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Torsion geometry and scalar functions

Abstract

NE ILLUMINATING EXAMPLE of the interplay between mathematics and phy-

sics is the relation between symplectic geometry and mechanics. A sym-

plectic manifold is characterised by a closed, non-degenerate form of degree

two. In modern physics higher degree differential forms play an important role

too. In this thesis, we study geometries that are either completely or partly
specified in terms of a differential form.

In the first part of the thesis, three-forms play the main role. When the form
is closed, we call the geometry strong. One particular class of examples comes
from torsion geometry, where the three-form appears as the torsion of a metric
connection. Our first main result is a classification of invariant strong Kahler
with torsion structures on four-dimensional solvable Lie groups.

We then pass on to study strong geometries in general. When these come
with a Lie group action which preserves the strong structure, we introduce
a notion of moment map. While the basic ideas come from the theory of
symplectic moment maps, the adaption to strong geometry with symmetry
group requires several fundamentally new approaches. We show existence of
our multi-moment maps in many circumstances, including mild topological
assumptions on the underlying manifold. Such maps are also shown to exist for
all groups whose second and third Lie algebra Betti numbers are zero. We show
that these form a special class of solvable Lie groups and provide a structural
characterisation. We give many examples of multi-moment maps for different
geometries, including strong hyperKéhler manifolds with torsion and strict
nearly Kahler six-manifolds.

By generalising the arguments, we obtain a notion of multi-moment map
for geometries with closed forms of higher degree. As in the three-form case,
these maps often exist, for instance, under mild topological assumptions on the
underlying manifold, or if the Lie group of symmetries has a vanishing pair of
Lie algebra Betti numbers.

One intriguing application of multi-moment maps addresses the classifi-
cation of Riemannian manifolds with exceptional holonomy and an isometric
action of a torus. We explore the cases when the multi-moment map is a scalar
function. Via a reduction procedure, the study of these exceptional holonomy
spaces is related to tri-symplectic geometry in dimension four.

In the last part of the thesis, we introduce a Calabi-Yau problem for hyper-
Kéhler manifolds with torsion, and we take the first steps towards a solution
via the continuity method.
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Sammenfatning

E T ILLUSTRATIVT eksempel pa samspillet mellem matematik og fysik udgeres
af koblingen mellem symplektisk geometri og mekanik. En symplek-
tisk mangfoldighed er karakteriseret ved tilstedeveerelsen af en lukket, ikke-
degenereret toform. I moderne fysik spiller differentialformer af hejere grad
ogsa en vigtig rolle. I denne athandling studeres geometrier, som enten helt
eller delvist er karakteriseret ved hjeelp af en differentialform.

I den forste del af afhandlingen udspilles hovedrollen af treformer. Nar
formen er lukket, kaldes geometrien sterk. En vigtig kilde til eksempler udgeres
af torsionsgeometrier, hvor treformen optreeder som torsionen af en metrisk
konnektion. Vores forste hovedresultat er en klassifikation af invariante steerke
Ké&hler-med-torsion strukturer pé firedimensionale opleselige Lie grupper.

Dernzest vendes blikket mod generelle steerke geometrier. Nar disse er ud-
styret med en Lie gruppevirkning, som bevarer den staerke struktur, indferes et
momentafbildningsbegreb. Inspirationskilden er symplektiske momentafbild-
ninger, men tilpasningen til steerk geometri er baseret pd en reekke fundamentalt
nye observationer. Vi beviser eksistens af vores multi-momentafbildninger i
en reekke situationer, blandt andet under milde topologiske antagelser om den
underliggende mangfoldighed. Afbildningerne eksisterer ogsd, hvis symmetri-
gruppen har andet og tredje Lie algebra Betti tal lig med nul. Vi viser, at sddanne
grupper udger en underklasse af opleselige Lie grupper og beskriver dem struk-
turelt. Endelig giver vi adskillige eksempler pa multi-momentafbildninger for
forskellige geometrier, heriblandt hyperKéhler-med-torsion mangfoldigheder
og strengt neesten-Kahler mangfoldigheder.

Ved at generalisere argumenterne opnas et multi-momentafbildningsbe-
greb for geometrier med lukkede differentialformer af hojere grad. Ligesom i
treformstilfeeldet viser vi, at disse afbildninger ofte eksisterer, blandt andet hvis
den underliggende mangfoldighed har visse topologiske egenskaber, eller hvis
symmetrigruppen har et par af Lie algebra Betti tal lig med nul.

En seerlig interessant anvendelse af multi-momentafbildninger vedrorer klas-
sifikationen af Riemannske mangfoldigheder med exceptionel holonomi og en
isometrisk torusvirkning. Vi udforsker situationen, hvor multi-momentafbildning-
en er en skalarfunktion. Via en reduktionsprocedure relateres studiet af sddanne
mangfoldigheder til trisymplektisk geometri i fire dimensioner.

I afhandlingens sidste del indferes et Calabi-Yau problem for hyperKéahler-
med-torsion mangfoldigheder, og vi tager de forste skridt mod en losning via
kontinuitetsmetoden.
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Chapter 1

Introduction

N THIS THESIS we study different aspects of three-form geometry. While the
I most important ideas and results already appeared in the papers [MS11b,
MS10, MS11a, Mad11], see Appendix A, we hope this collected work succeeds
in bridging the gaps between these references, and that it may serve as a
comprehensive introduction to strong geometry and related notions, in parti-
cular multi-moment maps. In addition, the thesis extends our previous work.
Most importantly, we generalise the notion of multi-moment maps to closed
geometries.

Our approach is purely mathematical. However, it is worth emphasising
that many of the geometric structures encountered owe their existence to de-
velopments in theoretical physics. One illuminating example of this interplay
between the two disciplines is the relation between symplectic geometry and
mechanics. A symplectic manifold is characterised by a closed, non-degenerate
form of degree two. In modern physics higher degree forms play an important
role too. While some authors have looked at extensions of field theories, closed
three-forms appear to be particularly relevant in supersymmetric theories with
Wess-Zumino terms, string theory and one-dimensional quantum mechanics
[MS00, Str86, GHR84, BHR10, DI11]. They have been studied mathematically
in a number of contexts including stable forms [Hit01], strong geometries with
torsion [FPS04], gerbes [Bry93] and generalized geometry [Hit03, Gua04].

In the first part of the thesis, three-forms appear as the torsion of a metric
connection. Specifically, we study Hermitian manifolds that admit a compatible
connection whose torsion is a closed three-form. Our main result in this direction
is Theorem 3.8 which classifies the invariant skt structures on four-dimensional
solvable Lie groups. The classification includes solutions on groups that do not
admit compact four-dimensional quotients and therefore supplements a known
result by Gauduchon regarding existence and uniqueness of standard metrics
on compact four-manifolds [Gau84]. Moreover, our description of invariant skt
structures is very explicit and has therefore been useful in related studies of the
Hermitian curvature flow for pluriclosed metrics and taming symplectic forms,
cf. [Enr10, EF11].

Passing on from a particular type of three-form geometry, we turn to develop
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a new tool applicable in a more general setting. To motivate this, recall that one
construction illustrating the aforementioned link between symplectic geometry
and physics is that of moment maps. A moment map is an equivariant map
from a symplectic manifold into the dual of the Lie algebra of a Lie group
acting by symplectomorphisms. It captures the concepts of linear and angular
momentum from mechanics. In the second part of the thesis the main objective
is to explain that a similar type of map exists when we are given a manifold M
with a closed three-form c and a Lie group G that acts on M preserving c. We
call the pair (M, c) a strong geometry and refer to the Lie group G as a group
of symmetries. We write g for the Lie algebra of G.

An important feature of our construction is that the resulting multi-moment
map is a map from M to a vector subspace P; of A? g*, with P; independent
of M. This is in contrast to previous considerations [CCI91, GIMM98] of so-
called covariant moment maps o: M — Q!(M, g*), which are defined via the
relation

d{o,X) = Xuc, forall X € g, (1.1)

where X is the vector field on M generated by X € g. Here the target space
Q' (M, g*) is an infinite-dimensional space depending both on M and on g. We
also note that finding covariant moment maps can be hard; equation (1.1) has
a solution (o, X) only if the cohomology class [X_ c] vanishes in H?>(M). Thus,
existence of covariant moment maps often requires some non-trivial topological
assumption such as by (M) = 0.

In contrast, we will show that multi-moment maps exist under mild topo-
logical assumptions: if M is simply-connected and either G is compact or M
is compact with G-invariant volume form. This is analogous to symplectic
moment maps, and enables us to give many examples.

In the symplectic case, there is also a general existence theorem for moment
maps in the case that the symmetry group is semi-simple; it is a result that
does not require any topological assumptions on the manifold. Note that semi-
simplicity of a Lie group is characterised algebraically by the vanishing of the
first and second Betti numbers of the Lie algebra cohomology. In this direction,
we prove that multi-moment maps exist whenever the second and third Betti
numbers b,(g) and b3(g) of the Lie algebra cohomology of G vanish. We call
Lie algebras of this type (2,3)-trivial. The weaker setting of Lie algebras with
ba(g) = 0, where multi-moment maps are unique if defined, provides many
examples of homogeneous strong geometries, including examples that are 2-
plectic in the terminology of [BHR10]; of particular interest are the strict nearly
Kéhler six-manifolds, classified by Butruille [But05].

As far as we know, (2,3)-trivial algebras have not been studied before. We
show that these are solvable Lie algebras, that are not products of smaller
dimensional algebras. Their derived algebra is of codimension one, and is
necessarily nilpotent. From this one may classify the low-dimensional examples,
and further study leads to a characterisation of the allowed solvable extensions
of nilpotent algebras. The structure theory shows that many examples exist,
including some that are unimodular. On the other hand one finds that some
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nilpotent algebras can not be realised as the derived algebra of a (2, 3)-trivial
algebra.

While the most interesting strong geometries carry additional structure, our
approach clearly illustrates the usefulness of regarding the closed three-form as
being the essential building block. From this point of view it seems reasonable to
ask whether the ideas developed in Chapter 4 generalise to higher degree closed
forms & € QFF1(M); the pair (M, «) is now referred to as a closed geometry. An
affirmative answer is given in Chapter 5. We develop a notion of multi-moment
maps for closed geometries that subsumes the concepts of moment maps in the
symplectic and strong settings. For a closed geometry with symmetry group G,
a multi-moment map is a map from M to a vector subspace Py of AFg*, with
P, independent of M.

Multi-moment maps for closed geometries are guaranteed to exist under
mild topological conditions, similar to those discussed in Chapter 4. We also
provide an algebraic existence criterion. This leads to a generalisation of the
notion of (2,3)-triviality. Generally, it makes sense to talk about (ki,...,k/)-
trivial Lie algebras. Along these lines we describe the structure of (3,4)-trivial
algebras and also observe that most compact simple Lie algebras are (1,2,4,5,6)-
trivial.

Geometries with closed forms of higher degree appear regularly in the
physics literature. While recent developments in black hole physics [GGP11b,
GGP11a] indicate some relevance of models with five- or higher degree form
fluxes, we expect that our generalisation of multi-moment maps will be more
useful in the four-form setting. Firstly because the rigidity of closed form
geometries weakens as k becomes larger. Secondly because we already know of
several interesting applications in the four-form case. For instance Theorem 5.25
tells us how to exhibit the inverse of the Swann bundle construction in terms of
a quaternionic analogue of the Marsden-Weinstein quotient.

The final chapter of part two is devoted to an intriguing application of
multi-moment maps. Specifically, we will use multi-moment maps to study
seven-manifolds with holonomy contained in G, and eight-manifolds with
holonomy in Spin(7), when these have a free isometric action of a two-torus
and a three-torus, respectively. In both situations we find that the geometry is
determined by a conformal structure on a four-manifold specified by a certain
triple of symplectic two-forms. Our main results are the theorems 6.11 and 6.30.
These give a local classification of exceptional holonomy metrics with torus
symmetry similar to the Gibbons-Hawking ansatz for hyperKéahler surfaces
with circle symmetry. In the G, case this extends the work of Apostolov and
Salamon [AS04], and both descriptions fit with the perspective of Donaldson
[Don06]. While the four-dimensional tri-symplectic manifolds are obtained via
a reduction procedure for multi-moment maps, the inverse construction is based
on a modification of Hitchin’s evolution equations for half-flat SU(3)-structures
and cosymplectic Gy-structures [Hit01]. The solvability of these flows rely on
real-analyticity of the data. A delicate observation ensures that the analyticity
criterion fits naturally into our framework. This contrasts with earlier studies of
the Hitchin flow [Bry10, CLSSH11].
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The concluding part of the thesis outlines a future research project, and is
best characterised as speculations on HKT geometry. We address some general
aspects of HKT manifolds emphasising the similarities with Kédhler geometry.
Most importantly, we introduce an HxT Calabi-Yau problem in Question 7.7.
We argue that this should be solved via the continuity method. Hence we
consider a one-parameter family of equations with parameter t € S C [0,1],
and solvability of the problem is then equivalent to the set S being open and
closed. In Theorem 7.19 we prove the openness. In order to prove the closedness,
one has to establish a series of a priori estimates, which is a highly non-trivial
analytic task. By bridging the gap between our problem and a related study of
quaternionic Monge-Ampeére equations [AV10], we obtain a first a priori estimate
in Theorem 7.18. Our study of the HkT Calabi-Yau problem is mainly motivated
by a quest for canonical HKT metrics compatible with a given hypercomplex
structure. This aspect is briefly discussed in the final part of Chapter 7.
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Chapter 2

Geometry with torsion

NE TYPE OF GEOMETRY that is partly characterised in terms of a three-form
is a metric geometry with torsion. Of particular interest are examples with
one or multiple complex structures. These generalise the more studied Kahler
and hyperKéhler manifolds.
A Riemannian manifold (M, g) comes equipped with a unique metric and
torsion-free connection, the Levi-Civita connection V<. Any other connection
V has torsion measured by the (2, 1)-tensor

TV(X,Y) = VxY — VyX — [X,Y],
or, equivalently, by the (3,0)-tensor ¢V defined by
V(X,Y,Z) = (TV)(X,Y,Z) = g(TV(X,Y), Z). 2.1)

Given a three-form ¢ € QO3(M) we may use equation (2.1) to define what
we call a skew-symmetric (2,1)-tensor T. Given such a tensor, direct calculations
show that the expression

VxY = VY + %T(X, Y) (2.2)
defines connection which preserves the metric and has torsion TV = T. In fact,
V is uniquely determined by these two properties, since they ensure that the
connection V — 1T is metric and torsion-free, and thus equals V€.

In summary, we have the following well-known [Car25, AF04] extension of
the fundamental theorem of Riemannian geometry.

Theorem 2.1. Let (M, g) be a Riemannian manifold, and T a skew-symmetric (2,1)-
tensor on M. Then there exists a unique metric connection V on M such that TV = T.
Explicitly, V is given by (2.2). Moreover, V has the same geodesics as V'C. ]

Following [Swa07] we refer to the triple (M, g,c) as a metric geometry with
torsion. While this notion is not particularly rigid on its own, things change
drastically once complex structures are involved.
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2.1 Strong Kihler manifolds with torsion

Any Hermitian manifold (M, g, J) has a unique Hermitian connection [Gau97],
called the Bismut connection, which has torsion a three-form. Explicitly the
Bismut connection is given by

VB = VICHITE, B (TB) = —Jda, (2.3)

where w = g(J-,-) is the fundamental two-form and Jdw = —dw(J-,J-, J-). If
the torsion three-form cB is closed, we have a strong Kihler manifold with torsion,
or briefly an skt manifold. The study of skT structures has received notable
attention over recent years, see [FT09] for a survey and for an approach through
generalized geometry, see [Cav06]. This has been motivated partly by the quest
for canonical choices of metric compatible with a given complex structure and
partly by the relevance of such geometries to super-symmetric theories from
physics [GHR84, HP88, HLR 09, MS00, Str86].

Kéhler manifolds are precisely the skt manifolds with torsion three-form
identically zero. However, most skT manifolds are non-Kéahler. For example
compact semi-simple Lie groups cannot be Kéhler since they have second Betti
number equal to zero, but any even-dimensional compact Lie group can be
endowed with the structure of an skt manifold. The existence of skt structures
on compact even-dimensional Lie groups is briefly indicated in the introduction
to [FPS04], and attributed to [SSTVP88]. However, the result is not explicit in
the latter reference and neither specifies the complex structures. We therefore
give a proof for reference.

Proposition 2.2. Any even-dimensional compact Lie group G admits a left-invariant
SKT structure.

Proof. Let g be the Lie algebra of G, and t© a Cartan subalgebra of g¢. By [Sam53],
left-invariant complex structures | on G are in one-to-one correspondence with
pairs (Ji, P), where Ji is any complex structure on t, skew-symmetric for B, and
P C A is a system of positive roots: one defines

g =t"aPas. (2.4)

weP

Extend the negative of the Killing form on [g,g] to a J-compatible positive
definite inner product g on g such that we have an orthogonal decomposition
Z(g)®[g, 9] The associated Levi-Civita connection on G has VICY = 1[X, Y],
for X,Y € g. Consider now the left-invariant connection given by

VxY =0, forX,Yecg. (2.5)
This connection preserves the metric ¢ and the complex structure | and has
torsion TV(X,Y) = —[X,Y], so (TV)’(X,Y,Z) = —g([X,Y],Z), which is a
closed three-form. Thus (G, g, ) is an skT manifold. O
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The skt geometry of nilpotent Lie groups was studied by Fino, Parton
and Salamon [FPS04], who provided a full classification in dimension six. In
Chapter 3, we classify skt structures on four-dimensional solvable Lie groups,
showing that there are a number of new examples; see Table 3.1, only the
first two entries belong to the nilpotent classification. The greater variety
and complexity of this case is already seen from the classification results for
complex structures: Salamon [Sal01] classified the integrable complex structures
on six-dimensional nilpotent Lie groups, whereas in the solvable case there
is a classification only in dimension four [ABDOO05, Ova04, Sno90]. Recently,
Enrietti, Fino and Vezzoni [EFV10] studied the skT condition on nilmanifolds
in dimension eight and above. They showed that a nilmanifold endowed with
an invariant complex structure can admit an skt metric only if it is at most
two-step. Using this observation, they then classified the eight-dimensional
nilmanifolds endowed with an invariant skt structure.

2.2 HyperKihler manifolds with torsion

We now turn to manifolds with multiple complex structures. Recall that an
almost hyperHermitian manifold is a Riemannian manifold (M, g) endowed
with three metric compatible almost complex structures I, ], K that satisfy the
quaternion relations K = I] = —]JI. If each of the almost complex structures is
integrable, then we have a hyperHermitian manifold. Geometrically, one may
think of a hyperK&hler manifold with torsion as a hyperHermitian manifold on
which the Bismut connections associated with the Hermitian structures (g, ),
(g,]), (g K) coincide.

Cabrera and Swann showed [MCS08] that there is an equivalent definition
which is usually easier to check, since the integrability of (I, ], K) comes for free.

Definition 2.3. An almost hyperHermitian manifold (M, g, I, ], K) is called a
hyperKiihler manifold with torsion, or briefly an HKT manifold, if

Idwl = ]d(d] = Kd(dK, (26)
where w;(X,Y) = ¢(IX,Y), etc., and Idw;(X,Y,Z) = —dw;(IX,1Y,1Z), etc.

As in the Hermitian case, we use the terminology strong HKT, or briefly sHKT,
to refer to HKT geometries with a closed torsion three-form ¢ = —Idw;.

Example 2.4. An example of a homogeneous HKT manifold is the compact
simple Lie group SU(3). In fact, this group admits a left-invariant SHKT structure.

In order to endow SU(3) with a left-invariant HKT structure, we describe
the corresponding data on its Lie algebra su(3). To this end we write E,; for
the elementary 3 x 3-matrix with a 1 at position (p,q), and then introduce the
following su(3) basis consisting of eight complex matrices:

A1 = i(EH—Ezz), A2 = i(EZZ_ESS)/
Bpg = Epg—Eqp, Cpq = i(Epg+Egp),
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forp =1,2 < g =2,3. We write ay, ..., cp3 for the dual basis.
Using the formula
da(X,Y) = —a([X,Y]) (2.7)

and Table (2.1), we now find that

day = —2b1oc1p — 2bizcis, daz = —2b13013 — 2bp3cos,
dbiy = (2a1 — az)c1z + bizbas + c13¢23, dera = (—2a1 + az)bia — bizcos — bascis,
dbiz = (a1 + az2)c13 — biabos + 12023, deis = (—a1 — az)biz — biacas + basc,
dby = (—ay + 2a2)ca3 + biab1z + c1ac13, deas = (a1 — 2a2)bas + bipcrs + bl3c§2é
where A signs have been omitted. 5
A positive definite inner product g on su(3) is provided by minus the
Killing form on su(3). In concrete terms, this means that we consider the map
(X,Y) — —1Tr(XY), which expressed in the above basis becomes

2¢ = 2a} — a1y + 2a3 + 2(b, + bz + b3y + ciy + ci3 + c33).

Joyce proved the existence of hypercomplex structures on certain compact Lie
groups [Joy92, Thm. 4.2] including SU(2n +1). For SU(3), Joyce’s hypercomplex
structure comes from a particular decomposition of its Lie algebra su(3). One
takes a highest root 5u(2)C, e.g., the complex span of Aj, Bip, Ci1p, and think of
the complement as H + R, where H = (Bj3,Ci3, Bo3, Co3) and R = (A142A,).
With this concrete decomposition in mind, let us write I = A;, J = Byp and
K = Cjp. We then define I on H to be ad;. Similarly | and K act on H by
ady and adg, respectively. On R + su(2) the actions of I, ] and K are given by
IV =1, JV = J and KV = K, respectively. Here V is chosen to be the following
linear combination of A; and A:

V = (A1 +2A4)/V3.
The action of I, etc., on the modified su(3) basis is thus

I(V) = Al’ I(Al) = _V/ I(Blz) - C12, I(Clz) = _3121
I(B13) = Cl?” I(C13) = _B13/ I(B23) = _C23, I(C23) = B23,

and so forth.

Direct computations now show that I, ] and K satisfy the quaternion rela-
tions I] = K = —]JI, and that they are metric compatible, meaning ¢(X,Y) =
¢(IX,IY), etc., for all X,Y € su(3).

By an appropriate basis change of the subspace (a;,a5), concretely put
2ay = 2a; —ap and 24}, = V/3a,, we find that the non-degenerate two-forms
wy = g(I-,-), etc., are given by

!/
wy = —ayay + bipc12 + bizciz — bscos,
/ /
wy = ayb1y — ayc1z — bizbas — c13¢23, (2.9)

!/ /
wg = ayc12 + aybip + biacas + bozcrs.

10



2.2 HyYPERKAHLER MANIFOLDS WITH TORSION

Combining these formulae with (2.8), we then compute

dw; = —V/3a] (bize1s + bascas) + a5 (2b1ac1n + biscrs — basens)
— b1ab13cas — biabazcrz — bizbascrn — c12¢13¢23,
dwy = 2ayayc12 + ay (b13cas + basciz) — ay(bizbas + c13¢23)
— V/3biabizc1s — V3b1abascas + bisciacis — basciacas,
dwg = —2ayaybip + a} (bisbas + byzciz) + a5 (bizcas + basciz)

+ V/3bizciac1z + V3basc12c23 + biabizcis — biabaacos.

From the above descriptions of dwy, dwj, dwk and the actions of I, |, K, we
can now verify the HKT condition:

—dwi(I-,1-,1-) = a1(2b1pc12 + bi3c1z — bascaz) — ax(biaciz — bizciz — 2bp3ca3)

— bp3cia013 — b13c12023 — biaci3c23 — b1abizbos
= —dw;(J, ], ]) = —dwg(K-, K-, K-).

Finally, using (2.4) and (2.8), we check that the torsion three-form ¢ =
dw(I-,1-,1-) is closed. We have thus shown that (SU(3),g,1,],K) is an SHKT
manifold, as claimed. &

Remark 2.5. Throughout the thesis, we will frequently adopt the notation of the
previous example, meaning that we usually omit A signs when there is no risk
of confusion. A

Howe and Papadopoulos introduced HKT manifolds in the physics literature
[HP96]. Later Grantcharov and Poon [GP00] gave the first mathematical descrip-
tion. Their work was followed by a series of papers investigating the subject.
The early results included both general aspects, such as a potential theory
[BS04], and aspects of Hodge theory [Ver02] as well as explicit constructions
and (counter) examples, with a particular focus on nilmanifolds [FG04, DF02].
It seems that HKT nilmanifolds [BDV09, Bar09] and twists of these [Swal0b]
are quite well understood. Contrasting with this, there are still surprisingly
few known examples of compact sHKT manifolds. The most interesting class
is still the one derived from Joyce’s hypercomplex structures on compact Lie
groups; Example 2.4 generalises to SU(2n + 1) and similar constructions hold
for products T’ x G, where G is a compact Lie group and the rank ¢ of the
torus factor depends on the Joyce decomposition of G, see [PP99] or Table
4.3. Moreover, Barberis and Fino recently showed [BF11] that these Joyce sHKT
manifolds give rise to further examples via a construction on so-called tangent
Lie algebras. As sHKkT manifolds are particular examples of strong geometries,
the tools developed in Chapter 4 apply in the study of such manifolds.

Example 2.6. Based on the work of Gualtieri, see in particular [Gua04, Chap-
ter 6.4], we will now explore Example 2.4 from a generalized viewpoint. We
showed that the eight-manifold SU(3) carries a left-invariant SHKT structure
(¢—,I-,]J-,K_). Note that a basis free expression for the torsion three-form

11



2 GEOMETRY WITH TORSION

Ay B Cr2 B3 Ci3 Bas Co3
Ay | 0 2C;p —2B;p  Cy3 —Bi3 —Cy3  Bos
Ap —Ci2 B2 Ci3 —By3 2C3  —2Bn3
Bz 2A1  —Bgs —Co3 B3 Ci3
Ci2 Cos —Bos Ci3  —Bj3
Bz 2(A1+A2) —Bip Cp2
Ci3 —Ci2 —Bn
Bos 2A,

Table 2.1: Our preferred basis for su(3) satisfies the above commutation relations.
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2.2 HyYPERKAHLER MANIFOLDS WITH TORSION

c- = dwy (I_-,I_-,1_-) follows from the last part of the proof of Proposi-
tion 2.2; c_ is, up to scaling, obtained by left-translating the Cartan three-form
2([X,Y], Z). The same example provides us with a right-invariant SHKT struc-
ture (¢4, I+, J+, K4 ). Moreover, the torsion three-forms c and c_ are easy to
relate: the metric is in fact bi-invariant, so g- = g4+ =: g, and left and right
Lie algebras are anti-isomorphic. Hence, we find that —c— = ¢, =: c. From
the biHermitian structure (g, I) on SU(3), we may construct a pair (I;,I_) of
commuting endomorphisms of T := T SU(3) & T* SU(3), such that I = —1.
Explicitly, put

L( et e tzen™)),

L =5 — * *
o\ of Fop A

where [} denotes the transpose of I, and cuIi = g(I+-,+); also note that
(wf)™! = —I,(-)%, and so forth. Calculations show that I, and I_ are or-
thogonal with respect to the natural (8, 8)-signature pairing

1
(X+¢,Y +n) = 5((X) +&(Y))
on T. To see this, we compute:

PX LX)+ gL X, LX) + g(I X, L&) — g(1: X, &)

/\

4T (X + )| = g1

—g(IX, I, X) —g(I-X,I_X) — g(I_X, I, &) + g(I_X,1.&%
—8(BX) = E(I 1-X) — &(3E%) + (14 1-¢)
— (I X) — &(I2X) — E(I-1.&%) + &(12.¢)

= 4¢(X) = 4[|X +¢&|*.

A similar calculation shows that ||[I_ (X +¢&)|| = || X + ¢||, so that the claimed
orthogonality follows by the polarization identity. The data g, I thus specify
an almost generalized Kahler structure on (T, c). Moreover, integrability of
this structure can be phrased as the conditions that I, I_ are integrable and
c+ = —c_, and these are clearly satisfied.

Similarly the triples (g,J+) and (g, K4 ) provide us with generalized Kihler
structures, and direct inspection shows that the triple (I,J+, K. ) satisfies the
following additional relations:

I.J: = —J+lh =Ky and I.J: = —J:IL =K_.

Altogether our observations may be summarised by saying that (g, I+, J+, K+ )
defines a generalized hyperKihler structure on (T,c), cf. [BCG06, EG07, Bre07].
In order to appreciate this terminology, one may note that the above data re-
duce the structure group SO(8,8) of (T, (-,-)) to a maximal compact subgroup
Sp(2) x Sp(2) of Sp(2,2) C SO(8, 8).

Finally, let us remark that our arguments hold for any even-dimensional
compact Lie group T* x G admitting one of Joyce’s hypercomplex structures. <>
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Chapter 3

Lie theoretic approach

N DIMENSION FOUR, a Hermitian manifold (M, g, ]) is an skt manifold pre-
cisely when the associated Lee one-form 6 = Jd*w is co-closed. When M is
compact, Gauduchon [Gau84] showed that, up to homothety, there is a unique
such metric in each conformal class of Hermitian metrics. The situation for
non-compact manifolds is less clear. In this chapter we obtain a classification
of left-invariant skT structures on four-dimensional solvable Lie groups. Our
result includes non-compact skt manifolds that admit no compact quotient, and
also shows that there are invariant complex structures that admit no compatible
invariant SKT metric.

3.1 Solvable Lie algebras

Since we are interested in invariant structures on a simply-connected Lie
group G, it is sufficient to study the corresponding structures on the Lie algebra
g. To g one associates two series of ideals: the lower central series, which is
given by g1 = ¢’ = [g, 9], 9r = [0, 9x_1]) and the derived series defined by g' = ¢/,
gt = [g71,g""1]. The Lie algebra is nilpotent (resp. solvable) if its lower (resp.
derived) series terminates after finitely many steps.

One has that g/ C g, SO that nilpotent algebras are solvable. On the other
hand, consider a solvable Lie algebra g. Lie’s theorem applied to the adjoint
representation of the complexification g¢, gives a complex basis for g with
respect to which each adx is upper triangular. One then has the well-known:

Lemma 3.1. A finite-dimensional Lie algebra g is solvable if and only if its derived
algebra g’ is nilpotent. O

Remark 3.2. For g solvable of dimension four, g’ has dimension at most three
and so is one of a known list. Lemma 3.1 then implies that g’ is either Abelian
or the Heisenberg algebra b3, which has basis elements E;, E;, Ez with only one
non-trivial Lie bracket [Ey, E;] = E3. A

Identifying g with left-invariant vector fields on G, and g* with left-invariant
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3 LIE THEORETIC APPROACH

one-forms one has the relation (2.7), i.e.,
da(X,Y) = —a([X,Y])

forall X,Y € gand a € g*. We may describe for example b3 by letting e, e, e3
be the dual basis in g* to Ej, E», E3 and computing de; = 0, de; = 0, de3 = ep Aey.
We will use the compact notation h3 = (0,0,21) to encode these relations.

Let A* g* be the exterior algebra on g* and write Z(A) for the ideal in A* g*
generated by a subset A. We interpret the condition for g to be solvable dually
via the elementary:

Lemma 3.3. A finite-dimensional Lie algebra g is solvable if and only if there are
maximal subspaces {0} = Wp < Wy < --- < W, = g* such that

dW; € Z(W;_1) (3.1)
for each i. O

Concretely Wy = ker(d: g* — A?g*) (cf. [Sal01]) and W; is defined induc-
tively to be the maximal subspace satisfying (3.1). We will sometimes find it
useful to choose a filtration {0} = V) <V} < --- <V, = g* with

dimgV; =i and dV; CZ(Viq) for each i. (3.2)

One way to construct such filtrations is to refine the spaces W;, however in some
cases other choices may be possible and useful.

3.1.1 Unimodular Lie algebras

The map x: g — R, x(x) = Tr(ad(x)), is a Lie algebra homomorphism. Its
kernel u(g), the unimodular kernel of g, is an ideal in g containing the derived
algebra g’. The Lie algebra g is said to be unimodular if x = 0. Note that if G
admits a co-compact discrete subgroup then g is necessarily unimodular [Mil76].

Remark 3.4. There are useful alternative ways of characterising unimodularity
of an n-dimensional Lie algebra g, cf. [SH10]. One finds that g is unimodular
if and only if all (n — 1)-forms are closed, or equivalently b,(g) = 1; here
bi(g) = dim H*(g). A

It is well-known, from the disseration work of Jean-Louis Koszul, that any
unimodular n-dimensional Lie algebra g satisfies Hodge duality, cf. [GHV73,
Chapter IV.5]. As we will need this result in Chapter 4, we now give a precise
statement and a proof for reference. The argument is essentially the same as the
one applied in a more general context in [ACK99, Theorem 2.1].

Proposition 3.5. If g is a unimodular n-dimensional Lie algebra, then by(g) =
by_i(g), for 0 <k < n.

16



3.1 SOLVABLE LIE ALGEBRAS

Proof. The A product defines a non-degenerate bilinear pairing Q: A* g* x A"k g*
— A" g* given by Q(a,b) = a Ab. Note that for any pair of closed elements
ae Ag*,be A" Fg*and any pair a € A1 g5, B e A" *1g* we have that

(a4da)A(b+dB) =anb+daAb+ (—1)anB+andp).

Hence Q induces a pairing on Lie algebra cohomology, Q: H¥(g) x H" ¥(g) —
H"(g). In order to prove the statement of the proposition, it suffices to show
that Q is non-degenerate. Indeed, in that case the pairing establishes a linear
isomorphism H*(g) = H"*(g), so that by(g) = b,_x(g), as required.

To prove non-degeneracy of Q, we first identify Q with a positive definite
inner product on AFg* as follows. Pick a basis E, ..., E, for g, and declare it
to be oriented and orthonormal. Denote by ey, ..., e, the dual basis in g*, and
extend the associated inner product (-,-) on g to A* g* via the formula

<El,b> = Z a<Ei1/---/Eik>b(Ei11---/Eik)/

1<ip<---<ip<n

for a,b € A¥g*. Having chosen an inner product and an orientation, we get an
operator *: AFg* — A"k g* which is uniquely characterised by the property
that

Q(a,xb) = (a,byey A -+ Ney,
for a,b € AFg*, and 0 < k < n. Moreover, * satisfies the relation ** =
(_1)k(nfk): Akg* N Akg*.

We now define a linear map d*: Afg* — A*1g* by the formula d* :=
—(=1)"+Ddx. We claim that (da,b) = (a,d*b), for a € A*¥g* and b € A*+! g*.
To prove this assertion, note that as a A xb € A"~ g* we have that d(a A xb) =0,
by unimodularity of g. Hence

0 = (da) A xb+ (—=1)ka Ad(xb) = (da) A xb+ (—1)"kF2)=21=kE=1) g A 424 (D)
= Q(da,*b) — Q(a,*(d*b)) = ({(da,b) — (a,d*b))ey \- - Ney.

Below we will use this observation to show that any closed element a € Ak g*,
admits an orthogonal decomposition

a=duy + ay, (3.3)

where (dd* + d*d)ay = 0 and the element xx, € A" ¥ g* satisfies d(*ap) = 0
and Q(a, *x2) = ||az|®e1 A - - - A e,. In particular, this will imply that if [a] # 0,
then we have that Q([a], [«2]) # 0. Hence the induced pairing on Lie algebra
cohomology is non-degenerate, as required.

It remains to verify the decomposition (3.3). Firstly, we observe that

kerd Nkerd* = ker(dd* +d*d). (3.4)

The non-trivial inclusion kerd Nkerd* D ker(dd* 4+ d*d) is implied by the
computation

|(dd* + d*d)a||* = ||dd*a||* + 2(dd*a,d*da) + ||d*da|? = ||dd*a|* + ||d*da|?,
(3.5)
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3 LIE THEORETIC APPROACH

where we have used that d*> = 0. One easily checks that the vanishing of (3.5)
implies that da = 0 and d*a = 0. As one obviously has that kerd | Imd*, (3.3)
will follow if we can show that A* g* = Imd & Imd* & ker(dd* + d*d). Since
Imd L Imd* and (Imd & Imd*) L ker(dd* + d*d), this assertion is implied,
once we have shown that

(Imd @ Imd*)* C ker(dd* 4 d*d).

But this inclusion is an immediate consequence of the observations that (Imd)* C
kerd* and (Imd*)* C kerd, combined with (3.4).
This completes the proof of the Hodge duality. O

3.2 The SKT structural equations

A left-invariant almost Hermitian structure on G is determined by an inner
product ¢ on the Lie algebra g and a linear endomorphism J of g such that J? =
—land g(JX,JY) = ¢(X,Y) for all X,Y € g. The skt condition consists of the
requirement that | be integrable and that dJdw = 0 where w(X,Y) = g(JX,Y).
In the differential algebra, integrability of | may be expressed as the condition
that dA0 C A20 + AL, If g is four-dimensional and solvable, we now show
that there is one of two choices of possible good bases {a, Ja,b, Jb} for g*. We
will later determine the skt condition in each case.

Lemma 3.6. Let g be a solvable Lie algebra of dimension four. If (g,]) is an inte-
grable Hermitian structure on g then there is an orthonormal set {a, b} in g* such that
{a,Ja,b, b} is a basis for g* and either

Complex case: g has structural equations

da =0, d(Ja)=xyaJa, db=y aJa+ yrab+ysaJb+ z1bJa+ zpJajb,

3.6
d(Jb) = wyaJa + upab + uzaJb + vibJa + voJaJb + w1 b]b, (3.6)

or
Real case: g has structural equations

da=0, d(Ja)=x1a]Ja+ x2(ab+ JaJb)+ x3(aJb+ bJa) + y2b]b,
db = z1aJa + zpab + zza b, (3.7)
d(Jb) = wyaJa + upab + uzaJb + v1bJa + v,bJb + w4 Ja]b.

In the complex case, {a, Ja, b, Jb} may be chosen orthonormal and w = aJa + bJb. In
the real case, w = aJa + bJb + t(ab + JaJb) for some t € (—1,1).

Proof. Let V; be a refined filtration of g* as in (3.2). As dimpg V> = 2 we have
two possibilities for the complex subspace V, N JV,, either it is non-trivial so
Vo = JV, or it is zero. If the filtration V; can be chosen with V, = JV, we will
say we are in the complex case, otherwise we are in the real case.

For the complex case, [V, = V, and Vi C V, Nkerd, so we may take an
orthonormal basis {4, Ja} of V, with a € V;. We have da = 0 and solvability
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implies d(Ja) € Z(a) N A?> = RaJa@® a A Vs-. As ] is integrable, we must have
d(Ja) € A too, so d(Ja) = x1aja.

In the real case, choose « € V; and b € V, N VlL of unit length. Then
da = 0 and the form of d(Ja) follows from the condition d(Ja) € AY!. The
form of w follows from t = g(b, Ja) which has absolute value less than 1 by the
Cauchy-Schwarz inequality. O

The above equations are necessary but far from sufficient. For integrability
it remains to impose d(b — iJb)*? = 0, and to obtain a Lie algebra the Jacobi
identity must be satisfied. The latter is equivalent to the condition d> = 0. Both
of these conditions are straightforward to compute. We list the results below. In
each case the first line comes from the integrability condition on J, in the last
line we provide the skt condition and the remaining equations are from d? = 0.

Lemma 3.7. The structural equations of Lemma 3.6 give an SKT structure on a solvable
Lie algebra if and only if the following quantities vanish:
Complex case:

Y2 — 22— U3 +01, Y3 —2z1+Ux— 02,
X121 — Y301 — Zoup, (X1 — Y2 +u3)z0 — y3(21 + v2),
Yowy, Yswi, z21W1, 22W1,
(x1 +y2 — uz)vy — (21 + v2)u2 + uqwy,
X102 + Y1W1 — Y301 — 22U,

(x1 4+ y2 + us) (v2 + uz) + (21 — v2)* — wywy.

(3.8)

Real case:

Zp — Uz + 01, 23+ uUp—wi,
xXouy — x3(z2 — 01) —yau1,  (—X1+ 22 + u3)y2 + x5 + x3(x3 — v2),
xouz — x3(w1 +23) +y2z1, (%1 + 22 — U3)v1 — (X3 — v2)uy — Upwy,
XoUp — YW1, X3Z1 + 2301, Y2Z1 + 23Uz, X221 +Z3wi, X201 — Xx3wi, (3.9)
XoW1 + X301 — Yol + 2202,  XqW1 — XUy + 2102 — 2307,
{(x1+ 22+ uz)(—y2 + 22 + u3z) + x2(x2 — 21 + tv2)
+ (x5 — w1 + t(uz — wy)) (x5 + v2) + Wi }.
In some cases the skT structure reduces to Kahler. This occurs if and only if

the following additional conditions hold:
Complex case:

Y1 = 0= Ui, U3 = —Yz, UV2=27 (310)
Real case:

Xp —z1 =t(x1+u3), xz—up=—tuy, Yo—zp— Uz =txy,

w1 = t(X3 + Uz). 311
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3.3 The SKT classification

We are now ready to describe the simply-connected four-dimensional solvable
real Lie groups admitting invariant skt structures. The notation for and distin-
guishing characteristics of all the solvable real Lie algebras in dimensions up to
four are summarised in Section 3.5 following the classification in [ABDOOS5].

Theorem 3.8. Let G be a simply-connected four-dimensional solvable real Lie group.
Then G admits a left-invariant SKT structure if and only if its Lie algebra g is listed
in Table 3.1. Furthermore the left-invariant skt structures on G may be explicitly
determined and the dimension and number of connected components of the moduli
space up to homotheties are as in Table 3.1.

The table also indicates which groups admit invariant Kdhler metrics, and
gives the dimensions of the Lie algebra cohomology.

g g dim 7y Kéahler (by...bs)
{0} R? 0 1 v (4,6,4,1)
R R x b3 0 1 X (3,4,3,1)
R x 39 1 1 v (3,3,1,0)
R?Z R x té,o 1 1 v (2,2,2,1)
aﬁlR % aff]R 2 1 v <2 1 O O)
]RS tﬁ;,)\,o (/\ > O) 1 2 N (1 1 1 O)
Yy 1/2-1/2 1 1 X (l 0,1, l)
to,a (A>0) 12 x (1,0,1,1)
T > 1 x  (1,0,1,1)
s 2 1 v (11,10
o 2 1 X (1,0,1,1)
%12 1 1 v (1,000
v}, (A>0) 1 1 v (1,0,0,0)

Table 3.1: The four-dimensional solvable Lie algebras that admit a left-invariant
sKT structure. Of these, only R* fails to admit an skT structure that is not Kahler.
In the table, dim and 77y are the dimension and number of components of the
skT moduli space modulo homotheties, b, denotes dim H*(g).

The proof will occupy the rest of this section. Following Remark 3.2 we
analyse the possible solutions to the equations of Section 3.2 case-by-case after
the type of g’. We use the Lie algebra structure of g combined with the skt
geometry to determine a canonical choice of basis {4, Ja,b, Jb} with {a,b}
orthonormal, refining the approach of Section 3.2. When talking of the skt
moduli space, we consider only left-invariant structures on the given G. These
are determined by (g,J) on g. Two skT pairs (g1,/1) and (g2, J2) on g are
considered equivalent if there is a Lie algebra automorphism ¢ with ¢*g, = g1
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and ¢ o J; = J» o ¢. Equivalent structures have canonical bases with the same
structure constants and any remaining parameters in the structure equations
are parameters for the SKT moduli space.

3.3.1 Trivial derived algebra

For ¢ = {0}, g = R* is Abelian, d = 0 so all structure constants are zero
and each almost Hermitian structure is Kdhler. All these Kihler structures are
equivalent.

3.3.2 One-dimensional derived algebra

For g = R, we have dim W; = 3. It follows that we can choose 4, Ja, b € W,
and are thus in the case V, = JV,. The structural equations for g in this case are

da=0=d(Ja) = db,
d(Jb) = wyaJa + uy(ab + JaJb) + uz(aJb + bja) + w1 b]Jb,

where the coefficients satisfy 0 = u% + u% —uwywq and d(Jb) # 0. Rotating 4, Ja
in V5, we may ensure that u, = 0 and u3 > 0, so uyw; = u%. Replacing b by —b,
we obtain w; > 0.

If w; = 0 then u3 = 0 and we may take u; > 0, after an appropriate choice
of b. Thus we have the algebra given by

da=0=d(Ja) =db, d(Jb) = uja]a. (3.12)

Any other orthonormal Hermitian basis {a’, Ja', V', Jb'} with a’, Ja’ € V,, b’ € W,
and 4} > Ohas V' = b, a' = cos@a+sin6 Ja and d(JV') = uja'Ja’" = uja]a.
The parameter 17 > 0 thus describes inequivalent skt solutions. Scaling of the
metric by a homothety, ¢ — A%g, A > 0, is realised by a — Aa, b — Ab and gives
uy — u1/A. Thus the resulting skT metrics are all homothetic to each other.
These skT structures are not Kidhler. Moreover we see that g is nilpotent and so
isomorphic to R X b;.

If w; > 0 then g is not nilpotent and so isomorphic to R X t39. As ujw; =
u% > 0 we have the structural equations

da=0=d(Ja) =db, d(Jb) =wuiaJa+ us(aJb+ bja)+ w1b]b,

with u3 = /ujwy, uy > 0. This is Kdhler only if u; = 0. The non-Kéahler
solutions have uy,usz,w; > 0 and u, = 0, which fixes the choice of basis
{a,Ja,b,Jb}. Up to homothety the only parameter is #7. The moduli space is
thus connected.

3.3.3 Two-dimensional derived algebra

For g’ = R?, we have dim W; = 2, and we shall distinguish between the cases
W; = JW;y and Wy N JW; = {0} where W; = kerd is complex or real.
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Complex kernel We have W; = JW; and taking Vo = W; thus have the
structural equations

da=0=d(Ja),
db = yiaJa + yza]b + z2Jajb,
d(Jb) = wyaJa — ysab + zxbJa

with no restrictions on the coefficients other than that db and d(Jb) are linearly
independent. Rotating 4, Ja we may put z, = 0, y3 > 0. Rotating b, Jb we can
then get u; > 0, y; = 0, reducing the structure to

da=0=d(Ja), db=ysaJb, d(Jb) = ujaJa— yzab.

The solution is Kahler if and only if #; = 0. For u; > 0 the Hermitian basis is
unique. The skt moduli space is connected of dimension 1 modulo homotheties.
The Lie algebra g is isomorphic to R X 3 .

Real kernel Here W; N JW; = {0} and we again take V, = W; putting us in
the real case and giving the structural equations

da =0=db,
d(Ja) = xqaJa + x3(aJb + bja) + y2b]b,
d(Jb) = wyaJa + uz(aJb+ bja) + vabJb,

where the last two lines are linearly independent and the coefficients satisfy

(x1 —uz)y2 = (—v2 +x3)x3, u1(v2 —x3) = us(uz — x1),

3.13
usxz = ury2, (U1 —x3)(va +x3) = (us +x1)(us — y2). G139

Lemma 3.9. We have 3(g) = {0} and u(g) = v3 1, so g = affr X affg.

Proof. We compute the centre via 3(g) = {X € g: Xuda = Oforalla € g* }.
Writing X = pA +gB + p'JA + q']B, where {A, B, JA, JB} is the dual basis to
{a,b,]a,]b}, one finds that X € 3(g) implies (p,q,0)" and (0,p,q)" lie in the
one-dimensional null space of the rank two matrix

_ (X1 X3 Y2
Q= (u1 us Uz> '
We conclude that p = 0 = g. The same calculation applies to p’ and g/, so X =0
and 3(g) = {0}.

Writing a = (1), b= (33), ¢ = (i), d = (3}), equations (3.13) may be
interpreted geometrically as saying that b, ¢ and a — d are mutually parallel and
that b — c is parallel to @ + d. Imposing the constraint rank Q = 2, then leads to
the fact that @ and d are linearly independent.

The map x = Trad: g — R is given by x(A) = —(x1 +u3), x(B) =
—(x3+1v2), x(JA) = 0 = x(JB). This is zero only if a = —d, which by the above
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remark, is not possible. Thus g is not unimodular. Choosing a € Im x* < kerd,
we have 0 = a(B) o x(B) and so v; = —x3.

Write a — d = 2kv with v = (¢), ¢ + s> = 1. Then (3.13) implies b, ¢ € (v).
However a+ d ¢ (v) but is parallel to b — ¢, so we find b = ¢ = hv, for some
h € R. This gives x3 = ks = hc, so we may write k = fc, h = /s for some
non-zero ¢ € R. Changing the sign of v we may force ¢ > 0. We get

2+1 ¢s s?
Q:£< 2 )

cs S —CS

The last two columns specify the exterior derivative d on u(g)* = g* / Im x*.
One sees that u(g) = v3_; as B acts with eigenvalues +/s. O

To summarise, we get a unique choice of basis {a, Ja,b, Jb} with {a,b}
orthonormal by taking a € Im x*, b € kerd N (Im x*)* with x; > 0 and v, > 0.

We may describe the isomorphism of g with affg x affr explicitly by intro-
ducing half-angles. Writing ¢ = 02 — 72, s = 207, 0> + T2 = 1,0 > 0 and using
the orthogonal transformation a’ = oa + tb, b’ = —7a + ob, gives the structural
equations

d(Ja') =2l d'Jd, d(Jv') = =207t v'Jb.

We have ¢,0 > 0 and, replacing b’ by —b’ if necessary, we may ensure that
T < 0. The skt moduli space is thus parameterised by /7 € (—1,0), £ > 0
and the parameter t = ¢(V/, Ja’) € (—1,1) in the metric. Up to homotheties it is
connected of dimension 2. The solutions are Kéhler precisely when t = 0.

Remark 3.10. If one considers the complex structure on affg x affg with de =0,
d(Je) =eJe,df =0,d(Jf) = f]f one sees that a metric with w = eJe + f]f +
t(e]f + fJe) is skt (indeed Kihler) only if + = 0. Thus for a given complex
structure the skt condition depends on the choice of metric. This is in contrast
to the study of skt structures on six-dimensional nilmanifolds [FPS04]. A

3.3.4 Three-dimensional Abelian derived algebra

For ¢ = R3, we have dimW; = 1, and moreover the assumption that g’ is
Abelian implies that d(Ja), db, d(Jb) € Z(a). So it is legitimate to assume that
Vo = JVa. The structural equations are thus
da=0, d(Ja)=xia]a,
db = y1aJa + yab + ysaJb, d(Jb) = ujaJa — yzab + yajb,

with coefficients satisfying the equation
0=1y2(2y2 +x1)

and non-degeneracy conditions x; # 0, y3 + y3 # 0. One may choose 4, b so that
x1 > 0,y1 = 0and u; = 0. This choice is unique if y; > 0, for y; = 0, b is an
arbitrary unit vector in Vs-. The solutions are then Kéhler only if y; and y, are
zero.
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If y =0, then y3 # 0 and g = tﬁl,\xl Jysl0° Thus on a given tﬁ}, ror A >0, the
skT moduli up to homothety has dimension 1, parameter y3, with two connected
components determined by the sign of y3, and contains the Kéhler solutions
as y; = 0.

For y, # 0, we have x; = —2y,. There are two cases. For y3 = 0, we have
g = vy _1/2_1/2 and there is a one-dimensional connected family of solutions
up to homothety. For y3 # 0, the Lie algebra g is tj,, , with A = [y2/y3].
Again the moduli is of dimension 1 up to homothety ‘and has two connected
components.

3.3.5 Three-dimensional non-Abelian derived algebra

For g’ = b3, as above we have dim W; = 1. Let d’ denote the exterior derivative
on g’. We distinguish between the complex and real cases Vo = JV, and
wnjv, = {0}

Complex case We have s € Wy = Vi, and Ja € V, = JV,. Moreover it is
possible to take b € V5- with d’b = 0. The condition g’ & b3 then forces
d'(Jb) € (bJa), giving the structural equations
da=0, d(Ja)=xia]a,
db = yraJa + yrab + ysaJb, d(Jb) = ujaja + uzab + uzaJb + v1b]ja,

with x1, y5 + y3 and v1 non-zero. Adjusting the choice of 4, we may take x; > 0.
The skT equations are now the vanishing of

Yo —us+01, Ys3+uy Y3vq,
v1(x1 +y2 —usz), (y2+us)(y2+us+x1).

We deduce that y3 = 0 = up, v1 = x; and uz = y» + x1, leaving the condition
(2]/2 + xl)(yz + xl) =0.
If y» = —x1, then the structural equations are
da=0, d(Ja)=xia]a,
db = yaJa — xqab, d(Jb) = wyaJa+ x1bja

subject only to x; > 0. We see that g /3(g’) is isomorphic to t3 1, so g itself is
isomorphic to 94. The only ambiguity in the basis is b — —b, corresponding to
(y1,u1) — (—y1, —u1). The skt moduli modulo homotheties is connected and

has dimension 2. There are no Kihler solutions.
For x; = —2y», we have the structural equations

da=0, d(Ja)=xa]a,
db = yaJa — %xlab, d(Jb) = wyaJa + %xla]b + x1bJa,
again with x; > 0. The quotient g /3(g’) is isomorphic to t3 1,5, and g is thus
isomorphic to 94>. The solutions are Kdhler only for y; = 0 = uy. There is

the same b — —b ambiguity as above. Again the skT moduli space up to
homotheties is connected of dimension 2.
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Real case First note that dim W, = 3, so we may choose b to be a unit vector
in Wy N (a, Ja)". This gives t = g(b,Ja) = 0. Now d'b = 0, where d' is the
differential on g’, as above. As b} = R, we have that d’(Ja) and d'(Jb) are
linearly dependent, but not both zero. In fact, if d’(Ja) = 0, we may take
Vo = (a,]Ja) and reduce to the complex case described above, so we assume
instead d'(Ja) # 0.

Write (x2,x3,y2) = mp, (w1,v1,v2) = np for some unit vector p = (p,q,71),
m # 0. The structural equations of b3, imply b A d’'x = 0 is zero for all x € ¢/,
giving p = 0 and x, = 0 = w;. Now 4% + r?> = 1 and one may normalise so that
r > 0. Then

d'(Ja) =mbjc, d(Jb) =nb]c,

where
c=gqa+rb.

From this one sees d'(nJa — mJb) = 0 and so (nJa — mJb) Ad'x = 0 is zero
too. We conclude that gJa + rJb and nJa — m]Jb are parallel and write n = kg,
m = —kr, for some k # 0.

The structural equations are now

da =0, d(Ja) = xiaJa—kqr(aJb+bJa) —kr*b]Jb,
db = zyaJa + zpab + zza]b,
d(Jb) = ula]a+u2ab+u3a]b+kq2 bja + kqrb]b,

with g2 +72 =1, r > 0, the forms d(Ja), db, d(Jb) non-zero, and subject to

uz =z +kq, ux=—z3, rz;=qz;,
kq3 —qzp —ru; =0, quz +x1—20—uz3 =0, (3.14)
qg(g(x1 +2z2 —uz) —2ruy) =0, (x1+2z2 4+ u3z)(zo +usz + kr?) = 0.

Substituting the first three equations into the remaining four, one sees that
the first equation on the last line follows from the two on the middle line. There
are thus two cases corresponding to the two factors of the last equation.

The first case is z; = —x1 — u3, which reduces to x| = —kq2 = —uz,zp =0,
uy = kq®/r, giving the structural equations

da=0, d(Ja)= —kcJc, db=zrtaJc, d(Jb) = —zzab+kqr 'cJc,

with z3 # 0. Now §* =
equations da =0,db = z3
gives g = 0 .

In this case the solutions are never Kahler. The skt moduli up to homotheties
has dimension 2 and is connected. To see this note that a is specified up to sign,
which may be fixed by requiring k > 0. If g # 0, replacing b by +b, we may
then ensure z3 > 0. This uniquely specifies b, and the remaining parameter is
given by gq. For g4 = 0, we may rotate in the b, b plan, but this does not change
the solution.

/3(g")* = (a,b,c), with ¢ = ¢/r, has structural
¢/, dc’ = —zzab and so is isomorphic to t’3,0. This
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The final case is zp = —u3 — kr?. Here one finds x; = —k(1+¢?), z0 = —k/2,
u; = —kq(29> +1)/2r giving

da =0, d(Ja)=—k(aJa+cJc), db=—lkab+zsrtajc,

(3.15)
d(Jb) = tkrta(qJa —r]b) — zzab + kqr ' cJc.

This time computing the structural equations for § = g/ 3(g’) gives da = 0,
db = —%kub + zzac', dc’ = —zzab — %kuc/. If z3 # 0, we have § = tg,/\ with
A = |k/2z3] giving g =2 0} ,. The analysis for the choices of a,b is as above. For
zz3 = 0, we have § = 3 and g = 041/2. The basis analysis is similar to above:
k > 0 fixes a; for q # 0, b is fixed by g > 0; for 4 = 0 we may rotate in the b, Jb
plane without changing the solution.

The solutions are Kéhler precisely when q = 0. The skt moduli up to
homotheties has dimension 1 and is connected both for g = Dﬁm and for g =
04,1/2-

This completes the proof of Theorem 3.8.

3.4 Consequences and concluding remarks

Let us first emphasise Remark 3.10 that for four-dimensional solvable groups the
skT condition depends explicitly on both the metric and the complex structure,
in contrast to the situation [FPS04] for six-dimensional nilpotent groups.

Corollary 3.11. There are four-dimensional solvable complex Lie groups whose family
of compatible invariant Hermitian metrics contains both SKT and non-sKT structures.
O

An alternative approach to our classification of invariant skt structures in
Theorem 3.8 would be to start with results for complex structures on four-
dimensional solvable Lie groups (Ovando [Ova00, Ova04], Snow [Sno90]) and
then to impose the skt condition. We have used this approach to cross check
our results, but also found that the lists given in [Ova04] for Kadhler forms and
algebras with complex structures have some errors and omissions. Some of
these are corrected in [ABDOO5], but we wish to emphasise that the proof given
in Section 3.3 is independent of those calculations. In contrast to the compact
case we see:

Corollary 3.12. The four-dimensional solvable Lie algebras g that admit invariant
complex structures but no compatible invariant skt metric are: R x v31, R X t’3 A>07

affc, w1, tapr, U=A# —Jorp<A=1), Ur (AF#0,—p/2), 04 (A # 1.2),
ba. O

Here the given constraints on the parameters are in addition to the defining
constraints for the algebras.

On the other hand if G admits a discrete co-compact subgroup I' then M =
I'\G is a compact manifold (a solvmanifold). By Gauduchon’s theorem [Gau84]
any complex structure on M admits an skt metric (indeed one in any compatible
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conformal class). If G has an invariant complex structure one may then construct
a compatible invariant skt structure on G via pull-back from M (cf. [FG04]). A
necessary condition for I' to exist is that G be unimodular, which is equivalent
to ba(g) = 1, but in general this is not sufficient. The correct classification
of complex solvmanifolds in dimension four has recently been provided by
Hasegawa [Has05]. In our notation, one obtains

(i) tori from g = R?,

(ii) primary Kodaira surfaces from g = R X b3,

(iii) hyperelliptic surfaces from g = R X 3,

(iv) Inoue surfaces of type SY from g = 11 and from g = tﬁL,Z Py
(v) Inoue surfaces of type S* from g = 94 and

(vi) secondary Kodaira surfaces from g = 0 ,.
Comparing this list with our classification we conclude:

Corollary 3.13. Each unimodular solvable four-dimensional Lie group G with invari-
ant sKT structure admits a compact quotient by a lattice. O

If we have an HKT structure and (g, I) is already skt then (g, J) and (g, K)
are necessarily skt and the HKT structure is strong. However, the list of HxT
structures on solvable Lie groups is known in dimension four from [Bar97].

Corollary 3.14. The only four-dimensional solvable Lie algebra that is strong HKT
is R*, which is hyperKihler. The algebra 04, /o admits both HKT and SKT structures;
these structures are distinct. The remaining HKT algebras affc and 41,1 do not admit
invariant SKT structures. [

In the case of 041/, one may use (3.15) to check that the HKT and skT metrics
are inequivalent.

Finally, let us make the following observation which follows from case-by-
case study of the algebras found in our skt classification Theorem 3.8. The
symmetry rank of an skT manifold (M, g,]) is the dimension of the maximal
Abelian group of isometries that preserve J, cf. [GS94, Fan(04].

Corollary 3.15. Each invariant SKT structure on a four-dimensional solvable Lie
group G has symmetry rank at least two. O

This motivates a future study of skt structures on Abelian principal bundles
over Riemann surfaces. Expectedly multi-moment maps, cf. Chapter 4, will
be useful tools since they provide us with one or two natural coordinates in
addition to those along the fibers.
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3.5 Low-dimensional solvable Lie algebras

The four-dimensional solvable real Lie algebras are classified in [ABDOO05].
In this section we summarise the classification and provide the notation for
Section 3.3. The quoted results and observations will also be of relevance in our
study of (2,3)-trivial Lie algebras in Chapter 4.

Our notation for the three-dimensional solvable Lie algebras will be as given
in Table 3.2. Note that t39 = R X affy.

affg  (0,21)

h;  (0,0,21)

vs  (0,21+31,31)

5, (0,21,A31) A <1
ty, (0,A21+31,-21+A31) A >0

Table 3.2: Non-Abelian solvable Lie algebras of dimension at most three that
are not of product type.

The four-dimensional solvable Lie algebras are classified as follows.

Theorem 3.16 ([ABDOO05]). Let g be a four dimensional solvable real Lie algebra.
Then g is isomorphic to one and only one of the following Lie algebras: R*, affg x affg,
R x b3, Rxt3, Rxt3, (|A|] < 1), Rx t’M (A > 0), or one of the algebras in
Table 3.3.

Among these the unimodular algebras are: R% R x b;, R x t3_1, R X t’3,0, Ny,

1 / /
172 Uy —1—p (1 <P < =3), %, 00 04, 0.

ny (0,0,21,31)

affc  (0,0,31 — 42,41 + 32)

t (0,21 + 31,31 + 41,41)

vy (0,21,A31 +41,A41)

T45,7 (O, 21, y31, )L41) l‘l/l,)\ € Xy
Yn (0,421,A31 +41, =31 4 A41) u>0

04 (0,21, -31,32)

og) (0,721, (1 —A)31,41 + 32) A>3
0, (0,A21+31,-21+A31,20.41+32) A >0

by (0,21 +31,31,2.41 + 32)

Table 3.3: Four-dimensional solvable Lie algebras not of product type. The set
%y consists of the (u,A) € [—1,1]2 with A > p and u, A # 0 and satisfying A < 0
if u=-1.

In the Table 3.4 the four-dimensional solvable real Lie algebras are sorted by
their derived algebra g’. In some cases it is easy to recognise which algebra is at
hand using the following observations:
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g 30 9
{0} R*
R R x h3, R x T30

R* {0} affg X afjg, offc, daa
R R X3, R X 13,40, R X% téw T40, N4

3 !
R T4, C4A£0, Cpds Ty
/
b3 04, 0y a1, 0y, by

Table 3.4: The four-dimensional solvable Lie algebras sorted by g’ and, where
necessary, 3(g). The conditions on the parameters are in addition to those from
Tables 3.2 and 3.3.

g’ = R: R X b3 is nilpotent, R X t37 is not.
g =R?, 3(g) = {0}: affg X affg and 04 are completely solvable, affc is not.
Moreover these algebras have different unimodular kernels:

u(affr X affr) =31, u(d41) =bs,  u(affc) Zyp.

g’ = b3 the algebras are distinguished by § = g / 3(g’) as follows:

1

~ ~ ~/ / ~
04 =131, Oga21 =t3(1-4)/0, 040 =13, by =13,
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Chapter 4

Multi-moment maps for strong
geometries

E NOW PASS ON from a particular type of three-form geometry to the gen-
W eral notion of strong geometries. These are characterised completely or
partly in terms of a closed three-form, and if symmetry is present they often
come equipped with a particular type of map, a so-called multi-moment map.
While the main source of inspiration is symplectic geometry, the less rigidity of
three-forms implies that significantly new ideas are needed.

The chapter is organised as follows. In Section 4.1 we give the fundamental
calculations that lead to the definition of multi-moment map and introduce the
Lie kernel P, of a Lie algebra g. We then consider topological and algebraic
criteria for existence and uniqueness of multi-moment maps in Section 4.2.
As mentioned in Chapter 1, (2,3)-trivial Lie algebras play a natural role and
Section 4.3 is devoted to an algebraic study of this class and the description of
a number of examples. We then return to strong geometries and their multi-
moment maps. The basic example is provided by the total space A2T*N of the
second exterior power of the cotangent bundle of a manifold N. Homogeneous
strong geometries with multi-moment maps are closely tied to orbits in the dual
Py of the Lie kernel and we develop a Kirillov-Kostant-Souriau type theory,
pointing out links with nearly Kéhler and hypercomplex geometry. In the final
section of the chapter we return to the study of (2,3)-trivial Lie algebras. A
systematic treatment, based on our structural result, Theorem 4.16, enables us
to list all algebras of this type in dimensions up to and including five.

4.1 Main definitions

Let (M, c) be a strong geometry, meaning that M is a smooth manifold and that ¢
is a closed three-form on M. Note that unlike the symplectic case there is no one
canonical form for ¢, not even pointwise on M. In general, we do not require
any non-degeneracy of c. However, when necessary we will use the terminology
of [BHR10] that c is 2-plectic if X ¢ = 0 at x € M only when X = 0 in T, M.

Remark 4.1. Since c is closed, kerc = { X € TM : X.c = 0} is an integrable
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distribution. Thus if ker ¢ is of constant rank and has closed leaves, ¢ induces a
2-plectic structure on M/ ker ¢, provided that the quotient is a manifold. =~ A

Remark 4.2. One could consider strongly non-degenerate three-forms ¢, meaning
that ¢(X,Y,-) # 0 for all X A'Y # 0. However, by [Mas83] such ¢ exist only in
dimensions 3 and 7. The former case is given by a volume form, the latter by a
G-structure with G = G, or its non-compact dual. A

Let G be a group of symmetries for (M, c), meaning that G acts on M preserv-
ing the three-form c. Thus for each X € g we have Lxc = 0, where X is the
vector field generated by X. As dc = 0, this gives

0=Lxc=d(Xic)+ Xadc=d(Xuc), 4.1)
so the two-form X_ ¢ is closed. Suppose Y € g commutes with X. Then we have

0=Ly(Xic)=d(YaXic)=d((XAY)uc),

showing that the one form (X AY).ic = ¢(X,Y,-) is closed. If for example,
b1 (M) = 0, we may then write

(XAY)ic=dvxny

for some smooth function vx,y: M — IR. This is the basis of the construction of
the multi-moment map. However, the set of decomposable elements X A'Y in
A? g for which X and Y commute is a complicated variety. It is more natural to
consider the following submodule of A2 g.
Definition 4.3. The Lie kernel Py of a Lie algebra g is the g-module

Py :=ker (L: A>g — g),

where L is the linear map induced by the Lie bracket.

The previous calculation may now be extended to elements of the Lie kernel.
For a bivector p = Z;-‘Zl X; \Y; we write

k
pac:=)_c(X; Y, ).
=1

Lemma 4.4. Suppose G is a group of symmetries of a strong geometry (M, c). Let
p= 2;(:1 Xj ANYj be an element of the Lie kernel Py and let p = Z;(:l X; N\Y; be the
corresponding bivector on M. Then

d(pac) =0. (4.2)
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Proof. The condition that p lies in Py is that 0 = L(p) = Z;-‘Zl[Xj, Y;]. This
together with (4.1) and dc = 0 gives

0= Yo% Xoc = ¥ ([£, X,01)

j=1

~.
I
=

d(Y]’_I X]'_I C) + Y]‘J d(X]'J C) — X]'_J d(YjJ C) — X]'_I Y]'_I dc

d(Y]‘_I X]'J c) = d(p_l c),

- I

-
Il
—_

as required. ]

Thus if for example b1 (M) = 0, there is a smooth function v,: M — R with
dv, = pc for each p € Py.
We are now able to define the main object to be studied in this paper.

Definition 4.5. Let (M, c) be a strong geometry with a symmetry group G. A
multi-moment map is an equivariant map v: M — Py satisfying

d{v,p) = pac (4.3)
for each p € P,.

Remark 4.6. As the Lie kernel P, is a G-module with respect to the action
induced by the adjoint action of G on g, equivariance of v may be phrased by
the relation

v(g-m) = Ad; 4 (v(m)),
forallg € Gand m € M. A

Note that for G Abelian Py = A?g. On the other hand if G is a compact
simple Lie group then the Lie kernel is a module familiar from a special
class of Einstein manifolds. Indeed Wolf [Wol68, Corollary 10.2] (cf. [Bes08S,
Proposition 7.49]) showed that in this case A’ g = g @Py as a sum of irreducible
modules, so SO(dim G) /G is an isotropy irreducible space.

4.2 Existence and uniqueness

As mentioned in Chapter 1, one of the principal advantages of multi-moment
maps over covariant moment maps is that one can prove that multi-moment
maps are guaranteed to exist under a wide range of circumstances.

We start first with topological criteria which follow essentially by the same
arguments as in the symplectic setting, see for instance [OR04, Proposition
4.5.19] and [GS84, Addendum to Theorem 26.1].

Theorem 4.7. Let (M, c) be a strong geometry with a symmetry group G and assume
that by (M) = 0. If either
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(i) G is compact, or
(ii) M is compact and orientable, and G preserves a volume form on M,
then there exists a multi-moment map v: M — Py.

Proof. Working component by component, we may assume that M is connected.
As noted after Lemma 4.4 the condition b;(M) = 0 ensures that there are
functions v, with dv, = p_c for each p € P;. However, each of these functions
may be adjusted by adding a real constant. To build a multi-moment map v
via (v,p) = v, we need to ensure equivariance. In the two cases above this
may be achieved by either averaging over G or over M. In the second case, one
chooses v, with mean value 0. In the first case, one chooses a basis (p;) of P,
and puts v(m) = [5 5y Ad} 1(vy, (g7 - m)) volo = f5 Kivaa_yp (g7~ m) vol.
In both cases equation (4.3) is satisfied, essentially due to the identity

d(l/Adg71 p© g_l) = de,

which follows since the pull-back ¢*(p) is the bivector field corresponding to
the element Ad,-1(p) € Py. Consequently, v is multi-moment map. O

As we saw in the above proof, one crucial point is making a canonical choice
of function v;,. The following situation occurs in many examples and provides a
differential geometric criterion for a construction of multi-moment maps.

Proposition 4.8. Suppose G is a group of symmetries of a strong geometry (M, c)
and that there exists a G-invariant two-form b € Q?(M) such that db = c. Then
v: M — Py given by

{v,p) = b(p) (4.4)

is a multi-moment map.

Proof. The map v is equivariant, since b is invariant. We have v, = b(p) with
d(b(p)) = d(pab) = pudb = pac by the calculation in Lemma 4.4, so equa-
tion (4.3) is satisfied, as required. O

Inspired by the symplectic setting [GGKO02, Proposition 2.9], we will give an
alternative version of Theorem 4.7 which holds if the group acting is Abelian
and has compact orbits.

Proposition 4.9. Let (M, c) be a strong geometry with a connected Abelian symmetry
group G and assume that by(M) = 0. If G has compact orbits, then there exists a
multi-moment map v: M — Py.

Proof. As in Theorem 4.7, we build a multi-moment map v via functions (v, p) =
vy satisfying dv, = p_v. We need to check invariance. From the calculation

Ly(ﬁxl/p) = ,Cy(X_l dl/p) = ﬁy(C(p, X)) =0,

we conclude that for each X € g, the function Lx(v;) is constant along the orbits
of G. By compactness, each orbit contains a point where v, has a maximum. At
this point we must have Lx(v,) = 0 for any X € g. But then Lx(v,) = 0 at all
points along the orbit. In conclusion, v, is G-invariant, as required. O
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Let us now turn to algebraic criteria for multi-moment maps. This involves
study of the Lie kernel. The dual of the exact sequence

0 Py ! AZQ#)Q

is the sequence

7T

g* d AZ g* Pg R O, (45)
which is also exact. Hence the dual Pj of the Lie kernel can be identified with
the quotient space A?g* /d(g*). As B%*(g) = d(g*) is a subspace of Z2(g) =
ker(d: A% g* — A3g*), we have an induced linear map

dp: Py — B*(g) C Z°(g) C A°g".

More concretely, given B € P, we choose B € m~'(B) and then dpp = dp.

Let b, (g) denote the dimension of the nth Lie algebra cohomology group, so
by(g) = dim H"(g) = dim Z"(g) — dim B"(g). The next result follows directly
from the above discussion.

Proposition 4.10. The linear map dp: P; — A3 g* is a g-morphism with image
contained in Z3(g). It is injective if and only if by(g) = 0. If this condition holds then
dp is an isomorphism from P} onto Z>(g) if and only if bs(g) = 0. O

We will see that this distinguishes a class of Lie groups and Lie algebras that
play a special role in the theory of multi-moment maps analogous to the role of
semi-simple groups in symplectic geometry. We therefore make a definition.

Definition 4.11. A connected Lie group G or its Lie algebra g that satisfies
ba(g) = 0 = bz(g) will be called (cohomologically) (2,3)-trivial.

Theorem 4.12. Let (M, c) be a strong geometry with connected (2, 3)-trivial symme-
try group G acting nearly effectively. Then there exists a unique multi-moment map
v: M — Py

More generally, if just by(g) = 0, then multi-moment maps for nearly effective
actions of G are unique when they exist.

Proof. The invariant three-form ¢ determines a G-equivariant map ¥: M —
Z3(g), given by
(¥, XAYNZ)=¢c(X,Y,Z) (4.6)

for X,Y,Z € g. When by(g) = 0 = b3(g), for each m € M there is a unique
element v(m) € Py satisfying dpv(m) = ¥(m). Since dp is a G-morphism, it
follows that v: M — Py is also a G-equivariant.

We claim that v is a multi-moment map. Note that, in general dp: P; —
Z3(g) N (g APy)*. The assumption by(g) = 0, gives that the dual map d is a
surjection Z3(g)* N (g APy) — Pg. This dual map is given as minus the adjoint
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action, since

k
<d730é, Z N p> = <d7)06,z N ZXZ' A\ Yi>
. =1 (4.7)

== ;(“([Z/Xi]/Yz‘) +a([X, Vil 2) + a([Yi, 2], X)) = —(a,adz(p)),

forZ € g, p=YF, X AY; € P,. Hence we may write any p € P, in the form
p=1Y/;_qadz(q;), with Z; € g and q; € P,;. Now the function

7

r
vp=—3Y (¥, ZiNqi) ==Y c(ZiNgi)

i=1 i=1

satisfies dvp = — Y1 L7,(gizc) = pac, since d(g;uc) = 0 by (4.2). Moreover we
have that

r

(dpv(m),Z; Nai) = Y (v(m),adz,(a;)) = (v(m),p).
i=1

.[\1*

Il
—_

Vvp(m) =

Thus v is a multi-moment map.

For the last part of the theorem, note that a multi-moment map v defines
elements v(m) € P; and the above calculations show that dp(v(m)) = ¥ (m).
However, by(g) = 0 implies that there is at most one solution v(m) to this
equation, so v is then unique. O

Remark 4.13. Note that the calculation (4.7) is a special case of a well-known
relation. If we let L denote the dual of the exterior derivative d: AFg* — AF+1g*,
then one has the relation

adj B = XudB + (Xup) oL, (4.8)

for any B € A¥g* and any X € g; see also Chapter 5.

When we apply (4.8) to calculate the stabiliser of an element in P}, we must
keep in mind that the dual of the Lie kernel is a quotient space, i.e., we are free
to modify representatives by elements da, for « € g*: if B = [B] € Py, for some
lift B € A?g*, then

ad} B = [Xudp).

For a metric Lie algebra, i.e. a Lie algebra g endowed with an ad-invariant
inner product (-, -), we circumvent this source of confusion by identifying g with
its dual g*; the identification is established via inverse of the map X — (X,-). A

Note that any semi-simple Lie group G has b;(g) = 0 = by(g). Also any
reductive group G with one-dimensional centre still has b,(g) = 0; in particular
this applies to G = U(n). So when multi-moment maps for these group actions
exist, they are unique. However, any simple Lie group G has b3(g) = 1, so there
can be obstructions to existence.
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4.3 (2,3)-trivial Lie algebras

In this section we give a structural description of the (2,3)-trivial Lie alge-
bras, list them in low dimensions and show that there are many examples.
The classification problem up to and including dimension five is resolved in
Section 4.5.

Theorem 4.14. Any non-trivial finite-dimensional Lie algebra g # R,R? satisfying
bs(g) = 0 is solvable and not nilpotent. If in addition we have that by(g) = 0 then
g cannot be a direct sum of two non-trivial subalgebras, and its derived algebra is a
codimension one ideal.

Proof. To verify the first statement, we consider t, the solvable radical of g. This
is the maximal solvable ideal of g and the quotient g/t is semi-simple. By
[HS53], the cohomology of g is given by

H(g) = Y H'(g/v)® H/(v)",
i+—k

where V? is the set of fixed points of the action g on V. We thus have
bs(g) = bs(g/t). As any non-trivial semi-simple Lie algebra has non-trivial
third cohomology group, we deduce that b3(g) = 0 implies g = ¢, so that g
is solvable. It is necessarily non-nilpotent since it is known [Dix55] that non-
Abelian nilpotent Lie algebras are of dimension greater than two and have
b; > 2 for any 0 < i < dim g, whereas the only non-Abelian three-dimensional
nilpotent algebra has b3(g) = 1.

For the second statement of the theorem, suppose g is a direct sum h @ € of
Lie algebras h and £. Using the Kiinneth formula, we obtain

ba(g) = ba(h) + ba(€) +b1(b)b1(¥),
b3(g) = b3(h) + b3 (€) + ba(b)by1(¢) + b1 (b)b2(E).

This immediately gives by(h) = 0 = by(¥) and b3(h) = 0 = b3(¢). It also follows
that either by () = 0 or b;(¢) = 0. Reordering the factors, we can assume that
b1(h) = 0. Thus h has b1(h) = 0 = ba(h) and so is semi-simple. But now the
number of simple factors of b is equal to b3(h) which is 0. So h = {0}, and g is
not a non-trivial direct sum.

Now we consider the last assertion of the theorem. Note that bi(g) =
dim g — dim ¢/, where g’ = [g, g] is the derived algebra. As g is solvable, we
get b1(g) > 0. Suppose bi(g) > 2. Then there are two linearly independent
elements e, e; in Z'(g). As epp :=e; Aey € Z?(g) and by(g) = 0, we can find
an element e3 with des = e1,. Note that we have dim(ej, ep, e3) = 3. Inductively,
we may find ey, ..., e, with de]- = ey,j1 such thatey, ..., e, is a basis for g. But
now ey, € Z?(g) can not be exact, contradicting by(g) = 0. Thus, we must have
bi(g) = 1. u

We will refine this result later, but it is already sufficient to list the smallest
examples of (2,3)-trivial Lie algebras. In dimension one, the only Lie algebra
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is Abelian and is automatically (2, 3)-trivial. In dimension two a Lie algebra is
either Abelian or isomorphic to the (2,3)-trivial algebra (0,21). These first two
examples are uninteresting from the point of view of multi-moment maps since
they have P, = {0}. However, in dimensions three and four we may use the
known classification of solvable Lie algebras [ABDOO05] (see also Chapter 3.5) to
obtain more interesting examples. Note that for any Lie algebra of dimension #,
we have
dim Py = b1(g) + sn(n —3),

since the kernel of leftmost map in (4.5) is H(g) = Z!(g). Thus a (2, 3)-trivial
algebra has dim Py = (n — 1)(n — 2)/2, which is non-zero for n > 3.

Proposition 4.15. The inequivalent (2, 3)-trivial Lie algebras in dimensions three and
four are listed in the Tables 4.1 and 4.2.

vz (0,214 31,31)
5, (0,21,A.31) A e (-1,1]\ {0}
v, (0,A21+31,-21+131) A>0

Table 4.1: The inequivalent three-dimensional (2, 3)-trivial Lie algebras.

vy (0,21+31,31+41,41)

vy (0,21,A.31+41,1.41) A#—1,-1,0
tpn (0,21, 10.31,1.41) (4,A) € Z
on (0,121,131 441, -31 + A.41) k>0, A#—
00 (0,A21,(1—1).31,41 +32) A>LA#£1, 2
o, (0,A21+31,-21+A31,2141+32) A >0

by (0,214 31,31,2.41 +32)

Table 4.2: The inequivalent four-dimensional (2, 3)-trivial Lie algebras. The set
Z consists of the u, A € (—1,1]\ {0} with A > pand p+ A #0,—1.

The notation follows the conventions of Chapter 3. So considering the
example by = (0,21 + 31,31,2.41 + 32). This means there is a basis e, . .., e4 for
b, such that de; = 0, de, = ep1 + €31, des = e31 and dey = 2e41 + e3;.

We will sketch a proof of Proposition 4.15 (see also Section 4.5) that is inde-
pendent of the classification lists, using the following more detailed structure
result.

Theorem 4.16. A Lie algebra g with derived algebra t = ¢’ is (2, 3)-trivial if and only
if g is solvable, € is nilpotent of codimension one in g and H'(€)9 = {0} = H?(£)? =
H3(¢)e.

Proof. The derived algebra ¢ = g’ of a solvable algebra g is always nilpotent,
so Theorem 4.14 implies that it only remains to check the assertions on the
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g-invariant part of the cohomology of ¢. For this, as ¢ is an ideal of g, we
may use the spectral sequence of Hochschild and Serre [HS53] that has E}' =
Hi(g /¥ Hi(¢)). Now the codimension one condition means that we may write
g/t = RA for some element A. Note that H'(¢) is a g / &-module. For any
g / &-module M, the cohomology groups H/(RA, M) are defined from the chain
groups C/(RA, M) = N(RA)* ® M = Hom(A/RA, M). These can only be
non-zero for j = 0,1 and in both cases they are isomorphic to M. The chain
map is dg which on C° is (drf)(A) = A - f. Thus Ey' = kerdg = M# and
E;’l = M/imdr = kerdgr = MA. We see that the E-term of our spectral
sequence is

pif H(¢)® forj=0,1,
2 7)o otherwise.

It follows that the spectral sequence degenerates at the E,-term and we conclude
that

H*(g) = H*(&)*+ H'(t), H°(g) = H(¢)9 4+ H*(¥)?,
from which the result follows. O

Sketch proof of Proposition 4.15. Let g be a (2, 3)-trivial algebra of dimension three.
Then t = ¢’ is nilpotent and two-dimensional, so ¢ = R2. The element A
of Theorem 4.16 acts on R? invertibly and the induced action on H?(IR?) =
A’R? = R is also invertible. So either A is diagonalisable over C with non-zero
eigenvalues whose sum is non-zero, giving cases t3, and t3 ,, or A acts with
Jordan form ({ 1), A # 0, giving case v3. The particular structure coefficients
are obtained by replacing A by a non-zero multiple.

For g of dimension four, we have £ 2 R> or the Heisenberg algebra h; =
(0,0,12). The former gives the algebras from the t-series when one enforces
that no sum of one, two or three eigenvalues of A is zero. The latter gives the
remaining algebras; we have H!(h3) = (e1,ez), H?(h3) = (eq3,ex3), H?(h3) =
(e123), A acts invertibly on these spaces and its action in e3 is determined by its
action on e; and es. O

Theorem 4.16 enables us to generate many examples of (2,3)-trivial Lie
algebras in higher dimensions. Say that a nilpotent algebra ¢ is positively graded
if there is a vector space direct sum decomposition ¢ = € +--- + £ with
[Ei, ?]'] C Ei-&-j for all i,j.

Corollary 4.17. Let £ be any positively graded nilpotent Lie algebra. Then there is a
(2,3)-trivial Lie algebra whose derived algebra is ¢.

Proof. Let g = (A) + ¢ where ad4 acts as multiplication by i on ¢. Then g is
a solvable algebra. Moreover (A°¢)? = {0} for s > 1, so the cohomological
condition of Theorem 4.16 is satisfied and g is as required. O

The algebras constructed in this way are completely solvable, meaning that
each ady, for X € g, has only real eigenvalues on g.
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Remark 4.18. The Lie kernel has a particularly simple interpretation in the case
when g = (A) + ¢ with ad 4 acting invertibly on ¢; this holds for instance when
¢ = RF since H'(IRF) 2 RX. Then A% ¢ = P, as £-modules. To see this one notes
that if ad4: ¢ — £ is invertible, then there is an isomorphism &: A?E — Py
given by

r . .
i A K
Y K{AKL —

r . . . .
(K{AKL = AN (adaly) ™ o LK AKY))
=1 =1

Example 4.19. Consider the (2,3)-trivial Lie algebra
by = (0,21 +31,31,2.41 + 32),

and pick a basis A, Ey, E;, E3 compatible with these structural equations. Then
we have that

adA(El) = Ey, adA(Ez) =E1+ Ey, adA(E3) = 2E;,

(adaly) '(E1) = E1, (adal,) '(E2) = —E1+Es, (adal,) '(Es) = %Ea.

Using the isomorphism @ from the above remark, we obtain the following
basis for the Lie kernel

th} = <E1 A E2 — %A AN E3, E1 VAN E3; EZ A E3>

Example 4.20. In Section 4.5 we will show that the Lie algebra
ps = (0,21,21 + 31,2.41 + 32,3.51 + 42)

has H!(¢)® = {0} = H?(£)® = H3(¢)%. So, by Theorem 4.16, ps is (2,3)-trivial.
Also note that ad 4 acts invertibly on ¢. Indeed, let A, Eq, ..., E4 denote a basis
compatible with the specified structural equations, then we have

adA(El) = E1 + Ez, adA(Ez) = Ez, adA(E3) = 2E3, adA(E4) = 3E4,

(adaly) "' (E1) = Ex — Ea, (adaly) " (E2) = E, (adaly) ' (E3) = %
(adaly) M(Es) = %51.

We may now use the isomorphism ®: £ — P4 from Remark 4.18 to construct
a basis for P,. If we define elements pj := ®;(E; AEy), ..., p8 := ®1(E3 A Ey),
then we have

Es,

1 1
p%:ElAEz—EAAEg,, p%:ElAE3—§AAE4, p3 = E1 AEy,

pl =ExAE;, p;=FEaAEy, pS=E3AE,.
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Example 4.21. It may be checked directly that every nilpotent Lie algebra of
dimension at most six can be positively graded. The classification of these
nilpotent algebras (see [Sal01]) then gives over 30 different (2, 3)-trivial algebras
in dimension 7, cf. Section 4.5. &

Example 4.22. Another class of positively graded algebras is given as follows.
Let Der(¢) be the algebra of derivations of ¢. A maximal torus t for ¢ is a maximal
Abelian subalgebra of the semi-simple elements of Der(t). The nilpotent Lie
algebra ¢ is said to have maximal rank if dimt = dim(¢/¢'). Favre [Fav73]
showed that there are only finitely many systems of weights for such algebras
and following [San82] a number of classification results have been obtained
via Kac-Moody techniques, see [FT05] and the references therein. There is a
large number (thousands) of families of such algebras. From the general theory,
one knows [Fav73, p. 83] that there is a positive grading of each maximal rank
nilpotent Lie algebra ¢. This grading satisfies Y/_, ;& = € = [¢,€¢~Y]. Thus
each of these distinct nilpotent algebras of maximal rank arises as the derived
algebra of non-isomorphic (2, 3)-trivial Lie algebras. &

We note that in the construction of Corollary 4.17, ad, is a semi-simple
derivation of £. Generally, if g is solvable, then A € g\ g’ actson ¢ = g’ as a
derivation. For g to be (2, 3)-trivial, Theorem 4.16 implies that this action is not
nilpotent on H*(¢) for k = 1,2,3. For dim g > 5, this condition has most force
since these three cohomology groups have dimension at least 2 [Dix55].

Now a nilpotent Lie algebra ¢ is said to be characteristically nilpotent if Der ()
acts on £ by nilpotent endomorphisms. It is known that this is equivalent to
Der(t) being a nilpotent Lie algebra. For a characteristically nilpotent algebra ¢,
any solvable extension will act nilpotently on the cohomology of £. Theorem 4.16
thus gives the following result.

Corollary 4.23. If € is a characteristically nilpotent Lie algebra, then € is never the
derived algebra of a (2,3)-trivial algebra. O

Example 4.24. The first example of a characteristically nilpotent Lie algebra was
constructed by Dixmier and Lister [DL57] in dimension eight. However, there
are seven-dimensional examples with the same property and even continuous
families [GK96] including:

(0,0,12,13,23,14 + 25 + 2.23,16 + 25 + 35 + w.24), o # 0.

Thus no member of this family of algebras can occur as the derived algebra of
any (2,3)-trivial Lie algebra. &

We recall from Section 3.1.1 that a Lie algebra g is called unimodular if the
Lie algebra homomorphism x: g — R given by x(x) = Tr(ad(x)) has trivial
image. As mentioned such Lie algebras are interesting since unimodularity is a
necessary condition for the existence of a co-compact discrete subgroup [Mil76].

Corollary 4.25. The simply-connected (2,3)-trivial Lie groups of dimension four or
below are not unimodular. In particular they do not admit a compact quotient by a
lattice.
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Proof. An n-dimensional Lie algebra g is unimodular if and only if b,(g) = 1.
Moreover, one may show that unimodular algebras satisfy Hodge duality
bi(g) = b,_«(g), cf. Proposition 3.5. For g a (2,3)-trivial Lie algebra of di-
mension three, we have b3(g) = 0, so g is not unimodular. For g of dimension
four, unimodularity implies b;(g) = b3(g) = 0. But (2, 3)-trivial algebras have
b1(g) = 1, so they can not be unimodular in dimension four. O]

Example 4.26. It can be shown that in dimension five and above there are
unimodular (2, 3)-trivial Lie algebras, see Section 4.5. Moreover one may verify
that there are solvmanifolds of the form G/T, where G is (2, 3)-trivial. Indeed
using [Boc09, Proposition 7.2.1(i)] one may see that there are (2, 3)-trivial Lie
groups which admit a lattice. One such example has Lie algebra

(0,A1.12, 15.13, A3.14, A4.15),

where exp(A;) ~ 0.1277,0.6297,2.797,4.446 are the four roots of the polynomial
s* — 853 + 1852 — 10s + 1. As this Lie algebra is completely solvable it follows
from Hattori’s Theorem [Hat60] that one has an isomorphism H} (G/T) =
H*(g). In particular the five-dimensional solvmanifold constructed in this way
has vanishing second and third de Rham cohomology groups. &

4.4 Multi-moment maps: examples

As strong geometry has no analogue of the Darboux theorem (see, however,
Remark 5.1), the theory of multi-moment maps is in some senses less rigid
than that for symplectic moment maps and there is a wider variety of types of
examples.

4.4.1 Second exterior power of the cotangent bundle

In symplectic geometry one of the fundamental examples is provided by the
cotangent bundle of a manifold, which in mechanics may be interpreted as
a phase space. In strong geometry, an analogous example is provided by
the second exterior power M = A?T*N of a base manifold N. This carries a
canonical two-form b, given by

by (W1, Wa) = a(t. Wy, T W2), Wi, Wr € T, M,

where 71: A2T*N — N is the bundle projection. From this one defines a closed
three-form ¢ on M, via
c =db.

This form is 2-plectic: in local coordinates (g,...,4") on N we have a =
Yi<jpijdq’ A dg/ defining local coordinates (g, p;;) on M = A*T*N in which
c=Yicidpi A dq' A dg/. This is the fundamental example in [BHR10, CCI91].

If G is a group of diffeomorphisms of N, then there is an induced action on
M = A?T*N which preserves b and hence c. As ¢ = db, Proposition 4.8 gives
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that there is a multi-moment map v determined by (4.4), which here reads

(v(a),p) = a(pn)
where py is the field of bivectors on N determined by p € P,. To summarise

Proposition 4.27. If a Lie group G acts on a smooth manifold N, then the induced
action on M = A?T*N admits a multi-moment map with respect to the canonical
2-plectic structure. O

Remark 4.28. Suppose N" carries an H-structure, i.e., a reduction of the structure
group of N to H < GL(n,R). Then at each point of 4 € N we have a canonical
decomposition A7T*N = @;V;(q) into isotypical H-modules. If the action of
G preserves the H-structure then the induced action on A2T*N preserves the
subbundles V;. Each bundle V; carries a strong geometry via the restriction of
con M = A2T*N, and the action of G < CO(4) again admits a multi-moment
map. For example, if N is an oriented four-manifold and G preserves the
orientation, then there are multi-moment maps v+ defined on the 2-plectic
seven-manifolds A%. The particular case of SO(4) = Sp(1)+ Sp(1)- acting
on N = R* = H via (A,B) -q = AgB has multi-moment map on A2 N &
H + ImH given by (vi(q,p),a®b) = 1Re(pagbg), for ¢ € H, p € ImH,
a®b €5p(l)+ ®5p(1), :ImlH®Im]H%’/35p(1)++5p(1) A

4.4.2 Homogeneous strong geometries

If G acts transitively on a strong manifold M, then we may define ¥: M — Z3(g)
via (4.6), and the image will be a G-orbit in Z3(g). Conversely, formula (4.6) can
be used to define strong geometries that map to a given orbit in Z3(g): given
Y € Z3(g), let Ky denote the connected subgroup generated by ker¥ = { X €
g: Xu¥ =0}; for any closed group H of G with H C Ky, equation (4.6) defines
a closed three-form ¢ on the homogeneous space G/H and this strong geometry
maps to G-¥ C Z3(g).

Now suppose that ¥ = dpp for some B € Py. If the map dp is injective,
then the orbits G - ¥ and G - B are identified and the map ¥: M — Z3(g) may
now be interpreted as a map v: M — P;. Injectivity of dp is guaranteed by the
condition by(g) = 0. When this holds, the proof of Theorem 4.12 shows that v is
a multi-moment map for the action of G.

Theorem 4.29. Suppose G is a connected Lie group with by(g) = 0. Let O = G- B C
Py be an orbit of G acting on the dual of the Lie kernel.
(i) Then there are homogeneous strong manifolds (G/H, c), with c¢ corresponding to
Y = dpp, such that O is the image of G/H under the (unique) multi-moment
map v.
(ii) The strong geometry may be realised on the orbit O itself if and only if

staby B = ker(dpp). 4.9)

In this situation, the orbit is 2-plectic and v is simply the inclusion O — Py.
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Proof. It only remains to prove the assertions of the last paragraph of the
theorem. We have O = G/K with K = stab¢ 8, a closed subgroup of G. Now
equation (4.9), shows that K has Lie algebra ker(dpp), so the component of
the identity K of K is K = Ky for ¥ = dppB. In particular, ¥ vanishes on
elements of ¢ and induces a well-defined form on TgO = g/ ¢. The result now
follows. O

The rank of the above multi-moment map is clearly equal to dim g — dim €.
It may be useful to express this number, and more generally the image of the
multi-moment map, purely in terms of strong geometric data, meaning data
that does not involve the element §.

Corollary 4.30. Let (G/H,c) be a homogeneous strong manifold as in part (i) of
Theorem 4.29. Then the image of the multi-moment map v is given by G/ K, where

t=(X€g: Xu¥ € Z%g)). (4.10)

Proof. We use the notation of Theorem 4.29. Now consider the linear map
P: g — Py given by
$(X) = adx B,

X € g. From (4.8) we see that X € ker ¢ if and only if XJ¥ annihilates Py, i.e.,
XJY € (Py)° = d(g*) = B?(g). But, as by(g) = 0, we have B>(g) = Z2(g), so
that

keryp = (X € g: XuY € Z%(g)),

as required. O

Remark 4.31. We obviously have that ¢ C kerY. So the rank of the strong
structure, defined as the codimension of ker ¥ in g, is an lower bound for the
rank of v. A

Example 4.32. Suppose G is a (2,3)-trivial Lie group. Then, taking H = {e},
we see that every ¥ € Z3(g) gives rise to a strong geometry on G with multi-
moment map whose image is diffeomorphic to the G-orbit of ¥.

Remark 4.18 shows that this procedure gives a large class of strong geome-
tries with associated multi-moment maps of rank > 1. &

Example 4.33. Consider G = U(2) = (S* x SU(2))/{=£(1,1)}. We have P, =
T A su(2), where T generates the Lie algebra of S!. The orbits of Py(2) are
thus two-dimensional and can not admit (non-trivial) strong geometries. On
the other hand, suppose we write e1, e, e3 for a standard basis of su(2)* with
de; = —ep3. Then the element B = dt Ne; € 73;‘(2), has dpp = —dt A ex3, defining

Y € Z3(u(2)). This B does not satisfy condition (4.9) even though dp identifies
the orbits of p and ¥. However, ¥ defines strong geometries on U(2) and on
U(2)/ diag(e',e ) = S! x S? with multi-moment map the projection to S2.
Note that v: U(2) — S? is essentially the Hopf fibration. &
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4.4.2.1 Multi-moment maps and SHKT manifolds

In Example 2.4 we put an invariant SHKT structure on SU(3). Since the multi-
moment map for the left action of SU(3) on the corresponding strong geometry
(SU(3), c) is trivial, we turn our attention towards the multi-moment maps vj,
vy and vk associated with the exact three-forms dw;, dw; and dwg on SU(3);
an alternative approach, which we will discuss below, would be to enlarge the
symmetry group to a maximal subgroup of SU(3) x SU(3) preserving the SHKT
structure.
In the following, we thus consider the triple of multi-moment maps vz:

SU(3) = P}, 3 given by

(vz,p) =wz(p), I=1L]JK (4.11)

and aim to describe their images, up to discrete covers. To this end let us think
of su(3) as a Lie algebra of complex matrices. Following Example 2.4, we write
E,; for the elementary 3 x 3-matrix with 1 at position (p,q), so that su(3) has a
basis

A =i(E Ji E]’HJH)/ By = Exe — Eg,
Cke = i(Ex¢ + Ex),
forj,k=1,2,k <¢=2,3. Let ay,az, b1y, ..., c23 denote the dual basis.

This concrete choice of su(3) basis enables us to construct suitable bases for
the submodules P, 3y C A%su(3) and su(3) C A?su(3). While these choices of

basis are by no means canonical, they serve the purpose of furnishing A2 su(3)
with a basis that is compatible with the splitting A” 5u(3) = su(3) @ Py (). In
this way we obtain an explicit realisation of the decomposition of w;j into its two
components at the identity:

wy = 5“( ) + w[ = 2(b12C12 + b13C13)

3
+ (—7111012 — (b1ac1z + bazcas — biscis)).

From this decomposition we find the following expression for the multi-moment
map v; in terms of the chosen su(3)* basis

. 3
Adgvi(g) = —\Zfﬂlbh — (b1zc12 + bascoz — bizcrs). (4.12)

The image of v is the orbit of vj(e) under the action of SU(3). At the
algebraic level we have
ker(vy). = kerdvy = { A € su(3) : dvi(p, A) = 0 for all p € Pyy3) }
={Aesu(3):c(Ip,IA) =0forall p € Py }
=I{Acsu(3):g(L(Ip),A) =0forall p € Py }
= (L{IPay3)) " = (A1, V).
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The above computation tells us that the Lie algebra of the subgroup stabilising
vi(e) is a maximal torus 7 C su(3) which is invariant under I. So, up to discrete
covers, the orbit of SU(3) acting on v;(e) is a full flag F; ,(C?) inside the Lie
kernel P:u(3).

Similarly, we may write

wy = wium + wf = —% ((2a1 — az)crz + bisbos + c13¢23)
+ (\fazbu — %(%(az — 2a1)c12 + bisbas + c13¢23) ),
wg = w;(u((%) +wl = %((2611 — 1) b1y + bizcas + bascis)
+ (\fﬂzcu + %(%(ﬂz — 2a1)b1p + bizcas + bascrz)),
so that
Adgvi(g) = \f“Zblz - %(%(42 — 2ay)c1z + bizbas + c13¢23),

with ker(v;). = (V, By), and

(a2 — 2a1)b1p + bizcas + bascis),

NI =

* V3 1
Adgvk(g) = — 2012+ §(
with ker(vg). = (V, C2).

The three multi-moment maps from above can be put into a single equivari-
ant map v = (v, vy, vk): SU(3) — (P:u(3))3, and from our analysis we see that,
up to discrete covers, the image of v is an Aloff-Wallach space A1,; = SU(3)/T ;;
Tllr1 has Lie algebra t%/l = (V). The relatively high dimension of this image
indicates that multi-moment maps ought to be useful tools in the study homo-
geneous hyperHermitian structures.

We summarise the above discussion and Example 2.4 as follows.

Proposition 4.34. The eight-manifold SU(3) carries an invariant SHKT metric g,
compatible with Joyce's hypercomplex structure (I, ], K). Each of the associated strong
geometries (SU(3),dwz), for T = 1, ], K, admits a multi-moment map vz: SU(3) —
P:u(S) given by (4.11). As almost effective spaces, the image of SU(3) under vz is a

full flag
SU(3)/ T2,

up to finite covers, and the image of the combined map
v = (vi,vp,vk): SUB) = (Pis)’

is an Aloff-Wallach space SU(3) / T} ;. O
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Let us indicate, without doing computations, how the above considerations
may be generalised to any even-dimensional compact Lie group T' x G that
admits one of Joyce’s hypercomplex structures, cf. Section 2.2; it suffices to
specify the result in the case when G is simple. Let (g, I, ], K) be a left-invariant
SHKT structure on M = T x G, compatible with the Joyce decomposition of
g. Define multi-moment maps vz: M — i . by the formula (4.11). Our

investigation of the SU(3) case reveals that the images of the multi-moment
maps vz and v can be read of from the hypercomplex data, i.e., from the Joyce
decomposition [Joy92, Lemma 4.1, Theorem 4.2] of the Lie algebra g of G.
Pedersen and Poon [PP99, Section 1] spell out this decomposition for all the
compact simple Lie groups, and we will adapt their notation and results.

At hand we have a product manifold M = T* x G, and the tangent space at
the identity can be put on the form

@2n—rju(l)@g=R"®;_;0;&f; where R"=(ey,...,en),

and r denotes the rank of g. By Joyce’s work, we know that there are iso-
morphisms H = (¢;) © 0, and ImIH = 9; = (x;,y;,z;); here x; = I(¢;),y; =
J(ej),zj = K(ej). One now checks that

ker(vy)« = (ej, x;: 1<j<n),

and so forth. The combined map v, then has ker(v). = (¢;: 1 <j < n).
Finally, we use the following list (see [PP99, Proposition 1])
(i) su2¢+1),r=20,n="{2n—r=0;
@) su(2l),r=20—-1,n=4¢2n—r=1;
(iii) so(20+1),r=4,n=1{2n—r=14
(iv) sp(l), r=4,n=1~{2n—r=1¢
(v) so(4l), r=20,n=20,2n—r =2/;
(vi) so(4l+2),r=20+1,n=202n—r=20—1;
(vii) eg, v =6,n=4,2n—r =2;
(viil) ey, r=7,n=72n—r=7;
(ix) eg, r=8,n=8,2n—r=3§;
x) fi,r=4n=42n—r=4
(xi) go, r=2,n=22n—r=2;
to derive the Table 4.3 as a generalisation of the result obtained in Proposition
4.34.

Example 4.35. Recently, Gutowski and Papadopoulos studied the geometry
of black hole horizons preserving four supersymmetries. In this example we
illustrate how the material from [GP10, Section 3.3] fits into the framework of
strong geometry and multi-moment maps.

For our purpose, the relevant geometric data of a black hole horizon consist
of a horizon section S which is a holomorphic T?-fibration over a conformally
balanced six-manifold B.

In the context of the above example, we may take S to be the skt manifold
(SU(3),g,1). Then B will be the full flag SU(3)/T? realised as the image of the
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Table 4.3: The images of M = T! x G under the multi-moment maps vz, Z = I, ], K, and v associated with the Joyce sHKT structure

(¢,1,],K) on M.

M vz (M) v(M)
SU(2n +1) SU(2n+1)/T?"  SUR2n+1)/T"
T! x SU(2n) SUu(2n)/T?" 1 Ssu(2n)/Tr1
T" x SO(2n + 1) SO(2n+1)/T" SO(2n +1)
T" x Sp(n) Sp(n)/T" Sp(n)

T?" x SO(4n) SO(4n)/ T SO(4n)
T?"1 x SO(4n+2) SO(4n+2)/T>"*1 SO(4n+2)/T!
T? x Eg E¢/T® E¢/ T?

mﬁw X MQ mQ\Mﬁ mw

T8 x Eg Eg/T® Eg

N& X ﬁ» mh\u& W»

.H.N X Qm QN\‘HN Qm
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multi-moment map (4.12). We note that this complex six-manifold comes with a
compatible left-invariant two-form induced by

wp = wil|,, = bia Acia +biz Aciz — bz Acys,

where m = (Biy, C12, B13, C13, B2s, Ca3) denotes an adp-invariant complement of
the stabiliser t* = (A;, V). The corresponding Hermitian metric is

88 = 8lpn = bty + ¢ty + bis + ci3 + b33 + o35

Let us now point out the properties ensuring that our that the fibration
vi: § — B is consistent with physical requirements; [GP10, Table 1] summarises
the relevant geometric conditions on S and B imposed by the presence of N = 4
supersymmetry. Firstly, (B, gp, I) is conformally balanced, i.e., the associated
Lee one-form 6 = Id*wp is exact. To verify this we observe that 0 = —A(dwg),
where A;: AST;B — T; B denotes the adjoint map of wedging with wp. Since
AI(de) = <'J de,wB> and

dwp = —bia A (b13 Aoz +baz Aciz) — c12 A (bia A bas + c13 A c3),

we see that §(X) = 0 for each X € m. Hence 0 = 0, so (B, gp, Ip) is in fact a
balanced manifold.

Secondly, let us define two invariant one-forms k := V3/2ay and ¢ =
a1 — 3ap. In terms of these, the metric of the skt manifold (SU(3),g,I) takes the
form

g =k ++gp
Note that
2 2
[KlI™ = 111" =

e

We may think of ® = (01, 6,) := (k,£) € Q?(S,R?) as a connection one-form
for the principal T?-fibration. From the calculations

d6; = —V3(b13 A c13 + bz A c23),
d0, = —2b1p A c1a — b1z Aciz + bz Acos,

we see that the principal curvature d® = v{(F) has type (1,1) with respect to
Ig. In addition, the two components of F satisfy the relations

(d61,wp) =0, (d6y,wp) = —8||K||* = 8 ¢,

i.e., one component is traceless and the other one traces to a constant determined
by the norms ||k|| = ||¢]|.

Finally N’ = 4 supersymmetry requires that S is a cYT manifold, meaning
the the Bismut connection of (g, I) has holonomy in SU(3). This condition is
obviously satisfied, since every HKT structure is cYT, see, e.g., [Grall]. &

If we now define a mathematical notion of black hole horizon to be a torus
fibration & — B of a cyr eight-manifold over a conformally balanced six-
manifold, such that the principal curvature satisfies the above conditions, then
we may summarise Example 4.35 in the following way.

51



4 MULTI-MOMENT MAPS FOR STRONG GEOMETRIES

Proposition 4.36. Each of the T? -fibrations vz: (SU(3),8,Z) — F12(C®) C Pia)
from Proposition 4.34 defines a black hole horizon. O

Example 4.37. Consider su(3) as a Lie algebra of complex matrices, and pick
a basis Ay, A, Bz, ..., Co3 as in Section 4.4.2.1. Similarly, let ay,az,b1a, ..., c23
denote the dual basis. As py := By A Biz — Ci2 A Ci3 € Py, the element

p1=bin Abiz —cia Aeis (4.13)
lies in the Lie kernel P;u(B). Using the computations (2.8), we find
dpﬁl = 3a1 AN (blz A C13 — b13 A\ Clz).
Direct inspection shows that

kerdpp1 = (A, Bas, Ca3) = stabgys) B1,

cf. Table 4.4. Thus, by Theorem 4.29, the SU(3)-orbit O; of B; is 2-plectic with
multi-moment map given by the inclusion in P:u(3). As the above stabiliser is
isomorphic to su(2), we see that, up to discrete covers, O; is SU(3)/ SU(2) = S°.
Also note that since stab,,(3) f1 C ker f1, we have an induced invariant two-form
on the orbit which is determined by the relation

b(XAY) = (B, XNY) (4.14)
ateSU(2) € O;. O
Let us summarise the above example.

Proposition 4.38. Up to finite covers, we may realise S> = SU(3)/SU(2) as a 2-
plectic orbit inside Pou) O

4.4.2.2 Strict nearly Kihler six-manifolds

One may obtain F; »(C?) = SU(3)/T? as a 2-plectic manifold by considering the
SU(3)-orbit of

P2 =bia Aciz+c13 ANbiz + bz Acas € Py, (4.15)

see Table 4.5 for details. This is in fact an intriguing example, since F; »(C?) is
known to carry a nearly Kéhler structure. Such a geometry may be specified
by a two-form ¢ and a three-form 1, whose pointwise stabiliser in GL(6,R)
is isomorphic to SU(3). The nearly Kdhler condition is then do = 3Ay.,
dp_ = —2A0?, where P, + ip_ € A3, cf. [Hit01]. Careful inspection reveals
that each homogeneous strict nearly Kahler six-manifold G/H = F;,(C?),
CP(3), S® x S3 and S, as classified by Butruille [But05], may be realised as a
2-plectic orbit G - B in P; for G = SU(3),Sp(2),SU(2)* and G,, respectively.
Moreover, except for the case S3 x S3, this can be done in such a way that
Y = dpp induces ¢ = P via (4.6) and B induces ¢ in a corresponding way.
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X — ad;} ,31 adx p1

Aq 3(b12c13 — b13c12) 3(B12C13 — B13C12)

Bip  (—2a1 + az)c13 — bixbas + c10¢23 —2A1C13 — B12Ba3 + C12Cy3
Biz (a1 +ax)cip — bizbas —c1acos 2(Aj + Az)Cip — BizBaz — C13Co3
Ci2  (—2a1 + a2)b1z + biocos — bascin —2A1B13 + B12Co3 — Bp3Cr2

Ciz (a1 +a2)bip — biscos — bazcis 2(Aj + Az)Bip — B13Coz — B2sCis

Table 4.4: Specification of the coadjoint action of su(3) on the element B4
from (4.13). Basis elements not on the list, i.e., Ay, B3, Co3, act trivially. It
is important to think of the above elements as representatives of elements
in Pga) = A?su(3)*/d(su(3)*), cf. Remark 4.13. So we are free to modify
B e ’P:u(3) by any exact element da, for a € su(3)*. For comparison we also
give the adjoint action of su(3) on p;. Note that (Aj,-) = a; — 34, and that
<A2, > = dy — %111.

To obtain such realisations of the homogeneous nearly Kéhler six-manifolds,
the elements f € Py must be chosen with some care. We will now outline
a strategy, which is applicable in all cases, except for S* x S* which will be
treated separately. First we pick a basis for g and calculate the Lie brackets
or, equivalently, the exterior derivative d: g* — AZ?g*. Then our candidates
are elements f € g such that £ = staby  is a codimension six subalgebra
and such that (4.9) holds. Finally we must verify that the chosen pair (8, Y)
determines a nearly Kéahler structure on the orbit Og = G - B. To this end we
first determine an endomorphism | = Jg¢: V — V via a recipe described by
Hitchin in [Hit00]. So consider a six-dimensional real vector space V = g /¢ and
denote by Ky: V = V® A®V* the linear transformation

Ky(X) = A((X2¥)NY),

where A: A’V 2 V @ A°V* is the isomorphism provided by the exterior product
pairing V* ® ASV* — AV*. Put A(¥) = Lt TrK} € (A°V*)®2. Provided that
A(¥) < 0, we may now define ] to be

In order that the pair (B,'Y) defines a nearly Kahler structure on O = G - §,
we must now make sure that the following characterising properties are satisfied:
(i) type (1,1): BAY =0;

(ii) non-degeneracy: BAB AP #0;

(iii) positive definite: B(X,JX) > 0 for all non-zero X € V;

(iv) differential condition: d(J¥) = —«B A B for some x € R.
The first three conditions ensure that the structure group reduces from GL(6,R)
to SU(3), which together with the differential condition on J¥ = —¥(J-, -, J-)
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and the defining relation ¥ = dpf guarantee that we have nearly Kéhler six-
manifold; the latter two conditions force the associated Hermitian metric to
have weak holonomy SU(3).

The pair (4, 0) on the orbit is defined via (4.6) and the relation

(BXAY)=0(X,Y) for XAY €m=g/stabyp,

respectively. Note that below we choose forms that fit naturally into our
concrete setting. In all three cases, this implies that ¢, o differ from standard
conventions; one could remove this source of confusion by rescaling g and,
possibly, change the sign of the complex volume form determined by Y.

Let us now discuss the details of the outlined procedure via a case-by-case
study based on the orbit types with symmetry SU(3), Sp(2) and G, respectively.

Case F;»(C®) First we realise the full flag manifold as a strict nearly Kahler
manifold inside P, ;). While (4.9) excludes the three copies F»(C%) C Pou3)

obtained in Proposition 4.34, the full flag obtained from SU(3) acting on the
element (4.15) comes with a nearly Kéhler structure, which is induced by the
forms B, and

Y2 = dpB2 = 3(b12(b13c2s + basciz) + c12(bizbas + c13¢23))-
To verify this we first determine | via direct calculations, and find that
J(Bi2) = C12, J(Ci3) = B1z, J(Bx) = Cos.
Note that this gives us
J¥2 = —3(c12(c13b23 + c23b13) + b12(c13c23 + biabas)).

We then inspect that the pair (B2, ¥2) satisfies the characterising properties.
While the first three of these are easy to check, a few calculations are needed in
order to verify the differential condition. We have

(dc12)c13bos = 2a1b12basc13 — azbrabazcis + bizbascizeos,

—c12(dc13)bas = —arbizbascinr — axbizbascin — biabascincas,
c12¢13(dbys) = —aicic13¢23 + 242012013623 + biobizciacis,
(dc1z)czbiz = 2a1b1ob3co3 — axbinbizcos + biabascizcas,
—c1o(dcaz)biz = —aibizbascin + 2a2b13bazcin + biobizciocs,
c12023(db13) = —ayc12013€23 — A2€12C13€23 — b1ab23ciocas,
(dbiz)c13c23 = 2a1C12C13C23 — A2€12€13€23 + b13b23ci3cas,
—bip(dciz)cos = —arbiabizcos — azbiabiacos — biobosciacas,

bixc13(deas) = aybiaciaboz + 2azb12b23c13 — biabisciacis,

(db12)b13baz = 2a1bi3bazci — azbizbazciz + bizbascracos,
—b1p(db13)bas = —aibiabasciz — azbiabazciz — biabrsciacas,
bi2b13(dbys = —a1b1abi3cos + 2a2b12b13023 + biabizcizcis,
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and hence

B2 A Bz = 2(b1ab13c1ac13 — biobascincas + bisbasciscas),
d(J¥2) = —12(biabrzciacis — biabascizcas + bizbasciscas),

so that By A B2 and d(J¥») are proportional, as required.

Case CP(3) We consider sp(2) as a Lie algebra of complex matrices. A
basis for sp(2) is given by the following 10 complex matrices

Ay = i(Ey1 — Es3), Az =i(Ex— En),
Q=Ep —Ey +E34—Eg3, R=i(Ep+ Epy —Ezs — Eg3),
Bke = Exa40+ Erp+k — Eatke — Exvifs
Cie = i(Ex24¢ + Evpik + Eoyie + Exvip),

for 1 < k < ¢ < 2, and we denote the dual basis by a1, 4, ...,c12. Now pick
B3 € Pyy (o) given by

B3z =bii ANag+r Abia+4gAc. (4.16)

From the commutation relations for the chosen sp(2) basis, see Table 4.9, we
find that
day = —2(4b11C11 + biac1o + 6]1’),
dby1 = 2aic11 + biog — 1o,
dbyy = (a1 + az)c1z +2(—b1y + ba2)q — 2(c11 + c22)1,
dciy = — (a1 + az)bia + 2(b1y + bap)r + 2(—c11 + c22)9,
dq = (a1 — az)r +2(b1y — b2)b12 +2(c11 — c22)c12,
dr = (—ay + a2)q + 2(c11 + c22) b1z — 2(b11 + ba)cra.

Computations now show that
Y3 = dpBs = 3(a1(bi2g — c12r) + 2b11(b12c12 + q1))
Straightforward inspection, cf. Table 4.6, shows that

stabﬁp(z) ‘33 = <C11, As, %Bzz, %C22> = (1) @511(2)

u
1 1 1 1 (4.17)
C (A1, 3B11,5C11) @ (A2, 3Bx, 3Ca2) = su(2) @ s5u(2),

so that, up to discrete coverings, the Sp(2)-orbit O3 of B3 is CP(3). Thus the
pair (B3, ¥3) satisfies (4.9). In fact it determine a nearly Kéhler structure on Os.
To verify this latter assertion, we will apply Hitchin’s description in order to
determine the associated almost complex structure J. We find that

J(Bi1) =2B11, J(R) =B, J(Q) = Cia.
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Note that this yields

J¥3 = 3(2b11(b12c12 — qbin) + a1(rq + c12b12)).

Let us finally check that the pair (B3, ¥3) satisfies the four characterising
properties. The first three of these are rather obvious, and the differential
condition follows from the below calculations, where we disregard all terms
involving ay, by, c11, €22, which is legitimate, since we are defining a left-invariant
structure on the quotient Sp(2)/SU(2):

2(dby1)bipc12 =0, —2b1y(dbiz)c12 =0,
2b11b1p(derz) =0, —2(dbi1)qbia = 2rbypqciy,
2b11(dq)b1p = 2by1arrbyy,  —2b11q(dbiz) = 2bniaiqera,
(day)rg = 2rbipger,  —ay(dr)g = 2brarqcio,
a1r(dq) = 2byyayrbrp,  (day)ciobio = 2rbyaqciy,
—ay(dci2)brp = 2byyayrbry,  arcip(dbi) = 2byiargero.

So we have

B3 A Bz = 2(bi1airbia + biraigeiz + rbiagerz),
d(J¥3) = 18(a1b11b1or + arbircrg + biareing).

Thus B3 and d(J¥3) are proportional, as required.

Case S® Now let us consider the exceptional Lie algebra g,. We choose a
basis given by
Ay =1iH;, Ay =1iHy,
Bi=X,—-Y, C :i(Xa“‘Ya)/ 1<a<e,

where the elements Hj,...,Ys are defined in [FH91, §22.1] and satisfy and
satisfy the commutation relations in Table 4.10. We then have

dbl = (2611 — 612)C1 —+ b3b2 “+ c302 + 2(b4b3 + C4C3) + b4b5 + c4C5,
dep = (—2a1 + a2)by + caby + c2bs + 2(cabs + c3by) + bacs + bscy,
dbs = (—ay + az)c3 + baby + c1co + 2(b1by + c1c4) + babs + cace,
des = (a1 — az)bs + coby + bacy + 2(bicy + bycy) + byce + becy,
dby = aic4 + 2(b3b1 + C1C3) + bsby 4 c5¢1 + cgc3 + bebs,
dcy = byaq + Z(Cgbl + b3C1) + c5b1 + ¢1bs + cgbs + c3bs.

In order to obtain S® as an orbit in 73;2, we now consider the Gj-orbit the
element
,B4=b1/\C1+b3/\C3—|-C4/\b4 E'sz. (4.18)

We have that

stabg, B4 = (A1, A2, By, Bs, Bs, C2, C5,Cs) = 5u(3),
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cf. Table 4.7. So up to finite covers, G, - B4 = Go/SU(3) = S°. Next, we note
that
‘Y4 = d'pﬁ4 = 6(b1 (b3C4 — C3b4) — Cl(b3b4 + C3C4)),

which follows directly from the following computations

(dby)c1 = —babscy — 2bsbycy + babscy — c1cac3 — 2¢1¢3¢4 + €1C4C5,
—by (dc1 = b1bacs + b1bscy + 2b1bscy + 2b1bgcs — bibycs — bybscy,
(dbs)cs = —bibycs + 2b1bacs + babees + c1cac3 — 210304 + €3¢4C6,

—b3(dC3) = —b1b3C2 + 2b1b3C4 + b2b3C1 — b3b4C6 — 2b3b4C1 — b3b6C4,
(dC4)b4 = 2b1b4C3 + b1b4C5 — 2b3b4C1 + b3b4C6 — b4b5C1 — b4b6C3,
—C4(db4) = 2b1b3C4 + b1b5C4 + b3b6C4 - 2C1C3C4 — C1C4C5 — C3C4C¢.
Clearly, B4 and Y4 satisfy the necessary condition (4.9). In fact this pair induces

a nearly Kahler structure on Oy = G, - Bs. The associated almost complex
structure is given by

J(B1) =C1, J(B3) =GCs, J(C4) =By
From this formula for | we find that
J¥a = 6(c1(—cabs + bsca) + bi(czca + baba)).
Finally we observe that the pair (B4, ¥4) satisfies the equations

Ba A Bs = 2(bic1bscs + bycicaby + bacscabs),
d(]‘IQ;) = —48(b1C1b3C3 + bicicaby + b3C3C4b4).

which follow from the calculations

—(decy)esby = —2c4bscsby,  cq(des)by = —2bicqcyby,
—c103(dby) = —2bycibses,  (dei)bscy = —2c4bscsby,
—c1(dbs)cy = —2bycicaby,  1bz(dcy) = —2bicrbscs,
(dby)cscy = —2c¢4bsc3by,  —by(des)cy = —2bicicaby,
bics(dcy) = —2bicibscs,  (dby)bsby = —2c4bsc3by,

—b1(db3)by = —2bycicaby,  bybs(dby) = —2bicibses,

where we have ignored terms in stabg, B4. Hence d(J¥4) and B4 A B4 are pro-
portional, as required.

Case S® x S In order to obtain the homogeneous strict nearly Kahler
structure on the group manifold S x S3, we consider the group (SU(2))3. To be
concrete, let us choose standard cyclic bases {E} }, {E?}, {E?} for each copy of
su(2); so in terms of the dual basis {e!}, etc., for su(2)* we have that de| = ¢,
and so forth. Now consider the element 5 € P3_,) given by

3
Bs=Y el Nel+ef Nel+er A, (4.19)
i=1
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We observe that
_ _ 1 1 2 1 3. 2 3
Ys=dpBs= ), e Nejp el +eiq Aeia e +efg Aeia A
i€Z/3
1,2 2 1,3 3 2 53 3
—e Ne Ny — e Nejg Nejp — € N e Ny,

Inspection then shows
stabs g,(2) Bs = (Ej + E7 + E}: 1 <i < 3) =: 6su(2),

cf. Table 4.8. To specify the nearly Kéhler in this case is somewhat more
involved. To keep things simple, we will follow Butruille [But10] and look
for nearly Kahler structures invariant under a subgroup SU(2)? C SU(2)3; we
emphasise, however, that the strict nearly Kéhler structure on $3 x S? is invariant
under the larger group SU(2)3, cf. [B&r93]. We first choose an ad; su(2)-invariant
complement of the stabiliser J;,(,): the subspace m = su(2) © su(2) @ {0}. Then
we have

B — ol A2 ol A2 ol A2
Bs := Bs|,, =ej Nef+e; Ne; +e3N\e3,

G . 1 2.1 2. 12 12 12 12
s := s, = enpe3 + exze] +e3167 — ege3 — e3¢5 — e3e7y.

It is well-known, cf. [But10], that the forms E5 and ‘?5 induce a nearly Kéhler
structure on S° x S°. Let us briefly recall Butruille’s arguments. First we observe
that there is an associated almost complex structure given by

J(E) = (E} +2E2) /3, i=1,2,3.

From this observation, we see that

& 1 1 12 12
J¥s5 = %(23123 — €1263 — €3163

12 12 12 12 2
— €153 — €367 — €3€31 — €3€7; + 2€7p3).

Note that the form Bs is of type (1,1) and is non-degenerate and positive
definite. Finally observe that

> 7 1212, 1212, 1212
Bs A Bs = 2(ejefezes + eqefezes + exesese3),

& 2 190102, 1212, 1212
d(J¥s) = —=(eje1eze; + ejefeses + eyesezes).

V3

Altogether, the above observations ensure that the pair (E5,‘?5) defines a left-
invariant nearly Kahler structure on S° x S°.

Remark 4.39. The strong structure g5 on SU(2)? induced by dp s via the formula
(4.6) has an associated multi-moment map v: SU(2)*> — P;, (2 The image of v

is the strict nearly Kahler manifold (S® x S3, ¢5). A
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Remark 4.40. The SU(2) x SU(2)-invariant 2-plectic structure 5 on the sym-
metric space S® x S3 = (SU(2))3/ASU(2) C P2 wou(2) also admits a multi-
moment map 7: S® x S® — P:u(z) Bou(2)" The image of this multi-moment map

is the SU(2) x SU(2)-orbit of the element
Bs=eiNef +e N3 +e3Ae3 € Plyoaaua)

where {e{ }, 7 =1,2, denotes a standard cyclic basis for su(2)* as above. Direct
inspection now shows that

staby o,(2) Po = (E1 + Ef, Ej + E3, E} + E3),

cf. Table 4.8. So up to discrete covers, the image of v is the homogeneous space

S3 = SU(2) x SU(2)/ASU(2). A
Note that from Butruille’s classification, we know that the above strict nearly

Kéhler structures are unique up to homothety. In summary we thus have

Proposition 4.41. As almost effective homogeneous spaces, each strict nearly Kihler
six-manifold
Fi»(C%), CP(3), S® and S$*xS°

may be realised, up to finite covers, as a 2-plectic orbit Op = G- B in Py for G =
SU(3),Sp(2), Gy and (SU(2))3, respectively. By choosing B as in Table 4.11, the pair
(B, dpp) determines the nearly Kihler structure on Og. O

4.4.2.3 Py-transitive manifolds

Let us now try to analyse the representation theory underlying several of the
examples studied in the previous two sections. We consider a compact simple
Lie group G and a homogeneous manifold M = G/K carrying a G-invariant
two-form b € O?(M). Note that b determines a G-morphism ®: M — A?g*
given by the relation

(®,XAY) =b(XY), (4.20)

for X,Y € g. Put B = ®(eK) € A?g*, and note that, as ® is K-invariant at the
point eK € M, we actually have that g € (A? g*)K. Here

(AZ g*)K — (g* +7);)K — (E*)K + (m*)K+ (,PJ)K,

and the first two summands on the rightmost hand side above vanish, e.g., if
K is semi-simple and the isotropy action is irreducible. In such cases we will
have B € (P;)X C P;, and may then use the element dpp € Z3(g) to define a
strong geometry (N, c). Moreover, this strong geometry admits a multi-moment
map v: N — Py such that v(N) = G - B. Since we have already observed that
Py is irreducible, Schur’s lemma applies, provided that m is also irreducible. In
particular, we may have that v(N) = G- = M.
We collect these observations in a slightly more general statement.
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X ady B2 —adx p2

(2a1 — a2) AN b1g —2(b13 A c23 + baz A c13) 2A1 A Bip —2(B13 A Co3 + Baz A Cy3)
Ci2 ANE — QNV NcC1p — N@Hw Abys 4+ c13 A mwmv 2A1 N Cqpp — NAWG A Bys + Ci3 A ﬁmwv
Biz  —(a1+a2) Abiz+2(bia Acoz +c12 Abxs)  —2(A1 + Az) A Bz +2(Bia A Caz + Ci2 A Bpz)
ﬁHm |AQH + QMV NcC13 — NAwHN A\ wmm + 3 A QHNV |NA\: + \»Nv VAN ﬁHw — NAWHN VAN mmw + ﬂmw N QHNV
Byz  (—a1+2az) A by +2(bia Aciz+ biz Acip) 2A5 A Byz +2(Bip A Ci3 + Biz A Ci2)
Coz  (—a1+2a2) Nz —2(b1a Abiz +c12 Aciz) 2A3 A Cp3 —2(Bi2 A Biz + Cio A Ci3)

Table 4.5: Specification of the coadjoint action of su(3) action on the element 5, from (4.15). Basis elements not on the list, i.e.,
A1, Ay, act trivially. We also give the adjoint action of su(3) on the element py = B12C12 + C13B13 + B23Cas.
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Hop = A \:Uv Ny = A \:mv pue <y = A \NﬂUv g = A \Nﬁmv
g = () b = (0 v = (-y) way “(AX)IL ml i (X “x) Burddew ayj 1onpoid 1euur jueLIeAUT-pE SE 9Xe} 9M JT Jel]} 910N
TV O +2g vy + Ty v g = €d yuawala ay} Jo uonoe jurofpe ayj 913 os[e am uostredwod 10, A[[eIALL Jo€ ‘0 “Ttg ‘11 Ty
“3°T “JST[ A} UO J0U SJUSWII[D sTseq "(9T'F) WOIJ €g Juawa[a a3 uo uonde (g)ds jo uonoe jurolpeod ayj jo uonedynads 9§ a[qeL

oV ANNU _ :Uv -V Ammm — SMNV — gy ANA\ + E\N|VN| bv ANNU _ :qu +av ANNQ _ :&NVN +2lgv ANE + :uN|v O
159}V ANNU — :Uv — g v ANNM + :va +YyV Aﬁ\ + J\NvN [4%2V; ANNQ — :qu +3lgv ANN® + :&NVN — A1V ANQ + HQNV| 49

AV (2 +1D) -0V (%g +1gg) +TOV (v = 'We)e— AV (R4 o)g+bv (Zg+Tgg)e <y (w—Tg) ¥
159 RV, Ammm — ZMNV — gy ANNU + :Uv -0V Ama\ + :\NvN| [45%2V ANNQ — :&NVN +3gv ANNQ + :qu +bv ANS + ﬁﬁNv g
AM v, @N _ NHU V, NHmN — :U V. :mvN| Ax Vi wN — <y NH&N — Iy :ﬁNvN :m
Aw~<NﬁU+@<NﬁM|SU<:\vN| ?<NG|T®<§®|:Q<:®N ly

ed Xpe g Xpe X
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X — NQW _m% NQX Pa

By (—2ay 4 a2)by + c3by 4 cob3 — 4(cabs 4 c3bs) + bacs + bscy —2A1B1 +3(C3By + C2B3) — 4(C4B3 + C3By)
+3(B4Cs + B5Cy)

Ci1 (—2ay + az)cy — baby — c3co + 4(bybz + cac3) — babs — cycs —2A1Cy — 3(B3By 4 C3C2) + 4(B1Cy + B4Cy)
—3(ByBs + C4Cs)

Bj @: — amvww + cob1 + bycy — %AS@ + w»ngv ~+ bycg + bgcy |NA\: + w\wmvmw +3(CBy + mmﬂ; — Qﬁmaﬂ% + m»ﬁgv
+wAm%ﬁm + mmﬁ»v

muw Am: — &thw — wme — 162 + %Qﬁw» + EPC — w»wm — C4Cq |NA\: -+ w\wmvmuw — wAmNmH + OHQMV + %Amum% + Ouﬁ%v
|mﬁm»mm + ﬁ»ﬁmv

w% |~E&H + %Amwwg + wwnuv — nm~§ — Swm — maww — hwwm NAN\r + w\wmvwmp + %Aﬁwwg + wwﬁ;

|wAﬁmmH + C1Bs 4+ C¢Bs + ﬂwwmv
Cq a1Cq4 — %Awws + Enmv + bsby + c5¢1 4 cgc3 + bebs NAN\»H + w\wmvﬁ% — %Amme + ﬁHﬁmv

nTwAwmmH + C5C1 + CeCs + mmwwv

4 MULTI-MOMENT MAPS FOR STRONG GEOMETRIES

Table 4.7: Specification of the coadjoint action of g, action on the element B4 from (4.18). Basis elements not on the list, i.e.,
A1, Ay, By, Bs, Bs, C2, Cs, Cg, act trivially. We also specify the adjoint action of g, on the element py = By A C; + B3 A C3 + C4 A By.
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X — adi‘( ﬁ5

E; e%l/\ e§2+ e%l/\ egz— e%z/\ 653— e%z/\ 633
% —?A%+?A%—%A%+%A%
% —?A%+?A%—?A?+?A?
NG T ANG RSN
E% e%/\eg—e%/\eg—eg/\e%—i—e%/\e%
E% e%/\e%—e%/\e%%—e%/\e%—e%/\e%
E:3 €] 1/\ 622+ e 1/\ 622— 622/\ 613— 622/\ 313
E% —e%/\e%+e%/\e%+e%/\e%—e%/\e%
E3 —ejNes+e;Nej —efNe; —es Ney

Table 4.8: Specification of the coadjoint action of 3su(2) action on the element
Bs from (4.19). We observe that Bs is stabilised by the diagonal algebra d su(2)
spanned by the elements Ei1 + E? + Ei3, 1 < i < 3. Note that we may choose an

ad-invariant inner product on 3 su(2) such that (Ef ) = ef-' . So the adjoint action
of 3s5u(2) in ps = E{E? + ... follows immediately from the above calculations.

Theorem 4.42. Let G be a connected simple Lie group. Assume the homogeneous
space M = G/K carries an invariant two-form b € (M), such that the map @,
defined via (4.20), satisfies the condition B := ®(eK) € P;. Then there exists a strong
geometry (M, c) admitting a unique multi-moment map v: M — Py. The image of
vis G/stabg B. O

To characterise the homogeneous geometries of Theorem 4.29, we introduce
the following terminology.

Definition 4.43. Let G be a group of symmetries of a strong geometry (M, c).
We say that the action is weakly Pgy-transitive if G acts transitively on M and for
each non-zero X € T, M, there is a p € Py such that ¢(X A p) is non-zero.

Corollary 4.44. If G is (2,3)-trivial, then the weakly Py-transitive 2-plectic geome-
tries with symmetry group G are discrete covers of orbits O = G - B in Py satisfying
condition (4.9).

More generally, if G is a Lie group with by(g) = 0, then the orbits O = G- B C P;
satisfying (4.9) are, up to discrete covers, the weakly Pq-transitive 2-plectic geometries
that admit a multi-moment map.

Proof. The differential v,: TxM — Py of the multi-moment map is given by
(v+(X), p) = (Xuc)(p). As G acts weakly Pg-transitively, we see that v, (X) is
non-zero for each non-zero X. Thus v, is injective and v has discrete fibres. Its
image is an orbit G - B and the proof of Theorem 4.12 shows that the 3-form ¢ on
M is induced by ¥ = dpp. As v is a local diffeomorphism and c is 2-plectic it
follows that (4.9) is satisfied. Conversely, any orbit O = G - 8 satisfying (4.9) is
2-plectic with injective multi-moment map v. Since v, is injective, the equation
(v4(X),p) = c(X A p) shows that the action is weakly Pg-transitive. O
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Ay Q R B11 Cn B> Cp2 Ba» Cx
Aq 0 R -Q 2C11 —2B11 Ci2 —B1» 0 0
A —R Q 0 0 Cr2 —Bp» 2Cn  —2Bx»
Q 2(A1—Ay) —2Bip —2Cip Bii—Byp Cii—Cxn 2B 2Cpp
R 2C2 2By Ci1+Cpp —Biy—Bxn 2Ci2 —2Bp
B11 8A4 -2Q 2R 0 0
C 2R 20 0 0
B NA\: + \wmv -20 2R
Cy 2R —20
By 8A;

Table 4.9: Our preferred basis for sp(2) satisfies the above commutation relations.
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(12T § “16HA] ut s[resap 1oyny
99S ‘SUOT}L[I UOT}EINUILIOD dA0de ) SurAysipes 91 “* * ‘I SJUSWS[D WOIJ PIJONIISU0D SI ¢f 10§ siseq parrdyard mQ 01§ 9[qeL

‘HZ+'H £'¢
0 [5'¢ 5K
- 0 ‘H+'H 5X
0 D'¢ 0 Ix s
X— 0 - 0 He+'He 5°¢
0 X — 0 0 9XE Ixz— €X
T 0 0 0 %4 X¢— He+'H D¢
0 X — X 0 0 0 0 Ix— X
X 0 0 X — 0 0 X 0 ‘H [5°¢
0 0 0 P — SX¢ £XT TXT— Xe - 0 X
0 0 v 0 eXT— 5X¢— aqe— 0'¢4 0 D'¢ 'H Ix
RK— £°¢ 5K §X— 0 0 - &  YUT— X¢ o Ix— ‘H
0 0 SKe— 5X¢ L — rx X -  Ygg Xg— U— X o0 |'H
X X 5K 0)'¢ X 15°¢ X £X X [5'¢ X Ix @
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G B dpp O=G-8
SU(3)  biacrat+cizbiz+bascas 3(b12(b13coz+bazcrz)+c12(bizbas+cizcas)) Fi(C3)
Sp(2) by1a1+rbiz+gein 3(a1(b12g — c127) + 2b11(b1zc12 + qr)) CP(3)
Gy bic14bscs+caby 6(b1(bscga—c3by)—c1(bsby + c3c4)) sé
SU(2)° elezteled+elel + -+ eled +ehed +elied+ - —eles, —esed, — eded, —- $3 x S3

Table 4.11: Realisations of the homogeneous strict nearly Kéhler six-manifolds as orbits in Lie kernels P;. Note that A signs have
been omitted, so that b1pc12 means by A ¢12, and so forth.
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4.4.3 Compact Lie groups with bi-invariant metric

Let G be a compact semi-simple Lie group. Its Lie algebra g admits an inner
product (-, -) invariant under the adjoint representation, which is proportional
to minus the Killing form. The left- and right-invariant Cartan one-forms
08,08 € O!(G, g) are given by 6%(X) = (Ly1)+(X), 8%(X) = (Rg-1)«(X), where
L¢,Rg: G — G denote left- and right-multiplication by g. A bi-invariant, and
hence closed, three-form is defined on G by

c(X,Y,Z) = ([pL(X),0L(Y)],65(2)),  for X,Y,Z € T(TG). (4.21)

This is 2-plectic but is zero on elements of P, for G acting on the left. Instead
for H K < G, let H x K act on G by

(h,k)-g =Ly oR(g) = hgk™™.

An element X = (XH,XX) € h@ ¢t induces a vector field X on G given by
Xy = fFexp(tXH)gexp(—tXK)|i_o = (Rg).XH — (Lg). XK. For p = Y X; A
Y; € Pyae, we have that 2;?:1 [X]H, Y]H] = 0 and Z};l [X]K, YJK] = 0, and claim
that

Ma—

1 (X1, Adg (Y1) — (YT, Adg(X[))),

]:

defines a multi-moment map v: G — Py, This follows from the following
computation for Ay = (Rg):A

9} (A)s = (v{exp(tA)g),p)|
= (X[, [A Adg (Y])]) — (Y], [A, Adg (X)])
= —([Adg1 X, YE] + [XK, Adg1 YT, 6" (A)g) = (pac)(A)g,

since 0"(A), = Ad,-1 A. By considering p € Py of the form p = (X,0) A
(0, YX) with XH € h and YX € ¢ arbitrary, one finds that

ker(vy)g = (Lg)«[Adg1 b, g+,

In the case when h = g, the set ker(v,), is a subalgebra of g and the image of v
is an orbit.

One example is given by h = g = su(3) and ¢ = u(1) = diag(ia, —ia,0).
Then ker (v ). = u(2) and the multi-moment map v is the projection from SU(3)
to CP(2) = SU(3)/ U(2). Now CP(2) is quaternionic Kihler, and SU(3) carries
a hypercomplex structure [Joy92]. The bi-invariant metric on SU(3) realises the
hypercomplex structure as a strong HKT manifold whose torsion-three form c is
given by (4.21) [GP0O]. The symmetry group of this HKT structure is precisely
H x K = SU(3) x U(1) and the map v realises SU(3) as a twisted associated
bundle over CP(2) [PPS98].
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4.4.4 Strong geometries from symplectic manifolds

Let us show how the theory of multi-moment maps for strong geometries
subsumes that of symplectic moment maps. Given a symplectic manifold (N, w)
one has a strong geometry on M = S! x N with ¢ = ¢ A w, where ¢ is the
invariant one-form dual to the circle action on S!'. This geometry is 2-plectic.
If N comes with a symplectic action of a Lie group H, then G = S! x H is a
symmetry group for the strong geometry on M. The corresponding Lie kernel
is given by
Priy =Py +R&b.

Proposition 4.45. Let (N,w) be a symplectic manifold with a Hamiltonian action
of H, moment map u: N — h*. Then M = S' x N carries a strong geometry
with symmetry group G = S' x H and this has a multi-moment map v that may be
identified with p.

Proof. We first claim that pow = 0, for each p € Py, C P,. Writing p =
2;-‘:1 Xi ANY; € Py, we have

k k

k
w(p) = Z;w(Xj,Yj) = Z;YdeW/XD = gﬁﬁo(ﬂfxﬁ-
j= j= j=

But u is equivariant, so Ly (u, X) = (i, [X,Y]). As 2;;1 [X;,Y;] = 0 it follows
that w(p) = 0, as required.
Now we may define v: M — Py by

(v,p) =0, (v, TAX) = (u,X),

for p € Py and X € b, where T is the generator of the S! action on the first factor
of M = S! x G. Now d{v,p) =0 = p.cand

d(v, TAX) =Xau=(TAX)uc,

so equation (4.3) is satisfied. As the definition of v is equivariant, we have that
v is a multi-moment map. O

4.4.5 Reduction via multi-moment maps

The Marsden-Weinstein reduction [GS84] is a highly useful tool for obtaining
new symplectic manifolds from known examples. Similar roles are played by its
cousins in Kdhler and hyperKahler geometry [HKLR87]. As these constructions
are intimately linked with the theory of moment maps, it seems natural to spe-
culate whether an analogue construction exists in the strong geometric setting.
Naively one might hope that if (Y, c) is a strong geometry with symmetry G and
multi-moment map v, and if the quotient space M = v~1(t)/G is smooth with
projection map 7: v~1(t) — M, then M carries a closed three-form. Expectedly
the three-form ¢ on M would be given by the relation 1*c = 7t*c, where  denotes
the inclusion v=1(t) < Y.
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Unfortunately, this wishful thinking turns out to be nonsense. In contrast
to symplectic reduction, it is a subtle task to find strong geometries that are
‘strongly reducible’. The above construction fails to hold for the following reason.
If g € v1(t) for some t € v(M)C, then it is generally not true that tangent
vectors along the orbit of g are contained in the kernel of /*c, that is, we do not
have an inclusion

T,(G-q) C{X € Ty (#): c(.X,1.8) =0, VB € A*Tv 1 (t)}.

In particular, this means that the form (*c fails to be horizontal. Hence, it cannot
be basic and is therefore not the pull-back of a form on M.

While there are no simple criteria telling us when a strong geometry is
strongly reducible, it may still be possible to find examples via case-by-case
studies. The aim of this section is to find strongly reducible PSU(3)-manifolds.
The following discussion and results may be regarded as a reinterpretation
of parts of Witt’s work [Wit08] in the setting of strong geometries and multi-
moment maps.

Reducing PSU(3)-manifolds Let us explain the fundamental aspects of PSU(3)-
geometry following [Wit04]. On IR® with its standard orientation consider the
three-form pg given by

Po = €123 + %61(647 —es6) + %52(346 + es7) + %63(645 —eg7) + ?68(645 + e67),
(4.22)
where e, ..., eg is the standard dual basis and wedge signs have been omitted.
The stabiliser of pg is the compact eight-dimensional Lie group

PSU(3) = {g € GL+(8, R): §"00 = po} = SU(3)/(Z/3).

This group also preserves the standard metric go = Y- ; ¢ on R®. The associated
Hodge *-operator gives a five-form x*py

%00 = €45678 — 53238(347 —es56) + 53138(346 +es7) — 56128(645 — e67)

3
+ e (ess + ee7).-

A PSU(3)-structure on an oriented eight-manifold Y is defined by a three-
form p € O3(Y) which is linearly equivalent at each point to po. It determines a
metric ¢ and a four-form *p. With a slight abuse of terminology we say that a
PSU(3)-structure is harmonic if the forms p and *p are both closed.

Remark 4.46. The terminology harmonic has its origin in the compact setting,
where harmonicity of p is equivalent to the closedness of the forms p and *p.
Alternatively, one could follow [Puh10] and distinguish PSU(3)-structures by
their intrinsic torsion. In that nomenclature, we are considering structures of

type W.
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While a harmonic PSU(3)-structure need not be parallel, the condition is
consistent with the so-called Rarita-Schwinger equations [Hit01]. More precisely
this means that any compact harmonic PSU(3)-manifold Y carries a spinor
valued one-form § € T'(ST @ T*) which lies pointwise in ker D N ker d*, where
D: T(ST®T*) — T'(S” ®T*) is the Dirac operator with coefficients in the
bundle of one-forms, and d*: T(ST ® T*) — I'(S™) is the covariant operator on
one-forms with coefficients in the spinor bundle. A

Since a harmonic PSU(3)-structure comes equipped with a closed three-
form, we may study multi-moment maps for such geometries. Let us assume
that (Y, p) has a two-torus symmetry with a non-constant multi-moment map
v: Y — Pg, = R. Consider an open neighbourhood Yy C Y on which T? acts
freely. Let us then define three two-forms on Yy by

wp = (dl/)ﬁ_l Valoxp, w;=Usp, wy=Vip.

To relate these to the PSU(3)-structure we introduce two one-forms 6,6,
and an additional two-form w3 as follows. First consider the isomorphism
¢ 1 A’T*Yy — A?TY) induced by #: T*Yy — TYy. We use this to define
a € O1(Yy) given by

a= (g 'wo)p. (4.23)

Also consider the function h defined via the relation (guugvy — glzlv)}ﬂ =1,
where gy = (U, U) etc. Now the three forms 6, 6, ws may be expressed as

0 = K (guvll’ — guvV’), 62 = K2 (guuV’ — guvl’),
ws = UL Vaalixp,

where U’ = ¢(U, -) etc. Note that (61,6,) is dual to (U, V).

Proposition 4.47. On Y, the three-form p and the four-form xp are
4.4 4.4
p:dv/\f)l/\ez—kgh wo/\oc—kwl/\91+w2/\92+§h w3 Adv,

2 4

I 16h
*p:%w%/\a+h4wo/\dv/\91/\92+2Tw3/\0é/\92/\91

4
+ §h4 (gvvw1 /\92/\0c/\d1/—guuw2 /\91 /\(X/\dl/)

4
+ §h4guv (cu1 N 92 —wy N\ 91) AaAdv.

Proof. Working locally at a point and using the T?-action we may write the first
two standard basis elements of R® as E; = all = U/g%ﬁ, E, =bU+cV =

hg%ﬁ(V — guvg&blj). We then have 6; = ae; + bep and 6, = ce;. Now using
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(4.22) we get acdv = e3 and

wo = 2(61\/5)2@45 +ee7), w3 = alc (612 + %(645 - 667)> ’
1 1
w1 = P (623 + 5(647 - e56)> ,
wy = ! <—€13 + 1(646 + 857)) b (6’23 + 1(847 - 656)) :
c 2 ac 2

From the expression for wy, we find that « is given by (%)268.

The given expressions now follow. O

Suppose that t € v(Yp) is a regular value for v: Yy — R. Then v=!(t) is a
smooth hypersurface with unit normal N = h(dv)*. Assuming that T? acts freely
on v~1(t), the T?-reduction of Y at level t is defined to be the five-manifold

M=v1(t)/T?

If we let ¢ denote the inclusion v—!(t) < Yp, then the forms 1*w;, i = 0,1,2,3,
and *a on v~!(t) are horizontal and therefore pull-backs of forms ¢; and a on
M. We can orthogonalise the triple (07,02,03) to get three forms ¢; that satisfy
the relations

0; N0j = 6;j0F, 07 Na #0,
X401 =Yi0,=03(X,Y) >0.
The proof of Proposition 4.47 shows that

A 1 . (u,v)
0= HUH 0, 02=— Hu”

hoy + HUHhtfz, 03 = hos.

The quadruple (a, 1, 02, 03) determines an SU(2)-reduction of the principal
frame bundle of M, cf. [CS07, Proposition 1.1]. In addition, the T?-reduction
carries an induced three-form.

Proposition 4.48. Let (Y, p) be a harmonic PSU(3)-manifold with a free T>-symmetry
and admitting a non-constant multi-moment map. Then the T?-reduction at level t car-
ries an induced three-form ¢ = 3hoy A a. If (M,¢) is a strong geometry, then it is
2-plectic. O

Example 4.49. Starting from a hyperKéhler four-manifold (X = U x R, k) with
a circle action, Witt gave a local construction of a harmonic PSU(3)-manifold
[Wit08]. His starting point is the the Gibbons-Hawking ansatz [GH78]. So let us
consider the flat metric k = dx? + dy? + dz? on an open set U of R®. Let V > 0
be a harmonic function on U such that dV = #;7 for a one-form 1 € Q! (U).
Then we have the hyperKédhler metric

k=Vldt +n)*+ V(dx® +dy? +dz?),
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which admits circle symmetry generated by d/9d7. The associated hyperKéahler
triple of symplectic forms on U/ x IR is given by

o =VdyNdz+dx AN (dt+7y), oc2=VdxANdy+dzA (dt+rn),
o3 = Vdx Ndz —dy A (dT + 7).

We define a fourth two-form by oy = Vdx Adz + dy A (dT + 7). This form is
closed provided that V' is independent of the variable y. For such V we proceed
by choosing standard coordinates x1, x2, x3, x4 on Euclidean space R*. On the
product X' x R* we then obtain an orientation and a metric by declaring

ep =dx;, ey=dxy, e3=dxs, es=dxy es=V"2dy,
e5 = _Vil/z(dT—f—ﬂ), e = _Vl/de/ ey = Vl/de,

to be an oriented orthonormal coframe.
With these definitions the three-form

3 1 1 1
0 =e13+ {68 N oy + 561 Nor+ 562 N0 + 563 N 03 (4.24)

defines a harmonic PSU(3)-structure on X x R*, and the PSU(3)-structure
descends to Y = X x T?> x R?. On Y there is a natural choice of T? acting
isometrically by translating the coordinates of the two-torus. In this case a
multi-moment map v: Y — R is given by the invariant function v = x3.

The T? reduction at level x3 = t is M = X x R, where the R factor is

parametrised by the coordinate function x4. The induced three-form ¢ =
?eg A 0p is obviously closed, so (M, ¢) is a 2-plectic, by Proposition 4.48.

In [Wit08] we find further examples of harmonic PSU(3)-manifolds that are
strongly reducible. For instance let N be the six-dimensional nilpotent Lie group
with corresponding Lie algebra n = (0,0,0,0,0,23 + 34). Then Witt endows the
product T2 x N with a harmonic PSU(3)-structure which is strongly reducible.
In that case the one-form a € Q! (M) is a contact form, meaning that a A da is
an orientation form on M.

Other reductions In Chapter 6 we describe a reduction procedure which
differs substantially from the above discussion. While the reduced space is still
the quotient of a level set of a multi-moment map by a free group action, the
resulting manifold is no longer a strong geometry, but rather a particular type
of tri-symplectic manifold.

4.5 Classification & further examples of (2,3)-trivial Lie
algebras

While Section 4.3 gave a detailed description of the structural aspects of (2,3)-
trivial Lie algebras, we now aim to give a more thorough treatment of related
classification problems.
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4.5.1 Positive gradings of nilpotent algebras

As we have already seen, the relevance of positive gradings in relation to multi-
moment maps is that Lie algebras with such a grading generate (2, 3)-trivial
algebras. A grading of an n-dimensional Lie algebra £ may be specified in terms
of n positive integers, referred to as weights, see Example 4.52. One easily
verifies:

Proposition 4.50. Any nilpotent Lie algebra of dimension at most six admits a positive
grading. From dimension seven and above, there are nilpotent Lie algebras which do
not admit a positive grading. O

Indeed, the nilpotent Lie algebras of dimension at most six and correspond-
ing primitive positive gradings are listed in Table 4.12, and in Section 4.3 we
gave examples of nilpotent algebras £ of dimension seven that can not arise as
the derived algebra of any (2, 3)-trivial algebra g. It follows, by Corollary 4.17,
that such £ can not admit a positive grading.

Corollary 4.51. Each of the 50 Lie algebras listed in Table 4.12 is the derived algebra
of a completely solvable (2,3)-trivial Lie algebra.

Proof. This is of an immediate consequence of Corollary 4.17, but let us give
the details for completeness. Let g = (A) + ¢, where ¢ is one of the algebras of
Table 4.12 and ad 4 acts as multiplication by 7 on ;. Then g is a solvable algebra.
Moreover (A*€)9 = {0} for s > 1, so that H'(¥)? = {0} = H?(¥)? = H3(¢)e.
Thus, by Theorem 4.16, g is (2, 3)-trivial. Since adx has real eigenvalues for each
X € g the Lie algebra is completely solvable. O

Example 4.52. Consider the nilpotent Lie algebra ¢ = (0%,12,13,14+23,24+15)
= (0,0,12,13,14+23,24+15), which has a basis Eq, ..., Es such that the corre-
sponding dual basis ey, . .., e for £* satisfies

dey =0=dey, des=ei1Ney, ... , deg=-erNeg+e1Nes.

An assignment of weights is deduced from these structural equations, re-
phrased in terms of the derivative d: £* — A% ¢*. The weight assignment can be
formulated, somewhat informally, as

e1—a, e —b, e3s—>a+b,
es —2a+b,es >3a+b=a+2b e —2(a+b)=2(a+b),

meaning that E; gets weight a, E; weight b, and so forth. Consistency now
requires that 22 = b, and a grading may be defined by

t=tD--- D, where &= (¢).

We now choose a = 1, and the corresponding weight decomposition is denoted
by 123456. Following the proof of Corollary 4.51, we can use this grading to
obtain a (2, 3)-trivial Lie algebra g such that g’ = ¢. Explicitly

g = (0,12,2.13,3.14+23,4.15+24,5.16+25+34, 6.17+24+26).
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Structure Grading
(0) 1
(0%) 11
(0%) 111
(02,12) 112
(0) 1111
(03,12) 1112
(02,12,13) 1123
(0°) 11111
(0%,12), (0%,12+34) 11112
(03,12,13) 11122
(03,12,14) 11123
(03,12,13+-24) 11223
(02,12,13,23) 11233
(02,12,13,14) 11234
(02,12,13,14+23) 12345
(0°) 111111
(0°,12),(0°,12+34) 111112

Table 4.12: Positive gradings of nilpotent Lie algebras of dimension < 6. Algebras are ordered according to their dimension and a

primitive positive grading.

Structure Grading
(0%,12,13), (0%,13+42,14+23),

(0%,12,34), (0%,12,14+-23) 111122
(0%,12,15) 111123
(03,12,13,23) 111222
(0%,12,14+25), (0%,12,15+34),

(03,12,13,14), (0%,12,23,14+435),

(03,12,13,24), (0%,12,13,14+35) 111223
(03,12,14,24) 111233
(03,12,14,15) 111234
(03,12,13+14,24), (03,12,13+42,14+23)

(03,12,13,14+23), (03,12, 14,13+42) 112233
(03,12,14—23,15+34) 112234
(02,12,13,23,14+25), (0%,12,13,23,14) 112334
(02,12,13,14,15), (0%,12,13,14,34+52) 112345
(03,12,14,15+23) 113234
(03,12,14,15+24) 121345
(03,12,14,15+23+24) 123345
(02,12,13,14 + 23,24 + 15) 123456
(02,12,13,14+23,34+52) 123457
(02,12,13,14,23+15) 134567
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4.5.2 Classification & families of (2,3)-trivial algebras

While the method of positive gradings provides an effective tool for constructing
examples of (2,3)-trivial algebras, it is inadequate if one aims for a general
understanding of the (2,3)-trivial class. Therefore we now turn to give a
classification of such algebras in dimensions up to and including five.

As we have already pointed out earlier in this chapter, the only Lie algebra
in dimension one is Abelian and is obviously (2,3)-trivial. In dimension two a
Lie algebra is either Abelian or isomorphic to the (2, 3)-trivial algebra (0,21).
These lowest dimensional examples are uninteresting from the point of view of
multi-moment maps since they have Py = {0}. In next dimensions we have:

Proposition 4.53. The (2, 3)-trivial Lie algebras in dimensions three, four and five are
listed in the tables 4.13 and 4.14.

We now give a proof of Proposition 4.53; our analysis in the five-dimensional
case is greatly facilitated by the work of Mubarakzjanov [Mub63]. Note that we
do not fully discuss inequivalence of the obtained algebras; imposing inequiv-
alence would put further restrictions on the parameters, see for instance the
tables 4.1 and 4.2.

t3 (0,21+31,31)

30 (0,21,A.31) A#—1,0
th ) (0,A.21+31, —21+A.31) A#0
ty (0,21+31,31+41,41)

) (0,21, A.31+41,1.41) A#-1,-3,0
T4 0(2) (O, 21,A41.31, )L241) Ai, A1+A 75 -1,0
Y (041211231441, —3141241) A #0,42 # —%3,0
042 (0,21,A.31, (14A).41+32) A#=2,-1,-3,0
o, (0,A.21431, —21+1.31,21.41+32) A#0
ha (0,21+31,31,2.41432)

Table 4.13: The three- and four-dimensional (2, 3)-trivial Lie algebras. Note that
the above labeling of d4, differs from that in [ABDOO5, Theorem 1.5], which
we used in Chapter 3 and Table 4.2.

Before going into a detailed case-by-case study, let us give an overview of
the overall strategy. Our starting point is Theorem 4.16. Hence we consider
a Lie algebra g of the form g = RA + ¢, where ¢ = ¢’ is nilpotent. The
element A acts on ¢ via a linear endomorphism A, and the corresponding
action on £* is given by the transpose A*; concretely note that, in accordance
with Remark 4.13, ad’, («)(X) = a(ada (X)) = a([A, X]) = —da(A A X), so that
A*(a) = —Alda, for @ € €. From A* we can calculate the induced action
on the cohomology groups H'(&), which can be expressed in terms of linear
endomorphisms A’ € End(H'(¢)). We note that the induced action of g on
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t5

T5(1),A
¥5(2),A
t5,0(2)

Ps,A

(
(
(
(
(

(
(

(
(
(
(
(
(
(

(
(
(
(
(

0,21+431,31+41,41+51,51)
0,21, A.31+41,1.41+51,A.51)
0,21+431,31,1.414+51,A.51)
0,21, A1.31, A,.41+51, A,.51)

0,21, 11.31,A,.41,A3.51)

0,A1.21431, A1.31, A2.41+51, —41+A,.51)
0,A1.21,A2.31, A3.41451, —41+A3.51)

0, A.21+31+41, 214131451, A 41451, —41+A1.51)
0,A1.21431, —21+4147.31, A2.41+A35.51, —A3.4141,.51)
0,21,21+31,31+41,2.51432)

0,21,21+31,2.41,2.51 & 41+32)

0,21,A.31, (14+1).41, (14A).51+32+41)
0,21,21+31,A.41,2.51+32)

0,21,A1.31, A2.41, (141;).51+32)

0,A.21,31,31+41, (1+A).51+32)

0,A.21431, —21+A.31,21.41,2A.51 + 41+32)
0,A1.21431, —21417.31,A,.41,24,.51)
0,21,214-31,2.41+32,3.51+42)

0,21,A.31, (141).41432, (241).51+42)

A#-1,-1,0
—A#2,1,3,0

Ai #—1,0;

M+Ay #0,—1;
14275, A14+2A #£ 0
Ai # —1,0;
AM+Ar+A3 #0;
AitAj # =10 (i # )
Ai, AM{4+2A, #0
Ai#0; A #E—Ag;

A, Ao —2A5

A#£0

Ai £ 0

-A#2,3,1,3,3,0
A# —3,-1,0
—M #2,3,1,0;
Ay #0,—1;

AM+Ay # —2,0;
Ao427A1 # —1
—A#3,2,1,3,0
A#0

M, A2 #0

-A#3,2,1,1,0

Table 4.14: The five-dimensional (2, 3)-trivial Lie algebras.
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H'(£) has no non-trivial fixed points, meaning H'(€¢)¢ = {0}, if and only if
Al has trivial kernel. In particular, (2,3)-triviality of g is equivalent to the
non-vanishing of a; = det(.A?), fori = 1,2,3.

Based on the above observations, we apply the following classification
strategy. In dimension n = 3,4, 5, we list the (n — 1)-dimensional nilpotent Lie
algebras ¢. For each of these, we find all possible derivations of £ expressed in
terms of matrices A put on Jordan normal form. This is a simple task when
n < 4 or tis Abelian, but for the non-Abelian cases ¢ with dim ¢ = 4 some
work is required. We adapt the ideas used in [Mub63]. Each matrix A gives
us a solvable Lie algebra. In order to distinguish the (2, 3)-trivial algebras, we
use the transpose of A to calculate 4, Ay, A3, and then single out the cases for
which the determinants a1, 4, and a3 are non-zero.

Dimension three Let g be a (2,3)-trivial algebra of dimension three. Then
¢ is nilpotent and two-dimensional, so ¢ = R?. The transpose A* acts on
H'(R?) = R? invertibly and the induced action on H?(R?) & A’R? ~ R is
also invertible. So either A is diagonalisable over C with non-zero eigenvalues
whose sum is non-zero, giving cases t3 )10 and t/sl A£0r OF A acts with Jordan

normal form
Al
( O A ) 4 A # O/

giving case t3.

Dimension four For g of dimension four we have £ = R3 or the Heisenberg
algebra by = (0?,21).

Case £ 2 R® In this case we obtain the algebras from the t- and ’-series.
Any linear endomorphism gives a derivations of R3, and therefore the relevant
list of extensions of IR?> may be obtained by considering invertible 3 x 3 matrices
in normal form:

1 0 0 1 0 0
A= 0 A 0|, Aa=[0 A 1],
0 0 A 00 A
110 A0 0
As=01 1], As=| 0 A 1
00 1 0 -1 Ay

The element A; gives the family vy (), and the induced action on H HR?) =
R? is, up to sign, given by multiplication by the transposed matrix A;. Using
this, we obtain the induced actions on H?(R%) & R® and H*(IR%®) 2 R and then
deduce that (2, 3)-triviality holds if and only if the determinants

a1 = AMAy, ap = (1 + )\1)(1 + /\2)()\1 + )Lz),
a3 =14+ A+ A2
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do not vanish.
The matrix A; gives us the algebra vy ). In this case we have determinants

a1 =A% ay=2A(1+A)? az3=1+2A,

which give the restrictions on parameters displayed in Table 4.13.

The algebra t4 corresponds to the choice As.

Finally, A4 occurs when the action has two complex eigenvalues. The
corresponding family is tﬁ;, A where Ay, A; are restricted by the condition

a; # 0 for

2)’

a1 = A (14+A3), ap =2M(1+ (A1 4+ A2)3),
az = A1+ 2A,.

Case £ = h; The Heisenberg algebra h; has H'(h3) = (e, ez), H*(h;) =
(e13,€23), H?(h3) = (e123). The action of A, being a derivation, is represented by
a matrix of the form

B 0 B .
(b TrB>’ B e M(2,R), b= (b1,bp) € R,

To see this, write ad 4 (E;) = Zi:l bf-‘Ek, fori = 1,2,3, and consider the relation
ad 4 (E3) = ada|Eq, Ex] = [ada(E1), E2] + [E1,ad4(E2)].
After the transformation
A A—bE +bhE

we may furthermore assume b = 0. Hence the algebras are distinguished by the
normal form of B.

The family 94 ) arises when B = diag(1, A). The restrictions on A now follow
from the requirement that the determinants

m=A, a=2+A)(1+21), a3=2(1+A7)

should be non-zero.
If the matrix B takes the form

11
2= (o 1);
we have the algebra b,.
Finally the action may have complex eigenvalues. Then we have

Al
=(453)
which corresponds to the family ) ,. We find determinants

m=1+A% a4, =14+9\%, a3=44A,

implying the condition A # 0.

78



4.5 CLASSIFICATION & FURTHER EXAMPLES OF (2,3)-TRIVIAL LIE ALGEBRAS

Dimension five A five-dimensional (2,3)-trivial Lie algebra has ¢ = R%,
(0%,21) or (02,21,31).

Case £ & R* In the Abelian case H!(R*) = R*, H?(R*) = R®, H3(R*) =
R%. The solvable extensions are found by taking invertible matrices with the
normal forms:

1 0 0 O 1 0 0 0
oA 0 0 oA 0 0
A = 0 0 Ay O » A= 0 0 Ay 1 |7

0 0 0 As 00 0 A
1100 10 0 0
010 0 0 A1 0
B=looar1]” M4 oo |
000 A 00 0 A
1100 A 0 0 0
o110 0 A, 0 O
A5_0011'A6_00A31'
0001 0 0 -1 As
M1 0 0 M 10 0
0 Ay, 0 O [ -1 A 0 o0
7=1 9 0 A 1 ;A 0 0 Ay Az |7
0 0 —1 A 0 0 —A; Ay
A1 1 0
1A 0 1
=109 0 1 1
0 0 -1 A

The matrix A; gives the family v5 5 (3), and restrictions on the parameters A;
now follow from non-vanishing of the determinants

a; = )\1/\2)&3, a) = H(l + /\1) H()\l + /\]),

i i<j
as = (/\1 + Ay + )\3) H(l —+ )\]‘ + )\k).
i<j
Algebras corresponding to A, belong to the family v5 ;). Now the determi-
nants of the actions on cohomology groups are given by
ap = MA5,  ay = 2A(1+ A1) (1 + A2)* (A1 + A2)?,
a3 = (14 A1+ A2)%(142A2) (A1 +2A,),

and we require that these are non-zero in order to get a (2,3)-trivial Lie algebra.
From Az we obtain the family v5(,) 1. The parameter value is now constrained

by non-vanishing of

a1 =A%, a=4A(1+A)% a3 = (1+20)%(2+ 1)
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The matrix A4 gives us the family v5(;) 4. In this case the parameter A is
constrained by a; # 0 where

a1 =A% a4y =8A%(1+A)°, a3 =3A(1+21)°

The algebra t5 corresponds to the action of As.
Members of the t'- and t”-series occur when ad4 has two or four complex

eigenvalues, respectively. The algebra t; AG) corresponds to Ag. In order to

have invertible actions on the first three cohomology groups, the determinants
a1, 4y, a3 must be non-zero. Here

a = /\1)\2(1 + )\%)/
ay = 2A3(A1 + A2) (1 + (A + A3)2) (1 + (A2 + A3)?),
as = (/\1 —|—2)\3)(/\2 —|—2)\3)(1 + (/\1 + Ar + )Lg)z).

The form A7 gives the family . A In order to have invertible induced
actions on the first three cohomology groups, A1 and A, must be chosen such
that the following determinants are not zero:

m = A(1+23), a2 =4MA(1+ (M +12)%)?,
1= (M +202)2(1+ 241 + 12)?).

The matrix Ag has A3 # 0 and corresponds to the family ¢ AG) Further

restrictions on the parameter values follow from requirement that the three
determinants

a1 = (1+A3)(A3+A3),
ap = 4)\1/\2(()\1 + )\2)2 + (1 + )\3)2)(()\1 + )\2)2 + (1 — A3)2),
a3 = (A3 + (2A1 + A2)?) (1 + (A1 +212)?)
should be non-zero.

Finally the choice Ay corresponds to algebras belonging to the family t7 ;.
Here invertibility of the induced action on cohomology requires that

a1 = (1+A%)?2, ay =64A*(1+A%), a3 = (1+9A%)?

are non-zero.

Case ¢ = (0%,21) In order to analyse the cases (0,21) and (02,21,31)
we follow and modify arguments given in [Mub63]. We first consider ¢
(0%,21) which has H! (&) = (e, ez, e3), H*(E) = (e13, €14, €23, €04) and H3(¥)
(€124, €134, €234). Write A(E;) = Zﬁzl ai-‘Ek fori =1,2,3,4. From the relations

111

adA(E4) = [adA(El),Ez] + [E1,adA(E2)],
0= adA[Ei, E3] = [adA(Ei),E3] + [Ei,adA(Eg)] i=1,2,
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we deduce that

4 _ 1., 2
a, =a;+a,
1 _g_2_3_.2__.1
ag =0=ay =a; = a3 = as.

After the transformation
A A —a5E; +aiE;

we can assume that a} = a3 = 0. The restriction B = (b¥) of ad 4 to the subspace
(e1,e2,e3) has b% =0= b%, and may be put Jordan form via the transformations

Ei1 — aE{ +bEy, +cE;, Ep, — pEl + qEz +rE;, E3 — sEg,

where ag — bp # 0 and s # 0. Excluding degenerate matrices, we therefore
obtain the following possibilities

0

0],

A

1 0 0 1 00 10
B1(O A 0), 32(110), Bg(ll
0 0 A 011 00
A1 0 0
B4—(1 M 0), B5—( 0).
0 0 A 1

Consider first the case

o o >

0
1
1

1 0 O
Bi=10 A O
0 0 A

If Ay # 14 A we may assume that a% = 0; it may be necessary to make a change
of the form

E3z — E; + aEy.

This gives us the family 95 (). The determinants

a1 = MAy, ap = (1 +/\2)(2 + )\1)(/\1 +/\2)(1 +2/\1),
a3 =2(1+ A1) (2+ A2+ A1) (14241 + Ap)

must be non-zero in order to have a (2, 3)-trivial algebra.
Turning next to the case A, = 14 Ay, let us assume aé # 0; if this is not the
case, we get a member of the family 05 (). After rescaling

Ei — |a3|"*E; i=1,2,

E4 — \ag\E4,
we obtain the families 0;5(1), 4 given by

(0,21,A.31, (14 A).41, (14 A).51 + 32 + 41).
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If we scale (E1, E4, Es) by the factors (A, A~!, —1) and interchange E, and E3, then

we find Dg(l)ﬂ = 51,172 So, in fact, there is only one family 95y ) := D;r(l),/\. In

order to have an invertible induced action on first three cohomology groups, the
parameter A must be chosen appropriately, meaning as usual that the following
determinants should be non-zero:

a1 =A1+A), ar=(2+A)%(1421)?
a3 =2(1+A)(3+2A1)(2+3A).

Now we turn to the algebra corresponding to the matrix B,. We can assume
that a% = 0, and thus obtain the (2, 3)-trivial algebra 0s.

The algebra 05(;) \ corresponds to choosing the matrix B; with a3 = 0. The
following determinants

a1 =A, a=91+M)? a3=4(3+A)>

must be non-zero in order that we have a (2, 3)-trivial algebra.
For B; with ag # 0 we obtain the algebra 0;‘(2). To see this, we must rescale

as follows

Ei— |af|"E i=1,2,

E4 — \a§|E4.

From B, we obtain Dg AQ) when a% = 0. The (2, 3)-triviality requirement, i.e.,
the condition that

a; = )\2(1 + /\%),
1 = (14+9A2)(1+ (A1 + A2)?),
asz = 4/\1(1 + (3)&1 + AQ)Z)

are non-zero, enforces restrictions on the parameters A

When a} # 0 we find, after appropriate rescaling, that By corresponds to
the family ngj\ An invertible action on the first three cohomology groups of ¢
requires that

a1 =201+ A%), ay = (14+9A%)?, a3 = 4A(1+25)?)
are non-zero.
In the case Bs we must have a3 = 0. Hence we obtain the family 05(3),0- The
allowed values for A are deduced from non-vanishing of the determinants
m=A a=21+A)(1+21)(2+ 1),
a3 = 4(1+A)2(3+A).
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Case £ = (02,21,31) In the case £ = (0%,21,31) we have H!(£) = (e1,e2),
H2(€) = (e14, €23), H?(€) = (€134, €234). As above, write A(E;) = Y¢_; a¥Ey. Now
we consider the relations

0= adA [Ez, E3] = [adA(Ez), E3] + [EZz adA(E?))]/
adA(E3) = [adA(E1), Ez] + [E1,adA(E2)],
ads(Es) = [ada(E1), E3] 4 [E1,ada(E3)],

and deduce that

After making the transformation
A A —a3E + ajeEy + aiEs,

we may assume ad 4 takes the form diag(p,q,p +4,2p +q) + A, where A’ only
has non-zero entries a’ % =a% and o’ % = a3, below the diagonal.

We then obtain ps 4 and ps as follows. As ¢ = g’ one has p # 0 and we may
rescale ad4 by 1/p. If g # p we make the transformation

Er— Er+aiEa/ (p — ).
After appropriate transformations,
Ei+— E1+aEy, E; — E»+ bEy,

we obtain the algebra ps , with A = g/p. For this family we calculate the three
determinants to be

am=A, ap=1+20)B3+A), az=6(14+A1)(2+7A),
so that a; # 0 enforces A to be as specified in Table 4.14.

Consider finally the case ¢ = p. Note that we may assume a3 # 0; otherwise
we get the algebra ps 5. After a suitable transformation of the form

E;— a3E; i=2,34,

followed by
Ey» — E> + CcEy,

we obtain the algebra ps.
This concludes the proof of Proposition 4.53.
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Unimodular The lists of (2, 3)-trivial algebras in dimensions up to and includ-
ing five reveal that algebraic properties of this class are not fully reflected in
low-dimensional examples. In Corollary 4.25 we observed that the (2, 3)-trivial
Lie algebras of dimensions two, three and four are not unimodular. On the
other hand there are infinitely many five-dimensional algebras with this prop-
erty. The structure g = RA + ¢ of a (2, 3)-trivial algebra makes it easy to check
unimodularity; it suffices to compute whether the homomorphism x: g —+ R
evaluated on A is zero. Direct inspection now gives

Corollary 4.54. The unimodular (2,3)-trivial Lie algebras of dimension up to and
including five are

/ 1
R, v5(1),~1/3 t5.0,—(14A) /2 50— (1+A+1)7 E5,0,-Ar T5 0, —A s
/ /
U, —(A+p) /27 95(2),—47 05,0,-2(1+A) 95(3),-3/2/ 05,1, —47s P5,-4/3/

where parameters satisfy the conditions in Table 4.14. O

4.5.2.1 Further examples

The quest for higher-dimensional examples is easily met. Indeed, one may
construct infinite families of (2,3)-trivial Lie algebras following the methods
invoked in the proof of Proposition 4.53. In fact all the families appearing in
dimension five have higher-dimensional generalisations, and some of these are
listed in Table 4.16. Let us now explain how these examples are obtained, and
remark that the underlying ideas apply more generally.

Method 1 The members of the t-series have ¢ = R"! and the linear
endomorphism representing ad 4 is taken to be one of

Jin—1,1), J(k—1,1)&J(n—kA), diag(l,A1,...,Ak—1) B J(n—k—1,A),

where J(m, a) is an m x m-Jordan block with a on the diagonal and 1 immediately
above the diagonal.

The first matrix, J(n —1,1) corresponds to the algebra t,. The second
matrix, J(k —1,1) © J(n — k, A) corresponds to the family v, _1),. Finally, the
remaining matrix gives t, (). For the last two matrices, the requirement that A
acts invertibly on the first three cohomology groups enforces some restrictions
on parameters. As A acts on H!(R""!) = R""! by a lower triangular matrix,
these restrictions are easy to find. We must have that the sum of one, two or
three diagonal elements is non-zero.

The family 0, 5 (,—3) has ¢ = (0"=2,21) and ad,4 is

dlag(l, M, A3, 1+ /\1)

Now A acts diagonally on £*, and restrictions on parameters may therefore be
read off directly from the cohomology groups

H'(€) = ¢ S(e,—1), H () 2 A’E S, ei-1): 1> 2),
H3(f) = A3E* @(Elgi,ejk(n,1)1 2<i<n—1,2< ] < k>
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Method 2 An alternative way of constructing infinite families of (2,3)-
trivial algebras goes via positive gradings of infinite families. We list some
examples in Table 4.15.

fi(0,21,31,2.41+32,351 +42,...,(n —2)nl + (n—1)2)

2 (0,21,2.31,3.41 + 32,4.51 + 42,5.61 + 52 +43,...,
(n—1)n1+ (n—1)2+ (n —2)3)

£2(0,21,31,241+32,...,(n—3).(n — 1)1+ (n — 2)2,
(n—2)ml+n—-12—(n—-1)3+mn—-2)3—---)

Table 4.15: Infinite families of (2,3)-trivial Lie algebras obtained via positive
gradings.

Note that
(fn)' = (0%,21,...,(n —2)1)
has positive grading 122 - (n — 2). The derived algebra

(2) = (0%,21,31,41 +32,...,(n —2)1 + (n — 3)2)
admits grading 12 - - - (n — 1). Finally the nilpotent algebra

() = (0%,21,31,..., (n=3)1, (n—2)1—(n—2)24(n—3)3— ... — (=) (k+1)k),
n=2k+1,

has positive grading 1223 - - - (n — 2).

Concluding remarks While the above exposition illustrates that (2, 3)-trivial
algebras form a plentiful subclass of the solvable ones, Theorem 4.16 ensures
that the general structure of these algebras is fairly well understood. Moreover,
we have already argued that (2,3)-trivial symmetry groups are particularly
interesting objects in the context of strong geometry and multi-moment maps.
In summary, (2, 3)-trivial algebras deserve further attention in future studies of
geometries with a closed three-form.
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Ty

Cu(k—1),A

T, A (k)

Q:\»_A:va

(0,21431,31+41, ..., (n—1)1+n1,n1)

(0,21+431, ..., (k=1)1 + k1,k1, A.(k4+1)1 + (k+2)1,...,A.(n—1)1 4+ nl,A.nl)
withk >2and — A #0,1/2,1,2

(0,21, A1.31, ..., A1 (k+ 1)1, A (k+2)1 4+ (k+3)1, ..., Ak.(n—1)1 4 n1, Agnl)
with 7 > k + 2 and non-zero A;, 14+A;, Aj+Aj, 142, Aj+2Ay,
HATNSIT\(.AN. < \v and \/NET»J.ATNQQ <j< )

(0,21,11.31,..., Ay_3.(n—1)1, (14A1).n1+432)

with A; #0,—1 for all {

M wm —2,-1/2,—A,;, |H\NAH + »:.v\ —2—A,;, |>N.|\(. forl<il<i< \
and non-zero A; + Aj, 14+A; + A;(1 <i <), Ai+Aj+A(1 < i < j <k)

Table 4.16: A selection of infinite families of (2, 3)-trivial Lie algebras.
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Chapter 5

Multi-moment maps for closed
geometries

HILE CHAPTER 4 clearly illustrated that most interesting strong geometries
carry additional structure (see also Chapter 6), it was still useful for us
to focus on the closed three-form as being the essential building block. This
leads us to ask whether there is a notion of multi-moment map which is valid
for any closed geometry, that is a geometry characterised completely or partly
by a closed form. In this chapter we answer this question affirmatively. First we
generalise the notion of multi-moment maps to closed geometries in a way that
subsumes the concepts in the symplectic and strong settings. We then establish
existence results for these maps. Finally, some examples are considered. One of
these gives an inverse of the Swann bundle construction in terms of a reduction
procedure for multi-moment maps associated with quaternionic four-forms.

5.1 Definitions

Let (M, «) be a closed geometry, meaning that M is a smooth manifold and « is a
closed (k + 1)-form on M, for some k € IN. Generally there is not one canonical
form for a, neither do we require any non-degeneracy of &, though one could
use the terminology of [BHR10] that « is k-plectic if X a = 0 at x € M only
when X = 0in T, M.

Remark 5.1. A k-plectic form a € QF1(M) defines pointwise an injective map
®,: TeM — AT} M given by ®,(X) = X_a. This map is surjective if and only
if k = 1, meaning that « is symplectic. Important results in symplectic geometry,
in particular the Darboux theorem, rely crucially on bijectivity of ®,, injectivity
alone is inadequate. One [Mar88] may remedy this problem by considering a
restricted class of k-plectic manifolds, see Section 5.3. AN

Remark 5.2. For closed geometries with a four-form one could consider a notion
of strong non-degeneracy, meaning that «(X,Y,Z,-) #0forall X AY A Z # 0.
However, such forms only exist in dimension 4 and 8, cf. [Fer86]. The former
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case is given by a volume form, the latter by a G-structure with G = Spin(7) or
its non-compact dual. A

Assume that G is a group of symmetries for (M, «). Thus for each X € g we
have Lxa = 0. We may then use Cartan’s formula to show that the k-form X«
is closed: 0 = Lxa = d(Xua) + Xuda = d(Xoa). Consider now k elements
X1,...,Xg € g that satisfy the following generalised commutation relation:

Yo (D)X X AXIA L AKGA LA AL AXe =0 (5.1)
1<i<j<k

Then the one-form B := X; A ... A Xxo« is closed. Assume namely by induction
that

(—1)'d(Xy A...AXpaa) =
Y (D)X XIAXA A AL AX A A X

1<i<j<l
for 2 < £ < k. The closedness of 8 then follows from the calculation

(—DkdB = (— 1) Lx, (X4 Ao AXpqaa) — (1D Xad (X Ao A Xp_qo0)
k_l . A~
=Y (D)X, XA X A AKX A A X0k
i=1

+Xk_l< Y (—1)i+f[xl-,xj]AXlA---/\)?iA---/\fi\jA---/\ng>
1<i<j<k—1

= (—1)i+j[Xl',X]‘]/\X1/\.../\X\i/\.../\z/\.../\xk_lﬂé.

1<i<j<k

(5.2)

The set of decomposable elements of A¥ g that commute in the generalised
sense of (5.1) is a complicated variety. We would therefore like to replace this set
by an appropriate g-module. To this end let L: AFg — A*~! g denote the linear
map dual to the exterior derivative d: A¥~!g* — AKg*. Then the kernel of L
obviously includes all decomposable elements X; A - - - A X; € A g satisfying
(5.1). This motivates the following notion.

Definition 5.3. The kth Lie kernel of a Lie algebra g is the g-module
Py := ker (L: ArFg — A1 g) .

The above calculations extend to elements of the kth Lie kernel. For a k-vector
p=Y,_1 X} A...A X we write

r
poni=)_ w(X},..., X5,
(=1
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Lemma 5.4. Suppose G is a group of symmetries of a closed geometry (M, ). Let p =
Y7 XA AXE be an element of the Lie kernel Pg and let p =Y, X} A ... A XE
be the corresponding k-vector on M. Then

d(paa) =0. (5.3)

Proof. The lemma is a direct consequence of the linearity of the extended funda-
mental calculation (5.2). If we write p =Y _, X% AN X’lf, then the condition

that p lies in Py is that 0 = L(p) = Y4 Zl<i<j<k(—l)i+j[X2,X]é] AXEA... /\XAZ A

AN X; A...XE . Now we define r one-forms by B, := X} A... A Xf.a, and
then use the fundamental calculation (5.2) as follows:

(=) d(paa) = (—1)%d (i XEA . AXES zx) = (—1)* i By
(=1 (=1

r L — —
=Yy (“D)™[X,XIAXEA L AXEA AKX AL X

We see that p € Py implies that d(p_a) = 0, as required. O

We are now able to define the notion of a multi-moment map for a closed
geometry.

Definition 5.5. Let (M, «) be a closed geometry with a symmetry group G. A
multi-moment map is an equivariant map v: M — Py satisfying

d{v,p) = pau (5.4)
for each p € P,.

Remark 5.6. For k = 1,2 we have that P, = g and ker([,-]: A*g — g), re-
spectively. Thus Definition 5.5 subsumes the notions of moment maps in the
symplectic and strong settings. A

5.2 Existence and uniqueness

While many results from Chapter 4 generalise straightforwardly, it may still be
illuminating, and a useful reference, to give precise formulations and proofs of
the general existence results. We first address topological existence.

Theorem 5.7. Let (M, «) be a closed geometry with a symmetry group G and assume
that by (M) = 0. If either

(i) G is compact, or

(ii) M is compact and orientable, and G preserves a volume form on M,
then there exists a multi-moment map v: M — Pg.
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Proof. Working component by component, we may assume that M is connected.
The condition b; (M) = 0 ensures that there are functions v, with dv, = pac
for each p € P;. However, each of these functions may be adjusted by adding
a real constant. To build a multi-moment map v via (v,p) = v, we need to
ensure equivariance. In the two cases above this may be achieved by either
averaging over G or over M. In the second case, one chooses v, with mean
value 0. In the first case, one chooses a basis (p;) of Py and puts v(m) =
Jo X Ad;,l (vp; (g1 - m)) volg. In both cases equation (5.4) is satisfied, and v is
a multi-moment map. O

Remark 5.8. Note that certain types of closed geometries, such as symplectic
manifolds, come automatically with an invariant volume form voly;. In such

cases a multi-moment map exists provided that M is compact and has b1 (M) =
0. A

A geometric existence criterion may be phrased as follows.
Proposition 5.9. Suppose G is a group of symmetries of a closed geometry (M, x)
and that there exists a G-invariant k-form B € QF(M) such that dB = a. Then
v: M — Py given by
(v,p) = (=1)*B(p) (5.5)

is a multi-moment map.
Proof. The map v is equivariant, since f is invariant. We have v, = (—1)*B(p)
with (—=1)*d(B(p)) = (=1)*p.dB = po« as follows essentially from the argu-
ments that lead to (5.2): we repeat this calculations but replace the (k + 1)-form
« = df with the k-form f:

(—D*(Xy AL A X B)

=L(XiA...AXp) B+ (=1)ZFX AL A XadB (5.6)

=Xi Ao A Xpaa.

Finally, using linearity as in the proof of Lemma 5.4, we find that equation (5.4)
is satisfied, as required. O

In order to discuss algebraic existence, it is useful for us to extend the
notation of Section 4.2 in the following way. The dual of the exact sequence

0 Py " Akg L A-1g

is the sequence

Atgr L Akge T, Py 0.

The exterior derivative d: AFg* — AF1g* induces a linear map dp: Py —
B*1(g) c ZF1(g) ¢ A1 g*. Fora € P}, we choose @ € m'(a) and then

dpa = da. These observations lead to a generalised version of Proposition 4.10.
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Proposition 5.10. The linear map dp: Py — A1 g% is a g-morphism with image
contained in ZK+1(g). It is injective if and only if by(g) = 0. If this condition holds

then dp is an isomorphism onto Z¥+1(g) if and only if by,1(g) = 0. O

It also turns out useful to generalise the notion of (2, 3)-triviality to that of
(k, k + 1)-triviality. More generally we introduce the following;:

Definition 5.11. A connected Lie group G or its Lie algebra g that satisfies
by, (g) = - - - = by, (g) = 0 will be called (cohomologically) (ky, ..., ky)-trivial.

A general algebraic existence criterion, including the known ones from
symplectic and strong geometry, may now be phrased as follows:

Theorem 5.12. Let (M, &) be a closed geometry, & € QF1(M). Assume that G is a
(k, k + 1)-trivial symmetry group acting nearly effectively. Then there exists a unique
multi-moment map v: M — Py.

More generally, if just bi(g) = O, then multi-moment maps for nearly effective
actions are unique when they exist.

Proof. The invariant (k 4+ 1)-form « determines a G-equivariant map ¥: M —
Zk1(g) given by

<‘Y,X1/\"-/\Xk+1> :DC(Xl,...,XkJrl) (57)

for Xy,...,X¢s1 € g. When bi(g) = 0 = biy1(g), for each m € M there is
a unique element v(m) € P; satisfying dpv(m) = ¥(m). Since dp is a G-
morphism, it follows that v: M — Py is also a G-equivariant.

We claim that v is a multi-moment map. In general dp: P; — ZH(g)n
(g APy)*. Consequently, the assumption by(g) = 0, gives that the dual map d},
is a surjection Z¥*1(g)* N (g APy) — P,. This dual map may be expressed in
terms of the adjoint action, since

.
(dpa, Z Ap) = (dpa, ZA Y Xp Ao AXE)
(=1

r k /\ (58)
=Y Y (—1)([Z, X[, X, .. X, XE) +a(0,2) = —(w,adz(p)),
(=1i=1

forZeg p=Y, 1 X} A...AXE € P,. Hence we may write any p € P, in the
form p = Y i ; adz (q;), with Z; € g and q; € Py. Now the function

S
Vp = — Z(‘I’ ZiNq;) = Zoc (Zi N\ q;i)
i=1 i=1
satisfies dv, = — Y i Lz, (gisa) = paa, since d(q;oa) = 0 by (5.3). Moreover
we have that

S S

vp(m) = — Y {dpv(m),Z; Aqi) = Y (v(m),adz,(a)) = (v(m), p).

i=1 i=1
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Thus v is a multi-moment map.

For the last part of the theorem, note that a multi-moment map v defines
elements v(m) € P; and the above calculations show that dp(v(m)) = ¥ (m).
However, by(g) = 0 implies that there is at most one solution v(m) to this
equation, so v is then unique. O

The question remains whether there are interesting closed geometries with
a symmetry group which is (k,k + 1)-trivial for general k € IN. Regarding
existence we certainly have an affirmative answer: Hodge duality, Proposition
3.5, tells us that an n-dimensional unimodular Lie algebra is (k, k + 1)-trivial,
for some k < n+ 1, if and only if itis (n — k — 1,n — k)-trivial, and as illustrated
in Section 4.5, there are unimodular (2, 3)-trivial algebras in dimension five and
above. These examples thus provide algebras that are (3,4)-trivial, (4,5)-trivial,
and so forth. Another, perhaps more interesting, class of symmetries consists
of the compact simple Lie groups. Based on known results [Sam52, Che52] we
obtain:

Proposition 5.13. Apart from su(n + 1), n > 2, the compact simple Lie algebras

su(2), so(2n+1), sp(n), so(2n),

¢, ¢7, ¢, fa and @
areall (1,2,4,5,6)-trivial.

Proof. One way to keep track of the Betti numbers of an n-dimensional compact
simple Lie algebra g is in terms of the associated Poincaré polynomial

py(t) = Z bktk'
k=0

whose kth coefficient is by = dim H*(g). In Table 5.1 we list these polynomials
based on work of Samelson ([Sam52], the classical algebras) and Chevalley
([Cheb52], the exceptional algebras). We see that all the compact simple algebras
have by = by = 0 and b3 = 1. Apart from members of the family su(n + 1),
n > 2, these algebras have next non-zero Betti-number which is one of b7, by or
bn. L]

5.2.1 (3,4)-trivial Lie algebras

(k,k 4 1)-trivial Lie algebras play a prominent role as symmetry groups of
closed geometries of degree k + 1. It is therefore natural to strive towards a
classification of such algebras. (1,2)- and (2,3)-trivial Lie algebras are well
understood. The next class one may try to describe is that of (3,4)-trivial
algebras. Our first observation is the following:

Proposition 5.14. Any non-trivial finite-dimensional Lie algebra g # R, R? satisfy-
ing bs(g) = 0 is solvable and not nilpotent. g is a direct sum b + € of non-trivial Lie
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g Poincaré polynomial

su(n+1) (1+8)(1+ ) (1421

s0(2n+1) (1+ )1 +17) - (141

sp(n) (A+£)A+17) - (147

s0(2n) A+ T +t7) - (T t4770) (1 + 1271

¢ 1+ )1+ )1+ 1) (1 +9) (1 + £17) (1 + 2)

e7 1+ 21+ N1+ )1+ 21 +#23) (1 + 27) (1 + )

¢ 1+ )T+ )1+ 3) 1+ 7)1+ £22) (1 + 32) (1 + t47) (1 + t9)
fa (1+£) A+ (T +P)(1+17)

) (1+£)(1+ 1)

Table 5.1: Poincaré polynomials for the compact simple Lie algebras, cf. [Sam52,
Cheb52].

algebras if and only if b and € are (2, 3)-trivial. If in addition by(g) = O, then one can
have a direct sum decomposition g = b + € of non-trivial Lie algebras if and only if b
and ¢ are (2,3, 4)-trivial. O

For j = 1 or 2, bj(g) = 0 implies that b;(g) < j. So one may wonder
whether the condition b3(g) = 0 implies that b1(g) < 3. It turns out to be rather
difficult to answer this question in general. However, we do have the following
elementary result:

Proposition 5.15. If a Lie algebra g admits a splitting
O—=p—=9g—>q9g—0 (5.9)

then bj(g) = bj(q). In particular, if g splits over ¢ = [g, g] then b;(g) > (blgg)).

Proof. Assume that we have a splitting (5.9) of g, i.e., that we may write g = p +q
with q < g and [g,p] C p. Dually this means that

d(q*) C A’q" and d(p*) Cq"@p"+ A%~

From these relations we observe that the inclusion A/q* < A/ g* induces an
injection in cohomology H/(q) < H/(g). Hence bj(g) > b;(q), as claimed.

To say that g splits over £ means that we can takep =tand q=a = g /tin
the above. In that case we have that d(a*) = 0. So the inclusion in cohomology
tells us that H/(g) contains a subspace isomorphic to A/ a*. The last assertion of
the proposition now follows since by (g) = dim(a). O

Finally, let us use the Hochschild-Serre spectral sequence to obtain a useful
characterisation of the (3,4)-trivial Lie algebras g that satisfy the condition
b1(g) < 3. The following result allows us to construct (infinite) families of
(3,4)-trivial Lie algebras and provide full classifications in low dimensions.

Theorem 5.16. A Lie algebra g with derived algebra ¢ = [g,g] and satisfying the
condition that bi(g) < 3 is (3,4)-trivial if and only if g is solvable, ¢ is nilpotent and
either
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(i) € has codimension one and H?(€)® = 0 = H>(¢)9 = H*(¢)9, or
(ii) € has codimension two and H' (€)% =0 for 1 <i < 4.

Proof. The codimension one result is an immediate consequence of the formulae
H*(g) = H () + H* "1 ()%,

obtained from analysing the Hochschild-Serre spectral sequence relative to a
codimension one ideal h; here one chooses X € g\ b.

Let us now treat the codimension two case. So let g be a Lie algebra, and let
£ be a codimension two ideal containing the derived algebra of g. Write a = g / £.
Then the result by Hochschild and Serre tells us that the E;-page of the spectral
sequence converging to H*(g) is given by

E}T = HP(a, H(¥)).

Consequently, we need to compute cohomologies of complexes
OV =vi S Clvi) = a* oV S (Vi) = A2a* @V,
with Vi = Hi(¢),
(@°f)(A)=A-f, Acq,
and
(@' (fi, f2)) (A1, A2) = A1~ o= Az - fu,

where A1, A; is a basis for a and a* @V’ = 2V
By assumption, £ is a codimension two ideal. Therefore the E;-page of the
spectral sequence takes the form:

CoO(v4) Ccl(vH) cC3(v?)
Co(v3) CY(v3) C*(v3)
Co(v?) CH(Vv?) C3(v?)
co(vly ctvtl) c3(vh
R 2R R

Note that V? = R with trivial a-action. In particular, the d;-maps on the bottom
row are zero, and we have the E;-page:

HO(V4) Hl(v4) HZ(V4)
HO(V3) Hl(V3) HZ(V3)
HO(V?) HYV?) H?*(V?)
HO(VvYy HY(VY) H*2(VY)
R 2R R
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The vanishing of b3(g) implies that H'(V?) = 0, H°(V?) surjects onto
H?(V1), and H°(V3) injects into H?(V?). Now H'(V?) is the middle cohomol-
ogy of

V2 2V% - V2
When H!(V?) = 0, counting dimensions, we find that the first map must be
injective and the last surjective, so H(V2) = 0 = H2(V?), and therefore the
g = 2 row of the E>-page vanishes.

By the same token, the vanishing of by(g) implies that H!(V3) = 0, HY(V?3)
surjects onto H2(V?), and H°(V*) injects into H?(V?). As above, H!(V?) is the
middle cohomology of

V3 2v? V3,
so a dimension count shows that the condition H'(V?) = 0 yields injectivity of
the first map and surjectivity of the last. Hence H°(V3) = 0 = H?(V3).

Altogether, we now find that the E;-page takes the form

0  HY(V%) HX(V%)
0 0 0
0 0 0
HO(VY) HY(VY) 0
R

R 2R

As HO(V?) = Hi(¢)?, the condition H'(£)® = 0 is obviously required for
i = 2,3 and 4. In order to obtain the condition H!(€)? = 0 a further analysis is
needed.

We claim that the vanishing of H!(£)? is equivalent to the vanishing of
H?(V?'); observe that in order to prove this assertion we might as well change to
work over the complex number field. If we can prove the claim, statement (ii) of
the theorem will follow. Our problem thus comes down to showing that if we
have a two-dimensional Abelian algebra a which acts on the finite-dimensional
space V, then one has that V* = 0 if and only if Im(a)(V) = V, or equivalently,
V® £ 0 if and only if Im(a)(V) € V; here Im(a)(V) = Im(A;) + Im(Az) with
a = (A1, Ay). To prove the latter of these two assertions, we first decompose V
in terms of generalised eigenspaces:

V= @ W, Vh={veV:3INeNst (4-2A)N(0)=0,i=12}.
Aj:()‘}/)‘%)

Now note that for any A # 0 we have that Im(a)(V),) = V), since at least
one A; restricted to V) acts invertibly. This also means that the fixed points
must be found in Vj. But the restrictions of A1 and A; to V are nilpotent
endomorphisms. So, by Engel’s theorem, these restrictions are simultaneously
upper triangularizable. Hence Vy # 0 if and only if Im(a)(Vp) € V.

In conclusion, the condition V* # 0 holds if and only if Im(a)(V) C V, as
required. O
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Inspection shows that several of the algebras constructed in Section 4.5.2
satisfy the first of the above restrictions on the invariant cohomology of ¢ = g'.
Hence they provide us with examples of (2,3, 4)-trivial algebras.

Example 5.17. The (2, 3)-trivial Lie algebra
ps = (0,21,21 + 31,2.41 + 32,351 + 42)

also satisfies the condition by(g) = 0. To see this take a basis A, Ey, ..., E4 as in
Example 4.20. Then we find that the induced action of A on H*(£) = (Ej234)
is given by multiplication by 7; here Ejy34 denotes E; A E; A Ez A E4. So clearly
H*(¢)¢ = {0}, as required.

Note that the second Lie kernel of ps is non-trivial. Direct calculations show
that

Py, = (E134, En3a,4E123 + A A E4,5E124 + A N Ezg). (5.10)

%

In general, we may calculate the dimension of the second Lie kernel of a
(2,3,4)-trivial Lie algebra via the formula

dimPy = (n—1)(n—2)(n—3)/6.

This follows since dim A3 g* = dim Z3(g) + dim B*(g), and dim Z3(g) = (n —
1)(n—2)/2, by (2,3)-triviality, while B*(g) = Z*(g) = P}, by (3,4)-triviality.
Finally, let us note that there is a systematic way of obtaining the basis (5.10)
in Example 5.10. Suppose that we have a (2,3,4)-trivial Lie algebra g = (A) + ¢
with ad 4 acting invertibly on ¢ then we have an injective map ®: A3t — A3g
given by
r , . . r . . . , . .
K AKSAKL = ) (KU AKLAKS + AN (adal) ™ o LKI ARLAKD) ).
j=1 j=1

We claim that this map is an isomorphism onto the second Lie kernel P,. For
dimensional reasons, it obviously suffices to prove that ®(A3¢) C P,. This
assertion follows since

L(AA (adal,) o (L(Ky AKy AK3))) = —ada((adal,) " o (L(Ky A Kz AK3)))
— AAL((adal,) o (L(Ky AKa AK3)))
= —L(Ky NKa AK3) — A A (adal,) ' o (L2(Ky A K2 AK3))
= —L(K; AKy AK3),

where we have used that L is equivariant and squares to zero. Note that ®
commutes with the adjoint action of A: ®oady = ady o P.
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5.3 Examples and further discussion

5.3.1 Exterior powers of the cotangent bundle

In Section 4.4.1 a basic example of a 2-plectic geometry was provided by the total
space of the second exterior power of the cotangent bundle of a smooth manifold.
This example obviously generalises. The kth exterior power M = A¥T*N of a
base manifold N carries a canonical k-form §, given by

,Ba(Wl,. . .,Wk) = a(rc*Wl,...,rc*Wk), Wi,..., W e T,M,

where 71: AFT*N — N is the bundle projection. From this one defines a closed
(k+1)-form « on M, via
a = dp. (5.11)

This form is k-plectic: in local coordinates (q',...,4") on N we have B =
Y <. <i Pir.iydq" A - -+ A dg’s defining local coordinates (q',pj, ;) on M =
AFT*N in which a = Yy <oy APip i N dqil AN dqik.

If G is a group of diffeomorphisms of N, then there is an induced action on
M = AFT*N which preserves  and hence a. As a = dB, Proposition 5.9 gives
that there is a multi-moment map v determined by (5.11), which here reads

(v(a),p) = (=1)a(pn)
where py is the field of k-vectors on N determined by p € P;. To summarise:

Proposition 5.18. If a Lie group G acts on a smooth manifold N, then the induced
action on M = AFT*N admits a multi-moment map with respect to the canonical
k-plectic structure. ]

As a concluding remark, let us note that the k-plectic manifold (M, a) from
above appears as a central object in multi-symplectic field theory [CIdL99,
Hél11]. Moreover, note that the form « is not only k-plectic, but also determines
a unique subbundle W C TM =: V that satisfies the following two conditions
ateacha € M:

(1) wq Awyaa =0 for all wy, wy, € Wy;

(ii) dim W, = dim A*(V,/W,) and dim W, > dim V,/W,.
In terms of the local coordinates (qi, Pi,..i,), the subbundle W is spanned by the
vector fields d/dp;, . ;,.

These two additional properties distinguish the restricted class of k-plectic
manifolds mentioned in Remark 5.1, that is, the class of closed geometries for
which a generalised Darboux theorem [Mar88, Theorem 2.1] is valid.

5.3.2 HyperKidhler manifolds with special symmetry

We will now explain how the work of Poon and Swann [Swa91, PS03, PS01,
Swal0Oa] can be rephrased using the notion of multi-moment maps for closed
geometries. Recall that a quaternion-Hermitian manifold Q differs from an
almost hyperHermitian manifold in that it carries only locally defined almost
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complex structures I, | and K. More precisely, Q is a 4n-dimensional Riemannian
manifold with a rank three subbundle G C End(TM) which is locally trivialised
by anti-commuting almost complex structures I, ] and K that satisty K = I]. In
addition, ¢ must be compatible with G, meaning ¢(ZX,ZY) for each X,Y € T,,M
and Z € G,.

A quaternion-Hermitian manifold carries a non-degenerate four-form Q.
Locally we may write this fundamental form as

QI(,U[/\(U[—FCU]/\CU]—I—(UK/\CL)K. (5.12)

In dimension eight and above one says that Q is quaternionic Kihler if the
fundamental form is parallel, VI€Q = 0. In dimension four a quaternionic
Kéhler manifold is defined to be an oriented Riemannian manifold which is
Einstein and self-dual.

Swann showed [Swa91] that to any quaternionic Kahler manifold Q*"
of positive scalar curvature one may associate a special type of hyperKah-
ler manifold M*"** = /(Q) which acts as a hyperKahler generalisation of
the twistor space; this is known as the Swann bundle and may be written as
U(Q) = F Xgpm)sp(1) H*/{£1}, where F is the principal Sp(n) Sp(1)-bundle of
frames over Q. Conversely, given a (4n + 4)-dimensional hyperKéahler manifold
admitting a certain type of SU(2)-action, a version of the Marsden-Weinstein
reduction produces a quaternionic-Kdhler manifold of positive scalar curvature.
Our aim is to explain how this inverse construction may be formulated very
naturally via multi-moment maps for the underlying closed geometry.

Suppose that (M, I, ], K) is a hypercomplex manifold, and g is a hyperKéhler
metric on M. Let a be a real number. A vector field X on M is called a special
homothety of type a if it satisfies the following conditions:

Lxg = ag,
Lixg=0, LixI=0, Lix]=-aK, LixK=a],
Lixg=0, LixI=aK, Ljx]=0, LjxK=—al,
Lxxg =0, LxxI=—a], Lxx]=al, LxxK=0.

(5.13)

Remark 5.19. In the more general context of HKT geometry, one considers special
homotheties of type (g,7), see e.g. [PS03]. In that terminology we are dealing
with homotheties of type (4, —a). Such symmetries are related to supercon-
formal symmetry [dWKVO00]; the relevant superalgebra D(2,1; —2) appears in
Kac’s classification [Kac77]. A

The equations in (5.13) have a number of consequences. Firstly we observe:

Lemma 5.20. If (M, g, I, ], K) is a hyperKiihler manifold, and X is a special homothety
of type a, then

VKW:%@. (5.14)

Proof. As VIC is metric and torsion-free we have the relation

(Lyg)(Z,W) = g(VEY, W) +g(Z, VifY) = (VHY)(Z, W) + (VY (W, 2).
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Combining this observation with the relation £Lxg = ag, it follows that we have
a decomposition

1
VX = 598 +ua,

where « is a two-form on M. As V€] = VI¢] = V€K = 0 we may rewrite
this expression:

g(vLC(IX)/ Z) = %awl(ylz) +IX(IY,Z), =1, ]/K
Now observe that 0 = (Lzxg)(Y,Z) = ¢(VI(ZX),Z) + g(VEE(ZX),Y) =
a(ZY,Z) +a(ZZ,Y). Consequently, we have that

a(1Y,Z) = a(Y,1Z) = a(Y, JKZ) = a(JY,KZ) = a(K]Y, Z)
= —ua(1Y,2),

which implies a = 0, as required. O
A special homothety generates a local action of H*.

Lemma 5.21. Let X be a special homothety of type a # 0. Then the quadruple
{X,IX,]X,KX} generates a local action of H*.

Proof. The statement follows by calculating the commutation relations. We first
rewrite (5.14) in the form VX = %a and use that VT = 0 to obtain

1 1
[X,ZX] = VIE(ZX) - VKX = S0IX = 2aIX =0, T=1]K

Next we find that
1 1
[IX,JX] = VIZ(JX) = Vi (IX) = 5a]I(X) — 5al]X = —aKX
with similar results for cyclic permutations of (I, ], K). O

This lemma implies that a special homothety of type a # 0 for which IX, JX,
KX are complete vector fields generates an isometric action of SU(2) = Sp(1).

Lemma 5.22. Let (M, g, I, ], K) be a hyperKihler manifold, and X a special homothety
of type a # 0. Assume IX, JX,KX are complete vector fields. Then the associated
SU(2)-action preserves the closed four-form Q) = wy A wi + wj A wj + wk A wk.

Proof. From the defining relations (5.13) we find:
£1Xa}1 = 0, ﬁ[x&)] = —awk, L’,IXwK = awj.
It now follows that

LixQ = ,ij(a)] Nwr 4wy Awy + wg N (dK)
= —2awj N wg + 2awj N wg = 0.

Similar calculations show that L;x() = 0 = Lxx(), so that ZX preserves () for
7 =1,],K, as required. ]
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In this way we obtain a closed geometry (M, )) with symmetry group
SU(2). Moreover, there is an associated multi-moment map:

Proposition 5.23. Let (M, g, I, ], K) be a hyperKihler manifold, and X a special ho-
mothety of type a # 0. Assume 1X, [X,KX are complete vector fields. Then the
associated closed geometry (M, Q)) with its SU(2)-symmetry admits a multi-moment
mapv: M — R = ,P;u(Z) given by

3
V= —EHXH4. (5.15)

Moreover, the function p = |/ —57 satisfies
ddzp =wz, T=1],K, (5.16)
and is thus a hyperKihler potential.

Proof. We first observe that
IX A JX AKXS (w7 Awr) = =2||X|IPX°, T =1,],K.

Therefore we have IX A JX AKX1Q = 6| X||*X".
Using metric compatibility of V€ together with the relation VI€X = 1a we
now find that

d(IX[1*)(Y) = 2g(VY°X, X) = aX’(Y),

ie., d(||X|*) = aX’. Consequently, we have that
(|| X||*) = 24| X|?X° = —%IX/\]X/\KXJ Q.

Therefore the SU(2)-invariant function (5.15) is a multi-moment map for (M, Q}).

In order to prove the last statement of the proposition first note that the
function f = (1]|X||)? satisfies df = —1ZX wz for T = I,],K. Now observe
that

1 1
dxf(Y) = —df(KY) = E(]X_nw])(KY) = Ew;(]X,Y).
Consequently
ddKf = d(%]X_JaJ]) = %E]XC(J] = WK.

Similar computations show that dd;f = w; and dd;f = wj.

v

In conclusion, the function y := f =, /—37,

is a hyperKéahler potential. [

Remark 5.24. Note that Proposition 5.23 gives an identification between the level
sets of v and those of y. One has m € v~1(t) if and only if m € u~!(s) with

5= /=753 A
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Applying essentially the same arguments as in the proofs of [Swa91, Theo-
rem 5.1] and [PS03, Theorem 4.3], we will now establish a quaternionic four-form
analogue of the Marsden-Weinstein reduction which is valid for the data given in
the statement of Proposition 5.23. Before we formulate the general result, let us
give a conceptual explanation of the construction, which is valid if dim M > 12
and the quotient Q = v—1(#)/SU(2) is a manifold.

Pointwise we have a quaternionic splitting T,,M = V,, ® H,,, where V,,
is defined as the real span of {X,,, IX,,, ] X;u, KXy} and H,, is the orthogonal
complement. We observe that V contains all vector fields tangent to the SU(2)-
action while H is an SU(2)-invariant distribution of horizontal vectors for the
projection 7: v=1(t) — Q. Let  denote the inclusion v~1(t) < M. Then Q
carries a four-form Q) which is uniquely determined by the relation

Q= m*Q. (5.17)

As 71*(Q) is just the restriction of Q) to #, the four-form Q) is of the correct
algebraic type to determine a quaternionic structure on Q. In addition, the injec-
tivity of 77* combined with the relation (5.17) imply that dQ) = 0. Consequently,
the reduced space Q is quaternionic Kéhler.

The general result can be phrased in the following way.

Theorem 5.25. Let (M*"*4,¢,1,],K) be a hyperKihler manifold, and X a special
homothety of type a # 0. Assume the vector fields 1X, | X, KX are complete, and let
SU(2) be the corresponding subgroup of H*. Let v denote the associated multi-moment
map (5.15). Then for any non-zero t € v(M), the group SU(2) acts semi-freely on
v=1(t), and the quotient Q*" = v~1(t)/SU(2) is a quaternionic Kihler orbifold of
positive scalar curvature.

Proof. As v = —%HXH4 and dv = —6|X||*X’, each non-zero t € v(M) is a
regular value of v, and X does not vanish on v~!(t). The subgroup SU(2) acts

semi-freely on
Xt = V_l(t),

since ZX preserves ¢ and commutes with X, for Z = I,],K. As SU(2) acts
isometrically, the quotient Q@ = &} /SU(2) inherits a Riemannian metric.

Let r: A — Q be the projection. In order to define local almost complex
structures I, Jo, Kg on Q, note that as ker 71, is spanned by X, | X, KX, the hor-
izontal distribution H = (ker 77,.)* C TAX; is 4n-dimensional and is preserved by
I, ], K. Consequently, each point x € 7-1(g) C X; defines a triple Io, Jo, Kg of
anti-commuting almost complex structures on T,Q = H, that satisfy IoJo = Kg.
Moreover, given any other point x’ € 777(¢), the corresponding triple Ify, J, Ky,
can be expressed in terms of linear combinations of the triple Iy, Jo, Ko defined
by x. We therefore have an almost quaternionic structure Gg on Q. As gg is
compatible with each of the almost complex structures Ig, /o, Ko, the above
arguments show that Q is in fact a quaternion-Hermitian orbifold.

On Q we now define V9: T'(TQ) — I'(TQ ® T*Q) via the relation
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where Y*,Z are SU(2)-invariant lifts of Y, Z € T(TQ) to smooth sections of
H C TX;. One may verify that V@ is in fact the Levi-Civita connection of
go- Indeed, fairly straightforward calculations (see, e.g., the proof of [PS03,
Theorem 4.3]) show that V€ is metric and torsion-free. Also observe that V<
preserves the almost complex structures: as ZoY = 7. ((fiI + f;] + fxK)Y™) for
some functions fi, fj, fx on X}, we have that

(V920)(2) = . (VS (UL + f1] + fK)ZH) — (il + fi] + fK) V52
= (1 + ()T + (YK ZH),

which is a linear combination of 15Z, [oZ, KgZ, as required.

Summarising the above, we have shown that the Levi-Civita connection on
Q preserves the rank three vector bundle Gg. Except in four dimensions, this
observation allows us to deduce that Q is a quaternionic Kdhler orbifold.

In dimension four one must calculate the curvature, in order to check self-
duality and the Einstein condition. The strategy is outlined in the final part of
the proof of [Swa91, Theorem 5.1]: first one verifies that the curvature tensor
lies pointwise in the complement of AY*(Q) ® AZ°(Q) for Z = I,],K, which
implies the self-duality. In order to check the Einstein condition one may apply
an immersion computation to the Riemannian submersion X; — Q. O

Remark 5.26. We emphasise that the above construction may be generalised
to the pseudo-Riemannian setting, cf. [Swa91]. In this way it is possible to
produce quaternionic Kidhler quotients of negative scalar curvature, see, e.g., the
discussion in [PS03]. A

Example 5.27. The fundamental example illustrating Theorem 5.25 comes
from taking M = R**4\ {0} = H"'!\ {0} with its standard flat metric
g = Z%f{‘* dx% and hypercomplex structure I, ], K induced by right multiplica-
tion by —i, —j, —k, respectively. The dilation vector field X = 2214{4 Xp0/0xy is a
special homothety of type 2. The associated multi-moment map and hyperKih-
ler potential are the functions:

4n+4 4n+4

2
3 1
v(X1,. .., Xania) = -5 ( ) xi‘) and  p(x1, ..., Xappa) = 1 Y A
(=1 =1

The reduced space Q = v~!(t)/SU(2) is the quaternionic projective space
HP(n) = Sp(n+1)/Sp(n) Sp(1) which is one of the so-called Wolf spaces
[Bes08, Table 14.52]. Apart from the quaternionic projective space, one has the
Wolf spaces:

ni2y _ UM+2) = paay SO +4) >
Gr(C"*?) = Um) u)y’ Cra(R"™) = SO(n)SO(4)’ 50(24)/
. E, E; Eg

Sp(3) Sp(1)"  Su(6) Sp(1)"  Spin(12) Sp(1)"  E7 Sp(1)’
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where the spaces arising from the classical groups have dimension 4n while those
arising from the exceptional groups have dimensions 4 x 2 = 8, 4 x 7 = 28,
4 x10 = 40, 4 x 16 = 64 and 4 x 28 = 112, respectively. All these spaces
arise via the reduction procedure described in Theorem 5.25, see [Swa91] or
[SwalOa]. &

5.3.3 Homogeneous closed geometries

Finally let us generalise the description of the homogeneous strong geometries
presented in Section 4.4.2. If G acts transitively on a closed geometry (M, ),
a € QM1 (M), then we may define ¥: M — Z¥1(g) via (5.7), and the image
will be a G-orbit in ZkH(g). Conversely, formula (5.7) can be used to define
closed geometries that map to a given orbit in Z¥1(g): given ¥ € ZF1(g), let
Ky denote the connected subgroup generated by ker'¥ = {X e g: Xu¥ =0},
for any closed group H of G with H C Ky, equation (5.7) defines a closed
(k +1)-form « on the homogeneous space G/ H and this closed geometry maps
to G- ¥ c ZH1(g).

Now suppose that ¥ = dpp for some g € Py. If the map dp is injective,
then the orbits G - ¥ and G - B are identified and the map ¥: M — Z"+1(g) may
now be interpreted as a map v: M — Pyj. Injectivity of dp is guaranteed by the
condition by (g) = 0. When this holds, the proof of Theorem 5.12 shows that v is
a multi-moment map for the action of G.

Theorem 5.28. Suppose G is a connected Lie group with by(g) = 0. Let O = G- B C
Py be an orbit of G acting on the dual of the kth Lie kernel. Then there are homogeneous
closed geometries (G/H,a), with « € Q¥ 1(G/H) corresponding to ¥ = dpf, such
that O is the image of G/H under the (unique) multi-moment map v.

The closed geometry may be realised on the orbit O itself if and only if

staby B = ker(dpp). (5.18)
In this situation, the orbit is k-plectic and v is simply the inclusion O — Py.

Proof. It only remains to prove the assertions of the last paragraph of the
theorem. We have O = G/K with K = stab¢ 8, a closed subgroup of G. Now
equation (5.18), shows that K has Lie algebra ker(dpp), so the component of
the identity K9 of Kis K = Ky for ¥ = dppB. In particular, ¥ vanishes on
elements of ¢ and induces a well-defined form on TgO = g/ . The result now
follows. O

Remark 5.29. In the case when k = 1, we have
ad;ﬁ = —Xudpp — (X_nﬁ) oL =-XudB Xegy,

by (4.13), since L = 0 and dp = d for k = 1. So (5.18) automatically holds, and
the coadjoint orbit in g* is a symplectic manifold endowed with the celebrated
Kirillov-Kostant-Sourieau symplectic structure. A

103



5 MULTI-MOMENT MAPS FOR CLOSED GEOMETRIES

Example 5.30. Suppose G is a (k, k + 1)-trivial Lie group. Then, taking H = {e},
we see that every ¥ € ZF+1(g) gives rise to a closed geometry on G with
multi-moment map whose image is diffeomorphic to the G-orbit of ¥. &
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Chapter 6

Exceptional holonomy metrics
and torus symmetry

ETRICS OF EXCEPTIONAL HOLONOMY have received much attention from
both mathematicians and physicists over the years. The mathematical mo-
tivation for studying exceptional holonomy metrics was initiated with Berger’s
classification of possible holonomy groups for irreducible non-symmetric Rie-
mannian manifolds [Ber55], though their existence was first shown much later in
Bryant’s paper [Bry87]. Significant results then followed, in particular it is worth
mentioning the complete exceptional holonomy metrics discovered by Bryant
and Salamon [BS89] and Joyce’s constructions [Joy96b, Joy96a, Joy00] of compact
Riemannian manifolds with holonomy G, and Spin(7). The ideas of Bryant-
Salamon and Joyce greatly influenced later developments. While some authors
have studied metrics of cohomogeneity-one [CS02b, DW04, Reil0Ob], others have
extended and refined Joyce’s methods [Nor08, KN10, Cla10]. From the physical
perspective one motivation for studying exceptional holonomy metrics comes
from superstring theories [AW02, AG04, CGLP02b, CGLP03a, GS02, SS09].

In this chapter we study how to reduce toric torsion-free G- and Spin(7)-
manifolds to tri-symplectic four-manifolds. We also explain how to obtain all
torsion-free G- and Spin(7)-manifolds with free T?- or T3-symmetry, respec-
tively, starting from tri-symplectic four-manifolds. In this way we obtain a local
classification result, which is similar to the Gibbons-Hawking ansatz for hyper-
Kéhler surfaces with circle symmetry. Finally, we present several examples that
illustrate our reduction and reconstruction procedures. Some of the examples
complement previous ones that have appeared in the context of domain wall
problems in supergravity theories [GLPS02, MMO05, GS07].

6.1 Reduction of torsion-free G,-manifolds

Let us recall the fundamental aspects of G,-geometry from [Bry87]. On R” we
consider the three-form ¢y given by

$o = e123 + e1(eas + e67) + ex(eas — es7) — e3(eay + es¢), (6.1)
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where ey, ..., ey is the standard dual basis and A signs have been omitted. The
stabiliser of ¢ is the compact 14-dimensional Lie group

Gy ={8 € GL(7,R) : g"po = oo }

This group preserves the standard metric on go = Y/_;e;2 on R” and the
volume form voly = ejzs67. These tensors are uniquely determined by ¢y
via the relation 6go(X,Y) voly = (XJ¢o) A (Ya¢o) A ¢o. The Hodge *-operator
gives a four-form

*Po = ey567 + €23(ee7 + ea5) + e13(es7 — esp) — e12(es6 + eq7).

A Gp-structure on a seven-manifold Y is given by a three-form ¢ € Q3(Y)
which is linearly equivalent at each point to ¢g. It determines a metric g, a
volume form vol and a four-form *¢ on Y. The Gy-structure is called torsion-
free if both of the forms ¢ and x¢ are closed. This happens precisely when
VI = 0 [FG82]. One then calls (Y, ¢) a torsion-free Gy-manifold. In this
situation the metric ¢ has holonomy contained in G, and is Ricci-flat. This
implies real-analyticity of g in harmonic coordinates.

Since a torsion-free G-geometry comes equipped with a closed three-form,
we may study multi-moment maps for such manifolds. Let us assume that (Y, ¢)
has a two-torus symmetry with a non-constant multi-moment map v: ¥ —
Pr: = R. Choosing generating vector fields U and V for the T?-action, we
have dv = ¢(U, V,-). The latter is non-zero if and only if U and V are linearly
independent. So T? acts locally freely on some open set Yo C Y.

Remark 6.1. On a Ricci-flat manifold the metric dual one-form of an infinitesimal
isometry lies in the kernel of the Laplacian [Kob72, Theorem 2.3]. This implies,
by elliptic regularity, that the generating vector fields U, V are real-analytic. A

We may define three two-forms on Yy by
wo=VilUsx¢p, wy=Us¢p and wr=V_i¢.

To relate these to the Gy-structure, consider the positive function & and one-
forms 0; given by

(guugvy — gv) > =1
01 = (g’ — guvV’®), 62 = K2 (guuV’ — guvl’),

where U’ = ¢(U,-) and guu = g(U, U), etc. Note that h is well-defined on Y,
and that (61, 6,) is dual to (U, V).

Proposition 6.2. On Y\, the three-form ¢ and the four-form *¢ are

(l):]’IZCUQ/\dl/—I—aJ1/\91—|—(U2/\92—|—d1//\92/\91,
*(P:aJo/\91/\92+h2(gvvw1Agz/\dv—guuwz/\el/\dl/
+guv(CU1/\91—w2/\92)/\d1/—|—%CU0/\a)0).
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Proof. Working locally at a point and using the T?-action we may write the first
two standard basis elements of R” as E; = al = U/gb/j, E, = bU+cV =

hgt2(V — guvgyiU). We then have 6; = ae; + be; and 6, = cep. Now using
(6.1) we get ac dv = es3, ac wy = —(656 + 647), awi = ex3 + ey5 + egy and

acwy = —a(€13 — €46 + 657) — b(€23 + e45 + 867).
The given expressions now follow. O

Now suppose that t € v(Yy) C R is a regular value for v: Yo — R. Then
X; = v~1(t) is a real-analytic hypersurface with unit normal N = h(dv)*. This
inherits an SU(3)-structure (o, 1+) given by

g = N_ng:l’le-i—h_lgl/\Qz, lp+ :t*¢zt*w1A91+t*w2A92,
P = —N_uxp = h(gvvl*a)1 N6y — guu[*wZ AN (6.2)
+ guv(l*wl N0 — l*wZ A\ 92)),

where 1: X; — Y is the inclusion. As shown in [CS02a], oriented hypersurfaces
in torsion-free Gy-manifolds are half-flat, meaning that

cANdoc=0 and dy, =0. (6.3)
Suppose T? acts freely on X; = v 1(¢).
Definition 6.3. The T?-reduction of Y at level t is the four-manifold
M=vYt)/T? = &,/ T

Proposition 6.4. The T?-reduction M carries three pointwise linearly independent
symplectic forms defining the same orientation.

Proof. Consider the two-forms wy, w1, w2 on Yy. These forms are T2-invariant
and closed, since dwy = Ly (Usx*¢) = 0 and dw; = Ly¢ = 0, cf. (4.1). Fur-
thermore, as V_ow; = dv, their pull-backs to &} = l/*l(t) are basic. Thus
they descend to three closed forms oy, ;7 and 0, on M. The proof of Propo-
sition 6.2 shows that at a point hoy = —(es6 + ea7), hoy = c(ess + €g7) and
hoy = a(ess + e75) — b(ess + e67), with ac = h # 0. Thus 0y, 01 and o, are
non-degenerate symplectic forms defining the same orientation. O

The expressions for the forms in this proof show that they satisfy the follow-
ing relations on M:

2 2 -1 2 -1 2
h* 00" = gy o1” = &yv 72~ = 2voly, 6.4)
oo Nop =0=09 Aoy, (71/\0'2:2guvv01M.

Here voly is induced by the element e4567 on in Y, which is the volume element
on directions orthogonal to the T?-action on ;. Note that (61, 6,) is a connection
one-form for X; — M regarded as a principal T?-bundle.
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Inversion via a flow We now consider how this construction may be inverted,
producing the G,-geometry of Y from a triple of symplectic forms on a four-
manifold M. Note that the relations (6.4) show that the symplectic forms o;
define the same orientation on M and are pointwise linearly independent.
Indeed the intersection matrix Q = (q;j) with o; Aoj = qijag-, fori,j=1,2,3,is
positive definite. As in [DK90], the positive three-dimensional subbundle AT =
(00,01,02) C A2T*M corresponds to a unique oriented conformal structure
on M.

Definition 6.5. A coherent symplectic triple ¢ on a four-manifold M consists
of three symplectic forms 0y, 1, 0> that pointwise span a maximal positive
subspace of A?T*M and satisfy oo Aoy =0 fori =1,2.

Let Q = (qij)ij=1,2 be the lower-right 2 x 2 submatrix of Q. Since detQ is
positive, we may write 1 = y/detQ € C*(M).

Proposition 6.6. Let (M, %) be a coherently tri-symplectic four-manifold. Suppose
X is a principal T?-bundle over M with connection one-form ® = (61,6,). Then the
forms o, P+ given by

(7:h0'0+h_191/\92, l/J+=0’1/\91—|—0’2/\92,

_ (6.5)

- = h1(g001 A 02 — q1102 A 01 + qra(01 A 61 — 02 A 62))
define an SU(3)-structure on X. This structure is half-flat if and only if dOT =
(01, 00) A with (A, Q) = Tr(AQ) = 0.

Proof. Choose a conformal basis ey, ..., ey of Ty M so that ho; are as in the proof
of Proposition 6.4 with cz = g11, bc = —q12 and a? = g2 — b2. This is consistent
with the equation ac = h. Now inspired by the proof of Proposition 6.2 we write
61 = ae; + be; and 0, = cep. The basis ey, e, €7, €4, €, €5 is then an SU(3)-basis
for T* X, with defining forms given via (6.2) for guu = 411/ h?, guv = q12/ h?
and gvv = q22/h*.

For the final assertion we need to study the equations (6.3). Firstly, o A
do = o9 Adby A 6y + 0 A dBy A 61, which vanishes only if dO* is orthogonal
to 0p. This implies that d®™ is a linear combination (¢1,02)A of o7 and 0.
Now d¢, = 1 A dB; 4 02 A\ dB,, and the vanishing of i gives the constraint
Tr(AQ) = 0. O

Remark 6.7. The SU(3)-structures found here are more general than those stud-
ied in [GP04] since the connection one-forms are not orthonormal. A

Remark 6.8. Existence of two-torus bundles over a coherent tri-symplectic four-
manifold (M, €) is related to Chern-Weil theory. One finds that for any closed
two-form F with integral periods, F € Q32 (M,R?), there exists a T?>-bundle
v: X — M with connection one-form © that satisfies 7},(d®) = F. If
such a two-form has self-dual part F, satisfying the orthogonality condition
(F1+, Q) = 0 of Proposition 6.6, then we will say that F is orthogonal. A
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Studying a certain Hamiltonian flow, Hitchin [Hit01] developed a relation-
ship between torsion-free Gy-metrics and half-flat SU(3)-manifolds, see also
[CLSSH11]. In particular, he derived evolution equations that describe the
one-dimensional flow of a half-flat SU(3)-manifold along its unit normal in a
torsion-free G,-manifold. When the flow equations have a solution, this deter-
mines a torsion-free Gy-metric from a half-flat SU(3)-manifold. In inverting
our construction, one could use Hitchin’s flow on the half-flat structure of
Proposition 6.6. However, Hitchin’s flow does not preserve the level sets of the
multi-moment map: the unit normal is h(dv)*, but 9/dv = h?(dv)*. It is thus
more natural for us to determine the flow equations associated to the latter
vector field.

Proposition 6.9. Suppose T? acts freely on a connected seven-manifold Y preserving
a torsion-free Go-structure ¢ and admitting a multi-moment map v. Let M be the
topological reduction v=1(t)/T? for any t in the image of v. Then M is equipped with
a t-dependent coherent symplectic triple 0y, 01,0 and Xy = v=1(t) carries the half-flat
SU(3)-structure (o, ) of Proposition 6.6. The forms on X} satisfy the following
system of differential equations:

Y. = d(ho)
(30°) = —d(hy-),

where ' denotes differentiation with respect to t.

Conwversely, given a real-analytic half-flat SU(3)-structure of the form (6.5) on a
six-manifold Xy. Then the system (6.6) admits a unique solution on some neighbour-
hood of Xy x {0} C Xy x R and that solution determines a torsion-free Go-structure.

(6.6)

Proof. We have
p=0cANhdv+1py and x¢p = yP_ /\hdv—f—%az_
These have derivatives

dp = (hdo+dh No) Ndv +dip,
dx¢ = (hdp_ +dh Np_) Ndv+o Ndo

Half-flatness of (o, 1) gives dp = 0 = dx¢ if and only if

0= aaVJ dp = —d(ho) +¢'. and 0= aavJ dxp =d(hp_) +o A0,
Hence we have a torsion-free G,-structure if and only if the evolution equations
(6.6) are satisfied.

Given real-analytic initial data, the Cauchy-Kovalevskaya theorem (see, e.g.,
[BCG'91, Theorem 2.1] or [Spi75, Chapter 10.4]) applies and provides us with
a unique solutions of the evolution equations on an open neighbourhood of
X()X{O}CX()X]R.
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We now rewrite the evolution equations as a set of first order differential
equations for the data on M. Firstly, the derivatives of 0y, 01, 02 and h with
respect to d/dv are:

0y =0, o4 =—db, 05=d0y,

12 (6.7)
hh 0y = (q110'2 — q120'1) A doy + (quaz — Q220'1) A dbs.

Using (6.7) and the definition of Q, we obtain the following equations:
01108 = =201 AdBy, Ghof =200 NdBy, qip08 =01 AdBy —oa AdBy.  (6.8)

If we combining (6.5) and (6.6), we get the following relations for the derivatives
of the connection one-form

og N\ 91 = d(]lz N0y — dl]zz N0y, 0g N Qé = dl]11 N0y — dq12 N 0q. (69)

Finally let us verify that these equations together with an initial half-flat
SU(3)-structure on &) of the form (6.5) already ensure that the family consists
of half-flat structures. Firstly we note that the flow equations (6.6) ensure that
the conditions o Ado = 0 and d¢; = 0 are preserved for all times. Next we
observe that the normalisation

=P AP

automatically holds, by construction of the defining forms (o, P+ ) and the
functions g;; and h. Hence, in order to have a family of half-flat structures, we
must verify that the condition

0'/\1/]+:0

is preserved for all times. To show this we note, by inspection, that (6.7) implies
that if do;(0) =0, i = 0,1, 2, then do; = 0 for all times. Combining this with (6.9)
enable us to conclude that that

(0’0 A d@l)/ =0= (0’0 N d@z),.

As d0;(0),d6,(0) € (0p) ", we thus have oy A df; = 0 for all times. We may use
this to deduce that

(oo A1) =0= (00 Aon)'.
Since we start out with a coherent triple, we deduce that
ooNop =0=09 N0y
for all times. Hence, 0y lies pointwise in ((71,02>L, which clearly ensures that
oAy =0, as required. O
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Remark 6.10. By solving the flow equations we obtain a holonomy Gy-metric
with T?-symmetry. Indeed, if gy is the time-dependent metric in the conformal
class on M with volume form %hzag, then the Gy-metric is explicitly

R2dt* + ga + W2 (q1167 + g2003 + q12(0162 + 0261)).

Note that Bryant’s study of the Hitchin flow [Bry10] shows that non-analytic
initial data can lead to an ill-posed Hitchin system that has no solution. A

Summarising the results of this section we have:

Theorem 6.11. Let (Y7, ¢) be a torsion-free Gy-structure with a free T?>-symmetry and
admitting a multi-moment map. Then the reduction M at a level t is a real-analytic
coherently tri-symplectic four-manifold and the level set X; is the total space of a T>-
bundle over M satisfying the orthogonality condition on Fy. = d®™ of Proposition 6.6.
Conwversely for real-analytic data, a coherently tri-symplectic four-manifold together
with an orthogonal F € Q2 (M, IR?) define a torsion-free Go-metric with T>-symmetry.
O

6.1.1 Examples

Let us now study some examples that illustrate the analysis of the previous
section. First we show that even in the flat case IR”, with isometric action
given by maximal torus T? C SU(3) acting via diagonal matrices, the geometry
of the reduction procedure is quite complicated. Thereafter we study multi-
moment maps associated with some of the known examples of torsion-free
cohomogeneity-one G,-structures. Finally we investigate hyperKahler four-
manifolds, complementing previous examples that have appeared in the context
of domain-wall problems in supergravity [GLPS02, MMO05, GS07].

Example 6.12. Consider Y = R” = R & C> endowed with the usual three-form
and the action of the standard diagonal maximal torus T> C SU(3). Concretely,
¢ is given by

¢ = %dx A (dzy ANdzy + dzo NdzZy + dzz A dz3) + Re(dzy Adzy Adzs),

and T? acts by (e, ¢'?) - (x,z1,22,23) = (x,€%21, /725,671 9)23). The action is
generated by the vector fields U = Re{i(21% - 23%)} and V = Re{i(ZZ% -
23%)}. It follows that the multi-moment map v: Y — R is given by

v(x,z1,22,23) = —% Re(z12223).

By definition, the T?-reduction of Y at level t is the quotient space M; =
v~1(t)/T?. In this case M is singular, whereas M; is a smooth manifold for
each t # 0. Indeed considering ®;: M; — R* given by

®i(x,21,22,23) = (%, 3 (|21 |” = [1z5]%), 5 (llz2]|” = l|z3]1%), Tm(z12223) )

D (x,u,0,w)
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we have global smooth coordinates on M; for t # 0.
In this smooth case, writing 47, = h?(gyydu — guvdv) and 41, = h?(guudov —
Quvdu), the two-forms oy, 03, 0, are given by

dog =dx Ndw+doANdu, 201 =dx Ndu+dw A1y,
200 = dx Ndv+ 1, A\ dw.

These forms depend (implicitly) on ¢ via the relations 4gyy = ||z1)* + ||z3]/%,
4gvy = ||za)* + ||zs]*, 4guv = ||z3]|* and z12023 = —4t + iw. In particular, guy
is a non-constant function, so the coherent triple does not specify a hyperKéhler
a structure. The (oriented) conformal class has representative metric

]’12
do? + Tedw® + dguutfy + 48vv ity + 4guv (utfo + 1oTfu)-
The curvature of the principal bundle v—1(¢t) — M; is given by

4d6; = th*dw A ((28vv — guv)mu + (§vv — 28uv)1o)
4d6, = th*dw A ((§uu — 28uv) 1 + (28uu — §uv)1o)-

In the singular case t = 0, the two-torus collapses in two ways: to a point
along the real axis R x {0} C R x C? and to a circle away from R x {0} along
z1 = 2p = 0,21 = z3 = 0or z2 = z3 = 0. The collapsing happens when
w = 0 and u, v satisfy one of the following three constraints: (1 = v < 0),
(u=0,v>0)or (u=>0,v=0). &

Example 6.13. A Lie group G acts on (Y, ¢) with cohomogeneity 1 if G pre-
serves ¢ and the largest G-orbits are of dimension six. Cohomogeneity-one G-
structures have been studied by a number of authors [CS02b, CGLP02a, DW04].
This class is particularly interesting, since it includes the complete holonomy
Ga-metrics discovered by Bryant and Salamon [BS89]. As almost effective spaces,
the principal orbits for a cohomogeneity-one G;-structure are of the form G/K
with K acting on the isotropy representation as a subgroup of SU(3). A case-by-
case study [CS02b, Theorem 3.1] (see also [Reil0Oa, Theorem 1 & Remark 5.3])
gives the following list of possibilities, up to finite covers:

su(3)
2
SO(4)
S0(2)

CP(3) = SU?;(ZL;(l)’ Fi(C%) =

Su(2)®  Su(2)2T!

3 x8%= = =SU(2)?, (R xT!= x T,

$3 x (81 =su(2)18, (sh)° =T°.

Case F(C3) Let us consider cohomogeneity-one Gy-structures with SU(3)-
symmetry. The principal orbits are thus F; »(C?) = SU(3)/T3, and the prin-
cipal isotropy group K = T3 = S{; X S}, acts on the standard representation
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AW = C3as Ly + Ly + LyLy, where Ly, Ly = C are the standard representa-
tions of S};, S, = U(1). From the isomorphism su(3) ® C = A(l]’1 we see that the
isotropy representation is [L1L,] + [L1L3] + [L3L2], where [L1L] denotes the
real vector space underlying L1Ly. A careful analysis [CS02b] now shows that
any SU(3)-invariant torsion-free Gy-structure on Y = I x SU(3)/T3 can be put
on the form

¢ = 4(fibrac1y — fabiscis + fibxcas)ds

(6.10)
+ 8¢ f1 f2f3(b12b13cas + bibascis + bizbasciz + c12¢13¢23),

at the point (s, eTI%) € Y. In the above, by, ..., 23 denote elements from our
usual basis in su(3)*, cf. Example 2.4. The parameter € is a fixed number +1,
and fi, f», f3 are non-vanishing real functions on I C R. These quantities must
satisfy the following set of differential equations in the parameter s on I:

(fifs) = (2f3) = (ifD) =2efifofs, (efifofs) = %(flz + 3+ £3). (611)

The system (6.11) ensures that the Go-form ¢ closed and co-closed [CS02b]. By
integration, we obtain three functions F;, F,, F3: I — R satisfying the equations

H=sB+AB=50+MB=30+H
3efifofs — b1 — B — F3 = €f1fof3.

Define a two-form B on Y given by

B = 8((efifafs — F3)biaciz — (efifafs — F2)bizciz
+ (efifafs — F1)bxscas),

at the point (s, eT%). The vector fields

U(s,gTI%) = (Rg)*(Al) and V(s,gTIz{) = (Rg)*(AZ)

(6.13)

are infinitesimal generators of a left action of T? C SU(3) on Y, and B is clearly
invariant under this action. Since

d(bipc12) = d(ci3biz) = d(bascas)
= b1pb13¢23 + b12bozcz + bizbozcrn + c1c13€23,

direct calculation shows that ¢ = dB. By Theorem 4.8, the strong geometry
(Y, ¢) therefore admits a multi-moment map v: Y — R given by

(s,gT%) Bs,gr) (UAV). (6.14)
We can write the map (6.14) more explicitly. If we think of a point in F; »(C?)

A
as an element ¢ = (g

then we claim that o
v(y) = —24¢ef1fof3 Im(ABDE) (6.15)
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at y = (s,¢Tz) € Y. In order to verify this formula, let us spell out the
quantities involved in determining the multi-moment map. Firstly, note that if
we, momentarily, ignore the Tz-action, then

bip(Ug) = bia((Lg1)+A1(Rg)«) = 4(AB — BA + DE — DE),

bip(Vg) = bia((Lg-1)«A2(Rg)+) = £(DE — DE + GH — GH),
cp(Ug) = 3(AB+ AB — DE — DE),
c12(Vy) = 3(DE + DE — GH — GH),
bis(Ug) = 4(AC — AC + DF — DF),
bi3(Vy) = 4(DF — DF + GK — GK),
ci3(Ug) = J(AC + AC — DF - DF),
c13(Vg) = 3(DF + DF + GK — GK),

by3(Ug) = 4(BC — BC + EF — EF),
by3(Vg) = 5(EF — EF + HK — HK),

(Ug) = 3(BC+ BC — EF — EF),
c23(Vg) = 3(EF + EF — HK — HK),

where b;, denotes the left-translate of b1, and so forth. We then have

biyc1o(Ug A Vy) = $(ABDE — ABGH — ABDE + ABGH + DEGH — DEGH)
= —3Im(ABDE),
where the last equality uses relations derived from the identities ¢~! = ¢* and
¢¢ ! =1 = g7lg; specifically the (2,1)-entry of ¢*¢ tells us that AB + DE +
GH = 0. Similarly, we find that
—by3¢13(Ug A Vg) = £(ADCF — ADCF + ACGK — ACGK + DFGK — DFGK)
= —3Im(ABDE),

bysca3(Ug A V) = $(EFBC — EFBC + EFHK — EFHK + BCHK — BCHK)
= —3Im(ABDE).
From these calculations and the last equality in (6.12), one readily obtains the
expression (6.15) for the multi-moment map.

Remark 6.14. It is worth emphasising that the above considerations include the
complete Bryant-Salamon metric on the total space A2 (CP(2)) of the bundle
of anti-self-dual two-forms over CP(2) [BS89]. In that case we can simplify the
formula (6.15) slightly, since the analysis in [CS02b] enables us to perform a
suitable parameter change. Indeed, if we define a positive function r on I by the
relation 7> = fZf2, then we have

fifafs = r(r* + 8514,

where ¢ is a positive constant. A
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Remark 6.15. In the case when f1 = f, = f3 =: f, we may write (6.13) in the
formb = %e(f(s))?’(blzcu + c13b13 + basenz) € P:u(3), for each fixed s € I. From
Example 4.4.2.2, we know that the pair (b, dpb) determines a strict nearly Kahler
structure on Fy »(C?) C Poy(3)- This link between nearly Kéhler six-manifolds
and metrics with holonomy G, is well-known [B&r93, Sal03]. A

Case S® x S3 Let us now turn the attention from the full flag to the homo-
geneous space S x S3. Cohomogeneity-one G,-structures with such principal
orbits have been studied by a number of authors [Hit01, CGLP03b, Bra02]. We
will adapt the notation used by Brandhuber. To express ¢ we thus introduce
two copies of su(2)*; each copy is endowed with a cyclic basis (cf. Example
4.4.2.2), say {e;} and {f;}, respectively. At a point (s,e) € Y =1 x S3 x S3, we
now write ¢ in the form

¢ =1p+dp,

\ 3 (6.16)
p=sg(per NeaNes+qfiAfaAfz)and B=a(s)) e A f,
i=1

where p, g are integers, and a is an appropriate real function on I C R. Torsion-
free Gy-structures of this type include the complete Bryant-Salamon metric
on the spin bundle of S%; this corresponds to picking (p,q) = (—1,0) and
a(s) = 3(s* —s3), cf. [Bra02].

In order to obtain a multi-moment map for (Y, ¢) we consider an isometric
left action of T?> C SU(2) x SU(2) on (Y, ¢). Concretely, we pick the action
generated by the vector fields

u(s,g) = (Rg>*(E1) and V(s,g) = (Rg>*(F1>/

where

Note that
e1(Vg) = e1((Lg-1):Fi(Rg)«) = 0 = ea(V) = e3(Vg),
£,(Ug) = A((Ler)-Er(Rg).) = 0 = £, (Ug) = £, (Uy),
where ¢; denotes the left-translate of e;, and so forth. We therefore have that

UAYLyp = 0, which combined with (6.16) implies that the strong geometry
(Y, ¢) admits a multi-moment map v: Y — R of the form

(S,g) = ﬁ(s,g)(u N V)'
To be explicit, pick an element g = <(’g ?) , <g 7?)) € 3 x S3. We then
have
v(y) = a(s) ((|AF ~ [BF)(CI* ~ D) + 4Re(ABCD)),  (6:17)
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at the point y = (s, g) € Y. To verify this formula, first note that

er(Ug) = er((Lg1).Er(Rg).) = |A[* = [B, f,(Vg) = |C* = D%,
ex(Ug) = —2Im(AB), f,(V;) = —2Im(CD),
e3(Ug) = —2Re(AB), f,(Vy) = —2Re(CD),

We thus have 5 )
erf (Ug AVg) = (1A = BP)(IC)* = D),

erf ,(Ug A Vg) = 4Im(AB) Im(CD),
&f,(Ug A V) = 4Re(AB) Re(CD).

From these calculations one easily derives the formula (6.17).

o

Example 6.16. Let M be a hyperKéahler four-manifold. Then M comes equipped
with three symplectic forms 0y, 01, 03 that satisfy the relations 0; A 0; = (Sijtfg. In
particular, (0p, 01, 02) forms a coherent symplectic triple, and Q is the identity
matrix: i = g3, = g3, = 1 and g1» = 0. If the two-forms 01, 0> have integral
periods, we may construct a T2-bundle over M with connection one-form ©
that satisfies d©® = (01, 02) (3 ) for integers w,a,b € Z. The total space X of
this bundle carries a half-flat SU(3)-structure given by (6.5), and the associated
metric is complete if the hyperKéahler base manifold is complete.

We shall now illustrate how one may solve the flow equations, starting from
the above data at initial time ¢t = 0. As an a priori simplifying assumption,
we consider the case when (d®)" = 0, i.e., the principal curvatures are t-
independent. Then the differential equations for the symplectic triple simplify
considerably:

0'(/) =0, { —a); + al)y, (Té = a0 + bQYy,
where (1 = 01(0), O = 02(0). Integrating these equations, we find that
Uo(t) = 0y, 0’1(t) = (1 — th)Ql + at()y, Uz(t) = at() + (1 + bt)QQ.

Using this observation, we may rewrite the equations for qu as follows:

g = 2(a> +a®)t —2a, ghy =2(a® +b*)t+2b, gqjp =2a((b—a)t+1),

and from this we see that Q(t) = (1+tB)?, where B = (§ %) (% }). Asa
consequence we have that dg;;(t) = 0. Hence, from (6.9), ® = 0 so that @(t) =
@. Moreover, one may check that the function h(t) = det(B)t* + Tr(B)t + 1
evolves in accordance with the equation hh'c§ = (g1102 — q1201) A d6; + (41202 —
qu(Tl) A d92

The above solution is defined on A x I, where the interval I C R is deter-
mined by non-degeneracy of the matrix 1+ ¢B and 0 € I. By uniqueness of the
solution on Xj x I, we deduce that the property (d®)" = 0 is already implied
by the initial data, i.e., it is not a simplifying assumption.
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The associated torsion-free Gy-structure is determined by the three-form
¢ = h(t)>’oo Adt + 01 A Oy Ndt + a1 (t) AOy + o (t) A B,
and the corresponding holonomy Gj-metric is given by
g = h(t)?dt> + h(t)go + h(t) > (q11(£)0F 4 o2 (£)65 + g1a(t) (0162 + 62601)),

where g9 is the initial hyperKé&hler metric on M.

If the initial hyperKé&hler four-manifold is complete, then we may describe
completeness properties of ¢ in terms of the matrix B. Provided g remains finite
and non-degenerate, completeness corresponds to completeness of h(t)2dt? on
I, cf. [BO69]. We find that the metric is half-complete, in the terminology of
[AS04], precisely when det B > 0; completeness is obtained only for B=0. <

6.2 Reduction of torsion-free Spin(7)-manifolds

We now turn to eight-manifolds with holonomy contained in Spin(7). First
let us recall some fundamental aspects of Spin(7)-geometry, again following
[Bry87]. On R® we consider the four-form ® given by

Dy = e134 + (€12 + e34) (es6 + e78) + (e13 — e24) (€57 — €63)

(6.18)
— (e14 + e23) (esg + e67) + e5678,

where ey, .. ., eg is the standard dual basis and A signs have been omitted. The
stabiliser of @ is the compact 21-dimensional Lie group

Spin(7) = {g € GL(8,R) : "Dy = Py }.

This group preserves the standard metric g = Z?:l e;? on R® and the volume
form voly = e12345678. These tensors are uniquely determined by &g via the
relations 14 voly = ®2 and (Y1 X1®g) A (Y1 X1 dg) APy = 6]|X A Y||* voly, cf.
[Kar05]. The form @ is self-dual, meaning *®y = .

A Spin(7)-structure on an eight-manifold Y is given by a four-form ® €
Q*(Y) which is linearly equivalent at each point to ®. It determines a metric g
and a volume form vol. The Spin(7)-structure is called torsion-free if the form
® is parallel with respect to the Levi-Civita connection, meaning V<& = 0.
This happens precisely when @ is closed. One then calls (Y, ®) a torsion-free
Spin(7)-manifold. In this situation the metric ¢ has holonomy contained in
Spin(7) and is Ricci-flat. In particular, g is real-analytic in harmonic coordinates.

Since a torsion-free Spin(7)-manifold comes equipped with a closed four-
form, we may study multi-moment maps for such manifolds. Assume that
(Y, ®) has a three-torus symmetry, generated by vector fields U;, necessarily
real-analytic [Kob72, Theorem 2.3], and that there is a non-constant multi-
moment map v. Then dv = ®(Uy, Uy, Us, ) is non-zero if and only if U;, U, and
Us are linearly independent, cf. [Fer86]. So T? acts locally freely on some open
set Yo C Y.
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Let us define three two-forms on Y; by
w1 = UQJ U3_| CD, Wy = U3J U1_| CD, w3 = U1J U2J o.

To relate these to the Spin(7)-structure we introduce two IR3-valued one-forms
6 = (01,62,03) and © = (©O1,0,, ®3). The one-form 6 is defined by the formula
0 = U’G™!, where U’ has entries U’ = g(U;,-), and G~ = (g”) denotes the
inverse of the matrix G = (g;;) that has entries g;; = ¢(U;, U;). Note that
ei(uj) = 4;j. The second R3-valued one-form is given by the formula ® = 2,
where h is the positive real-analytic function & = /det(G~1); componentwise
we have ©; = h? Z?:l Sij0.

Proposition 6.17. On Y, the four-form ® is

q):dl//\(292/\93/\91+@1/\CU1+®2/\602+@3/\603)
+93/\92/\a)1—|—91/\93/\602—|—92/\91/\(,U3—|—*(d1//\93/\92/\91).
(6.19)

Proof. Working locally at a point and using the T®-action we may write the
first three standard basis elements of R® as E; = kiU, Ex = kol + loly,
E3 = ksU; + ¢3Up + m3Us for appropriate functions ki, ...,m3. Now, using
(6.18), we get kil w3 = —e3q — es6 — ey, kimz wy — k1l3 w3 = —exy + es57 — ees
and —/lym3 wy + komg wo + (oks — kols) w3 = e14 — esg — eg7. We therefore have

k k
lomz w1 = —ey4 + esg + eg7 — ﬁ(€24 —e57 1+ e68) — ﬁ(€34 + es6 + e7g)
¢
kimz wy = —exs + es7 — egs — 72 (€34 + €56 + €78)
kily w3 = —e3s — €56 — €78.

Next, we write 01 = kiey + kaez + kaes, 02 = laez + f3e3 and 03 = mze;. Also
note that hdv = e4. We then find
e103a = AVAO3 N Oy AN Oy, esgrs = *x(dv AB3 A0y A by),
03 A\ B2 A wi = enas — ex3(ess + e67) — R2e23(es7 — ees) + ea(ese + e7s),
01 A3 A wy = €134 + e13(es7 — ees) — era(ese + €7s)
+ %623(657 — e68) — %823(656 + e7g),
62 A\ 61 A ws = enas + e12(es6 + €78) — R eas(ese + e7s)
+ %623(656 +e78) + %613(356 +e7s),
dv A (@1 Awy + O Awy + @3 A ws) = —era(ess + e67) — ea(es7 — egs)
+ e3a(es6 + e78),

and the given expression for ® follows. O
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Remark 6.18. The functions ki, ..., m3 from the proof of Proposition 6.17 are
related to G in the following way

i _kfz k2€3—k3€2
k% k%éz k%fzm;;
G . 7](72 ﬁ+l k2(k3€2—k2€3)7 l3
= K20, eete KBBmy  Bmy |-
kals—ksly kalksla—kols) 03 (kals—ksta)? 63 1
KClms  KGBmy  Bm  (kilams)?  Bnd

and for G~! = (') we have

4 k%+k%+k% koly+ksls kymg
G = | kalatksty B+ lyms | . (6.20)
k3Tfl3 €3M3 m%
A

Now suppose that t € v(Yp) is a regular value for v: Yo — R. Then
X; = v~1(t) is a real-analytic hypersurface and has unit normal N = h(dv)*. We
shall denote by ¢ the inclusion X; — Yj.

Definition 6.19. The T3-reduction of Y at level ¢ is the four-manifold
M=vY(t)/T® = &,/ T°.
This quotient space is a tri-symplectic manifold.

Proposition 6.20. The T3-reduction M carries three pointwise linearly independent
symplectic forms defining the same orientation.

Proof. Consider the real-analytic two-forms w1, w, and w3 on Yy. These forms
are T3-invariant and closed since for instance Lyw = Ly, (UpaUzu®) =0
and dw; = d(UpaU3a®) = Ly, (U3 P) = 0, respectively. Furthermore, as
Uy w1 = —dv, etc., their pull-backs to X} = vl (t) are basic. Thus they descend
to three closed forms oy, 0» and 03 on M.

The proof of Proposition 6.17 shows that at a point k1famz o1 = kq(ess +
ee7) + ka(es7 — egs) — ka(ese + e7s), kilamz 0o = Lr(es7 — esg) — £3(es56 + e78) and
kilymzos = —ms3(esq + e73). Consequently, o1, 02 and 03 are non-degenerate
symplectic forms defining the same orientation. O

The symplectic triple (01, 02,03) on M defines a matrix Q = (g;;) given by
0i A 0j = 2q;j volpy, where voly is the induced volume form on M.

Proposition 6.21. The matrices G and Q are related via G~' = h*>Q. In particular,
voly = %2 Zii]-:l Sij0i /\~(7]-. Moregver, for any positive smooth functii)n A on Z\i[ the
redefinitions Q = A’Q, G = AG, h? = det(G™1) retain the relation G~ = h?Q.
Proof. Working locally at a point and using the T3-action, as in the proof of
Proposition 6.17, we have

Ao = 27"2622;"343 voly;, o Aog = 2—k3h’§3 voly, o» Aoy = 2—63,1”;3 volys,
I? 2 h? 2 2 2
o; = 05 = ‘o5 = 2vol.
(+k3+3)"1 = (B+3)"2 T mi"3
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where voly; = esg78 is induced volume form on M. The relation between Q and
G~ ! now follows directly from the expression (6.20), and it immediately implies
the last two assertions of the proposition. O

As we shall see below, the above behavior of G and Q with respect to
rescaling plays a subtle role in the description of induced geometry on the
hypersurface X;.

It is well-known, cf. [MC97], that any orientable hypersurface in a Spin(7)-
manifold carries an induced G-structure. To express the Go-structure ¢ = NP
on &} it is useful to rewrite @ in a way that abuses notation slightly, namely
using the forms defined on M.

@:dvA(93A92A91+®1A01+®2/\(72+®3/\03)

6.21
+ 03N N0 +01NO3AN05+ 60, ANOL Aos+voly,. ( )

From (6.21) we see that
hp =03 N0 N0 +O1 Aoy + O ANop + Oz A 03. (6.22)

Alternatively we may, up to orientation, specify the G-structure by the four-
form ¢ = *® (= *¢):
PYP=03N0ANo1+01 N3N0+ 02 N1 Aoz +voly.
As the Spin(7)-structure is torsion-free, the induced real-analytic G,-structure
on X} is cosymplectic, meaning di = 0.
It turns out that there is a family of smooth cosymplectic G,-structures on
X} obtained by scaling of the volume form on M:

Proposition 6.22. Let (¢,1) be the Ga-structure on X; described above. For any

positive smooth function A on M, the changes A*Q =:Qand AG =: G of Qand G,

respectively, give a new cosymplectic Gy-structure (¢, ) on Xj:
ilJ(fl\)/:93/\92/\91—|—(:)1/\0'1+(:)2/\(72—|-@3/\0'3, (6.23)

&Z93/\92/\0’1+91/\93/\0’2+92/\91/\0'3—|—\761M, (6.24)

~ 1 3~ 3 . »
where h = det(Q) ™4 = A"2h, ©; = L), §76; = 720, voly = ¢ X3, 703 A 0
=)\2 volp.
Proof. Working locally at a point, as in the proof of Proposition 6.17, we have the

basis (e1,...,és,...,eg) for T*X;. We now define a new basis (fi, .. .,ﬁ,...,fg)
for T*X; by letting f; := VAe;, for i = 1,2,3, and fi = ﬁei, fori =5,...,8.

Writing ¢ and ¢ in terms of f; we have that

¢ = —fios — f3(fs6 + f78) + f2(fs7 — fes) + f1(fss + fe7),
¥ = fia(fse + f78) + f13(fs7 — fes) — fo3(fss + fe7) + foers,

which shows that ¢ and ¢ define a G-structure with volume form voly =
L voly. Clearly, ¢ is closed. Hence the new G,-structure is also cosymplectic.

VA
O
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Inversion via a flow We now consider how the reduction procedure from the
previous section may be inverted, constructing a Spin(7)-metric starting from a
triple of symplectic forms on a four-manifold M. First we need a weakening of
the notion of coherent symplectic triple [MS10, Definition 6.4].

Definition 6.23. A weakly coherent symplectic triple ¢ on a four-manifold M
consists of three symplectic forms iy, 07, 03 that pointwise span a maximal
positive subspace of A2T*M.

As in [DK90], the positive three-dimensional subbundle A™ = {0y, 03, 03) C
A?T*M corresponds to a unique oriented conformal structure on M. Fix a
volume form voly; on M compatible with the orientation and define a 3 x 3-
matrix Q = (g;;) by 0; A 0j = 2q;;voly, for i,j = 1,2,3. Subsequently, denote
by & the positive smooth function satisfying h~* = det(Q). We now consider a
T3-bundle 7rp: X — M endowed with connection one-form 0 = (61,6,,03) €
O!(X,R3). We define three one-forms @, for i = 1,2,3, by the formula ®; =
Z;-’:l q76;. Finally, denote the curvature by F = 7},(d6) € O*(M,R®). With
these definitions in mind we have:

Proposition 6.24. Let (M, ¢’) be a weakly coherent tri-symplectic four-manifold. Sup-
pose that X is a principal T3-bundle over M with connection one-form 6 = (61, 65,63)
and curvature F. Define a three-form ¢ and a four-form 1 by

h(f):93/\92/\91+@1/\0’1+@2/\0’2+@3/\0’3,

6.25
P =03N0AN01+01 NO3AN02+ 02 \NOy Aoz + voly. ( )

Then ¢ determines a Gp-structure on X satisfying ¢ = 1.

Let A = (a;;) be the 3 X 3-matrix defined pointwise by the projection F, =
(01,02,03)A. Then the Gy-structure ¢ is cosymplectic if and only if the matrix QA is
symmetric:

QA = A'Q (6.26)

Proof. Write the entries of G~! := h?Q as in (6.20) and then express the functions
ki,...,m3 in terms of the entries gif of G™! = h?Q. Next, choose a conformal
basis es, e, €7, eg of T*M so that ho; are as in the proof of Proposition 6.17 and
then write 01 = kye; + koeo + kzes, 02 = faex + laes, 03 = mses. It now follows,
using Proposition 6.22, that the basis (e1,...,€s,...,e3) is a Gy-basis for T*X
with defining form ¢ given via (6.25).

For the final assertion we need to study the condition d¢ = 0. The equation
dyp = 0 holds if and only if one has

dOy Aoy —dOy Aoy =dOs Aoy —dby Ao = dBy Aoy —dbBs Ao, = 0.
A calculation shows that these relations correspond to the three equations

—a13G12 + A12413 — A23q22 + (a2 — a33)q23 + a32q33 = 0,
a13q11 + axq12 + (a33 — a11)q13 — 421423 — 431933 = 0, (6.27)
—a12q11 + (a11 — a22)G12 — A32q13 + A21922 + az1423 = 0,

and these are equivalent to the condition (6.26). O
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Remark 6.25. Condition (6.26) on F is independent of the choice of orientation
compatible volume form on M. Though the bilinear form on A2T*M, given
by wedging, is only well-defined after choosing a representative volume form,
self-adjointness of the projection F. € AT C A2T*M does not depend on the
specific choice.

Provided the assumptions of Proposition 6.24 hold, we therefore obtain a
family of cosymplectic Gy-manifolds. This is a consequence of Proposition 6.22,
and contrasts with the corresponding analysis of SU(3)-structures on T?-bundles
over coherently tri-symplectic four-manifolds (Proposition 6.6). In that situation
we made a particular choice of volume form to obtain a half-flat structure. A

Remark 6.26. Existence of three-torus bundles over a weakly coherent tri-symplectic
four-manifold (M, €) is related to Chern-Weil theory. One finds that for any
closed two-form F with integral periods, F € % (M,R?), there exists a T°-
bundle 7tp: & — M with connection one-form 6 that satisfies 7t},(df) = F. A

Studying a certain Hamiltonian flow, Hitchin [Hit01] developed a relation-
ship between torsion-free Spin(7)-metrics and cosymplectic Gp-manifolds. In
particular, he derived evolution equations that describe the one-dimensional
flow of a cosymplectic Go-manifold along its unit normal in a torsion-free
Spin(7)-manifold. In inverting our construction, one could use Hitchin’s flow
on the cosymplectic structure of Proposition 6.24. However, Hitchin’s flow does
not preserve the level sets of the multi-moment map: the unit normal is (dv)?,
but 9/0v = h?(dv)*. Tt is therefore more natural for us to determine the flow
equations associated to the latter vector field.

Proposition 6.27. Suppose T° acts freely on a connected eight-manifold Y preserving
the torsion-free Spin(7)-structure ® and admitting a multi-moment map v. Let M be
the topological reduction v='(t)/T® for any t in the image of v. Then M is equipped
with a t-dependent weakly coherent real-analytic symplectic triple o1, 0o, 03 and the
seven-manifold X; = v~1(t) carries a cosymplectic real-analytic Gy-structure of the
form (6.25) . On A the following evolution equation holds:

' =d(he), (6.28)

where ' denotes differentiation with respect to t.

Conwversely, given a cosymplectic real-analytic Go-structure of the form (6.25) de-
fined on a seven-manifold Xy. Then the flow equation (6.28) admits a unique solution
on some open neighbourhood of Xy x {0} C Xy x R, and that solution determines a
torsion-free Spin(7)-structure.

Proof. We have
@ =hdv ¢+

This has derivative

dd = dv A (—dh N\ ¢ — hdp) + dip.
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By assumption, the Gy-structure is cosymplectic, i.e., dp = 0 on each level set.
We therefore find that d® = 0 if and only if

d
0= ngCD = —d(h¢)+v'.
Hence we have a torsion-free Spin(7)-structure if and only if the evolution
equation (6.28) is satisfied.

Observe that equation (6.28) together with an initial cosymplectic G,-structure
on &) already ensure that the family consists of cosymplectic structures; the
time derivative of diy vanishes according to (6.28).

We note that given real-analytic initial data, the Cauchy-Kovalevskaya theo-
rem applies. Therefore we obtain existence and uniqueness of a solution defined
on some open neighbourhood of Xy x {0} C A x R.

For later use, we shall rewrite the evolution equation as a set of first order
differential equations for the quantities defined by data on M. First we note that

Y =0{ANOANO+ 05 ANOLAO3+ 05 ANOy AOL+ (05 Ao — 05 AN o) A by
+ (05 01 — 01 Ao3) Ay + (0] Aoy — 05 Aoy) A B3+ voly,,

d(h(P) =dO; NO3 N\ BOy+dB, N6y AB3+ dOs A6y A Oy
+ o1 ANdO1 + 0o ANdOy + 03 A dO3,
where

3 .. ..
o; NdO; = Z o; N\ <d(q”) /\Gj—i—q”dej) .
i=1 ij=1

M-

From these equations we get the t-derivatives for oy, 02, 03:
o/ =df;, for i=1,2,3. (6.29)

The t-derivative of the connection one-form 6 = (6, 6,,03) is given by
3
;Ao =0 Aoy =Y oy ndg™, for sgn(ijk) = +1. (6.30)
/=1
The volume form voly; evolves via

3 ..
VOlg\/I = Z ql](Tl‘ A\ d9] (631)
ij=1
Finally the t-derivatives of entries g;; of Q may be expressed via
3
2q};voly = d6; Aoj+0; Ad6; —2q;; Y q o NdBy, for ij=1,2,3. (6.32)
k(=1

Note that the equations for the entries g;; now determine the evolution of 1 and
G via the relations h~* = det(Q) and G~! = h?Q, respectively. O
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Remark 6.28. By solving the flow equations we obtain a holonomy Spin(7)-
metric with three-torus symmetry. Indeed, if g is the time-dependent metric
in the conformal class on M with volume form voly, then the Spin(7)-metric is
explicitly

h2dt? +om+ gng% + g229% + g339§ + g129192 + g139193 + g239293, (6.33)

where G = (gij) = h2Q .

Real-analyticity of the cosymplectic Go-structures is a subtle matter. Bryant’s
study of the Hitchin flow [Bry10] shows that non-analytic cosymplectic G;-
structures can lead to an ill-posed Hitchin system that has no solution. A

Remark 6.29. Though the torsion-free Gy-manifolds studied in [MS10] fiber over

(weakly) coherently tri-symplectic four-manifolds, they do not fit naturally

into the above framework. The constructed G,-flow does not preserve the

Spin(7)-data. A
Summarising the results discussed so far we have:

Theorem 6.30. Let (Y8, @) be a torsion-free Spin(7)-manifold with a free T3-symmetry
and admitting a multi-moment map. Then the reduction M at level t carries a weakly
coherent real-analytic symplectic triple and the level set X; is the total space of a T°-
bundle over M satisfying condition (6.26) on the curvature.

Conwversely, let (M,€¢) be a weakly coherent tri-symplectic four-manifold with a
closed two-form F € Q% (M, R®) and a choice of orientation compatible volume form.
Assume F satisfies condition (6.26). When these data are real-analytic, they define a
torsion-free Spin(7)-metric with T3-symmetry. O

6.2.1 Examples

Let us now turn to some examples that illustrate the analysis of the previous
two sections. First we show that even in the flat case R®, with isometric action
given by maximal torus T® C SU(4) acting via diagonal matrices, the geometry
of the reduction procedure is somewhat complicated. In the final example we
study hyperKahler four-manifolds, complementing previous examples that have
appeared in the physics literature [GLPS02, GS07].

Example 6.31. Consider Y = R® = C* endowed with the usual four-form and
the action of the standard diagonal maximal torus T C SU(4). Concretely, ® is
given by

O = 1 ({(dzy Ndzy +dzp Ndzy + dzg N dZs + dzy N d24))2
+ Re(dz1 Adzy Adzz A dzy),

and T acts by (e, /%, ¢%) - (z1,2,23,24) = (%121, €022y, €103 23, e~/ (O1102103) 7))
The action is generated by the vector fields U; = Re {i(zja% - 24%)}, for
j =1,2,3. It follows that a multi-moment map v: Y — R is given by

v(z1,22,23,24) = %Im(21222324).
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By definition, the T®-reduction of Y at level t is the quotient space M; =
~1(t)/T3. In this case M is singular, whereas M; is a smooth manifold for
each t # 0. Indeed, considering &;: M; — R* given by

2 2 2 2 2 2
— Z —||Z. Z — ||z Z — 1|z
B(z1,22,23,24) = (H 1l 2H all ) l|z2]] 2H 4ll , l|z3]] 2H Al ,Re(z1222324)>
=: (v1, 02,03, W),

we have global smooth coordinates on M; for t # 0.
In this smooth case, writing (11,172, 713) = (dv1, dvy, dv3)G~1, the two-forms
01, 0, 03 are given by

160’1 =M Adw + 461?)2 N dU3, 160’2 =12 Adw + 4dv3 A dUl,
16(73 =13 Ndw + 4d01 N dUz.

These forms depend (implicitly) on  via the relations 4g;; = J;;|z; 12+ ||z4]|%, for
i,j =1,2,3, and z12»2z3z4 = w + 8it. In particular g;; is a non-constant positive
function f, for i # j. Thus the weakly coherent triple does not specify a coherent
triple, in particular it is not a hyperKahler structure.

The (oriented) conformal class has representative metric

h?
168" + gt + 2013 + 833713 + (g + s + 12173),

where h? = det(G™1).
The curvature F = (F;, F, F3) of the principal T®-bundle v=1(t) — M; is
given by

Fy = 2th*1 A (2822833 — f(822 + 833)) 11

+ (833 — f)(822 — 2f )12 + (822 — f) (833 — 2f)113),
Fy = 2th*10 A (281833 — f(811 + 833))12

+ (11 — f)(g33 = 2f)n3 + (833 — £) (811 — 2f)im),
F3 = 2th*10 A (281822 — f(811 + 822)) 173

+ (822 — ) (g1 — 2f)im + (g1 — £) (822 — 2f)12).

where 17, = g, dw satisfies 77, ((dw)?) = 1 and 7,,((dv;)?) = 0, for i = 1,2,3.
Note that F # F,.

In the singular case t = 0, the three-torus collapses in three different ways:
to a point, a circle or a two-torus. At the origin (z1, z2,z3,2z4) = 0 the three-torus
collapses to a point. Next, if z; = z; = z; = 0 for exactly three different indices,
then the torus collapses to a circle. In terms of the quadruple (v1, vz, v3, w)
this collapsing happens for w = 0 when vy, v, v3 satisfy one of the following
constraints: (v = v, =v3<0), (v =0v,=0,0v3>0), (v =0v3=0,0v, >0) or
(v2 = v3 =0, v; > 0). Finally, if z; = z; = 0 for exactly two different indices,
the T3 collapses to a two-torus. This happens for w = 0 when vy, v,, v3 satisfy
one of: (v = v, < 0), (v =v3 <0), (v1 =0,0,03 20), (v =103 <0),
(vg =0, 01,03 2 0) or (v3 =0, v1,v2 > 0). &
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Example 6.32. As in the Gy-case, we may investigate T>-reductions associated
with some of the known cohomogeneity-one Spin(7)-structures. Examples come
from spaces with principal orbits

or erlro _ SU(3) X SU(2)

QUi =
U(1)i,, (SU(2) x U(1))1,1,0”

where the indices refer to the embeddings of U(1)? into SU(2)% and of the
Abelian factor of SU(2) x U(1) into SU(3) x SU(2). Reidegeld has constructed
examples of this type [Reil0Ob] with holonomy SU(4). In the first case, Q'1!, we
can choose an isometric left action of T?> C SU(2)%. In the latter case we may
pick the three-torus T° C SU(3) x SU(2), also acting on the left. Calculations
may now be carried out along the lines of Example 6.13. But the concrete
expressions become somewhat unwieldy in the Spin(7)-case. &

Example 6.33. Let M be a hyperKédhler four-manifold. Then M comes equipped

with three symplectic forms 01, 07, 03 that satisty the relations 0; A 0; = (51‘]‘(7;3

fori,j,k = 1,2,3. Choosing the volume form vol?, = %0’12, we have that Q =

diag(1,1,1). The compatible hyperKéhler metric is denoted by g3,.

Let o = (01,02,03) denote the hyperKéhler triple and assume there is a
constant matrix A = (a;;) such that cA € Q% (M, R?). Then we may construct a
T8-bundle over M with connection one-form 6 that has curvature F = 0 A. The
total space Xj of this bundle carries the G;-structure of Proposition 6.24, which
is now cosymplectic if and only if A is symmetric. The associated metric on &p
is complete if the hyperKahler base manifold is complete.

We shall illustrate how one may solve the flow equations (6.29)—(6.32) starting
from the above data at t = 0. As an a priori simplifying assumption we consider
the case when F’ = 0, i.e., the curvature is t-independent. Then the differential
equations for the symplectic triple simply read ¢/ = QA, where Q) = ¢(0).
Integrating, we find that o(t) = Q(1 + tA).

We next solve the equations (6.31) and (6.32). First we observe that the vol-
ume develops according to the equation volj; = vvoly;, where v = 2 Tr(Q (1
+tA)A). We may therefore write voly(t) = V(t)vol},, where V/ = v and
V(0) = 1. The equation for Q' now takes the form VQ' = 2(1 + At)A — vQ.
It follows that we must find the unique solution of the differential equation
In(V) = 2Tr((1+tA)"1A), V(0) = 1. We find that V(t) = det(1 + tA)>.
Consequently, voly; and Q take the form voly(t) = det(1 + tA)?vol}, and
det(1 + tA)?Q(t) = (1 +tA)% Note also that h(t) = det(1 + tA) and that
dq;;(t) = 0. The latter observation implies, by (6.30), that the connection one-
form is t-independent, 6(t) = 6.

The above solution is defined on Ay x I, where the interval I C R is deter-
mined by non-degeneracy of the matrix 1 +tA and 0 € I. By uniqueness of the
solution on Xy x I, we deduce that the condition F/ = 0 already follows from
the initial data, i.e., it is not a simplifying assumption.

The torsion-free Spin(7)-structure corresponding to the above solution has
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associated metric g given by

R2()dt> 4+ h(t)g% + h(t) 2 (iqii(t)63+ ) qff(t)eiej). (6.34)
i=1

1<i<j<3

If the initial hyperKéahler four-manifold is complete, we may describe complete-
ness properties of g in terms of the matrix A. Provided g remains finite and
non-degenerate, completeness corresponds to completeness of h(t)?dt? on I, cf.
[BO69]. We now find that g is half-complete, cf. [AS04], if and only if A does
not have two eigenvalues of the opposite sign; the metric is complete only for
A=0. &
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Chapter 7

Kahler like aspects of HKT
geometry

IVEN A HYPERCOMPLEX MANIFOLD (M, I, ], K), we can always find a compa-
tible Riemannian metric g, meaning that each of the pairs (g, I), and so
forth, forms a Hermitian structure on M. Indeed, given a metric ¢, then the
metric ¢ = 1(¢' +§'(I,I) + §'(J-,]-) + §'(K-,K-)) is hyperHermitian. However,
existence becomes a non-trivial matter if we want g to satisfy additional require-
ments. The best known example is a hyperKéhler metric, i.e., a hyperHermitian
metric which has closed fundamental two-forms w; = g¢(I-,-), etc. It is highly
non-trivial to construct examples of such metrics.

A more flexible notion than being hyperKihler is that of an HkT manifold,
introduced in Chapter 2. HKT metrics seem to be good quaternionic analogues
of Kdhler metrics, for instance many hypercomplex manifolds, but not all
[FG04, SwalOb], admit a compatible HKT metric. There is also a good potential
theory [BS04] ensuring that HKT metrics admit locally a potential. Moreover, a
version of Hodge theory [Ver(02] applies to HKT manifolds with special Obata
holonomy. Another intriguing Kéhler like aspect is expressed in some work
towards an HKT version of the Calabi-Yau result [AV10, Mad09]. It is this
particular problem we now turn to discuss.

7.1 A Calabi-Yau problem for HKT manifolds

We first discuss some known results from HKT geometry and introduce the
notions required so that we can formulate the mxt Calabi-Yau problem.

71.1 The DDj-operator

To make the analogy between Kidhler and HKT geometry transparent, one
[BS04] introduces the differential complex studied by Salamon in [Sal86]. We
thus consider the following complex defined on any hypercomplex manifold
(M*,1,],K):

0D, g0 D=ty 41 D _ D 0, (7.1)
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7  KAHLER LIKE ASPECTS OF HKT GEOMETRY

where AF = T'(A¥) and A¥ € A*T*M =: A* is the subbundle

Ak — Igz (Ago ® A%k) )

S? ={al +bJ +cK: a® +b* + > =1}.

In the above expression for AX, the sum denotes fibrewise finite linear combi-
nations, and A%O is the space of (k,0)-forms relative to Z € S. The differential
D = mod in (7.1) is given by exterior differentiation d followed by projection
m: AF — Ak,

The kernel of 7 is denoted by B¥, and Salamon observed [Sal86, Proposi-
tion 4.2] that one has

BF — ﬂ (Al%—l,l o A;—z,z ©- B Alz,k—1> )
Zes?
with the intersection interpreted fibrewise.

Remark 7.1. While Salamon’s approach [Sal86] was quite general, in the sense
that he studied quaternionic manifolds, Verbitsky gave a reinterpretation of
the Salamon complex in a purely hypercomplex setting [Ver07] and included
a discussion of some Dolbeault like properties. Such aspects have also been
studied in [Wid02]. A

Remark 7.2. Since all the manifolds considered in this chapter are hypercomplex,
they come endowed with the Obata connection [Oba56]: VO is the unique
torsion-free connection preserving I, | and K. A

We are mainly interested in the first four terms of the Salamon complex.
While one obviously has A° = C®(M) and A! = Q!(M), an explicit description
of A¥ and BF, for k = 2,3, requires a few calculations. To this end it is useful to
adapt the notation of [MCS08]. For x € Qf(M), we thus write

Iox = —x(X1,-... IXp, ..., X0), Tpgr =TLL,... T,
and Zx(Xy,..., X)) = (-1D)x(ZXy,...,IX,),

and if we have operators Pz, for Z = I, ], K, acting on /-forms, then we use P
to denote their quaternionic average defined by

P =Pr+ P;+ Pk.

Proposition 7.3. Let (M, I, ],K) be a hypercomplex manifold. Then any sections
w € O*(M) and 1 € Q3(M) decompose in the following way:

w=3108-P)(w)+ 11+ P)(w) where Pr=1I, (7.2)
n=3%B-P))+LB+P)(n) where Pr=Tp+Tiz+Tn  (73)
In particular, the Salamon differentials of sections 0 € A and & € A? are given by
DO = (d0)*° + (d6)* + 1(1 —])(d0)"* and
Dg = (d¢)* + (d2)** + 13— P) ((de)*! + (d2)"?) ,

where the type decomposition is with respect to the complex structure I.
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7.1 A CALABI-YAU PROBLEM FOR HKT MANIFOLDS

Proof. We observe that the operators P = P; + P; + Pk defined in (7.2) and
(7.3) act on QF(M), for k = 2 and 3, respectively, with two distinct eigenvalues.
The corresponding eigenspaces are the modules A* and BF.

For k = 2, we find that A2 is the —1-eigenspace of P, while B? is the
+3-eigenspace. It now follows that

= i(3—7’)(w) and (1-7n)(w)= 1(1 +P)(w).

() ]

If we decompose into types with respect to I, these expressions become

1 1
m(w) = w*® 4+ W + 5(1 —Nw't and (1-7)(w) = 5(1 + N,
The first of these two formulae gives the stated expression for D6.

For k = 3, the operator P has eigenvalues +3. A% is the —3-eigenspace,
while B3 is the +3-eigenspace. Consequently, we may write

7(p) = §B=P)) and (1= 7)(n) = £(3+P)(n).

Decomposing into types with respect to I, we find

1
() =P +07 + 23 =P)(/* +7*) and

(1= m) (1) = g3+ )0 + 72,
O

The significance of the Salamon complex is that we obtain a DD;-operator,
which serves as an analogue of the usual ddj-operator in Kdhler geometry;
here D;¢p(X) = —D¢(IX) for ¢ € C®°(M). For instance the following result
introduces the notion of an HKT potential, which is a function ¢, such that
DDj¢(-,I-) is an HKT metric. The result is well-known, but we will give a proof
for completeness, since this allows us to correct a minor misprint in [BS04,
Remark, p. 3132].

Proposition 7.4. Let (M, I, ],K) be a hypercomplex manifold, and ¢ a smooth real
function on M. If the symmetric tensor

1
kp =51+ 1+]+K)(V)(9)
is positive definite, then ky is an HKT metric. The associated fundamental two-forms
Fr = ky(Z-,-) are given by

1

Fi= 5 (dd; + dydx)(9), B = (A did)) (),

N[ =

(ddj +dxd;)(¢), Fx =

N |

where dzx = (—1)'Zd(Ix), for x € Q'(M).
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7  KAHLER LIKE ASPECTS OF HKT GEOMETRY

Proof. First we note that k, is obviously compatible with I, J, K, and therefore
defines a hyperHermitian metric if it is positive definite. When this holds, ky is
HKT if and only if IdF; = JdF; = KdF.

Let us now assume that the fundamental two-forms are given by the formu-
lae F; = }(dd; + djd)(¢), etc. Then a calculations shows that

1 1
IdF; = d;F; = Edld]dK((P) = EdIdeI((P) = ]dP], etc,,

where we have used that ZF; = Fr and that d;d; = —djd;, etc. The HKT
condition is thus satisfied.

It now remains to verify the expressions F; = (dd; + djdk)(¢), and so forth.
Using the properties of the Obata connection, direct calculations show that

ddip(X,Y) = —(VR°dg) (1Y) + (V§°dg) (IX),
didxd(X,Y) = (Vixde)(KY) — (Viyd)(KX).
From this we obtain that
(ddy + dydic) () (X, 1Y) = (VR2dg) (Y) + (VIRdg) (1Y)
+(VXde) (JY) + (VRde) (KY)
= (1+I1+]+K)(VP)2(p),

as required. O

7.1.2 An HKT Calabi-Yau problem
Using the results from the previous section, we obtain the following.

Theorem 7.5. Let (M*", 1, ],K) be a connected compact hypercomplex manifold, and
g an HKT metric on M. Let A € R and f € C®(M). Assume a smooth real function
¢ satisfies the equation

(w; 4+ DD1p)™" = Aef wi". (7.4)

Then gy = g+ 5(1+ I+ ] + K)(VOP)2¢ is an HKT metric. Moreover, if 1 is another
solution of (7.4) then ¢ — 1 is a constant.

Proof. By Proposition 7.4, the symmetric tensor g, defines an HKT metric if and
only if it is pointwise positive definite. To verify the definiteness we consider a
point m € M where ¢ achieves its minimum. At m we have dd;¢(X, IX) > 0,
for any X € T,,M, and hence

SO+ T+ T+ KT (9)(X,X) = 3 (dds +dydi) () (X, 1X)

1
= 5(dd;(¢)(X, IX) +ddi(¢) (X, 1] X)) = 0.
Consequently, g is positive definite at m. As M is connected and the right hand

side of (7.4) is a volume form, g, must be positive definite at all points of M, as
required.
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In order to prove the last statement of the theorem, let us assume we have
two smooth real functions ¢ and ¢ each satisfying (7.4). Writing wy = g¢(I, )
and wy = gy(I-,-) we then have

0=wy' —wy' =y ADDi(¢p— ),
-1 2n—1—j

where v = Z?ZO wé N wy . Since 7 is a positive linear combination of
positive forms, the operator

¢+ P(¢) =y ADDi(9)

is a second order (overdetermined) elliptic operator without constant terms,
cf. Proposition 7.9 below. Therefore, by the maximum principle, P has kernel
equal to the constant functions on M. Consequently, the difference ¢ — ¢ is a
constant. ]

Remark 7.6. 1f we add the condition that [,, ¢ vol, = 0 to equation (7.4), then
the last assertion of Theorem 7.5 may be interpreted as a uniqueness statement
of solutions in ¢. This uniqueness result clearly holds under weaker regularity
assumptions. Indeed, it suffices to take f € C!(M) and ¢ € C3(M). A

The striking resemblance between (7.4) regarded as an equation in ¢ and
the complex Monge-Ampere equation studied by Yau in [Yau78], leads us to
formulate the following HKT version of the Calabi-Yau problem.

Question 7.7. Let (M4”, I,],K) be a connected compact hypercomplex manifold
that admits an HKT metric g. Given any f € C®(M) do there exist a unique
smooth real function ¢ and a unique A € IR such that the equations

/M pvoly =0 and (w;+ DD;§)*" = Aefw?" (7.5)

hold? v

Remark 7.8. The positive constant A is uniquely determined by the relation
volg, (M) = A /M ef volg,

where volg and volg, denote the Riemannian volume forms associated with
g and gy, respectively. In the Kéhler version of the Calabi-Yau problem one
considers fundamental two-forms belonging to the same de Rham cohomology
class. Hence they have the same total volume. Contrasting with this we will
generally have that volg, (M) # volg(M), and therefore the constant A will

generally not satisfy the simple relation A = vol,(M)/ [}, ef vol,. A

From a regularity theoretical viewpoint the differential operator DDj is of
the right type in order to make the continuity method tractable.

Proposition 7.9. The linear second order differential operator DDy: A° = C®(M) —
A? is (overdetermined) elliptic.
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7  KAHLER LIKE ASPECTS OF HKT GEOMETRY

Proof. To verify that DD; is (overdetermined) elliptic we must show that the
associated symbol (m,v) — opp,(m,v) is injective, as a map R,, — AT}, M, for
allm € M and v € T;;M \ {0}; here R,, denotes the trivial bundle over M.

To this end we rewrite DD as a composite of two zeroth order and two
first order differential operators. Specifically we have DD; = 3(1—]) odoIod.
Using this expression, we find

T, (m,0)a = +(1 = ]) 0 0(m,0) 0 Lo 04(m,0)a
2 (7.6)
= —(vAIv+ Ju AKvo),

N

forme M, v e T;;M\ {0} and « € R,,. Clearly (7.6) is zero if and only if « = 0,
as required. ]

Proposition 7.9 implies that equation (7.4) is a non-linear elliptic second
order partial differential equation in ¢. This follows from the form of the
linearisation LP of ¢ — P(¢) = (w; + DD;¢)*":

LPy(y) = 2n(w; + DD;¢)*' ' A DDy

7.1.3 Cohomology interpretations

While the analytical resemblance between Question 7.7 and the Calabi-Yau
problem seems convincing, we still need to address the geometric significance of
the problem at hand. Again our aim is to find an analogue of the interpretation
in the Kédhler setting. We thus recall that Calabi’s original conjecture was a
statement about representatives of certain cohomology classes. Indeed, the
Calabi-Yau theorem tells us that on a compact connected Kédhler manifold each
representative of the first Chern class is realised as the Ricci-curvature of a
unique Kdhler metric in each Kédhler class. To obtain a similar interpretation of
(7.4) a further study of (modified) Salamon cohomology is required.

First we address the notion of an HKT class. Banos and Swann defined [BS04]
the HKT class of an HKT metric § to be the Salamon class [w;] € HZ,(M). In
general, however, this need not be the best definition. More precisely, their
definition is appropriate if the global DD;-lemma holds [BS04, Section 2.3]. For
a general hypercomplex manifold it seems more natural to define the HKT class
of g to be the class [w;] € Huxr(M) in the Bott-Chern like cohomology group
defined by the complex

A0 PProoq1 D A3, (7.7)
where AM = T(A2NA}Y).

Proposition 7.10. For a hypercomplex manifold (M, I, ], K) the associated complex
(7.7) is elliptic. In particular, Hyxr (M) is finite-dimensional when M is compact.
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Sketch of proof. To prove ellipticity of the complex complex (7.7), let us pick
m € Mand v € T;;M \ {0}. We then consider the symbol sequence

opp, (m,0)
LAY

op(m,v)

Al A3 (7.8)
We must verify that the sequence (7.8) is exact. Direct calculations lead to the
following expressions

opp,(m,v)a = %(v ANlv+JoAKv), «€R,,
1
op(mo)p=(3-P)0AB), BE AL
Exactness may thus be characterised in the following way: for any € Ay, the
element v A B lies in B3, if and only if B lies in the image of opp,(m, v). This
assertion is readily verified. Firstly, we have

P(ovAIv+ JuoAKv) =3(vAlv+ JuAKvo),

which shows that the image of opp,(m,v) is contained in B3,. Secondly, we
extend v A Iv + Ju A Ko to a basis {v A [v+ Jo A Ko, X3 A IXg + [ X3 AKX, ...}
for Al;'. Using such a basis, we observe that the +3-eigenspace of P is indeed
spanned by v A Iv + Ju A Ko, as required.

If M is compact, finite-dimensionality of Hyr(M) follows from ellipticity of
(7.7) combined with Hodge theory, cf. [Wel80, Chapter IV]. O

Remark 7.11. The failure of the global DD;-lemma to hold is measured by the
kernel of the natural surjection

®: Hyr(M) — H2,;(M).

Verbitsky’s arguments in [Ver(09, Remark 4.5] imply that ker ® is trivial if
Hol(V©®) C SL(n,H). As a consequence, the global DD;-lemma holds on any
hypercomplex manifold with special Obata holonomy. A

On a hypercomplex manifold (M, I, ],K) any locally dd;-exact two-form
p = dd;p determines a D-closed form

p=5(—Dpe A

In particular, given any HKT metric ¢ the first Chern form p¢ of the Chern

—

connection of w; determines a class ¢; = [0§] € Hyxr(M).

In order to obtain a cohomological interpretation of the quaternionic Calabi-
Yau problem, we now relate the projected Chern forms of two HKT metrics g
and g’ = g, that satisfy (7.4). We find that

o — o5~ DDy .
Based on this observation, we obtain the following reformulation of Question 7.7.
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Question 7.12. Let (M4”, I, ],K) be compact connected hypercomplex manifold,
and g an HKT metric on M. Is it then possible to realise each representative of

€1 € Hur(M) as the projected Chern form p’$ of an HKT metric g’ such that
[wi] = [wi] € Hua(M)? v

Remark 7.13. Note that, by the proof of Proposition 7.4, the local expression
(;IE = —DD(logdetg)

corresponds to the symmetric tensor

%(1 + 1+ ]+ K)(V®)?(log detg),

which is manifestly a quaternionic object. A

A useful notion associated with Kahler classes is that of a Kdhler cone. The
analogous construction in the HKT setting is the set

C={wecA": w(-, 1) >0, Dw = 0}

of positive D-closed Salamon (1,1)-forms.

While C fits naturally into the cohomological framework, the associated
quaternionic object is a subset H of the hyperHermitian metrics on (M, I, ], K).
This set H is obtained via the correspondence ¥: C — # given by ¥(w) =
w(-1.).

Proposition 7.14. Let (M, I, ], K) be a compact hypercomplex manifold. Then C is an
open convex cone in the linear space {w € AY': Dw = 0}, and the convex subcones

Cy={wel: dw* '} and Cy={weC: d(ldw) =0}

of balanced and strong HKT metrics, respectively, are finite-dimensional. Moreover, the
intersection Cy, N Cs corresponds via ¥ to the set of hyperKihler metrics on (M, I, ], K).

Sketch of proof. The first statement is proved in the same way as in the Kéhler
setting, cf. [Huy05, Corollary 3.1.8]. We give a brief outline for completeness.
Firstly, observe that the condition ¥ (w) = w(-,I-) > 0 is an open property on
the set of forms w € Al!, and that the differential condition Dw = 0 ensures
that ¥(w) is an HKT metric. Secondly, note that for A € R+ and w,w’ € C we
obviously have Aw,w + w' € C. Thus C is a convex cone.

As the subsets Cp,, Cs C C are defined via one extra linear constraint, they
are clearly convex subcones. To show that C, and Cs are finite-dimensional, it
suffices, by Proposition 7.10, to argue that each HKT class contains finitely many
metrics of the respective type. Finite-dimensionality of C; follows from the work
of Verbitsky [Ver(09, Remark 4.12]. The essential ingredient in his argument is
the uniqueness statement in Theorem 7.5.

Turning to the cone C;, let consider two SHKT metrics ¢ and gy belonging
to the same HKT class. We must have that dIdDD;(¢) = 0. As the fourth order
linear differential operator i — P(i) = d o I od o DD;(1) has symbol given by

op(m,v) =v AlvA JoAKo,
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it is (overdetermined) elliptic. Consequently, we have that ker(P) C C®(M) is
finite-dimensional, cf. [Bes08, Appendix I, Corollary 32], as required.

In order to verify the final statement of the proposition, note that an ele-
ment wj in the intersection C, N Cs has corresponding HKT metric ¥(w;) that
is both balanced and strong. Such a metric is clearly hyperKéahler in dimen-
sion four, since dw; = 0, by definition, which implies dw; = dwg = 0, since
Idw; = Jdwj = Kdwg. In higher dimensions, the result is implied by [FPS04,
Proposition 1.4] or, equivalently, by [AI01, Remark 1]. The core of the argument
is a calculation, which shows that on a balanced manifold, Hda)IH2 is propor-
tional to the inner product of the forms ddjw; and w%. Hence dIdw; = 0 implies
that dw; = 0, and consequently ¥ (wj) is Kdhler. O

Remark 7.15. On a compact balanced HxT-manifold (M4”, ¢, I,],K), n >3, the
existence of an sHKT metric g’ € Cs, such that [¢'] = [¢] € Huxr(M), forces g to
be hyperKihler, cf. [Ver09], and in fact ¢ = ¢’. For an SL(n, H)-manifold an
affirmative answer to Question 7.7 implies the existence of a unique balanced
metric in each HKT class. Due to these observations we do not expect to find
(non-hyperKéhler) sHkT metrics on SL(#,H)-manifolds. A

7.1.4 Comparison with the Alesker-Verbitsky conjecture

Before turning to discuss some technical details, let us remark that Alesker
and Verbitsky recently studied a quaternionic Monge-Ampere equation [AV10].
In their setting, the Salamon complex is replaced by Verbitsky’s quaternionic
Dolbeault complex [Ver07]. In particular, w; and DDj are replaced by Q) =
wy + iwg and 99;, respectively; here 0 denotes the d-derivative with respect to
I, and 9; is 0 appropriately "twisted” by J. It turns out that their Calabi-Yau
problem is closely related to Question 7.7. This observation is important since it
greatly facilitates the work required in order to obtain our first a priori estimate.
To compare the two problems first observe the following.

Proposition 7.16. Let (M*",1,],K) be a hypercomplex manifold endowed with hy-
perHermitian metric g, and denote by Qy the (2,0)-form for I given by w; + iwk.
Then the following relation holds:

W =1, QPAQ], where A, = % (7.9)

Proof. Let p € M be any point. Choose an orthonormal basis for T;M of the
form {ej, Iej, Je;, Ke;: 1 < j < n}. We may now write

n n
wy = 26]'/\ Ie]-+]e]-/\Ke]-, wy = 26]'/\]8]' - Iej/\Kej,
=1 =1

n
wg = Ze] /\K@j + 16]' /\]ej,
j=1
Q= wj + iwk, 61 =wj— Wk,
volyr = eg Aleg A Jet ANKey A... A Key.
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Calculations show that
; 2
W = (2n)!volyy and QO AQ; = <H2]> voly,

so that relation (7.9) follows. O

We may now bridge the gap between Question 7.7 and the problem studied
by Alesker and Verbitsky.

Proposition 7.17. Let (M*",1,],K) be a connected compact hypercomplex manifold,
and g an HKT metric. Let A € R and f € C®(M). A smooth real function ¢ satisfies
(7.4) if and only if it satisfies the equation

(Q +097¢)" = Bef2Q01 (7.10)
for B € R, such that B2 = A.

Proof. By Theorem 7.5 and [AV10, Lemma 4.9] we know that if either of the
equations (7.4) or (7.10) is satisfied, then there is a corresponding HKT metric gy

that has w{ = gy(I,-) = w; + DD;¢ and Of = wf +iwf = O + 30¢.
Now assume that (7.10) holds. Then, by Proposition 7.16, we find

(@) = A, (1) A (QF)" = Au(Bef 200 A (Bef/200])
= Ma(Bef 22 (A w?) = Aefw?,

as required.

Conversely, assume that (7.4) holds. Let us write (Q?)” = hQ)f, for some
function /. Note that 7 must be real, since we have (Qf)" = 1Q)} and (Qf)" =
] ((Q?)”) = hJ(Q)" = hQY}. Using this observation, we find that

(Al/Zef/z)ZQ? /\ﬁ? _ A;l(Al/Zef/Z)Zw%n _ A;l(w?)Z”

n _
= ()" A (Qf) =rPOf Ay

(7.11)

It follows that, up to a sign, h = AV/2ef/2 and thus equation (7.10) holds, as
required. O

7.2 Solution strategy: the continuity method

The continuity method has proven to be a successful approach for solving the
complex Monge-Ampere equation, not only for Kihler manifolds but also, more
recently, in the general Hermitian setting [TW10]. It is therefore reasonable to
expect that a similar approach might be applied in order to answer Question 7.7
affirmatively.
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7.2 SOLUTION STRATEGY: THE CONTINUITY METHOD

In this section, we will follow, and when required modify, the arguments
applied by Joyce in [Joy00, Chapter 5]. We thus consider a one-parameter family
of equations:

(w4 DDg)*" = A, t€(0,1], (7.12)

where A; are positive real numbers. Equation (7.12) is obviously satisfied when
t = 0; we put ¢9 = 0 and Ag = 1. The aim is now to show that the set S of
parameter values t € [0,1] for which the corresponding equation (7.12) has a
solution is both open and closed. This will imply that S = [0, 1], and we may
then solve (7.12) for t = 1, as required.

While the openness of S follows from Theorem 7.19 below, the closedness is
technically much more difficult to show. Vaguely speaking, the idea is to take a
sequence {f;}ien C S that converges to a number . As each ¢ lies in S, there
is a corresponding sequence {¢, }jcn of solutions to (7.12). The task is then
to establish so-called a priori bounds on all solutions ¢; in some appropriate
Banach space and to show that they lie in a compact subset. In that case the
sequence {¢, }jc contains a convergent subsequence, and provided we can
show that the corresponding limit ¢ is a solution of (7.12), we obtain that ' € S.
Consequently, we will have that S is closed.

7.2.1 Technical results

As part of the continuity method we will now prove two technical results. First
we obtain an a priori bound on ¢, under certain assumptions on the underlying
hypercomplex manifold (M, I, ], K); we will assume that the Obata connection
has holonomy in SL(n,IH). Thereafter we prove openness of the set S. To
formulate these results we need some tools from analysis. In particular, we have
to choose appropriate Banach spaces.

Our conventions are those of [Joy00, Chapter 1]. For a compact Riemannian
manifold (M, g) we denote by L] = L!(M) the Sobolev space consisting of
functions f € L(M) that are k times weakly differentiable and have |V/f| €
L9(M); here g > 1 and k is a nonnegative integer. The associated Banach norm
is given by

k .
Iy = X5 I 77517 vole.
]:

By Ck* = Ck*(M) we denote the Holder spaces; here k > 0 is an integer
and & € (0,1). These are Banach spaces consisting of functions f € C¥(M) for
which V*f is Holder continuous with exponent «. The norm on such a space is
given by

fllcke = I fllce + [V*fla,

where || f||cx = 2;'(:0 sup,,|V/f| and

o -5
[f]a_x#yeM dist(x,y)“ '

141



7  KAHLER LIKE ASPECTS OF HKT GEOMETRY

Zeroth order a priori estimate In order to prove the closedness of S we must
establish a priori bounds. A first step in this direction is the following theorem.

Theorem 7.18. Let (M*",1,],K) be a connected compact SL(n, H)-manifold, and g
an HKT metric on M. Let Q1 > 0. Then there exists Q, > 0 depending only on
M, g, 1,],K and Qq such that the following holds.

Suppose f € C3(M), ¢ € C>(M) and A > 0 satisfy the following equations

[log A+ fllcs < Qu, /Mcpvolg =0, and (w;+DD)* = Aefw?".

Then [|¢llco < Q-

The above theorem is a direct consequence of Proposition 7.17 combined
with [AV10, Corollary 5.7]. For completeness, and in order to specify the precise
estimate, we will give an overview of the five main steps going into the proof
of this result. We emphasise that apart from Step 1, which applies [AV10,
Proposition 5.3 & Lemma 5.2], the arguments are essentially identical those in
[Joy0O, pp. 108-111]; in fact we deliberately use Joyce’s notation, since this might
be helpful if one aims to modify his higher order a priori estimates to the HKT
setting. The proof outline will occupy the rest of this section.

Step 1 First we argue that for any p > 2, a solution ¢ of (7.5) satisfies
e A R i S
B=16np—-1/um I

where B2 = A, and F > 0 is a smooth real function that depends only on M,
I,],Kand g.

To see this we introduce a (positive) non-vanishing I-holomorphic (2#,0)-
form ® € T(A7"?); this is possible since we are on an SL(n,H)-manifold,
i.e., Hol(VOP) C SL(n,H). Direct calculations, following the proof of [AV10,
Proposition 5.3], now show that

/0= B Pglol 0y n =
n—1 .
(h=1) [ loP a9 oA | L QIA @) ) 1B
M =
> (p=1) [ 9" 29 A3 A QYA
= (=10 [ 3P nay(igl"?) A QNG

p

In addition to straightforward computations, the first equality uses Stokes’
theorem and the inequality uses positivity of the forms (), Q‘f and O.
In order to obtain the estimate (7.13), we now apply the pointwise equality

4nd(|¢""?) N3y (9P A O = |V (Ipl"?) 5 0F,
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7.2 SOLUTION STRATEGY: THE CONTINUITY METHOD

cf. [AV10, Lemma 5.2], combined with the observation that Q% A ® = Fw?",
where the positive function F depends only on M, g and the hypercomplex
structure I, |, K.

2n
2n—1°

For the remainder of the proof we put ¢ =

Step 2 We next obtain constants C; and C, depending only on M and g
such that if ¢ € L? then

972 < CLIVYIT2 + 9ll32), (7.14)

and if in addition [,, ¢ vol, = 0 then

[#ll2 < GVl (7.15)

The inequality (7.14) follows, since L7 is continuously embedded in L%, by
Sobolev’s embedding theorem. If [, ¢ vol, = 0, the inequality (7.15) follows,
since the non-zero eigenvalues of the Laplacian on (M, g) are positive and
form a discrete spectrum. In fact, cf. [Joy0O, Proposition 5.4.2], we can take
C=A; 172 where A; is the smallest non-zero eigenvalue of the Laplacian.

Step 3 We go on to find a priori estimates of ||¢||;,, for p > 2. First we
consider the case when 2 < p < 2e. Our aim is to find a constant C3 depending
onM,g,1,],Kand Q; such that if 2 < p < 2¢ then

Il < Cs.

To this end, we define a positive constant Q depending only on Q;. Con-
cretely, we may take Q := log(1 + e/2). Then we have that |1 — Be//2| < ¢,
From (7.13), with p = 2, we thus get

2
IVl < xeCll¢ll,
where x = (i':l)! |F||co. Combining this estimate with (7.15) and the estimate
[¢]l;1 < volg(M)2||¢]|,2, obtained via Holder’s inequality, we find that

IVo[72 < xe9Ca volg (M) 2| V)| 12,

and therefore ||V¢||;2 < xeQC; volg(M)1/2 =: c.
Now put C3 := max {CCQ,CC%/Z(l +C§)1/2}. Then, by (7.14) and (7.15),

we have that ||¢||,2, ||¢]|;2c < Cs. So, by Holder’s inequality, ||¢||;, < Cs for
2 < p €< 2¢, as required.

Step 4 We then find constants Q,, C4 depending on M, g, 1, ],K and Q;
such that for each p > 2, we have

@1l < Qa(Cap)2"/7. (7.16)
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Define a positive constant Cy := C;¢2"~!(xe? + 1), and choose a positive
number Q; such that

Q2 = C3(Cyp)™/P, for2 < p <2
Q2 > (Cap)*™/?, for2 < p < oo.

We will prove the estimate (7.16) by induction on p. We already know that
for 2 < p < 2¢ one has that

9]l < C3 < Qa(Cap) 2P

In order to verify the inductive step, let us assume that ||¢||;, < Qa2(Cyp)~2"/7
holds for all 2 < p < k, where k > 2e. We now argue that the estimate

]l 0 < Qa(Cag) 2"/

holds for all 2 < q < ek. Then, by induction, the inequality (7.16) holds for all
p =2
Let 2 < p < k. By (7.13), we have that

IV (191”172 < prllgl;

If we combine this estimate with the inequality
242
Il < Cr (1917 1E + el )

which follows from (7.14) applied to |¢|"/?, we get

-1
Il < Cr (prligly, + liglL, ) -

Put g = ep. As2 < p < k, we have |9, < Q2(Cyp)~2"/? as well as
1 < Q2(Cqp)~2"/P. Combining these observations with the inequality ||¢||;,-1 <
1p]l1p, we get
lpll7s < Q3(Cap)~"Ca (pr+1).

As p > 2, the definition of C4 ensures that the inequality C; (px + 1) < Cypel=2"
holds. But as Q5 (Cape)!~2" = (Q2(Caq) ~2"/1)P, these observations allow us to
conclude that

I9ll1s < Qa(Cag) "1,
for all 2e < g < k. This completes the inductive step.

Step 5 Finally, we are able to verify the statement of Theorem 7.18. By con-
struction, Q> depends only on M, g, I, ], K and Q, and if we combine continuity
of ¢ and compactness of M with (7.16), we get

Ipllco = lim [iglly, < lim Qa(Cap) /7 = Qz,

as required.
This completes our sketch of the proof of Theorem 7.18.
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Openness The following theorem implies that S is open, and is the HkT
analogue of [Joy00, Theorem C3].

Theorem 7.19. Let (M*", 1, ], K) be a connected compact hypercomplex manifold, and
¢ an HKT metric on M. Fix a € (0,1) and suppose that f' € C>*(M), ¢' € C>*(M)
and A’ > 0 satisfy the equations

/ ¢'voly =0 and (w;+DDyg')?" = Alef w?", (7.17)
M

Then whenever f € C>*(M) and || f — f'|| cs« is sufficiently small, there exist ¢ € C*
and A > 0 such that

/qu volg =0 and (w;+ DDj¢)*" = Aef w}". (7.18)

Proof. Let X be the vector subspace consisting of functions ¢ € C>* for which

Jy ¢ voly = 0. Then the subset U C X for which w;p = g¢(I-,) is a positive
(1,1)-form on M is open in X.

Suppose that ¢ € U and that 4 is a real number. Then (w‘lp)z'1 is a positive
multiple of w?". In particular, there exists a unique function f € C>* such that

(wh)? = e W, (7.19)

Now define a map ®: U x R — C>* by ®(¢,a) = f with f satisfying (7.19).
® is a well-defined smooth map between Banach spaces. If we choose f’, ¢’ and
A’ as in the statement of the theorem and let a’ = log A/, then, by (7.17), one
has that ¢’ € U and ®(¢’,a’) = f'. Let us evaluate the derivative of ® at the
point p = (¢’,a’). A calculation shows that

(wi+ DD(¢' + &))" = e T W + eCA () + O(?), (7.20)

where A’ is the complex Laplacian with respect to §' = g4 and C is a positive
C3* function. Now let f; := f’ —eb +eCA“ () + O(?) and observe that

(wr + DD(¢' + 81’0))211 _ ea’+sb+fgw%n’

so that ®(¢’ + ey, a’ + eb) = f.. Consequently, the derivative d®,: X x R —
C3* is given by
A, (y,b) = —b+ CA(9). (7.21)

The linear differential operator P := CA’“: C>* — C3* is a second order
elliptic operator without constant term, so its kernel is the set of constant
functions on M; this follows from the maximum principle. In addition P has
vanishing index, since it is the composite of two Fredholm operators each
of index zero. These observations imply that ker P* is one-dimensional, say
spanned by the function ¢; the adjoint is taken with respect to the inner product
induced by g. From the theory of elliptic operators, we then know that Im P
consists of elements ¢ € C>* orthogonal to ¢ and that the restriction of P to X
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7  KAHLER LIKE ASPECTS OF HKT GEOMETRY

is injective. A straightforward argument now shows that d®,: X x R — C3#
is an invertible linear map, cf. [Mad09, Theorem 5.5]. Since it is continuous
and has continuous inverse, the inverse mapping theorem for Banach spaces
applies. Hence, there is an open neighbourhood V.C U xR of p € X xR
and an open neighbourhood W C C3* of f' € C3* such that ®: V — Wisa
homeomorphism.

In conclusion we have that whenever f € C>* and ||f — f'|| s« is sufficiently
small then f € W, and there is a unique point (¢,a) € V such that ®(¢p,a) = f.
As ¢ € X the first equation of (7.18) holds and the second equality follows if we
take A = e” so that (¢, a) = f. O

In order to see that this result implies openness of the set S C [0, 1], we have
to be more specific regarding the relevant topologies on the function spaces that
are involved: in (7.12) we take f € C>* and ¢ € C>*. Now pick ¥ € S. Then,
by definition of S, there is a function ¢’ € C>* with [,,¢'voly =0and A’ > 0
such that

(wi 4+ DD¢')?" = Aletf ",

Applying Theorem 7.19 with ' f in place of f" and tf in place of f, for t € [0,1],
shows that whenever |t — #||| f|| 3.« is sufficiently small, then there exist ¢ € C>*
and a positive real number A such that

/M‘l’volg =0 and (w;+ DD¢)* = Aefw?".

Hence, t € S whenever chosen sufficiently close to t'. So S is open, as claimed.

7.3 Concluding remarks

While Verbitsky [Ver09] argues that balanced HKT metrics are good quaternionic
analogues of Calabi-Yau metrics, SHKT metrics are distinguished from the strong
geometric point of view. The above results therefore suggest that future studies
of HKT geometry should be twofold. On compact hypercomplex manifolds with
Obata holonomy in SL(n,H), e.g., on hypercomplex nilmanifolds [BDV09], we
expect to find to find balanced HXT metrics. On the other hand hypercomplex
manifolds with Hol(V") C SL(n,H), e.g., compact Lie groups [Sol11] or their
product with a torus, are more likely to carry SHKT metrics.

In summary, we should strive to prove the uxT Calabi-Yau problem for
SL(n,H)-manifolds, but at the same time put a separate effort into the construc-
tion and understanding of SHKT metrics.
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Appendix A
Published work

A substantial part of this thesis is based on published or submitted papers
[MS11b, MS10, MS11a, Mad11]; the first three items are joint work with Andrew
Swann. Below I explain to which extent the material in the individual chapters
already appeared in these four references.

Chapter 1 Some of the motivational material is based on the introductions to
the papers [MS11b] and [MS10].

Chapter 2 Section 2.1 on skT geometry is based on [MS11b], and Example 2.4
appeared in [MS11a]. Example 2.6 on generalized hyperKéhler structures has
been added.

Chapter 3 Apart from the two supplementary results on unimodular Lie
algebras, Remark 3.4 and Proposition 3.5, this chapter is based on [MS11b].

Chapter 4 While the first part of the chapter, the Sections 4.1-4.4, consists
of material mainly from [MS10], Section 4.5 is based on the paper [MS11a].
Most of Section 4.4.2 differs significantly from the material appearing in the
aforementioned papers; I have rearranged, clarified and expanded the exposition.
I have also added Proposition 4.9, the Examples 4.19—4.20, and Section 4.4.5.

Chapter 5 This chapter consists of unpublished material.

Chapter 6 Apart from a few supplementary remarks, clarifications, and the
addition of Example 6.13, Section 6.1 is based on the last part of the paper
[MS10]. Section 6.2 is based on [Mad11].

Chapter 7 This chapter describes a future research project. Some of the main
ideas were conceived in [Mad09].
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