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In this report we develop some useful formalisms and 

theorems for the study of general n-dimensional coupled 

motions, specifically, general electromagnetic couplings 

between the motions in three dimensions of charged particles 

in a beam are studied. Sections I and II are heuristic and 

are included only as a review. The material contained in 

these sections can be found in e.g. "Group Theory" by 

M. Hamermesh (Addison Wesley 1962), "Theory of the 

Alternating-Gradient Synchrotron" by E. D. Courant and 

H. S. Snyder (Ann. of Phys. l, 1-48, 1958) and the refer-

ences given therein. 

The bracketed paragraphs are side-line remarks which 

help to clarify the mainstream discussion. 

:0 Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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I. SYMPLECTIC GROUP 
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The symplectic group of dimension 2n is the group of 

linear transformations (M) on 2n objects which obey the 

condition 

MGM = G (1 ) 

where - means transposition and G is an arbitrary antisymmetric 

2n x 2n matrix. By properly choosing the basis coordinates one 

can always reduce G to the canonical form 

0 1 \ -1 0 
0 , 

------ ... ------1 , 
0 1 , 

S 
, , 

- , , i 
: -1 0 

, , , , 

\ 
,------T------

I , 
0 

, etc. , , 
I \ , 

A more revealing form of S obtained by 

rows and columns is 

1 
o 1 

I I 

I '1 
j------------~-----------\ -1: 
\ 

-1 o 
\ -1 

The symplectic condition is, therefore 

MSM = S. 

j 

/ 

(2) 

rearrang-l 

(3 ) 
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r 
I 

For comparison the condition for the 

I group (0) can be written as 

orthogonal l 
I 

OFO = F 

where F is an arbitrary symmetric matrix. By 

properly choosing the basis coordinates we can 

reduce F to the canonical form, which is the 

i unit matrix I. The orthogonal condition is, 

ltherefore, :he familiar 

010 = I or 00 = I. 

It can be shown that the dimension of the symplectic 

group must be even (hence, written as 2n) and that the deter­

minant IMI = +1 (taking the determinant of Eq. (3) gives only 

1]\11 = ±l). Therefore, there is no "improper" symplectic group 

as in the case of the orthogonal group. 

For 2n dimension the symplectic condition (3) gives 

n(2n-l) relations. Thus for real symplectic transformations 

the number of free parameters is 

(2n)2- n (2n-l) = n(2n+l). 

Let us write out Eq. (3) explicity for n = 1 and 2. 

n = 1 

Let ]\1 
= (a b\ . 

IC ill Then Eq. (3) gives 
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should = C~ ~) 
or 

= (0 ad-bC) 
-(ad-bc) 0 
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Hence, for n = 1 the symplectic group is identical to the 

unimodular group. 

n = 2 

fG 0) S = \0 G 

where G = (_~ ~) and Mll , M12 , M21 and M22 are all 2x2 

matrices. Then Eq. (3) gives 

MSM 

The two diagonal 

{'Mlli 

IM121 

( 
~ll GMll 

,M12GMll 

+ M21GM21 

+ M22 GM21 

_ (G 01 
should - 0 G)· 

-
MllGM12 + ~21GM22) 
M

12
GM

12 
+ M

22
GM

22 

equations are simply 

+ IM211 = 1 

+ IM221 = 1. 
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The two off-diagonal equations are the negative-transpose of 

each other and we have only the one equation 

which gives four relations. These six relations can be 

summarized as follows: 

Define the "sum-of-determinants" (SOD) of any two columns 

of M as the sum of the two determinants formed by rows 1 and 2 

and rows 3 and 4. For example, the "sum-of-determinants" of 

columns 1 and 2 of M is just SOD(l,2) = IMlll + IM121. Then 

the six symplectic relations can be written as 

fl 
(i,j) = (I, 2) or (3,4) 

SOD (i. j) = (4) 
I 0 all other (i,j) . 
L 

The extension of Eq. (4) to arbitrarily high n is obvious. 

If the 2n objects on which M operates is written as a 

column vector ~ then 

-
~2S~1 = invariant. 

For n = 1 and ~ (q) this gives = p' 

namely, the "cross-product" of ~l and ~2' or the "area" formed 

by ~l and ¢2 is invariant. (Note that ~S~ = 0.) 

I- In comparison, for the orthogonal group 

I 
I 

invariant 

, namely, the "dot-product" is invariant. 
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It is simple to show that eigenvalues of M must be in 

reciprocal pairs. Furthermore, for real symplectic trans-

formations their eigenvalues must, of course, also be in 

complex conjugate pairs. 

For a given M direct substitution shows that 

k = 1,2,3 .... (6 ) 

It can be shown that all bilinear invariants are linear com-

binations of Ek . 

II. JACOBIAN MATRIX AND POINCARE INTEGRAL INVARIANTS 

"The Jacobian matrix of a canonical transformation is 

symplectic." We shall indicate the proof only for n = 1. 

Let q,p be transformed to Q,P by the generating function 

G(q,P), so that 

p = [3GJ 
3q P Q = [~;J 

q 

where the subscript indicates the variable which is held 

constant. The Jacobian matrix is 

and 

J (Q, P) 
\q,p -

[~~J [~~J p q 



But 

Therefore, 
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o l~~J [~~J - l~~lql~~lp p . q 
JSJ = 

= l~ql~;Jqll~;lq -l~p[~~JqJ I~~lp 
p q 

. ([;q[;;JJp + ~;pl;;J.U;~Jp [:~lq 

- l~p l~;] j [~~] [~~J q . q - p 
q 

= l~q[~;JqJ)~~lq = [~p[~tj)~~Jq 

Q.E.D. 
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The proof for arbitrary n is similar but more complicated. 

Since a Hamiltonian motion is a succession of canonical 

transformations we have "The Jacobian matrix between two 

arbitrary times of a Hamiltonian motion is symplectic." This 

leads to the Poincar~ integral invariants. 
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For an n-dimensional Hamiltonian motion, in the 2n-

dimensional phase space of ql' PI' q2' P2"" qn' Pn' the 

integrals 

2-D surface 

4-D surface 

2n-D volume 

(7) 

are all invariants of motion. Stated in words P2 = invariant 

is "The sum of the projections on the n coordinate planes 

(ql ,PI)' (q2 ,P2)' ... , (qn ,Pnl of an arbitrary 2-D surface in 

the 2n-D phase space is an invariant of motion," and 

P2n = invariant (the Liouville theorem) is "The volume of an 

arbitrary 2n-D volume in the 2n-D phase space is an invariant 

of motion." All other invariants can be similarly stated in 

words. 

To prove the invariance of P
2 

let the motion transform 

qi,Pi at time tl to Qk,Pk at time t 2 . Then denoting by 

~~~::~ the Jacobian determinant between Q,P and q,p; we have 



P 2 (t 2 ) = 

= 
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If (dQl dP l + dQ2dP2 + ... + dQndPn) 

II{ d (Ql ,PI) 
dql dPl + ... + d(ql'Pl ) 

+ 
d(Q2'P 2 ) 

dqldPl + ... + 
d (ql'Pl) 

+ ... 

+ 
d (Q ,P ) 

n n dq dp + ••. + 
d (ql'Pl) 1 1 

d(Ql'P l ) 
dqndPn d (qn'Pn ) 

d(Q2'P 2 ) 
dq dp 

d(qn'Pn ) n n 

d(Q ,P ) 1 n n dq dp 
d (qn' Pn ) n n 

J 

= If {[SOD(ql'P l ) of J]dqldPl + [SOD(q2'P 2 ) of J]dq2dP2 

+ ... + [SOD(q ,p ) of 
n n J]dq dp 1 

n nj 

since J is symplectic. The proofs for the higher invariants 

are similar but more complex. The proof for P2n (the Liouville 

invariant) is, however, very simple. It is a direct consequence 

of Jacobian determinant = IJI = 1. 

As an example of application consider the coupled trans-

verse motions of an unaccelerated particle beam (phase space 

x, x', y, y'). If, initially, the particles have no y-motion 

(y = y' = 0) and populate an area A in the x,x' plane, the 

invariance of P2 states that at any later time the sum of the 
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emittances (projection areas) of the beam in x,x' and y,y' 

is always equal to A. Note here, however, that the projec-

tion areas (emittances) must be taken algebraically with 

proper signs. This is a rather severe limitation on the 

usefulness of all the invariants except the widely applied 

Liouville invariant. 

It is interesting to point out that for linear~ 
I 

motion the above theorems become very transparent. 

A general quadratic 2n-dimensional Hamiltonian can 

be written as 

(8) 

general symmetric 2n x 2n matrix. The canonical 

d equations of motion can be written as (dot = dt) 

<I> = SH<I>. (9) 

If <1>1 and <1>2 are two solutions of Eq. (9) 

<l>2S<I>l = invariant 

because 

~t (~2S<I>l) 
-' 

= <I> 2S <I> 1 + <l>2 S <I>l 

- --= <l>2 HSS <I>l + <l>2 SSH <I>l 

= <I> 2 H<I> 1 - <I> 2 H<I> 1 = o. 

The transfer matrix M is symplectic because it 

-leaves <l>2S<I>l invariant. For this case of linear 

motion the transfer matrix M is identical to the 

L Jacobian matrix J. 

I 
i 

J 
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III. PARAMETRIZATION OF SYMPLECTIC MATRICES 

A. For n = 1 the 2 x 2 real symplectic matrix is uni-

modular and has three parameters. The parametrization was 

given by Courant and Snyder 

(10 ) 

B. For n = 2 the 4 x 4 real symplectic matrix has ten 

parameters. When the two spatial dimensions are uncoupled 

the matrix is 

where X and Yare 2 x 2 symplectic (unimodular) matrices. 

This contains six parameters. For coupling we can use the 

"symplectic rotation" matrix 

(

cose 

-Ksin6 

-1 ) K sin6 

cosS 

where K is again a 2 x 2 symplectic matrix. This matrix con-

tains four parameters and is symplectic as can be shown by 

direct substitution into Eq. (3). The parametrized form of 

a general 4 x 4 symplectic matrix can, therefore, be written 

as 

( 

cose 

-Ksin8 

-1 ) K sine 

cose 
= 

(

XCOS6 

-YKsin6 

-1 ) XK sine 

Ycos8 
(11) 

when e measures the "strength" and K gives the "structure" of 

the coupling. 
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The parametrized form can equally well be written as 

M = 4 (

cose 

-Lsine 

-1 ) L sine 

cose 
= (

xcose 

-Lxsine 
L -lYSine) (12) 

Ysin6 

where L is related to K by 

L = YKX- l . 

We can also parametrize the matrix in the "symplectic 

rotation" form, namely, 

= 

(
cosa 

Rsina 

-1 
-R sinal 

cosal 

Acos a + R BRsin ~ I 2 -1 2 

\ (RA - BR) sina cos a 

! 

(

cosa 

-Rsina 

-1 \ R sinal 

casal 

-1 -1 ) (AR - R B) sina cosa 
2 -1 . 2 Bcos a + RAR Sln a . 

(13 ) 

(14) 

The parameters 6, X, Y and K are related to a, A, B and R by 

where 

I 2 
: sin 6 = 

) Xcos6 = 

Ycose = 

Kcose = 
\. 

[2 2 2 - TrD] sin a cos a 

-1 2 (AR cos a + 
-1 2 R Bsin a)R 

-1 2 -1 2 R(R Bcos a + AR sin a) 

1 2 
------~-.1'1~2[(1-D)COS a -
(2 - TrD) 

-1 2 (l-D )sin a]R 

TrD _ Trace of D. 

c. For n = 3 the 6 x 6 real symplectic matrix has 21 

parameters. The general parametrized form corresponding to 

Eg. (11) is obviously 

(15 ) 
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(: 
0\ 

-1 

~) 0 (0o", Kl sine l 
M6 = Y o I -K~Sinel cose l , 

0 z I 0 11 
/ (16) 

x !~ 0 

o ) 
I 00, e 3 0 

-K3'i:0 3 ) -1 cos6 2 K2 sin6 2 
0 1 

\0 
-1 -K2sin6

2 cos6 2 K3 sine 3 0 cose 3 

where X, Y, Z, Kl , K2 and K3 are all 2 x 2 symplectic matrices. 

The significances of these matrices and e l , e2 , and 63 are 

clear. The extension to matrices with n > 3 is obvious. 

The parametrized forms exhibit the effect of coupling 

explicity, thereby facilitating interpretation. For example, 

for a 2-dimensional motion (n = 2) if the 4 x 4 transfer matrix 

is parametrized in the form of Eg. (11) it becomes immediately 

evident that to decouple the motions one should multiply the 

transfer matrix from the right by 

( 

cos6 

-Ksin6 

-1 )-1 K sin6 

cose 
= ( 

cos6 

Ksine 

-1 ) -K sin6 

cose . 
(17) 

The "symplectic rotation" form is useful in many applica-

tions. For example, if the transverse motions of a beam through 

an uncoupled transport section is given by (AO BO) . When 

this transport section is rotated about the beam as axis 

through an angle a the transfer matrix becomes 

(c~sa sJ.na 
-sinal 
cosa (

cosa 

-sina 
sina) 
cosa (18 ) 
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which is in the form of Eg. (14). Eg. (15) can be used to 

put Eg. (18) into the forms of Eq. (II). Combined with Eq. 

(17) this gives a simple recipe for designing a decoup1er 

which is obtained by rotating an uncoupled transport section. 

IV. ELECTROMAGNETIC COUPLER (OR DECOUPLER) FOR 
MOTIONS OF CHARGED PARTICLES IN A BEAM 

We assume that the centroid of the bunch of charged 

particles (charge e, rest mass m) to be moving in the z direc-

tion with velocity Bc (c = speed of light). The quantities in 

the rest-frame (subscript o) are related to those in the lab-

frame (no subscript) by the Lorentz transformation. 

Field Intensities 

E = y(E - BBy } B = y(B + BEy} xo x xo x 

E = Y(Ey + SB } B = Y(By - SEx} (19 ) yo x yo 

E = E B = B zo z zo z 

Potentials 

fA = A I xo x , , 
\ Ayo = A 4>0 = y{4> - SA } {20 } 

LAzo 

Y z 

= y(A - S4>} z 

Coordinates 

{:: = x Yo = y z = y{z - Bet} 0 {21 } z = y{t - S-} c 

The inverse transformations are obtained simply by reversing 

the sign of S (y co (1-S2) -1/2). 
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These relations can also be put in the 

general vectorial forms 

-> aXB) A A -> 
= y(E + - (y-l) S S·E 

.... aXE) (y-l)S 
A .... 

= y(B - - B·B 

.... a cp) 
A A .... 

= yeA - + (y-l) Bx (BxA) 

= y(q, - a·A) 

act) 
A A .... 

+ (y-l)Bx(Sxr) 

_ a}) 

more 1 
I 

To exhibit the general features it is adequate to consider 

only motions linear in the coordinates x o ' y ,z and their o 0 

conjugate variables Pxo' Pyo' pzo. The Hamiltonian in the 

rest-frame is, then, 

(.... e .... )2 p --A 
~ 0 c 0 + eq, 

2m 0 

where in q,o only terms up to the second degree in x , y , o 0 
. -> 

are kept and In Ao only terms up to the first degree are 

(22 ) 

z o 

retained. There are two general types of coupling (electric 

and magnetic). We shall consider these two types for the 

cases of transverse-transverse (x,y) coupling and transverse-

longitudinal (y,z) coupling. 
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A. TRANSVERSE-TRANSVERSE x,Y COUPLING 

1. Electric Coupling 

This is the coupling where 

a x Y o 0 

.FN-229 
0100 

(23) 

When only linear motions are considered, this is provided by 

a simple 45° skew quadrupole magnet in the lab-frame. In the 

lab-frame write 

r a IB = -~y x 

jB: a = 
~y 

y 

lBz = o • 

Transformed to the rest frame 

, 
E = xo -a Yo 

E = -a x yo 0 

E zo = 0 

or 

{

ep = a X y 
000 

A = A = 0 xo yo ' 

which is the same as Eq. (23). 

2. Magnetic Coupling 

This is the coupling where 

->-
E = 0 

this gives 

f~ . xo 

B = 

lB:: 

A zo 

= 

(24) 

a 
-6 x 

0 

a 
6 Yo 

0 

o (higher order) 



A b = -- Y xo 2 0 

A b = 2 x yo 0 

A = 0 zo 
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¢o = 0 
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(25 ) 

and corresponds to a longitudinal magnetic field in the 

lab-frame, namely, 

)

/BZ = Bzo = b 

B = B = B ,x Y xo 

l E = Eo = o. 

= 0 

B. TRANSVERSE-LONGITUDINAL y,z COUPLING 

1. Electric Coupling 

We want 

(26) 

(27) 

In the lab-frame this corresponds to the travelling fields 

" 

~: 
2 

lEx 
= 0 = aSy (z-Sct) 

2 

~: 
= -ay (z-Sct) = 0 (28) 

= -ay I B = 0 
\. z 

which has to be produced by an RF cavity. For small y = y o 

and Zo = y(z - Set) (More precisely, kyo « 2'1T, kzo « 2'1T. 

These conditions will determine the choice of the wave number 

k.) we can approximate this field by 



rEX 
IE 
\ Y 

LE z 

-18-

= 0 

a = -j( y cosh ky sin ky(z-i3ct) 

a sinh ky cos ky(z-i3ct) = -j( 

= £ Sy cosh ky sin ky(z-i3ct) 

B z = o. 
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Furthermore, this field is just the +z travelling wave compo-

nent of the standing wave 

~':: 
= 0 

= 2~ Y cosh ky cos kyz sin wt k 

lE z = -2~ sinh ky sin kyz sin wt 
k 

(29) 

f:x = 2~ i3y cosh ky sin kyz cos wt k 

= B = 0 
, y z 

where w = i3ykc is the angular frequency. The cavity (assumed 

to be perfectly conducting) producing this standing wave is 

uniform along x and has a y,z shape given by 

or 

~= 
dz 

EZ = sinh ky sin kyz 
Ey y cosh ky cos kyz 

2 
(sinh ky) y = constant 

cos kyz 

which looks like 



electric 

o 
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ky 

-J--- ---
11 
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This cavity is a little unrealistic, especially the uniformity 

along x. But there is presumably no difficulty in making it 

more realistic without spoiling the approximate field for small 

xo ' Yo and zoo By analogy we may call this a "travelling y,z 

electric quadrupole." 

2. Magnetic Coupling 

We want 

[:xo 
= 0 

b 
<Po = 0 (30) = z ; yo 2 0 

~zo = b 
"2 Yo . 

In the rest-frame this is just a Bxo = b field. In the lab-frame 
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this corresponds to the uniform and static fields 

. E = 0 
rX 

= by 

J EX = -bi3y = 0 (31) y 1 By 

IE = 0 = 0 ,B 
\ z " z 

which is just a simple transverse cross electric and magnetic 

field and is produced in an ordinary cross-field electrostatic 

particle separator. 

In contrast to transverse-transverse coupling for 

transverse-longitudinal coupling electric fields either dc 

or rf are needed in the lab-frame. Since electric field 

intensities are rather severely limited by breakdowns it is 

difficult in practice to provide strong transverse-longitudinal 

coupling. 

To see the effects due to these two types of coupling it 

suffices to write down the 4 x 4 transfer matrices for 

a-function fields (thin coupling lenses). In the rest-frame 

take the two coupled coordinates to be x and y (we shall 

drop the subscript 0 from now on). The second order 

Hamiltonian from Eq. (22) is 

Electric Coupling Thin Lens 

H = 1 (p 2 + py2) + eaxy 2m x 

and the equations of motion are 

(32) 

(33) 
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~ 

Px (~= :z ( dx 
I dt = m rm ~ dpx dp 

= -eay ...::..:L = -eax. 
\..dt dt 

For a thin lens the trans£er matrix is 

1 0 0 0 

0 1 a 0 
M = a 0 0 1 0 

a 0 0 1 

Magnetic Coupling Thin 

1 [(Px + H =-
2m 

and the equations of motion 

where a - -e f adt. 

Lens 

eb ) 2 
2c Y + (Py -

eb 
x)2J 2c 

are 

(~ = ! (p _ eb x) 
Jdt m y 2c 

: dp eb ( eb) 
@.t

Y = -2mc Px + 2c Y 
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(34) 

(35) 

(36) 

(37) 

In this case it is simpler to use the vector (x x y y). The 

equations of motion are then 

f
'~~ = x 

dx = eb y 
"dt mc 

~ = y 
dt 

~ = eb 
dt me x 

and £or a thin lens the transfer matrix is 

(38) 



1 0 0 0 

0 1 0 b 
~ = 0 0 1 0 

0 -b 0 1 

-22-

where b - f bdt . 
e 
mc 

FN-229 
0100 

(39 ) 

It is interesting and useful to work out the cases of 

uniform thick lenses where a and b are constant over a given 

length ~ along the beam in the lab-frame. The computation is 

straightforward but tedious and is left to the reader. It 

suffices to point out here that each such thick coupling lens 

supplies two adjustable parameters--the length (~) and the 

strength (a or b). In order to produce an arbitrary desired 

coupling with four parameters [8 and three parameters in K 

from Eq. (11)] one needs a minimum of two thick lenses. 

v. FURTHER DISCUSSION ON MAGNETIC COUPLING 

In this section we discuss a different way of visualizing 

the magnetic coupling which gets away from the linear approxi-

mation and is useful in some applications. In the rest-frame 

the effect of a magnetic field is simply to couple the motions 

in the two dimensions transverse to the field through the 

cyclotron rotation about the field. The exact equation of 

motion (still in the rest-frame, therefore, y ~ 1) is well 

known. 

-+ e -+ -+ 
v = v x B mc (40) 

+ 
where v is the velocity. This equation has the same form as 
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the precession equation for a magnetic moment and shows that 

+ + 
v simply precesses about B with the angular velocity 

eB w = -- = independent of v. Since the position of the particle me 

is dependent on ~ our intuitive feelings of the precessional 

motion of a magnetic moment is most directly applicable to 

that of ~ when B is spatially uniform. Several interesting 

conclusions follow immediately. 

A. If in the rest-frame of the beam bunch the 

velocities of all the particles are along the same 

direction (the velocity line) one can precess the 

velocity line to whatever orientation by a proper 

uniform magnetic field. 

B. If the velocities of all the particles are 

in a given plane with normal n one can precess the 

velocity plane to any orientation by a proper uniform 

magnetic field. To see this, one has only to show 
A 

that the normal n of the velocity plane obeys the same 

precession equation. 

The equation of the velocity plane is 

A + 
n'v = O. 

Differentiating this equation and substituting Eq. 

(40) we get 

d A + ~ .... A .;, 
0 = --(n·v) = n'V + n'v 

dt 
A + e A + B) [~ e A 

+ J + = n'v + -- n' {v x = - --(n x B) . v. 
me me 
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+ 
This is true for all v in the velocity plane, 

therefore, the vector in the bracket must be 
A 

to the velocity plane, namely, along n. But 

neither ~ (because ~ is a unit vector) nor ~ x B 

has a component along~. Hence, the vector in 

the bracket must vanish identically giving 

A e A -+-
n = n x B. mc 
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(41 ) 

c. This same transition from vectors-in-plane 

to normal-of-plane can be repeated over and over 
,-

again. Namely, if the normals n of many velocity 
A 

planes themselves lie in a plane (n-plane) with a 

normal T. The equation for T is again the same as 

that for ~. 

One of the main purposes to consider coupling is to change 

the emittances in individual dimensions. This means manipulat-

ing the 2n-dimensional phase space volume to change its pro-

jectional areas on individual coordinate planes in conformity 

with the Poincar~ invariants. For simplicity, we consider 

only n = 2 (say, x and y). The magnetic coupling by a uniform 

B
Z 

is simple enough for visualizing the design of a system 

which reduces the x-emittance at the expense of increasing 

the y-emittance. 

To further simplify the problem we assume the initial 

emittances to be "first-order zeros," i.e., areas of lines. 

The motions in a uniform magnetic field Bz are 
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fVX 
wt (x = v. cos 

1 , 
< 

'v = v. sin wt Ly Y 1 

eB 
where z and w = x = x. , Y = Yi , mc 1 

11 

v. 
+ 1 sin = X. 

1 w 
v. 

= Yi + -2:. (l -
W 

Vx = v. , v 
1 Y 

wt 

cos 

= 0 

,FN-229 
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(40) 

wt) 

at t = 0 
v. 

1 when B is turned on. At wt = 2' Vx = 0, xf = x. + and 
Z 

B is turned off. z 

1 

In order that x f = 0 we must have 

vi 
x. + = 0 

1 W 

W 

which is shown as line AOA' in the 
Vx 

x, plot below. All w 

phase points starting on line AOA' at t = 0 traverse quarter 

A 

x 

A' 

circles and end up at the 

11 
origin 0 at wt = 2' We 

have thus reduced the 

x-emittance (from the 

1st order zero area of 

a line to the 2nd order 

zero area of a point) . 
Vv 

In the y, ~ plane the 

points C (Y = Yi , Vy = 0) 

with different values of Vx = vi will again traverse quarter 

circles and end up along C'CC" at wt = i. The y-emittance 

is therefore increased by the area C'C"D"D'. This is not, 

however, in violation of the Poincare invariant P2 because 

when proper signs are taken into account the area CC"D"D 

above the y-axis is positive and the area C'CDD' below the 
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y-axis is negative. ~ 
The algebraic total of the y, -L 

w 

area increase is, therefore, zero. 

1 
w 

C" 

o 

C' D' 

Thus, at t = 0, B is turned on; z 
Vx 

large and focusing in x with -- -x w = 

D" 

y 

and the beam should 
eBz rnc-' and large and 

parallel (vy = 0) in y. The x-emittance will be a minimum 

TI 
at wt = 2 when B z should be turned off. 

The most interesting application is in coupling the 

longitudinal motion to a transverse motion as described in 

be 

B.2 of Section IV. By applying the scheme twice we can, in 

principle, reduce the beam emittances in both transverse 

dimensions to arbitrarily small values at the expense of 

increasing the longitudinal emittance, namely, increasing 

either the bunch length or the momentum spread. 

For transverse-longitudinal coupling (say, between yo 

and zo following the notation of B.2 of Section IV and 

restoring the subscript 0 for the rest-frame) the coupling 
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strength is limited by the maximum value of Ey attainable in 

the lab-frame. Taking an optimistic value of 

= 1000 esu and a proton beam of, say, 200 MeV 

E 
Y 

= 300 kV/cm 

(S = 0.566, 

y = 1.213) we get b = 1.456 kG. If the crossed E ,B field y x 

extends in the lab-frame over a length z along the beam we 

get 

W 

= ~t = 
Y 

eb 
2 z = 

mc Sy 

b 
TBPTz 

where (Bp) is the usual magnetic rigidity of the particle. 

1T 
For 200 MeV protons (Bp) = 21.5 kGm and to get woto = 2 we 

must have z = 23.2 m which is rather long. 

In view of the rather weak maximum available transverse-

longitudinal coupling, its application to a circular accel-

erator or a storage ring where the beam passes repeatedly 

through the coupler would be more practical. 


