9(2) . 5 _
¢ [— ,/imp/\*X(?) - \/Im—p—"/\*X@)] +1 g(g)m/\*X(3)

+4, /Impg(4)/\ * [X(4) + X(4)] }

where the harmonic fluxes g(p),p = 0,...,4 were defined in (3.103,3.104). These harmonic
fields couple to differential p-forms X(p),f((p) constructed out of fermi bilinears. We now

give explicit formulae for X,

X = -FT4BWE) Wi T4 e +iv2kIrAw ) (3.164)
—iVZWITAA® +ivaEPragld) — ivaerant
i

+ IO - ST 4+ | ACITAW) 2W‘£1+)1“Ay<->

AT A _ g %j‘” 94 L=(j)
(X)) = T TUT N TEIWS) + W4T vD B )+ (3.165)
VIR v TAWE) — iVZW I TAT y A + iv/2E T T Aw )
+iVIT )PAFMN2<+)+2Z( )PAT xp(+)+2‘1:( T TAI)
=SB Ty WS = WP A + 45Ty A®)

— 1. -
4Ry N - li( +)PMN1U(+) = §ﬂ(+)FMNl(+)
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where 1/)%) = 2 (116 £ T) p4,etc. and we use the combinations of 8D fields

2
Wy=Pa+ i%——PAA, Wao=n4-— z'gI‘AE

to make the expressions for X (g, X(9) have nicer coefficients.
The forms X(o),f((z) can be obtained from Xg), X() by exchange of 8D chiralities
(=) < (+).

Under the T-duality generator S the above forms transform as

{X«J),X(z)} - e_i"{X(owX(z)}a {X(O),Xm)} - 6"“{)?(0)’5((2)} (3.166)

so that the combinations ﬁ(nop + n1) X ) ﬁ(noﬁ + nl)X(p) for p = 0,2 which
appear in the action (3.162) are invariant under S.

Also we have defined the 1-form
(Xp),, = R [EF T AW - WiTlr, rPle ) (3.167)
—iVIRI D, TAWD 1 iVIW I TAT ), A — iy T 4w ()
+HVIETAT 50 - %E“)PAFM\I';*) + %@ﬁf)erf*ﬂ’r)
—%ﬁ(")rAFMW;‘) + %_VV([)I‘MI‘A,&(‘) — 45D AW)
4Ry 20) - %ﬁ(-l-)FMl(—) + %Z(_)FMN(”L)] +e™ [(+) © (—)]
and the 3-form

(XB) ynp = 2]~ T pTEW S - WTAT y pr P ) (3.168)

VIR p AW 4 iAW TAT yy p A — iv/2E Ty p D A2 )

—iV2B ATy pE ) — %f“rf*rwpwg” - %@Q)I‘MNPFAZ(H
+%ﬁ(_)FAFMNPWS4_) + %WS_)FMNPI’A[L(—) — 4§(_)FMNPA(+)
— 1 oy 1o
~4K 2 + ‘2'ﬁ(+)PMNPl( )+ -2-1-( )FMNPM(+)] +el [(+) © (—)]

where we denote el = eg* F ief’.
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The forms X7) and X7, transform in the 2 of SL(2, Z),. Also from (3.167,3.168) we find
that X G‘) and X (’g) are invariant under SL(2,Z), if we accompany the action of generator
S by the U(1) rotation of e

el — eFieen (3.169)

The most important objects in (3.163) are the self-dual?* form X(4) and the anti-self-dual

form X'(4) which couple to the flux g(4). X(4) is defined by
(X pewro = —1%a TUTyypl WG + W Ty yperBel)  (3.170)
—\/éx(_)FMNpQFAWSF) + \/EHVV%)FAFMNPQA(_)

—\/if(_)FMNPQFA‘I’E:) + \/iﬁﬁf)I‘APMNpQE(‘) — %l—("')I‘AFMNpQ\I’(A_)

1—(- 1 _ 1—(~
+§‘I’f4 )FMNPQI‘AIH) - -2-ﬂ(+)PAFMNPQW(A ) + §W‘(4 )FMNPQFA/.L(+)

== - (= oy 139) (o) b=(= -
+4Z2( )FMNPQA( ) — 4ZA( )I‘MNPQZ( ) El PMNPQH( ) + 5/14( )FMNPQl( )
and X (4) can be obtained from X4y by the exchange of 8D chiralities (+) ¢ (—).

Under the T-duality generator S these forms transform as
X(4) - eiaX(4), X4 — e—iaX—(4) (3.171)

We have also checked using Appendix(C) that the 4-fermion terms in the 8D action can be

written as

Sﬁsf})ﬂm =S4 ferm + Si- ferm Si-ferm = I% /X e~ %48 [X(4)/\ * Xg) + X(4)/\ * X'(4)]
) (3.172)
While Sj_ ferm is manifestly invariant under T-duality, we will see that the non-invariant
term S§_ ¢, is required for T-duality invariance of the total partition sum ng;f) (F,T,p)-
The classical 8D action obtained from the reduction of 10D IIA supergravity on T2 is
invariant under local supersymmetry (all 32 components survive the reduction ).

To construct the quantum action we have to impose a gauge fixing condition on the

gravitino zﬁ(g p) = ( > and include ghosts. Since the susy transformation laws involve

yr

21 ; 1 B1BB3BsF
In our conventions I'a; A,AgAs = — 37641 A2A3AgBy BpBgBa L 12 o 2T
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fluxes, there is a potential T-duality anomaly from the ghost sector. In fact no such anomaly

will occur as we now demonstrate. There are two generic properties of supergravity theories:

e 1.) In addition to a pair of Faddeev-Popov ghosts associated to the local susy gauge

transformation 'l/:'(g p) = 1&(‘}3 o)t ngf)é D) @ “third ghost” appears [97].
e 2.) Terms quartic in Faddeev-Popov ghosts are required [98].

Let us recall first how the “third ghost” appears. Following the standard.procedure we
fix the local susy gauge by inserting ¢ ( f-T Avﬁé D)) into the path integral. Then we also

insert the unit??

1= 1
\/det (%e—%t"ﬁ)

and integrate over [df]. (If D has zeromodes this expression is formally 0/0, but (7.27) below

/ (df]es x DI b =itV Dy, (3.173)

still makes sense.)

As a result we first find that the gravitino kinetic term gets modified to

1

—3 /X 6_25757{11—)AMAB¢B + ﬁAMABnB} (3.174)
where the operator M 4p acts on sections of the bundle B Spin(X)RTX as

Mg = 64piTM Dy — 2T 4 Dp (3.175)
where Dg = E¥ Djs. The determinant in (3.173) is expressed as the partition function for

the “third ghost”'i‘ with action

So=—= [ eBITDT (3.176)
2Jx

Y is bosonic 32 component spinor, which we decompose into 16 component spinors as

. Ty
T =
To
22\Ye use the measure [[dfle’ Jefr 21
238pin(X) and TX are spinor and tangent bundles on X
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Now we come to the most interesting part of quantum action which involves Faddeev-
Popov ghosts b, é.

Spe = S& + 5% (3.177)

where 5(2) (5(4)) denotes the parts of the action quadratic (quartic) in FP ghosts. Let us

discuss the quadratic part first. According to the standard FP procedure we have
5@ = / £1e=250 432 ) | (3.178)
We decompose bosonic 32 component spinors b,é as
¢ . b
¢= , b= .
C2 bg
We can write the action as a sum of two pieces
8(2) S(Z) + 5152)2
c

Here 5(2)0 does not contain fermionic matter fields while S( 2 is quadratic in fermions. We

now present 8(2)0 and put .S’éf)Q in Appendix(D).

(2)0_ T €0 _iP\A — re—b) 2,8[TOP T T gh TP+ M 5o 3.179
S, /xste b(—iD)é — me {375[ Vimp X(O) J/Imp (0)] (3.179)
2 1

1, avm L 192)P T 909 o P+ 90)
1
+§tsg(3)m/\ * X(g;; m}
where we define forms bilinear in FP ghosts as
1 R _ —(=) (— -
X(o) - —{b2( )Cg ) _c—l(—)bg ) _ bl( )Cg )+C_2'(—)b<1 )} (3180)

j R e - R — _ _ -
(X (2))MN E{bz( )].-‘MNcg )+C_1(“)FMNbg )+b1( )PMNCg )+§( )FMNb(l )} (3.181)

(xXg™

ghmy = %e P[5 Tt~ @OTwbs? ~ 5T +EHra”] (3182

M
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+=e™[(+) ¢ (-)]

1, _ —
X8 ™ e = 3% (62 Taew e + @O Tanpts? + 5 Tawps?  (3.183)

- 1
+5 et | + 57 [(4) & ()]

The forms X'(QO';, X (92}; can be obtained from X é’(;;,X ("2’; by exchange of 8D chiralities (~) <
(+). Note, that B,é do not couple to g(4) flux.
Let us now present the quartic in ghosts part of the quantum 8D action, obtained by

following the procedure of [98].
59 = e (604598) (Bascd) + 5 (60%) (BPac) ) (3189)

The presence of the quartic in FP ghosts part in the action is due to the fact that gauge
symmetry algebra is open in supergravity: [d¢,,d¢, ] 1/3(; D) contains a term proportional to
the equation of motion of 1/3@ D)

T-duality invariance of Sgi),S{Sz)O and S; is manifest and we have also checked that

553)2 is T-duality invariant, so we conclude that the part of the 8D quantum action which
contains ghosts is T-duality invariant.

We can now compute the fermionic quantum determinants including ghosts. Let us
expand the fields A, Z, 1,1, u, i, b1, ba, 1, €2, Y1, T2 and 4,74 in the full orthonormal basis
of the operators D = i’V Dy and M respectively, where the operator M was defined in
(3.175). Note that since we are assuming that background fluxes are harmonic, fermionic
non-zero modes do not couple to them. Moreover,we can rescale non-zero modes by a
factor of e=€¢7/2 so that kinetic terms appear without any dependence on ¢ and ¢, but
four-fermionic terms are supressed as e?¢t~% with respect to the kinetic terms. Since kinetic
terms are manifestly T-duality invariant the integration over nonzero modes will just give

a factor Det} depending only on the Ricci flat metric gy and the constants ¢ and ¢, all

of which are T-duality invariant. Dets has the form

Detlr = rp(€,t)det' M (3.185)
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where det' M is determinant of the operator M defined in (3.175) regularized in a way that

M

rp(€:t) = const (¢7%¢7) (3.186)

where n a4 denotes the number of zero modes of M.

Note, that determinants of nonzero modes of the fermions 2, A,l,u,f,/] and bosons
Y1, Ta,b1,ba,c1,co cancel each other and do not contribute to Det'r.

For zero-modes the situation is quite different: the kinetic terms are zero but there is
nonzero coupling to harmonic fluxes, so that if we rescale fermion zeromodes by e~ 3612 we
make both fermion coupling to g(4) and fermion quartic terms independent of ¢ and t. We
will also rescale ghost zeromodes by e~ %€ and include the factor (e‘%“)nM which comes
from the rescaling of fermion and ghost zeromodes into the definition of Det’r, i.e. we define
new rp:

G 1) 1= () (e78) ™ = comst(f) 7 (e (3.187)

Note, that from (3.147) and (3.187) we find that the full quantum determinants depend on

t and £ in the following way

(5_3)17,/\4 —nx—~ba—2b1 —-4bg (3188)

where we recall that £ = te=¢/® is U-duality invariant combination and for any Ricci-flat
spin 8-manifold the numbers n s and ng can be expressed in terms of topological invariants.

We can split the action of the rescaled fermion and (gravitino)ghost zeromodes as

S(zm) — S(zm)im) + S(zm)ninv.

Here the part S(#™? is invariant under T-duality and includes all the ghost zeromode
interactions, the coupling of the fermion zeromodes to all RR fluxes except for g4) and the
invariant part of the 4-fermion zeromode couplings, denoted Sgim)e';m.

G(zm)ninv transforms non-trivially under the generator S of T-duality and can be recast

in the following way:

glzmninv _ 4rImpg(gA * Yig) + 2rImpY( A * Yy (3.189)
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where we define the harmonic 4-form Y(4) as

_ 11 ryem) | glam)
Yo = 15 7 (xG + x5 (3.190)
which transforms under S as
S- Y(4) = —RepY(4) + zImp * Y(4) (3191)

Let us expand the harmonic 4-forms in the basis w; of H 4X,2)
9@ = (ni + &i)wi’ Yo = yiwz', B = Biwi

where the chracteristics &, 3 are given in (3.107). We now define a new object

O(F,p) = [ aug™ fw"z’“ﬁ’@[g] @ (3.192)

where shifted characterstics are defined as & = & + v, B’ =F+8-4, dugfm) denotes

the measure of rescaled fermion and ghost ( which accompany gravitino) zeromodes and we
also recall that Q(p) = [HImp — iRep]l. In (3.192) h = e=SC™™ ig the expression which
depends on 7,p,t,gun as well as fermion and ghost zeromodes in a T-duality invariant
way, where the dependence on 7, p,t, gyn comes entirely from the coupling of the rescaled
zeromodes (of fermions and ghosts) to the fluxes g(;),p =0,1,2,3.

Another new object in (3.192) is

-

K&(F,p,9) = A® - 5315 -7 - 17
where A® was defined in (3.110).
O(F, p) is invariant under SL(2,Z), and transforms under SL(2,Z), as

8(S - F,~1/p) = spu(S)(—ip) 2% (ip)2% B(F, p) (3.193)
B(T - F,p+1) = u(T)O(F,p) (3.194)

We do Poisson ressumation to find (3.193) and the extra phase sp is due to the transfor-
mation?* of du™

s = (6) ) = (14 (ig) 3104 i) 314 (3.195)

24We are using that 10D fermions are Majorana fermions in Minkowski signature.
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where I(M) is the index of the operator M defined in (3.175). As in the standard com-
putation of chiral anomaly [99], only the zeromodes contribute to the transformation of
fermionic measure.

Note that the contribution of non-trivially transforming bosonic ghosts c1,b1, T2 to the

transformation of the measure cancel the contribution of the fermions p, i, A, l,l~ .

3.8 T-duality invariance

3.8.1 Transformation laws for Zp,p(F,T,p)

Now we study transformation laws for
Zp+r(F,7,p) = DetpDetre 8O (F, p) (3.196)

where O (F, p) is defined in (3.192), Detp and Det} are defined in (3.145) and (3.185, 3.187)
respectively. We also recall that Sp(F) is the real part of the classical action evaluated on
the background field configuration.

First, we note that Zp,p(F,7,p) is invariant under SL(2, Z),. Second, we learn how
Zp4r(F, 7, p) transforms under SL(2, Z), by using the transformation rules of Detp (3.149)
and O(F, p) (3.193,3.194). We find:

Zpr(S- Fyr,—1/p) = spsrpu(S)(~ip) 24 (i5) 2% Zpyr(F,7p) (3.197)

Zpyr(T - F,1,p+1) = w(T)ZB1r(F,7:p) (3.198)

where sg is taken from the transformation of Dp.

Now, using the definition of ¥ and o
1 4 1 -
5(b0—b1+b2—b3+b4)=Z(Xid), o=by —by (3.199)

as well as the index theorem:

IM) + / A2 = / 248 Ag
X X
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we obtain the final result for the transformation under the generator S
Zp4r(S - Fy1,=1/p) = (=ip) XHs @3 (i) 8@ 25 p(Fomp) - (3:200)

From (3.198) and (3.200) we find that there is a T-duality anomaly.
Note, that transformations (3.198,3.200) are consistent for any 8-dimensional spin man-

ifold. This can be seen by computing 2
Zosr((ST)® - Fo1,p) = €5 X~ gp p(Forp) (3.201)

ZB+F(S4'-}-’T7P) = ZB-%-F(]:aT?p)

and then noting that the index theorem for 8-dimensional spin manifolds implies
/ (7A2 — py) € 1440Z. (3.202)
X

Incidentally, when X admits a nowhere-vanishing Majorana spinor of + chirality the

Euler characteristic is given by [82]:
1 2
X==*3 / (p2 — %) (3.203)
2J/x
and the transformation rule (3.200) simplifies to:
ZB+F(S - F,T, "1//7) = (_ip)%XZB-}-F(]:a 7, P) (3204)
Zp4r(S - Fyr,=1/p) = (D) 251 (F,7.p) (3.205)

for the positive and negative chirality respectively.

3.8.2 Including quantum corrections

Now we recall that there is a 1-loop correction to the effective 8D action:

Sl—loop = WImp/ (’U)\2 + ’UP2) + ER(%p‘/ (pz - )\2) (3.206)
X 24 X

25The branches for the 8 — th roots of unity are chosen in such a way that $? = (—)Fr, where Fr is a
space-time fermion number in right-moving sector of type IIA string
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where we remind that 7Imp [y (uA\?+vps) comes from the regularization of g(Imp) in (3.124)
and the numbers u and v depend on the regularization.
We now demonstrate that to construct a T-duality invariant partition function this term

should be replaced with

Soua = [+ 7 [ o2 = 30)tog bno) + [~ 7 [ (2= At (=2~ (3207

where 7(p) is Dedekind function. Taking the limit Imp — oo one can uniquely determine
u=— andv= 2 in (3.206).

n has the following transformation laws:
n(=1/p) = (=ip)in(p), nlp+1) =efin(p) (3.208)
so that e~Sewant transforms as
e~ Swwent (=1/p) = (=ip) P8 lx i) ot s [y NS ) (3.200)

¢~Smant (5 4 1) = ¢35 Jx P2V g=Samant () (3.210)

Using (3.202) the total partition function we find that

Z(F,1,p) = e_Sq"“"‘ZB+F(.7:, T,p) (3.211)

is invariant:
Z(T-F,m,p+1) = Z(F,1,p), (3.212)
Z(S']:,T,—-l/p) =Z(}-17,p)' (3213)

This is our main result.
As a consistency check we consider( for simplicity) the case when X admits a nowehere-
vanishing spinor of positive chirality and take the limit Imp =V — oo
Squant = 173p+ >y L gaminme ) (3.214)
1 12 m
n>1lm>1

and we recognize the multiple cover formula for world-sheet instantons on T2 from [79].
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3.9 Application: Hull’s proposal for interpreting the Romans

mass in the framework of M-theory

As a by-product of the above results we will make some comments on an interesting open
problem in the relation of M-theory to ITA string theory.

It is well known that IIA supergravity admits a massive deformation, leading to the
Romans theory. The proper interpretation of this massive deformation in 11-dimensional
terms is an intriguing open problem. In [73] C. Hull made an interesting suggestion for an 11-
dimensional interpretation of certain backgrounds in the Romans theory. His interpretation
involved T-duality in an essential way, and in the light of the above discussion we will make

some comments on Hull’s proposal.

3.9.1 Review of the relation of M-theory to IIA supergravity

Naive Kaluza-Klein reduction says that for an appropriate transformation of fields

{gn—theorys Cri—theory} — {9114, H114, $114,Cr14} (3.215)

we have

S ~theory = SIIA (3.216)

One of the main points of [68] was that, in the presence of topologically nontrivial
fluxes equation (3.216) is not true! Indeed, given our current understanding of these fields,
there is not even a 1-1 correspondence between classical M-theory field configurations and
classical TIA field configurations. Rather, certain sums of I1A-theoretic field configurations
were asserted to be equal to certain sums of M-theoretic field configurations. In this sense,
the equivalence of type IIA string theory and M -theory on a circle fibration is a quantum
equivalence.

To be more precise, in [68] it was shown that for product manifolds ¥ = Xjo X St

the sum over K-theory lifts z(a) of a class @ € H 4(X10;Z) is proportional to the sum over
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torsion shifts of the M-theory 4-form of Y. We have:

N (=)Art(@)+7 (30) s e
e PIA — erp (—HGM—theory(&)HQ) Z (_1)f(a+6) (3'217)
VN Nk (@) éeHY  (X10,2)

The above formula is the main technical result of [68]. We recall that [Gar—theory(@)] =
2m(a— %)\) and the equivalence class of @ is defined to contain M-theory field configurations

with fixed kinetic energy

. 1 A\ r s Ay
”GM—theary(a’)”2 = Z"/ GM-—theory(G)A*GM—theary(a),
T JX10

from which follows that these fields are characterized by &' = a+¢é, & € Hy,4(X10,Z). Also,
in (3.217) Nk and N is the order of KJ),.,(X10) and Hj,(X10; Z) respectively, Np stands for

tors

the number of elements in the quotient L” = L/L', where L = Hp ((X10; Z)/2H{s(X10; Z)
and L' = {é €L, S¢¢= 0}. Finally, Arf(g) is the Arf invariant of the quadratic form
q(é) = £(&) + [x,, ¢U Sq?ao on L. The identity (3.217) extends to the case where ¥ is a
nontrivial circle bundle over X [68].

We interpret the fact that we must sum over field configurations in (3.217) as a statement
that IIA-theory on X9 and M-theory on Y = X9 x S 1 are really only quantum-equivalent.
This point might seem somewhat tenuous, relying, as it does, on the fact that the torsion
groups in cohomology and K-theory are generally different. Nevertheless, as we will now
show, a precise version of Hull’s proposal again requires equating sums over IIA and M-
theory field configurations. In this case, however, the sums are over non-torsion cohomology

classes, and in this sense the fact that IIA-theory and M-theory are only quantum equivalent

becomes somewhat more dramatic.

3.9.2 Review of Hull’s proposal

One version of Hull’s proposal states that massive IIA string theory on T2 x X is equivalent
to M-theory on a certain 3-manifold which is a nontrivial circle bundle over a torus. The
proposal is based on T-duality invariance, which allows one to transform away Gy at the

expense of introducing G along the torus, combined with the interpretation of G; flux as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




101

the first Chern class of a nontrivial M-theory circle bundle [68]. We now describe this in
more detail.

Hull’s proposal is based on the result [76] that dimensional reduction of massive IIA
supergravity with mass m a circle of radius R, (denoted S%), gives the same theory as
reduction of IIB supergravity on S} /R with a twist using the SL(2, R) symmetry of IIB
supergravity, that is, the fields are twisted by

1 mb
g(0) = ( ) ‘ (3.218)
0 1

where the coordinate on S} JRisz= 219, 9 € [0,1] and we use Scherk-Schwarz reduction

with monodromy

. 1 m
9(1)g(0)™" = ( ) (3.219)
0 1
Schematically:
IIA,, ( IIB )
- == (3.220)

where Xj is an arbitrary 9-manifold. Note, in particular, that the twist acts on the IIB
axiodil 7p = Cy + i~ %B as

78(0) = 75(0) + mf (3.221)

which implies that the IIB RR field G; has a nonzero period.

Let us also recall the duality between IIB on a circle and M-theory on T2:

IIB M

= 3.222
Sk xSll/RxX Tz(rM,AM)xS%/RxX ( )

where the T2(757, Apr) on the M-theory side has complex structure 73; = 75(0) and area
Ay =B (R) 1.

Now, invoking the adiabatic argument we have:

IIB M
= (3.223)
(S%/R x SL, x X>g(9) B(m;R,R) x X
where B(m; R/, R) is a 3-manifold with metric:
2
ds? = (2—“) (d6)? + AM[ (dz + (Reras +mb)dy)? + Im'ery2] (3.224)
R Imrys
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where z,y are periodicz ~z+1land y ~y+ 1.

Combining (3.220) with (3.223) we get the basic statement of Hull’s proposal:

IIA, M
SLx Sk xX ~ B(mR,R)x X

(3.225)

3.9.3 A modified proposal

In view of what we have discussed in the present work, the equivalence of classical actions
- when proper account is taken of the various phases of the supergravity action - cannot
be true. This is reflected, for example, in the asymmetry of the phase (3.98) in exchanging
ng for n;. However, we follow the lead of (3.217) and therefore modify Hull's proposal by
identifying sums over certain geometries on the IIA and M-theory side.

A modified proposal is to identify Z(F,p,7) defined in (3.196,3.211) with a sum over
M-theory geometries as follows. Recall first that in the 8D theory there is a doublet of
zeroforms ga)), arising from Gy and G3. Next, let us factor gy = £ (p

q
relatively prime integers and £ is an integer. Then we take a matrix N' € SL(2,Z),

) where p,q are

r -3
N = ( ) rp—sqg=1 (3.226)
—q P
such that
14
Ng(o) = (0> (3.227)

This is the T-duality transformation that eliminates Romans flux.
Now, thanks to the invariance of Z(F, 7, p) under T-duality transformations (see (3.212,3.213)
above) we find:

Z(F,7,p) =2 <N F1, %) (3.228)

By the results of [68] the right hand side of (3.228), having G = 0, does have an interpreta-
tion as a sum over M-theory geometries. The M-theory geometry is indeed a circle bundle
over T? x X defined by ¢; = £eg +pe — ge” + ymdo™ (as in Hull’s proposal), but in addition

it is necessary to sum over Eg bundles on the 11-manifold B x X. While it is essential to
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sum over g(4), all other fluxes may be treated as classical - that is, they may be fixed and
it is not necessary to sum over them.

Both sides of (3.228) should be regarded as wavefunctions in the quantization of self-dual
fields. For this reason we propose that there is only an intrinsically quantum mechanical

equivalence between ITIA theory and M-theory in the presence of Go.

3.10 Comments on the U-duality invariant partition function

The present work has been based on weakly coupled string theory. However, our motiva-
tion was understanding the relationship between K-theory and U-duality. In generalizing
our considerations to the full U-duality group D = SL(3,Z) x SL(2,Z), of toroidally com-
pactified ITA theory it is necessary to go beyond the weak coupling expansion. Thus, it
is appropriate to start with the M-theory formulation. In the present section we make
a few remarks on the U-duality of the M-theory partition function and its relation to the
K-theory partition functions of type ITA strings. In particular, we will address the following
points:

a.) The invariance of the M-theory partition function under the nongeometrical SL(2, Z),
is not obvious and appears to require surprising properties of 7 invariants.

b.) We will sketch how one can recover “twisted K-theory theta functions,” at weak
coupling cusps when the H-flux is nonzero.

We believe that one can clarify the relation between K-theory and U-duality by studying
the behavior of the M-theory partition function at different cusps of the M-theory moduli
space. At a given cusp the summation over fluxes is supported on fluxes which can be
related to K-theory. (See, for example, (3.217).) A U-duality invariant formulation of the
theory must map the equations defining the support at one cusp to those at any other cusp.

This should define the U-duality invariant extension of the K-theory constraints.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

3.10.1 The M-theory partition function

Let us consider the contribution to the M-theory partition function from a background Y

which is a T° fibration over X.
ds3) = V™3 Pgunda™ dz” + VE frant™0" (3.229)

where 6™ = dz™ + A7}, and z™ € [0,1]. #garn is an Einstein 8D metric, detgyn = 1. Gmn
and V are the shape and the volume of the T3 fiber. We denote world indices on T2 by
m = (m,11),m = 8,9 and M =0,...,7 as before.

Topologically, one can specify the T3 fibration over X by a triplet of line bundles L™
which transform in the representation 3 of SL(3,2) and have first Chern classes ¢; (L™) =
.’F(';‘), where .7-'(‘“2) = df™. Such a specification is valid up to possible monodromies. These
are characterized by a homomorphism 7 (X) — SL(3,2).

On a manifold Y of the type (3.229) we reduce the M-theory 4-form Gpr—theory a8

G 1
T M—theory 2::‘607'3’ =Gy + G(g)mBm + 5 (F(2)mn + EmnkBO}-(lé)) o™o" (3-230)

and we also must include the flat potential
1 manpgk
C(O) = ngEmnke 6o (3.231)

in the Kaluza-Klein reduction.?® (We will list the full set of flat potentials in this back-
ground below.)

From the Bianchi identity dGps—theory = 0 we have

dGyy = fEnQ)G(g)m, dG(3)m = .'F&)F(z)mn dF(oymn = 0 df(r;l) =0 (3.232)

which implies that fluxes G(4) and G(3)m are in general not closed forms.?”

Let us recall how various fields transform under D = SL(3,2) x SL(2,Z), [78].

o t,gun are U-duality invariant.

11,8,9 —
1189 — g1 80 =1

27]n IIA at weak coupling we assumed G(3)1, = 0 and F(y) = 0,n = 8,9, so that all background fluxes are
closed forms.
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o SL(2,Z), acts on p = By + iV € H by fractional linear transformations.

o SL(3,Z) acts on the scalars mn parametrizing SL(3,R)/SO(3) via the mapping
class group of T3,

F&)
o PO = transform in the (3,2) of D, where F} := 1emnk R,
@ Fm @) = (2)nk

e G@am transSfc))rm in the (8',1) of D

o Gy is singled out among all the other fields since according to conventional super-
gravity (78] SL(2,7), mixes G4 with its Hodge dual *G4). More concretely,

( —RepG(y) +1Imp x Gy )
G

transforms in the (1,2) of D. Due to this non-trivial transformation the classical bosonic

8D action is not manifestly invariant under SL(2,Z),.

Now, let us consider the real part of the bosonic 8D action

1 1
+— 5 / o {R + 281200 t0M 1 + ——~6Mp3M P+ =570 Gt O™ gn)}

3
where G, is defined in (3.6), G is inverse of Jmk and R is the Ricci-scalar of the metric
gMN-

The imaginary part of the 8D bosonic action follows from the reduction of M-theory
phase Qa7(C). This phase is subtle to define in topologically nontrivial field configurations
of the G-field. It may be formulated in two ways. The first formulation was given in [83].
It uses Stong’s result that the spin-cobordism group Q11(K(Z,4)) = 0 [113]. That is, given
a spin 11-manifold ¥ and a 4-form flux % one can always find a bounding spin 12-manifold
Z and an extension G of the the flux to Z. In these terms the M-theory phase Q(C) is

given as:
2mi ~
Qu(C) = eexp Hﬁ / s - 2 / G(pa — A?) } (3.234)
z
Here € is the sign of the Rarita-Schwinger determinant. The phase does not depend on

the choice of bounding manifold Z, but does depend on the “trivializing” C-field at the

boundary Y.
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A second formulation [68, 70, 103] proceeds from the observation of [83] that the inte-
grand of (3.234) may be identified as the index density for a Dirac operator coupled to an Fg
vector bundle. The M-theory 4-form can be formulated in the following terms [68, 70, 103].

We set:

GM —theory
2r

=G +dc (3.235)
where G = e—loTT248§I;:F27 + 5z TrR%, F is the curvature of a connection A on an Eg bundle V
on Y and R is the curvature of the metric connection on T'Y. Gp1—theory is a-real differential
form, and ¢ € Q3(Y, R)/Q5,(Y), where Q3(Y) are 3-forms with integral periods. The pair

(A, c) is subject to an equivalence relation. In these terms the M-theory phase is expressed

as:

D h(D D
where Dy is the Dirac operator coupled to the connection A on the Eg bundle V, which
enters the definition of M-theory 4-form in (3.235). Dpgg is the Rarita-Schwinger operator,
h(D) is the number of zeromodes of the operator D on Y, and (D) is the n invariant of

Atiyah-Patodi-Singer. The phase w(c) is given by

w(c) = exp [ﬂ"i /Y (c(C_v’2 + Xg) + cdeG + %c(dc)2)ji (3.237)

3.10.2 The semiclassical expansion

For large £ there is a well-defined semiclassical expansion of the M-theory partition function,
which follows from the appearance of kinetic terms in the action (3.233) scaling as 2% for
k =0,1,2,3. In the leading approximation we can fix all the fields except G(4), but this
last field must be treated quantum mechanically. Note that this semiclassical expansion can
differ from that described above because we do not necessarily require weak string coupling.
In the second approximation we treat G(4) and G(3)n as quantum fields, and so on.

In the leading approximation in addition to the sum over fluxes G(4) we must integrate

over the flat potentials. These include flat connection Aﬁ’) of the T2 fibration and potentials
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coming from KK reduction of c
m 1 n

where sz)m = Cio)m — %C(l)pmAfl) and CES) = C3) — CZQ)mAﬁ‘), and c(g) is defined in
(3.231). Cg) is invariant under U-duality, C(g)m transforms in the (3,1) of D. We can

combine the flat potentials C(1)mn and ‘A?ll) in the U-duality multiplet of D transforming

1e™KC ) ‘
me - (2 g ) (3.239)

m
(1)
The duality invariance in the leading approximation is straightforward to check. We

as (3,2) by writing

keep only G4). The flux is quantized by G = a— %)\, where o € H(X,Z) is the
characteristic class of the Eg bundle and ) is the characteristic class of the spin bundle. We
sum over a € H4(X,Z). The 8D action, including the imaginary part is SL(3,Z) invariant.
The imaginary part of the 8D effective action in this case takes a simple form which can be

found from (3.236) :

Im(Ssp) = —W/X(a UX+ By (a - %)\)2) (3.240)

The invariance under SL(2,Z), then follows in the same way as our discussion in weak
string coupling regime.

Let us now try to go beyond the first approximation. In the second approximation
[Ggy] = a~— I+ [AE?)G@)m]- We allow nonzero fluxes G (3)m, but still set to zero the
fieldstrengths F(o) and F(5). We thus have a family of tori with flat connections. Already in
the second approximation, when we switch on nonzero fluxes G(3)m there does not appear
to be a simple expression for the M-theory phase.

Nevertheless, one can get some information about the M-theory phase from the require-
ment of U-duality invariance. We know that SL(3,Z) invariance is again manifest from the
definition of Q/(C) and Re(Ssp). But the expected SL(2,Z), invariance gives nontrivial
information about Qps(C).

To state these nontrivial properties of Q7(C) let us write M-theory partition function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




108

in the second approximation

ZM—theory(gmmp) =/d#ﬂat Z ZM—theory(gmnaG(S)maP) (3-241)
G@3)m

where dpf1,; stands for the integration over

g ()", (00" 5o

@) \gm) " \HEE)
where HP(X) is a space of harmonic p-forms on X and H5(X) is the lattice of integrally
normalized harmonic p-forms on X. The first factor is for C3), the second'fa,ctor for Coym
and the third factor is for the fields AZ‘{')O‘ transforming in the (3,2) of D. The integration
measure dy ¢ is U-duality invariant.
The summand in (3.241) with fixed G 3)n, is given by
Zt—theory(Gmns Gaymrp) = Y. Det(Gay, Gaym)e Srente™5et (3.243)
acH4(X,2Z)

where

e~ S = Oy (G(4), G 3)m: BO) G_W & <Im(P)G(4)/\*G(4)+t.2§mnG(3)mA*G(3)n)
and Det(G 4), G(3)m) denotes 1-loop determinants. These depend implicitly on the scalars
P, Gmn,t as well as on the metric gprn.

The M-theory phase {2 in (3.243) depends on the fieldstrenths G(4), G(3)m and the flat
potentials, but it is metric-independent, and hence should be a topological invariant. The
dependence of {2 on flat potentials is explicit from (3.237) for c as in (3.238). For example

dependence of Q3 on By has the form

i fx BoG(4)G 4y (3.244)

( We choose to include 1-loop corrections [y BoXg together with effect of membrane instan-
tons in Sguant.) The nontrivial question is dependence on G4y and G(3)m which also comes
from n(Dy) + h(Dy).

The independence of s on the metricon ¥ = X x T3 (in the second approximation)

follows from the standard variation formula for 7-invariant. To show this let us fix the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




109

connection on the Eg bundle V' with curvature F' and consider the family of veilbeins e(s)
on Y = X x T? parametrized by s € [0,1] such that the metric on 7% remains flat and
independent of the coordinates on X. The corresponding family of Rieman tensors R(s)
gives an A-roof genus A(s) which is a pullback from X x [0,1]. Now we can write the

standard formula for the change in 7-invariant under the variation of veilbein [110]:
ne) = nle@) =5+ [ ch(V)As) (3.245)
Y x[0,1] '

where integer j is a topological invariant of ¥ x [0,1] and ch(V) := 3—10T1~2486%ra is defined
in terms of the curvature Fc on the complexification of the bundle V. In the second approx-
imation we only switch on G = G(4) + G(3)mdz™ so that neither cha(V) = —2(G + 1)) nor
cha(V) = (G + £))? have a piece ~ dz®dz%dz’! and integral in (3.245) vanishes.

Now we come to the main point. The requirement of the invariance under the standard

generators S, T of SL(2,Z),

ZM—theory(gmna "1/p) = ZM—theory (gmn, p) (3.246)

ZM—theory(gmmp + 1) = ZM—theory (gmn, P) (3'247)

gives a nontrivial statement about the properties of the function Q4(G4), G(3)m, Bo)-
The sum over fluxes G (3, € H 3(X,Z) in (3.241) might be entirely supported by classes
which satisfy a system of SL(3,Z) invariant constraints. These constraints can in principle
be determined by summing over torsion classes once the phase Q37 is known in sufficently
explicit terms. In the simple case when G (3)m are all 2-torsion classes, one can act by the

generators of SL(3,Z) on the constraint
Sq*(G3)e) + Sa*(G(zj1) + G(3)9 U G(zjn1 = 0 (3.248)
which follows from [68] and get

GamUG@Epn =0, mn=38911 (3.249)
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3.10.3 Comment on the connection with twisted K-theory

In this section we discuss the behavior of the partition function near a weak-coupling cusp.
There is a twisted version of K-theory which is thought to be related to the classification of
D-brane charges in the presence of nonzero NSNS H-flux (84, 109, 87, 108]. It is natural to
ask if the contributions to the M-theory partition function Zps_theory (fmn,p) from fluxes
with nonzero H(3) := G311 € H 3(X,Z) are related, in the weak string-coupling cusp, to
some kind of twisted K-theory theta function.

The weak-coupling cusp may be described by relating the fields in (3.229) to the fields
in ITA theory. First, the scale £ is related to the expansion parameter used in our previous

sections by 2 = e~3¢2. Next, we parametrize the shape of T® as fmn = %5 Jap Where

e\_;—r/; 0 0 1 7 Cp
ea=1 0 etBym 0 0 1 Cp (3.250)
0 0 eX3)\0 0 1

We denote frame indices by a = (a,11),a = 8,9. The weak coupling cusp may be written
as

R x R? x SL(2,R)/S0(2) (3.251)

where the first factor is for the dilaton ¢, the second for Cgs, 0(0)9,28 and the third for
the modular parameter 7 of the ITA torus.

As far as we know, nobody has precisely defined what should be meant by the “ K theta
function.” Since the Chern character has recently been formulated in [104], this should be
possible. Nevertheless, even without a precise definition we do expect it to be a sum over a
“Lagrangian” sublattice of Kz (XgxT?). At the level of DeRham cohomology, this should be
a “maximal Lagrangian” sublattice of ker d3/Imds where d3 : H*(X19,Z) — H*(X10,2) is
the differential d3(w) = wAH(g). Using the filtration implied by the semiclassical expansion,
and working to the approximation of e~ this means that we should first define a sublattice

of the cohomology lattice by the set of integral cohomology classes (a,G(3)s, G(3)9) such

28These are related to the RR potentials C(o)n, transforming in the 2' of SL(2,Z), as C(os =
e*72Cos Ceoyp = €£71—;2-C'(0)9
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that (G(4), G(3)8, G(3)9) are in the kernel of d:
H(g) A G(4) =0, H(3) A G(g)m =0, m=2§,9 (3.252)

Then the theta function should be a sum over the quotient lattice obtained by modding out

by the image of d3
Gas ~ Gag —pHz), Go~Gape—sHp), Guy~Ga—wyHa.  (3.253)

Here p,s € Z and w;;) € H 1(X,Z). Thus, our exercise is to describe how a sum over this
quotient lattice emerges from (3.241).
Let us consider the couplings of flat potentials C(1)s9 and C(gyy, to the fluxes which

follow from (3.237):

¢i27 [ Cayso H(3)G 4y i27 [ €™ Claym Gy Hia) (3.254)

Integrating over C(y)s9 and Ca)y, gives H(3)AG(4) = 0 and e H(3)AG(3), =0 respectively.
Next, we note that, due to the SL(3,Z) invariance of the M-theory action we have

(suppressing many irrelevant variables)
ZM—theory(C(O)ma G(3)m - pmH(S)aAbl)a G(4) - w(l)H(S)) = (3'255)

Zr—theory(Cioym + Pmis G(gym» Ally + @(1), G9))

Now we use (3.255) to write the sum over all fluxes G(4),G(3)m, ™ = 8,9 in the kernel

of d; as

Zyg = Z ZM—theory(C(O)maG(3)maA%11),G(4)) = Z w (3'256)
dz—kernel Mfund

where M gynq stands for the fluxes in the fundamental domain for the image of d3 within
the kernel of d3 and
W= )Y S Zu-theory(Cloym + Py G @yms Afl) + w1, G (a)) (3.257)
Pm€Z2 w EH(X,Z)
Now, we can recognize that Zg descends naturally to the quotient of the weak-coupling
cusp.

T\ [R x R? x SL(2,R)/S0(2) (3.258)
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where I', is the subgroup of the parabolic group ', and given by:
1 0 p
L2=101 s|, psez (3.259)
0 01
Written this way, Zj is clearly a sum over a Lagrangian sublattice of the K (X x T?) lattice.
(in the approximation of working in the DeRham theory, with the filtration appropriate to
the second approximation.)

The interesting point that we learn from this exercise is that in formulating the Ky
theta function, the weighting factor for the contribution of a class in Ky should be given
by (3.257). The dependence of the action on the integers py and wyy € H'(X,Z) is
exp[—Q(pm,w(1))] where Q is quadratic form. Therefore W is itself already a theta function.
This follows since the dependence on C(g),, and .A(lll) comes entirely from the real part of the
classical action (3.233), since, as we have shown, the phase is independent of the metric on
X x T®. The dependence on C(g),, comes from [x 2§™"G 3)mA * G(3)n and the dependence
on .A(lll) from [y ImpG qyA * G(q), where we recall that G(y) = a — 3 + AR G(3)m-

It would be very interesting to see if the function Zy defined in (3.256) is in accord with
a mathematically natural definition of a theta function for twisted K-theory. But we will
leave this for future work.

As an example, let us consider X = SU(3). Let 73 generate H3(X,Z). Then fixing
H3y = ka3 we find that the fundamental domain of the image of d3 within the kernel of d3
is given by

Gag=rzs, Gpg=pzs, 0<rp<k-1 (3.260)

so that the sum over RR fluxes in (3.256) is finite and in this sense RR fluxes are k-torsion.
This example of X = SU(3) is especially interesting since it is well known [107, 106, 108]
that at weak string coupling D-brane charges on SU(3) in the presence of H(3) = kz3 are
classified by twisted K-theory groups of SU(3), and these groups are k-torsion. As argued
in [81], from Gauss’s law it is then natural to expect that RR fluxes are also k-torsion. This

is indeed what we find in (3.260).
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Here we give the explicit expressions for representations of S and T' in Sp(2N,Z). Let us

choose the following basis of the lattice I'
%= (%1,%) (A1)
%1 = (31,0 ® (L{eo) — 1), (L(es) = 1), (L{es) = )@ (L(eo) = 1), (L(3rdo™) — 1), (A.2)

2 (fudo™) @ (wi))
%o = (2(ws) ® (L(eo) - 1) ,@ (dedo™) , @ (wrdo™) , o(us), 2(us) ® (Lleo) = 1),  (A3)
a(h),o(lu) ® (L(eo) 1))
where we introduce
y € H(X,Z), heHYX,Z), l=1,..,h

v € H(X,Z), w, € H(X,Z), r=1,...h
es € HX(X,Z), us€ H5%(X,Z) s=1,...,bs,
fr € HY(X,Z), dy€ H¥(X,2),k=1,...,bs, w; € HY(X,Z),i=1,...,bs,
where b, is the rank of H?(X,Z) and bj is the rank of the sublattice of H 3(X, Z) which is
span by classes f such that S¢®f = Sqao.

In the above basis the generators S and T' are represented by

A(S) B(S) A(T) B(T)
C(S) D(S) o(T) D(T)
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[ L
—1p,
1,
A(S) = —1p, B(S) =
1op,
1obg
\ 0p, 1b4(A 5
—1p, 05, .
1op,
195,
C(S) = D(S) = 1y,
—1b2
1y,
\ —1,,
(A.6)
[t )
—1p, 1,
1,
A(T) = —1p, 1y, B(T) =0y (A7)
1op,
1op,
\ 1,/
1,,
12bg
1ap,
C(T)=0y, D(T)= 1y, (A.8)
—1p, 1y,
1p,
—1p, 1
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Appendix B

The 10D fields that we use are related to the fields in [91] as:

G G B
247-r — e—%QFfom, 2271' - _ —94 FZRom, _227r BRom’ m= Goe'l‘i‘ﬁ’

’(’5 —e SIP(Rom) A = 8)\(Rom) VIR = 62¢g(Rom)

We also remind that we set k17 = « while in [91] k13 = 27 was assumed.
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Appendix C

Below we collect 4-fermionic terms in D=10 ITA supergravity action which are obtained

from circle reduction of the D=11 action of [96].

1

’R' - _ ~ _ ~ _ ~
Sil_o}erm =3 / v —gi0e 2¢{_6_4 [XEFABCDEFXF + 12%AT BCXD]]X[AFBCXD] (C.1)

+3—12' (xel42%Fxr) (xaTmxc) + % (xalxc) (x8®x€)

—1 (%a®xc) (x824x°) - = (rafoxc) (P12x°))

where

and A = (4,11).
Recall that the graviton Efy and the gravitino ’(,[)Eil) of 11D supergravity are related to

10D fields as [96]:

29

~$ 1A 2
=e 3EL, EBll=e3, Bl =¢3

A

M CM

an_ 1 ¢
"/)A me XA
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Appendix D

Below we collect terms in the 8D quantum action which are bilinear in FP ghosts and

bilinear in fermions:

b2)2 5 / 8 _2£{ XBFAXC + 2XAPBXC) (i)f'Af‘BCf:) + (D.l)

% (XBfaXC + ZiafBXC) (Zfaf‘Bcé)

(XAf‘BcXD) (ZfABCD ) % (XaFBcXD) (gf&BCD C)
4o

__Zlgg[faAfaABCDE s ﬁFdBCDE] é()“ch‘CDXE)

- (EfBXA) (bPAXB) - = (cI‘BXa) (l:)f’ ) (cf‘an) [I:JIA‘AXA + %l:)f“_’x,—z]

R
6

+L g (Eff‘xa) —L D (bI‘“ D)+ E(PAPDEXA + ;-lfﬁfDEx,-l)}

where we now split indices as A = (4,a), =0,...7, a=(a,11), a=8,9. Nonzero

components of Lpg are given by:

LAJ = —éfAX(ﬂ Lo = —éf’aXu

S(2) is obtained by relating 8D gauge field zﬁ(’é D)( gauge parameter €) to 11D gravitino

N (1) (gauge parameter eI ) as
Bhpy = Vare t [0 + SPAY), = Vamet et
Let us also remind a standard fact that to keep the gauge
EA =0, EA=0
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used in reduction from 11D one has to accompany supersymmetry transformations of [96]
with field dependent Lorentz transformations.
The last line in the action S’,Eg)? originates from such Lorentz transformations.

To write out S',Sf)z in terms of 8D fields

. A\ AN AN /1
Y(ap) = ( 4 > y A@p) = ( ) » bp) = ( ) »  Pgpy = \~
n A p fi

one should substitute
< ]- - A \/i - 1 "~
XA=¢{};D)+-1§FA9(8D)+?FAA(SD), A=0,...,(

1, leg (s ; 1o, Lpo (s A
X = 3¥sp) + 51° (Osp) +V2hen)), x° = 3l Pen) + 30 (o) + V2hism)
2v2.11 (4 V2,
xu =~——=T (A(SD) - TH(SD))

2)2
C

We do not present the final expression but we have checked that S,E is T-duality

invariant.
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Appendix E

Here we explain why det'A,, are divided by V; in (3.123). This is related to the integration
over zeromodes.

Introducing a basis az'p), i=1,...,b° in H} let us denote
V},ij = /Xafp)/\ *a{p), Vo= deti,jl/;,ij (E.1)

Note, that V}, is invariant under the choice of basis in H5.
To explain integration over fermionic zero modes let us consider the following path-

integral over fermionic p-forms v and v.

where v;,1 = 1,... b7 is a basis of Hy(X,Z).

In (E.2) we have inserted [[%, Je uH} =1J,; v, to get non-zero answer, i.e. to saturate
fermion zero modes.

To perform the integration in (E.2) we expand u and v in an orthonormal basis {1, } of

eigen p-forms of A,.

U= Z Un¢na v= Z'vnd)m 77b'm 1/)771.) = (E3)

Let us choose the basis aép), i=1,...,b" of the lattice H5, dual to the basis v; € Hy(X, Z),

@ =8
/%_ (p— ¥
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Then, orthonormal zero-modes are expressed as

i i -1\
Wi = afyy (W), (E.4)
where W1 is the inverse of the vielbein for the metric on #}: (V,)¥ = (WE Wp)” .
Now, we integrate (E.2) and obtain
det' A,
[ 7 ] (E.5)

In the case of bosonic p-forms u and v we do not need to insert anything to get a non-zero

answer:

I —
/DuDve“("’A"”) = [%] ' (E.6)
V

where in (E.6) the integration over bosonic zero-modes was performed

v 1
T Dui T D = =, (B.7)
s m i 2m (deti’j f% Mm)Z p
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Appendix F

Here we explain why @(]—' ,p) defined in (3.28) is a supertheta function for a family of
principally polarized superabelian varieties. To show this we use the results of [105], where
supertheta functions were studied.

A generic complex supertorus is defined as a quotient of the affine superspace with even
coordinates z;, 4 =1,..., Ngwen and odd coordinates &, a =1,..., N,y by the action

of the abelian group generated by {);, \i+n.,.. }
A zj = zj + (5,'j, £a — €a (Fl)

Ait-Neven * 2 = 2 + (Qeven)ijs & = o + (Qodd)iq (F.2)
We will restrict to the special case (Q44);, = O relevant for our discussion. Let us also
assume that the reduced torus (obtained from the supertorus by forgetting all odd coordi-
nates) has a structure of a principally polarized abelian variety and denote its Kahler form
by w.

It follows from the results of [105], that a complex line bundle L on the supertorus with
c1(L) = w has a unique section (up to constant multiple) iff QL _ = Qeyen together with
the positivity of the imaginary part of the reduced matrix. This section is a supertheta
function.

Now we can find a family of principally polarized superabelian varieties relevant to our
case simply by setting Neyen = N and Nogg = Nferm..m and by defining symmetric Qeyen
as

Re(Qeven)i_j = ReTK(wi’ «'Ej)a (F3)
121
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Im(Qeven);; = Imrx (zi, T5)+ (F4)
2

20 /X (Gale) + Ganlay)) NiiTg(am) + 85 (am)
where z;,4 = 1,..., N is a basis of I';. In (F.3) J2,(2m) is a 2p-form on X constructed as
a bilinear expression in fermion(and ghosts) zeromodes and F(zm) is a functional quartic in
fermion( and ghosts) zeromodes, both J,(2m) and F(zm) can in principle be found from
the 10D fermion action (7.10),(14.1) as well as from the ghost action (7.35),(7.40),(15.1).
The modified characteristics &, E and prefactor A®(F) in (3.28) all originate from the shift
of the imaginary part of the period matrix described in (F.4). It would be very nice if
one could formulate this superabelian variety in a more natural way, without reference to a

Lagrangian splitting of I'k.
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Appendix G

For the convenience of the reader we list here the leading expressions for Kahler potential

in the case h()) = 1, together with formulae for the Kahler metric and inverse metric. The

Kahler potential is:
K =Ks+ Kr + K + chl.z' + K5 + Kbundley

Ks=—In(S+5), Kr=-In(d(T+T)°)
(Z+Z)?
(S +3)(BT + BT)

Ks=

3 2¢ Fd

K == — H $ “C C
" (T+T+S+S)’J

We now give the components of the Kahler metric on the space of scalars which have

been used in section 5.4. We keep only leading terms in each of the component, neglecting

corrections of the relative order O(£¢//, 8;{ ! L%Q).

. Py
Kwe L g g _ tHyc o %eH5CC
S5 — 42’ ST — 4v?’ SJ — 272 ’ Sa = 272 ’
z 3 3H;.C’
5 = —— - = e f— ———-IJ
KSZ 22’ K’IT (2Ra)2’ KTI (2Ra)2
e = 3Cj5aHij6J T K~~——3— v Kem 335H1~j_C-J
Ta ™ (2Ra)? 2T~ 9VRa’ ~ I/ 7 QRa 1 TI®@T  9Ra
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(1 - z)H;;07 (1-2)C10,H;,0°

K,,=— K; =-—
z1 VRa ' " %o VRa
_ _ yr(cplz) o 1
K=K Kiz=ypa
Now, we solve the matrix equation
KK'=1+0( e/ Igli)
'“R Ra
The inverse metric solving this equation is
KSE — 4v2 KTT — (ZRa)Q KTj — CjZ_I_%_g
? 3 3 3 ]
1 _2Raij  ap _ pap is K 1017 758
K =TH y K¥ =K, K7=-0;H;,C H'K
- _ — 2 — .
K%? =2RaV, K% =4RaVz, KT = (22“) z, K'%= (21;‘“) C’(2 - )

where the components not listed above are zero in our approximation.
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Appendix H

In section 5.5 of Chapter2 we asserted that, within the region of validity of our computations,
the potential is always positive. Here we give the detailed proof of that claim.

The only potentially negative term in the potential is U/;. We will show that it cannot
be larger in magnitude than both of Uy and U, in our region of validity.

First, imposing

\U1| > Ua

means
2
B(1~2)|CP (e +e770-2)) > v (e=% 4 ¢~I0-9)) (H.1)
It follows immediately that
v 1
c| > (_’Zlé__[e—kc + e—J(l—a:)]) 3
Now, at a generic point in bundle and complex moduli space, we have
aCt > o:IC’|3(1ﬁK[e_J“c + e_"(l_z)])% > BICP(1 - x) (e“‘]z + e“](l"z))

and we see that Uy > |Uy].
Let us now assume

U] > Up.

From this it follows that

B(1 - z) (e“”c + e"](l"‘”)) > o|C]
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and hence
1 B

<
1< 727 3

4
(1-g)}(e77e + e~70-2)) (H.2)
Let us consider, first,the region far enough from z = 1/2. Then, for z < %, we have

4
|U1| < %%(1 _m)4e—4Jm

and

1 _
U2N_jz_e 2Jz

As a consequence, U >> |U|.

In the region close to z = %— we have instead, for sign “+” in eq.(H.2)

Ul < a5 e
and
Uy ~ %ed
and it follows immediately that
Uy > |Uy].

For sign “” in eq.(H.2) the last statement is obvious.
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