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ABSTRACT

The Fermilab Booster is a nearly 40-year-old proton synchrotron, designed to

accelerate injected protons from a kinetic energy of 400 MeV to 8 GeV for extraction

into the Main Injector and ultimately the Tevatron. Currently the Booster is operated

with a typical intensity of 4.5 1012 particles per beam, roughly twice the value of its de-

sign, because of the requirement for high particle flux in various experiments. Its rela-

tively low injection energy provides certain challenges in maintaining beam quality and

stability under these increasing intensity demands. An understanding of the effects limit-

ing this intensity could provide enhanced beam stability and reduced downtime due to

particle losses and subsequent damage to the accelerator elements. Design of future acce-

lerators can also benefit from a better understanding of intensity effects limiting injection

dynamics.

Chapter 1 provides a summary of accelerator research during the 20th century

leading to the development of the modern synchrotron. Chapter 2 puts forth a working

knowledge of the terminology and basic theory used in accelerator physics, and provides

a brief description of the Fermilab Booster synchrotron. Synergia, a 3d space-charge

modeling framework, is presented, along with some simulation benchmarks relevant to

topics herein.

Emittance, a commonly used quantity characterizing beam size and quality in a

particular plane, is discussed in Chapter 3. Space-charge fields tend to couple the motion

among the planes, leading to emittance exchange, and necessitating a simultaneous mea-

surement to obtain a complete emittance description at higher intensities. A measure-
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ment is described and results are given. RMS beam emittances are shown to be in keep-

ing with known Booster values at nominal intensities and emittance exchange is observed

and accounted for. Unmeasurable correlation terms between the planes are quantified

using Synergia, and shown to be at most an 8% effect.

Results of studies on the coherent and incoherent shifts of transverse (betatron)

frequencies with beam intensity at injection energies are presented. In Chapter 4 the co-

herent frequency shifts are shown to be due to dipole- and quadrupole-wakefield ef-

fects. The asymmetry of the Booster beam chamber through the magnets, as well as the

presence of magnet laminations, are responsible for the magnitudes and for the opposing

signs of the horizontal and vertical tune shifts caused by these wakefields.

Chapter 5 details the procedures for obtaining a linear coherent-tune-shift intensi-

ty dependence, yielding -0.009⁄1012 in the vertical plane and +0.001⁄1012 in the horizontal

plane. Data demonstrate a requirement of several hundred turns to accumulate to its max-

imal value. Two independent studies are compared, corroborating these results.

In Chapter 6, a measure of the incoherent tune shift with intensity puts an upper

limit on the magnitude of the direct space-charge effect in the Fermilab Booster. A pre-

diction is made for the representative incoherent particle tune shift using a realistic Gaus-

sian distribution, allowing for growth of the beam envelope with intensity, and found to

be 0.004⁄1012. The tune-spread dependence obtained by quantification of the resonant

stopband width from beam-extinction measurements was measured at 0.005⁄1012, similar

to the predicted value. These will be shown to be one order of magnitude smaller than the

space-charge term from the Laslett tune shift for a fixed-size, uniform beam.
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CHAPTER 1

A BRIEF HISTORY OF RESEARCH TO THE EFFECTS OF
INTENSITY IN PARTICLE ACCELERATORS

1.1 Synopsis

Here we present an overview of the work in the field leading to current research

in space-charge and related intensity-dependent phenomena. We start with the develop-

ments in accelerator technology from the 20th century, without which the discussion of

intensity limitations in modern synchrotron accelerators would be irrelevant. There fol-

lows a discussion of the intensity-dependent effects as they were discovered and/or con-

sidered when particle densities became high enough, and highlight the application of

these to the Fermilab Booster. Finally, we summarize the development of particle simula-

tions as applied to accelerator physics leading to the work on this accelerator.

1.2 On the Developments Leading to the Synchrotron

One of the first working accelerators used in particle physics was constructed by

J. Cockcroft and E. Walton in 1932, who at the behest of G. Gamow were seeking ways

to overcome the electrostatic centrifugal barrier inhibiting study of the atomic nucleus

[36]1. These accelerators were electrostatic in nature, which limited them to an accelerat-

ing voltage around 1 MV from end to end before dielectric breakdown became a prob-

lem. While tandem constructions were devised to bring incremental gains, it was clear

that an alternative acceleration scheme was necessary in the pursuit of higher energy. The

predecessors of modern linear accelerators were first proposed by G. Ising and R. Wi-

derøe in the 1920s [64,129], who considered a scheme of smaller alternating voltages in


1 Corresponding to references in the Bibliography.
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the short-wave-radio range (RF) confined to sections of vacuum pipes to achieve these

higher energies. Their ideas were implemented by E. Lawrence and D. Sloan. Sloan built

the first linear accelerator employing this effect in 1931 [115].

While this overcame the problem of dielectric breakdown, achieving higher ener-

gies in this fashion for lighter particles (i.e. electrons or protons) eventually meant the

production of very long vacuum chambers, which was impractical at the time. To cir-

cumvent this problem, Lawrence went on to develop the first cyclic accelerator, the cyc-

lotron, designed in 1929 and eventually patented in 1934 [77]. For constant magnetic

fields, the orbit of the particles was spiral-like in nature due to their increasing velocities,

and the number of repeated accelerations was limited by the size of the magnet. In 1940

D.W. Kerst developed the betatron [68, 69, 70], the first cyclotron relying on an induc-

tion-based scheme by varying the current in a massive central magnet to accelerate par-

ticles in many repeated, circular orbits, and compensating somewhat for the particle-

velocity increase.

Although energies (of electrons) of up to 300 MeV were achieved this way, rela-

tivistic effects (effective mass increase) eventually limited the efficiency of this induc-

tion-powered acceleration. To overcome these effects, the synchrotron accelerator was

proposed, independently by V. Veksler in 1944 and E. McMillan in 1945 [87, 123] (and

purportedly unofficially by M. Oliphant [105] several years earlier). Particles are injected

at sufficient energies through other means and are then accelerated by electric fields

while being steered in a cyclic path by powerful dipole magnets. Veksler and McMillan

realized that sinusoidal RF accelerating fields synchronized to the particle motion pro-

vided a certain amount of longitudinal stability, allowing for much higher energies than
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with previous accelerator designs. To this end, magnetic field strengths and frequencies

are ramped to maintain the orbits of the particles under their increasing velocity and rela-

tivistic masses. While orbit control is still limited by the maximal magnetic field, unlike

the cyclotrons, this design more or less removes the former size requirements of the ne-

cessary magnetic elements in the pursuit of higher energy.

The first high-energy synchrotron, the Cosmotron at Brookhaven National Labor-

atory, was constructed in 1948, reaching a particle energy of 3.3 GeV by 1953. A 10-

GeV synchrotron would follow in the U.S.S.R. in the late 1950s. Energies steadily in-

creased over the next few decades, in part due to the parallel development of high-

powered RF generators and the improvements in superconducting magnet technologies.

Such accelerators have since been employed almost exclusively in the high-energy re-

gime2, well into the TeV range with the Tevatron at FNAL and the newly commissioned

LHC at CERN.

1.3 Intensity Improvements and the Collective Effects within Particle Beams

Beam intensity has become at least as important as beam stability. Experiments

utilizing high-energy colliders often take months or years of run time, and depend very

much on statistics, for which the frequency of events is paramount to achieve precise

results within reasonable time scales. Some steps leading to improvements in beam inten-

sity, and the subsequent challenges associated with them, are detailed in the following.

1.3.1 Alternating-Gradient Focusing. The physics of low-intensity beams (essentially



2 For electron synchrotrons, a practical limit is eventually reached over 100 GeV
because of significant energy loss due to synchrotron radiation, which scales as (mass)-4.
Hence for protons, the necessary energies (1022 eV) for this to manifest itself may never
be reached with synchrotron technology.
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single-particle dynamics) has been studied since the 1930s, though much of this was sec-

ondary to the achievement of energies in working cyclotrons, given the rather meager

attainable intensities by modern standards. In 1949, the invention of alternating-gradient

or strong-focusing techniques by Christofilos [35] and independently by Courant, Snyder,

Livingston and Blewett in 1952 [41] brought the potential for an increase in particle den-

sity practically unattainable with previous focusing methods (now called 'weak' focusing)

as particle energies entered the GeV range. Such a design permitted separate functions for

each magnetic element, helping to mitigate the magnetic saturation present when higher

field strengths were employed, while significantly reducing the size of the magnets

needed by minimizing the size of the beam. Almost all modern accelerators utilize this

strong-focusing and separate-function design.

While interest in space-charge effects started during the 1950s largely in the

plasma physics community, especially in the area of magnetic-confinement fusion [57,

121], by the 1960s, steady improvements in beam intensity, along with the prediction of

synchrotron radiation by Pomeranchuk and Ivanenko in 1944 [65] (verified observation

by Langmuir in 1946 [50]) necessitated the understanding of these collective effects in

particle beams, both for high-energy colliders and the eventually emerging synchrotron

light sources, the uses of which would soon greatly eclipse the applications of the collider

accelerator.

1.3.2 Courant-Snyder Theory of Beam Dynamics and Space-Charge Forces. Fol-

lowing the implementation of the alternating-gradient focusing method, the groundwork

for a description of beam dynamics in periodic focusing systems was first laid out by

Courant and Snyder [39]. This was the first systematic discussion of the beam properties
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in terms of its single-particle motion, its maximal extent, or envelope, its oscillation

phase, and a motional invariant later known as emittance. The formalism, using the me-

thod of Floquet transformation, has turned out to be far more general and was in fact de-

veloped many times in many disciplines. A historical overview has been prepared by

R.C. Davidson and H. Qin [99,100]. Extension of this Courant-Snyder framework to

space-charge forces in the presence of magnetic-focusing errors was done by F. Sacherer

in 1968 [109], bringing better understanding to conditions for stable operation in an acce-

lerator.

Much of the theory of the interactions within the beam under increasing intensity

was extended from the domain of plasma physics. The cumulative work of R. Davidson

[43] put the physics of collective effects in beams on a sound theoretical footing by in-

corporating the theory presented by A. Vlasov 20 years earlier [124-126]. The Vlasov

equation describes the long-range Coulomb interactions within an ensemble of charged

particles (a veritable staple in the plasma-physics community) and was applied equally

well to high-intensity accelerator beams. This allowed for a complete, self-consistent3

description of the evolution of the beam distribution under self- and external forces. A

thermodynamic description of the beam was introduced by M. Reiser in the 1970s [101],

and a statistical definition of this emittance introduced by Courant and Snyder was devel-

oped by P. Lapostolle in 1971 [71]. These concepts helped pave the way for the devel-

opment of techniques to maintain or improve beam quality, such as stochastic cooling

[122] and a variety of beam-manipulation methods colloquially referred to as "phase-


3 "Self-consistent" in beam and plasma physics refers to systems whose evolution
in time due to internal and external forces can be completely described by those same
forces regardless of their commensurate dependence on the distribution change.
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space gymnastics," where the phase-space portrait of the particles is modified to optimize

certain beneficial properties of the beam.

Since the 1980s, further work has been done primarily by I. Hofmann [61], with

others such as G. Franchetti, A. Fedotov, R. Gluckstern, to generalize this to the dynam-

ics caused by nonlinear space-charge forces for various distributions using both the Vla-

sov and thermodynamic descriptions. Comprehensive discussions of the nonlinear Hamil-

tonian and Vlasov descriptions of the dynamics of particle beams have been well estab-

lished and can be found in several modern textbooks on the topic.

1.4 Interaction with the Surroundings

With an increase in intensity, the interaction of the beam and its surroundings (i.e.

the vacuum chamber) became important, as other potential instabilities were driven by

this response. In 1963, L.J. Laslett was the first to consider the effect of a conducting

chamber on the transverse oscillation frequencies of the particles in a high-intensity beam

[73]. It was shown that for lower energies, the majority of the effect came from electros-

tatic repulsion within the beam, while for higher energies, the magnetic self-field cancel-

lation inhibited this and the response from the vacuum chamber became the dominant

factor. The inclusion of an imperfectly conducting structure (as most materials tend to be)

was soon investigated by Laslett, Neil and Sessler [76], who showed that the resistive

behavior of the material could produce transverse-oscillation growth under certain cir-

cumstances. The growth rate depended on the value of this resistivity within various fre-

quency regimes due to the time-dependent fields of the passing beam.

This work culminated in an impedance-based description of this phenomenon,

first presented by Sessler and Vaccaro in 1967 [111]. These concepts were later genera-
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lized by Sacherer and Nassibian [89], who recast the impedance in terms of driving par-

ticles (in front) and receiving particles (in rear), allowing for a description of impedance

phenomena dependent both on the beam distributions as well as on chamber geometries.

A detailed summary describing the analytical methods developed for calculating imped-

ances has been performed by R. Gluckstern [55]. Recent publications by others

[18,22,59] have also promoted better understanding of the impedance effects in the Fer-

milab Booster.

1.5 Prior Measurements of the Booster Impedance and the Known Complications

The Booster presents a complication in that much of its (noncircular) geometry is

comprised of magnets constructed from stacked, epoxy-insulated laminations, which has

been shown to measurably change the impedance behavior over a nonlaminated structure.

A general discussion of the problem of transverse instabilities in the presence of lami-

nated structures was completed by B. Zotter in 1969 [136]. The first analyses of imped-

ance effects in the Booster were done by A. Ruggiero [106-108] and S.C. Snowdon [116]

in 1970, who made predictions on the effect of the laminations on the longitudinal mo-

tion. Attempts to quantify the transverse coupling impedance as well have been done over

the past years by R. Shafer [112], J. Crisp [42], and V. Lebedev [78]. A survey of the

problem first detailed by Ruggiero, with further analysis, has been done by Gluckstern

[54], and more analytical treatments have been given separately by A. Burov [19] and

K.Y. Ng [91] in recent years. However, the problem of understanding the properties of

the transverse impedance in the Booster and all of its important effects on beam stability,

additionally taking into account these laminations, is considered rather formidable and to

date has not been completely described.
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1.6 Particle Simulations for Accelerators and the Application to the Booster

As with all many-particle, nonlinear systems, beam dynamics including space

charge is analytically intractable, and many properties must be extracted using numerical

methods. The mainstay of particle simulations, the so-called particle-in-cell technique,

was developed in the late 1950s by the fluid mechanics community, in particular for the

study of turbulent effects [58]. The application to plasma instabilities was soon to follow

in the next two decades [44]. Advances in computing power have allowed its application

to accelerators, where in addition to the nonlinear self-forces, hundreds of accelerator

elements must be considered. Many particle-tracking codes have been developed over

time, but in application to the Booster, the most recent work on simulating space-charge

dynamics was done by S. Stahl in 1991 [117], before the Booster injection-energy up-

grade from 200 MeV to 400 MeV [110], and before the commissioning of the Main In-

jector in 1993. Intensity has been significantly increased since then, and other considera-

tions such as the inclusion of a more realistic Booster geometry necessitate a refresh of

this work.
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CHAPTER 2

BASIC ACCELERATOR TERMINOLOGY, BOOSTER
TECHNICAL DETAILS, AND INTRODUCTION

TO THE SIMULATION TOOLS

2.1 Some Fundamentals of Accelerator Physics

The primary impetus for the understanding of the effects of increasing particle

intensity, both through mutual Coulomb interaction (space-charge) as well as the re-

sponse from the surrounding vacuum-chamber, on particle-beam dynamics in circular

accelerators is the desire to increase the luminosity of particle colliders, and, to a lesser

extent, the brightness of synchrotron light sources, both of which are strongly dependent

on intensity. We focus our discussion on the FNAL Booster, on which this work is based.

During its nearly 40 years of operation, as of this writing, it has served as an intermediate

synchrotron accelerator between the FNAL Linac and some accelerator bringing particles

to their highest energy, most recently the Tevatron. Over the years, an increase in Teva-

tron-beam intensity has been achieved in part through an increase in Linac energy into

the Booster from 200 MeV to 400 MeV, as well as from the construction of a larger-

aperture Main Injector between the Booster and the Tevatron.

With the capability for a greater number of protons into the Tevatron, the Boost-

er’s workload (number of particles per pulse) has increased from well below its design

intensity in the 1970s to (currently) roughly twice this intended limit during normal oper-

ations. Additionally, the need for protons in the production of neutrinos in both the NuMi

and Miniboone experiments has pushed the intensity demands on the Booster further, by

requiring a more continuous operation at these higher limits. Figure 2.1 presents a sche-

matic of the current Fermilab accelerator chain.
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Figure 2.1. Schematic of the Fermilab Accelerator Chain (courtesy Fermilab Visual Me-
dia Services)

Intensity effects are an important consideration, for the following reason. To first

order, particles are maintained in the ring of a circular accelerator by strong magnetic

fields with dipole fields to steer the beam and quadrupole fields to focus it transversely.

The formalism of the dynamics is well understood and very analogous to that of linear

optics. To first order, these would be sufficient to contain the beam. But magnets are not

perfect, of course, so higher-order correction (sometimes called “trim”) elements (rotated

quadrupoles, sextupoles, etc.) are then utilized to maintain certain beam parameters with-

in respective ranges required for stable operation and proper containment by the strong

dipole and quadrupole magnets. The effect of these beam-focusing and correction ele-

ments may be reduced due to intensity-dependent Coulomb repulsion of large numbers of
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charged particles within the confines of the vacuum chamber. Furthermore, increasing

intensity may cause the beam distribution and corresponding properties to change unde-

sirably, leading in some cases to certain beam instabilities (resonances) and ultimately

beam loss or breakup. To make matters worse, the surrounding vacuum chamber, com-

prised of many elements from magnets to accelerating cavities, also interacts more

strongly with a beam of increased intensity, usually in a manner inimical to beam stabili-

ty as well. Generally, these two effects, the mutual interaction of the particles on each

other, as well as the interaction of the surroundings on the beam as a whole, are consi-

dered to be self-forces, since their existence depends on the beam intensity specifically.

2.1.1 Accelerator basics. We provide in this section an introduction to the accelerator-

physics concepts utilized throughout. The purpose is to provide more of a working know-

ledge rather than a complete or comprehensive description of the terminology. A more

complete treatment on introductory material can be found elsewhere [37, 47, 62, 80].

Further extensions or details will be provided in situ as needed.

2.1.1.1 Coordinate Description, Beam and Synchronous-Particle Definitions. The

function of a particle accelerator, as the name suggests, is to increase the energy of

charged particles, ultimately for collision with other particles or as a generator of high-

brightness light. Generally, accelerators follow two main designs - single-pass, linear

accelerators and multi-pass, circular accelerators. 'Circular' is a common description

though somewhat imprecise. While they are closed, periodic structures, very few of them

truly resemble circles. A 'ring' is perhaps a better term. In these accelerators, particles

travel in orbits over many revolutions, being steered in their repeated path by powerful

dipole magnets. The collection of particles, i.e. the beam, possesses a small transverse
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momentum relative to the longitudinal. For example, in the Booster, particle transverse

momenta are typically no larger than 40 keV⁄c while forward momentum can range from

around 900 MeV⁄c to 8 GeV⁄c within the cycle.

In any accelerator with energies over several MeV, alternating electromagnetic

fields (colloquially termed RF, since their frequencies are generally in the radio range)

provide the energy gain to the particles. Practical reasons have necessitated their use.

First, electrostatic acceleration methods have been limited to around 1-2 MV⁄m before the

need to avoid dielectric breakdown greatly complicates the design. Secondly, a certain

amount of longitudinal stability is achieved a priori using sinusoidal fields, which are

readily available using high-powered RF generators. Since oscillating fields would acce-

lerate (positively) charged particles on the positive portion of the waveform and decele-

rate them on the negative, the beam must be shielded from the latter to ensure consistent

acceleration. A beam thus comes in roughly equally longitudinally spaced “bunches”

confined to the spatial extent of the instantaneous accelerating portion of the RF field.

Because the longitudinal width is determined by the frequency of this RF field, it is often

expressed experimentally in such terms, e.g. a bunch in a 200-MHz field is 200 MHz

"long." This accelerating field must be some integer multiple of the revolution frequency

(the so-called harmonic number), depending on how many bunches are designed to fit in

the orbit circumference. Since the revolution frequency naturally increases with increas-

ing energy (at low energies, at least), the location in the cycle is often quoted in terms of

the number of revolutions, or 'turns,' rather than time.

Ideally, all particles would travel along a particular trajectory (design orbit) with a

particular energy. Such an ideal particle is referred to, for reasons that will discussed, as
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the synchronous particle. Naturally, particles will not follow this trajectory exactly.

Coordinates are based on the slight deviation relative to this synchronous particle. The

motion is separated distinctly into transverse and longitudinal parts, requiring in general

six coordinates to describe it fully. For a circular accelerator, a particle trajectory P is

customarily described by (x, y, s) where x, y are the transverse positions (horizontal and

vertical, respectively) relative to the beam centroid (so-called synchronous orbit) and s is

the "absolute" longitudinal coordinate.4

The transverse particle deflection angles are defined by x′ = dx ⁄ds, y′ = dy ⁄ds, and

are proportional to a particle’s transverse momenta. Specifically, for pz >> px,y we may

write x′ = px⁄p ≈ px⁄pz and similarly for y'. Hence they are conventionally used as the con-

jugate variable to position. In the s-direction we define the momentum error p and the

relative longitudinal position z given by p = p⁄p and z = s−βct, where p is the forward

momentum of the synchronous particle, and βc is its velocity. The six coordinates de-

scribing the dynamics of a particle in the beam are then P(x,x’,y,y’,z,p). Often, the ener-

gy error E through some characteristic transit time t is used instead of momentum and

position error. An equivalent representation could then be P(x,x’,y,y’,t,E).

2.1.1.2 Lattice, Field Gradient, Quadrupole Focal Length. Because the energy differ-

ence between transverse and longitudinal motion differs commonly by several orders of

magnitude, the dynamics of particle beams are almost always separated rather distinctly

along these lines. The transverse motions of particles with such displacements relative to



4 s can be periodic (taking values up to the circumference of the ring), or conti-
nuous, monotonically increasing.  Since the particles see the same elements in the same
physical  locations, the periodic definition is more practical for our purposes.



14

the design orbit are maintained through sequential, orthogonal quadrupole fields arranged

to provide alternating-gradient focusing, analogous to the systems of lenses in classical

optics. Beam-centroid position is likewise maintained near the design orbit in the hori-

zontal plane through dipole fields. In principle these elements provide sufficient linear

restoring forces to maintain the beam in its orbit indefinitely. In practice higher-order

magnetic multipoles are necessary to correct for certain nonlinear effects. Generally

speaking, the periodic collection of magnets and drift spaces responsible for maintaining

this transverse stability is referred to as the accelerator lattice.

The overall effect of these elements on the particles depends on their energy as

well as the length of the magnet the beam traverses. While magnets are indeed of finite

length, a "thin-lens" assumption, equivalent to the term in optics, is usually made wherein

this length is very small relative to a relativistic, passing beam such that any focusing or

deflection can be treated as if the magnet were of zero thickness. Hence the important

quantity is not its field or field gradient, but the integrated field/field gradient over this

longitudinal distance, i.e.

( / 2 1)

0

nL
B dl



 (2.1)

where (n⁄2-1) is the order of the transverse derivative of the n-pole field (zero for dipole,

one for quadrupole, etc). The quadrupole will be of particular importance particularly in

the subsequent section, so we detail it here.

The horizontal and vertical field components of a quadrupole oriented in the

transverse plane are linear, and given by

, yx
x y

BBB y B x
y x


 
 

(2.2)
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By design, these components are usually equal, so that

x yB Cy B Cx   (2.3)

where C is the uniform field gradient of the symmetric quadrupole. Naturally, this leads

to a focusing in one plane and a defocusing in the other. If B is expressed in Gaussian

units (MV/m or such), the "focal length" f of such a device can be written as

0
'1

/

L
B dl

f pc e
  (2.4)

where p⁄e5 is the magnetic rigidity of the beam given as the ratio of the momentum to the

electric charge (higher-energy beams are 'stiffer' and more difficult to bend and focus).

Proper periodic placement of these quadrupoles results in a sustainable restoring force to

the beam.

2.1.1.3 Tune, phase advance, β-function, tune shift. As mentioned previously, particles

bound in this accelerator lattice are thus subject to periodic magnetic restoring forces,

hence the single-particle dynamics can be described, to first order, by the Hill equation.

2

2 ( ) 0x
d x K s x
ds

  (2.5)

where K(s) is the periodic focusing function provided by magnetic quadrupole elements

distributed periodically around the ring. Its general solution is given by

s

0
( ) ( )         =

( )
i dtx s A s e

t
 


  (2.6)



5 Often the rigidity is expressed as what is intended to be a single symbol '(B)',
representing the product of some bending field and the radius of the beam being bent by
such a field. While far more ubiquitous in the literature, we shall seek to minimize the use
of this expression in favor of the ratio p/e.
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where β(s) is the so-called ‘beta-function,’ or 'betatron function',6 a longitudinally varying

quantity depending on the strength and spacing of the quadrupole magnets around the

ring. Physically it may be interpreted as the instantaneous wavelength (divided by 2) of

a particle undergoing this transverse motion. A β represents the particle oscillation am-

plitude at s. Since β varies with s, so does the amplitude. The capabilities of the magnetic

focusing elements determine this beta function.

The quantity  is referred to as the betatron phase or phase advance. If 2 is the

complete phase angle representing one complete transverse oscillation of the particle,

then the number of oscillations per turn (horizontal or vertical) may then be written as

1
2 ( )

ds
s


 

  (2.7)

ν is referred to as the betatron tune of the accelerator. This tune, and the perturbations

affecting it (tune shift), are of paramount importance in assessing beam stability under

certain conditions.

The most notable of these stability issues is the onset of so-called betatron reson-

ances. Particles the fractional part of whose tunes are integer harmonic numbers, i.e. 1,

1⁄2, 1⁄3,...,1⁄n, will arrive at the same betatron phase at any particular location in the acce-

lerator after n turns. This also applies to values m⁄n, where m and n are integers and m<n,

only the repeat period is every m×n turns. In the presence of gradient errors, however

small, these particles will experience ever increasing amplitude growth from this error,



6 The nomenclature is merely historical.  The analysis of transverse motion of this
type was first formally analyzed in betatron accelerators.  All accelerators naturally exhi-
bit this behavior.
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ultimately leading to beam loss. In principle, this would apply to every rational number,

essentially cluttering tune space like a minefield. In practice, because of certain damping

mechanisms and other nonlinear effects, the first three are often the most important to

avoid. Preparation of the accelerator lattice should intend to avoid these resonances, but

effects shifting the tune substantially enough can foil this careful design.

The tune shift due to a perturbing force can be calculated for a single particle

from the Hill equation (2.5). While such an approach provides an understanding of how

certain quantifiable forces on particles in a beam affect this tune, such a framework also

has certain limitations, discussed in the following section.

To calculate this shift in the tune in the presence of small external forces, we

modify (2.5) in the presence of a perturbation. Let ν0 represent the unperturbed tune.

Then the equation of motion can be written in terms of the unperturbed frequency of os-

cillation,

0

2
2

( , )
2

( , ) ( , ) 0x y

path

d x y x y
ds R

 
   
 

(2.8)

where Rpath is the accelerator radius. Let us consider a linear perturbation, κ, in the restor-

ing force in (2.8). Let ζ represent either x or y, such that

0

2
2

2
path

d
ds R

  
 

   
 

(2.9)

κ is small enough such that

0

2

pathR


 
  
 

 (2.10)

For this small perturbation we may approximate
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0

0

2

2
pathR

  



  




    (2.11)

We wish to express this in terms of the actual forces acting on a particle. (2.9) has the

form of the simple-harmonic oscillator, in which case κ can be written as

2 2

/F
m c


 

 (2.12)

where γm is the relativistic particle mass and βc is the velocity7. F is the unwanted force

perturbing the particle motion. The tune shift is then given by

0

2

2 2

/
2

pathRF
m c




  

  (2.13)

We note that unless the force is linear with the transverse coordinate ζ, the linearized par-

ticle tune-shift is position-dependent. The tune shift presented will be applied to the case

of a uniform beam to estimate the relative contribution of space-charge to the effects of a

conducting vacuum chamber in Section 4.2.

One of the shortcomings of the preceding single-particle approach is that it does

not account for the dynamics of collective motion. A particle beam is not a "frozen" col-

lection of particles traversing the same path element by element. Particle trajectories dif-

fer in maximal amplitude as well as in tune. The resulting collective motion amounts to a

dynamic beam envelope, and space-charge effects play a role in its evolution. A full de-

scription of this motion is necessarily distribution-dependent.

In order to obtain a dynamical equation for the beam envelope, rather than a sin-



7 Unfortunately, β is substantially overemployed in accelerator physics. While the
meaning should be clear from context alone, we shall strive to make it unambiguous.
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gle-particle equation, a description of the particle distribution is needed. A beam distribu-

tion frequently is modeled transversely by an elliptical Gaussian function. Such distribu-

tions, though both realistic and accurate in their own right, are not valid indefinitely,

since the forces within the beam changing the distribution, and the change in this distri-

bution then modifying the forces will not maintain this Gaussian behavior. That is, the

resulting equations of motion are not self-consistent. Given a linear space-charge self-

force, we seek a four-dimensional ellipsoidal distribution (x,px,y,py) giving rise to this

linear space charge force which in turn allows the ensemble to maintain the ellipsoidal

distribution it started with. Such a distribution can be written formally as

 
2 22 22 2

2 2 2 2 2, , , 1env yenv x
x y

x y env x env y

y px px yx p y p
x y

 
    

 
      

 
(2.14)

where xenv and yenv are the horizontal and vertical beam-envelope dimensions and x, y

are the horizontal and vertical emittances, and δ is the Dirac delta function. Emittance

will be discussed in detail in Sections 4.1-4.3. For these purposes we consider them con-

stant beam parameters characterizing the envelope size. First found by Kapachinskij and

Vladimirskij, this (KV) distribution is of infinite extent longitudinally, and its 2-D trans-

verse projections lead to uniform elliptical distributions [66]. The advantage of this lies in

its linear space-charge forces and resulting envelope equations, which give analytic re-

sults. For this distribution the RMS beam widths, x,y behave as follows:

 

2
2
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x x

path x x yR
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  
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(2.16)

where the primes refer to differentiation with respect to the longitudinal coordinate and
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ξSC is a parameter depending on intensity, corresponding to how strongly the space-

charge fields disrupt the independent motion. ξSC is often referred to as the "space-charge

perveance," and is given by

2

2 3
p

SC

e r 


 
 (2.17)

where rp is the classical proton radius and  is the linear density of particles with charge

e.

For general distributions analytical solutions are less tractable (or impossible) and

require numerical techniques and/or simulation to obtain quantitative results. The KV

distribution is used extensively in such cases as a comparison to simulation models. Fur-

thermore, other (realistic) distributions sacrifice the rigorous self-consistency present in

the KV case, but to the extent that particle information is recalculated periodically in si-

mulations, this issue can often be circumvented.

2.2 The Fermilab Booster Synchrotron

The Fermilab accelerator chain is currently a tool for high-energy research, pro-

ducing collisions between protons and antiprotons at a center-of-mass energy of 1.96

TeV at an integrated luminosity (as of 2009) of 60 pb-1. Both the cost and technical chal-

lenges of constructing a single accelerator capable of accelerating particles from the

energies from the Linac to 1 TeV with sufficient intensity make such an effort practically

infeasible. Such an undertaking has required the construction of several accelerators de-

signed to accelerate particles within particular energy ranges leading to the TeV scale. A

diagram of the accelerator chain was provided in Figure 2.1. We present a working de-

scription of the Booster in the following sections. The full technical details are docu-

mented elsewhere [16, 132].



21

2.2.1 Booster Function and Intensity Limitations. The Booster’s primary function is

as a proton source, receiving 400-MeV particles from a linac and accelerating them to 8

GeV before extraction to a large-aperture Main Injector. The Booster’s more recently

implemented secondary function is to provide protons to target for the production of neu-

trinos in the MiniBoone experiment. To provide the necessary protons to target or extrac-

tion, the Booster has been designed as a rapidly cycling accelerator, providing currently

around 5×1012 protons per pulse at a rate of 15 Hz.

A substantial part of the intensity limitations with the Booster are due to its rela-

tively lower-energy beam. It will be shown that space-charge forces scale with energy as

γ-2. Since particles at the energies near injection are not very relativistic (with γ = 1.4),

space-charge forces, largest at this point, play a significant role in the beam dynamics.

Currently the Booster is being operated at an intensity twice that of its design to

meet the proton requirements in the experiments. Integrated losses due to intensity have

become a problem under these circumstances, requiring, among other things, the installa-

tion of collimators to mitigate the eventual resulting damage to diagnostics and radioacti-

vation of the accelerator elements [88]. With typical intensities, it has been estimated that

10-20 kGy8 of radiation has been deposited over its lifetime, with as much as 200 kGy in

some locations, especially near epoxy magnet insulations [45]. Because of the demands

by the neutrino experiments this number has been projected to exceed 1 MGy by 2015

[46]. While studies have shown magnet insulations accommodating as much as ten times

this value [51], this amount of localized dose is of some concern, and minimizing beam



8 1gray is the absorption of 1J of energy in the form of ionizing radiation by a
mass of material of 1kg. I.e. 1Gy=1J/kg
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loss is thus extremely important.

2.2.2 Booster Lattice and Design. The FNAL Booster is a circular accelerator with a

radius 74.5 meters. As with all such accelerators, “circular” is a loose description for a

collection of regular, repeated sections forming a closed, periodic structure. In the case of

the Booster, it is comprised of 24 such sections, or cells, (so for the pedant, Booster is

closer to an icosakaitetragon, or such, than a ring). Each cell is comprised of four com-

bined-function magnets (dipole-plus-quadrupole) 2.9 meters in length, interspersed

among regions of drift space. Since the basic structure of the accelerator is periodic, the

start of the cell is somewhat arbitrary. Conventionally, it is represented by the shorthand

“FOFDOOD,” i.e. a periodic sequence consisting of a (horizontally) focusing magnet (F),

a “short” drift space of 1.2 meters, a second such magnet, a defocusing magnet (D), a

“long” drift space of 6 meters (OO), and another defocusing magnet. Naturally, in the

vertical plane, this would correspond to DODFOOF. The drift spaces (also referred to as

“straight” sections) are identified colloquially as “long” and “short,” and numbered start-

ing from beam-injection location (i.e. Long 1). Beam travels downstream from Long 1 to

Short 24, and then repeats. Figure 2.2 shows the schematic of the cell arrangement.

Figure 2.2. Schematic of Booster Magnet Arrangement (FDOODFO) (Courtesy B.
Worthel, 'The Booster Rookie Book, V.3.0', 1998, p.15)
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The long drift sections house a series of diagnostic tools, particularly beam posi-

tion monitors (BPM's), as well as magnetic corrector elements and the RF accelerating

cavities. The short sections as well hold additional corrector elements.

2.2.3 Beam Correction Elements. The original design had corrector packages com-

prised of "trim" dipoles and quadrupoles to compensate for steering and focusing errors,

as well as skew-quadrupoles for transverse coupling correction. All short and long

straight sections contain these types of correctors. Sextupoles, both nominal and skewed,

were added shortly afterward to various cells when it was apparent that chromaticity and

the third-integer harmonic also played a measurable role in affecting the beam. A single

octupole, to correct for large-amplitude betatron motion, was further introduced, though

this effect was found to be less important than the chromaticity.

As the operating intensity met and surpassed the design intensity, the strength of

these magnets became insufficient further from injection. From 2007 to 2009 these ele-

ments were replaced by packages of self-contained, individually controlled units in all 48

sections. The upgraded elements consist of all magnet poles save for the octupole [67].

Since studies done for this research were done utilizing both new and old correctors, both

specifications are provided for reference [15, 95]. Table 2.1 juxtaposes the relevant quali-

ties of these corrector sets. It is to be noted that the skew-quadrupole and sextupole

strengths were considered sufficient and their strengths were not significantly modified

during the upgrade, though the magnets themselves were of course replaced to allow for

precise, individual control if necessary.
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Table 2.1. Juxtaposition of Old and New Booster Corrector-Magnet Strengths

Type Integrated
field/field gradient

(former)

Integrated
field/field gra-
dient (latter)

Relative Im-
provement

H. Dipole 30 g-m 90 g-m 3
V. Dipole 30 g-m 150 g-m 5

Quadrupole 220 g 800 g 3.64
Skew Quadrupole 80 g 80 g 1

H. Sextupole 1.41×104 g⁄m 1.41×104 g⁄m 1
V. Sextupole 1.41×104 g⁄m 1.41×104 g⁄m 1

Families of trim elements are electrically connected such that the fields of all

magnets of a similar type in either a short or long section are controlled simultaneously

(i.e. all dipoles, quadrupoles, or skew-quadrupoles in the short or long sections have one

control for each group). To ensure that the magnets affect the beam uniformly cell by

cell, the currents of these magnets are scaled to the betatron phase at their respective loca-

tions.

2.2.4 Transverse and Longitudinal Profile Monitors. At the minimum, a feedback

mechanism to maintain the beam in its orbit over the many revolutions is critical to the

stability of operation. This is accomplished by the use of passive Beam Position Monitors

(BPM's), devices that measure the center-of-mass position of the particle distribution.

The Booster has 102 of these, four per cell and six more for certain specialized purposes.

Naturally, more than just BPM's are necessary to obtain a more complete picture of the

beam behavior. Compared to diagnostics in other machines in the accelerator chain, the

Booster, constructed much earlier, is conservatively equipped. Two instruments utilized

in the experimental results discussed in this work measure the transverse beam width and
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longitudinal bunch width per turn - the Ionization Profile Monitor (IPM) and Resistive

Wall Monitor (RWM) respectively. In what follows we discuss the operation of these.

2.2.4.1 The Ionization Profile Monitor (IPM). The vacuum in the accelerator is not

perfect. The residual gas particles present in the chamber can, however, be used to obtain

details of the transverse beam distribution. The details of the instrument [134] are well

documented, but a schematic illustrative of the IPM in operation is provided in Figure

2.3, as well as a typical profile obtained at 450 turns into the cycle. Particles ionized by

the passing beam are collected onto micro-channel strips 1.5mm in width by a 5-kV po-

tential. The ion count per strip depends on the charge of the beam in the vicinity. Inde-

pendent calibration techniques [5] have produced reliable transverse beam-width profiles

for both the horizontal and vertical plane.

Figure 2.3. IPM Schematic (left) and Typical Fitted Beam Profile (right) at 450 Turns
in the Cycle. Signal Amplitude is with Respect to the Center of the Detector (left
figure courtesy J. Zagel and B. Graves).

2.2.4.2 The Resistive-Wall Monitor (RWM). Longitudinal density profiles are obtained

by the so-called resistive-wall monitor [127]. Passing beam excites fields in the pipe

walls. A measurable potential difference at a gap separating two vacuum-chamber ele-
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ments is created using a resistive ceramic insert interfaced to a pickup, usually an oscil-

loscope. Signal response depends on the instantaneous longitudinal charge density. Fig-

ure 2.4 provides a conceptual schematic of this device, as well as a typical longitudinal

profile 30 ms (15 turns) into the cycle.

Figure 2.4. RWM Schematic (left) and Typical Longitudinal Profile (red trace) near 15
Turns (right). Signal Amplitude is with Respect to the Center of the Detector.

2.2.5 Acceleration Scheme. The accelerating structures in the Booster consist of 17

cavity resonators, employing an oscillating field from high-powered tube-amplifiers to

achieve common gradients of 20-30 MV⁄m. Since velocity increase as a function of ener-

gy scales as γ-3, at lower energy the decrease in particle transit time over the acceleration

structures is significant. In a linear accelerator this problem can be easily circumvented

by lengthening the drift spaces sequentially. In a circular accelerator in which particles

traverse through many turns, such a luxury is impossible, and maintaining phase with the

accelerating particles requires precise timing control of the RF fields. In the Booster, the
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frequency sweeps between 37 MHz at injection (400 MeV) and 53 MHz at extraction (8

GeV). With the frequencies given, a maximum of 84 bunches comprise the Booster

beam.

Ramping of the accelerating gradients following injection is also necessary. Full

acceleration after injection is not immediate. Capture of the particles into bunches with

37-MHz structure occurs over a few hundred turns, in which RF-cavity voltage phases

are gradually aligned, starting more or less completely out-of-phase. This process, re-

ferred to as paraphasing, is done to allow particles from the 200-MHz Linac fields to de-

cohere and adiabatically coalesce into the initial 37-MHz Booster structure. However,

such a procedure is itself affected by space charge, with higher-intensity beams more

difficult to adiabatically capture, resulting in injection losses further exacerbating the

problem of accumulating radiation limits.

The inherent intensity limitations at low energy, coupled with the integrated

losses from capture, possible resonances from the space-charge tune shift, beam dilution

due to mutual Coulomb repulsion, and electromagnetic reaction with the vacuum cham-

ber necessitate the study of these intensity-dependent effects.

2.3 Introduction to the Booster Simulation Tools

No analytical solutions exist for the motion of particles in arbitrary particle distri-

butions in an accelerator, in particular those subject to space charge forces, so simulations

are necessary. Accelerators are complex machines consisting of hundreds of elements,

repeating their effects over thousands of turns; although machine elements are designed

to provide primarily linear forces, the fields are not purely linear. The self-interaction of

the beam is itself nonlinearly dependent on the beam distribution, which, due to both the
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external elements and these self-forces, is dynamic. A typical beam has 1012 to 1014 par-

ticles, and each has six degrees of freedom. As with many physical systems, certain prop-

erties can be extracted from hard analysis, but in the end, simulation is the only route to

an accurate description of its evolution. The accelerator simulation package Synergia was

employed to obtain this description. We summarize its features in the following section.

2.3.1 The Workings of Synergia. Synergia is a parallel, 3-D particle-tracking code. Its

attractive feature is the ability to calculate the six phase-space coordinates of particles

under both the influence of external magnetic optics and internal space-charge forces, i.e.

the code is capable of fully three-dimensional beam-dynamics modeling [4]. What fol-

lows is an overview.

Given an initial set of phase-space variables i, one can map their evolution into a

final set f via some mapping function M, corresponding to the Hamiltonian H. One can

then describe the (phase-space) distribution of the beam, f(,t), which evolves as [98]

   1
0, ,f t f M t  (2.18)

We now separate the Hamiltonian corresponding to M into an external (magnetic

optics) and internal (space-charge) part, namely [98],

ext scH H H  (2.19)

We are motivated to this for two reasons. Foremost, Hext is a very complicated

expression about the reference trajectory, expressed usually as a Taylor polynomial. By

comparison, Hsc is proportional to the scalar potential  governing the particle configura-

tion, namely, the solution to the Poisson equation

2    (2.20)
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Secondly, the space-charge forces, compared to those in the magnetic elements,

vary slowly over the longitudinal coordinate. Implementation of this comes in the form of

“split operators.” Let Mext be the map (Hamiltonian) for the external magnetic elements,

and Msc for the internal space-charge forces. If we let our time step9 be , we may write

[98]

       / 2 / 2ext sc extM M M M    (2.21)

In other words, within a time step  we apply a transport of the distribution from Mext

halfway through at ⁄2, followed by solution of Poisson’s equation yielding a space-

charge “kick” at , and another transport with Mext through the remaining half-step at .

The external-optics portion of the Hamiltonian is provided by lattices created in

the MAD (Methodological Accelerator Design) accelerator language. MAD has been a

well established standard for reproducing the behavior of single-particle, nonlinear optics

in accelerator simulations. A fully detailed description of the workings of Synergia is

provided elsewhere [4,63,98]. For our purposes, Synergia consists mainly of two compo-

nents, a Poisson solver tracking macroparticles in the presence of space-charge fields, and

a MAD parser creating transport matrices accounting for the external optics specified by

the MAD lattice file.

2.3.2 Simulation Benchmarking. Before applying the simulation to our data, it is use-

ful to compare with analytically calculable results related to the work in this writing. In

the following sections we present two clear benchmark sets of the simulation, one corres-

ponding to the optics, the other to the beam dynamics.



9 Often in accelerator physics, a longitudinal coordinate plays the role of time.
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To verify the linear optics, the focusing strength of the trim quadrupoles and skew

quadrupoles are compared to realistic Booster data. For the beam dynamics, the RMS

beam size for a KV distribution in a simple repeating FODO10 cell is compared to analyt-

ical results. This test of beam dynamics is perhaps the most suitable since it represents

most clearly the collective effects of a charged particle distribution. Another important

check is the space-charge algorithm against the Space-charge tune shift for a KV distribu-

tion with open boundary conditions. This remains as one of the few available analytic

results for space-charge dynamics. Various other benchmarks have been done by the de-

velopers [8, 9].

2.3.2.1 Beam Dynamics Tests. For a KV-distributed beam, the RMS beam widths were

given in (2.15). Figure 2.5 shows a KV beam with a current of 500 mA11 in a FODO cell,

with representative values of this quantity εRMS
12 having a value of 3 mm-mrad. Figure

2.6 represents the shift in the particle tune for a KV-distributed, longitudinally uniform

beam due to space-charge forces using a simulated Booster lattice.

The tunes are expected, in this case, to behave according to [74]

0
2 38 RMS

r
  


  (2.22)

where Ξ is the number of particles in the beam, r0 is the classical proton radius, and εRMS


10 FODO is short for to focusing-drift-defocusing-drift.  Quadrupole magnets that

focus in one plane defocus in the other.  A FODO cell is then a pair of quadrupoles
oriented 90 degrees to each other and separated by a drift space.

11 Beam intensity has been assumed to be the number of particles in the ring, or
bunch in some cases.  Often this is used interchangeably with current, but this is only
valid in the ultrarelativistic case, where longitudinal particle velocity is nearly indepen-
dent of energy.  In general, the current, I, is given by I=eNfrev, frev=βc/C

12 Emittance will be discussed more thoroughly in Chapter 3
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is this same RMS emittance. Particle positions were sampled 24 times per turn for 100

turns to obtain both the integer and fractional part of the particle tunes. Agreement be-

tween simulation and analytical results is quite good, demonstrating that Synergia relia-

bly reproduces the dynamics of the beam due to the self-fields.

Figure 2.5. Envelope Width at 500-mA Beam Current with KV Distribution. Simula-
tion (blue) is Compared to Analytical Prediction (red).

Figure 2.6. Comparison of Horizontal (magenta) and Vertical (blue) Space-Charge
Tune Shifts to Simulated Values for Various Intensities13


13 Synergia example scripts producing Figures 2.6 and 2.7 were developed by J.

Amundson, Computing Division, FNAL.
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2.3.2.2 Linear Optics Tests. To test the optics, a realistic Booster lattice with correctly

placed trim quadrupoles and skew quadrupoles was used. For a beam with rigidity p⁄e,

The tune change due to N quadrupoles at similar locations in a lattice of periodicity N is

given by

 
0

'
4 /

LsN B dl
p e





   (2.23)

Where β(s) is the local β-function in the relevant plane, and B’ is the field gradient of one

of the N quadrupoles. Likewise for the skew-quadrupoles, the shift in the tune is

0
2 '

4 /
Lx yN B dl

p e
 

 


   (2.24)

where φ is the rotation angle of the quadrupole, and x y  is the geometric mean of the

horizontal and vertical β-functions.

Particle energy in the Booster is given operationally in terms of the kinetic ener-

gy, and the simulation follows suit. The rigidity p⁄e can be expressed in terms of the ki-

netic energy K as

01 2 Ep K
e c K
  (2.25)

where E0 is the rest energy of the proton. At injection this value is around 954 MeV⁄c.

We now discuss the tune shifts as predicted from Booster parameters. The correc-

tion elements sit in the center of the short and long drift sections. Table 2.2 lists the hori-

zontal and vertical β-functions at these drift locations. Here the values are either a maxi-

mum or a minimum in the accelerator.
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Table 2.2. Horizontal and Vertical Functions at the Centers of the Booster Drift-Space
Components

β-functions (m) Short Section Long Drift Section
Horizontal 33 6.8

Vertical 4.1 20.5

Our purpose is to compare tune shift dependence on focusing strength given by

(2.23-24) with those obtained from a Synergia simulation of the Booster. A magnet will

affect the motion of a particle only as strongly as its field or field gradient. Comparing

the tune change due to a certain maximal field from an actual trim magnet to a simulated

result requires manipulation of these equations, since the particle optics used by the simu-

lation are expressed in terms of focusing strength. In the MAD language, for quadrupole

magnets, the focusing power of a quadrupole is determined by the "normalized" field

gradient,

0

1 1 '
/

L
k B dl

L p e
  (2.26)

where L is the length of the magnet. The length is embedded into the definition to ac-

count for the existence of "thin" magnets of zero thickness but finite focusing power. We

assume a longitudinally uniform gradient, in which case

' 1
/

Bk
p e fL

  (2.27)

where f is the focusing strength of the quadrupole given in (2.4).

The tune shifts as a function of focusing strength may thus be written in terms of

this normalized gradient as

     
4trim trim
N s kL C kL 


     
(2.28)
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   2
4skew x y skew
N kL C kL   


     
(2.29)

The bracketed terms, Ctrim and Cskew then represent the predicted slope of the particle

tunes as a function of inverse focal length 1⁄f. Given the listed β-functions in Table 2.2,

the slopes are given in Table 2.3.

Our comparison was performed by running Synergia using first-order maps14, for

ten settings in each quadrupole strength. Tunes were obtained from discrete Fourier trans-

form of centroid motion over 1000 turns.

Table 2.3. Numerical Values of Coefficients Corresponding to Correction Elements Ob-
eying (2.26)

Quadrupole Quad Long Quad Short Skew Long Skew Short
CH(m) 13 63 35.4 34.9
CV(m) 39.2 7.83 35.4 34.9

Figure 2.7 shows the result. Slopes of the linear fits are provided in the legend for

each corrector element for comparison with Table 2.3. Agreement is good in all cases

beyond 5×10-5 m-1. Below this value the shift in the frequency spectrum was difficult to

resolve simply because with 1000 turns the resolution in tune was limited to 0.001,

roughly 100% of the actual shift. Nonetheless points agree faithfully for realistic tune

changes. The exception lies in the skew-quadrupole values, which are depressed by a

factor of 1⁄√2. This arises from the 45 tilt angle and how it is interpreted in the MAD

parser. In any case, it is a consistent multiplier and can be easily compensated.



14 I.e. without considering nonlinear lattice effects (sextupoles, etc).
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Figure 2.7. Comparison of Calculated vs. Simulated Tune Change under Increasing
Strength of Various Corrector Elements. Different Colors Represent Different Correc-
tor Types. Slopes of the Fits are Provided in the Legend.

The results of the simulation will be used whenever possible to corroborate expe-

rimental findings throughout this work.
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CHAPTER 3

EXPERIMENTAL DETERMINATION OF SIX-DIMENSIONAL EMITTANCE AND
BEAM-HALO FRACTION IN THE FERMILAB BOOSTER NEAR INJECTION

3.1 Synopsis

Emittance is a quantity used as a figure of merit to assess quality of a particle

beam, representing the phase-space area occupied by the distribution of the particles. We

present a method for measuring, with some assumptions, the emittance simultaneously in

three dimensions for the horizontal, vertical, and longitudinal planes of motion, from

which the product of these (total six-dimensional emittance) can be thus obtained. Tech-

niques for calculating the horizontal and vertical emittance from transverse profile widths

are discussed, as well as several longitudinal measurements necessary to obtain simulta-

neously the longitudinal values. A correction the measurements based on simulation re-

sults is then applied, leading to a final value as a function of intensity, whose behavior

can be used to pinpoint beam dilution that cannot be as adequately seen through single-

plane measurements. The chapter is concluded with a demonstration of a method to cha-

racterize the fraction of beam possessing excessive large-amplitude motion, referred to as

the beam halo, using existing data and instrumentation. Results will be shown for a wide

range of intensities

3.2 Theory of Emittance as a Constant of the Motion in a Beam

The concept of emittance as an invariant in the motion of the particle beam has

been present since the theory of Courant and Snyder was developed in 1958 [39]. A terse

but complete review of emittance and its various interpretations has been done by Buon

[8]. What follows is a brief overview of the concept and its use as a statistical quantity.
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Let us consider the simplest case of a single particle with large longitudinal mo-

mentum Pz executing transverse oscillatory motion in a circular accelerator with com-

pletely linear focusing elements. Let Px be the transverse momentum component, with

x zP P , and x the particle's transverse position relative to a reference orbit. The slope of

the trajectory is then given by ' / / /x zx dx dz x z P P    . At some location in the accele-

rator (some coordinate z along the direction of beam propagation), if we follow the sin-

gle-particle phase-space coordinates turn after turn, an ellipse in x-x′ phase space would

eventually be mapped.15

At all points in the accelerator, this particle will exhibit similar behavior, tracing

out an ellipse in phase space as the coordinates are plotted each time it arrives at that lo-

cation. The correspondingly mapped ellipse will vary in eccentricity and orientation, but

its area will remain constant. This conservation of phase-space area is important, but to

adequately be applied to the dynamics of a particle beam, this one-particle, two-

dimensional phase-space invariant must be generalized to the case of N particles moving

in three directions. The six-dimensional phase-space volume occupied by these particles

is connected to a quantity describing the beam called the emittance, and its general inva-

riance is a result of the well-known Liouville Theorem.

Over time the particles will change their positions in configuration and momen-

tum space, and thus correspondingly in the phase space, distorting the shape of the phase-

space volume containing the beam. Assuming no particle loss, the total volume remains

constant. However, in applications of accelerator physics, this shape distortion is of im-


15 For a rational number, this "ellipse" would be a series of phase-space dots equal
in number to the denominator of the fractional part of the tune.
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portance, as we shall show.

3.2.1 The Liouville Theorem in Hamiltonian Systems Applied to Accelerators. The

theory of phase-space invariants in Hamiltonian systems has been well established. We

briefly review a few points for reference. Let us consider a phase-space particle density n

given by

( , , , , , , )x y zn n x y z p p p t (3.1)

A number dN of particles in a small phase-space volume dV is then given by

x y zdN n dV n dx dy dz dp dp dp  (3.2)

A phase-space velocity v for each particle exists, where  ,i iv q p
   and the p’s

and q’s are the usual canonical positions and momenta. Since the total number of par-

ticles, hence the number of phase-space points, is constant, the continuity equation must

be obeyed, i.e.

  0nnv
t


  


  (3.3)

We assume a Hamiltonian ( , , )i iH q p t can be defined for this system, in which case it can

be shown that [103]

2 23

1
0

i i i i i

H Hv
p q q p

  
        


  (3.4)

Hence

0n v n
t


  


  (3.5)

The left-hand side of (3.5) is the total time derivative of n, so we may write

00 constdn n n
dt

    (3.6)
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Hence the phase-space particle density, and correspondingly the volume occupied

by a given number of particles in phase space, is a constant of the motion. This result is a

representation of the Liouville Theorem applied to Hamiltonian systems. In accelerator

language it is closely related to the emittance introduced by Courant and Snyder. This

preservation of the phase-space area can be used as a figure of merit representing the

quality of the beam. A low-emittance beam is generally desirable, since high particle

density is preferred for many experiments. A few caveats are necessary, however. First,

from an operational perspective, no standard definition of emittance is consistently used

in the literature.16 More importantly, however, a small phase-space area (i.e. seemingly

"low emittance") does not guarantee a high-quality (well-behaved) beam. Two different

phase-space distributions of equal area but differing shapes naturally may have very dif-

ferent behaviors, some of which could be beneficial, while others harmful, to stability. In

what follows we detail these issues more precisely.

3.2.2 Trace-Space Emittance. One can express in one plane the area in x-x′ space oc-

cupied by the particles at a location in the accelerator. As in the single-particle case, for

an ensemble of particles at z, the area occupied by the points corresponding to all par-

ticles in the beam in this plane can be expressed (somewhat loosely) as

'x
periphery

A dxdx  (3.7)

This experimentally is referred to as the emittance. The area in this x-x′ space, however,

does not necessarily correspond to phase space occupied by the particles, whose motion



16 In fact, a plurality of definitions exist both in conventions for numerical factors
as well as in conceptual interpretation.
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in a Hamiltonian system is bounded by some constraints and in general is in some way

correlated. A snapshot of the area occupied in this x-x′ space may not account for this. A

very distorted shape has different correlations than a smooth elliptical one, for example.

The area of this space is not precisely that of phase space but rather what is referred to as

trace space [102] for reasons that will be evident shortly.

3.2.3 Statistical Definition of Emittance. The single-particle emittance is, of course

meaningless since the quantity is intended to assess a property of the whole beam. How-

ever, many particles trace many of these ellipses of varying areas as they traverse some

location (longitudinally) in the accelerator turn by turn. No one phase-space trajectory,

large or small, is thus representative of the distribution. RMS quantities then become im-

portant, and the emittance can be defined statistically in terms of the RMS widths. As

long as the particle motion between planes is uncoupled, one can consider an emittance

associated with each direction independently. Considering motion in one dimension, say,

the x-direction, the first moments (RMS widths) of the distribution may be expressed as

σxx, σx′x′, σx′x, and σxx′. The first two are the position and momentum widths, while the last

two are the cross-correlations (covariant widths), and are usually equal for realistic distri-

butions. For completely uncorrelated motion, the emittance may be defined as the product

of the position and momentum width.

' 'xx x x   (3.8)

Otherwise,

'

'2
' '

' ' '

det
x x

xx x x
xx x x

xx x x

 
   

 
 

    
 

(3.9)



41

where the bracketed term in (3.9) is the covariance matrix of the beam distribution in one

dimension. This definition represents, statistically, the RMS phase-space area of the

beam, accounting additionally for the shape of the distribution in x-x′ space. While the

determinant of this covariance matrix is the RMS emittance in one dimension, the di-

agonal product of this matrix represents the RMS area analogous to what was expressed

in (3.7). This quantity is sometimes called the RMS “trace-space” emittance.

3.2.3.1 The Six-Dimensional Covariance Matrix. Emittance is of course not limited to

two-dimensional quantities in the three separate planes. While horizontal, vertical, and

longitudinal emittance individually represent constants of the motion in an uncoupled,

linear system, in general it is possible for emittance to be exchanged among the planes of

motion, most commonly between the horizontal and vertical. In general, a statistically

defined emittance including all correlations can be obtained from the 6×6 covariance ma-

trix as follows.
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(3.10)

The product of the diagonal elements of C is the six-dimensional trace-space emittance17,

while the determinant is the fully correlated representation. The variables z and z' are

somewhat ambiguous because the longitudinal motion can be expressed in terms of sev-

eral types of conjugate pairs. Momentum error and longitudinal distance from synchron-


17 Such a term is actually a misnomer, because the trace is the sum of the diagonal

elements, not the product.
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ous particle (e.g. in units of nm) or synchronous-particle energy difference and longitu-

dinal phase angle (e.g. degree-MeV) are used frequently in analytical work and simula-

tion. Another common pair of quantities, used experimentally, is the energy difference

and bunch width measured in transit time (e.g. eV-sec).

3.2.3.2 RMS Emittances and Conventions. In actual measurement, RMS quantities

depend strongly on the distribution. For most purposes, emittance is obtained experimen-

tally using the assumption of essentially Gaussian distributions. In such cases no distinct

edge of the beam exists, and one must consider a region of phase space in which a repre-

sentative fraction of particles reside. While many different conventions exist regarding

what is "representative," the most commonly employed is the so-called "95%" emittance,

in which such an area in phase space contains, statistically, around 95% of the particles

within its periphery at any instant18. For a Gaussian beam (in width and momentum), ε95%

= 6εRMS. εRMS is what is measured usually, and ε95% is what is reported as the representa-

tive figure of merit of the beam. In general, the fraction, m, of particles contained within

some multiple n of εRMS is given by [83]

/ 21 nm e  (3.11)

The 95% convention is most useful for discussing emittance in the transverse

plane, because the transverse oscillation amplitude is what is limited by the machine

aperture, and having 95% of the particles well within its limits is considered good meas-

ure for practical design consideration. In the longitudinal plane the incentive to use such a



18 For unbounded motion, 100% of the particles would not be enclosed in any
finite region of phase space.
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convention is far less strong, the reasons for which shall be outlined in section 3.3.2.

Longitudinal values often are simply given as εRMS.

3.2.3.3 Emittance under Acceleration. The given descriptions of emittance so far are

only valid for a coasting beam. It is well known that beam width and relative momentum

spread decrease as a function of energy for relativistic particles. These are relativistic-

geometric effects. Emittance as defined cannot be preserved for differing energies. One

corrects for this with the so-called normalized emittance,

N  (3.12)

The normalized emittance is preserved under acceleration, and is thus typically the quan-

tity quoted in the literature.

3.3 Experimental Determination of the Emittance

It is desirable to have a simultaneous emittance measurement in the Booster to

separate the presence of emittance exchange from that of emittance growth. For an un-

coupled, linear lattice with no space-charge effects we expect the emittance to be constant

in each plane. In the presence of coupling and/or space charge this will no longer be the

case.

Emittance is, loosely speaking, a measure of the spread in energy and position of

the particle distribution in a particular plane of motion. Since energy can be exchanged

between the planes by one method or another, individual measurements are insufficient to

obtain an adequate picture. A simultaneous measurement, in which the total emittance is

taken to be the product of the three measured emittances, should remove these inter-

changes and can be used, in principle, to indicate the presence and rate of emittance

growth.
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Based on available instrumentation in the Booster, an indirect measurement of the

emittance can be made using a few assumptions. The transverse beam size measurements

may be performed using IPM data, while the longitudinal beam size may be obtained

from the RWM. The assumptions, expressions, and techniques leading to these measure-

ments are detailed in the following subsections.

3.3.1 Obtaining Transverse Measurements. In the transverse plane the beam width

may be measured from the IPM, but its momentum width cannot be directly determined

simultaneously. However, if we assume that the shape of the distribution is governed by

the β-function, the position width is sufficient. In this case the horizontal and vertical

emittances may be expressed, using the notation above, as

2 2 2
' 'xx z z

x
x

D 



 (3.13)
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The second term in the horizontal plane corrects for the momentum dispersion. Particles

with differing momenta will naturally have differing positions because their orbit radii

will be affected. This effect complicates the dynamics of the horizontal beam size but its

associated displacement is unrelated to the horizontal oscillation. The dispersion function,

D, determines how much of an influence this effect has at a particular accelerator loca-

tion. The relative momentum error, z'z' is naturally energy-dependent and can be ex-

pressed as

0

2
0

' ' ( ' ') 2

1
1z z z z

 






(3.15)

where the initial momentum width (z'z')0 has been separately determined.
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Assuming a Gaussian-distributed beam, IPM widths were obtained through a fit-

ting algorithm fitting the IPM data to a Gaussian distribution with a linear term [133].

IPM data are somewhat noisy turn by turn, but since we are interested in the overall fea-

tures over hundreds of turns, the data were smoothed with a 250-points low-pass filter,

with a frequency cutoff of 1⁄100 turns (i.e 1⁄100 samples, once per turn). A typical profile

width, along with its filtered counterpart, is shown in Figure 3.1. Data are shown through

the first 3000 turns in the cycle, where the kinetic energy increases from 400 MeV to

around 1.5 GeV. A decrease in width can be observed due to this acceleration.

Figure 3.1. Sample Filtered (green) and Unfiltered (red) Horizontal Width over 3000
Turns for 3 Turns of Injected Beam

Data in Figure 3.1 also showcase the filtering procedure (smoothed, green curve
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above the red data). With the width given turn-by-turn, as well as knowledge of the mo-

mentum dispersion and β-functions at the IPM location, the transverse emittance can be

calculated from (3.13-14). For example, at the IPM in the Booster, the horizontal β-

function is 6.5 m, the dispersion function is 1.8 m, and Δp⁄p is around 10-4. Using (3.12),

at 400 MeV, β = 0.71 and γ = 1.4. Given the profile width above, a normalized value of

1.2 mm-mrad19 is found. The normalized, 95% emittance is then 7.2 mm-mrad at in-

jection. Typical values are often around 12 mm-mrad at nominal intensities in both

transverse planes [131], so for this case where intensity was less than half this value, our

calculations give consistent results. The full details of these transverse emittance calcula-

tions for a wide range of intensities will be given in section 3.4.

3.3.2 Obtaining Longitudinal measurements. Calculating longitudinal emittance

from the corresponding longitudinal quantities is considerably more involved. In the lon-

gitudinal plane, RF fields are responsible for accelerating the particles, and for keeping

them within a certain phase range relative to the synchronous particle. The evolution of

this particle phase and energy are given by the set of dynamical equations [81]

 1 sin sin
2 s

RF

d E eV
dt

 
 
 

  
  (3.16)
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2
RF

RF

h E
E

 
 


 (3.17)

where V is the accelerating voltage, ΔE is the energy gain, E is the synchronous particle

energy, η is the machine “slip factor,” (discussed in the following section) and ωRF is the


19 Because transverse phase space has position and angle (measured typically in
radians) as the dynamical variables, the factor of  is often extracted from the numerical
value and expressed explicitly (yet another convention to add to the emittance descrip-
tion).
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RF angular frequency. s is the "synchronous phase," essentially the location on the acce-

lerating RF wave along which the synchronous particle traverses. The motion of the par-

ticles in the longitudinal plane is thus intrinsically nonlinear, and this sinusoidal depen-

dence leads to a phase-space boundary between bounded and unbounded motion (com-

monly referred to as the separatrix20). In accelerator language the area enclosed by this

separatrix is referred to as a “bucket.” The shape and size of the separatrix depends on the

synchronous phase in a nontrivial way. Our aim is to calculate the longitudinal emittance

for an unaccelerated bucket first, and then apply the correction due to acceleration.

3.3.2.1 Stationary Bucket Area and RMS Longitudinal Emittance. When the beam is

not accelerating, calculation of the longitudinal emittance can be obtained from the mea-

surement of longitudinal bunch width, and knowledge of the bucket area. The assumption

is made that the phase-space area of the beam maintains the same shape as that of the

bucket containing it, and that the changing shape of the bucket under acceleration occurs

slowly enough that the beam continues to maintain this shape. It can be shown that the

bucket area, and thus RMS longitudinal emittance, εL,rms are given by [60, 82]

16
2

path RF T
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R eV EA
hc h 

 
  

 
(3.18)

2 2
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h 
   


 (3.19)

respectively, where Rpath is the accelerator radius, στ is the longitudinal RMS bunch width

(in transit time), βc is the relativistic velocity, VRF is the accelerating voltage, ET is the


20 It is, of course, the separatrix for the motion of a simple pendulum in particular,
and belongs to a general class of such separatrices for elliptic functions in dynamics.
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total particle energy, h is the harmonic number, ωRF is the accelerating RF angular fre-

quency, and η is the so-called ‘slip factor,’ given by [49]

2 2

1 1

T


 

  (3.20)

where γT is a machine-specific parameter, and γ is the familiar Lorentz boost. The loca-

tion in the cycle where γ = γT is called the "transition." Near this transition, where η→0

these expressions are singular and must be dealt with in an analytically graceful manner.

Far from this point, however, they are valid. For the Booster the value of γT is 5.45. Near

injection, the particles have a total energy of about 1.33 GeV, with γ being 1.4, and η

0.4765. The RF voltage is around 900 kV, with a frequency of 37 MHz, and β2 = 0.5. We

obtain a value of 0.10 eV-s for the bucket area with these values. Nominal values of the

bucket area (i.e. typical total longitudinal phase space area available for one bunch) for

Booster are acceptably more or less in this range (0.08-0.10 eV-s) near injection [93],

where this expression is valid.

To calculate emittance, the total (synchronous) particle energy is needed. Calcula-

tion of the energy gain per turn would properly require knowledge of the RF synchronous

phase, but to minimize the number of parameters needed for calculation we know the RF

frequency is a harmonic of the revolution frequency (with a value of 84 in Booster). Giv-

en the orbit circumference, C, we then can obtain β, , and ET in terms of fRF. The emit-

tance is then given, after a little algebra, by
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R 4 221
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Cf eVE
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

  





(3.21)

where h is the harmonic number, c is the speed of light, and ER is the rest energy of the
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particle. Still, (3.21) is valid only when the particle is not accelerating. We must now

correct for the fact that in general the bucket (and hence the beam) is of a different confi-

guration at the onset of acceleration.

3.3.2.2 Running-Bucket Correction Factor. The synchronous particle will receive an

energy increment from the RF field. The strength of this increment depends on its arrival

relative to the RF phase, s. At s = 90 we obtain maximal acceleration, but beam longi-

tudinal stability is compromised, since particles with phases below this value will (for a

sinusoidal accelerating potential) continually fall further behind. At 0 we achieve max-

imal phase stability but no acceleration. s is thus an intermediate value, and in some ac-

celerators it is changed during the acceleration cycle to adjust for changes in machine or

beam conditions. In order to adjust the bucket size from that of a stationary (non-

accelerating) bucket, an emittance correction factor (s) [84] is introduced, defined to be

the ratio of the accelerating bucket area to the area of an unaccelerated bucket21.

 1( ) sgn( ) cos cos sin( )
2 2

u

u

s s s s d
 



         


        (3.22)

Where

 cos sin cos sinu u s s s s           (3.23)

The quantity u represents location of the "unstable fixed point" in phase space. Its inter-

pretation can best be seen from Figure 3.2. u and -u are located on the intersection of

the horizontal axis and the separatrix. For s = 0 the bucket area is maximized, but of


21 We assume, of course, that the phase-space distribution of the beam maintains a

similar shape to the bucket area.
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course, particles receive no acceleration. For larger values of the synchronous phase (to

90) the bucket area shrinks between these two limits, providing smaller regions of phase

stability.

(a) (b)

(c)
Figure 3.2. Phase-Space Portrait for Bucket Area under Various Acceleration Phases, (a)

No Acceleration, (b) s = 30, (c) s = 60. (plots courtesy D.A. Edwards and M.J. Sy-
phers, 'An Introduction to the Physics of High Energy Accelerators,’ John Wiley &
Sons, 1993, p.40)

The ratio of the running-bucket to stationary bucket area obtained by (3.22-23)

numerically is plotted in Figure 3.3, along with a useful approximate value to it to facili-

tate calculation, given by

  1 sin
1 sin

s
s

s

 






(3.24)
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The error in the approximation is usually negligible, with a maximum of 7.5% for s near

20.

Figure 3.3. Approximate (red) and Actual (green) Ratios of Accelerated Bucket to Statio-
nary Bucket as a Function of Synchronous Phase.

In addition, longitudinal emittance is affected by energy increase in the same

manner as the transverse. Thus, the corrected, normalized, under-acceleration emittance

in the longitudinal plane is given by

, ,L n a L  (3.25)

where εL is the previous emittance given for a stationary bucket.

3.3.2.3 Tracking of Bunch Width, RF Frequency, and Accelerating Voltage. Mea-

surement of the longitudinal emittance requires simultaneous tracking of the RF voltage

and RF frequency in addition to the longitudinal width and synchronous phase, which

also vary over the cycle. To accomplish this a 20-Gsample oscilloscope (Tektronix

DPO7054) capable of obtaining these values with sufficient resolution over 4000 turns

was used. Bunch width was obtained on-the-fly using a fitting routine through a Lab-
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viewTM interface from the scope's front-end PC controller [118]. RF frequency and vol-

tage, as well as the synchronous phase, were also obtained simultaneously from four sep-

arate channels. All data were retrievable from the FNAL ACNET console via application

on page W27 [119], which reports and stores these values according to a specified time-

line event, in this case to event $17, typically signaling a Booster study-cycle event. Max-

imal time resolution was every ten turns of the Booster cycle. Figure 3.4 shows typical

curves for RF frequency and voltage. In Figure 3.5 the synchronous phase (in radians)

and calculated bucket correction are provided.

(a) (b)

Figure 3.4. (a) RF frequency and (b) Accelerating Voltage over 4000 Turns for a Typical
Booster Cycle

(a) (b)

Figure 3.5. (a) Synchronous Phase and (b) Bucket Area Correction Factor over 4000
Turns
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The quantities in Figures 3.4 and 3.5 are typically independent of intensity. Figure 3.6

shows a typical longitudinal bunch width (1) for 3.5×1012 particles, or seven turns of

injected beam. The shrinkage over 4000 turns is a consequence of the acceleration, just as

it is in the transverse plane.

Figure 3.6. Typical Bunch Length (1) from RWM Data to W27 Console Application

At injection, given the parameters listed for the bucket area and the figures above,

one obtains a typical value of 0.3 eV-sec for the Booster beam (all 84 bunches). Quoted

values are around 0.25 eV-sec [131], in keeping with this value. In the longitudinal plane,

these refer to εRMS itself (39% of the particles), not the typical 95% emittance or 6εRMS.

3.4 Procedure for a Simultaneous Measurement

In order to obtain measurements of longitudinal and transverse widths simulta-

neously, the RWM and IPM were triggered on the same timeline event ($17), beginning

from injection, and recorded on the RWM up to 4000 turns (400 data points on the W27

program). The trigger at injection for both RWM and the IPM was set to a typical value
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of 2ms following the $17 clock event to allow the instrumentation ample time to respond.

IPM and RWM measurements were synchronized to begin data-taking on turn 1, but

while the IPM was capable of obtaining profile widths turn-by-turn, the ten-turn resolu-

tion of the interface to the RWM required interpolation over this interval. Adequate time

(roughly one minute) between events was given for manual writing of these data to file.

Intensity was varied from 1.5 to 5×1012 particles per pulse (three to ten turns of injected

beam). Five data sets were taken for each intensity. Profile widths and bunch lengths

were averaged over these five sets. Intensity curves were seen not to vary significantly.

3.4.1 Profile Widths over Increasing Intensity. The horizontal, vertical, and longitu-

dinal widths for the above intensities are shown in Figures 3.7 and 3.8. Corresponding

intensities are also given. Data in the transverse plane has been filtered using the same

cutoff and sampling features as in Figure 3.1. Longitudinal data have also been smoothed

slightly with a 20-points filter and a frequency cutoff of 1⁄20 turns. Coloring scheme is

provided in the legend of each figure.

(a) (b)

Figure 3.7. Smoothed Horizontal (a) and Vertical (b) Profile Widths from IPM Fitting for
Various Intensities over 3000 Turns. Coloring Specified by Legend.
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(a) (b)

Figure 3.8. Fitted Longitudinal Width from RWM Response (a) and Corresponding In-
tensities (b) over 4000 Turns. Coloring by Intensity Specified by Legend.

Notably the data in the longitudinal plane reveal little change in the bunch length as a

function of intensity for the range recorded. A dip in the intensities at 250 turns is the

effect of the notcher, a device designed to remove a section of the beam for diagnostic

purposes near acceleration, which was left operational during the measurement.

3.4.2 Transverse, Longitudinal, and Total Emittance, Experimentally Obtained.

Necessary parameters for obtaining the transverse emittance curves from (3.13-14) are

given in Table 3.1

Table 3.1. Booster β-Functions, Dispersion at IPM Location, and Momentum Spread
Near Injection

βx at IPM location 6.5 m

Βy at IPM location 20.5 m

Dispersion (D) at IPM 1.8 m

Δp⁄p at Injection 10-4
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To properly normalize the emittance, the quantity βγ must be known throughout

the cycle. Acceleration in the Booster is not always constant turn by turn, however, so its

value must be obtained otherwise. Operationally, knowledge of the RF frequency, f, is

usually sufficient, since the revolution frequency of the synchronous particle is simply

the RF frequency divided by the harmonic number. In such case,

1/ 22

1ch
Cf




  
   
   

(3.26)

where h is the harmonic number, c is the speed of light, and C is the orbit circumference.

The evolution of this quantity over the first 4000 turns is given in Figure 3.9.

Figure 3.9. Behavior of βγ over the First 4000 Turns in the Cycle

Emittances in the three planes, using filtered horizontal and longitudinal widths

and along with their corresponding intensities are shown in Figures 3.10-13. Correction

for dispersion is performed in the horizontal plane given the values of Δp⁄p and D in Ta-
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ble 3.1, and (3.15). As (3.15) shows, this correction becomes less important at higher

energies. For nominal intensities of 5×1012 particles (ten injected turns from the Linac),

the horizontal and vertical emittances (1) calculated with these parameters in Table 3.1

and Figure 3.7 are expected to be roughly 1.7 mm-mrad in both planes. The 95% emit-

tances, then, would be 10 mm-mrad and 10 mm-mrad. Typical values for this intensity

are known to lie in this range [131], providing confidence in the measurement and our

assumptions leading to these calculations. Horizontal and vertical RMS (95%) emit-

tances in over the first 3000 turns are given in Figure 3.10.

(a) (b)

Figure 3.10. Horizontal (a) and Vertical (b) 95% RMS Emittances over 3000 Turns for
Various Intensities from 1.5×1012 to 5×1012 Particles. Different Intensities are Colored
According to the Legend.

The longitudinal emittance calculated from the parameters in (3.25) is shown in

Figure 3.11. The 95% convention was not applied to the longitudinal plane, since the

comparative numbers did not utilize this either. A value of 0.25-0.35 eV-sec was ob-

served, in keeping with typical Booster values between 0.25-0.40 eV-sec [93,131].
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Figure 3.11 Longitudinal RMS Emittance over 3000 Turns for Various Intensities from
1.5×1012 to 5×1012 Particles. Different Intensities are Colored According to the Legend.

The horizontal plane exhibits a large growth starting at 1000 turns followed by a

decrease after 1500. The vertical plane does not show such dramatic behavior, meaning

emittance is not exchanged between these planes to sufficiently explain this. In general,

emittance can grow because of certain nonlinear effects (e.g. space charge) during opera-

tion, but excluding particle loss, emittance cannot decrease. As seen in Figure 3.8b, aside

from the notch at 250 turns, particle loss was ruled out. The longitudinal plane shows

some commensurate oscillation but significant coupling between the transverse and lon-

gitudinal planes is seldom present because of the large difference in energy scales. The

total, six-dimensional emittance is given experimentally as the product of the three meas-

ured emittances,

3 3
L x y      (3.27)

In Figure 3.12 the total emittance is plotted. We notice the bump around turn

1500, with the longitudinal plane taken into account, does not vanish. It is unlikely that

the emittance is varying to this degree, especially since emittance cannot diminish with-
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out a loss of particles. This behavior reflects a likelihood of an instability affecting the

beam's Gaussian shape. Looking at the horizontal plane, we see a curious behavior in the

horizontal beam profile, illustrated in Figure 3.13.

Figure 3.12. Total Emittance as the Product of the three Emittances over 3000 turns for
Various Intensities from 1.5×1012 to 5×1012 Particles. Different Intensities are Colored
According to the Legend.

The first curve, 500 turns into the cycle, shows a Gaussian distribution with a

shoulder. The second, at 1500, demonstrates an approximately bimodal shape. The third,

after 3000, shows that the beam has returned to a more Gaussian form. The existence of

this bimodal shape is not accounted for in the fitting routine, and the width is thus exag-

gerated, leading to a false emittance-growth peak.
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Figure 3.13. Characteristic Horizontal IPM Profiles for an Intensity of 5×1012 Particles at
500 (green), 1500 (magenta), and 2500 (brown) Turns

This method, then, is naturally inadequate for poorly behaved (i.e. highly non-

Gaussian) beams. However, for relatively well-behaved beams, one can get a good sense

of where emittance is growing and where it is being exchanged (i.e. coupling). Further-

more, in the absence of particle loss, this method has the indirect collateral benefit, as

shown above, of indicating beam instability wherein the normal Gaussian distribution is

significantly distorted.

3.4.3 Correction for Correlation Terms. Total RMS emittance was given by the de-

terminant of the covariance matrix in (3.10). While a simultaneous measurement in the

three planes provides a much better picture than independent ones, the correlations are

unaccounted for with the measuring techniques presented. In principle, the product of the
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three measured emittances would be the total emittance for completely uncorrelated mo-

tion, among the planes. Here the simulation can be used synergistically22 to determine the

relative importance of these effects. The calculation of emittance in Synergia was done

for an elliptical Gaussian beam of 4 mm in size with initial RMS horizontal and vertical

emittances of 3 mm-mrad. The longitudinal emittance for the beam was 0.1-MeV, a

somewhat peculiar unit carried over from the development of the IMPACT portion of the

software [96, 97]. The effect of bunching was not considered, however, so longitudinal

correlations were expected to be minimal in any case.

A typical simulated Booster lattice was used23, taking into account second-order

mapping, in which nonlinear space-charge effects were considered. No random gradient

errors were introduced, however, nor were any nonlinear elements of the lattice (e.g. sex-

tupoles, octupoles) activated. A range of intensities from 0 to 14 turns injected was used.

Figure 3.14 juxtaposes the full 6D emittance (given by "a" in the legend) to the product

of the three uncorrelated emittances (given by "p").

The "correlation excess," , can thus be defined by taking full determinant of the

covariance matrix (3.10) and subtracting off the portion corresponding to the uncorrelated

components, which is the product of the body-diagonal elements, to which we refer as

Dp(C).  Therefore,

det( ) Dp( )C C   (3.28)



22 Excuse the pun.

23 This lattice was prepared in the MAD language by Norman Geflund (1998).
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Figure 3.14. Juxtaposition of the Full 6D Emittance (det(C)) and the Product of the Three
Uncorrelated 2D Emittances (Dp(C)). Color Scheme for the Various Intensities is Pro-
vided in the Legend.

In Figure 3.15, the maximal value of  is plotted as a function of intensity. The

value of  increases with increasing intensity, but the fractional change between the cor-

relation-corrected value of the 6D emittance and the uncorrelated "trace-space" emittance

product is never more than 8% in this case. The validity of these corrections hinges on

the fidelity of the simulation to the actual running conditions of the Booster.

The simulation as presented could have been refined further if it were likely that

the correction were somewhat larger. In any case, the simulation can be performed to

estimate the effect of the correlation terms, which could then in turn be applied to the

measurement to correct for this correlation effect.
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Figure 3.15. Discrepancy Between Correlated and Uncorrelated Emittance as a Function
of Intensity in Simulation.

3.5 A Method for Characterizing the Halo Fraction of the Beam

From the previous sections it has been shown that a real beam is neither uniform

nor does it have a defined boundary, rather its distribution tends to be denser toward the

center with a diffuse collection of particles in the periphery. This has necessitated the

introduction of RMS values for many quantities characterizing the beam, such as trans-

verse position and momentum widths and emittance.

The definition of emittance using a certain fraction of the phase-space area occu-

pied by the particles as a measure of the beam quality is prudent because the majority of

the particles tend to lie within some reasonable phase-space region, while the outlying

fraction occupies a much greater region. The typical convention for hadron colliders at
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FNAL has been to consider the area occupied by 95% of the particles in the transverse

planes. The other 5% were those whose motion is considered high enough amplitude (in

position and momentum) that their inclusion would exaggerate the size of the RMS emit-

tance. These particles do not faithfully obey the Hill-equation trajectories as particles

with smaller amplitude would. While they comprise a small fraction of the total particle

count, their presence is responsible in part for the exceeding of operating radiation limits

and eventual damage to the accelerator elements, since these high-amplitude particles are

what scrape the boundaries of the vacuum chamber.

With increasing intensity the space-charge forces will push more of the beam into this

high-amplitude, nonlinear regime. The ability to quantifying the halo fraction for various

intensities is thus important. In what follows we demonstrate a method of characterizing

the relative beam-halo fraction using IPM data.

The transverse distribution is modeled as an elliptical Gaussian. A completely

well-behaved transverse distribution would maintain a perfect Gaussian shape for all

radial coordinates. A characterization of beam halo in the Booster has been done success-

fully by fitting the IPM response with a Gaussian-plus-linear distribution [134]. The ratio

of area of the linear term (L) to that of the Gaussian term (G) can be used to give a meas-

ure of the fraction of particles residing in the halo. The larger the linear contribution to

the fit, the greater the proportion of particles in the beam 'tails', outside the central core of

the beam. The method was presented by J. Amundson et. al [6], where its properties as a

figure of merit of beam quality were discussed.

We test the method under a large range of intensities from two injected turns

(0.95 1012 particles) up to 18 injected turns (8.2 1012 particles). The nominal Booster
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intensity is at around 4.5 1012, so with almost twice this value, we considerably more

halo particles to exist.

Figure 3.16 shows intensity curves up to 3000 turns for injection-intensity values

from 2 turns injected to 18 turns injected, taken from the IPM. The sudden small drop in

intensity at 600 turns is the result of the beam notcher, which was left operational during

the study. The priority was to obtain samples at very high intensity, where significant

beam loss was inevitable, and since daily limits exist on integrated beam losses, multiple

samples in these high-intensity regimes were deemed too disruptive to normal control-

room operations.

Figure 3.16. IPM Intensity Data from 9.51011 to 8.21012 Particles (Two to 18 Injected
Turns). Coloring Scheme for the Various Intensity Curves is Provided in the Legend.

Losses during paraphasing and acceleration are seen to occur up to 300 turns for

all intensities above seven injected turns. These become prominent at 12 injected turns,
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and dramatic by 15 injected turns. During the injection and paraphasing processes, the

particles uncaptured by the RF systems remain unaccelerated. Since these are not carted

along by the synchronous RF fields, they are quickly lost. These do not contribute to the

halo and are not part of the IPM response. A localized beam loss, however, does tend to

indicate a growth of the halo.

The corresponding RMS widths for the intensities in Figure 3.16 are shown in

Figures 3.17 and 3.18. These have been filtered from raw IPM fits with a low-pass cutoff

at 1⁄100 turns, with a sample size of 250 points. The oscillation in the first 125 turns is a

result of this. Substantial beam growth is seen in the higher intensities, followed by a

decrease in width after beam loss had occurred.

Figure 3.17. Horizontal RMS Width for Intensities from 9.5 1011 to 8.2 1012 Particles
(Two to 18 injected turns). Coloring Scheme for Widths Corresponding to Different In-
tensities is Provided in the Legend.
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Figure 3.18. Vertical RMS Width for Intensities from 9.51011 to 8.21012 Particles (Two
to 18 injected turns). Coloring Scheme for Widths Corresponding to Different Intensi-
ties is Provided in the Legend.

Figure 3.19 gives the ratio L⁄G of the fitted IPM profiles over 3000 turns for in-

tensities of 5 injected turns and higher. Below this intensity the area of the linear compo-

nent of the fit was quite small.  As expected, the data show an increase in the amount of

linear-area portion of the IPM fit for higher intensities.

The other factor influencing the shape of these curves is simply that the halo dis-

sipates over time. For example, in the extreme case of 18 injected turns, L⁄G is nearly 0.5

at 1100 turns, but shrinks to 0.3 by 3000. With beam sizes approaching the size of the

machine aperture, halo particles were most likely driven more rapidly into the vacuum-

chamber boundaries, resulting in the observed decrease. Qualitatively it is evident that

Presently it is not clear quantitatively how the ratio L⁄G corresponds exactly to the frac-

tion of particles in the halo to that in the beam, since both terms are necessarily intert-
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wined in the normalization from the particle count. Resolving this issue will require some

independent calibration. Nonetheless, the method serves as a useful tool for the assess-

ment of beam quality.

Figure 3.19 Ratio of Linear to Gaussian Area of IPM Fits (L⁄G) for Various Intensities
from 9.51011 to 8.21012 Particles (Two to 18 injected turns) over 3000 Turns. Color-
ing Scheme for Different Intensities is Provided in the Legend.
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CHAPTER 4

OVERVIEW OF THE THEORY OF TRANSVERSE WAKEFIELDS AND IMPED-
ANCES IN A PARTICLE BEAM WITH APPLICATION

TO THE FERMILAB BOOSTER

4.1 Synopsis

Many of the collective effects associated with increasing particle density contri-

bute directly to the limitations in intensity in a particle beam. Generally speaking, these

can be divided into interactions within the beam (space charge) and the interaction be-

tween the beam and its surroundings (mainly impedances due to resistive wall and cham-

ber geometries). The direct space-charge force within the beam is responsible for beam-

size growth and tune spread. The impedance from the surroundings can cause a change in

the energy, beam-oscillation growth, and tune shifts which in some cases can lead to cer-

tain instabilities. The purpose of this chapter is to describe the necessary theory used in

the analysis of experimental results presented in Chapter 5, and also to some extent the

data in Chapter 6.

In this Chapter the direct space-charge effects are compared to those of the sur-

roundings, as per the analysis originally done by L.J. Laslett [73], treating the response

from the vacuum chamber as a series of image charges and currents. It will be shown that

while both phenomena are energy dependent, the tune shift from the direct space-charge

decreases more rapidly with energy (γ-3) than the surroundings (γ-1). The contribution

from space charge is significantly larger at the lower energies near injection.

The Laslett analysis is limited, however, in that the predictions assume perfectly

conducting surroundings, and also no consideration of the changes in beam distribution

due to the interactions with the vacuum chamber are given. Furthermore, in practice,
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magnets are comprised of a sequence of stacked steel laminations, and the magnetic

properties of the material have an effect beyond just the existence of magnetic image cur-

rents. A more general analytical framework has been developed and detailed incorporat-

ing the solution to the Maxwell equations in cylindrical boundaries with finite conductivi-

ty [27, 76].

The forces on the particles arise from a vacuum-chamber response expressed in

terms of so-called electromagnetic wake functions (a time-domain description) and the

corresponding impedances (the corresponding frequency-domain description). As in the

classical sense, this impedance is a complex quantity, consisting of a 'resistive' term and a

'reactive' one24. Work has been done in the Booster [42,78,112] to measure and predict

this impedance and its effect on the beam at various energies. It has been shown that the

resistive behavior of the material is responsible for oscillation growth-rates, while the

reactive portion is responsible for the tune shift [90].

In addition to this accounting for the resistive wall with magnetic properties, fur-

ther modification is also necessary when discussing surroundings of axially symmetric

but non-cylindrical cross section [22, 59]. Specifically, for the nearly rectangular magnet

geometries found in the Booster, a tune shift of opposite sign in the horizontal and vertic-

al planes is expected from the analysis, in addition to a predicted defocusing shift in both

planes due the wakefields associated with the oscillation of the beam as a whole.

To understand the effect of the surroundings on the beam, we start with an approximation

of particle tune shifts due both to space charge as well as the vacuum-chamber boundary



24 Physically, the real part of this impedance represents the resistive term and the
imaginary part yields the reactive term, as it is in signal analysis.
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in Section 4.2. The tune shift obtained by Laslett is given in Section 4.4. The tune-shift

formulae obtained, as well as their modifications for the Booster geometry, are a special

case of the more general (and elaborate) formalism involving the impedance of a resistive

wall of finite thickness on a relativistic, bunched beam, given in Sections 4.6-4.8.

4.2 The Tune Shift Due to Space-Charge and Image Fields

While the effects of particle intensity on beam motion was considered since Kerst

developed the betatron cyclotron25, it was Laslett who first quantified how the transverse

particle tunes are affected by forces not externally (i.e. intentionally) applied by the acce-

lerator, arising both from the other particles in the beam itself and from the accelerator

structure in which the beam is transported. The direct space-charge forces come from the

interaction of particles on neighboring ones. Indirectly, the surroundings modify the free-

space fields of the passing beam, allowing the electromagnetic energy to affect down-

stream particles. We first present a simple model of the intensity-dependent tune shifts

due to the beam on itself and from its surroundings. The space-charge tune shift, due to

the force on a particle from its neighbors in a cylindrical beam (i.e. one without longitu-

dinal structure) will be given in Section 4.2.1, and the image-charge tune shift in Section

4.2.2. We spend some discussion on these simplified concepts to highlight comparable

results from simulation. Image charges from the cylindrical pipe walls caused by the field

of the passing beam are often a “usual suspect” for explaining tune shift under increasing

intensity. These alone will be shown to be insufficient to explain measurements from the

data presented in Chapter 5.

4.2.1 The Tune Shift due to Space Charge. The simplest transverse distribution of


25 Hence the historical nomenclature of betatron oscillation and betatron tune.
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particles is uniform, with a distinct beam edge at radius a. If we assume a particle in this

uniform, relativistic, cylindrical beam is located a distance r from the center, the Lorentz

force on this particle would be

2

2 2

2
r

eF r
a



 (4.1)

where λe is the linear charge density. The advantage of this model is that the forces on

the particles by the particles are linear. As was mentioned in Section 2.1.1.3, the Hill eq-

uation (2.5) describes most simply the single-particle dynamics in an accelerator and their

perturbations in the presence of gradient errors. It can also be readily applied to the case

of a single particle in this space-charge field of the beam. The corresponding tune shift,

using this force in the Hill equation is

2
0

2 2 3
0

sc
r R

a


  
  (4.2)

independent of the particle's transverse position, with r0 being the classical (proton) ra-

dius. This result is obtained independent of the surroundings, either in a vacuum or in a

closed accelerator structure.

Our aim is to compare this space-charge-specific result to the strength of the ef-

fect from the beam surroundings. One can estimate the effects of the conducting wall

surrounding the beam by considering the omnipresent forces on the beam from 'image-

charge' effects due to the collective beam motion within the chamber boundary.

The presence of the wall distorts the collective field of the beam, in turn modify-

ing the space-charge forces experienced by the individual particles within the beam. One

treatment of the effect of a conducting boundary is the familiar method of images. Instead

of describing forces on a particle from a perturbed space-charge field due to the chamber
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boundary, one may consider the unperturbed space-charge field to which is added an im-

age-charge contribution with the constraint that the (thin) conducting walls remain

grounded everywhere. Obtaining this image-charge perturbation, one only needs to calcu-

late the average force on the particle to obtain a result for the tune shift from the Hill equ-

ation.

4.2.2 Tune Shift Due to a Cylindrical Conducting Boundary. The following

straightforward example shows how the method of images can be applied to obtain the

fields in the presence of a grounded cylindrical beam-pipe. We start by solving the prob-

lem of an induced field on a grounded cylindrical shell from an elongated filament of

charge. Starting with the configuration in Figure 4.1 for a point charge in a two-

dimensional circular pipe,

Figure 4.1. Image-Charge Configuration of a Point Charge in a Two-dimensional Circu-
lar Conducting Boundary

it is straightforward to show that

2

' , 'R Rq q x
x x

   (4.3)
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And the field at q due to q’ can then be expressed as

2 2

1 1
/ /

E q
R x x R R x
            

(4.4)

We now extend this to a uniform, transversely small beam bunch of length L and

particle count N displaced by a distance x from the pipe axis (see Figure 4.2).

Figure 4.2. Image-Charge Configuration of an Individual Point Charge within a Long
Charged-Particle Beam Bunch in a Cylindrical Conducting Shell

The field seen by a particle is a superposition of the fields of the image charges

from the other point charges in adjacent infinitesimal ‘slices.’ The field seen by a particle

in the longitudinal center of the bunch due to the image charge from the entire bunch is

then given by

2 2 2

2 21
2( )

NeR xE
R x Lx

R x


  

   

(4.5)

We assume the bunch length is very much larger than the transverse dimensions, so that
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the image charges are created from a uniform, longitudinal field from the bunch, for

L>>x, and L>>a, where a is the radius of the beam26. The force is then

2

2 2 2
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Ne R xF eE
R x Lx

R x
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(4.6)

We estimate the contribution to the tune shift as follows.

From the Hill equation modified in the presence of a perturbation, (2.9), we stipu-

late once again that
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 
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 

 (4.7)

where Rpath is the orbit radius of the accelerator.  In which case
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The tune shift on a particle bunch due to this image charge alone is then
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(4.9)

As with the previous image-charge case, the assumption of a uniform, hard-edged beam

limits this to order-of-magnitude calculations.  One noteworthy feature is the size of the

tune shift relative to the case of this reactive pipe wall. The necessary parameters for

evaluation of (4.2) and (4.9) are summarized in Table 4.1.



26 The stipulation of a longitudinally large bunch is necessary because the super-
position of fields given in (4.5) is only exact when all horizontal components vanish in
the limit of an infinitely long bunch.  In practice, this condition is always fulfilled for the
Booster, where L/x~103.



76

Table 4.1. Beam and Machine Parameters for the Evaluation of Tune Shifts in (4.2) and
(4.9)

Average Longitudinal density (λ) 1×1010⁄m

Beam Radius (a) 5 mm

Number of particles per bunch (N) 5×1010

Horizontal or Vertical Tune (νx,y) 6.8

Total injection Energy (γmc2) 1.34 GeV

Chamber Radius (R)27 4 cm

Orbit Radius (Rpath) 74 m

Typical Particle Oscillation (x) ~10 mm

The direct space-charge tune shift at injection, not considering the conducting

wall, for a particle at the periphery of this uniform circular beam is around 3×10-1. While

for these typical Booster parameters, we obtain a tune shift of 3.3x10-4 for the wall effect,

considerably smaller than the direct space-charge contribution near injection. This space-

charge tune shift is in fact rather substantial. In practice values this large should be very

inimical to beam stability. In Section 4.3 and 4.4.2 as well as in Chapter 6 we shall dis-

cuss these in more detail, and identify why it is of somewhat less concern and why such

calculations exaggerate the value in any case.  For now it is more useful as a comparative

measure.

The calculations here are comparatively simple.  We present them to compare the


27 The sections of the Booster have differing shapes. Aside from the magnetic

elements, the long and short drift sections have pipe diameters of 3.5" and 4.5" respec-
tively.
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analytical predictions to simulations using the same assumptions of a longitudinally long

bunch with small transverse size in the presence of a conducting wall. Figures 4.3 and 4.4

provide simulation results for the effect of the presence of the conducting boundary in a

cylindrical chamber for a small, unbunched, Gaussian beam of 5 mm in radius28.

Figure 4.3. Dependence of Tune Shift on Chamber Radius for a 350mA Beam from Si-
mulated (green) and Expected (red) Values Corresponding to (4.9).

The closed-boundary conditions with a grounded conducting wall provide the

necessary image-charge effects for this. Figure 4.3 shows the tune shift dependence on

chamber radius for a beam current of 350 mA (5×1012 particles), executing small

oscillations in a circular conducting pipe (R0 = 4 cm).



28For small enough beam relative to the pipe geometry, the distribution has neg-
ligible effect on the image charges.
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Figure 4.4 shows the tune-shift dependence on beam intensity due to the pipe wall

for a beam with intensity ranging from 0 to I = 5×1012 (I0 = 5×1011 particles, or 35 mA)

in a cylindrical chamber with a radius of 4cm. In both figures, Δν0 is 1×10-3. Reasonable

qualitative agreement is seen in both cases, though quantitatively the simulaition result is

larger by a factor of three compared to (4.9).

Figure 4.4. Dependence of Tune Shift on Intensity for a Small Beam in a 4-cm Cylindric-
al Chamber from Simulated (green, blue) and Expected (red) Values Corresponding to
(4.9).

Part of this discrepancy is likely that the effect on a single particle differs

somewhat from that of the beam as a whole. The calcuation of (4.9) is for the effect on a

single particle in a rigid beam.  The simulation obtains the tune by performing a Fourier

transform of the centroid motion of a nonrigid distribution of particles. Since the

centroid tune is plotted in Fig 4.4, there is no direct space charge contribution in this
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result, only the effect from the conducting boundary. Typically, when the effect of the

motion on the beam centroid is what was observed in these simulations, it is usually

larger by about a factor of three (for the case of electric image charges at least) when

compared to the single-particle behavior.

Although the geometry of the previous example was simplified, it demonstrates

the potential effect of beam-pipe walls on the betatron motion of the beam.  Laslett took

the analysis further, generalizing to the case of a beam with an elliptical cross-section, in

a structure lacking cylindrical symmetry, and including the effect of magnetic pole faces.

In the following section we present a discussion of this Laslett tune shift. In section 4.4

we shall demonstrate that the more involved analysis done by Laslett, based on the same

principles, does not yield significantly different qualitative results (though the image

effect is somewhat larger for reasons that will be clear).  These therefore serve as a useful

starting point for quantifying wall effects as well as the direct space charge.

4.3 Coherent and Incoherent Effects on a Beam

The shift of the tune of a single particle in a beam was discussed in Section

2.1.1.3, where it was quantified by (2.13). In Section 4.2 this was applied to the case of a

transversely small beam in a grounded, cylindrical conducting pipe, and a particle on the

edge of a uniform circular beam. However, what is typically measured in an accelerator is

the average tune shift of the particle distribution, without detailed information at the indi-

vidual particle level.

Forces arising from the interaction of a beam with the surrounding vacuum cham-

ber (i.e. wakefields) can affect the ensemble of particles as a whole in such a way that the

centroid motion of the beam is changed. All particles may be affected uniformly or non-
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uniformly, with the net effect of shifting this centroid motion. A centroid shift is consi-

dered a coherent effect. Other forces, such as those within the beam (e.g. space charge)

affect individual particles in a completely position-dependent way. These do not affect

the coherent motion of the beam (i.e. change the motion of the centroid) and are consi-

dered to be purely incoherent. Such internal forces do, however, change the distribution

of transverse oscillation frequencies within the bunch, so while they do not modify the

centroid tune, the spread of the particle tunes is affected29. External forces may change

this tune spread as well, of course, if the effect is strongly position-dependent for individ-

ual particles. While this represents an incoherent behavior due to these external effects, to

the extent that the centroid motion is on average changed because of this external force,

the effect is considered a coherent phenomenon.

Instrumentation such as beam-position monitors are capable of observing the cen-

troid motion and the collective effects on it, rather than the change in the motion of indi-

vidual particles. So while single-particle effects such as space charge can be substantial

for some particles and lead to some beam loss, this effect may not readily be measured

with available diagnostics or instrumentation. Studies have been performed to determine

experimentally the dependence of the betatron tunes on beam intensity. In Chapters 5 and

6 we shall detail measurements quantifying both the coherent and incoherent phenomena

addressed here.

4.4 The Laslett Analysis

While the influence of space-charge on the betatron tune imposes intensity limits


29A familiar analogy in classical physics would be problem of the rocket explod-

ing in mid-air.
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on injected particle beams,  the 1⁄γ2 magnetic cancellation of the space-charge force under

high energy is a fortunate effect in that a higher injection energy assists in mitigating

some of the effects associated with higher intensity.  Since the susceptibility of the beam

to perturbative forces is inversely proportional to βγ,  maximal allowable beam intensity

limited only by space-charge self-forces30 scales as β2γ3.  However, we note that other

intensity-related effects may impose further intensity limitations.  In particular we con-

sider the vacuum-chamber response from a passing beam.  For a perfectly conducting

chamber acting on a passing beam, this amounts to an induced image-charge effect on the

conducting surface, as well as image currents on the magnetic materials, resulting in per-

turbing electric and magnetic fields that do not cancel with increasing energy.

Though the manifestation of space-charge forces on individual particles in suffi-

ciently intense beams was discussed by Kerst [70] and Blewett [14] in the 1940's, the

inclusion of the vacuum-chamber response was first investigated by L.J. Laslett, who

provided a formal treatment combining these effects [74]. The analysis details and quan-

tifies both the combined incoherent effect of these self-forces on individual particles as

well as a similar image-field perturbation on a beam centroid undergoing coherent trans-

verse oscillations. The Laslett tune shift encapsulates the effects of forces on the beam

from itself and the surroundings and extends it more precisely to other geometries, as

well as accounting for the presence of magnetic material (a staple in all accelerator de-

signs).  A summary of the results is given as follows.



30 Assuming we consider only the effect on a single particle and ignore other col-
lective phenomena for the moment (e.g. Landau damping, etc.)
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4.4.1 Equations obtained by Laslett. Laslett treated the case of a uniform transversely

elliptical beam with semi-major and semi-minor axes a and b, as first presented by Teng

[120]. We note that care must be taken when dealing with the beam distribution.  For a

uniform, coasting beam, the linear particle density is simply the total number of particles

Ξ divided by the accelerator circumference 2πRpath (Ξ⁄2πRpath). For a longitudinally

bunched beam, one must also take into account the variation in current density of the

passing particles, where peak current densities exacerbate this response.  This can be

handled by a "bunching factor" given by the ratio of the average to maximum linear

charge density of the distribution. For the current analysis, we shall use this transversely

uniform elliptical beam with longitudinal bunching factor B.31 In this case the total num-

ber of particles can then be expressed as Ξ = MN where M is the number of bunches and

N is the number of particles per bunch.

We consider a beam with reasonably small transverse dimensions relative to the

pipe radius (such that the image fields can be adequately obtained through approximation

of point charge), in which there is a test particle undergoing small displacements y from

the beam centroid.  The analysis includes several effects on the motion of a particle - the

image-charge electric field in the metallic chamber due to the passing beam (similar to

what was previously derived), the induced magnetic fields produced in the magnets by an

image current from the passing beam, and the space-charge fields from the surrounding

particles subject to the 1⁄γ2 magnetic cancellation.  In such case it was shown that the tune

shift can be expressed as


31 A full treatment would include additionally radial and azimuthal bunching.

However, the analysis is not only considerably more difficult its effect is considered mi-
nimal compared to the precision of our measuring capability in the Booster.
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where Γ is a geometric factor accounting for the shape of the beam chamber given by
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The quantities h and g are the semi-apertures (radii) of the vacuum chamber and magnet

gap. ε1 and ε2 are "image-force coefficients," i.e. characterizations for various geometries.

β,γ, and r0 have their usual meanings from before. In the case of a plane-parallel boun-

dary,

2 2

1 248 24
    (4.12)

A more convenient representation is given by

     0

2 2
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1 1

MNr R h h
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  

  
      

      
(4.13)

At low energy (or for large apertures), single-particle tune shifts are more sub-

stantial than tune shift of the beam centroid, with intensities depending on β2γ3 while at

high energy collective stability is the dominant intensity-limiting factor with the major

behavior depending on γ.  The importance of the aperture dimensions at high energy is as

much a consequence of relativity as the magnetic cancellation of the self-fields.  The field

of a passing particle exhibits an angular spread on the order of 1⁄γ. For stationary charges

the field is spherical and for ultrarelativistic ones it is pancake-shaped in the frame of the

observer (flattened in direction of the motion).  Since the total field energy remains con-

stant for the same number of particles, the energy-density distribution changes with in-

creasing energy (as observed in the laboratory frame).  The image-charge response is thus
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more pronounced in the relativistic case, so that relativistic particles affect nearby trailing

particles more substantially so long as the aperture is small enough.

Our previous calculations can now be refined by the Laslett framework.  In Sec-

tion 4.5 we shall apply these formulae to assess the relative importance of the space-

charge and image-charge/current terms using Laslett coefficients more closely resem-

bling the Booster geometry. We expect, as before, for energies near injection that the

space-charge tune shift will dominate.

4.4.2 The Laslett Shift for Coherent Motion. It must be stressed that the Laslett tune

shift in (4.13) is a single-particle effect, and must be applied as such to an individual par-

ticle within the beam.  Often, for the most part due to measuring limitations we are inter-

ested more in effect on the beam centroid, for which this result is not applicable since it

must exclude the effect of the mutual interaction of individual particles.  A simple-

minded approach in a calculation of the coherent tune shift would be simply to ignore the

direct space-charge term, however, the averaging effect of the incoherent motion also

changes the values of the coherent coefficients used in the calculation of the tune shift

[75].  In that case, the analysis leads to the following.

 0

2
2 2 0

1 22 22

2 11
1

MNr R h
h gB

    
 

  
     

    
(4.14)

where ξ1 and ξ2 are the coefficients (in general different from ε1 and ε2) associated with

this coherent beam-centroid motion. For the parallel-plate case as before, the values are

2 2

1 216 16
    (4.15)

The 'electric' coefficient ξ1 is three times larger than ε1 and the 'magnetic' coefficient ξ2 is

three-halves ε2.  The effect due to the internal fields present in the single-particle case is



85

not applicable, since forces within the beam cannot directly affect the coherent motion.

We shall differentiate between the two results by calling them the incoherent and cohe-

rent Laslett tune shifts.  Both will be of use.

The reason for the larger values of the 1, 2 over ε1, ε2 can be explained as fol-

lows. The image fields are created by the presence of the entire beam. A single particle

experiences this based on its position and charge. The effect on the centroid is the

weighted average of the response of all the particles collectively to the image field. This

response is thus somewhat larger. While the analysis leading to the exact evaluation of

the parameters ε1 and ε2, as well as ξ1 and ξ2, is often lengthy for different structures, the

shape of the chamber, to within an order of magnitude, has, in general, only a small effect

on their numerical values.

4.5 Application to the Booster

We now seek to formally quantify the relative importance of the incoherent Las-

lett terms in the FNAL Booster near injection. This provides a basis for the discussion of

the data presented in Chapter 6, in which the incoherent shift of the particle tunes are

quantified. Since the betatron tunes in the Booster are around 6.8, and tune shifts rarely

exceed 0.5 in any case for any machine, we can linearize (4.14) to get

2 2 2
20

, 2 2 2 2 2 2
0

1 1 1
2 24 24 12x y

r R MN
a h B h g

   
    

    
       

    
  (4.16)

where R and a are the accelerator and beam radii respectively.  Since our goal is the com-

parison of the importance of the space-charge fields to those on the chamber boundaries,

we further assume, for simplicity, a circular, bunched beam. The bunching factor can be

calculated from



86

2
avg z

peak

MB
R

 
 

  (4.17)

where z is the longitudinal Gaussian bunch width. For the Booster it is around 0.5. The

tune shift then can be written as
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Or

 0
, 2

0 2x y sc wall
r R MN K K

   
   (4.19)

for the horizontal and vertical motions, respectively.

With a particle kinetic energy of 400 MeV, values of the relativistic parameters β

and γ are 0.71 and 1.4, respectively.  A few further simplifying assumptions are in order.

We treat the ring as a set of parallel plates with half apertures around 3cm, with magnetic

currents having an effective depth of 4 cm (60% of the ring is comprised of dipole mag-

nets with this approximate shape and size, and the remaining pipe has this approximate

radius, so the assumption is valid).  A typical average beam radius for 5×1012 particles

has been measured to be around 5mm, with the bunch being around 1 m long.  Then

50sc

wall

K
K

 (4.20)

At injection with a kinetic energy of 400 MeV, evidently the direct space charge

dominates (98% of the tune shift).  The expected single-particle shifts due to the wall and

the internal fields are around 1.3×10-2 and 6×10-1 respectively. For good measure, the

corresponding coherent tune shift calculated from (4.14) is 5×10-2, around four times the

incoherent image-charge contribution.
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This analytic formula was the one applied in Chapter 2 (Figure 2.6) as a ben-

chmarking for the accelerator simulation tool, Synergia, which has been used periodically

to complement our measurements. One limitation of the above Laslett analysis is that the

result comes from the assumption of image charges and currents on perfectly conducting

boundaries acting on particles causing them.  While a defocusing effect on the transverse

oscillations is indeed present, the picture is not complete in the case of relativistic beams

surrounded by resistive (or rather, imperfectly conducting) walls, for which the lagging

chamber response of a passing charge affects trailing particles of the beam in a different

(and more complicated) way.  We shall discuss these phenomena in subsequent sections,

after which their correspondence to the Laslett analysis will be discussed in the limiting

case.  Despite this shortcoming, to first order the Laslett tune shift usually provides an

adequate and relatively complete measure of the relative importance of the effect of the

surrounding particles in the beam and that of the chamber boundaries for a particular

energy.  We shall further utilize the Laslett tune shift in Chapter 6 to corroborate a mea-

surement of the space-charge tune shift, obtained indirectly through a beam-extinction

measurement occurring under resonant conditions.

4.6 Inclusion of a Boundary with Finite Conductivity

Any real material comprising the vacuum chamber of an accelerator has finite

conductivity.  For relativistic particle beams the effect from this can be significant.  Un-

like in the perfectly-conducting case, the assumption of instantaneous feedback from the

reactive pipe-wall field yielding a steady-state response is no longer valid in the relativis-

tic regime. The field from leading particles in the bunch leaves an electromagnetic

“wake” affecting trailing particles, whose properties depend on the resistivity of the ma-
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terial as well as the energy of the beam (the more relativistic the leading particle, the fur-

ther back the field will affect trailing particles). The previously discussed image-charge

(i.e. Laslett) analysis in this case is insufficient. In this section we discuss the concept of

this resistive-wall wakefield and the corresponding impedance, its equivalent frequency-

domain counterpart.  An overview of the work leading to the classic time-domain wake-

field equations is first provided, after which we detail the analysis leading to the case of a

relativistic beam of arbitrary distribution in a circular cylindrical chamber.

The addition of finite conductivity to the pipe wall was first discussed by Neil and

Sessler [90], who addressed its effect on the longitudinal beam dynamics, and, in collabo-

ration with Laslett, it was shortly thereafter extended to the transverse case [76]. In the

presence of finite-conducting walls, it was found by Neil et al that a beam with angular

revolution frequency 0, having transverse oscillations with tune  generates fields of

frequency ω = (n±)ω0, where n is an integer.  A component of the pipe-wall response to

these fields lies in phase with the transverse beam velocity, potentially driving betatron

amplitude growth in the absence of sufficient transverse (and longitudinal) tune spread.

The characteristic time of the oscillation growth was found to scale as / N .

The important modification was this resistive component, creating an in-phase

driving term responsible for instability growth. The nonresistive (i.e. Laslett) component

yielded a 90º out-of-phase term giving the familiar tune shift. Development of the disper-

sion relations leading to the instability growth time were extended by Zotter [136] to var-

ious geometries (including laminated ones), and more recently by Lebedev and Burov

[19, 20] for rectangular and cylindrical geometries of arbitrary thickness and including

stacked or concentrically arranged materials with different electromagnetic properties.
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The equations pertaining to the particle wakefields as self-consistent32 perturba-

tions on the beam were later derived by Laslett and Sessler [72], and subsequently the

forces on the particles of the beam by Robinson [104] and Courant [38].

What follows in Sections 4.6.1-4.6.3 is a summary of the concepts leading to the

resistive-wall wakefield equations for a relativistic beam in a circularly cylindrical cham-

ber.  A rather complete analysis is provided by Chao [27].  The application to the Booster

will require special consideration because of its decidedly noncircular geometry, which

will be discussed in Section 4.7.

4.6.1 Basic Formalism Describing Wakefield Phenomena. As was previously men-

tioned, in the transition from perfectly to imperfectly conducting walls, the location of a

leading and trailing particle becomes important as the wall absorbs field energy from the

leading particles and places it on the trailing ones.  In general the field pattern stored in

the chamber can be quite complicated, but usually the particle-oscillation wavelength of a

relativistic beam is very much larger than the structure disturbing its motion, so our inter-

est lies more in an integrated effect than the details of a local disturbance on the beam.

4.6.1.1 Wakefields in a Circular Chamber. Starting with the case of a very relativistic

beam (γ→∞), the average force on the beam (or a particle) over the length L of some

perturbing structure is given by

/ 2

/ 2

1 L

L
fds f

L 
 (4.21)

Ultimately, these forces are obtained by solving for the time-dependent electromagnetic

fields (i.e the Maxwell equations) produced by the leading particles in this axially sym-



32 See section 1.3.2 for a definition of self-consistency.
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metric geometry. Leading particles, however, may be distributed transversely in compli-

cated ways.

As is commonly done in electrodynamics, these distributions can be decomposed

into multipole moments, where the first terms are often dominant and subsequent ones

negligible. The distribution can be described as a superposition of moments Im, where the

mth moment with net charge q and radius a, given by m
mI qa . The integrated forces33

through this structure can then be obtained by

/ 2

/ 2

L

L
dsF V


 
 

(4.22)

where for the resistive circularly symmetric structure V is a field-generating function

given by

( ) cos( )m
m mV eI W z r m (4.23)

Wm in the right-hand side is the so-called wake function – the strength of the re-

sponse of the surroundings to a (longitudinally) δ-function beam with a pure mth-moment

transverse distribution. The cosine term conveniently exploits the azimuthal symmetry of

the chamber, i.e. for an mth-moment distribution the effect changes sign m times)34. In

the case of a dipole oscillation (m = 1), the force would be positive on one side of the

plane and negative on the other, resulting in a completely defocusing effect in that plane.

In this wake function is encapsulated the information regarding the response of


33 Sometimes called an 'integrated impulse,' except that the longitudinal coordi-
nate typically plays the role of time in accelerator pedagogy, so the units in this case are
the same as that of energy, not momentum.

34 In the ultrarelativistic case, the shape and size of the distribution play no role in
the production of the wake [102], so it does not matter how the sign is varied, so long as
the proper periodicity is maintained. Trigonometric functions are the most suitable choice
in a circular chamber.
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the cylindrical chamber to this particular oscillation of the beam. The force on the beam,

like many quantities, is usually separated into a transverse and longitudinal part. Then the

transverse and longitudinal integrated forces would be given by

/ 2 1
,/ 2

( ) ( cos sin )
L m

m mL
dsF eI W z mr r m m  

 
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  (4.24)
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where Wm, is the transverse wake and Wm, the longitudinal wake. Since we focus our

attention mostly on the transverse dynamics, we are interested in the transverse wake. A

connection, however, first presented by Panofsky and Wentzel, exists between the longi-

tudinal and transverse wake forces given by

/ 2 / 2

/ 2 / 2

L L

L L
ds F ds F

s  


 

 

 
(4.26)

That is, the transverse gradient of the longitudinal wake is the longitudinal derivative of

the transverse wake. The connection between them will be used in Section 4.7, when the

cylindrical symmetry is removed. In the case of a cylindrical pipe of radius R, length L,

and material conductivity σ the transverse wake function is [33]

2 1
0

2 1( )
(1 )m m

m

cW z L
R z   

 (4.27)

Despite the need to modify the theory for the Booster's rectangular geometry, much of the

Booster (40%) is round pipe, so (4.27) will be useful nonetheless.

4.6.2 Impedance - the Frequency-Domain Description. In using simulation tools,

wakefield 'kicks' in the time domain are frequently applied to the beam to study the re-

sulting dynamics.  However, often it is more convenient to work with a frequency domain

representation, particularly in analyzing experimental measurements of beam response,
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where signal analyzers are commonly used.  An added utility of this wakefield descrip-

tion lies in its direct correspondence with the impedance, first introduced by Vaccaro and

Sessler [111].  In particular,

   /i z c
m m

dzZ i e W z
c


 


  (4.28)
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which are the Fourier transforms of the wake functions35.  This allows for a frequency-

domain or time-domain description of the problem, whichever may be more suitable or

convenient to the problem at hand.

Impedances arise from a multitude of sources - conceivably from every device

comprising the accelerator body. Devices such RF cavities or diagnostic implements,

coupling units such as vacuum-chamber bellows, and magnetic correction elements have

an impedance.  Careful design of an accelerator is required to minimize the cumulative

effect of these elements [34]. In Section 4.7 both time-domain (wakefield) and frequen-

cy-domain (impedance) approaches will be used interchangeably to complete the analy-

sis.

4.6.3 Effects Near and Far from the Leading Particle. Even in the rather simple axi-

symmetric geometry discussed previously, the fields comprising the wake function are

quite complicated functions of z, and meaningful results are best obtained for approxima-

tions within various ranges of validity [30]. The exact expressions for the fields of a

passing beam in a cylindrical resistive chamber were first developed by K. Bane [13].



35 "There is a theorem stating when you have only a partial knowledge of the solu-
tion to a differential equation and do not know what to do next, make a Fourier transfor-
mation. This theorem is one reason why impedance is such a useful quantity."[45]
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These are provided for reference in Appendix A.

The effect (both qualitatively and quantitatively) on trailing particles very near to

the leading particles is substantially different from that from particles in, say, the subse-

quent bunch.  Of course, 'near' and 'far' must be less arbitrarily defined.  Generally, these

depend on the dimensions of the vacuum chamber, not just on its diameter but also on the

thickness of the material.  The analysis is similar to that of fields in resistive waveguides.

4.6.3.1 The Low-Frequency Cutoff. High-frequency field components have a strong

effect over a small time (equivalently, small range for passing particles) because their

penetration into the material (i.e. skin depth) is inversely dependent on their frequency,

while lower-frequency components (i.e. fields created over longer times) penetrate more

deeply, affecting passing particles over a longer time (range).

A further cutoff, however, exists for a pipe of finite thickness in which the skin

depth of low-frequency fields is comparable in size.  In this case significant penetration

(leaking) of the field outside the chamber occurs, preventing it from affecting the trailing

beam after some very long range.  "Far but not too far" will then refer to the case where

the skin depth of the field from the leading particle(s) is much shorter than both the pipe

radius and/or the thickness of the material comprising it, whichever is smaller.  Usually,

the upper limit on this region of interest is rather large, on the order of 105 to 107 meters

for most accelerators.  "Near but not too near" conversely, is less intuitive, and will be

dealt with in the subsequent section. A typical dimensionless scaling factor χ quantifying

these limits is defined by

4
c

R



 (4.30)

where R is the chamber radius and  the conductivity. It can be shown [30] that for the
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resistive wall the lower and upper limits of this far-field region are given by the condition

1/3/R z R   (4.31)

For the Booster, we consider a pipe with a 2.5-cm radius composed of steel, for

which χ≈7×10-8. The region of validity of this approximation is then between 0.1 mm and

3×105 m, or for roughly 630 turns of the Booster cycle.

4.6.3.2 The High-Frequency Cutoff. It is also necessary to consider the near-field ef-

fects on trailing particles, i.e. where 1/3z R , very close to the leading particle. The

wake-generating fields in this region are given in (A3-A4) in the appendix, but in the

limit of zero distance behind the leading particle (z→0) we obtain

2

4
s

qE
R

  (4.32)

 2
r

q R rE B z
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(4.33)

where r is the beam radial coordinate and q is the charge of the leading particle.  In prin-

ciple, this field for particles immediately behind the beam is both nonvanishing and po-

tentially nonnegligible.  However, so far, the assumption has been γ→∞. When this as-

sumption is removed, in reality an upper limit on possible frequency component of the

wakefield exists whose value depends on the relativisticity of the beam.  We explain the

physics of this as follows.

The number of oscillations per unit longitudinal distance depends on the angular

spread of the pancake-shaped leading-particle field in that for a given number of oscilla-

tions associated with the field, the smaller the spread, the larger the number of waves

packed into the longitudinal distance.  This spread is proportional to 1⁄γ.  Hence a cutoff

exists where /c R  , or in other words, 1/31/  . Or in another way, a pancake-
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shaped field represents a δ-function response in the time domain, which comprises all

values in the frequency domain with equal weight. A field with an angular spread has a

finite time width, and its frequency content rolls off after some value depending on this

spread. In the Booster, this condition is satisfied when γ is much larger than 250.  Since γ

is 1.4 at injection and 9.6 at extraction this particular condition is never satisfied. Howev-

er, the possibility of short-range wakes of some type may still be of concern.

Beam dynamics in the high-frequency regime is currently of interest, since it is in

this region where instabilities limiting intensity are under investigation. Different authors

have differing suggestions on the value of this and other frequency cutoffs [85]. In any

case we focus on the regime with regard to our measurements, which are sufficiently far

away from these high-frequency effects in any case.

4.6.4. The Force on a Particle due to a Dipole Wakefield. Ultimately the issue at hand

is to quantify how these wakefields affect the trailing beam. The wake functions can be

used to generate the wake potentials, which then describe the forces on the beam.  The

wake (vector) potential was given in (4.22-23).

We are interested in the m = 1 (dipole) wake, typically considered a dominant term for a

beam undergoing resistive wall oscillations about the pipe axis [78]. For a beam bunch of

charge q, whose average centroid displacement is <x>,<y>, the transverse wake "poten-

tials" can then be written as

/ 2

1/ 2
( )

L

xL
dsF eq x W z x


 
  (4.34)

/ 2

1/ 2
( )

L

yL
dsF eq y W z y


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  (4.35)

To perform an equivalent analysis as with the image-charge effects as done in the Laslett

case, we must estimate the force on a particle in the beam bunch due to the leading-
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particle wakes.  We assume the force on the bunch due to the pipe wall is slowly varying

relative to the structure length L such that

/ 2

/ 2

1 L

L
dsF F

L 

 

(4.36)

From (4.27), the dipole wakefield is given by

1 3

2 1( ) cW z L
R z 

  (4.37)

We assume, for the moment, a bunch of length L0 with N0 particles and with uniform

longitudinal density of . In this case, the dipole force on a particle from the particles in

front of it is, in either plane,
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and
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outside and inside the bunch (assuming not too near the leading particle as discussed in

Section 4.6.3.2). For z>>L0, the result reduces to

2

03

2 , 1e x y cN
R z 

 (4.40)

where the bunch acts like a single particle of charge N0e to the trailing particles far away.

For an unbunched beam in a circular accelerator, we run into the problem of having a

total particle density of Ξ⁄2πRpath, but with a test particle feeling a force accumulating as

√z. In principle this would diverge, but as mentioned in section 4.6.3.1, a large-distance

cutoff exists, usually because of the finite thickness of the pipe, limiting the accumulation
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effect. This phenomenon will be detailed more completely in Section 4.7 when the mod-

ification from the rectangular magnet geometry is considered.

We wish to quantify the tune shift caused by this bunch on a trailing particle (or

bunch if we assume a single-particle bunch of charge N0e and mass N0mp). Away from

the bunch the tune shift from (2.13) is
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In general, the wake depends on the positions of the leading and trailing particles. We

assume, for the moment, a behavior of a rigid bunch, where the motion of the trailing and

leading components is in phase, i.e.

,
1

,
lead lead

trail trail

x y
x y

 (4.42)

Also, we consider the effect at the edge of the bunch, where the contribution from the

leading particles is maximized. We then obtain a dipole tune shift given by
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In order to perform a calculation, the frequency dependence of the conductivity must be

discussed, as follows.

4.6.5. The Frequency Dependence of the Conductivity. The electrical conductivity of

a material is frequency-dependent, and in general complex. A typical model of it is given

by [56]

2
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damp
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damp

e

e i
m
  

 
    (4.44)

where ρc and is the particle density of the conducting material and me is the mass of the
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free electron moving in the conductor for each particle. γdamp is a characteristic phenome-

nological damping factor associated with the ability (or rather, inability) of the material to

conduct, due to collisions, radiative effects, etc, and is given by the zero-frequency limit

of

2 2

0 0

c c e
damp

e

e r c
m
 
 

 
(4.45)

where re is the classical electron radius. Then (4.44) may be written as

0 2 2
damp

damp
damp i


   

 
    (4.46)

Physically, this suggests that materials which are good conductors at low frequencies are

not very resilient to a frequency increase, and become resistive rather quickly.  Poor con-

ductors, by contrast, were never very good at conducting to begin with but their conduc-

tivity does not decrease as significantly under the same range in frequency increase. For

the case of the steel Booster structures, the data in Table 4.2 yield a value of γdamp =

1.6×1015⁄s.

Table 4.2. Characteristics of Steel for the Evaluation of γdamp

Mass Density ~8 g⁄cm3

Conductivity (0) 1.3×1016 s-1

Atomic Mass (iron) 55.85 amu

Particle density of steel (ρc) 8.4×1022 ⁄ cm3

Classical Electron Radius (re) 2.818×10-13 cm
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The real (red curve) and imaginary (green curve) parts of  are also plotted as a

function of frequency up to ω = γdamp in Figure 4.5. We see that the real part of the con-

ductivity retains around 90% of its value for up to ω = γdamp⁄4, or for the case of steel, up

to 3×1015 s-1.

Figure 4.5. Frequency Dependence Real (red) and Imaginary (green) Parts of Conductivi-
ty Relative to Zero-Frequency Limit

Resistive-wall effects are considered broadband impedances, in that the response to a

driving term is not very substantial but is similar across a very large range of frequencies.

The driving frequencies of the passing beam can be decomposed into harmonics of the

sidebands of the revolution frequency [114], that is

(1 )f revf n f  (4.47)
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where f is the fractional part of the betatron tune,36 frev is the revolution frequency, and n

is an integer. The strength of these harmonics diminish with increasing n, on the order of

 J
fn n revP   (4.48)

where Pn is the power amplitude of the nth harmonic, Jn is the nth-order Bessel function,

ωrev is the angular revolution frequency, and τνf is the characteristic time amplitude of the

fractional part of the betatron tune.

Figure 4.6. Dependence of Bessel Function on Index Value with an Argument of Unity

The argument ωrevτνf ~ 1, so from Figure 4.6 we see that by n = 3 the power has

dropped below 10% of the fundamental. The revolution frequency in the Booster is on

the order of 500 kHz, thus strong frequency content from the passing beam does not ex-

ceed the range of 10 MHz, nine orders of magnitude below the threshold where the fre-


36 This was done in particular for longitudinal motion but the analysis is analog-
ous for the transverse case where the synchrotron tune is replaced by the fractional part of
the betatron tune.
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quency dependence of the conductivity becomes important. We therefore shall use the

zero-frequency conductivity 0 in all our calculations.

4.6.6. Calculated Tune Shift and Possible Augmenting Accumulation Effects. The

parameters necessary to evaluate (4.43) for a round, steel pipe in the Booster are given in

Table 4.3.

Table 4.3. Booster Parameters for the Evaluation of (4.43)

Particle density (ρc) 8.4×1022⁄ cm3

Conductivity of Steel (0) 1.3×1016 s-1

Number of particles per bunch (N0) 5×1010

Horizontal or Vertical Tune (νx,y) 6.8

γβ2 0.70

Chamber Radius (R) 4 cm

Orbit Radius (Rpath) 74 m

Classical Proton Radius (rp) 1.535×10-18 m

Given these parameters, the tune shift from one bunch affecting a trailing particle

is predicted to be 1.3 10-4. This value is seemingly negligible compared to the previous

calculations. However, this does not take into account the cumulative effect of passing

bunches. The force causing this tune shift is scales as z-1⁄2. Thus subsequent passing

bunches could add to the wake before the previous one diminished completely. This

would continue until eventually a steady-state value would be reached. For many passing

bunches, the effect would be augmented as follows.
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

    (4.49)

Nc is the numerical cutoff, either for the regime given by (4.30) or a value dependent on

the thickness of the pipe. The effect of the pipe thickness will be discussed in detail in

Section 4.7.3. Also, the effect depends in principle on the average transverse positions of

both the leading and trailing particles (or bunch centroid, as the case may be). While the

accumulation of wakes from passing bunches may be rather large, in the worst case by a

factor of 500 for the cutoff in Section 4.6.3.1, in almost all circumstances the average

particle positions would average to zero. We expect, then, on average, for a cylindrical

steel pipe the effect on the centroid tune would remain rather small37.

However, the Booster is not comprised completely of round steel pipes, but of

nearly rectangular magnets in 60% of its circumference. Such cumulative properties as

discussed here will be shown to be important if the average effects do not cancel. In the

next section we discuss the modification of this formalism to make it applicable to the

Booster's geometry. The main difference is that in the absence of the pure axisymmetric

geometry, the cos m and sin m patterns present in (4.24-27) for the multipole mth-

order wakes no longer yield eigenmodes and the different m's couple.  The analysis thus

becomes more complicated, and depend both on the positions of the particles driving the

wakefield as well as those trailing them. We must resort to a more general formalism

taking these cases of lower symmetry into account, at least for the case of rectangular

symmetry.



37 The effect on the growth rate and on particles very near the disturbance is not
discussed in this work. In principle these may still be large in these circumstances.
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4.7 Wakefield Behavior in Structures of Lower Symmetry

As mentioned previously, the wakefields, classified by mth-order multipole mo-

ments of the beam distribution, were developed under the condition of cylindrical sym-

metry and for an ultrarelativistic beam.  In the case of less symmetric structures a more

general treatment is required.

4.7.1 Synopsis. We present the concept of a generalized impedance, first introduced by

Sacherer and Nassibian [89], and applied to relevant geometries by Heifets, Wagner, and

Zotter [59].  The formal steps to obtaining a general expression for the transverse wakes

is outlined, after which the particular case of rectangular symmetry is investigated.  The

corresponding wakefield produced by the dipole motion of the beam is discussed.

A summary of the analysis by Chao, Zotter, and Heifets [22] is presented, wherein

the effect of additional quadrupole term for a dipole-distributed beam due to these non-

circular chamber geometries is developed and shown, unlike its dipole counterpart, to

have an additive cumulative effect on the motion of the beam in a circular accelerator.

The tune shift due to this multi-turn wakefield accumulation is then given and adapted to

the Booster. Ultimately this equation will be of paramount importance in explaining the

measurements in the following chapter.

4.7.2 A Summary of Generalized Impedances for Noncircular Cross Sections. The

presentation of the wakefield equations in the previous section assumed a very relativistic

beam in a cylindrical vacuum chamber with particle-oscillation wavelength much longer

than any wake impulse caused by chamber variation. Since 60% of the Booster lattice is

comprised of dipole magnets with somewhat rectangular geometries, as discussed pre-

viously, the mth-order wakes corresponding to the mth-moment beam distributions in a



104

cylinder, are no longer independent, and will couple.  Of primary importance is the addi-

tion of a quadrupole contribution to a beam executing dipole motion. To handle this ana-

lytically for more arbitrary structures, we utilize the concept of a generalized impedance

[89], a quantity depending both on the coordinates of the leading particle (r0,φ0) as well

as that of a trailing particle (r,φ). The term "generalized" refers to the dependence on

both the leading and trailing particles, more so than just geometry of lower symmetry.

While in the case of purely circular cross sections, dipole, quadrupole, etc, wake-

fields are the result of oscillations within the distribution, for lower symmetry, the struc-

ture can produce strong higher-order wakefields even for a beam for any type of oscilla-

tion (dipole, quadrupole, etc).  We summarize the analysis [59], focusing on the results

leading to the quadrupole wakefields created by rectangular geometries. Starting with this

impedance, the only assumption, specifically, is that of causality, i.e.

0 0 0 0( , , , , ) *( , , , , )Z r r Z r r       (4.50)

The formal details are given in Appendix B. The idea behind it is as follows.

A longitudinal electric field synchronous with the particle motion produces a lon-

gitudinal impedance to the beam. The impedance can be expanded in terms of multipole

moments in both r and r0, where the expansion coefficients are proportional to the fre-

quency content of the field from passing beam. That is,

     
    

0 0 0
1 0

* *
0 0
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Z r r r r r

r r r

    

   

 

  
 

  

    

     


 

(4.51)

where the quantities r+ and r- are the complex rectangular superpositions x±iy. From the

longitudinal impedance we obtain the longitudinal wake function, which is related to the

transverse wake by the Panofsky-Wentzel theorem. In terms of the generalized wake
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functions, this may be written as

   0 0, , , ,W r r s W r r s
s 


 


   

(4.52)

and the corresponding wakefields can be obtained. These results can be expressed as
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where

( ) ( )( ), ( )mk mk
mk mk

a s b ss s
s s

  
   

 
(4.55)

are another set of expansion coefficients. We have suppressed the dependence of Wx,y on

r and r0 to simplify the notation. One caveat is in order regarding this theorem.  This

analysis considers all contributions of every order to the impedance, and does not (in fact,

in general cannot) separate them distinctly into the multipole moments as was done in

Section 4.6. This impedance was obtained directly from the integration of the synchron-

ous feedback field from boundary of the vacuum chamber, whatever its geometry may

be.  The 'multipole' behavior is then characterized by the expansion coefficients of the

double sum in (4.51), and correspondingly (4.53-54), specifically tied to products of

powers of r and r0.  The symmetry of the structure (or lack thereof) then determines the

important contributions (e.g. dipole, quadrupole, etc), in addition to the moments of the

beam distribution.  In short, the leading-particle coordinates correspond to the distribu-

tion moments and the trailing-particle coordinates account for the structure harmonics of
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the chamber geometry. Thus with the exception of simple geometries, these modes will

remain intertwined.

Also, in the analysis in Section 4.6, the multipole wake functions were developed

as part of the wake-potential-generating function (4.23) which in turn, ultimately encap-

sulates the resulting wake forces as functions of m.  For the convenient case of cylindrical

symmetry, these can be written in terms of separable powers of the single variable r

(leading particle).  Hence V scales explicitly as rm, such that the dimensions of the wake

function scale commensurately as r-m if dimensions of the wake potential are to be consis-

tent.  Under this convention, the Panofsky-Wentzel theorem equates the transverse gra-

dient of the longitudinal wake potential to the longitudinal derivative of the transverse

wake potential, and is more commonly used. For (4.52), where W is the generalized wake

function, the relation is more general.

In the following section we apply (4.53-54) to the special case of the Booster,

whose magnet geometry is approximately rectangular.  From these wakes, we then

present formulae for the tune shift under these conditions.

4.7.3 Application of the Generalized Wakefields to the Booster Magnets. Applying

the above results to the rectangular (or parallel-plate) case, the transverse wakes produced

in this manner reduce to the following.

0 0( )xW s a x ax  (4.56)

0 0( )yW s a y ay   (4.57)

(x0,y0) are the driving-particle and (x,y) the trailing particle coordinates, respectively.

Both fields yield the coefficient a, while the coefficients 0a and 0a are inter-related but

not identical.  Regardless of their exact values, the interesting features of these equations
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are that the wakefields for this geometry have separate, substantial contributions from the

driving particle (dipolar component) and the trailing particle (quadrupolar component),

and this quadrupole component affects both planes equally, for the same trailing-particle

displacement.

These effects have been explored in particular by Chao, Zotter, and Heifets [22]

who were studying the effect in the roughly octagonal chambers of the CERN PSR. It

was shown that laterally symmetric but noncircular geometries produced higher-than-

mth-order contributions to the wakefields for mth-moment beam distributions. The work

by Heifets, Wagner, and Zotter [59] has provided the necessary groundwork for this mod-

ification.

In addition, a somewhat unintuitive feature of (4.56-57) shows that the quadrupo-

lar contribution, is independent of the driving term, with a purely real coefficient equal in

both planes (though opposite in sign). The dipole wake over many terms averages to zero,

since the oscillation of the particles about the center of the chamber produces both posi-

tive and negative forces, as was alluded to in the analysis leading to (4.49), so its cumula-

tive effect may seldom be of concern.  The quadrupole term, by contrast, produces a force

which is strictly additive and may lead to a substantial effect over many turns if the lin-

gering wakefield from successive turns in the accelerator accumulates sufficiently turn-

by-turn. The effect can be surprisingly large compared to the classical wakefield analysis

in cylindrical symmetry. In what follows a similar analysis applied to the case of the pa-

rallel-plate-like geometry of the Booster magnets is detailed, the results of which will

later be used to explain experimental results.

4.7.3.1 Wakefields Including the Skin Effect. It has been shown [90] that for frequen-
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cy-dependent fields in the resistive wall, so long as the wall thickness is larger than the

skin depth for frequencies of interest, the resistive and reactive portions are equal, and the

wakefield formalism holds for all distances given by (4.31). The transverse resistive-wall

wake function for a distance z behind a dipole-charge can be expressed in these terms as

0
3

4( ) CW z
b z


  (4.58)

where

2

0
0 02

c
 

 (4.59)

is the skin depth of the material at the revolution frequency ω0 = βc⁄Rpath and C and Rpath

are the machine circumference and radius, respectively. For magnetic materials,  is the

relative permeability of the substance (usually set to unity otherwise). In Chapter 5 this

will be of importance when the magnetic laminations are considered. For now it is ig-

nored (i.e. equal to unity). The factor b corresponds either to the pipe radius or the half-

width of parallel plates, depending on geometry.

4.7.3.2 The Complex Mode-Frequency and its Dependence on Impedance. We as-

sume a train of bunches whose internal structure can be represented sufficiently by a pair

of macroparticles, i.e. one particle in front (driving) and one particle in back (trailing).

For this type of bunch, a model in which the perturbation comes from the collective wake

forces from all leading particles can be composed, as was first done by Courant and Sess-

ler [40]. Unlike the Hill-equation formalism, however, the modes of oscillation from

these collective effects are complex in general. In the same way that the impedance is a

complex quantity encapsulating both the growth rate and tune shift, the complex mode-

frequency Ω, dependent on this impedance can also be defined analogously.
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In terms of the wake W or the corresponding impedance Z, for a single particle in

the ring [25, 52],

 02 /2 2
1

1

ik

k
e W kC 
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or
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where ωβ is the corresponding betatron mode frequency (specifically, ωβ⁄ω0 is the beta-

tron normal-mode tune). The mode-frequency shift ΔΩ and the growth rate τ-1 can then

be obtained from

 Re    (4.62)

 1 Im     (4.63)

and the tune shift, for good measure, is

  0/     (4.64)

We note the factor if i in (4.62-63) reverses the convention where the growth rate is the

real part and the tune shift is imaginary part of the impedance.

4.7.3.3 The Quadrupole-Wake Effect on the Complex Mode Frequency. The exten-

sion of this to multiple bunches can be found elsewhere [26], but it can be shown that the

general mode-frequency shifts of a beam due to a dipole wakefield of this type in a circu-

lar chamber for multiple, evenly spaced bunches are given by [23]

 2
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where ωx, ωy are the (angular) horizontal and vertical betatron oscillation frequencies, x,

y the horizontal and vertical tunes, and

2
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36 2
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r c
b R




 
   
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(4.67)

with Ξ the number of particles in the beam, and rp the classical proton radius, and γ the

Lorentz boost.  If we let Sb be the bunch spacing, the functions g and f are the imaginary

parts of the double sum, given by
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g() corresponds to the frequency shift as in (4.62) and f() gives the growth rate as in

(4.63). Traversing from a circular to a parallel-plate (or rectangular) geometry, the mode

frequency shifts, aside from a different coefficient, contain an extra additive term, given

by
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(4.70)

where h is the modification for quadrupolar wakes given by
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The lingering of the wakefield over successive turns is a result of the symmetry of

the chamber, as discussed in the analysis leading to (4.56-57).  While the oscillatory be-

havior of the dipole terms tends to cancel them off turn by turn, the quadrupolar wakes in
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the presence of this geometry are, as before, strictly additive. As-is, the series is diver-

gent, but this would only be true for an infinitely thick chamber, in which all wakefield

frequencies for every integer value of k behave in this manner.  In any structure of finite

thickness Θ, the low-frequency (large-valued k) field penetrates the material, modifying

the behavior of the wake function for large distances (times). The modification for a cy-

lindrical chamber has been done analytically [53, 94], but it has been shown that numeri-

cally [24] the effect of the finite wall is similar for the rectangular case. In particular,

  0
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(4.72)

for small z, and
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(4.73)

for large z, where the transition occurs for the value of z where (4.72-73) are equal. The

factor r̂ is a geometric factor associated with the thickness of the chamber. It was shown

by Zotter [137] that, for the case of a circular pipe, this is given by

2

pc 2

br̂ 1
þ

  (4.74)

2

pm 2

br̂ 1
þ

  (4.75)

for a perfect conductor and a perfect magnet, respectively. We shall refer to these as

"Zotter Ratios" from now on. The quantity þ represents a distance outside the chamber

boundary through which the fields have penetrated, that is, where

þ b  (4.76)

The Zotter ratio suggests that thin conductors leak their fields much more rapidly than
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thick ones, while thin magnets tend to hold on to them somewhat longer, by as much as a

factor of 2. The behavior of the magnetic case is somewhat unintuitive38 but arises from

the fact that while the tangential electric field vanishes at the conducting surface, it is the

normal component of the magnetic field that vanishes at this boundary [135].

4.7.4 Tune Shift in the Presence of a Rectangular Boundary of Finite Thickness. In

either case, for sufficiently long time, the changing behavior of the wakefields in (4.72-

73) amounts to the effect of splitting the series in (4.71) into a truncated sum for short-

range wakes and an integral for long-range wakes. The truncation occurs for ˆk=k where

2

2 2
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 (4.77)

k̂ is then representative of the relative time required for the field penetration through the

chamber of thickness Θ. Then (4.71) becomes

ˆ 21
0 0

1 0 ˆ

1 1 exp
r̂

bn k

bm kb k

zh dkmSn b Ck
C

 


 

 
     

  (4.78)

For b>>Θ the second term dominates and then

0

r̂bh


 (4.79)

However, this is not precisely the case in the Booster magnets, where the thickness verti-

cally of the magnets is around twice the gap size [130].  In this case, the first term contri-

butes nonnegligibly and we may write instead

0

ˆ 2 /rbh 

 

 (4.80)



38 At least to the author of this work
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The contribution to the tune shift from this quadrupole term can then be obtained

by inserting (4.69-71) into (4.64), where the oscillatory nature of the dipole term (4.68)

has been assumed to average to zero. The result is as follows.
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(4.81)

However, for completeness, the rectangular cross section, not just the vertical parallel

plates must be considered.  Let r̂ , b, Θ correspond to the flat boundaries in the vertical

plane and r̂ ',b',Θ' to the ones in the horizontal.  In this case, then, (4.81) can be extended

to include both planes.
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,

ˆ ˆ1 ' '1 1
ˆ ˆ48 ' ' '

p
x y

x y

r L r r
b rb b r b


  
                  

(4.82)

We see that (4.81-82) are independent of the skin depth, δ0. The value of δ0 de-

termines how quickly the wakes accumulate to their steady-state value, but ultimately it is

the thickness of the chamber walls which determines the size of the effect. It is important,

however, that the thickness not be too small such that the accumulation occurs rapidly

enough that the long-range behavior of the wakefields is not reached (i.e. the time for

field leakage must not occur for distances very close to the driving particles). In the case

of the Booster, the magnets are several inches thick, so this condition is satisfied.

We estimate this effect in the Booster in what follows, but the assumptions so far

leading to the values we shall obtain below are somewhat naïve. A further complication

exists because of the laminations from which the magnets are constructed, which modify

the behavior of the wakes due to the greatly enhanced surface area such laminations pro-

vide. Nonetheless, for now we proceed with a value for (4.82) as a point of comparison.

In Table 4.4 the relevant parameters for evaluation of  (4.82) are displayed.
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Table 4.4. Booster Parameters for the Evaluation of (4.82)

Beam Intensity (Ξ) 5×1012

Lorentz Factor (γ) 1.4

Magnet Half-Apertures (b, b') 2.5 cm, 17 cm (average)

Horizontal or Vertical Tune (νx,y) 6.8

Magnet Thickness (Θ, Θ') 13 cm, 5.7 cm

'Zotter Ratio' ( r̂ , ˆ'r )39 1, 9.9

Orbit Circumference (C) 471 m

Magnet Fraction (L⁄C) 0.60

Classical Proton Radius (rp) 1.535×10-18 m

From these values we obtain a tune shift of 1.9×10-2 for this given intensity (typically

about 10 turns of injected beam).  This value is similar in magnitude to the ones obtained

from the Laslett analysis in Section 4.5. A more useful quantity for our purposes, howev-

er,  is the so-called 'tune slope,' or the change in tune with intensity. Since (4.82)  is linear

with intensity Ξ, we obtain

,
2 2

,

ˆ ˆ1 ' '1 1
ˆ ˆ48 ' ' '

x y p

x y

d r L r r
d b rb b r b


  
                 

(4.83)

For these same parameters in Table 4.4 we obtain a value of 0.004⁄1012 .

Once again, without accounting for the magnet laminations these values are to be

taken with some suspicion and require further explanation. In Chapter 5 these results will



39 These are taken at the outside edge of the chamber.
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be compared to tune-shift measurements investigating the relative amounts of dipole and

quadrupole impedances present in the Booster cycle near injection, in which context the

lamination effect will be more fully discussed.
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CHAPTER 5

EXPERIMENTAL DETERMINATION OF THE INTENSITY-DEPENDENT
EFFECTS OF THE CUMULATIVE LONG-RANGE WAKE FORCES

ON THE PARTICLE TUNES CONSIDERING
THE BOOSTER GEOMETRY

5.1 Synopsis

In Chapter 4 the tune shifts due to resistive-wall wakefields in noncircular geome-

tries were introduced.  A dipole and a quadrupole term due to the rectangular geometry in

the Booster were expected, leading to tune shifts of opposite sign in the two transverse

planes, or at the very least, a pair of negative tune shifts, one of which has a positive con-

tribution from a quadrupole wakefield.  In Sections 5.2 and 5.3 we present the measure-

ments made to quantify the tune shift predicted from (4.82).

An early study with the beam parameters near a coupling resonance, i.e. a location

in tune space where the fractional parts of the vertical and horizontal tunes (νy and x) are

minimally separated, was performed to quantify the possible effect of intensity on coupl-

ing strength.40 It was observed that, for transverse mode frequencies measured on a sig-

nal analyzer, a frequency increase with intensity was observed for one mode and a de-

crease for the other. The change was not symmetric, with the increase in one mode consi-

derably smaller than the decrease in the other.  The total separation, however, was found

to be linear with intensity. Originally, the splitting of these modes was thought to be due

to the combination of a quadrupole and a dipole wakefield phenomenon for rectangular



40 The nomenclature may be somewhat misleading. Coupling refers to the extent
to which the motion in one transverse plane is affects the motion in the other. A coupling
resonance is a location in tune space where the effects caused by a finite coupling
strength is maximized.
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structures as analyzed by Chao et al. [23] and as discussed in Section 4.7. However, the

measurement was carried out near such a coupling resonance. The interpretation of the

results as a wakefield phenomenon was somewhat suspect since the dynamics of betatron

motion is sensitive to other effects in this region of tune space, most importantly the

coupling between the transverse planes. Also, the measured normal modes near this re-

sonance are a superposition of the betatron tunes, for which any effects changing the

tunes cannot be disentangled without a priori knowledge of the natural coupling of the

machine [113]. The extent to which proximity to this resonance was important in the dy-

namics was not apparent. In order to isolate wakefield effects from those due to trans-

verse coupling, a second study to determine the dependence of the betatron tunes on

beam intensity was made with the horizontal and vertical tunes well separated.

Results were qualitatively the same, in that a positive tune slope was observed in

one plane and a negative slope in the other, with the negative being larger in magnitude

than the positive. Quantitatively it was observed that the sum of the magnitudes of the

tune slopes in the more recent study was roughly equal to the change in the normal-mode

separation versus intensity in the earlier study. The distributions were not significantly

different in either case, with the increasing mode having a slightly larger slope in the first

study than in the second. The redistribution of the horizontal and vertical wakefield ef-

fects caused by the proximity to the resonance with some coupling between the trans-

verse planes was found to be of little importance. These studies are presented below, be-

ginning with the more recent one in Section 5.2. The older study with the beam in the

more coupled configuration is detailed in Section 5.3. In Section 5.4 we discuss the prob-

lem of the magnet laminations and the possible effects on the results.
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5.1.1 Measuring the Betatron Tunes and the Problem of Coupling. Obtaining the

betatron tunes is usually done via a Fourier transform of the position signals from the

BPM plates.  Often a magnetic or electrostatic device (referred to as a ‘kicker’ or ‘pin-

ger’) is needed to enhance the amplitude of beam motion in order to obtain a clear signal

of the frequency content in both planes. In an ideal, uncoupled system, the horizontal and

vertical betatron frequencies act independently, usually by careful design.  In practice, the

alignment of elements in an accelerator is never perfect, and motion ostensibly in one

transverse direction has a component present in the other. The total effect of these ran-

dom misalignments leads to a redistribution of the motion in one transverse direction into

that of the other. Correction elements, in particular skew-quadrupole magnets, may be

utilized to compensate for this, but since correction elements cannot be continuously dis-

tributed around the lattice,41 other effects, related, for example, to intensity and nonlinear

optics, make a complete cancellation of coupling-errors by a finite number of correctors a

difficult task. In practice, some "natural coupling" then tends to exist. When measuring

the transverse oscillation frequencies (i.e. the betatron tunes), what are really observed on

a signal analyzer are the so-called normal-mode tunes, where

 22 2 2 2 2 41 4
2 h v h v cq    



       
(5.1)

 are the upper and lower mode frequencies and νh, νv are the uncoupled horizontal and

vertical tunes.42 The coupling strength qc affects the size of the separation of these modes,

and how strongly independent horizontal and vertical tunes will be intertwined in these


41 With current technology, anyway.

42 Horizontal and Vertical are in this case, arbitrary.  One may of course swap the
labels with no change in the physics.
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normal modes. It is thus important to quantify how well one can resolve these tunes from

the measurement of the normal modes, given their proximity to each other and the

strength of the coupling.

We consider the two limiting cases, namely where the separation of the uncoupled

frequencies is either much larger or smaller than the coupling parameter (specifically

where 2 2 2
h v cq   or 2 2 2

h v cq   ).  In this case we find, for small and large separa-

tion, respectively,

2 2
2 2

2 2
h v h v

cq   


            
(5.2)

2 4
2

2 2
h c

v h v

q


  

 
    

(5.3)

We see that for large frequency separation (5.3) the coupling has little effect on the mod-

es, and the error scales as the square root of the inverse of the squared frequency differ-

ence.

Very near the "degenerate" case, where νh ≈ νv = ν0, the two oscillation frequen-

cies become irresolvable from a power-spectrum measurement of these normal modes,

and the coupling term is of paramount importance.  However, one can verify where the

tunes are practically equal.  For complete degeneracy the modes reduce to

2 2 2
0 cq    (5.4)

This represents the smallest separation between the normal modes given a particu-

lar value of qc, and its measurement is straightforward. An increase in coupling strength

thus leads to an increase in the separation of these modes.

The effect of coupling is then most dramatic near the so-called coupling reson-
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ance, where the difference of the fractional part of the betatron tunes vanishes,43 as in the

degenerate case of (5.4).  In this regime the normal modes of oscillation, not the indepen-

dent betatron tunes, completely characterize the motion, and are separated only by the

strength of the coupling at this resonance, so long as the coupling is strong enough. Sec-

tion 5.3 will detail a study under this condition, but in the study described in Section 5.2

it was imperative that the tunes be separated sufficiently such that (5.3) was satisfied.

5.2 Measurement of the Intensity-Dependent Tune Shift in a Lattice with Well-
Separated Tunes

The purpose of the study described here was to investigate the existence of a qua-

drupole-like impedance due to the roughly rectangular magnet geometries in the Booster,

in which the tunes in the horizontal and vertical planes would be affected in an opposite

sense by these structures, in addition to the familiar dipole wakefield that defocuses in

both planes.

5.2.1 Timeline Configuration and Booster Lattice Modification. The control-room

event timeline was adjusted to include roughly two Booster study cycle events ($1744) per

minute, to perform the measurements. Correction quadrupole circuits were varied by

changing power-supply currents from nominal values to 3 A of increase in the QL cir-

cuits and 1 A in the QS circuits over the first 15 ms of the cycle.   This was done to sub-

stantially increase the separation between the horizontal and the vertical tunes such that

the condition (5.3) was valid. Predicted tune behavior for values of the quadrupole set-


43 This difference resonance is a special case of a class of parametric resonances

in an accelerator where the sum or difference of the betatron tunes is some rational num-
ber, the integer being the most pronounced.

44 MCR timeline events are enumerated in hexadecimal format, with a "$" preced-
ing them
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tings were obtained with a procedure described by Y. Alexahin, the methods of which are

detailed elsewhere [1]. Figure 5.1 taken from the ACNET console shows the change in

current for one of the QS (green curve) and one of the QLs (red curve). Resulting tunes

were 6.9 in the vertical plane and 6.7 in the horizontal plane when measured near injec-

tion. The blue and yellow curves correspond to skew-quadrupole circuits, which were

not changed during this study.

Figure 5.1. Representative Corrector-Current Ramps over the Booster Cycle During the
Study (Red for QL, Green for QS, Yellow for SQS, Blue for SQL).
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Such a separation was deemed sufficient to render unimportant any coupling in

the transverse planes affecting the tune measurement as given in (5.3). While as much

separation as possible was preferable, stable operation was difficult to achieve for intensi-

ties above 3-4 injected turns for larger changes in the tunes.  The vertical kickers were

enabled during the study to provide sufficient betatron amplitude for a strong signal to the

BPM's, while the horizontal kickers were unavailable for use during the study. Excitation

in one plane of motion, however, was frequently sufficient to obtain a measurable re-

sponse in both planes.

5.2.2 BPM Combining and Tune Measurement. Data were recorded on the ACNET

console program B38, written and implemented by B. Marsh, which obtains all BPM

positions and performs a power-spectrum (i.e. Fourier) analysis on the signals turn-by-

turn, providing a complete picture of the time evolution of the frequency content in each

plane throughout the cycle. BPM signals were calibrated and combined using a variation

of the Mais-Ripken parameterization [86] according to methods prescribed by Alexahin

and Gianfelice-Wendt [3]. It was suggested during the processing of the BPM-signal data

to obtain optimal resolution that a continuous Fourier transform [2], sampled over ten

turns, be applied to obtain tune values with maximal resolution in this window.

Typical readouts of the BPM-combined power contour for the horizontal and ver-

tical planes are given in Figures 5.2 and 5.3 for ten injected turns, or around 4.7 1012

particles.  Frequency-content amplitude is displayed in a false-color scheme, with magen-

ta representing the strongest response and green the weakest.  Turquoise represents in-

termediate values. Spectrum data were saved for offline processing as well. Figures 5.2

and 5.3 shows results from the vertical and horizontal BPMs, respectively.
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Figure 5.2 Vertical Tunes Obtained by Continuous Fourier Transform of Beam Position
Information from the 100 BPMs in the Booster. Stronger Responses are Given by the
Magenta Coloring, and Weakest by the Green Coloring.

Figure 5.3 Horizontal Tunes Obtained by Continuous Fourier Transform of Beam Posi-
tion Information from the 100 BPMs in the Booster. Stronger Responses are Given by
the Magenta Coloring, and Weakest by the Green Coloring.
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Figure 5.3 indicates that some vertical response is present in the horizontal plane.

The lack of a horizontal kicker was responsible. The horizontal amplitude was only en-

hanced from the residual effect from the vertical plane (kicker plus some coupling).

Beam intensity was varied from 0.9×1012 to 6.8×1012 particles at injection in in-

crements of roughly 0.45×1012. Intensity was measured and recorded for each data set

using the CHG0 intensity monitor. Figure 5.4 shows intensities (green curves) and beam

loss (red curves) taken over the entire Booster cycle for 0.9×1012 to 4.2×1012 particles (2-

9 turns of injected beam) and 4.75×1012 to 6.8×1012 (10-15 turns of injected beam), re-

spectively.

Figure 5.4. Intensity (Green Curves) and Loss Values (Red Curves) from ACNET Con-
sole for 0.9×1012 to 4.2×1012 Particles (left) and 4.75×1012 to 6.8×1012 Particles (right)
over the Entire Booster Cycle.

The various intensity increases can be observed from the step-by-step increments

at injection. The "smearing" of the curves at higher intensities represents the repeated

injections at a particular intensity over the dozen or so $17 events.  In some cases several
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cycles passed before the instrumentation was ready for data-taking, and also several

cycles passed during which the BPM-combination algorithm was obtaining the power

spectrum.  At the lower intensities shown in Figure 5.4, a beam-permit switch was active-

ly used to minimize the number of cycles where data was not being analyzed, providing

the clean-looking single curves as seen. A peculiar issue during these measurements

arose at moderate intensities (6-8 turns injected), where loss was surprisingly large rela-

tive to that at higher intensities. Apparently the Booster was tuned well to high intensities

during this operation, sacrificing stability at moderate values. The lowest intensities (2-5

turns injected), easily within the machine acceptance, seldom pose a problem under any

circumstance.  The stability at high intensities was beneficial to the experiment even with

some loss of resolution in the intermediate range.

5.2.3 Tune dependence on Intensity. The tune shift as a function of intensity was eva-

luated at three different times near injection, one very near injection at 33 turns, another

further from injection, at the onset of acceleration, after paraphasing was complete at 545

turns, and one later in the cycle, during acceleration, at 1633 turns.  These values corres-

pond to 2, 3, and 5.5 ms on the horizontal axis in Figure 5.4.  Intensities were obtained

from the curves at these times.  The need for the last point at 1633 turns was to verify that

the cumulative quadrupole wake discussed in Section 4.7 had indeed reached a steady

state by 545 turns. These particular values of the turns corresponded to times in the cycle

where the console program B38 produced output for every intensity. The consistency of

the output depended on the value of the kicker-threshold setting. Fourier-transforms be-

low a certain amplitude would be rejected, in this case those below 20% of the maximal

signal amplitude at a particular A lower value was able to yield data more frequently but
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also produced more noise in the signal, especially from the other transverse plane of mo-

tion. The chosen values were a compromise in which the spacing between subsequent

samples in the cycles is sufficient without obscuring the contour spectrum with excessive

noise.

Figures 5.5 and 5.6 show the horizontal and vertical tune dependence on intensity

for these representative locations (in time) within the cycle. While the tunes change dur-

ing the cycle for all intensities, the slope of the intensity dependence at any point is prac-

tically independent of the starting locations. In the vertical plane we observe a defocusing

effect with increasing intensity for all three samples of cycle time. The familiar dipole

wakefield is capable of explaining this, but the increase in magnitude of the slope of the

shifts observed for the points at 545 and 1633 turns is indicative of the quadrupole effect

accumulating as predicted by Chao et al [24].  In the horizontal plane, ignoring the spread

in the set of data earliest in the cycle, we observe a small but positive tune shift, which, if

the dipole wakefield were the only effect, would not occur.  This suggests that a quadru-

pole wakefield is indeed present and is of similar magnitude to the dipole effect, aug-

menting the defocusing dipole-wakefield tune shift in the vertical plane and competing

with it in the horizontal plane.

The jitter in the horizontal plane can be explained by momentum dispersion and

the effect of the feedback system for momentum control. Increasing intensity has the po-

tential to change the orbit of the beam if the feedback systems are insufficient to control

beams with greater particle density as readily. This has the potential to "fool" the BPM

system into obtaining different betatron tunes than expected because the reference orbit is

not properly located [93]. Physically this occurs when the fractional momentum offset
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Δp⁄p changes. To verify the orbit control, the momentum offset of the beam was meas-

ured using the ACNET Booster Turn-by-Turn orbit monitor, B40, which calculates the

absolute and relative momentum offset of the beam given the known dispersion function

values at the location of the BPM's.

Figure 5.5. Dependence of Horizontal Tune on Beam Intensity for Various Times in the
Cycle near Injection. Color Scheme for the Different Turns is Specified in the Legend.
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Figure 5.6. Dependence of Vertical Tune on Beam Intensity for Various Times in the
cycle near Injection. Color Scheme for the Different Turns is Specified in the Legend.

The values from B40 at different locations in the cycle between 1 turn and 2450 turns

after injection at various intensities are presented in Figure 5.7.

We observe that, with the exception of precisely after injection, no detectable

change in the momentum offset of the orbit is observed. At injection, it is reasonable to

assume that the increase in the momentum offset was causing the response in the feed-

back systems, resulting in the observed horizontal tune jitter.  It should be noted that the

vertical plane does not show this behavior, since there is no momentum dispersion in the

vertical plane.
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Figure 5.7 Dependence of Momentum Spread (Δp⁄p) on Intensity for Various Times with-
in the First 5ms after Injection. Coloring Scheme is Provided in the Legend. Turn
Number and Time Correspond to after the Completion of Injection.

5.3 Measurements of the Intensity Dependence of the Normal-Mode Tunes near a
Coupling Resonance

In this section we provide results from the earlier study, of intensity-dependent

tune shift for a beam near a coupling resonance. In normal operation the Booster is run

with some transverse coupling. Experimentally it has been observed that to some degree

this enhances beam stability at higher intensities. However, for the purpose of obtaining

the tune dependence as a function of intensity it was imperative that the planes be as mi-

nimally coupled as reasonably achievable. As shown in (5.3), for sufficiently large differ-

ences in the horizontal and vertical tunes the coupling has little effect on the normal
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modes, since the difference between the modes and the betatron tunes scales as the in-

verse of the squared-frequency-difference. In this first study of the intensity dependence

of the mode frequencies, the transverse planes were as minimally coupled as reasonably

achievable by minimizing the coupling directly by varying the current in the skew-

quadrupoles with the mode separation near the degeneracy condition given in (5.4).

5.3.1. Procedure for Obtaining Mode Separation near Coupling Resonance, and

Results. At the lowest detectable intensity (two turns of injected beam, or around 1.0 

1012 particles), horizontally and vertically focusing quadrupole strengths were manually

varied to find a minimal horizontal and vertical tune separation within practical limits

near the degeneracy condition (5.4) for which the normal-mode frequencies were obtain-

able. Actual values of the horizontal and vertical tunes were still maintained somewhere

in the vicinity of 6.7 to 6.8, near the nominal Booster values, and away from any destruc-

tive resonances. The tune separation in any case was obtained from FFT of turn-by-turn

readouts from the console program B40. During the study, the separation was in the vi-

cinity of 0.05, and no larger than 0.1.

The skew-quadrupole field strengths were then varied systematically with circuits

whose currents were varied from -1.0 A to 1.0 A in increments of 0.1 A using the older

correctors installed prior to 2007. The mode frequencies were obtained for each quadru-

pole setting near turn 1000 in the cycle using pickups attached to the Booster BPMs, in-

terfaced to a signal analyzer (VSA 89441A). The skew-quadrupoles affected the extent to

which the motions of the horizontal and vertical planes are coupled, so differing skew-

quadrupole fields necessarily lead to different mode separations. When a minimal separa-

tion was obtained initially, the skew-quadrupole settings at this tune configuration were
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recorded, as a central value near which a similar degenerate condition at higher intensities

would lie. We note that in order to maximally decouple an accelerator, an iterative, often

lengthy procedure of tweaking the settings of various skew-quadrupoles possessing dif-

ferent betatron phase advances is necessary. This was not performed. The skew-

quadrupoles did not have independent control, but were powered in groups corresponding

to the set of correctors in the short and long drift sections. So while the coupling was re-

duced using this manual routine, it was not eliminated.

The scan was repeated for five different intensities, using 2, 3, 4, 5, and 8 turns of

injected beam (one turn of injection corresponds roughly to 5×1010 injected particles be-

fore acceleration losses).  The results are shown in Figure 5.8. The horizontal axis

represents the value of the skew-quadrupole current, and the vertical axis represents the

fractional part of the measured mode frequency (or normal-mode tune). Mode frequen-

cies are divided into 'upper' and 'lower' regions, with the upper mode having the higher

value and the concave-up shape with differing skew-quadrupole settings.
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Figure 5.8. Fractional Mode Frequency for Varying Values of the Skew-Quadrupole Cor-
rector Current at Different Intensities. Points for a Given Intensity are Colored Accord-
ing to the Legend in the Upper-Right Corner.

We see a splitting of the upper and lower modes which increases with intensity.

One interesting feature is that the splitting is not symmetric with respect to the zero-

intensity baseline. The upper-mode frequency increases much less rapidly with intensity

than the lower-mode frequency decreases. The minimal mode separation for given inten-

sities is plotted in Figure 5.9, along with a linear fit, providing a 'separation slope' for the

mode-frequency intensity dependence, as well as a zero-intensity-limit coupling value

corresponding to the amount of coupling present in our crude coupling-minimization ef-

fort, assuming the trend is linear to this limit. Some jitter was present in the scan. To

compensate for this, individual values of the splitting for each intensity were obtained

from the average including the point to the left and the right of the measured minimum,

where the shape of the scans was still relatively flat and the frequencies of the measured
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normal modes roughly the same.

Figure 5.9. Points of Average Minimal Mode Separation (green) and Corresponding Li-
near Fit (red).

5.3.2. Interpretation of the Data Near the Coupling Resonance. While the coupling

was minimized as much as practically possible during the study by varying the skew-

quadrupoles, the lattice configuration was left near the difference resonance. The original

goal was to better understand the role of space charge in coupling of the horizontal and

vertical transverse motion. However, the analysis showed a tune dependence well-

matched to published results of intensity-dependent wakefield effects; in particular show-

ing the signature of a quadrupole wake effect arising from an asymmetric beam

pipe. However, a clear conclusion could not be drawn, since both wakefield and coupl-

ing effects could have been be responsible for the observed trends. So, a second study
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was done with the tunes decoupled, in order to separate these possible causes. As will be

seen, the tune shift slopes at the coupling resonance are consistent with those observed

when the tunes were decoupled.

Since the separation is nearly equal to the sum of the absolute tune slopes in Fig-

ures 5.5-5.6, and the same qualitative trend is observed (i.e. a combination of a complete-

ly downward shift for one mode and seeming competition of an upward and downward

shift of the other), we expect that the dipole/quadrupole wakefield observed in the more

recent study explains the behavior. To verify this, we decompose the absolute separation

in Figure 5.9 into the relative shifts for the upper and lower modes. These are shown in

Figures 5.10 and 5.11. As in Figure 5.9, the points were averaged with the adjacent ones

to the left and right of the minimum. The lower mode has a similar tune slope to the ver-

tical measurements in Figure 5.6, and the upper mode behaves qualitatively like the hori-

zontal tune in Figure 5.5, though its intensity slope is larger by a factor of four.

Figure 5.10. Decomposition of Intensity Dependence of Upper Mode from Figure 5.8.
Points are Shown in Red and Linear Fit in Blue.
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Coupling may have played some role in redistributing some of the horizontal and ver-

tical motions into the observed mode shifts, but the precision (or lack thereof) in the mea-

surement was more likely the cause. The resulting tune shift in the horizontal plane (ob-

served in the lower mode), with a focusing and defocusing term canceling each other,

was relatively small to begin with, so any absolute imprecision in the measured lower

mode frequency was made more prominent buy this cancelation.

Figure 5.11. Decomposition of Intensity Dependence of Lower Mode from Figure 5.8.
Points are Shown in Red and Linear Fit in Blue.

In any case, comparing the numbers from the two studies, reasonable agreement is

obtained, suggesting that, despite the much greater proximity of the tunes, the effect of

the coupling did not play a substantial role.

5.4 The Effect of the Laminations on the Wakefield Behavior

Up to this point, the analysis been done with structures of solid material with con-

tiguous surface areas. However, the magnets in the Booster are composed of longitudinal-

ly stacked, electrically separated laminations. Laminated magnets, in addition to provid-
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ing ease of fabrication, are used to minimize the effect of eddy currents, which decrease

the effective field strength and can lead to substantial power losses due to Joule heating

from the resistive material. In the Booster, the laminations make possible (or more effi-

cient) its rapid-cycling capability. Since the currents are more or less confined to individ-

ual laminations, and the magnetic-flux lines associated with these eddy currents must of

course close, adjacent flux lines tend to cancel each other, suppressing these heating and

field-strength-attenuation phenomena.  However, the same phenomenon mitigating these

losses and effective-field attenuation has been shown to measurably augment the resis-

tive-wall impedance on the passing particle beam. We discuss these effects in this section

and modify the analysis to account for this, after which the data in Section 4.2 will be

compared to the modified analytical predictions.

Qualitatively, the much larger surface area of the many laminations over that of a

solid magnet leads to problems whit high-intensity beams when wakefields are taken into

account.  Field from the passing beam produces surface charges and currents far in excess

of what would normally be observed for a thick, solid magnet of a certain skin depth

wherein the field can penetrate.  Quantitatively, the problem is quite complicated.  The

original analysis was done by Snowdon [116] and Rugierro [107,108] and later by Gluck-

stern [54] and Ng [91] for the energy loss from the longitudinal motion in the presence of

these laminations. Systematic measurement of the coupling impedance from the lami-

nated magnets was done initially by Shafer [112] and later by Crisp and Fellenz [42] and

also by Lebedev [78].  While numerical predictions differ somewhat depending on mod-

els and frequency ranges, it has been shown that that the electrical separations of the la-

minations (the gaps) contribute to the impedance at least as substantially as the lamina-
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tions themselves in some frequency ranges, and augment the effective relative permeabil-

ity in any case.  In particular, the wakefield dependence on frequency is modified by the

extra surface area for low frequencies,45 while at high frequencies the behavior of the

frequency response of the impedance is changed by the resulting displacement current

[21, 85]. At low frequencies, where the oscillation wavelength of the beam is much larger

than the skin depth which in turn is much larger than the lamination thickness, the lami-

nations behave more like a continuous magnet with a considerably larger effective sur-

face area. At high frequencies, where the skin depth is comparable to or smaller than the

lamination thickness, the layered structure becomes the dominant feature in describing

the dynamics near the leading particles, and the instantaneous response is not only larger

but extends further to trailing particles (to within meters rather than fractions of millime-

ters).

5.4.1. Augmentation of the Dipole Wakefield. We are interested in the effect of the

laminations on the impedance in both the low-frequency and high-frequency regimes. It

has been estimated that the laminations magnify the effect of the transverse impedance by

a factor on the order of 102 [79]. For the dipole-wakefield term, where the average effect

tends to zero from successive bunches, the instantaneous46 effect (or high-frequency con-

tent) on the beam is important. From (4.43) the tune shift on a particle at the edge of a

rigid, uniform bunch with parameters listed in Table 4.3 was 1.310-4. At the given inten-

sity (relative to a zero-intensity limit), a tune slope of 3.1 10-5⁄1012 is obtained. This is


45 The effect is similar to the way a stack of radiative fins improves heat dissipa-

tion compared to a solid metal block

46 By 'instantaneous' we mean several turns at most.
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very small compared to the observed tune slopes from the cumulative quadrupole wake.

Experimentally, negative tune shifts simultaneously in both planes have been observed

very near to injection (i.e. before possible accumulation of the quadrupole term) which

are much larger than this [78].

It has been discussed by Burov [78] that in the frequency regime of interest the

magnetic permeability is augmented by a factor lam, given by

2
lam

lam

b
d

  (5.5)

where b is the chamber half-aperture and dlam is the average lamination thickness. The

actual relative permeability, which is normally close to unity otherwise, also plays a sig-

nificant role, since the magnets are constructed from steel. The impedance and corres-

ponding wakes given in (4.72-73) are modified in the presence of ferromagnetic materials

by making the substitutions

W W (5.6)

0 0
1 


 (5.7)

where  is the relative permeability of the material. For the dipole effect, within proximi-

ty to the driving particle over shorter distances, the wakefield (hence the wake force, and

hence the tune shift) is proportional to δ0, and ultimately to the square root of . The re-

levant parameters are summarized in Table 5.1, from which we obtain an instantaneous

dipole-wakefield magnification of around 90, and a corresponding predicted tune slope of

2.8 10-3⁄1012.
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Table 5.1. Parameters for Calculation of Dipole-Wakefield Modification in the Presence
of Laminations

Magnet Half-Apertures (b) 2.5 cm

Lamination Thickness (dlam) 640 m

Augmentation Factor (lam) 78

Relative Permeability of Steel () ~100

Dipole Wakefield Multiplier (lam)1⁄2 90

Tune Slope of Augmented Wakefield 2.8  10-3⁄1012

This value is in keeping with what we observe from Figures 5.5 and 5.6, (using

the data nearest to injection), within a factor of two or three, with tune slopes per 1012

particles on the order of 10-2 to 10-3. The original, unaugmented tune-shift value in Sec-

tion 4.6.6 gave a tune slope of 3.1 10-5⁄1012, using the nominal intensity responsible for

the shift, and was based on the assumption of a round cylindrical pipe, so exact agree-

ment with data is not expected. The understanding of the detailed behavior of the wake-

fields in the presence of laminations is by no means a trivial problem, so order-of-

magnitude agreement alone is encouraging. We shall separate the actual contributions

from the dipole and quadrupole wakes in Section 5.5, using other tune-shift data obtained

near injection from independent measurements.

5.4.2. Augmentation of the Quadrupole Wakefield. The effect of the laminations on

the quadrupole wake is more subtle. From (4.72-73) we observe that at short distances the

wake is proportional to δ, while for large distances it depends on δ2. So for short dis-

tances from the leading particle the wakes are still augmented by the square root of . For
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large distances, however, the squared dependence of δ cancels the effect of the relative

permeability in the numerator, and the resulting tune shift is still governed by (4.82). In

the long-range regime, the effect on the betatron tunes is the same. The modification from

the laminations arises in the time required for the accumulation of the wakes to reach the

steady state. Oscillation growth rates may be more strongly affected over the longer ac-

cumulation time but the resulting tune shift will be the same.

Qualitatively it stands to reason that the accumulation of the quadrupole-

wakefield effect should be prolonged. The field will still leak through the thin, stacked

laminations eventually, but the overall leakage behavior may be different since for a

large, solid magnet the longitudinal size of the material is comparable to the betatron os-

cillation wavelength of the passing bunches causing the disturbance, while a single lami-

nation is three to four orders of magnitude smaller. Quantitatively, however, it is not clear

what the magnitude of this delay should be, but preliminary analytical predictions by Ma-

cridin show that the very-long-range effects are smaller in magnitude than the no-

lamination case, but diminish somewhat more slowly. The short-range effect (within a

few meters) is large but oscillatory, tending to cancel over this region [85]. Investigation

of the precise magnitude of this effect will likely require simulations in future work.

5.4.3. Separation of dipole and quadrupole terms. Given the effect on the tunes due

to the laminations, we now seek to isolate the contributions from the dipole and quadru-

pole terms. In Figures 5.5 and 5.6, tune slopes are obtained very early in the cycle (33

turns), and several hundred turns later (545, 1633 turns). If we assume the dipole wake-

field is the dominant contributor near injection, any change in the slope later in the cycle
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may be attributed to the quadrupole effect. However, while this was observed in the ver-

tical plane, the horizontal data near injection were inadequate to discern this behavior.

Because the dipole wakefield leads to a defocusing in both planes, while the qua-

drupole wake produces a focusing effect, it is also tempting to consider the sum and dif-

ference of the horizontal and vertical tune slopes at any point in the cycle. The difference

would isolate the quadrupole term and the sum would yield the dipole term. In general,

however, no reason exists for the tune shift from the dipole wakefield to be identical in

both planes, so while order-of-magnitude calculations may be done, this trick will not

suffice for more precise determination. To verify the predictions of the quadrupole tune

slope from (4.83) and Table 4.4, we rely on independent data from a previous impedance

study by Lebedev [78]. Table 5.2 reproduces the tunes obtained for nominal and half of

nominal intensities from 30 to 60 turns after injection. Since the quadrupole wake accu-

mulates over a few hundred turns, during the initial 30 turns it was assumed that it was

not yet a significant factor. Tune slopes obtained from these data are 2.3 10-3⁄1012 in the

horizontal plane and 5.5  10-3⁄1012 in the vertical plane.

Table 5.2. Measured Horizontal and Vertical Tunes near Injection for Nominal and Half-
Nominal Booster Intensities. (Courtesy V. Lebedev, A. Burov, W. Pellico, X. Yang,
2006)

Intensity (1012 particles) 2.3 4.5

Horizontal Tune (x) 6.830 6.825

Vertical Tune (y) 6.831 6.819
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These are of the same order of magnitude as the value from the data in Table 5.1

in the previous section, suggesting that the lamination magnification factor lam is indeed

on the order of 100 (90 was what was calculated). Also, the vertical tune slope agrees

experimentally with our value of 6 10-3⁄1012 presented in Figure 5.6, for the case near

injection. We then utilize these numbers as representative of the dipole-wakefield tune

slope, relying on them especially for the horizontal case.

The data in Figures 5.5 and 5.6, in addition to the slopes obtained from the values

in Table 5.2, are compared with predictions made in this and the previous chapter. The

comparisons are summarized in Table 5.3.

Table 5.3. Predicted and Measured Contributions from Quadrupole and Dipole Wakes on
Betatron Tune-Slopes Versus Intensity

Type of Wake

a) near injection

b) far from injection

Dipole

(a,b)

Quadrupole

(a)

Quadrupole

(b)

Predicted Horizontal Tune Slope
(10-3⁄1012) -2.8 ~0 4

Predicted Vertical Tune Slope
(10-3⁄1012) -2.8 ~0 -4

Observed Horizontal Tune Slope
(10-3⁄1012) -2.3 not observed 3.3

Observed Vertical Tune Slope
(10-3⁄1012) -5.5 -0.5 -4.5

Horizontal and vertical tune slopes are divided into the components corresponding the

dipole and quadrupole wakefields. The observed dipole-wake slopes are obtained from
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the data in Table 5.2. The observed quadrupole slopes are calculated by subtracting the

slopes obtained from Table 5.2 from the fits obtained in Figures 5.5 and 5.6.

Predicted and observed results of the quadrupole effect agree to within 10%. The

cumulative effect seems to occur within 500 turns (as an experimental upper limit). For

the dipole-wake effect, initially the assumption of a cylinder with a radius of 4cm was

used. No attempt was made to account for the various Booster elements of differing geo-

metry, in particular the rectangular magnets. The majority of the discrepancy in the ver-

tical plane is most likely because the half-aperture of the magnetic pole faces is smaller

than 4 cm, in fact closer to 2.5 cm in both the focusing and defocusing pole tips.

Considering the differing geometries present in the Booster, the precision in the factors

contributing to the magnification effects from the laminations (such as the magnetic per-

meability), and the relative crudeness of the rigid-bunch model initially used, the dipole

tune-shift calculations are considered adequate. No attempt was made to further refine the

values. We content ourselves with the fact that the experimental data for dipole tune

shifts, when subtracted from the total tune slope later in the cycle, yield a tune shift from

the quadrupole effect which agrees well with its predicted value.
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CHAPTER 6

MEASUREMENT OF THE INCOHERENT TUNE SHIFT AND STOPBAND WIDTH
THROUGH RESONANT EXTINCTION, AND AN ASSESSMENT OF THE SPACE-

CHARGE TUNE SHIFT FROM THE REALISTIC BEAM DISTRIBUTION

6.1 Synopsis

The data in Chapter 5, and much of the theory dealing with it in Chapter 4, cen-

tered around the effect of the surroundings on the beam. This came in the form of elec-

tromagnetic wakefields, where leading particles deposited some of their field energy in

passing through the vacuum chamber in such a way as to affect trailing particles. Both the

geometry of the chamber as well as the multipole distribution of the beam were shown to

play a role in the perturbation on the trailing particles. This effect was considered cohe-

rent in nature, because the particles in the bunch were more or less affected uniformly by

these wakefields. A study of the dynamics of the beam limiting particle intensity should

include a discussion of the incoherent motion of the particles about the centroid, in par-

ticular the effects due to space charge within the bunch.

In this Chapter we attempt to realistically quantify the space charge effect in the

Booster. In Section 4.5 an estimate of the relative importance of the space-charge tune

shift to the image fields from the Laslett tune shift was given, where near injection the

maximal space-charge tune shift was larger by a factor of 50. It was shown from the pre-

dictions in Chapter 4 and the results in Chapter 5 that the impedance effects, which were

extensions of the image-charge analysis, coupled with the presence of the laminations

were substantially larger than what was calculated using the simple dipole analysis in a

round, resistive chamber.

Similarly, in Section 6.2 we present a more refined analysis over what was given
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in Section 4.5, using a nonuniform distribution without the assumption of a rigid bunch.

In Section 6.3 we detail a study in which the tune-spread dependence on intensity was

obtained, whose results can be used to place an upper limit on the direct space-charge

effect on individual particles. The space-charge tune shift is shown to be less substantial

than predicted in Section 4.5, and in fact is on the same order of magnitude as the cohe-

rent tune shifts of the resistive-wall wakefields quantified in Chapters 4 and 5.

6.2 The Effect of Incoherent Motion on Transverse Beam Stability

Transverse stability of coherent motion depends in part on the proximity of the

centroid tune to certain resonances, in particular the half-integer and third-integer, as well

as some parametric resonances, especially where the sum of the fractional parts of the

horizontal and vertical tunes is equal to unity. The individual particle tunes may be distri-

buted about some central value. Some particles may be closer to such a resonance, and

hence their motion can lead to beam growth or beam loss in the presence of gradient er-

rors. It was pointed out by Baartman [12], however, that individual particles lying on or

near a resonance may itself not be a sufficient condition for particle loss since these par-

ticles do not forever maintain an oscillation frequency (tune) near the resonance. As a

particle moves through the distribution, its tune will vary depending on the space-charge

field affecting it. When enough particles lie in the vicinity of the resonance long enough,

however, substantial beam loss can be an issue because possible effects shifting the par-

ticle tunes away from the resonance (however much they may be) cannot compensate

statistically for all of the near-resonance particles at once. This region in tune space is

often referred to as the resonant 'stopband' and the width in this tune space as the stop-

band width. The study presented in Section 6.3 relies on measurement of the resonant
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stopband width for various intensities to obtain a measure of the particle tune spread.

The intensity limitations of an accelerator can be affected by the space-charge

tune shift, but the size of the shift must take into account both this stopband width as well

as a variation of the beam size and density profile under increasing intensity. In Section

6.2.1 we discuss the latter, and how the estimated intensity limitations based on the uni-

form, fixed-dimensional beam are often too conservative.

6.2.1 Single-Particle Motion and the Shortcomings of the Rigid-Bunch Assump-

tion. So far, stability of the coherent beam motion has been discussed using the model of

a rigid bunch with a leading end and a trailing end. For the case of the resistive-wall

wakes the effect on the beam centroid was of concern, rather than the behavior of indi-

vidual particles, so this model was adequate. In analyzing the incoherent motion of par-

ticles within the beam, space-charge forces must be treated relative to the centroid rather

than as an external effect. In the calculation of the space-charge tune shift on a single

particle, the assumption of a uniform bunch was initially used to obtain an order-of-

magnitude estimate when compared to the wake forces. This yielded a space-charge force

which grows linearly with the radial position of the particle, but was, in fact, an overesti-

mate. In practice, the transverse distribution is Gaussian, leading to a force given by

[48]
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where r is the radial coordinate, λ is the number of particles in the bunch (or beam) per

unit length, and σ is the RMS beam width. Compared to the uniform-beam case, the max-

imal tune shift occurs closer to the center of the beam than at the edge. Furthermore, an

increase in intensity results in an increase in beam width, so an increase in particle densi-
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ty is not linear with an increase in intensity. The extent to which the beam grows with

intensity is difficult to predict but can be measured.

6.3 A Measurement of the Space-Charge Tune Shift via Resonant Extinction of the
Beam

In the study that follows the intensity-dependent tune shift in the Booster includ-

ing space-charge forces and their incoherent effect was obtained through an indirect mea-

surement involving beam extinction near half-integer resonance for varying intensities.

The procedure was performed by D. McGinnis, P. Spentzouris, J. Amundson, and W.

Pellico in 2003, with the Booster operating with a coasting (unaccelerated), unbunched

beam. We summarize the procedure first, after which the details of the measurement and

the results are presented.

6.3.1 Summary of the Procedure. The normal operating tunes of an accelerator are

usually chosen so as not to be too close to a prominent resonance, in particular, the ones

involving integer and half-integer tunes. Starting from this stable operating point, qua-

drupole currents can be changed to bring the tunes (or the tune in one plane) slowly clos-

er to one of these resonances.  We choose the half-integer case for illustration. Inherently,

the distribution, though centered about some value, has a spread in the tunes of the indi-

vidual particles, so as the center is moved toward a half-integer frequency, particle loss

begins.  Particles with tunes nearer to the resonant frequency will usually be lost first, and

as the central tune continues to approach this half-integer value, more particles fall within

the resonant stopband, thus growing in betatron amplitude.  In this way eventually the

entire beam can be lost.

This effect was measured by scanning the tune space near the half-integer reson-

ance. The quadrupole currents were varied for a base intensity of 5 1011 particles (one
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injected turn), and a change in tune for a given change in quadrupole strength was ob-

tained.  Beam extinction (fraction of beam lost) was then measured as a function of this

calibrated tune change, for which a maximal value of this extinction at or near the half-

integer resonance appeared.  At higher intensities, an increase in the tune spread due to

the defocusing effects of space charge was expected. A shift in the centroid tune was

also observed, likely due to the known wake forces, among other things. Repeating the

measurement using these higher intensities, a different tune change was then necessary to

reach the extinction maximum. Furthermore, the shape of the extinction curve gave a

measure of the relative tune spread of the particles in the beam, allowing the incoherent

space charge effect to be studied.

6.3.2 Calibration of the Quadrupole Currents and Corresponding Tune Changes.

The measurement hinged on the correct calibration of the effect of the change in quadru-

pole current on the betatron tune.  The calibration was performed as follows.

The Booster was run with otherwise nominal tunes at an intensity of one turn in-

jected (0.5×1012).  Tune change as a function of quadrupole current (the corrector circuits

QS and QL) was determined for both horizontal and vertical planes. Tune change was

measured initially from a pickup attached to the damper plates interfaced to a vector sig-

nal analyzer (VSA 89441A). Once calibration was complete, a mapping from the changes

in current in the quadrupole circuits to the changes in betatron tunes was obtained. The

Booster was held at the 400-MeV injection kinetic energy by disabling the effects of the

RF cavities and holding the main dipole and quadrupole magnet ramps to a constant cur-

rent to maintain stable orbits at 400 MeV.  Although the beam was not being accelerated,

a slight amount of RF voltage was still present, so a minimal amount of bunch structure
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was detectable, but for the most part the beam was run in a coasting, DC configuration.

6.3.3 Measurement of the Beam-Extinction Maximum in Tune Space. When the

quadrupole calibrations (quadrupole current change to tune change) and nominal tunes

were obtained, this information was supplied to console program PA 1380,47 which was

used to calculate the precise combination of quadrupole currents to independently vary

the fractional part of the horizontal and vertical tunes Qx, Qy,48 in increments of 0.025

from a minimum of 0.50 to a maximum of 0.975. This yielded 20 values each for Qx and

Qy, in every combination, for a total of 400. A typical file header, followed by a the first

two lines of data, demonstrating the appropriate changes in quadrupole current to produce

certain tunes, is shown in Figure 6.1

Reset $17
Snap flag
Min E12 0.100000
Max dQx 0.250900  Min dQx -0.249100  Num dQx 20
Max dQy 0.187600  Min dQy -0.312400  Num dQy 20
Qx0 0.749100
Qy0 0.812400
dIQL -0.100000  dIQS -0.100000
dQx⁄dIQL -0.010000 dQy⁄dIQL 0.024900
dQx⁄dIQS -0.043200 dQy⁄dIQS 0.006600

# Description 1turn 01/30/03 00590059
# dQx dQy dIQS dIQL pdcs chg1 chg2
-0.249100 -0.312400 -0.923717 1.499459 0.595942 0.504893 0.190696
-0.249100 -0.287400 -0.898957 1.392495 0.591056 0.253224 -0.047907

Figure 6.1. Headers and First Two Lines of Readout from Console Application PA1380
Determining Quadrupole Current for Precise Booster Tune Control Calibrated at One
Injected Turn of Intensity.


47 Application was written by D. McGinnis.

48 We use Q as the fractional part of the tune to maintain consistency with the
software notation.
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The meaning of the readout is as follows. Qx0 and Qy0 were the initial tunes as the

beam was injected from the 400-MeV transport line. The maximal change in Qx, Max

dQx, from this nominal value was 0.250900 and the minimal (i.e. "most negative")

change Min dQx was -0.249100. The description is analogous for Qy. This total tune in-

terval was 0.5 (the sum of these two quantities) and was covered in 20 steps in both

planes (Num dQx, Num dQy, 0.02500 per step), so that both fractional tunes would sweep

through a range from 0.500 to 0.975 inclusive. The next lines show the results of the cali-

bration of the quadrupole circuits. With dIQL and dIQS changed by 0.1 A, the tune

changes dQx and dQy with respect to quadrupole-circuit current changes dQS and dQL

are given. These are dQx⁄dIQS = −0.043200, dQx⁄dIQL = −0.010000, dQy⁄dIQL =

0.024900 and dQy⁄dIQS = 0.006600 (all in A-1). Given these calibration parameters the

ability to scan through the values of Qx and Qy in regular intervals was provided by PA

1380. (An algorithm similar to the one implemented has been documented, albeit much

earlier, by C. Ankenbrandt [11].)

The first two lines of data (400 in total for each intensity) represent the measure-

ments relevant to the study. pdcs represents the measured Linac intensity, whose values

were considered representative of the Booster injection intensity. chg1 was the Booster

intensity at 2000 turns, and chg2 the Booster charge at 6000 turns. chg1, chg2, and pdcs

are all given in units of 1012 particles, while dQx and dQy are the changes in the horizon-

tal and vertical tunes relative to the nominal values Qx0 and Qy0, obtained by changing the

quadrupole circuits by the amounts given in the columns dIQS and dIQL (measured in

Amperes).

Intensity was recorded both at injection from the Linac and after 2000 turns, from
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which the percentage of beam lost was calculated.  2000 turns was chosen because the

extinction (i.e. loss) of the beam at the half-integer resonance by 2000 turns into the cycle

was prominent enough to be measured, with tunes near this value demonstrating a re-

duced loss of the beam, allowing for a clean numerical fit of the tune width over which

beam loss was occurring. Measuring earlier in the cycle would have lowered the signal

amplitude, since fewer particles would have been lost, resulting in less precision, while

measuring later in the cycle (such as at 6000 turns) would have tended to replace the fit

with a broad, flat range of tunes near the resonance all at 100% extinction. 2000 turns

was thus considered a good compromise.

To obtain the behavior of the extinction maximum for increasing intensity, the

measurements were repeated for 2, 3, and 9 turns injected.  The tune shift due to space

charge could be inferred by observing how much tune change was needed to bring the

beam within the half-integer stop-band, as a function of injected beam intensity (all other

machine conditions remaining the same).  Since space charge is naturally defocusing,

given the same initial quadrupole settings, the tune change needed to reach the extinction

point (half-integer stop band) with more beam intensity differed from the one-turn-

injected case. Thus, the final tune value at the extinction maximum as calculated from

the console program (in which the starting tune values were assumed to be the same as

they were in the one turn calibration) would have appeared to be different than for the

one-turn case.  The actual difference however, did not lie in the final tune, which of

course, was the same half-integer resonance eventually extinguishing the beam, but in the

tune change required to reach complete beam extinction from the starting quadrupole

settings. Since the amount of tune change is the quantity varying with intensity, for clari-
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ty the subsequent figures use difference in the tune change required to reach the measured

extinction maximum (ostensibly the half-integer resonance) relative to the tune change

required for one turn injected, rather than the tune as calculated by the program.

6.3.4 Selected Results from the Extinction Study. Before proceeding with these re-

sults, we provide an example of the measurement and its indirect evaluation of the tune

change. For one turn injected, for a given pair of initial tunes of, say, Qx = 0.550, Qy =

0.700, the necessary changes to the quadrupole currents to reach these tune values from

the initial nominal tunes, found by the calibration, were dIQS = −0.602328 A and dIQL =

0. 611059 A. For higher intensity, because of the space-charge defocusing and the resis-

tive-wall wakes, the actual starting tunes of the particles were lower than this.  However,

the initial tune at these higher beam intensities was not directly measured. Instead, the

quadrupole-current change needed to reach the extinction maximum was determined, and

given the calibration this was mapped to the necessary tune change to reach extinction.

The application software was operated under the assumption that the initial tunes at these

varying intensities were identical (since the initial quadrupole current settings were the

same) and that the tune at which the beam was extinguished changed.  In fact, the tune at

which the beam is extinguished (the half-integer resonance in this case) does not change,

and it was the initial tune that varies due to intensity dependent defocusing effects. At

higher beam intensities the initial tunes were certainly lower than they were in the one-

turn case for the same corrector strength, and the extinction maxima in the higher-

intensity cases were achieved with lower quadrupole current, and appeared to come at

tunes larger than 0.5.  The difference between the extinction maxima at higher intensity

and the extinction maximum at one turn corresponds to the shift in tune due to intensity
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effects such as the resistive-wall wakes and space charge.

The data set with the most clarity was in the vertical plane where the particles

were driven toward the half-integer resonance. The half-integer points were approached

in both the horizontal and vertical planes, but the results were not as clear in the horizon-

tal. Figure 6.2 demonstrates the behavior near the half integer point for the vertical tune

under varying intensities.

Figure 6.2. Extinction Curves for Vertical Tune Change Approaching the Half-Integer
Resonance, with Respect to Change Required to Reach Maximal Extinction in the One-
Turn-Injected Case. Horizontal Tunes are Far from Resonance. Color Scheme for Var-
ious Intensities is Provided in the Legend.

We are interested in how the location in tune of the extinction maximum varies with in-

tensity. 1 refers to the required change in tune in the one-turn-injected case from the
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initial tune to reach the extinction maximum.  is a corresponding tune change for some

quadrupole setting, assuming all intensities had the same starting tunes. The required tune

change to reach maximal extinction in the lowest-intensity case was naturally the largest,

so 1- begins at zero at the extinction maximum for this intensity, and the curves for

all higher intensities are located to the right of this. It must be stressed that this measure-

ment does not characterize the shift in the tune of the beam for every value in tune space

relative to the one-turn-injected case.  It only shows a relative shift in the apparent loca-

tion of the extinction maximum as intensity increases. We let νn be the tune change re-

quired to reach maximal extinction for n turns injected (n being 1, 2, 3, or 9). The shift of

this point as a function of starting beam intensity is shown in Figure 6.3.

Figure 6.3. Shift in Extinction Maximum under Increasing Intensity from 0.51012 to 5.1
1012 Particles. Points (red) and Linear Fit with Slope (black) are Provided.
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The slope of the shift of the maxima in Figure 6.3 is around 7.5 10-3⁄1012. This

represents a change in the coherent motion of the beam, since it demonstrates how the

central tune of the particle distribution has shifted. The obtained tune slope is in keeping

with the value obtained from the studies presented in Chapter 5, where the combination

of the defocusing dipole and quadrupole wakefields were capable of explaining the ef-

fect. In this case, the value is somewhat lower (20%). Since the beam was unbunched, the

longitudinal density was lower. The wakes, then, especially for the dipole contribution,

likely had less of an impact than in the bunched case. Also a relatively gradual particle

loss near the extinction point may have played a role. Particle loss near the resonance did

not happen instantaneously, and as the beam intensity near the half-integer tunes was

diminished, the resulting tune shift was then mitigated somewhat, and the effective tune

slope was softened to some degree, resulting in a slightly lower observed value than in

the studies presented in Chapter 5.

Since the shift in the peak leading to earlier approach to the resonance is a purely

coherent effect, it can be explained by the wakefield phenomena already discussed, since

its magnitude is also similar to the predicted values from Chapters 4 and 5. The change in

the width of the curve, a purely incoherent phenomenon, corresponds directly to the ef-

fect of the space-charge forces within the beam. In Figure 6.4 the Gaussian width of the

extinction curves is plotted as a function of intensity.

A linear trend is observed, with an extinction-width dependence on intensity giv-

en by 3 10-3⁄1012. We equate the stopband width for the given intensity with the fitted

width (σext) of the extinction curve. The shape of the extinction curves in Figure 6.2 arises

from the existence of the particle tune spread. The broadening of the curves with intensity
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gives a measure of the change in the tune spread since the level of beam extinction de-

pends on the fraction of particles sitting, on average, at or near the half-integer tune. Un-

der higher intensity the spreading increases as more particles are, on average, perturbed

by stronger local space-charge fields. And, of course, a greater number of particles are

available to be perturbed by these self-fields, leading to more samples further from the

central tune relative to lower-intensity case. These two factors lead to the widening of the

stopband and thus to an increase in the tune spread with intensity.

Figure 6.4 Dependence of Extinction Width under Increasing Intensity from 0.5 1012 to
5.11012 Particles. Points (red) and Linear Fit with Tune-Width Slope (black) are Pro-
vided.

6.4 Comparison with more Realistic Calculations of the Space-Charge Tune Shift

We now seek to compare a more realistic prediction of the space-charge tune shift
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with the data presented in Section 6.3.4. The space-charge tune shift for a Gaussian par-

ticle distribution (in configuration space) can be obtained from the space-charge force

within a Gaussian beam given by (6.1). Unlike the uniform beam, whose space-charge

forces increase linearly with radial coordinate, a Gaussian beam does not have a defined

edge, so while initially the space-charge force increases away from the beam centroid,

eventually the inverse-square behavior of the electromagnetic force dominates over the

increasing charge seen by the particle away from the center. We wish to use comparable

numbers as in the uniform case, wherein the maximal tune shift was calculated for a rep-

resentative Booster beam of 5mm in size. Since RMS beam widths, σRMS, are readily

measured, let ς represent the ratio of the particle coordinate to the RMS width, or

RMSr  (6.2)

In this case (6.1) can be written as

22 / 2

2

2 1
2 path RMS

e eF
R



   

 
 (6.3)

Since the beam was unbunched, the particle density λ can be expressed in terms of the

total particle count Ξ divided by the orbit circumference 2πRpath. Figure 6.5 shows the

behavior of the tune shift parameterized by ς for a given σRMS, as calculated from (2.13).

For the Gaussian beam, we see a maximum, for any value of σRMS, at ς near 1.5. For a

given intensity, then, the maximal tune shift for a Gaussian beam is inversely proportion-

al to the RMS width. Evaluation of the maximal space-charge tune shift then hinges on

obtaining suitable RMS beam-width values.

RMS widths for the coasting beam were not obtained during this study, but repre-

sentative IPM data were obtained in subsequently by X. Huang in the same month [7]
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under similar operating conditions. These have been retrieved and values near the intensi-

ties in the study are given in Table 6.1. Calculated particle densities are included as well.

Since the extinction measurement corresponds to the vertical plane, vertical IPM data are

used.

Figure 6.5. Tune Shift for a Particle at Radial Position r = ςσRMS Within a Gaussian Beam
with Transverse Width σRMS as a Function of ς.

Table 6.1. Particle Densities, Intensities, and RMS Widths for Values Similar to Those in
the Extinction Measurement (Ref [11])

Intensity
(1012 particles) 0.50 1.3 1.8 5.2

Particle Density
(1010⁄m) 0.11 0.28 0.38 1.1

IPM Width (mm) 6.0 6.3 6.8 9.2
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Inserting (6.3) into (4.8), the tune shift is then given by

2 / 2

2 3 2 2
0

1
2

path p

RMS

R r e 


    

 
  (6.4)

We choose ς to be 1.5 as before, and the remaining factors have their usual meaning as

given throughout this work. They are given in Table 6.2 for convenient reference.

Table 6.2. Reference Parameters for the Evaluation of (6.4)

Rpath (m) rp (m) γ β ν0

74 1.535×10-18 1.4 0.71 6.8

In Figure 6.6 the values from Tables 6.1 and 6.2 in (6.4) are plotted, along with the cor-

responding linear fit. The tune shift νmax is the maximal shift obtained at ς near 1.5, and

is thus representative of the total tune spread of this Gaussian beam.

One may consider the location on the tail of the fit to the extinction data where

particle loss begins to be measured, but this is subject to many operating conditions, as

well as the limitation of our fitting routine. Though the tails of a Gaussian are of infinite

extent, particles are not, after all, infinitely shifted in tune, so we must apply a cutoff

somewhere within which almost all particles would be. A reasonable (though still some-

what arbitrary) value for this would be at 2σext, which incorporates, from the fitting mod-

el, 95% of the particles defocused by the space-charge tune shift. We then obtain a tune

slope of 510-3⁄1012 (that is, twice the slope of the extinction-width change under intensi-

ty) as a realistic measure of the maximal shift due to space charge in our Gaussian-

distributed beam from the extinction measurement.
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Figure 6.6. Maximal tune shift evaluated from (6.4) for Gaussian Beam with measured
parameters given in Tables 6.1 and 6.2.

The tune slope in the extinction data is larger than the IPM-based prediction by

25%. Given the precision of the RMS widths from fitting IPM data, we find this level of

agreement encouraging. In any case, these can now be compared to the more simple-

minded calculation in Section 4.5.

For the uniform-beam case in Section 4.5 the tune shift at the periphery was found

to be 0.6 at the given beam intensity of 4.5  1012 (0.3 in the unbunched case for the

Booster). The corresponding tune slope would be (assuming zero shift at zero intensity)

0.07⁄1012 to 0.14⁄1012, depending on whether or not longitudinal bunching is considered.

Compared to the values above, this is an overestimate by a factor of around 15 (un-

bunched prediction) to 30 (bunched prediction). While the space-charge effects were pre-

dicted from the Laslett formula to be larger by a factor of 50 near injection than the im-
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age-charge effects, because of the effects of a nonuniform (i.e. Gaussian) beam allowed

to grow realistically with intensity, and because of the factors augmenting the wakefield

effects given in Chapters 4 and 5, in practice they are rivaled by, and in some cases even

surpassed by, the wakefield phenomena.
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CHAPTER 7

CONCLUSION

7.1 Summary

The effectiveness of a hadron-particle accelerator as a tool for high-energy phys-

ics research is due in large part not only to the energy to which particles can be accele-

rated, but also to the achievable beam intensity. Higher particle density provides a greater

number of interactions per unit time, allowing for better statistics on the observed interac-

tions of the eventual collisions of the high-energy particles. An understanding of the phe-

nomena leading to intensity limitations allows for possible schemes to mitigate these ef-

fects as well as provides foresight into the design of future accelerators.

The Fermilab Booster, a nearly 40-year-old proton synchrotron operating as an

intermediate accelerator between the Fermilab Linac and the Main Injector, is the lowest-

energy circular accelerator in the chain. Currently its operating intensity is twice that of

the value intended in its design. With its relatively low injection energy, effects due to

space charge are an important consideration. Also 60% of the orbit trajectory is housed

inside large, 10-m-long, roughly rectangular, combined-function magnets constructed

from stacked, electrically separated steel laminations. The electromagnetic response from

these elements due to the passing beam has been shown to prominently affect the trans-

verse oscillation frequencies of the beam near injection.

Measurements on the coherent shifts of the particle tunes have shown a behavior

where the values in the vertical plane were lowered with increasing intensity, while those

in the horizontal plane were slightly elevated. The shifting of the tunes in this opposite

sense happened in a cumulative manner over several hundred turns. Unlike the familiar
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Laslett tune shifts for a rectangular geometry the effect was not symmetric, and could be

explained by a resistive-wall wakefield in which a combination of two components was

observed. The first was a completely defocusing dipole component due to the centroid

oscillation of the beam, whose average effect on the tune over many turns was predicted

to be small, but because of the presence of magnetic laminations was magnified almost

one hundred-fold. The second was a quadrupole-like term arising from the roughly rec-

tangular magnet geometry, which led to a focusing in the horizontal plane and a defocus-

ing in the vertical plane. Unlike the dipole term, the passing of successive bunch trains

led to a surprisingly large cumulative effect. The predicted tune dependence on intensity

due to the dipole term was found to be roughly -0.003⁄1012 particles, and for the quadru-

pole wake a prediction of 0.004⁄1012 particles, with the positive value for the horizontal

plane, and the negative for the vertical plane. Results from two separate studies were

found to be in keeping with these results.

The effect of space charge on the individual particle tunes was investigated

through a measurement involving resonant extinction of the beam. The predicted result

for the representative incoherent particle tune shift under increasing intensity using a rea-

listic Gaussian distribution, and allowing growth of the beam envelope with intensity,

was found to be 0.004⁄1012, using actual transverse RMS widths to make the estimate.

The tune-spread dependence on intensity obtained by quantification of the resonant stop-

band width from the beam-extinction measurements was found to be 0.005⁄1012, similar

to the predicted value. Both values were considerably smaller by one order of magnitude

compared to the uniform-beam value obtained from the Laslett formula. Under these cir-

cumstances, the incoherent contribution from space charge to the transverse frequency
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shift near the injection energy was actually rivaled and in some cases surpassed by the

coherent wakefield effects, shifting the particle tunes and that of the centroid by the same

order of magnitude.

Emittance is typically a quantity characterizing the size of charged-particle beams

and a staple in their dynamical analysis. Its statistical definition through RMS position

and momentum widths can be used as a figure of merit to assess beam quality. The exis-

tence of space-charge fields tends to couple otherwise independent planes of motion, re-

sulting in emittance exchange among them. Distinguishing between emittance exchange

among the planes of motion, and possible emittance growth necessitates a simultaneous

measurement in all planes of motion. A method for obtaining a simultaneous measure-

ment of the emittance has been successfully applied using the available instrumentation

in the Booster, the Ionization Profile Monitor (IPM) in the transverse planes and the Re-

sistive Wall Monitor (RWM) in the longitudinal. Results experimentally match accepted

values for the emittances in all three planes. Correction for unmeasurable correlation

terms between the planes was obtained through simulation values and found to be at most

an 8% effect on the emittance value. This method may prove useful when large amounts

of emittance exchange are expected.
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APPENDIX  A

EXACT AND APPROXIMATE EXPRESSIONS FOR THE ELECTROMAGNETIC

FIELDS ON A TRAILING PARTICLE DUE TO THE FIELDS FROM LEADING

PARTICLES IN A RESISTIVE CYLINDRICAL CHAMBER
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The electric and magnetic fields on trailing particles produced by the leading par-

ticles in a passing beam has been derived by Karl Bane [13, 31], and are given by

 
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Es is the longitudinal electric field retarding the motion of subsequent particles and Er, Bθ

are the radial and azimuthal fields affecting their transverse motion; R is the pipe radius,

χ and u are dimensionless parameters given by

/ 4c R  (A.3)

 1/3/ 2u z R (A.4)

The field patterns in the region near the leading particle are plotted in Figure A.1.

Figure A.1. Electric Wakefield Lines in a Resistive Cylindrical Chamber of Radius R
Generated by a Point Charge q Moving at Speed c. Field-Line Density to the Left of the
Dashed Line has been Magnified by a Factor of 40. (Courtesy K. Bane and A. Chao).
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In regions for which 1/3z R [31], the fields may be expressed as

3/ 2
2 3

4 64
3s

q qE z
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(A.6)

The dynamics is more complicated close to the leading particle. As Figure A.2 shows, the

fields change sign three times in the region 1/35z R .

Figure A.2. Short-Range Resistive-Wall Wakefield Components Es and Bθ in a Cylin-
drical Chamber of Radius R. Fields Vanish at z = 0 and Change Sign Thrice in this Re-
gion. (Figure Courtesy A. Chao).
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APPENDIX  B

A SUMMARY OF THE DERIVATION OF THE GENERALIZED WAKE FUNC-

TIONS FOR CHAMBERS OF NONCIRCULAR CROSS SECTION
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For purely circular cross sections, dipole, quadrupole, etc, wakefields are the re-

sult of oscillations within the distribution. For lower symmetry, the structure can produce

strong higher-order wakefields even for a beam for any type of oscillation (dipole, qua-

drupole, etc). Given the theory by Wagner, Heifets, and Zotter [59], we seek to obtain

an expression for the wake functions describing the effect on a beam for rectangular types

of symmetry. The causality condition in frequency space may be expressed as

0 0 0 0( , , , , ) *( , , , , )Z r r Z r r       (B.1)

The longitudinal impedance, Z can be obtained by integration over the longitudinal

electric field [92]. Namely,

0 0 0 0( , , , , ) ( , , , , )ikz
zZ r r dze E r r       (B.2)

In the frequency domain, we may write Ez as the double-Fourier transform
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Ez may be decomposed into a component whose wave speed is synchronous with the

(monoenergetic) beam, and another consisting of all others asynchronous with it.  It has

been shown that the effects of all field components traveling asynchronously average to

zero [128].  For the remaining synchronous component, syn
zE , we may identify q = k =

ω∕c.  This requires that syn
zE independently obey the wave equation

2 2 0syn
zk E     (B.4)

And hence the corresponding impedance must therefore satisfy the (transverse) Laplace

equation,
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 2
0, , 0Z r r 

 
(B.5)

Solutions to the Laplace equation may be written as a power series, or in this case, a

double power series in both r and 0r
 .  It may also be convenient to write this sum in

terms of the complex variables r x iy   in place of the radial coordinates.
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In our case this will facilitate our transition into rectangular geometries. Since the wake

function is the inverse Fourier transform of the impedance, it may also be so expressed,

except that the coefficients , ,mk mk  etc. are now functions of the longitudinal coordinate

s instead of frequency content ω.  Specifically,
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and so on. The corresponding wake function is then
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Up to now our discussion in this section has been focused on developing the impedance

or wake affecting the longitudinal motion.  The Panofsky-Wentzel theorem (4.26) pro-

vides the necessary connection.

In this case it can be re-expressed in terms of these generalized wakes as

   0 0, , , ,W r r s W r r s
s 


 


   

(B.9)

Making use of (B.9), the transverse wakes in the x and y direction are given by
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where

( ) ( )( ), ( )mk mk
mk mk

a s b ss s
s s

  
   

 
(B.12)

For a beam executing dipole oscillations in a rectangular (or elliptical) chamber, (B.10-

11) reduce to

0( )xW s ax bx  (B.13)

0( )yW s ay by   (B.14)

The coefficients a and ā are complex conjugates of each other, and represent the dipole

component of the wakefield. In the case of symmetry with respect to 90° rotation (includ-

ing circular or square symmetry), a = ā and the quadrupolar components vanish, reducing

to the familiar dipole wakefield in a circular chamber.
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