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Abstract

CTCP, an innovative TCP congestion control algorithm developed by Microsoft,
is evaluated and compared to HSTCP and StandardTCP†. Tests were performed
on the production Internet from Stanford Linear Accelerator Center (SLAC) to
various geographically located hosts to give a broad overview of the performances.

We find that certain issues were apparent during testing (not directly related to
the congestion control algorithms) which may skew results. With this in mind, we
find that CTCP performed similiarly to HSTCP across a multitude of different
network environments.

However, to improve the fairness and to reduce the impact of CTCP upon ex-
isting StandardTCP traffic, two areas of further research were investigated. Al-
gorithmic additions to CTCP for burst control to reduce the aggressiveness of
its cwnd increments demonstrated beneficial improvements in both fairness and
throughput over the original CTCP algorithm.

Similarly, γ auto-tuning algorithms were investigated to dynamically adapt CTCP
flows to their network conditions for optimal performance. Whilst the effects of
these auto-tuning algorithms when used in addition to burst control showed little
to no benefit to fairness nor throughput for the limited number of network paths
tested, one of the auto-tuning algorithms performed such that there was negli-
able impact upon StandardTCP. With these improvements, CTCP was found
to perform better than HSTCP in terms of fairness and similarly in terms of
throughput under the production environments tested.

∗Work supported by Department of Energy contract DE-AC02-76SF00515.
†The use of StandardTCP and NewReno are used interchangeably throughout this report, but generally,

we define StandardTCP as the stack implementation of the NewReno congestion control algorithm.
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1 Introduction

Windows Vista provides facilities to switch TCP congestion control algorithms. This report
investigates the implementation and performance of these algorithms on real WAN networks
from SLAC to various locations worldwide. In particular, the report focuses on CTCP [2, 1],
a Microsoft developed congestion control algorithm that marries both the Loss Based nature
of standard TCP and the Delay Based features of TCP Vegas.

Due to time constraints of this report, a full investigation on the various CTCP per-
formance details was not possible. As such, this report serves as an initial field study of
the applicability of deploying CTCP as the default TCP congestion control algorithm in
Windows Vista.

This applicability is considered in the following forms; raw throughput achieved by CTCP
flows, the fairness between both CTCP flows competing with one another (intra-protocol
fairness) and that when competing against the default TCP congestion algorithms (friend-
liness). These metrics are compared to that with using the default NewReno stack and also
that of an implementation of HSTCP [6] so that a comparative judgement upon relative
performance can be made.

2 Test Outline

As per [4], we focus upon the following metrics for the direct comparison between different
TCP algorithms.

• Intra-Protocol Fairness

In this scenario, we vary the number of TCP flows from 2 to n. The fair share of network
bandwidth between the flows is vital to ensure fair sharing of network resources and
good scaling properties of the TCP algorithm.

• Convergence Time

The convergence of fairness towards some arbitrary constant ratio is important to
understand the dynamic transient fairness between TCP flows. This is especially useful
in understanding the interplay between a newly started flow and that of flows that are
already running.

• Inter-Protocol Fairness & Friendliness

The fairness between the various TCP algorithms. In particular, the scaling properties
of fairness between the New-TCP algorithms and that of Standard TCP is important
to ensure smooth deployment of new congestion control algorithms.

• Reverse Traffic Load

A well recognised problem with Loss Based algorithms is caused by the RTT delay
variation as a result of loading on the reverse data path. The queuing associated with
the reverse path traffic may cause the TCP algorithm to act inappropriately and thus
reduce performance.
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Specification

Vendor & Part Dell 2650
CPU 3Ghz

Memory 2GB
NIC Neterion XFrame I

NIC Driver 2.6.12.0

Table 1: PC configuration at SLAC.

Destination Location RTT No. Hosts

Caltech US West Coast 8.5msec 1
Florida US East Coast 71.0msec 2
Dublin Ireland, International 151msec 2

Table 2: Destination Sites and Configuration of PC’s at those sites.

2.1 Parameters Not Investigated

The fairness between flows of different end-to-end latencies (RTT Fairness) was identified in
[4] as being an important factor in the scaleability of TCP algorithms as low latency flows
may starve long latency (and hence less aggressive) flows. Important deductions from the
literature demonstrates that severe RTT unfairness between the various TCP algorithms is
apparent. However, due to the requirement of a common bottleneck and the difficulty in
engineering such a topology on the Internet, these sets of experiments were not conducted.

3 Test Setup

3.1 Hosts and Equipment

Microsoft Windows Vista build 5270 (December 2005) was installed on two machines (See
Table 1) at SLAC and were connected onto the commodity production network: ESnet at
1Gbit/sec and Internet2 (via Stanford University) also at 1Gbit/sec via a Cisco 6506.

Initial tests using the internal Broadcom network interface cards on these machines
showed serious reordering (most likely a driver issue) and therefore the default NIC’s were
changed to Neterion XFrame I cards capable of 10Gb/sec. The newest drivers for this card
were back ported (courtesy of Neterion) onto build 5270.

The PC’s were connected to a dedicated Cisco 6909 using Cisco SR Xenpaks, and a
1Gbit/sec connection was made between the 6909 and the 6906 to provide production net-
work access.

Three remote hosts were identified to be capable of high performance from which tests
were conducted to and are shown in Table 2 and Table 3. Note that only one machine was
available at Caltech and the hosts at Florida are only Pentium III class servers.
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SLAC-AS (SLAC)

CalREN-HPR (CalREN High Performance & Research Network)

ABILENE (Abilene Network)

FLRnet (FLR Transport Network)

UFlorida (University of Florida AS6356)

ESNET (Energy Sciences Network)

GEANT (The GEANT IP Service)

HEANET (HEAnet national network)

rtr-test-test

rtr-core1-p2p-test

rtr-dmz1-ger

slac-rt4.es.net i2-gateway.stanford.edu

slacmr1-slacrt4.es.net hpr-svl-hpr--stan-ge.cenic.net

lax-hpr--svl-hpr-10ge.cenic.net

lax-hpr.losnettos-hpr.cenic.net abilene-LA--hpr-lax-gsr1-10ge.cenic.net

Booth-RSM.ilan.caltech.edu hstnng-losang.abilene.ucaid.edu

CACR-ITS-BMR.caltech.edu

socrates.cacr.caltech.edu

atlang-hstnng.abilene.ucaid.edu

jax-flrcore-7609-1-te23-1800.net.flrnet.org

ssrb230a-ewan-msfc-1-v1805-1.ns.ufl.edu

ssrb6c-nexus-msfc-1-v30-1.ns.ufl.edu

ssrb230a-core-msfc-1-v20-1.ns.ufl.edu

ssrb201-nslabs-rsm-1-v222-1.ns.ufl.edu

iperf1-gig.nslabs.ufl.edu

snv2mr1-slacmr1.es.net

snv2sdn1-snv2mr1.es.net

chicr1-oc192-snvcr1.es.net

aoacr1-oc192-chicr1.es.net

esnet.ny1.ny.geant.net

ny.uk1.uk.geant.net

uk.ie1.ie.geant.net

heanet-gw.ie1.ie.geant.net

mantova-gige6-2.bh.access.hea.net

portia-po1.bh.access.hea.net

ham01dub.may.ie

Figure 1: Traceroute graph from SLAC to the Various Destination Hosts.
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Destination CPU Memory Network Interface Card

Caltech 4×2.8Ghz Xeon 1GB SysKonnect SK-98xx
Gigabit Ethernet Server Adapter

Florida 1Ghz Pentium III 0.5GB Syskonnect (Schneider & Koch)
Gigabit Ethernet

Dublin 2.4Ghz Xeon 4GB Intel Corp. 82545EM
Gigabit Ethernet Controller

Table 3: Network Interface Cards at Destination Sites

The above hosts remain on relatively stable network connections with virtually zero
route flapping. The route through the Internet to each host is shown shown in Figure 1.
The background traffic experienced for all hosts were primarily academic (Internet2) and or
national lab (ESnet) network traffic.

3.2 Testing Methodology

In order to maximise the raw number of results and determine with confidence the relative
performances of each TCP congestion control algorithm to each destination, tests were ran
continuously, in a random fashion, 24 hours a day, 7 days a week. However, the results
shown in Tables 4 to 7 were collated over the final week of February 2006.

The tests were automated using custom scripts (tools-server) from SLAC which enabled
‘remote control’ of network nodes to start and gather test results. The automation required
some adaptation onto Windows hosts, and thus required ActivePerl and IIS to be installed to
facilitate the running of tests and the retrieval of test results respectively. This automation
of tests enabled off-line (i.e. not live) analysis of test results.

All tests were ran with iperf [3], with custom modifications by Microsoft Research China
to allow the dynamic switching of the TCP congestion control algorithm using the ‘-q’
argument.

The duration of each test depends upon the type of test in question, but typically,
sufficient time was given to provide the interaction between TCP flows to stabilise. Tests
were chosen to run between 15 minutes and 45 minutes depending upon the complexity of the
test. Individual flows in each test were ran in a staggered fashion such that the convergence
times between flows can be calculated and the dynamic interaction between TCP flows can
be seen. For tests which were staggered, the summary results only shows the performance
when all flows were being ran; i.e. for 8 flow tests, the calculated statistics only represent
the period whereby all 8 flows were competing.

3.3 Test Cases

A series of simple test cases were investigated in order to determine the properties of the
various TCP algorithms under investigation.

• Single Flow
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Flow 1

Flow 2

Flow 3

Flow 4

Time

Figure 2: The time based initiation and termination of flows.

A single TCP flow will be initiated with CTCP, StandardTCP or HSTCP for a duration
of 15 minutes to one of the 3 destinations.

This test will investigate the raw throughput performance and correct implementation
of the TCP algorithms. It may also identify potential problems or beneficial features
in the design of the Windows TCP stack.

• Single Flow with Many TCP Flows Reverse Traffic

A single TCP flow will be initiated, for a duration of 15 minutes. During this time, n
number of standard TCP flows are run in the opposing direction.

The effect of this tests is to determine the interaction between the TCP algorithm and
the effects of increased latency on the reverse path, and also potentially the effects of
stretched acks.

• n-Flows

A single TCP flow will be initiated, and at a subsequent time later (currently 5 min-
utes), a second TCP flow will be initiated from the other host. If n is greater than 2,
then at a subsequent time later (another 5 minutes), another flow will be initiated.

The tests are engineered such that n flows will compete for bandwidth for at least 15
minutes before the flows are stopped in reverse order in 5 minute steps until all flows
are terminated. This is illustrated in Figure 2.

Depending upon the type of congestion control algorithm used, this test will be used
to determine the inter or intra-protocol fairness between the stacks. The metric of
fairness is defined in Section 4.

When at least one of the TCP flows is StandardTCP, the test is considered as a
Friendliness test.

To decrease the possibility of host interactions, it would be preferable to have a single
flow per machine; however, due to limited hardware constraints, the flows will be
balanced between the two available hosts.

• Eight Flows
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Pairs of TCP connections will be initiated in 5 minute intervals in the same fashion
as with the n-Flows case (instead of a single flow). That is at time 0, two flows will
be initiated on host 1, and then five minutes later two more flows will be initiated on
host 2. 10 minutes after the start of the test, another 2 flows are initiated from host 1
and finally 5 minutes after this, the final pair of flows are initiated on host 2.

4 Metrics

Two primary metrics are considered; the fairness and the throughput of the TCP algorithms.
We consider the throughput‡ G to be the summed mean throughput of each flow, i, i.e.

x̄i (See Equation 1).

G :=
n∑

i=1

x̄i (1)

We consider the following two metrics to capture the complex metric of fairness between
many flows.

• σ fairness:

We define σf to be the standard deviation from the mean throughput of all flows x̄
normalised by the mean thoughput x̄, where x̄i is the mean throughput of the ith flow,:

σf :=
1

x̄

√∑n
i=1(x̄i − x̄)2

n
(2)

The properties of this metric define the magnitude of the differences between the
throughputs of each flow§. Therefore, it is preferable to have a low value of σf , whereby
σf → 0 means perfect fairness between all flows.

• ξ fairness:

In order to gauge the dynamics between the flows as they interact through time, we
define ξf as the standard deviation of the standard deviations σt of throughputs xi at
time interval t for all time T - normalised by the mean throughput x̄:

ξf :=
1

x̄

√∑T
t=1(σ̄t − σ̄)2

T
(3)

Note that in many regards, ξf can be considered as compound metric that captures both
the nature of fairness and the transient fairness (in terms of differences in throughput
magnitude) between flows.

‡Specifically, we do not distinguish between goodput and throughput, i.e. we assume reduction in bytes
transferred per unit time due to retransmissions to be negligible.

§Note that this differs from the commonly defined stability of a single flow as we do not consider a time
series of throughputs, but the mean throughput of all flows under investigation
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Test TCP Algorithm Caltech Florida Ireland

1 Flow StandardTCP 3 3 4
1 Flow CTCP 6 4 3
1 Flow HSTCP 4 4 3
2 Flows StandardTCP 4 6 8
2 Flows CTCP 5 17 11
2 Flows HSTCP 3 8 9
4 Flows StandardTCP 3 2 3
4 Flows CTCP 2 5 5
4 Flows HSTCP 2 4 2
8 Flows StandardTCP 3 2 2
8 Flows CTCP 2 6 11
8 Flows HSTCP 2 3 6

16 Reverse TCP StandardTCP 3 11 2
16 Reverse TCP CTCP 2 10 13
16 Reverse TCP HSTCP 3 7 15

Table 4: Number of individual Tests performed.

The specific differences between ξf and σf incorporate the time sensitive nature of
convergence and temporal fairness between flows. A specific example of this is that if
all flows show zero variation in throughput along time, ξf → σf .

5 Results

Table 4 shows the number of individual completed tests for each type of experiment. Due to
time constraints, and the nature of Internet traffic, a full statistical study of the performance
of the algorithms was not possible. However, in an attempt to capture the confidence levels
of the tests, the standard error of the measurements are presented - however, due to the
rather low sample sizes the accuracy of the test information should be ‘taken with a pinch
of salt’.

Table 5 shows the aggregate throughput G of all of the tests. Note that due to the
diurnal nature of Internet traffic, and the low number of samples taken for each test, that
the throughputs achieved are not conclusive. In particular, certain tests shows that Stan-
dardTCP actually achieves a higher mean throughput than the other algorithm; however, it
also has a very large standard error - a consequence of the time at which the tests were ran.
Therefore, by running more tests over a longer time frame, it should be possible to accurately
capture the performance of the algorithms under a wide variety of network conditions.

However, generally the results show that CTCP is statistically equivalent to HSTCP
in terms of throughput. An exception this this was under the Florida path where with 1
or two flows, CTCP is able to achieve twice as much throughput as that of HSTCP. This
difference between the different TCP algorithms becomes less noticeable with more flows as
CTCP and HSTCP begin to fall back into congestion control mechanisms similar to that
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Test TCP Algorithm Caltech Florida Ireland

1 Flow StandardTCP 521±15 114±5 62±19
1 Flow CTCP 619±21 252±13 146±37
1 Flow HSTCP 605±21 125±7 135±20
2 Flows StandardTCP 574±14 203±19 167±35
2 Flows CTCP 640±11 347±3 190±22
2 Flows HSTCP 504±136 161±7 216±42
4 Flows StandardTCP 645±26 280±3 223±42
4 Flows CTCP 653±33 379±1 258±42
4 Flows HSTCP 668±32 263±51 253±160
8 Flows StandardTCP 732±74 331±1 431±75
8 Flows CTCP 672±23 389±2 435±53
8 Flows HSTCP 636±37 392±3 497±29

16 Reverse TCP StandardTCP 96±9 33±1 128±14
16 Reverse TCP CTCP 108±7 45±2 121±11
16 Reverse TCP HSTCP 87±12 114±4 133±10

Table 5: Aggregate throughput (mbit/sec) G of Tests.

Test TCP Algorithm Caltech Florida Ireland

1 Flow StandardTCP - - -
1 Flow CTCP - - -
1 Flow HSTCP - - -
2 Flows StandardTCP 0.023±0.012 0.292±0.148 0.118±0.030
2 Flows CTCP 0.006±0.004 0.062±0.020 0.305±0.063
2 Flows HSTCP 0.076±0.035 0.496±0.149 0.292±0.075
4 Flows StandardTCP 0.109±0.082 0.024±0.001 0.107±0.031
4 Flows CTCP 0.017±0.008 0.032±0.010 0.362±0.061
4 Flows HSTCP 0.091±0.022 0.622±0.311 0.410±0.015
8 Flows StandardTCP 0.114±0.048 0.048±0.000 0.169±0.048
8 Flows CTCP 0.013±0.006 0.028±0.005 0.345±0.016
8 Flows HSTCP 0.090±0.013 0.245±0.180 0.386±0.029

16 Reverse TCP StandardTCP - - -
16 Reverse TCP CTCP - - -
16 Reverse TCP HSTCP - - -

Table 6: σf of Tests.
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Test TCP Algorithm Caltech Florida Ireland

1 Flow StandardTCP - - -
1 Flow CTCP - - -
1 Flow HSTCP - - -
2 Flows StandardTCP 0.214±0.007 0.554±0.202 0.289±0.040
2 Flows CTCP 0.145±0.005 0.210±0.020 0.441±0.035
2 Flows HSTCP 0.540±0.222 1.000±0.065 0.458±0.045
4 Flows StandardTCP 0.294±0.067 0.236±0.003 0.256±0.031
4 Flows CTCP 0.174±0.010 0.208±0.009 0.549±0.035
4 Flows HSTCP 0.432±0.005 0.961±0.350 0.519±0.035
8 Flows StandardTCP 0.326±0.037 0.285±0.022 0.317±0.032
8 Flows CTCP 0.236±0.018 0.223±0.002 0.570±0.029
8 Flows HSTCP 0.677±0.005 0.434±0.148 0.597±0.058

16 Reverse TCP StandardTCP - - -
16 Reverse TCP CTCP - - -
16 Reverse TCP HSTCP - - -

Table 7: ξf of Tests.

of StandardTCP. This occurs under environments of high packet loss and when network
congestion is detected for HSTCP and CTCP respectively.

Tests involving reverse TCP background traffic are discussed in-depth in Section 6.2.
Table 6 shows the σf of the flows. They generally show that HSTCP has a relatively

larger value of σf which is discussed in Section 6.4. The results for CTCP show that un-
der the Caltech and Florida paths, CTCP shows statistically lower values of σf than both
StandardTCP and HSTCP. However, under the long distance Ireland path, CTCP’s σf is
comparable to that of HSTCP.

ξf is shown in Table 7. Results indicate that the CTCP generally has a lower ξf value
than that of both HSTCP and StandardTCP, except under the the Ireland path where both
HSTCP and CTCP show equivalently larger values of ξf when compared to StandardTCP.

6 Case Studies

The following case studies demonstrate the various application of the metrics above, and
highlights problems that were experienced with the tests. Unless otherwise indicated, these
case studies show only anomalous behaviour and should not be taken as indicative of the
test results shown.

6.1 High Losses Resulting in Consecutive Backoffs

Common to all test results, especially those with flows at high throughput, is the occurrence
of what appears to be multiple reductions in throughput - which causes a severe reduction in
the measured average throughput of the flow(s). This is shown in Figure 3. As the occurance
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Figure 3: Dramatic Drops experienced by all TCP algorithms.

of these large drops in throughput is apparent on all TCP algorithms, it is assumed that
the problems are associated with the network stack rather than with the congestion control
algorithms.

Figure 4 shows the cwnd, ssthresh and dwnd of the CTCP graph in Figure 3. Note that
after a loss, the value of ssthresh should be set to b × cwnd¶ (where b = 0.5 under Stan-
dardTCP and CTCP), and then subsequently cwnd should be set to this value of ssthresh.
The purpose of this is so that TCP slow start can quickly regain the lost throughput should
a timeout occur. However, Figure 4 shows that in fact the ssthresh value is sometimes set
to very small values (sometimes from thousands of packets down to only tens of packets).

Figure 5 shows the cwnd and ssthresh dynamic of the altAIMD Linux kernel [4] and
with Windows Vista with their implementations of HSTCP. Due to the temporal differences
between the tests, a direct comparision between the two implementations can not be made
directly from these graphs (e.g. the relatively smaller values of the Linux implementation
could be due to excess cross traffic). However, it can be seen that under the Windows imple-
mentation at approximately 350 and 650 seconds that the ssthresh value after a congestion

¶In fact, it ssthresh should be set to b× f where f is equal to the number of packets ‘in-flight’, which to
first approximation is typically approximately the same as cwnd.
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12:40:15.610 [tcp]dup halve. DWnd = 1149703 CWnd = 1311918 sndUna = 3870992794

12:40:16.058 [tcp]CTcpTimeoutCallback: CWnd = 7097898 SsThresh = 1307538

12:40:16.058 [tcp]dup halve. DWnd = 0 CWnd = 7300 sndUna = 3871619134

12:40:16.132 [tcp]CTcpTryToOpenDWnd: CWnd = 1084783 SsThresh = 2920, BaseRTT 0

12:40:16.210 [tcp]CWnd Compensated! CWnd = 6603580 DWnd = 1460 SndUna = 3872141814

12:40:16.210 [tcp]dup halve. DWnd = 730 CWnd = 3306170 sndUna = 3872141814

12:40:16.714 [tcp]CTcpTimeoutCallback: CWnd = 4447890 SsThresh = 3301790

12:40:16.857 [tcp]dup halve. DWnd = 0 CWnd = 10950 sndUna = 3872375414

12:40:17.433 [tcp]dup halve. DWnd = 0 CWnd = 7665 sndUna = 3878745394

12:40:17.505 [tcp]Tcp Rtt Samples: CWnd = 3285, SsThresh = 3285, Rtt = 6

12:40:17.643 [tcp]Tcp Rtt Samples: CWnd = 8818, SsThresh = 3285, Rtt = 8

12:40:17.714 [tcp]Tcp Rtt Samples: CWnd = 10189, SsThresh = 3285, Rtt = 8

Figure 6: TCP Trace of grepped events leading to Consecutive Backoffs

event falls to very small values which in turn prevents the use of slow-start after time-outs
and forces the congestion control algorithm to start from very low cwnd values. Whilst
multiple drops are also apparent in the Linux implementation, it rarely forces ssthresh to
such small values as suddenly as it does for the Windows implementation.

Given that the TCP logging in Windows is event based, these large drops in ssthresh in
sequential events is unexpected: an inspection of the TCP event trace shows that there is an
complex interaction of dub halves and CTcpTimeoutCallback’s which causes the window
values to fall. Further investigation of this is required to fully understand the interaction
between what is actually happening with regards to packet events to what actually occurs
in the TCP stack. A snapshot of the trace is shown in Figure 6.1.

6.2 The Effect of Reverse Traffic

There is a requirement for sufficient delay information for CTCP to operate efficiently. Traffic
on the reverse path of the TCP flow will increase the measured latency resulting in reduced
performance for the CTCP flow.

Table 5 indicates that there is little effect upon the throughput of reverse traffic on the
Ireland link. However, there is a very pronounced effect on the Caltech and Florida paths
- for all TCP algorithms, not just CTCP. Whilst the typical single flow tests demonstrate
throughputs in excess of 500Mbit/sec for all TCP algorithms; in the presence of 16 TCP flows
in the reverse direction, attainable throughput diminishes to approximately 100Mbit/sec.
Similarly, the Florida link sees a reduction from 100-200Mbit/sec down to about 40Mbit/sec.

There is an exception with HSTCP on the Florida link whereby similar throughputs are
achieved with and without reverse traffic. Further research is needed to be conducted to
deduce this discrepancy.

Whilst some of the problems of reduced throughput (compared to having no reverse
traffic) may be explained by the fact that Caltech only has a single host, the other tests were
performed with the reverse traffic on a separate pair of hosts from that of the test TCP flow
such that host issues (e.g. high flux of interrupts, memory and CPU saturation, etc.) should
not affect the results.

An important point to note here is that in the presence of reverse traffic, the throughput
of CTCP is no worse than that of StandardTCP. However, some further investigation is
required to determine the cause of the reduced forward path throughput for the Florida and
Caltech path.
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Figure 7: Effect of CTCP Delay Based Congest Control with sufficient Queuing.
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Figure 8: Effect of CTCP Delay Based Congest Control with insufficient Queuing.

6.3 The Effect of Small Queue’s in CTCP

The CTCP algorithm utilises delay information in order to maximise throughput. A char-
acteristic profile of this action is shown in Figure 7 which shows a CTCP transfer from
SLAC to Florida. using trace data of the TCP flows, it was determined that the minimal
and maximum latencies experienced results in a derived/calculated bottleneck queuesize of
approximately 375 packets - of which CTCP achieves approximately 50 packets diffWnd in
the network. As the default γ setting of 30 packets is smaller than diffWnd, the delayed
based component of CTCP is able to work effectively.

However, when there is insufficient queuing available on the network link, the plateau
whereby CTCP is able to maintain high throughput is lost, as shown in Figure 8. It can be
clearly seen that CTCP is only able to achieve the binomial growth of throughput, and does
not manage to determine sufficient delay information from the network.

Using the same technique as for the Florida path, the calculated bottleneck queuesize of
the Ireland path is only 250 packets. Given the current defined γ setting of 30 packets, the
queue should be able to hold at least 8 CTCP flows. However, given that the network is
shared amongst many other Internet users, it was found through the TCP traces that the
diffWnd value (i.e. the actual number of packets in the network ‘pipe’ for one flow) was
only about 3 packets. Therefore, as diffWnd < γ, the CTCP flow is unable to utilise the
network effectively.

Section 7 and 8 investigates new CTCP algorithmic additions to mitigate the effects of
both having a static value of γ and to reduce the effect of large bursts as diffWnd approaches
this value.
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Figure 9: Throughput of individual flows from SLAC to Caltech.

6.4 High σf of HSTCP

The main cause of the high σf values of HSTCP was found to be caused primarily by the large
number of consecutive drops in many tests (See Section 6.1) which causes large fluctuations
between HSTCP flows. This was the most apparent with a smaller number of flows.

Whilst the effect of the multiple consecutive drops is apparent on all TCP algorithms, the
effect appears to be the most pronounced with HSTCP. This may be related to an aggressive
increase in α which causes large bursts of packets which may then be subsequently dropped
by the network [5].

6.5 Low ξf of CTCP

Figure 9 demonstrates the applicability of the ξf parameter. It shows the throughput of
each individual flow in an 8-Flow test from SLAC to Caltech and demonstrates the wildly
fluctuating throughput of HSTCP - as mentioned in Section 6.1, this was due to multiple
consecutive drops. Results on Table 7 show that StandardTCP and CTCP have similar
values of ξf - with CTCP having a slightly smaller value (and hence more ‘fair’).

Figure 10 shows the variability of the throughputs on a less well provisioned link and
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Figure 10: Throughput of individual flows from SLAC to Ireland.
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Flows CTCP Algorithm Samples Throughput σf ξf

1 Original 29 116±7 - -
1 with muted dwnd increments 35 222±8 - -
1 with partial dwnd increments 36 177±11 - -
2 Original 19 143±11 0.22±0.08 0.52±0.06
2 with muted dwnd increments 15 197±24 0.13±0.02 0.34±0.02
2 with partial dwnd increments 18 217±26 0.10±0.02 0.35±0.01
8 Original 10 384±15 0.35±0.05 0.87±0.04
8 with muted dwnd increments 9 474±35 0.19±0.02 0.52±0.03
8 with partial dwnd increments 8 470±23 0.27±0.03 0.61±0.02

Table 8: Performance of CTCP with burst control from SLAC to Ireland.

demonstrates a similar profile to that of HSTCP. It may be interesting to investigate further
into the performance of CTCP compared to that of HSTCP over a range of different envi-
ronments as the delay based nature of CTCP may or may not result in fairer sharing of the
bottleneck link for competing CTCP flows.

7 CTCP Burst Control

A couple of proposals within Microsoft aims to mitigate the effects of having a large static
value of γ which has been shown to be detremental to CTCP performance over small buffered
links. They aim to reduce the large bursts of packets onto the network by utilising a different
cwnd growth law between two parameters γlow and γ.

Two of these burst control algorithms were implemented and tested over the SLAC-
Dublin Internet path. This particular path was chosen as it demonstrated small diffWnd
utilisation in previous tests where these modifications should be the most useful. The idea
of the algorithms is to maintain a slower growth of cwnd when the measured diffWnd value
is within the range γlow → γ. CTCP with muted dwnd increments attempts to do this by
muting the dwnd increases, whilst CTCP with partial dwnd increments limits the growth
rate of dwnd to some value. CTCP is the original CTCP algorithm as investigated in the
previous tests.

Table 8 shows the difference in performance between the CTCP flows with and without
the burst control with various numbers of concurrent CTCP flows from SLAC to Ireland.
These tests were performed during the 2nd and 3rd week of April 2006.

7.1 Single Flow

It can be clearly seen that both burst control algorithms facilitate higher throughput than
the original algorithm. This is due primarily to the evident throughput reduction of the
original CTCP version towards zero with nearly every congestion event (see Figure 11).

Both CTCP with burst control additions show increased throughput performance over
the original CTCP algorithm. CTCP with muted dwnd increments is clearly able to achieve
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Figure 11: Window dynamic of CTCP with burst control from SLAC to Ireland.

the highest throughput, with approximately 20% higher throughput than that of CTCP with
partial dwnd increments.

Figure 11 shows the different dynamics of the three CTCP algorithms in terms of their
wnd and dwnd values. It can be seen that the reason why CTCP with muted dwnd increments
is able to achieve such high throughputs is due to the dwnd values plateauing off - leaving
only the NewReno algorithm to cause the expected induced loss. As the duration of sustained
high throughput is longer, this increases the value of measured average throughput.

7.2 Two Flows

Again, both CTCP algorithms with burst control achieve greater throughput when compared
to the original CTCP algorithm. It can be seen that the aggregate throughput of two
flows is highest with the CTCP with partial dwnd increments variant - although the errors
associated with the measurements indicate no significant difference between the two versions.
Similarily, both new CTCP with burst control experience notably better fairness than the
original algorithm.

Figure 12 shows the throughput dynamic between the two competing CTCP flows. It
can be observed that even though CTCP with muted dwnd increments is able to sustain
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Figure 12: Interaction between CTCP with burst control from SLAC to Ireland.

longer periods of high throughput, the peak throughput is generally less than that of CTCP
with partial dwnd increments due to the switch back to NewReno.

Also, the it can be seen with the CTCP with muted dwnd increments trace there are
periods of noise between the two CTCP with muted dwnd increments flows as they attempt
to achieve fair sharing. This contributes to slightly higher measured values of σf and ξf .
The noise in question could be due to the sampling differences of RTT of each flow that may
cause the dwnd dynamics to be less stable.

7.3 Eight Flows

Similar to the results with a single and two flows, the new algorithmic versions of CTCP
shows improved performance for both increased throughput and better fairness between the
flows. Again, the differences between the two are negligible.
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Flows CTCP Algorithm Samples Throughput σf ξf

1 with muted dwnd increments 5 119±19 - -
1 with DiffwndBasedFairness 8 131±9 - -
1 with LossWindowBasedFairness 2 103±33 - -
2 with muted dwnd increments 19 157±12 0.08±0.02 0.33±0.01
2 with DiffwndBasedFairness 15 200±21 0.12±0.03 0.28±0.03
2 with LossWindowBasedFairness 18 182±17 0.15±0.02 0.30±0.02
8 with muted dwnd increments 10 377±17 0.17±0.02 0.51±0.01
8 with DiffwndBasedFairness 9 406±10 0.17±0.02 0.49±0.01
8 with LossWindowBasedFairness 8 318±87 0.13±0.03 0.47±0.04

Table 9: Performance of CTCP with γ auto-tuning from SLAC to Ireland.

8 γ Auto-Tuning

CTCP requires a suitable value of γ to such that it can gather sufficient delay information
from the network in order to operate effectively. This is true of all delayed based congestion
control algorithms, and each individual flow (such as a single CTCP flow) needs to main-
tain approximately γ number of packets on the network to order for the flow to remain in
equilibrium. All previous tests were conducted with a design parameter of γ = 30 packets.

However, certain network links may not be able to maintain such large numbers of packets
- especially as the number of flows scale. Furthermore, the optimal value of γ will differ
depending upon the end-to-end network path and the volume of cross traffic that will affect
the amount of buffering available.

The outcome of having too large a γ for a particular network path was seen in Figures 7
and 8.

In order to improve the interaction of CTCP under different network environments and to
reduce the large bursts of packets due to a large static value of γ, an auto-tuning feature was
implemented. γ auto-tuning facilitates the adaption of the γ value such that the delay part
of the CTCP congestion control can function more appropriately under different network
conditions.

Two algorithms were devised by Microsoft to enable this functionality. Both also imple-
ment the CTCP with muted dwnd increments variant described as above and were tested on
the SLAC-Ireland path as shown in Table 9.

These tests were performed in the middle two weeks of May 2006.

8.1 Single Flow

It can be clearly seen that CTCP with DiffwndBasedFairness has the highest mean through-
put, however, when the error is considered, all versions appear to perform similarly.
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Figure 13: Friendliness of HSTCP and CTCP against StandardTCP.

8.2 Two Flows

When we move to two competing flows, it can be seen that both γ-tuned CTCP versions
demonstrate marginally higher throughput compared to the non-gamma tuned version. How-
ever, σf is a little higher (although not staticially significant) whilst ξf is consistent across
all three versions.

8.3 Eight Flows

As we scale to more flows, it can be seen that the gamma-tuned CTCP algorithms demon-
strate better σf and ξf compare to that of the CTCP with muted dwnd increments variant.
Whilst thoughput remains similar with or without the γ auto-tuning.

9 Friendliness

Understanding the interaction between the New-TCP algorithms and that of existing Stan-
dardTCP traffic (friendliness ‖) is useful to gauge the potential deployment issues of these
new congestion control schemes.

Figure 13 illustrates the interaction between HSTCP and StandardTCP and also that of
CTCP and StandardTCP from SLAC to Ireland. It can be seen that the effect of the CTCP
upon the StandardTCP throughput is similar to that of HSTCP under this particular path.

‖As per [4], the technical definition of friendliness is that of fairness but when there is a mix of new TCP
flow(s) with StandardTCP flow(s). Similar to the definition of fairness, there are many points of view as to
what friendliness constitutes. Therefore the definition oif friendliness is intentionally vaguely defined.
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Ireland (Samples) Florida

8 StandardTCP 310.68±21.44 340.80±4.23
Total 310.68±21.44 (6) 340.80±4.23 (9)

7 StandardTCP 182.91±16.41 290.65±2.48
1 CTCP 125.47±17.72 79.32±1.81
Total 312.31±33.36 (7) 371.83±0.65 (4)

7 StandardTCP 206.10±7.67 222.24±2.07
1 HSTCP 122.89±8.16 88.21±1.29
Total 332.29±17.33 (7) 310.97±0.88 (4)

Table 10: Aggregate Throughput (Mbit/sec) of Friendliness Tests.

Throughput per StandardTCP flow
Destination New-TCP Without New-TCP With New-TCP Change

Ireland CTCP 38.83±2.68 26.13±2.34 -32%±7%
Ireland HSTCP 38.83±2.68 29.44±1.16 -24%±6%
Florida CTCP 42.60±5.29 41.52±0.35 -2%±1%
Florida HSTCP 42.60±5.29 31.75±0.29 -25%±1%

Table 11: Impact of a single New-TCP flow upon StandardTCP flows.

However, it should be noted that in both cases, the problems of multiple consecutive drops
(See Section 6.1) is apparent and therefore skews the results.

In an attempt to determine the friendliness, or rather, the impact of running these New-
TCP algorithms against StandardTCP flows, we use the example of eight competing flows.
All eight flows were initiated at the same time; a baseline measurement is taken whereby all
eight flows are StandardTCP. We then compare the average throughput per flow against that
of when we ‘swap’ one of these flows with that of a New-TCP algorithm (e.g. 7 StandardTCP
flows and a single CTCP flow).

9.1 Burst Control

Table 10 and Table 11 shows the effect of switching one StandardTCP flow with that of
CTCP (in this particular case, we are using CTCP with muted dwnd increments) and HSTCP
against that of the baseline measurement of 8 StandardTCP flows.

On the well provisioned (in terms of buffering) Internet path to Florida, it can be seen
that CTCP has almost no noticeable impact upon the StandardTCP per flow throughput,
whilst HSTCP degrades the average throughput per StandardTCP flow by approximately
-25%±1%. CTCP’s (lack of) impact also comes at the cost of a slightly reduced throughput
performance; with the single CTCP achieving approximately 10% less throughput than that
of HSTCP.

However, on the Internet path to Ireland, it can be seen that CTCP has slightly higher
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Figure 14: Friendliness of a single HSTCP and CTCP flow against 7 StandardTCP flows
from SLAC to Ireland.

impact than HSTCP with upto a -32%±7% reduction in the per StandardTCP flow through-
put compared to that of -24%±6% for HSTCP. Both individual CTCP and HSTCP flows
achieve statistically indifferent throughputs under this path, but the HSTCP-StandardTCP
aggregate is able to achieve slightly higher throughput on average (although it is not statis-
tically significant).

For both network paths, it was observed that the throughput variation for CTCP is
greater than that of HSTCP. The differences between CTCP and HSTCP for the Ireland
path are shown in Figure 14. It can be seen that whilst CTCP is quick to reduce through-
put and hence maintain low impact upon the competing StandardTCP flows, HSTCPs is
slower to relinquish throughput with the effect of increased HSTCP throughput but reduced
throughput per StandardTCP flow.

Under the SLAC-Florida path (See Figure 15), it can be seen that the CTCP flow is able
to revert back to NewReno like behaviour which enables higher throughput per StandardTCP
flow. This feature was not readily observed on the SLAC-Ireland path, and appears to result
in more aggressive throughput increases which causes the StandardTCP flows to back off
more and hence increases the measured (negative) impact which was observed.

9.2 γ Auto-Tuning

In order to gauge the impact of the γ auto-tuning, tests were repeated to Ireland to determine
the effect of the new algorithms upon StandardTCP. Table 12 and 13 show the results from
the impact tests.

In previous tests, CTCP with muted dwnd increments demonstrated at 32%±7% impact
upon the StandardTCP traffic, however, in these tests, CTCP with muted dwnd increments
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Figure 15: Friendliness of a single HSTCP and CTCP flow against 7 StandardTCP flows
from SLAC to Florida.

Ireland (Samples)

8 StandardTCP 186.903±11.013
Total 186.903±11.013 (7)

7 StandardTCP 152.688±16.422
1 CTCP with muted dwnd increments 82.758±8.574

Total 240.311±24.473 (9)

7 StandardTCP 167.908±15.638
1 CTCP with DiffwndBasedFairness 84.326±5.628

Total 252.361±20.471 (10)

7 StandardTCP 144.714±6.812
1 CTCP with LossWindowBasedFairness 75.610±4.637

Total 227.440±11.130 (10)

Table 12: Aggregate Throughput (Mbit/sec) of Friendliness Tests.

Throughput per StandardTCP flow
Destination CTCP Algorithm Without New-TCP With New-TCP Change

Ireland muted dwnd increments 23.522±1.378 21.813±2.346 -7%±11%
Ireland DiffwndBasedFairness 23.522±1.378 23.987±2.234 +2%±2%
Ireland LossWindowBasedFairness 23.522±1.378 20.673±0.973 -12%±1%

Table 13: Impact of a single New-TCP flow upon StandardTCP flows.
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only shows approximately 7%±11%. The impact of CTCP with muted dwnd increments in
these tests demonstrate the varying nature of the network and the importance of having a
large number of samples.

There appears to be no statistically significant difference between the throughputs achieved
between the different versions, however CTCP with LossWindowBasedFairness does show a
slightly lower throughput of 76±5 Mbit/sec compared to CTCP with DiffwndBasedFair-
ness’s 85±6 Mbit/sec. What is perhaps more noticeable is the impact upon the per-flow
StandardTCP throughput - with CTCP with LossWindowBasedFairness actually having a
larger impact upon the StandardTCP traffic even thought it does not appear to offer a
significant increase in the throughput of the CTCP flow.

Generaly, CTCP with DiffwndBasedFairness appears to be the best performing CTCP
variant in these tests with negliable impact upon the StandardTCP traffic.

10 Discussion

The main concern is that all TCP tests exhibit performance problems related to the multiple
consecutive drops. As such, the results are not in fact indicative of the performance of the
TCP congestion control algorithm, but the TCP stack as a whole. Further investigation into
the root cause of these drops is required to fully understand the consequence of deploying
these new TCP algorithms; for example, is the cause of these drops due to aggressive re-
transmission strategies that are magnified by the more aggressive growth rates of cwnd? or
are they TCP stack implementation issues such as SACK processing?

The result of such problems is that whilst it appears as though CTCP performs well
compared to the other TCP algorithms, in fact, it is not CTCP that is under investigation,
but the ability for CTCP to quickly regain bandwidth after these episodes of cwnd/ssthresh
reduction.

However, when analysed as a stack, rather than pure congestion control changes, CTCP
appears to perform similarly to HSTCP in terms of throughput. The only exceptions are
that when there is reverse traffic; however, a severe reduction of throughput is also apparent
on the other stacks and further investigation is required.

In terms of fairness, as defined by σf and ξf , CTCP seems to perform somewhere be-
tween HSTCP and StandardTCP. On the Ireland link, where there appears to be insufficient
buffering to enable CTCP to work efficiently, the fairness is actually worse than that of
StandardTCP, and only comparable to that of HSTCP. On better provisioned (in terms of
buffering) links such as the Caltech and Florida, the fairness is comparable, and sometimes
even better than that of StandardTCP. Under network environments where there are small
number of network buffers, it was found that the CTCP algorithm is unable to stabilise as
effectively due to the relatively large value of γ used in the tests.

Therefore, two CTCP with burst control were tested that implement mechanisms to
reduce the rate of cwnd increase when diffWnd is measured to be between γlow and γ.
Both versions gave better performance than that of the the original algirothm and were
demonstrated to work effectively on the buffer restricted SLAC-Ireland Internet path with
both new versions demonstrating similar throughput and fairness characteristics. However,
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upon inspection of the throughput traces, CTCP with muted dwnd increments appears to
behave more closely to the expected CTCP dynamic, and suffers from fewer induced losses
due to the successful reversion to the NewReno cwnd dynamic before congestion loss.

A concern with using delay sensitive congestion control protocols is their scaling prop-
erty; how will it perform when there are hundreds or even thousands of flows? As demon-
strated with CTCP with muted dwnd increments and the original CTCP algorithm under
well buffered paths, the design of CTCP is such that it should fall back into StandardTCP’s
NewReno congestion control algorithm. However, CTCP often starts in a binominal increase
of throughput such that it is able to utilise the seemingly available bandwidth. This rel-
atively aggressive increase may have repercussions upon global synchronisation of Internet
traffic and hence a general reduction in performance for all network users. Preliminary stud-
ies with the impact/friendliness show that under Internet paths with small buffers, CTCP
does indeed demonstrate reduced fairness towards Internet traffic.

In an attempt to reduce this effect and to enable CTCP to function better on such paths,
two versions of CTCP with γ auto-tuning were investigated to determine the effects of both
intra and inter protocol fairness. Whilst there appeared to be no significant difference in
performance when only CTCP flows were competing, CTCP with DiffwndBasedFairness
demonstrated very little impact upon the throughput of competing StandardTCP traffic.

However, further investigation is warranted to fully understand this effect, with the possi-
ble tuning of the γlow and γ parameters to better suit CTCP for more network environments.

11 Future Work

• Stability analysis: Given the delayed based adaptation of CTCP’s congestion con-
trol to affect its’ throughput, under different scenario’s, CTCP may lead to better or
worse variation of throughput through time. Whilst the presence of multiple consec-
utive drops in throughput is prevalent, a study of this property, commonly known as
smoothness, of the CTCP algorithm may prove interesting.

• Effect of different network conditions: Related to γ settings, it may be useful to identify
more sites around the world that will provide a broader depiction of the performance
of CTCP. This should include tests at higher speeds (e.g. 10Gbit/sec - interesting due
to the potential limitation of queue sizes across such scenario’s), and also the effects
of different latencies of competing flows.

• Multiple Consecutive Drops: Further investigation into this problem should be con-
ducted to ensure that there are no issues with the TCP stack implementation and the
effect is actually real and expected.

• Convergence Times: due primarily to the (lack of) resolution in the iperf logs, it was
not possible to determine accurately the convergence times of the flows.

In previous studies [4], we defined the convergence time at the time required for the
throughputs between two flows to converge to some arbitrary ratio. This was particu-
larly useful to determine the transient properties of interacting traffic.
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• Effect of Reverse Traffic: Tests from SLAC to Florida and Caltech show reduced
performance of a single TCP flow in the presence of reverse traffic compared to that
without. Some further investigation into the cause of this is required.

• Impact on existing traffic: whilst the study of induced traffic to determine the effect
of CTCP is warranted, it may be possible to gather queue dropping statistics from
certain backbone providers such as ESnet and Internet2. The advantage of this is that
it will be possible to analyse the real effect upon existing Internet users of deploying
new TCP algorithms.

• Mice versus Elephant Traffic: whilst this investigation is limited to long lived flows, it
would be expected that much of the traffic will be relatively short lived. Some inves-
tigation into this dynamic should be performed to determine whether the aggressive
increase of CTCP will affect network stability.

12 Summary

This work serves as an initial field study of the performance of CTCP on the Internet. Due
to the adaptation of only the congestion control algorithms for CTCP’s implementation,
there is expected to be no compatibility problems associated with its deployment.

The concerns of CTCP deployment are such that it does not affect the scalability and
stability of the Internet.

This initial field study demonstrated that there are TCP stack issues (rather than con-
gestion control issues) that affect the performance of the TCP tests - these were visible with
the occurance of multiple consecutive drops and the unexplained reduction of ssthresh to
very small values with the Windows Vista TCP stack.

In general, CTCP appears to perform somewhere between HSTCP and StandardTCP;
its performance appears to be related to the queue provisioning on the network path. On
well provisioned networks such as to Caltech and Florida, CTCP demonstrates good fairness
in terms of σf and ξf . However, on the Ireland link - which is known to have relatively small
network buffering, tests show that the performance is comparable to HSTCP.

In order to improve the performance of CTCP on buffer restricted Internet paths, two ver-
sions of CTCP with burst control were also tested which has a less aggressive response under
more restrictive network environments. Initial trails of these algorithms proved successful in
improving both the throughput and fairness metrics compared to that of the original CTCP
algorithm, and are recommended to be included as part of the standard CTCP deployment.

An preliminary study of the impact of running a single CTCP flow in the presence of
many StandardTCP flows was also conducted. Under the medium distance Florida path,
CTCP performs better than HSTCP in terms of impact at the cost of having slightly reduced
throughput (by about 10%). Under the Internet path to Ireland, there was a small but
noticeable increase in the impact when using CTCP compared to HSTCP (approximately
10% greater reduction in per flow StandardTCP throughput).

In order to reduce the impact of the CTCP flows against StandardTCP, two CTCP
versions incorporating γ auto-tuning were also investigated that demonstrated insignificant
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performance differences over CTCP with muted dwnd increments in intra-protocol tests.
However, CTCP with DiffwndBasedFairness demonstrated very good results in almost having
zero impact upon competing StandardTCP flows on the limited test environment of the
SLAC to Ireland path.

In order to better understand the effects of CTCP deployment, we suggest further tests
to be developed to investigate the scaling properties of CTCP, especially under relatively
small queue sizes, and more thorough tests to understand and judge the impact of CTCP
traffic against other Internet users. In particular, more generic parameters of γlow and γ
should be investigated under various network environments to better tune CTCP.
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