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INTRODUCTICN

In the past five years or 8o progress in both elementary particle
physica and 1in c¢osmology has become Increasingly dependent upon the
interplay between the two disciplines. On the particle physics side, the
SU(3Jc x SU(2), x U(1)y model seems to very accurately describe the
interactions of quarks and leptons at energies below, say, 10? GeV, At
the very least, the so-called standard model is a satisfactory,
effective low energy theory. The frontiers of particle physics now
involve energies of much greater than 10°® GeV~~energies which are not
now available In terrestrial accelerators, nor are ever 1likely to be
available in terrestrial accelerators. For this reason particle
physicists have turned both to the early Universe with 1its essentially
unlimited energy budget {(up to 10'? GeV) and high particle fluxes (up to
10*°7 cm 2 837 '), and to various unique, contemporary astrophysical
environments (centers of main sequence stars where temperatures reach
10®* K, neutron stars where densities reach 10'*-10'® g c¢m ?, our galaxy
whose magnetic field can impart 10'! GeV to a Dirac magnetic charge,

ete.) as non-traditional laboratories for studying physics at very high
energies and very short distances.

On the cosmologlcal side, the hot big bang model, the 3o called
standard model of cosmology, seems to provide an accurate accounting of
the history of the Universe from about 10 2 s after 'the bang' when the
temperature was about 10 MeV, until today, some 10-20 billion years
after 'the bang' and temperature of about 3 K (= 3 x 10 '* GeV).
Extending our understanding further back, to earlier times and higher
temperatures, requires knowledge about the fundamental particles
{presumably quarks and leptona) and their interactions at very high
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snergies. For this reason, progress in cosmology has beccme linked to
progress in elementary particle pnysics.

In these U4 lectures I will try to illustrate the two-way nature of
the interplay between these fields by focusing on a few selected topics.
In Lecture 1 I will review the standard cosmology, egpecially
concentrating on primordial nucleosynthesis, and discuss how the
standard cosmology nas been used to place constraints on the properties
of wvarious particles. Grand Unification makes two striking predictions:
{1) B non-conservation; (2) the existence of stable, superheavy magnetic
monopoles. 8o0th have had great cosmological impact. In Lecture 2 I will
discuss paryogenesis, the very attractive scenario in which the 8, C, CP
violating 1interactions in GUTs prcovide a dynamical explanation for the
predominance of matter over antimatter, and the present baryon-to-photon
ratic. 3aryogenesis is so coamologically attractive, that in the absence
of cbserved proton decay it has been called 'the best evidence for some

kind of unification.’ Monopoles are a cosmological disaster, and an
astrophysicist's delight. In Lecture 3 I will discuss monopoles,
ceosmelogy, and astrophysiecs. Te date, the most important 'cosmological

payoff' of the Inner Space/Outer Space connection is the inflationary
Universe scenarioc., In the final lecture I will discuss how a very early

(t < 10 ' sec), first-order phase transition associated with
spontaneous symmetry breaking (S38) has the potential to explain a
handful of very fundamental cosmological facts—--which can be

accommodated by the standard cosmology, but are not elucidated by it. By
selecting just a few topics I have left out some other. very I1lmportant
and exciting ones--e.g., galaxy formation and the role of exotic debris
from the early Universe (massive neutrinos, axions, other-inos, atrings

to mention a few types of interesting debris),
supersymmetry/supergravity/Kaluza~Klein models and cosmology, and
axions, astrophysics, and cosmclogy. I refer the interested reader to

references 1-3.

LECTURE 1 =~ THE STANDARD COSMOLOGY

The hot big bang model nicely accounts for the universal (Hubble)
expansicn, the 2.7 K cosmic microwave background radiation, and through
primordial nucleosynthesis, the abundances of D, “"He and perhaps also
'He and ’Li. Light received from the most distant objects observed (QSOs
at redshifts = 3.,5) left these objects when the Universe was conly a [few
nillien years old, and so observations of QS0s allow us to directly
oprobe the history of the Universe to within a few billion years of 'the
bang'. The surface of last scattering for the microwave background is
the Universe about 100,000 yrs after the bang when the temperature was
about 1/3 eV. The microwave background 1s a fossail record of the
Universe at that very early epoch. In the standard cosmology an epoch of
nuclecsynthesis takes place from t = 1072 3 - 102 3 when the temperature
was = 10 MeV - 0.1 MeV. The light =elements synthesized, primarily D,
‘He, “He, and ’Li, are relics from this early epoch, and comparing their
predicted big bang abundances with their inferred primordial abundances
is the most stringent test of the standard cosmology we have at present.
[(Note that I must say inferred primordial abundance because contemporary



astrophysical processes can affect the abundance of these light
isotopes, e.g., stars very efficiently burn D, and produce “He.] At
present the standard cosmology passes this test with flying colors (as
we shall see shortly).

On the large _scale (>> 100 Mpe), the Universe 1is i{sotropic and
homogenous, and 30 it can agcurately be described by the
Robertson-Walker line element

ds?=-dt?+R(t)*[dr2/(1~kr?)+r? do?+r? sin® 8de?], (1.1)
where ds? is the proper separation between two spacetime events, k = 1,
0, or ~1 is the curvature signature, and R{(t} is the c¢osmic scale
factor. The expansion of the Universe 1s embodied in R(t)--as R(t)
inereasea all proper (i.e., measured by meter sticks) distances scale
with R(t), e.g., the distance between two galaxies comoving with the
expansion {(i.e., fixed r, 8, $), or the wavelength of a

freely-propagating photon (A = R{(t)). The k > O spacetime has positive
spatial curvature and is finite 1in extent; the k < 0 spacetime has
negative spatial curvature and i{s infinite in -extent; the k = 0
spacetime is spatially flat and is alsec infinite in extent.

The evolution of the cosmic scale factor 1is determined by the
Friedmann equations:

H* = (R/R)}? = 8nGp/3 - Kk/R?Z, ‘ (1.2)
d(gR*) = ~-p d(R?), (1.3)

where p i3 the total energy density and p is the pressure. The expansion
rate H (also called the Hubble parameter) 3ets the characteristic time
for the growth of R(t); H ' = e-folding time for R. The present value of
H is 700 h kms ' Mpe ! = h (10'° yr)"!; the observational data strongly
suggest that ' > h » 1/2 (ref. U4). As it is apparent from Eqn. 1.2 model
Universes with Kk < 0 expand forever, while a model Universe with k > 0
must eventually recollapse. The sign of k {(and hence the geometry of
Spacetime) can be determined from measurements of p and H:

k/HeRS = p/(3H2/87G) - 1, (1.4)

=a -,
where @ = p/p .. and p,.y = 3H2/8nG = 1.88 ne x 10°2° gem 3. The
cosmic surveyiﬁg require toe directly determine p is far beyond our
capabilities (i.e., weigh a cube of cosmic material 10%* cm on a side!).
However, based upon the amount of luminous matter (i.e., baryons in
stars) we can set a lower limit to Q: @ > @ = 0,01. The best wupper

limit to R follows by considering the age o}u%he Universe:
tu“ 10l° Yr' h_l f(Q)p (1-5)
where f(2) < 1 and is monotonically decreasing (e.g., f£(0) = 1 and f(1)

= 2/3). The ages of the oldest stars (in globular <clusters) strongly
suggest that t, > 10'® yr; combining this with Eqn. 1.5 implies that:



2€*(Q@) > gn?*. The function Qf?* is monotonically increasing and
asymptotically approaches {(n/2)?, implying that independent of h, ah? (
>.5. Restricting n to the interval (1/2, 1) it follows that: Gh?* < 0.8
and @ < 3.2,

The energy density contributed by nonrelativistic matter varies as
A(t) '--due to the fact that the number density of particles is diluted
by the increase in the proper (or physical) volume cf the Universe as 1t
expands. For relativistic particles the energy density varies as R(t) *,
the extra factor of R due to the redshifting of the particle's momentum
(recall A <« HR(t))., The energy density contributed by a relativistic
species (T >> m) at temperature T is

p = SefrﬂzT”/SO, (1.6)
wnere g is the number of degrees of freedom for a Dbosonic 3species,
and 7/8'that number for a fermionic species. Note that T « R(t) '. Here
and throughout I have taken M = ¢ = X5, = 1, 30 _that _1 GeV = _(1.97 «x
107 em) P = (1.16 x 10'? K) = (B.57 x 107%% s)7}, G = m l"z (m_, =
.22 x 10'% GeV), and 1 GeV* = 2.32 x 10'7 g cm™*. By the wayb™ 1 1Pant
year = 10'® ecm; 1 pec = 3 light year; and 1 Mpc = 3 x 10?" cm = 1.6 x

1028 Gev !,

Today, the energy density <contributed by relativistid particles
{(photons and 3 neutrino speciesl iz negligible: Qrel =4 x 10" % n 2
(T/2.7 K)*. However, since p « R *, while p 1. = R 3, early on
relativistic species dominaggé the energy deng?%§? For R/R{tocday) < U4 x
107% (gh?*)~! (T/2.7 K)*, which corresponds to t < 4 x 10'° s (an2)"?
(T/2.7 K)® and T > 6 eV (Rh%2)(2.7 K/T)*, the energy density of the
Universe was dominated by relativistic particles. Since the curvature
term varies as R(t) %, it too was small compared to the energy density
contributed by relativistic particles early on, and SO Egn. 1.2
simplifies to:

/2

H = (R/R) = (4r? g,/45) 7 T2/m (1.7)

pl:

1.66 g, /" T?/nm
. * pl!

(valid for t < 10!° s, T > 10 eV).

Here g, counts the total number of effective degrees of freedom of all
the relativistic particles (i.e., those species with mass << T

By = z gi(Ti/T)“ + 7/8 L gi(TifT)“ , (1.8)
Bose Fermi
where T, {3 the temperature of species i, and T is the photon

temperaéurg. For example: g,(3 K) = 3.36 iY’ 3 vv ) Eg(few MeV) = 10.75
(Y, e3, 3 Sv); g,(few 100 GeV) = 110 (Y, w* Z°, 8 gluons, 3 families of
quarks and leptons, and 1 Higgs doublet).

If thermal equilibrium is maintained, then the second Friedmann
equation, Egn. 1.3 =~ conservation of energy, implies that the entropy
per comoving volume (a volume with fixed r, &, ¢ coordinates) S = gR?
remains constant., Here s is the entropy density, which is dominated by
the contribution from relativistic particles, and is given by:



S = (p + p)/T = 21% g, T3/45, {(1.9)

The entropy density s itself is proportional to the number density of
relativistic particles. So long as the expansion is adiabatic (i.e., in
the absence of entropy production) S (and s) will prove to be useful
fiducials. For example, at low energies (E << 10%*“ GeV) baryon number is
effectively conserved, and so the net baryon number per comoving volume
Ng « ng{=z n,=ng) R? remains constant, implying that the ratio ng/s is a
constant oP tge expansion. Today s = TnY, 50 that ng/s = n/7, where n
nb/“Y is the baryon-to-photon ratio, which as we shall soon see, is
known from primordial nucleosynthesis to be in the range: 4 x 10 1° < n
€7 x 10 '°. The fraction of the critical density contributed by baryons
(Qb) is related to n by:

9y = 3.53 x 10 * (n/1072°)nh"2(T/2.7 K)*. {(1.10)

Whenever g, = constant, the constancy of the entropy 'per comoving
volume implies that T « R™'; tcgether with Eqn. 1.7 this gives

= /
R(t) R(to)(t/to)l 2, (1.11)

t 0.3 8*_1/2 mpl/Tzr

2.4 x 107 s g, "'/ (1/Gev)"?, . (1.12)

valid for t < 10!'° g and T 2 10 eV.

Finally, let me mention one more Important feature of the standard
cosmology, the existence of particle horizons. The distance that a light
signal could have propagated since the tang 1is finite, and easy to
compute. Photons travel ocn paths characterized by ds? = {3 for
simplicity (and without loss of generality) consider a trajectory with
d8 = d¢ = 0. The coordinate distance covered by this photon since 'the
bang' is just [ dt'/R(t'), corresponding to a physical distance
(measured at time t) of

dpce) = R(t) JE aer/r(e) (1.13)
= t/(1 - n) (for R « tB, n ¢ 1],
If R = t" (n < 1), then the horizon distance is finite and = t = K71,

Note that even if 4, (t) diverges (e.g., if R « t™, n > 1), the Hubble
radius H ! still sets ghe scale for the 'physies horizon'. Since all
physical lengths scale with R(t), they e-fold in a time of O(H™!). Thus
a coherent microphysical process can only operate over a time interval S
O(H™'), implying that a causally-coherent microphysical process can only
operate over distances < o(H ').

During the radiation-dominated epoch n = 1/2 and d = 2t the
baryon number and entropy within the  horizon at timg t are easily
computed:

SHOR = (4411'/3)t’ 3,



= 0.05 g, !/? (m /1) % (1.14)

Ng-or = (ng/s) X Syggr.

:10"12 3,
(mpl/T) : (1.15a)
= 902 M@(T/MeV)_si (1.15Db)
where I have assumed that n_/s has remained constant and has the value =
10 '®. A solar mass (M@) of baryons is = 1.2 x 10°%7 baryons (or 2 x 10%?
g).

Although our verifiable knowledge of the early history of the
UYniverse only takes us back to t = 10°% 5 and T = 10 MeV (the epoch cof
primerdial nucleosynthesis), nocthing in our present understanding of the
laws of physics suggests that it is unreasonable to extrapolate back to
times as early as = 10°%? 3 and temperatures as high as = 101° CeV, At
high energies the interactions of quarks and leptons are asymptotically
free (and/or weak) justifying the dilute gas approximation made in Egn.

1.6, At energies btelow 10'7 GeV quantum corrections to General
Relativity are expected to be small, I hardly need to remind the reader
that ‘'reasonable' does not necessarily mean ‘'correct'. Making this

extrapolation, I have summarized 'The Complete History of the Universe'
in Fig. LAV N {For more complete reviews of the standard cosmolcgy I
refer the interested reader to refs. 5 and 6.]

Primordial Nucleosynthesis

At present the most stringent test of the standard cosmology 13 big
bang nucleosynthesais, Here I will briefly review primordlal
nucleosynthesis, discuss the concordance of the predictiona with the
observations, and mention one example of how primordial nuclecsynthesis
has been used as a probe of particle physics--counting the number of
light neutrino species.

The two fundamental assumptions which underlie big bang
nucleosynthesis are: the validity of General Relativity and that the
Universe was once hotter than a few MeV. An additional assumption

{which, however, is not necessary) is that the lepton
numbder,n, /n -(ne_-ne+)/n + (n,-n3)/ny = n +f{n.~n~)/n.,, like the baryon
number %=n is 'small. Having swaIlou these assumptions, the rest

follows like 1-2-3.

Frame 1: t = 10" % sec, T = 10 MeV. The energy_  density of the
Universe is dominated by relativistic apecies: Y, e e, v,v, (L = e, u,
T,...)3 8% = 10.75 (assuming 3 neutrjino species). Thermal equilibrium_is
malntained by weak interactions (e + e +«>* Vi o+ vy a + Q «+ p + ve,
e + p c* 10+ v,) as well as electromagnetic lnteracéions (e + & ++ 7Y
+ Y, Y + p ®es Y + p, ete. ) , both of which are occurring rapidly
compared to the expansion rate H = R/R. Thermal equilibrium implies that
T = and that n/p = exp{(-Am/T); here n/p is the neutron to proton
rdtio ang Am = my - No nucleosynthesis is occurring yet because_ of
the <tiny equilxbrluﬁ abundance of D: np/ny = n exp(2.2 MeV/T) = 107'°%,

where nb’ np., and n, are the baryon, deuterium, and photon number
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Fig. 1.1 'The Complete History of the Universe'. Highlights

include: decoupling (t = 10'* s, T = 1/3 eV) - the
surface of last a3cattering for the cosmic wmicrowave
background, epoch after which matter and radiation cease
to interact and matter 'recombines' into neutral atoms
(D, *He, *“He, 7'Li); alsc marks the beginning of the
formation of structure; primordial nucleosynthesis (t =
102 a3, T =10 MeV) - epoch during which all of the free
neutrons and some of the free protons are 3ynthesized
into D, %He, "He, and ‘L1, and the surface of last
scattering tor the cosmic _neutrino backgrounds;
quark/hadron transition (t =10 % s, T = few 100 MeV) -
epoch of 'quark enslavement' [confinement transition in
SU(3)1; W-3-G epoch associated with electroweak breakling,
Su(2) x U(1) » U(1); Gur epoch (?? t =10 ** s, T= 10

Gev??) - SSB of the GUT, during whlch the baryon
asymmetry of the Universe evolves, monopoles are
produced, and *inflation’ may ogceur; the

Quantum Gravity Wall (t =10 ** 3, T=10'? GeV).




densities, and 2.2 MeV is the binding energy of the deuteron. This is
the so-called deuterium bottleneck.

Frame 2: t = 1 see, T = 1 MeV, At about this temperature the weak
interaction rates become slower than the expansion rate and thus weak
interactions effeetively cease occurring. The neutrinos decouple and

thereafter expand adiabatically (T « R '). This epoch is the surface of
_ast scattering for the neutrinos:vdetection of the cosmic neutrinc seas
would allow us to directly view the Universe as it was 1 sec after 'the
bang'. From this time forward the neutron *to protan ratio no longer
'tracks' its equilibrium value, but instead 'freezes out' a value = 1/6,
very slowly decreasing, due to occasional free neutron decays. A little
bit later (T = m /3) the e pairs annihilate and transfer their entropy
ro the photons, heatlng the photons rﬁlatlve to the neutrinos, 30 that
from this point on T = (4/11)" . The 'deuterium bottleneck'
continues to operate, preventing nucleosynthesis.

Frame 3: t = 200 sec, T = 0.1 MeV. At about this —temperature the
'deuterium bottleneck’' breaks = n exp(2.2 MeV/T) = 1], and
nucleosynthesis begins in earnest Essentlally all the neutrons present
(n/p = 1/7) are quickly incorporated first into D, and then Into “He
nuclei, Trace amcunts of D and *He remain unburned substantial
nucleosynthesis beyond “He is prevented by the lack of stable isotopes
with A = 5 and 8, and by coulomb barriers. A small amount of TLi is
synthesized by “He(t, Y)'Li (for n < 3 x 10 '°) and by “He('He, Y)’Be
followed by the eventual g-decay of 7Be to “Li (for n 2 3 x 10 '°).

The nucleosynthetic yields depend upon n,'Nv (which I will wuse to
parameterize the number of light (< 1 MeV) species present, other than ¥
and e¥), and in principle all the nuclear reaction rates which go into
the reaction network. In practice, most of the rates are known to
sufficient precision that the yields only depend upon a few rates. “He
production depends only wupon n, N, and tv,,,, the neutron half-life,
which determines the rates for all the weak processes which interconvert
neutrons and protons. The mass fraction Y of *He produced increases
monotonically with inecreasing values of n, Nv’ and 1v,,, - a faect which
is simple to understand. Larger n means that the "deuterium bottleneck'
breaks earlier, when the value of n/p s larger. More 1light specles
(i.e., larger wvalue of N )} 1increases the expansion rate (since H «
(Gp)T’?), while a larger value of 1, means slower weak interaction
rates (« Ty, ‘) =~ both effects cause the weak interactions to freeze out
earlier, when n/p ia larger. The yield of “He is determined by the n/p
ratie when nucleosynthesis commences, = 2(n/p)/{1 + n/p), so0 that a
higher n/p ratio means more “He is syntheglze At present the value of
the neutron half-life is only known to an accuracy of about 2%: 1,,, =
10.6 min £+ 0.2 min. Since v and v are known (from laboratory
measurements) to be light, g & 2. Based upon the luminous matter Iin
galaxies, n is known to be > 0.3 x 10 '®°. If all the mass in binary
galaxies and small groups of galaxies (as inferred by dynamical
measurements) is baryonic¢, then n must be > 2 x 10 'O,

To an accuracy of about 103, the yields of D and 'He only depend
upen n, and decrease rapidly with inereasing n. Larger n corresponds to
a higher nucleon density and earlier nuclecsynthesis, which in turn
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Fig. 1.2 The predicted primordial abundances of D, 'He, “He, and

Li. ([Note 1t,,; = 10.6 min was used; error bar shows
At,,, = + 0.2 min; Y = mass of “He; N = equivalent
number of light n8utrino specles.] Inggrred primordial
abundances: Y = 0.23-0.25; (D/H)> 1 x 10 *; (D + “He)/H ¢
10 *; 7Li/H = (1.1 £ 0.4) x 10 '?, Concordance requires:
n=® (4=7) x 1071° and N, < y.
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Fig. 1.3 The predicted primordial abundance of “He. Note that Y
increases with increasing values of <t,,:, n, and N ¢
Hence lower bounds to n and t,,, and an upper bound to
imply an upper bound to Nv. Taking v, ,, 2 10.4 min, n 2 B
x 10 1? (based on D + °’He production), and Y < 0.25, [t
follows that Nv must be < U, P
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results in less D and *He remaining unprocessed. Because of large
uncertainties in the rates of some reacticns which c¢reate and destroy
77

Li, the predicted primordial abundance of 7LI is only ac¢curate to
within about a faector of 2.

In 1946 Gamow’ suggested the idea of primordial nucleosynthesis. In
1953, Alpner, Follin, and Herman® all but wrote a ccde to determine the
primordial production of *He. Peebles?® {(in 1966} and Wagoner, Fowler,
and Hoyle'? (in 1967) wrote codes to <calculate the primordial
ibundances. Yahil and Beaudet!! {(in 19786) independently developed a
nucleosynthesis code and also extensively explored the effect of large
lepton number (ﬂv - n; * 0(ny)) on primordial nucleosynthesis., Wagoner's
1973 codel? has become the 'standard code' for the standard model. In
1981 the reaction rates were updated by Olive et al.'?, the only
significant change which resulted was an increase in the predicted 7Li
abundance by a factor of 0{3). In 7982 Dicus et al.'" corrected the weak
rates .n Wagoner's 1973 code for finite temperature effects and
radiative/coulomb correcticns, which led to a systematic decrease in Y
cf about 0.003. Figs. 1.2, 1.3 snow the predicted abundances of D, 3He?
“Ye, and 'Li, as calculated by the most up to date versicon of Wagoner's
1973 code.'® The numerical accuracy of the predicted abundances is about
1%. Now let me discuss how the predicted abundances compare with the
observational data. [(This discussion is a summary of the collaborative
work in ref. 15,]

The abundance of D has been determined in solar system studies and
in UV absorption studies of the local interstellar medium (ISM). The
solar system determinations are based upon measuring the abundances of
deuterated molecules in the atmosphere of Jupiter and inferring the
pre-solar (i.e., at the time of the formation of the solar system) D/H
ratio from meteoritic and solar data on the abundance of *'He. These
determinations are consistent with a pre-solar value of (D/H) = (2 +
1/2) x 10 °. An average ISM value for (D/H) = 2 x 10~ % has been derived
from UV absorption studies of the local ISM (< few 100 pe), with
individual measurements spanning the range (1 - 4) x 10 *., Note that

These measurements are consistent Wwith the solar system determinations
of D/H.

The deuteron being very weakly-bound is easily destroyed and hard
to preduce, and to date, it has been difficult to find an astrophysical
site where D can be produced in its observed abundance.'® Thus, it is
generally accepted that the presently—-obaerved deuterium abundance
provides a lower bound to the primordial abundance. Using (D/H)_ > t «x
10°° it fOITows that n must be less than about 10 ° in ordeR for the
predictions of primordial nucleosynthesis to be concordant with the
observed abundance of D. [Note: because of the rapid variation of (D/H)
with n, this upper bound to n i3 rather insensitive to the precise lowe
bound to (D/H)_ used.] Using Eqn. 1.10 to relate n to @y, this implies
an upper bound t9 Q.: g, ¢ 0.035h *(T/2.7K)? < 0.19 -- “baryons alone
cannot close the Uiiverse. One would like to also exploit the sensitive
dependence of (D/H} upon n to derive a lower bound to =n for
concordance; this i not possible ©because D is so easily destroyed.

dowever, as we snall soon see, this end can be accomplished 1Instead by
using both D and ?He.



12

The abundance of *He has bDeen measured in solar system studies and
by observations of the Sye® hyperfine line in galactic HIL regions {the
analog of the 21 cm line of H). The abundance of ?He in the solar wind
nas been determined by analyzing gas-rich meteorites, lunar soll, and
the foil placed upon the surface of the moon by the Apollo astronauts.
Since D is burned to *He during the sun's approach to the main segquence,
these measurements-represent the pre-solar sum of D and *He. These
seterminations of D + ?*He are all consistent with a pre-solar [(D +
JHe)/H] = (4.0 + 0.3) x 10 %. Earlier measurements of the e’ nyperfine
line in galactic HII regions and very recent measurementis lead to
derived present abundances of ?‘He: *He/H = (3-20) x 10°%. The fact that
these values are nigher than the pre-sclar abundance 1Is consistent with
the idea that the abundance of *He should increase with time due to the
stellar production of *He by low mass stars.

14e is much more difficult to destroy than D. It is very hard to
efficiently dispose of 'He without also producing heavy elements or
large amounts of “He (environments hot enough to burn *He are usually
hot enough to burn protons to “He). In ref. 15 we have argued that in
the absence of a Pop III1 generation of very exotic stars which process
esaentially all the material in the Universe and in so dcing destroy

most of the 'He without cverprcducing “He or heavy elements, ‘He can
have been astrated (i.e. reduced by stellar burning) by a factor of no
more than f_ = 2, [The youngest stars, e.g. our sun, are called Pop I;

the oldest observed stars are called Pop II. Pop III refers to a yet to
be discovered, hypothetical first generation of stara.] Using this
argument and the inequality

[(D+’He)/H]p < pre-solar(D/H)+f_ pre-solar(’He/H) (1.16)

hY (1—fa)pre—solar(D/H)+fapre—solar(D+’He)/H;

the presolar abundances of D and D + *He can be used to derive an upper
bound to the primordial abundance of D + *He: [(D + *He)/H]l ¢ 8 x 10 °.
[For a very conservative astration factor, f = 4, the upper limit
becomes 13 x 10 %.] Using 8 x 10 % as an upper bound on the primordial D
+ ?He production implies that for concordance, n must be greater than 4
x 10°!'° (for the upper bound of 13 x 10 °*, n must be greater than 3 x
1071'°), To summarize, consistency Dbetween the predicted Dbig bang
abundandes of D and ‘He, and the derived abundances observed today
requires n to lie in the range = (4 - 10) x 107 '°. :

Until very recently, our knowledge of the L1 abundance was limited
to observations of meteorites, the local ISM, and Pop I stars, with a
derived present abundance of ‘Li/H = 10 ? (to within a factor of 2).
Given that Li is produced by cosmic ray spallation and some stellar
processes, and is easily destroyed {(in environments where T > 2 x 10%K),
there is not the slightest reason to suspect (or even hope!) that this
value accurately reflects the primordial abundance. Recently, Spite and
Spite!” have observed ’Li{ lines in the atmospheres of 13 unevolved halo
and old disk stars with very low metal abundances (Z_./12 - z@/zso},
whose masses span the range of = (0.6 -~ 1.1)M., Stars less massive than
about 0.7 Mo are expected to astrate (by factors » 0(10)) their ’Li
abundance during their approach to the MS, while stars more massive than
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ioout 1 My sre not expected to significantly astrate 'Li in their outer
Layers, Indeed, they see this trend in ‘tneir data, and deduce a
primordial "Li abundance of: 7Li/H = (1.12 + 0.38) x 10 '°, Remarkably,
this is the predicted big bang production for n in the range (2 - 35} «x
10 1%, If we take this to be the primordial "Li abundance, and allow for
a possible factor-of 2 uncertainty in the predicted abundance of Li (due
“0 estimated uncertainties in the reaction rates which affect ’Li), then
concordance for 'Li restricts n to the range (1 - 7) x 10 '°., \Note, of
20Urse, that their derived ’Li abundance iz the pre-Pop II abundance,
and may not necessarily reflect the true primordial abundance (e.g., if

a Pop III generation of stars processed significant amounts of
material).

In sum, the concordance of big bang nucleosynthesis predictions
4l1th the derived abundances of D and *He requires n = (4 - 10) x 10 '°%;

moreover, concordance for D, 'He, and "Li further restricts n: n = (4 -
TY x 10 19,

In the past few years the gquality and quantity of “He <c¢bservaticns
nas ilncreased marxedly. In Fig. 1.4 all the *"He abundance determinations
derived from observations of recombination lines in HII regions
(galactic and =extragalactic) are shown as a function of metalicity 2
(more precisely, 2.2 times the mass fraction of !'%0},

Since *He is also synthesized in stars, some of the observed “He is
net primordial. Since 3tars also produce metals, one would expect some
correlation between Y and Z, or at least a trend: lower Y where 2 i3
lower. Such a trend is apparent in Fig. 1.4, From Fig. 1.4 it is also
clear that there is a large primordial component to “He: Y = Q0.22 -
0.26. Is it possible to pin down the value of Yp more precisely?

There are many steps in going from the 1line strengths (what the
observer actually measures), to a mass fraction of “He (e.g.,
corrections for neutral “He, reddening, etec.). In galactic HII regions,
where abundances can be determined for various positions within a given
AII region, variations are seen within a given HII region. Observations

of extragalactic HII regions are actually observations of a
superposition of several HII regions. Although observers have quoted
statistical uncertalinties of AY = + 0.01 (or lower)}, from the scatter in

Fig. 1.4 it is clear that the systematic uncertainties must be larger.
For example, different observers have derived “He abundances of between
0.22 and 0.25 for I Zwi8, an extremely metal-poor dwarf emission 1line
galaxy.

Pernaps the safest way to estimate Y is to concentrate on the “He
determinations for metal-poor objects. From Fig. 1.4 Y = g,23 = 0,25
appears to be consistent with all the data (although Y ag low as 0.22
or high as 0.26 could not be ruled out). Recently kBntn and Sargent!'?®
nave studied 13 metal=-poor (Z < Zg/5) Blue Compact galaxies. From
weighted average for their sample they derive a primordial abundance Y

a
= 0.245 £ 0.003; allowing for a 3¢ variation this suggesats 0.236 < yp 2
0.254.,
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Fig. 1.4 Summary of “He abundance determinations {galactic and

extragalactic) from recombination 1lines in HII regions
vs, mass fraction of heavy (A > 12) elements Z (= 2.2
mass fraction of '*0). Note, observers do not usually
quote errors for individual objects--scatter is probably
indicative of the uncertainties. The triangles and filled
circles represent two data sets of note: circles - 13
very metal poor emission line galaxies (Kunth and
Sargent!®); triangles - 9 metal poor, compact galaxies
(Lequeux etal.'").



for the concordance range deduced from 2, *He, and “Li {n > 4
10 %) and Ti,, 2 10.4 min, the predicted “He abundance is

0.230 N = 2.
W
Yp 2. 0.244 = 3,
0.256 = b,
.Note, that N = 2 ig permitted only if the t-neutrinc is heavy (2 few
MeV) and unstabfe; the present experimental upper limit on its mass 1is
160 MeV.] Thus, since ¥ = 0.23 - 0.2% (0.22 - 0.267) there are values

of n, N, and t,,, for wnich there is agreement between the abundances
predicted by big bang nucleosynthesis and the primordial abundances of
>, *He, *He, and "Li derived from observaticnal data.

To summarize, the only isotcpes which are predicted to be produced
in significant amounts during the epoch of primordial nucleosynthesis
are: I, *He, “He, and ’Li., At present there is concordance between the
predicted primordial abundances of all 4 of these elements and their

dbserved abundances for values of Nv_ Ty /2 and n in the_ following
iatervals: 2 € N ¢ U3 10.4 min < Ty, £ 10.8 min; and 4 x 10 *® < n <7
x 10°'% (or 10 x°107'° if the "Li abundance is not wused). This 1is a

truly remarkable achievement, and strong evidence that the standard
model is valid back as early as 10 ?* sec¢ after 'the bang'.

The standard model will be in serious straights if - the primordial
mass fraction of “He is unambiguously determined to be less than 0.22.
What alternatives exist if Y ¢ 0,227 If a generation of Pop 1III stars
wnich efficiently destroyed "He and 'Li existed, then the lower bound to
n based upon D, ?He, (and 7Li) no longer exists. The only solid lower
oound to n would then be that based upon the amount of luminous matter
in galaxies (i.e., the matter inside the Holmberg radius): n 2 0.3 X
10°'°.  In this case the predicted Y could be as low as 0.15 or 0.16.
Although 3amall amounts of anisotropy increaget!?® the primordial
oroduction of *He, recent work2?° suggests that larger amounts could
decrease the primordial production of “He. Ancther possibility 1is
neutrino degeneracy; a large lepton number (n - p- = 0(ny}) drastically
modifies the predictions of big bang nucleosynthesis.?! Finally, one
might have to discard the standard cosmology altogether.
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Primordial Jucleosynthesis as a Probe

If, based upon its apparent success, we accept the validity of the
atandard model, we can use primordial nuclecsynthesis as a probe of
cosmology and particle physiecs. For example, concordance requires: b x
107%° < n ¢ 7 x 10 '° and N_ ¢ 4. This is the most precise determination

we nave of n and-tmplies that
2.014072(T/2.7K)7 < 2y & 0.024n 2(T/2.7K)° (1.17)

0.014 < g, < 0.14,

ng/s = n/7 = (6 - 10) x 10 '*. (1.18)
i1f, as some dynamical studies suggest, Q > 0.14, then some other
non—-baryonic form of matter must account for the difference between {
and Q.. [For a recent review of the measurements of &, see refs. 22,
23.] “Numerous candidates have Dbeen proposed for the dark matter,
including primordial black naoles, axions, quark nuggecs, photinos,
gravitinos, relativistcic debris, massive neutrinos, sneutrinos,
monopoles, pyrgons, maximons, ate. [A discussion of some of these

candidates is given in refs. 3, 24.]

With regard to the limit on N | Schvartsman?® first emphasized the
dependence of the yield of “He on the expansion rate cf the Universe
during nucleosynthesis, which in turn i3 determined by g,, the effective
number of massless degrees of freedom. As mentioned above the crucial
temperature for “He synthesis is = 1 MeV -- the freeze out temperature
for the n/p ratio. At this epoch the massless degrees of freedonm
include: Y, vv, ef pairs, and any other light particles present, and so

8*=gY+7/8(ge: + Nuva) + L g (Ti/T)“+7/8 I gi(Ti/T)“
Bose Fermi
=5.5 + 1.75N + [ g.(T./T)"*+ 7/8 T g, (T, /TY" . (1.19)
v i i .21 i
Bose Fermi

dere Ti is the temperature of species i, T is the photon temperature,
and the total energy density of relativistic species is: p = Exm2T"*/30.
The limi& N, £ 4 is obtained by assuming that the only species present
are: Y, e*, and N neutrinos species, and follows because fer n 2 U4 x
10°'°, t,,, 2 10.4 min, and N, 2 4, the mass fraction of “He produced is
> 0.25 (which is greater than the observed abundance). More preclisely,
N, < 4 implies

% £ 12.5 (1.20)

or

1.75 2 1.75(N,~3) + I gy(T;/T)* + L g (T{/T)". (1.21)
Bose Fermi
At most 1 additional light (¢ MeV) neutrino species can be tolerated;
many more additional species can be tolerated if their temperatures T,
are < T. [Big bang nucleosynthesis limits on the number of light (< MeV
species have been derived and/or discussed in refs. 26.]
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The number ol neutrino species can alsoc be determined by measuring
tne width of the 2% soson: each neutrino flavor less massive than
J{m,/2) contributes * 190 MeV to the width of <the 2z°. Preliminary
~esults on the width of the 2° imply that N ¢ 0(20)%7, Note that while
2ig Dpang aucleosynthesis and the wWwidth Vof tne 2° both provide
information about the naumber of neutrino flavors, they ‘'measure'
tightly different quantities., 3ig bang nucleosynthesis i3 sensitive to
e naumber of 1ight (< MeV) neutrino species, and all other lignt
grees of freedom, while the width of the 2°© is determined by the
mber c¢f particles less massive than about 50 GeV wnich couple to the

{neutrinos among them). This issue has been recently discussed in
28.
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Given the important role occupied by big bang nuclsosynthesis, it
is clear that continued scrutiny i3 in order. The importance cof new
observational data canncot be overemphasized: extragalactic D abundance
determinations (Is the D abundance universal? What is its value?); more
measurements of the 'He abundance (What is its oprimordial value?);
2ontinued improvement in the accuracy of “He abundances in very metal
zoor HII regions (Recall, the difference between Y = .22 and Y_ = 0.23
is cruciall); and further study of the ’Li abundanfe in very oldPstellar
populations (Kas the primordial abundance of Li already been
measured?), Data from particle physics will prove useful too: a high
preclslon determination of 71,,, (i.e., &t,,, < % 0.05 min) will all ' but
eliminate the uncertainty in the predicted “He primordial abundance; an
accurate measurement of the width of the recently~found Z° vector boson
will determine the total number of neutrino species (less massive than
about 50 GeV) and thereby bound the total number of 1light neutrino
species. All these data will not only make primordial nucleosynthesis a
more stringent test of the standard cosmology, but they will also make
primordial nucleosynthesis a more powerful probe of the early Universe.

'Freeze-out' and the Making of a Relic Species

in Eqns. 1.19, 1.21 I allowed for a species toc have a temperature
whnich is less than the photon temperature. What could lead to this
nappening? As the Universe expanda it cools (T « R '), and a particle
species can only remain {n 'gocod thermal contact' if the reactions which
are lmportant for keeping it in thermal equilibrium are ocecurring
rapidly compared ¢to the rate at which T is decreasing (which is set by
the expansion rate -1/T = R/R = H). Roughly-speaking the criterion is

r > H, (1.22)
“here T = n<ev> 1s the interaction rate per particle, n is the number
density of target particles and <ov> is the thermally-averaged cross
section. When T drops below H, that reaction is said to 'freeze-out' or
‘decouple’. The temperature T (or T,) at which H = T is called the
freeze-out or decoupling temperature., [Note that if T = aT? and the

Universe is radiation-dominated so that H = (2t) ! 1.67 8*‘/2T2/m

pl-
then the number of interactions which ocecur for T < Tf is just: j% rde
f

(;'/H)|T /{n-2) = (n-2) ']. If the species in question is relativistic
£
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{To >> m;) when it decouples, then its phase space
¢istribution {in momentum space) remains thermal (i.e., 3¢se—Einstein or
Fermi~Dirac) with a temperature T, « R '. (It is a simple exercise to
show this.] So long as the photon temperature also decreases as R ', T
= T, as if the species were ctill in good thermal contact.

However, due to the entropy release when various massive species

annihilate (e.g., et pairs when T = 0.1 MeV), the photon temperature
dces not always decrease as R Y. Entropy conservation (S o
EyT?=constant) can, however, be used to calculate its_evolution; if gy

is decreasing, then T will decrease less rapidly than R '. As an exam le
consider neutrino freeze-out. The cross section for processes llke e e
++ vv is: <ov> = O-EGETZ, and the number density of targets n = T%, so
that T ® 0.2 GLT®. Equating this to H it follows that

T

£ (30 mp110;2)1/: (1.23)

"

few MeV,

i.e., neutrinos freeze out before e* annihilations and do not share in
subsequent entropy transfer. For T < few MeV, neutrinos are decoupled
and TV = R !, while the entropy density in et pairs and Ys s « R™2,
Using the fact that before ef annihilation the entropy density of the et
pairs and Ys is: s « (7/8g_+ + g, )T* = 5.5 T* and  that after e
annihilation s « g,T? = 2T§, it foIlows that after the e> annihilations

H

T,/T = [ay/(gy + T/8 gex)J‘/’

= (U4/11)v/ 3, (1.24)

Similarly, the temperature at the time of primordlal
nucleosynthesis T, of a species which decouples at an arbitrary
temperature T, can be calculated:

Ti/T = [(gy+T/8(ggx *+ Nvgv;))/g*dl‘/’
= (10.75/8, )%/ ? (for N_ = 3). (1.25)

Here g4, = g«(T4) 1is the number of species in equilibrium when the
species In question decouples. Species which decouple at & temperature
30 MeV = m /3 < T ¢ few 100 MeV do not share in the entropy release from
u* anninilbtions, and T./T = 0.91; the important factor for limits based
upon primordial nucledsynthesis (T./T)* = 0.69. Species which decouple
at temperatures Td 2 the temperature of the quark/hadron transition =
few 100 MeV, do not share in the entropy transfer when the quark-gluon

plasma [g*=8Y+gGluon + T/8(Bet * gy * Byy * 8yu * Bad * 8ss *..) 2 62]
hadronizes, and Ti/T = 0.56; (TI/T)“ = 0.10.

'Hot' relics— Consider a stable particle species X which decouples

at & temperature T, >> m,. For T < T, the number density of Xs n, just
decreases as R ! as the Unfverse expands. In the absence of entropy

production the entropy density s also decreases as R™?, and hence the
ratio n /s remains constant. At freeze-out
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nx/S = (gxeffC(3)/W2)/(Eﬂzg*d/45)-

0.2788 rp/Bxys (1.26)
where 8xe £ for a boson or 3/4 gy for a fermion, gxy4 = g*(Td), and
5(3) { 20206... . Today s = 7.1 n,, so that the number density and
masg density of Xs, are

nX = (EgXEff/g*d)nY’ (1.27)
By = py/o, = 7.6(m,/100eV) (Byepp/Bagin ~(T/2.7TK)%. (1.28)

Note, that if the entropy per comoving volume S has increased since the
X decouplec¢, e.g., due to entropy production in a phase transition, then
these values are decreased by the same factor that the entropy
increased. As discussed earlier, Qh? must be < 0(1), implying that for a
stable particle species

mx/100 eV ¢ 0.13 E{.d/gxeff; (1-29)

for a neutrino species: Td = few MeV, gay = 10.75, Sxeff = 2 x (3/4), so
that n =/n, = 3/11 and m, must be < 96 eV, Note that for a species which
decoupfes very early (say Eryg = 200), the mass limit (1.7 keV for g .rr

= 1.5) which =« g4, is much less stringent.

Constraint (1.29) obviously does not apply to an unstable particle
with 1 < 10-15 billion yrs. However, any species which decays
radiatively is subject to other very stringent constraints, as the
photons from its decays can have varicus unpleasant astrophysical
consequences, e.g., dissociating D, distorting the microwave background,
'nolluting’ various diffuse photon backgrounds, etc. The
astropnysical/cosmological constraints on the mass/lifetime of an
unstable neutrino species and the photon spectrum of the Unlverse are
shown in Figs. 1.5, 1.6.

*Cold' relics- Consider a stable particle species which is still
coupled to the primordial plasma (Ir > H) when T = m__ As the temperature
falls below m_, its equilibrium abundance is given by

- / / -
n./ny = (Byepp/2)(n/8)1 % (m /Ty Fexpl-m /T), (1.30)
- / -

N/s = 0.17(8yepp/8x) (my/T)? Pexpl-m /T), (1.31)
and in order to maintain an equilibrium abundance Xs must diminish in
number {by annihilations since by assumption the X 1is stable). So 1long
as nn . Dy (ov) > H the equilibrium abundance of Xs is maintained.
When ? nn = H, when ? Tf the Xs 'freeze—out' and their number density
n, decreases only due to the volume increase of the Universe, so that

for T £ Tf
nx/s = (nx/s)le. (1.32)

The equation for freeze-out (rann = H) can be solved approximately,
giving



zvidence for a Baryon Asymmetry

Within the solar system we can be very confident that there are no
concentrations of antimatter (e.g., antiplanets). If there were, solar
“ind particles striking such objects would be the strongesat Y-ray
3ources in the sky. Also, NASA hnas yet to lose a space probe because it
anninilated with antimatter in the solar system.

Cosmic rays more energetic than Q0(0.1 GeV) are generally believed
Lo boe of Mextrasolar" origin, and thereby provide us with samples- of
material from throughout the galaxy {and possibly beyond). The ratio of
antiprotons %o Dprotons in the cosmic rays is about 3 x 19 “, and the
ratic of anti-"He to *He is less than 10 * (ref. 35). Antiprotons are
expected to be produced as cosmic-ray secondaries (e.g. p + p + 3p + p)
at about the 12 * level. At present pboth the spectrum and total flux of
cosmic-ray antiprotons are at variance with the simplest model of their
production as secondaries. A number of alternative scenariocs for their
origin have been proposed including the possibility that the detected ps
are cosmic rays from distant antimatter galaxies. Although the origin of
these 55 remains to be resclved, it is clear that they do¢ not provide
evidence for an appreciable gquantity of antimatter in our galaxy. [For a
recent review of antimatter in the cosmic rays we refer the reader to
ref. 35.]

The existence of both matter and antimatter galaxies in a cluster
of galaxies containing intracluster gas would lead toc a significant
Y-ray flux from decays of =°s produced by nucleon-antinucleon
annihilations. Using the observed Y-ray background flux as a constraint,
Steigman®?® argues that clusters like Virgo, which is at a distance =20
Mpe (= 10%2® cm) and contains several hundred galaxies, must not contain
both matter and antimatter galaxies.

Based upon the above-mentioned arguments, we can say that if there
gxist equal guantities of matter and antimatter in the Universe, then we
can be absolutely certain they are separated on mass scales greater than
E Mg, and reasconably certain they are separated on scales greater than

1=100)

M alax = 10'2-10'*M,. As discussed below, this fact 1is
virtually %mposgible to reconci?e with a symmetric cosmology.

It has often been pointed out that we drive most of our direct
knowledge of the large-scale Universe from photons, and since the photon
i1s a self-conjugate particle we obtain no clue as to whether the source
is made of matter or antimatter. Neutrinos, on the other hand, can in
principle reveal information about the matter—-antimatter composition of
their source. Large neutrino detectors such as DUMAND may someday
provide direct information about the matter-antimatter composition of
the Universe on the largest scales.

Baryons account for only a tiny fraction of the particles in the
Universe, the 3K-microwave photons being the most abundant species (yet
detected). The number density of 3K photons is n, = 399(T/2.7K)* cm .
The baryon density 1is not nearly as well determined. Luminous matter
{baryons in stars) contribute at least 0.0l of closure density (nlu >

0.01), and as discussed in Lecture 1 the age of the Universe requires



[B¥]
3

that 9 (and 2,) must be < 0(2). These direct determinations place the

haryon- %o photon ratio n = n,./n in the range 3 x 10 ' vro 6 x 10 %, is
z also discussed in Lecture 1 the yields of big-bang nucleosynthesis
depend directly on n, and the production of amounts of D, *He, “He, and

‘Li that are consistent with their present measured abundances restricts
n to the narrow range (4-7) x 10 '°,

Since today it appears that n, >> ng, n is also the ratio c¢f net
barycn number to photons., The numBer of photons in the Universe has not
remained constant, but has increased at various epochs when particle
species have annihilated (e.g. et pairs at T = 0.5 MeV). Assuming the
expansion has been isentropic (i.e. no significant entropy production),
the entropy per comeocving volume (= sR?) has remained ccnstant. The
"known entropy" is gpresently about equally divided between the 3K
photcons and the three cosmic neutrinoc backgrounds (e, uw, 7). Taking this
to be the present entropy, the ratio of baryon number to entropy 1s

Ng/s = (1/7)n = (6-10) x 16 '', (2.1)

where Mg = ny - ng and n 1s taken to be in the range (4-7)y x 10 '°. So
long as the expansion is isentropic and baryon number 1s at least
effectively conserved this ratio remains c¢onstant and {3 what I will
refer to as the baryon number of the Universe.

Although the matter-antimatter asymmetry appears to be '"large"
today (in the sense that ng = ny >> ng), the fact that ng/s = 10 *°
impiies that at very early times the asymmetry was "tiny" (nB << ny). To
see this, let us assume for simplicity that nucleons are the fundamental
baryons. Earlier than 10 ® s after the bang the temperature was greater
than the mass of a nucleon. Thus nucleons and antinucleons should have
been about as abundant as photons, Ny = ng = ny. The entropy density s
1s  =gy4ny = ggnhy = 0(102)ny. The constancy of ng/s = 0(1C 1) requires
that for t < 10 ®'s, (n - ng)/ng(=10%2ng/s) = 0(10 ®}. During its
earliest epoch, the nlverse was nearly (but not quite) baryon
symmetric.

The Tragedy of a Symmetric Cosmology

Suppose that the Universe were initially locally baryon symmetric.
Earlier than 10 ® s after the bang nucleons and antinucleons were about
as abundant as photons, For T < 1 GeV the equilibrium abundance of
nucleons and antinucleons is {(n,/n Ypg = (my/T}? * exp(-m,/T), and as
the Universe cooled the number of nu leons and antinucleons would
decrease tracking the equilibrium abundance as long as the annihilation
rate Fann = nN(gv)ann = ”Nm;z was greater than the expansion rate H. At
a temperature T annihilations freeze out = H), nucleons and
antinucleons being so rare they can no longer ggnd each other to
annihilate. Using Egn. 1.33 we can compute T_.: T. = 0(20 MeV). Because
of the 1incompleteness of the annihilations, residual nucleon and
antinucleon to photon ratios {(given by Eqn. 1.34) ns/n. = ny/n. = 10 '°
are "frozen in." Even if the matter and antimatter could subsequently be
separated, N,/n is a faetor of 10® too small. To avoid 'the
annihilation catastrophe', matter and antimatter must be separated on
large scales before t = 3 x 10 * s(T = 20 MeV).



Statistical fluctuations: One possible mechanism for doing this s

statiscicel {Poissocn) fluctuatiocns. The co-moviﬂg volume <that
ancompasses our galaxy today contains =10!?2 Mn = 10°% saryons and =1Q7°
pnotcns. EZarlier than 10 ¢ s after the bang this same comoving volume
sontained *107% pnotons and =107?% paryons and antibaryons. In order to
avold the annihilation catastrophe, %this volume would need an excess of
baryons over antibaryons of ® 10%%, but from statistical fluctuations
one would expect N_ - Np = O(NB’Z) = 3 x 10%° - a mere 29 1/2 orders of

magnitude too small?

Tausality constraints: Clearly, statistical fluctuations are of no
help, 50 consider a nypothetical interaction that separates matter and
antimatter. In the standard cecsmology the distance over which light
signals (and hence causal effects) could have propagated since the bang
(the horizon distance) is finite and * 2t. When T = 20 MeV (t = 3 x
10 ? s) causally coherent regions contained only about 103 M@, Thus, in
the standard cosmology causal processes could have only separated matter
and antimatter into lumps of mass < 10 ° Mg << M 1012 Mg, [In
Lecture 4 I will discuss inflationary scenarlos, g%%esg scenarios it
i3 possible that tne Universe is globally symmetrlc, while asymmetric
lecally (within our observable region of the Universe). This is possible
because inflation removes the causality constraint.]

It should be clear that the two observations, nao, >> ns on sScalas at
least a3 large a3 10%2 Mg and n /ny = (4-7) x 10 '°, effectively render
all baryon-symmetric cosmclcogies unZenable. A viable pre—-GUT cosmology
needed to have as an initial condition a tiny baryon number, Np/s =
(6-10) x 10 '!'--a very curious initial condition at that!

The Ingredients Necessary for Baryogenesis

More than a decade ago Sakharov®® suggested "that an initially
baryon-symmetric Universe might dynamically evolve a baryon excess of
2(10°'°),  which after baryon—antibaryon annihilations destroyed
essentially all of the antibaryons, would leave the one baryon per 10!°
photons that we observe today. 1n his 1967 paper Sakharov outlined the
three ingredients necessary for baryogenesis: {a) B-nonconserving
interactions; {(t) a violation of both C and CP; {e¢) a departure from
thermal equilibrium.

It is clear that B{baryon number) must be violated if the Universe
begins baryon symmetric and then evolves a net B. In 1967 there was no
motivation for B nonccnservation. After all, the proton lifetime is more
than 35 orders of magnitude longer than that of any unstable elementary
particle--pretty good evidence for B conservation. Cf course, grand
unification provides just such motivation, and proton decay experiments
are likely to detect B nonconservation in the next decade if the proton
lifetime is < 107%? years.

Under C (charge conjugation) and CP (charge conjugaticn <combined
with parity), the B of a state changes sign, Thus a state that is either
C or CP invariant must nave B = 0. If the Universe begins with eqgual
amounts of matter and antimatter, and without a preferred direction (as
in the standard cosmology), then its initial state 1is both C and CP
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invariant. Unless both C and CP are violated, the Universe will remain C
and C°?P invariant as it evolves, and thus cannot cevelcp a net baryon
number even If B {s not conserved. Both C and CP viclaticons are needed
o provide an arrow to specify that an excess of matter be produced. C
is maximally violated in the weak interactions, and both C and CP are
violated in the K%-K° system. Although a fundamental understanding of CP
vicolation 18 still lacking at present, GUTs can accommodate CcP
violaticn, It would be very surprising if CP violation only occurred in
the K°-K° system and not elsewhere in the theory also (including the
3~-nonconserving sector). In fact, without miraculous cancellations the
CP violation in the neutral kaon system will give rise to CP violation
in the B-nonconserving sector at some level.

The necessity of a departure from thermal equilibrium is a bit more
subtle, It has been shown that CPT and unitary alone are sufficient to
guarantee that equilibrium particle phase space distributions are given
by: f(p) = [exp(u/T+E/T)+1] '. In equilibrium, processes like Y + Y +«+ p
- 0o imply that u_ . ~ug, Wwhile processes like (but not literally) Y + Y
~* b * b require that u = 0. Since E* = p? + m® and my = mg by CPT, it
Tollows that in thermal equilibrium, mty = ng. [(Note, n =
Jaipfip)/(am)®,

Because the temperature o¢f the Universe 1is changing on a
characteristic timescale H™ !, thermal equilibrium can ¢nly be maintained
if the rates for reactions that drive the Universe to equilibrium are
much greater than H. Departures from equilibrium have occurred cften
during the history of the Universe. For example, because the rate for Y
+ matter -+ Y' + matter' is << H today, matter and radiation are not in
equilibrium, and nucleons do not all reside in ®*°Fe nuclei (thank God!).

The Standard Scenario: Cut—of-Equilibrium Decay

The basice idea of bparyogenesis has been discussed by many
zuthors.?7 "2 The model that incorporates the three ingredients
2iscussed above and that has become the "standard scenario" is the

so~called out-¢f-equilibrium decay scenaric. I now describe the scenario
in some detail.

Denote by "X" a superheavy (2 10!“ GeV) boscn whose interactions
violate B conservation. X might be a gauge or a Higgs boson (e.g., the
LY gauge bosons in SU(5), or the <color <triplet component of the 5
dimensional Higgs). [(Scenarios in wnich the X particle is a superheavy
permlo? have also been suggested.] Let its coupling strength to fermions

2 and 1ts mass be M., From dimensional ccnsiderations its decay

rate Ty r ' should te

rD = aM,. (2.2)

At the Planck time (= 10 *® s8) assume that the Universe is baryon

symmetric (nB/s = 0), with all fundamental particle species (fermions,
gauge and ngg; bosons) present with equilibrium distributions, At this
epoch T = g, m., =3 x 10'® GeV >> M, (Here I have_taken gx = 0(100);

in minimal SU(5) E = 160.) So at the Planck time X, X bosons are very
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Fig. 2.1 The abundance of X bosons relative to photons. The
broken curve shows the actual abundance, while the solid
curve shows the equilibrium abundance,
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Fig., 2.2 Important rates as a function of z = M/T. H 1is the
expansion rate, T. the decay rate, T the inverse decay
rate, and T_ the 2 ++ 2 B scattering™ rate. Upper llne
marked H cofresponds to case where K << 1; lower line the
case where K > 1. For K << 1, Xs decay when z = Zqi for K

> 1, freeze out of IDs and S occur at z = Z;p and Zg.
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retativistic and up to statistical factcors as abundant zs photons: nx =
ny = ny. Nothing of importance cccurs until T = M,

For T < M the equilibrium abundance of X, X bosons relative to
photons 1is

Xeg = (M/T)S/* exp(—M/T),
where X = pn_/ny is just the number of X, X bosons per comoving volume.
In order for f % bosons to maintain an equilibrium abundance as T falls
below M, they must be able to diminish in number rapidly compared to H =
'T/T|. The mest important process iIn this regarc¢ is decay; other
processes (e.g. annihilation) are higher order in a. If T_ >> H for T =
M, then ¥, X bocsons can adjust their abundance (by decay) Fapidly enough
so that X "tracks" the equilibrium value. 1In this case thermal
equilibrium is maintained and no asymmetry i{s expected tc evolve.

More interesting is the case where Iy < H = 1.66 g*'/zTZ/mpl when T

= M, or equivalently M > Ey' 1/2410%% GeV. In this case,

X, X bosons are not decaying on the expansion timescale (1 > t) and so
remain as abundant as photons (X = 1)} for T < M; hence they are
overabundant relative to their equilibrium number. This overabundance
{indicated with an arrow in Fig. 2.1) is the departure from thermal
equilibrium. Much later, when T << M, FD = H (i,e. t = 1), and X, X
bosons begin to decrease in number as a result of decays. To a good
approximation they decay freely since the fraction of fermion pairs with

sufficient center-of-mass energy to produce an X or ? is = exp(—-M/T) <K
1, which greatly suppresses inverse decay processes exp{-M/T)T
<< HY}). Fig. 2.1 summarizes the time evolution of x. E?g. 2.2 shows the
relationﬁhlp of the various rates (T » I'tp» and H) as a function of
M/T(e t!

Now consider the decay of X and ¥ Dbosons: suppose X decays to
channels 1 and 2 with baryon numbers B, and B,, and branching ratios r
and (1-r). Denote the corresponding quantities for ¥ by -B,, -B,, r, and

(1-r) [e.g. 1 = (gqg), 2 = (qt), B, = =-2/3, and B, = 1/3]. The mean net
baryon number of the decay pgoducts_of the X and X are, respectively, Bx
= rB, + (1-r)B, and B; = -pB,-(1-r)B,. Hence the decay of an X, X pair
on average produces a baryon number e,

€ = B, + By = (r-r)(B,~B,). (2.3)
If By, = B,, &€ = 0, In this case X could have_ been assigned a baryon
number B,, and B would not be violated by X, X boscns.

It is simple to show that r = r unless both C and CP are violated.
Let X = the charge conjugate of X, and r ., r_, r,, r, dencte the
respective branching ratios in the upward and downward directions. [For
simplicity, I have reduced the angular degree of freedom to up and

down.] The quantltles r and r are branchlng ratios averaged over angle:
ro= (r+r,)/2, r = (r +r )/2 and € = (r,=pr,+r - r )/2. 1If C is conserved,
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Py = ;* and r, = F&, and ¢ = 0, If CP is conserved r, = r_ and r, = F+,
and once again ¢ = 0.

When the X, X bosons decay (T << M, t = 1) n, = ny = ny. Therefore,
the net baryon number density produced is Np = eny. The entropy density
8 = Beny, and so the baryon asymmetry produced is ng/s = €/g% = 10 * e,

Recall that the condition for a departure from equilibrium to occur
1s K = (Irp/H) 7.y <1 or MO gx''* am_,. If X is a gauge boson then o =
1/45, and so M must be > 10'® GeV. If E is a Higgs Dboson, then a 1is
essentially arbitrary, although a = (m /M = 10 * - 10 & if tne

X is in the same representation as the light ﬁ?gﬁs bosons responsible
for giving mass to the fermions (here m, = fermion mass, M, = mass of
the W boson = 83 GeV). It is apparently easier for Higgs bosons_ }0
satisfy this mass e¢ondition than it is for gauge bosons. If M > g

then only a modest C, CP-viglation (g = 0 *) is necessary to
exgial « (6=-10) x 10 ''. As I will dlSCUSS below ¢ i3 expected to
be larger ?or a Higgs boson than for a gauge Dboson. For both these
reasons a Higgs boson 1is the more likely candidate for producling the
baryon asymmetry.

Numerical Results

Boltzmann equations for the evolution of n./s have been derived and
solved numerically in refs. 43, 44, They basically confirm the
correctness of the qualitative picture discussed above, albeit, with

some important differences. The results can best be discussed in terms
of ‘ ‘

-~
in

TD/EH(M) = ampl/3g*1/2M- (2.4%)

3 x 107 o GeV/M.

K measures the effectiveness of decays, i.e., rate relative to the
expansion rate, X measures the effectiveness of B-nonconserving
processes 1in general because the decay rate characterizes the rates in
general for B nonconserving processes, for T < M (when all the action
happens}:

- /
Tip = (M/T)?*"* exp(=M/T) rp, (2.5)
-3 5
where T is the rate for inverse decays {(ID), and I, is the rate for 2

“+ 2 % nonconserving scatterings (S) mediated by R. [A is a numerical
factor which depends upon the number of scattering channels, etc, and is
typically 0(100-1000).]

{It is simple to see why ' « a(T/M)5rD x g?T35/M*, T. =2 n(gv); n =
T and for T < M, (ov) « a2T?/M*, Note, in some supersSymmetric GUTs,
there exist fermionic partners of superheavy Higgs which mediate B (and
also lead to dim-5 B operators). In this case (ov) = a®*/M? and ry =
Aa(T/M)’PD, and 2 «+ 2 B scatterings are much more important.]
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The time evoluticon of the baryon asymmetry (nB/s VS z = M/T « tl/z)
and the final value of the asymmetry which evolves are shown in Figs.
2.3 and 2.4 respectively. For K < 1 all B nonconserving processes are
ineffective (rate < H) and the asymmetry which evolves is just e/g, (as

predicted in the qualitative picture). For Kc > K > 1, where Kc is
determined by

K, (&n KC)_Z'“ = 300/Aa, (2.7)
s 'freeze out' before IDs and can be ignored. Equilibrium is maintained

to some degree (by Ds and IDs), however a sizeable asymmetry still
evolves

Nng/s = (e/gs) 0.3 K '(&nK) °* %, (2.8)

This is the surprising result: for Kc > K >> 1, equilibrium s not well
maintained and a2 significant n,/s evolves, whereas the qualitative

plieture would suggest that for >> 1! no asymmetry should evolve. For K
> Kc’ S are very important, and the npg/s wnhich evolves becomes
exponentizlly small:

ng/s = (c/gy) (AKa) 1'% exp[-4/3 (AKa)'’*1. (2.9)
{In supersymmetric models which have dim~-5 B operators, Kc(gn}{c)—"2 =
18/Aa and ths analog of Eqn. 2.9 for K > K is: ng/s = {(e/gx) AakK

exp[-2(AaK)! 2].] ¢
For the XY gauge bosons of SU(5) a = /45, A = few x 10%, and M =

few x 10'* GeV, so that Kyy = 0(30) and Ko ® 100. The asymmetry which
could evolve due to these bo30ns is = 10 * (€,./g4). For a color triplet

Higgs a =~ 410 ° (for a top Qquark mass ofxﬁo GeV) and A = few x 10°%,
leading to Ky = 3 x 10'* GeV/My ana K, = few x 107, For My ¢ 3 x 10%*
GeV, Ky < 1 and the asymmetry which could evolve is = e,/gg.

Very Out-of-Equilibrium Decay

If the X boson decays very late, when M >> T and p > , the
additional entropy released 1in its decays must be takeén into acdcount.
This 1is very easy to do. Before the Xs decay, p = p * Ppad = Py = Mn. .
After they decay p, = p, = (n%/30)gs Tpy = (3/4)sTpy (s5,Tgpy = entropy
density and tempera%ure a?ger the X decaysg. As usua assume that on
average each decay produces a mean net baryon number e. Then the
resulting ng/s produced is '

nB/S

snx/s,

"

(3/78)¢ Toay/M (2.10)

[Note, I have assumed that when the Xs decay ¢, >> Ppag S0 that the
initial entropy c¢an be ignored compared to entropy proauced by the
decays; this assumption guarantees that T < M. I have also assumed
that T << M s¢ that IDs and S processes can be ignored. Finally, note
that how the Xs ©produce a barycn number of ¢ per X 1s irrelevant; it
could be by X + g's &'s, or equally well by X » ¢s5 » g's &'s (¢ = any
other particle species).]
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Fig. 2.3 Evolution of nB/s as a function of z = M/T (7
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For K <« ' /s is produced when X3 decay
out-of-equilibrium (z >> 1}. For Kc > K> 1, /3 = z!
(due to 1IDa) until the IDs freezé€ out (z = )}, For K>
K 2 ++ 2 scatterings are important, and nB/s decreases

vgry rapidly until they freeze out.
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4 The final baryon asymmetry (in units of £/B,) as a
function of K = 3 x 10'7 a GeV/M. For K < 1, n,/s is
independent of K and = €/gy. For K > K > 1, /a
decreases slowly, = 1/(K(£nK)°"*). F8r K > K_ (when 2«
2 scatterings are/ important), nB/s ¢ decreases
exponentially with K!' ",
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Note that the asymmetry produced depends upon the ratio TRH/M and
not itself~~this s of scome interest in inflationary scenarios in
Wwhich @%e Universe does not reheat to a high enough temperature for
baryogenesis to proceed in the standard way (out-of~ equilibrium
decays). For reference Tpy can be calculated in ternms of T, * r '; when
the Xs decay (t ™ t , H RE ¢t ' = T): Tr? = H? =« 8mp x/3mp}. Using the fact

¥

that Py = gx(m? /30)Tgy* it follows that
- -1/
Tra = 8x " (Imy (2.11)

The C,CP Vieclation €

The crucial quantity for determining n,/s is g--the C, CP violatlion
in the superheavy bhoson system, Lacking 'The GUT', € cannot be

calculated precisely, and hence np/s cannot be predicted, as, for
example, the “He abundance can be.

The quantity € « (r-r); at the tree graph (i.e., Born
approximation) level r-r must vanish. Non-zero contributions to (r-r)
arise from higher order loop corrections due to Higgs <couplings which
are complex.“'+*%:%® For these reasons, it is generally true that:

N .
CHiggs < O0(a”) sin &, (2.12)
N+1 ; .
Egauge < Ofa ) sin 6, (2.13)
where a is the coupling of the particle exchanged in loop (i.e., a =
g2/4%), N > 1 is the number of loops in the diagrams which make the

lowest order, non-zero contributions to (r- r), and § is the phase ¢f
some complex coupling. The €, CP violation in the gauge boson systemnm
occurs at 1 loop higher order than in the Higgs because gauge couplings
are necessarily real. Since a ¢ Cgauges € is at most 0(10 ?*)-—which is
plenty large enough to explain n /5" = %o 19, Because K for a Higgs 1is
likely to be smaller, and because T, CP viclation occurs at lower order
in the Higgs boson system, the out-of-equilibrium decay of a Higgs is
the more likely mechanism for pgoducing nB/s, [No additional
cancellations occur when calculating (r-r) in supersymmetric theories,
so these generalities also hold for supersymmetric GUTs.]

In minimal SU(5)~-one 3 and one 24 of Higgs, and three families of
fermions, N = 3, This together with the smallness of the relevant Higgs
couplings implies that e, ¢ 10 '°® whiech is not nearly enough."!'*"%+%¢
With U4 families the relevant couplings can be large enough to obtain ¢
= 10 °--if the top quark and fourth generation quark/lepton masses are
O(m_ ) (ref. 47). By enlarging the Higgs sector (e.g., by adding a second
5 or a 45%), (r-r) can be made non—zero at the 1-loop level, making e, =
10 ® easy to achieve,

In more complicated theories, e.g., E6, $(10), etc., € = 10 * can
also easily be achieved. However, to do 80 resatricts the possible
symmetry breaking patterns. Both Eé and S0(10) are C-symmetric, and of
course C—-symmetry must be broken before € can be non-zero. In general,
in these models ¢ is suppressed by powers of M./M. where M- (M,) i3 the

. G C G
scale of C(GUT) symmetry breaking, and so c cannot be significantly

smaller than MG'



It seems very unlikely that e can be related to the parameters of
the K®-K° system, the difficulty being that not enough C, CP violation
can be fed up to the superheavy boson system. It has been suggested that
€ could be related to the electric dipole moment of the neutron,*®

Although baryogenesis is nowhere near being on the same firm
footing as primordial nucleosynthesis, we now at least have for the
first time a very attractive framework for understanding the origin of
n./s = 10 '°. A framework which is so attractive, that in the absence of
o%served proton decay, the baryon asymmetry of the Universe Is probably
the best evidence for some kind of quark/lepton unification. [In writing
up this lecture I have borrowed freely and heavily from the review on
baryogenesis written by myself and E. W. Kolb (ref.k9) and refer the

interested reader there for a more thorough discussion of the details of
varyogenesis.]

LECTURE 3: MONOPOLES, COSMOLOGY, AND ASTROPHYSICS

Birth: Glut or Famine

In 1931 Dirac®® showed that if magnetic monopoles exist, then the
single-valuedness of quantum mechanical wavefunctions require the
magnetic charge of a monopole to satisfy the quantization condition

g = ngy, n =0, 1, 2 ...
gp = 1/2e = 69e.

However, one is not required to have Dirac monopoles in the theory-—-you
can take ‘'em or leave 'em! In 1974 't Hooft®*! and Polyakov®?
independently made a remarkable discovery. They showed that monopoles
are obligatory in the low—-energy theory whenever a semi-simple group G,
e.g., SU(5), breaks down to a group G' Xx U{1) which contains a U(1}
factor [e.g., SU(3) x SU(2) x U(1)); this, of course, 1is the goal of
unification. These monopoles are associated with nontrivial topology in
the Higgs field responsible for SSB, topological knots if you will, have
a mass m, = O(M/a) [= 10'® GeV in SU(5); M = scale of SSBJ], and have a
magnetic c%arge which is a multiple of the Dirac charge.

Since there exist no contemporary sites for producing particles of
mass even approaching 10'® GeV, the only plausible production site is
the early Universe, about 10 ?* s after 'the bang' when the temperature
was = 0(10'* GeV). There are two ways 1in which monopoles can be
produced: (1) as topological defects during the SSB of the unified group
G; (2) in monopole—antimonopole pairs by energetic particle collisions.
The first process has been studied by Kibble®?, Preskill?®"*, and
Zel'dovieh and Khlopov®®, and I will review their important conclusions
nere.

The magnitude of the Higgs field responsible for the SSB of the
unified group G i3 determined by the minimization of the free energy.
However, this does not uniquely specify the direction of the Higgs field
in group space. A monopole corresponds to a configuration in which the
direction of the Higgs field in group space at different points in
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onysical space 1s topologically distinet from the configuration in which
the Higgs field points in the same direction {(in group space) everywhere
in pnysical space (which corresponds to no monopole):

+ = direction of Higgs field in group space
*
+ o+ 4 - +
+ o+ ¢ +
no monopole monopole

Clearly mcnopole configurations canncot exist until the S3B [G + G
« U{1)] transition takes place. When spontaneous symmetry breaking
occurs, the Higgs field can only be smoothly oriented (i.e., the no
monopole <configuration) on scales smaller <than some characteristic
correlation length £. On the microphysical side, the inverse_Higgs mass
at the Ginzburg temperature (T.) sets such a scale: ¢ = my (Ty) (in a
second—~order phase transition)®®. {[The Ginzburg temperature is the
temperature below which it becomes improbable for the Higgs field to
fluctuate between the SSB minimum and ¢ = 0.1] Cosmological
considerations set an absclute upper bound: § £ dH(: t in the standard
cosmology). [Note, even if the horizon distance dH(t) diverges, e.g.,
pecause R « t? (n > 1) for t ¢ ¢ 1, the physics horizon H ' sets an
absolute upper bound on £, which is anerically identical.] On scales
larger than £ the Higgs field must be uncorrelated, and thus we expect
of order 1 monopole per correlation volume (= E?) to be produced as a
topclogical defect when the Higgs field freezes out.

Let's focus on the case where the phase transition is either second
order or weakly-first order. Denote the critical temperature for the

transition by T, (= 0(M)), and as before the monopole mass by my =
0{M/a). The age o¢f the Universe when T = T s given in the standard
cosmology by: t, = 0.3 g*_‘/zm 1/To?s ef._Eqn. 1.12. For SU(5): T, =
oYY GeV, m = qQ!'%  geV Snd £ = 10 % s. Due to the fact that the
freezing of tﬂe Higgs field must beC uncorrelated on scales > g, we
expect an initial monopol€ abundance of 0{(1) per correlation volume;

using dy(t,) as an absolute upper bound on £ this leads to: (nyly; = 0(1)
t, *. Comparing this to cur fiducials Syor and Np_yops we find that the
initial monopecle-to-entrcpy and monopole-go—baryon number ratics are:

Ny/s 2 102 (T,/myq)°%, (3.1a)

pl
12 3
nm/nB _>_ 10 (Tc/mpl) . (3-1b)
(Note: <F,>, the average monopole flux in the Universe, and Q,, the
fraction og critical density contributed by monopoles, are related to

nM/s and nM/nB by:

<Fu> = 101°(ny/s) em * sr ' sec ', (3.2a)
(HM/nB) em 2 sr ' sec ' , (3.2b)
QMhz = 102”(nM/s)(mM/101‘GeV) . {3.3a)
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= 10MNCE > (my /10 % GeV) (3.3Db)
where tne monopole velccity has been assumed to be = 10 3¢ (this
assumption Wwill be discussed in detail later).

Presikiil?®® has shown that unless n,/s is > ip '°
monopole-antimonopole annihilations do _not significantly reduce the
Initial monopole_abundance., If ny/s > 10 19, he finds that Ny/s 1is
reduced to = 10 '° by annihilations. For T _ < 10!'% GeV our estimate for
n,/s is < 10 '°, and we will find that in the standard cosmoiogy T _ must
pe << 10'® GeV to have an acceptable monopole abundance, so for our
purpcses we can ignore annihilations. Assuming that the expansion has
been adiabatic since T = T,+ this estimate for ny/s translates into:

Fy> = 1077 (T /10 GeV)® cm 2 sr™! s}, (3.4a)

Gy = 102 (T,/10'" GeV)?(my/10'° GeV) (3.4p)

-—a flux that would make any monopole hunter/huntress ecstatic, and an
iy that is unacceptably large (except for T. << 10'* GeV). As was

discussed previously, @ can be at most O(few), so we have a very big
problem with the simplest GUTs (in whicn TC = 19'% GeV). This is the
so-called 'Monopole Problem'. The statement that Q, = 10! for T = 10"
GeV is a bit imprecise; «clearly if k < 0 (corresponding té & < 1)

monopcle production cannot clcse the Universe (and in the process change
the geometry from being infinite in extent and negatively-curved, to
being finite in extent and positively-curved). More precisely, a large
monopole abundance would result in the Universe becoming
matter-dominated much earlier, at T = 10% GeV (T _/10'* GeV)? (my/101"°
GeV), and eventually rga??ing a temperaturyzof 3 at the yocung age of t

= 10" yrs(T_/10'* GeV) °? (mM/1015 GeV) ! The requirement that Oy <
O(few) implfes that
Te <104 Gev (Qy < few)

where I have taken My to be 0(100 T_,). Note, given the generous estimate
for &, even this is probably not safe; if one had a GUT in which Tc =
10'" GeV a more careful estimate for £ would be called for.

The Parker bound (to be discussed below) on the average moncpole

flux in the galaxy, Fp> ¢ 10 *® em™? sr”! s7!, results in a slightly
more stringent constraint:

To £ 10'® Gev (Parker bound)

The most restrictive constraints on T_ follow from the neutron star
catalysis bounds on the monopcle flux (afso to be_discussed below) and
the most restrictive of those, <FM> < 10 *7 em 2 sr ' 371, implies that

To <108 Gev (Neutron star catalysis bound)
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Note, to obtain these bounds I hnave compared my estimate for the
average monopole flux in the Universe, Egn. 3.#%a, with the astrophysical
oounds on the average flux of monopoles in our galaxy. If monopoles
cluster in galaxlies (whienh I will later argue is unlikely), then the
average galactice flux of monopoles is greater than the average flux of

monopoles in the Universe, making the above bounds on Tc more
restrictive.

If the GUT transition is strongly first order (I am excluding
inflationary Universe scenarios for the moment), then the translition
will proceed by bubble nucleation at a temperature Tn (<< T.), when the
nucleation rate becomes comparable to the expansion rate H. Within each
bubble the Higgs field 1is <correlated; however, the Higgs fleid 1in
different bubbles should be uncorrelated. Thus one would expect 0(1)
monopole per bubble to be produced. When the Universe supercools te a
temperature Tn' bubbles nucleate, expand, and rapidly fill all of space;
if "y is the typical size of a bubble when this occurs, then one expects

Ny to be =r i, After the bubbles coalesce, and the Universe reheats,
the entropy densSity is once again s = Zx Tc’, 30 that the resulting
monopole to entropy ratio is: ny/s = (g*r T !, Guth and Weinberg®~’
have calculated ry and find that ry = ? ?/ln(m “/T _.*), leading to

a relatively accurate estimate for the mgnopole abungance
- ]
My/s = [1n(mgy*/To" ) {(Ty/mpy )] , . (3.5)

which is even more disasterous than the estimate for a second order
phase transition [recall, however, estimate 3.1 was an absolute lower
bound]. '

The bottom line 1is that we have a serious problem here—-—the
standard cosmology extrapolated back to T ®= T  and the simplest GUTs are
incoempatible (to say the least). One (or “both) must be modified.
Although this result is discouraging (especially when viewed in the
light of the great success of baryogenesis), it does provide a valuable
plece of iInformation about physics at very high energies and/or the
earliest moments of the Universe, in that regard a 'window' to energies
> 10'* GeV and times ¢ 10 °* sec.

A number of possible solutions have been suggested. To date the
most attractive is the new inflationary Universe scenario (which will be
the subject of Lecture Y4). In this scenario, a small regicn (size < the
horizon) within which the Higgs field could be correlated, grows to a
size which encompasses all of the presently observed Universe, due to
the exponential expansion which occurs during the phase transition. This
results in less than one monopole in the entire cobservable Universe (due
to Kibble production).

Let me very briefly review some of the other attempts to solve the
moneopole problem. Several people have pointed out that if there is no
complete unification [e.g., if G = H x U(1)], or if the full symmetry of
the GUT is not restored in the very early Universe (e.g., if the maximum
temperature the Universe reached was < T , or if 'a 1large lepton
number®®, n,/n > 1, prevented symmetry restoration at high
temperature), then there would be no monopole problem. However, none of
these poessibilities seems particularly attractive.
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Several authors®? 82 have studied the possibility that
monopole-antimonopole annihilation <could be enhanced over Preskill's
estimate, due to 3-body annihilations or the gravitational clumping of
monopoles (or poth). Thus far, this apprcach has not solved the problem.

Bais and Rudaz®?® have suggested that large fluctuations in the
Higgs field at temperatures near T could allow the monopole density to
relax to an acceptably small valué. They do not explain how this
mechanism can produce the acausal correlations needed to do this.

Scenarios have been suggested in which monopoles and antimonopoles
form bound pairs connected by flux tubes, leading to rapid
monopcle-antimonopole annihilation. For example, Linde®* proposed that
at high temperatures color magnetic charge 1s confined, and Lazarides
and Shafi®® proposed that monopoles and antimonopoles ©become connected
by 29 flux tubes after the SU(2) x U(1) SSB phase transition. In both
cases, however, the proposed flux tubes are not topologically stable,
nor has their existence even Deen demonstrated.

Langacker and Pi®® nave suggested a solution which does seem O
work. It is based upon an unusual (although perhaps contrived) symmetry
breaking pattern for SU(5):

SU(5) =+ SU(3) x SU{2) x U(1) = SU(3) =+ SU(3) x U(1)
To = 10" GeV T, Ty

superconducting phase

(note T, could be equal to T_ ), The key feature of their scenaric is the
existence of the epoch (f" = T, > T,) in which the Uu(1} of
electromagnetism 1s spontaneously broken (a superconducting phase);
during this epoch magnetic flux must be confined to flux tubes, leading
to the annihilation of the monopoles and antimonopoles which were
produced earlier on, at the GUT transition, Although somewhat contrived,

their scenario appears to be viable (however, I'll have more to say
about it shortly).

Finally, one could invoke the Tooth Fairy ({(in the guise of a
perfect annihilation scheme). E. Weinberg®’ has recently made a very
interesting point regarding ‘'perfect annihilation schemes', which
applies to the Langacker-Pi scenario®®, and even to a Tooth Fairy which
operates causally. Although the Kibble mechanism results in equal
numbers of monopoles and antimonopoles being produced, E. Weinberg
points out that in a finite volume there can be magnetlc charge
fluctuations. He shows that if the Higgs fileld 'freezes out' at T = 'I‘c
and is uncorrelated on scales larger than the horizon at that time, then
the expected net RMS magnetic charge in a volume V which is much bigger
than the horizon is

AnM = (V/tca)l/ao (3-6)
He then considers a perfect, causal annihilation mechanism which

cperates from T = T, =+ T, {(e.g., formation of flux tubes between
monopoles and antimonopoles)., At best, this mechanism could reduce the
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monopole abundance down to the net 3MS magnetic charge contained in the
horizon at T = T,, leaving a final monopole abundance of

Ny/s = 107 TcTzz/mpla' (3.7)

resulting in

9y 2 0.1(T, /10" GeV)(mys10"° GeV)(T,/10% GeV)?, (3.8a)

<Fy> 2 10 'P(T_/101°GeV)(T,/10%GeV)2em *sr 's '. (3.8b)

It is difficult to imagine a perfect anninilation mechanism which could
operate at temperatures < 10*® GeV, without having to modify the standard
SU(2} x U(1) electroweak theory; for T_ = 10'* GeV and T, = 10? GeV, _E.
Weinberg's argument®’ implies that <F,> must be > 10 2° cm 2 spr ' s !,
which would be in conflict with the most stringent neutron star
catalysis bound, F, < 10°%7 em 2 sr ' s .

Finally, I should emphasize that the estimate of nM/s based upon £
< dp(t) is an absolute (and very generous) lower bound to ny/s. Should a
modeél be found which succeeds in suppressing the monopole abundance to
an acceptable level (e.g., by having T_ << 10'" GeV or by a perfect
annihilation epoch), then the =estimate for § must be refined and
scrutinized.

If the glut of moncpoles produced as topological defects in the
standard cosmology can be avoided, then the only production mechanism is
pair production in very energetic particle collisions, e.g., particle(s}
+ antiparticle(s) ~+ monopole + antimonopole. [Of course, the 'Kibble
production' of monopoles might be consistent with the standard cosmology
{and other limits to the monopcle flux) if the SSB transition occurred
at a low enough temperature, say << 0(10!° GeV).] The numbers produced
are intrinsically small because monopole configurations do not exist in

the theory until $SB occurs (T, = M = scale of SSB), and have a mass
O(M/a¢) = 100 M = 100 T _, For this reason they are never present in
equilibrium numbers; however, some are produced due to the rare
collisions of particles with sufficient energy. This results in a

present monopole abundance of ®°®°7°

Ny/s = 102 (my/Toa,0? exp(=2my/ T ), (3.9a)
Qy = 10%%(my/ 101 °GeV) (my/ T ) exp{=2my/ T ), (3.9b)

Fy> = 10‘20m_25r‘q15“1(mM/Tmax)3 exp(=2my/Tp ), (3.9¢)

where T . is the nhighest temperature reached after S3B.

In general, m,/T = 0(100) so that @y = 0(10 %) and <F,> =
0(10°** ¢cm 2 sr‘_K"‘j s™®%¥.-3 negligitle number of monopoles. However, the
number produced 1is exponentially sensitive to My/Thaxe S© that a factor
of 3-5 uncertainty 1in my/T__ . introduces an enormous uncertainty in the
predicted production. For example, in the new inflationary Universe, the
monopole mass can be « the Higgs field responsible for 53B, and as that
field oscillates about the SSB minimum during the reheating process My
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alsoc oscillates, leading to enhanced monopole production [m /Tm in

Eqns. 3.9a,b,¢ s replaced by Im where < 1 depends upon the
details of reheating; see refs. 71,

¥pq0ax”

Cosmology seems to leave the poor monopole hunter/huntress with two
firm predictions: that there should be egual numbers of north and south
poles; and that either far too few to detect, or far too many to be
consistent with the standard cosmology should have been produced., The
detection of any superheavy monopoles would necessarily send theorists
back to their chalkboards!

From Birth Througn Adolescence (t=10 *"sec to t=3x10'7s3ec)

As mentioned in the previous section, monopoles and antimonopoles
do not annihilate in significant numbers; however, they do interact with
the ambient charged particles (e.g., monopole + e ++ monopole + e ) and
thereby stay in kinetic equilibrium (KE = 3T/2) until the epoch of e
annihilations (T = 1/2 MeV, t = 10 s). At the time of e* annihilatiocns

monopoles and antimonopoles should have internal velocity dispersiocns
of:

vy2>17% = 30 em 8T (10%° GeV/my)r/2.

After this monopoles are effectively <collisionless, and their
velocity dispersion decays « R{t) !, so that if we neglect gravitational
and magnetic effects, today they should have an internal velocity
dispersion of

<vy2>172 = 107% em 5T (101% GeV/my):/%.

Since they are collisionless, only their velocity dispersion can support

them against gravitational collapse. With such a small velocity
dispersion to support them they are gravitationally unstable on all
scales of astrophysical interest (AJeans = 10 '° LY).

After decoupling (T = 1/3 eV, ¢t = 10!'? s) [or the epoch of matter
domination in scenarios where the mass of the Universe is dominated by a
nonbaryonic component}, matter can begin to clump, and structure can
start to form. Monopoles, too, should c¢lump and participate in the
Tormation of structure. However, since they <cannot dissipate thelir
gravitational energy, they cannct collapse 1into the more condensed
objects (such as stars, planets, the disk of the galaxy, etc.) whose
formation c¢learly must have involved the dissipation of gravitational
energy. Thus, one would only expect to find monopeles in structures
whose formation did not require dissipation (such as clusters of
galaxies, and galactic haloes). However, galactic haloes are not likely
to be a safe haven for monopoles in galaxies with magnetic fields;
menopoles less massive than about 102° GeV will, in less than 10‘: yrs,
gain sufficient KE from a magnetic field of strength a few x 10 ® G to
reach escape velocity’?®, We are led to the coneclusion that initially
monopoles should either be uniformly distributed through the cosmos, or
clumped in clusters of galaxies or in the haloes of galaxies with weak
or non-existent magnetic fields. Since our own galaxy has a magnetlic
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field of strength ® few x 10 ® G, and is not a member of a cluster of
galaxies, we would expect the local flux of monopoles to be not too
different from the average monopole flux in the Universe.

Although monopoles initially have a very small internal velocity
dispersion, there are many mechanisms for increasing their velocities.
First, typical peculiar velocities (i.e., veleocities relative to the
Hubble flux) are 0(10°* ¢), leading to a typical monopole-galaxy
velocity of 10 *c. Monopoles will be accelerated by the gravitational
fields of galaxies (to = 10 ? ¢ = orbital velocity in the galaxy), and
if they enccunter them, clusters of galaxies (to = 3 x 10 % e¢). A
typical monopole, however, will never encounter a galaxy or a clusteg of

galaxies, the respective mean free paths being: Lgal (= 102¢ cm = 10 * ¢
; - L]
x age of the Universe) and Lcluster 3 x 10%** cm.
Monopoles will also be accelerated by magnetic fields. The

intragalactic magnetic field strength is < 3 x 10 '' G (ref. 74), and
results in a monopole velocity of

Vg = 3 x 10 * c (B/107'! G)y(10'® GeV/my).

The galactic magnetic field will accelerate monopoles in our galaxy to
velocities of7”? :

- - , /
Vi = 3 x 10 7 ¢ (10%° GeV/my,)t/2.

Taking all of these 'sources of velocity' into account, we can make
an educated estimate of the typical monopole-detector relative velocity
{see Table 3.1). From Table 3.1 below. it should be clear that the
typical monopecle should be moving with a velocity of at least a few x
1077 ¢ with respect to an earth-based detector. It goes without saying
that 'this fact' is an important consideration for detector design.

Although planets, stars, etec. should be monopole-free at the time
of their formation, they will accumulate monopoles during their
lifetimes. The number captured by an object is



Table 3.1 Typical Monopole-Detector Relative Velocities

DETECTCR VELOCITY MONOPOLE VELQCITY
srbit in 2/3 % 107 7% ¢ galactic 3 x 10 ? ¢ (10”’(‘:&\J’/mrﬁ.l)'/2
galaxy B-field
orbit in 107" ¢ grav. acceleration 107 ¢
solar system by galaxy
grav. acceleration 107" ¢
by sun
monopole-galaxy 1072 ¢

relative velocity

Ny = (4mR2)(n=sr)(1 + 2GM/Rvy?*)<Fyder, (3.10)
wnere M, R and 1 are the mass, radius and age of the object, v is the
monopole velocity, and £ is the efficiency with which the obJect stops

meonopoles which strikes its surface. The efficiency of capture ¢ depends
upon the mass and velocity of the monopole, and its rate of energy loss
in the object. The quantity (1 + 2GM/R Vi 2y is just the ratio of the
capture cross section to the geometrlc cross section., Main sequence
stars of mass (0.6 - 30)M,; will capture monopoles less massive than
about 10'® GeV with velocities ¢ 10 ' ¢ with good efficiency (e = 1); in
its main sequence lifetime a star will capture approximately 10%*" F_ .
monopoles’® (essentially independent of its mass). Here <Fy > = F_,,
107'% em 2 sr” ! s ', Neutron stars will capture monopoles less massive
than about 10%° GeV with velocities < 19 ? ¢ with unit efficiency,
capturing about 10%!' F_ _ monopoles in 10!° yrs. Planets like Jupiter
can Stcop monopoles less massive than about 10'% GeV with velocities <

1072, accumulating about 1022 F_, _ monopoles in 10'° yrs.’®. A planet
like the earth can only stop light or slowly-moving monopoles’® (for U
= 10'® GeV, must be < 3 x 10 % p)., Once inside, monopoles can do

interesting tﬁlngs, like catalyze nucleon decay (to be discussed below),
whicn keeps the object hot (and leads to a potentially observable photon
flux), and eventually depletes the object of all its nucleons. A
monopole flux of F__, 1Q—;‘ em™? sr ! s ' will cause a neutron star to
evaporate 19 10 F_,, '"? yrs, a Jupiter~like planet to evaporate in 5
x 10!° ,yrs, and an Earth-like planet to evaporate 1in 10!'°

F_ . ‘/2 yrs Accretion of monopoles by astrophysical objects,
nowever, does not significantly reduce the monopole flux; the mean free
path of a monopole in the galaxy is = 10*2 cm.,

Wnat are Monopoles Doing Today?--Astrophysical Constraints

The three most conspicuous properties of a GUT monopole are: (1)
macroscopic mass (= M/g-~10!% CeV = 10 °® g for SU(5)); {(il) hefty
magnetic charge h = n 6%9e (n = 1, 2, ...); (iii) the ability to

catalyze nucleon decay. Because of these propertles, monopoles, if
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present, should be <decing very astrophysically interesting things
today~-so interesting and 50 censpicuous that very stringent

astropnysical ©bounds can be placed upon their flux {(summarized in Fig.
3.7,

Thecretical prejudice strongly favors the flat cosmological model
(i.e., @ = 1), As I discussed in Lecture 1 big bang nucleosynthesis
strongly suggests that baryens contribute Qb < 0.15. In addition, the
flat rotation curves of galaxies provide streng evidence that most of
the mass associated with a galaxy is dark and exists in an extended
structure (most likely a spherical halo). Monopoles are certainly a

candidate for the dark matter in galaxies and for providing the closure
density.

As I discussed in the first lecture the age of the Universe implies

that Qh?* < o(1); ir monopoles are uniformly distributed in the cosmos,
then this constrains their average flux to be

Tl

<Fy> < 10 cm"zsr'ls“l(mewo" Gev) ', (3.11)

cf. Eqn. 3.3b. For comparison 30 ** em ?* sr’ ' s°' = 30 nmonopoles
(soccerfield) ! yr. !

If monopoles are clustered in galaxies the local galactic flux can
be significantly higher. The mass density in the neighborhocod of the sun
is about 10 2* gem *; of thnis about 1/2 is accounted for (stars, gas,
dust, etc.). Monopoles can at most provide the other 1/2, resulting in
the flux bound

Fy <5 x 10 '° ¢cm 2 sp” ) s (mHnols GeV) . (3.12)
Actually the ©bound is probably at least a factor of 10-30 more
stringent. The unseen material has a column density (= Ipdz) of no more
than about (30 kpe)(10°2° gem *) (as determined by studying the motions
of stars in the stellar neighborhood’®}. Since monopcles are effectively
collisicnless, if present, they would be distributed in an extended
spnerical halo. Flat rotation curves indicate that the scale of galactic
halos 1s C(30 kpe), so that the local column density of halo material is
Phnale ¥ 30 kpe. Comparing this to the bound on the lgc§l colugg density
o unseen material It follews that locally Phalo $ 10 % g em 7, Using
this as the limit to the density contributed %y moncpcles the flux bound
3.12 becomes

Fy < 1o tlem ?sr7tsT i (my /10 %cev) b (3.13)

A monopole by virtue of its magnetic charge will be accelerated by
magnetic flelds, and in the process can gain KE. Of course, any KE
gained must come from somewhere. Any gain in KE is exactly compensated
for by a loss in field energy: AKE = -A((B2?/8n1) x Vol]. Consider a
monopole which is initially at rest in a region of wuniform magnetic
field., It will ©be accelerated along the field and after moving a
distance ¢ the monopole will have

KE = hBf = 10''GeV(B/3x10 ®G)(L/300pc), (3.14)
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3.1 Summary of the astrophysical/cosmological limits to the

monopole flux as a function of monopole mass. Wherever
necessary the monopole velocity is taken to be 10 ' e,
The monopole catalysis _bound based _upon_white dwarfs
(ref. 93) fs: F, <2 x 10 '* (ov)_j, cm * sr ' s ! (not
shown here). The line labeled 'magnetic plasma
oscillations' is the lower bound to the flux predicted in
scenarios which evade the 'Parker bound' bY having
monopoles participate in the maintenance of the galactic
B field.
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- L1z
Vmag_ (2hB£/mMJ‘

= 3x1o"’c(8/3x1o'ﬁa)1’2(2/300pc)1’*(10*°GeV/mM)=/2. (3.15)

If the monopole is not initially a2t rest the stery is a bit
different, There are two limiting situations, and they are characterized
by the relative sizes of the initial velocity of the monopole, v and

the velocity Just calculated above, Vmag' First, }f the monopole is
moving slowly compared to Vi << vy (2hBR/m)? , then it will
undergc a large deflectlon %ue 20 the %ggnetlc field and its change in
KE will be given by 3. On the other hand, 1if Vo 2 then the
monopole will only be slightly deflected by the magnetic ?Qeld and its
change in KE will depend upon the direction of its motion . relative to
the magnetic fleld. In this situation the energy gained by a spatially
isotropic distribution of monopoles, or a flux of equal numbers of north
and south poles will vanish at first order in B-some poles will lose KE
and some poles will gain KE. However, there is a net gain in KE at
second order in B by the distribution of moncpoles as a whole:

<AKE> = (nhBQ) (vo/vmag)zfu (per monopole). (3.16)
For the galactic magnetic field B = 3 x 10°% G, & = 300 pec, and v ag = 3
x 107 % {(10'® GeV/m)'/2?, Since v_ = 10" ° ¢, monopoles less massive -~than

about 10!'7 GeV will undergo lgrge deflections when moving through the
galactic field and their gain in KE is given by Eqn. 3.14. Because of
this energy gain, monopoles less massive than 10!'7 GeV will be ejected
from galaxies in a very short time, and thus are unlikely to cluster in
the haloes of galaxies. In fact the second order gain in KE will
"evaporate™ monopoles as massive as 0(102%°GeV) in a time less than the
age of the galaxy’?. Although consideration of galaxy formation would
suggest that monopoles should cluster in galactic haloes, galactic
magnetic fields should prevent monopoles less massive than 0(102° GeV)
from clumping in galactic haloes. [These conclusions are not valid if
the magnetic field of the galaxy is in part produced by moncpoles, a
point to which I will return.]

The "no free—lunch principle" (AKE = -4 Magnetic Field Energy) and
formulae 3.15 and 3.16 can be used to place a limit on the average flux
of monopoles in the galaxy.’?®*7® ®*° If, as it is commonly believed, the
origin of the galactic magnetic field is due to dynamo action, then the
time required to generate/regenerate the field is of the order of a
galactic rotation time = 0(10% yr). Demanding that monopoles not drain
the field energy in a time shorter than this results in the following
constraints:

Ty ¢ 1017 GeV:
F <10 '%em 2sr s '(B/3 x 10 % G) (3 x 107 yr/1) x
(r/30 kpe)'’? (300 pese)t’/?, (3.17)
My 2 1017 GeV:

F < 10“15cm'zsr“s“(me101° GeV)(3x107yr/1)(300pc/L), (3.18)
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where v nas been assumed to be 10 * ¢, 1 is the regeneration time of
the field, 2 is the coherence length of the field, and r is the size of
the magnetic field region in the galaxy. Constraint 3.17 which applies

to 10'® GCeV monopoles is very stringent (less than 3 monopoles soccer
fieid” ! yr ') and is known as the "Parker bound." For more massive
monopcles (> 10'7 GeV) the "Parker bound" becomes less restrictive’®’’?
(pecause the KE gain is a second order effect); however, the mass
density constraint becomes more restrictive (cf, Fig. 3.1). These two
bounds together restrict the flux to be < 19 '* em 2 sr ' s ' {(which is
allowed for moncpoles of mass = 3 x 109 GeV).

Analogous arguments can be applied to other astrophysical magnetic
fields. Rephaeli and Turner®! nave analyzed intracluster (IC) magnetic
fields and derived a flux bound of 0(107%® em 2 sp ' s™ ') for monopoles
less massive than 0(10'? GeV). Although the presence of such fields has
been inferred from diffuse radio observations for a number of clusters
(including Coma}, the existence of IC fields is not on the same firm
footing as galactic fields. It is also interesting to note that the IC
magnetic fields are sufficiently weak so that only monopoles lighter
than 0(10'% GeV) should be ejected, and thus it is very l1ikely that
monopoles more massive than 10'® GeV will cluster in rich clusters of
galaxies, where the local mass density is 0(10%-10%} higher than the
mean density of the Universe. Unfortunately, our galaxy 1is not a member
of a rich cluster,

Several groups have pointed out that the 'Parker bound’ can be
evaded if the monopoles themselves participate in the maintenance of the
galactic magnetic field.’?*°27%! In such a scenario a monopole magnetic
plasma mode 1is excited, and monopoles only 'borrow the KE' they gain
from the magnetic field, returning it to the magnetic field a half cyele
later. In order for this to work the monopole oscillations must maintain
coherence; if they do not 'phase-mixing' (Landau damping) will cause the
oscillations to rapidly damp. The criterion for coherence to Dbe

maintained is that the phase velocity of the oscillations v no
w 1(2/2n) be greater than the gravitational velocity dispersion o? the
mgnopoles (= 10 %¢); & = wavelength of the relevant mode = coherence

length of the galactic field < 1 kpec. The monopole plasma frequency is
given by

wpl = (u'ﬂ'han/mM)l/Zl (3-19)

where n, is the monopole number density. The condition that vuy be 2
107 %¢c implies a lower bound to flux of

Fi 2 174 my vipay (02D 7,
> 10_‘“(mM/10'SGeV)(1kpc/a)zcm—zsr"S". (3.20)

Incidently, this also implies an upper bound to the oscillation period:

T = 2n/w < /v av = 3 x 10¢ yr (&/1kpe)—--a very short time compared
to other ggiactic %Emescales.

While it is possible that such scenarios could allow one to beat
the ‘Parker bound', a2 number of hurdles remain to be cleared before
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these scenarics can be called realistic or even viable. To wmention a
few, monopole oscillations can always be damped on sufficiently small
scales (recall v . (wyy/2m)&), and nonlinear effects in this very
complicated systeﬁ—-coupleﬁ electriec and magnetic plasmas in a
self-gravitating fluid, tend to feed power from large scales down to
amall scales. Can the coherence of the oscillations which is so crucial
be maintained both spatially and temporally in the presence of
inhomogeneities (after all the galaxy is not a homogeneous fluid)?

Finally, as the observational limits continue to improve, the large
monopole flux predicted in these models will be the ultimate test.
Already, the woscillation scenario for m, = 10'¢ GeV is probably
observationally excluded.

Perhaps the most intriguing property of the moncpole is its ability
to catalyze nucleon decay with a strong interaction cross section: (aov)
= 1072® cm?. Since the symmetry of the GUT is restored at the monopole
core, one would expect, on geometric grounds, that monopoles would
catalyze nucleon decay with a cross section = M"2 = 10°°**% cm®* (M ' =
size of monopole core)--which of course is utterly negligible. Rubakov®"
and independently Callan®® showed that due to the singular nature of the
potential between the s-wave of a fermion and a monopole, the fermion
wave functiocn is literally sucked into the core (technically, one might
call this 's-wave sucking'), with the cross section saturating the
unitarity bound: (ov) = (fermion energy) 2, or for low energies (ov) =
{(fermion mass) 2.

Needless to say, monopole <catalysis has great astrophysical
potential! For c¢comparison, the nuclear reaction 4p + “He + 2e* + 2ve
which powers most stars proceeds at a weak interaction rate (first step:
p + p + D) and releases only about 0.7% of the rest mass invclved, while
monopole catalysis proceeds at a strong interaction rate and releases
100% of the rest mass of the nucleon (e.g., M + n + M ¢+ " + e'). The
energy released by monopole catalysis is 3 X 102 erg g}
(ov)_,,(p/tgem ') per monopole; only about 10%*° monopoles in the sun (=
10%7 nucleons) are needed to produce the solar luminosity (= 4 x 10°°
erg s '). Here and throughcut I will parameterize {(ov) Dy:

(ov) = (ov)_,, ¢ 102° cm?,

Because of their awesome power to release energy via catalysis,
there can't be too many monopoles in astrophysical objects like stars,
planets, etc., otherwise the sky would be aglow in all wavebands from
the energy released by monopoles. [This energy released in catalysis
would be thermalized and radiated from the surface of the objeet,] The
measured luminosities of neutron stars (some as low as 3 X 10?° erg

s:‘); white dwarfs (some as low as 10%*° erg s !'); Jupiter (10%**® erg
s '); and the Earth (3 x 102° erg s ') imply upper limits to the number
of monopoles in these objects: some neutron stars {< 10!?2 (ov)_;a

monopoles); some white dwarfs (< 101°® (ov):iamonopolgs); Jupiter (g 102°

(ov)_l, monopoles); and the Earth (£ 3 x 10'® (ov).;, monopoles). In
order to <translate these 1limits into bounds on the monopole flux and

abundance we need to know how many monopoles would be expected in each



of these obliects. A4s I discussed earlier, ab initic we would expect very
Jew; shose present must have been captured since the formation of the
spject. The number is « F,, and is given oy Eqn. 3.10; hence tne limits
above can bDe used Lo cons%rain the monopole flux.

The most stringent limit on F, follows from considering neutron

sLars. A variety of techniques nave been used to obtain limits to the
iuminosities of neutron stars (recall the limit Lo the number of
monopoles is: Ny < luminosity/(10'%erg s o (ov)_,, (p/3x10'*g em ")), I

will Jjust discuss one. The other technigques lead to similar bounds on FM
and are reviewed in ref.86.

PSR 1929 + 10 is an old (= 3x10°% yr), radio pulsar whose distance
from the earth is about 60 pc. The Einstein x-ray observatory was used
to measure the luminosity of this pulsar, and it was determined to be L
= 3 x 10%° erg s ' corresponding to a surface temperature of about 30
eV, making it the coolest neutron star yet observed. In its tenure as a
neut-on star it should have captured 10!7 F monopoles. The measured

-16
luminosity sets a limit to the number of monopoles in PSR 1929 + 10, NM

< 10%'% (ov) L,,, which in turn can be used to bound <Fyd>:

~

<Fp> ¢ 10 *'(ov)j,em srts’? (3.21)

--which is less than one monopole Municn ' yr '!

The progenitors of neutron stars are main sequence (MS} stars of
mass (1-30)M which were weither too massive to become white dwarfs
(WDs), or evogved to the WD state and were pushed over the Chandrasekhar
limit by acecretion from a companion star. Freese etal,”® have c¢alculated
that MS stars in the mass range (!—30)M@ will during their MS lifetime
capture (102%'=102%)F_ . monopoles (for v, = 10 ‘¢ and my, ¢ 10'" GeV, and
depending on the star's mass). The progenitor of PSR 1999 + 10 should
nave captured at least 10° times more monopoles than the neutron star,
and Freese etal.’® argue that it is likely that a fair fraction of them
should be retained in the neutron star. If we include these monopoles,
tne bound improves significantly, to

<Fy»> ¢ 10727 (ov)_j,em *sr ts! (3.22)

~~less than one monopole earth ! yr '!

How reliable are these astrophysical bounds? The most stringent,
Eqn. 3.22, relies upon an additional assumption, that the monopoles
captured by the progenitor MS star make their way into the neutron star.
Both bounds f{(and all catalysis bounds) are « {av) !, If the cross
section for catalysis is not large, e€.g., because the physies at the
core of the mcnopole does not violate B conservation (such 1s the case
for the Z, monopoles in SU(10))®7*®®, or because the Callan-Rubakov
calculation is incorrect, then the catalysis limits are not stringent.

In addition there are astrophysical uncertainties. Hot neutron
stars radiate both Ys and vvs, but only the photons can be detected. The
ratio of these luminosities has been calculated for various neutron star
equations of state and was taken into account in deriving the catalysis
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Fig. 3.2 The ratio of the total luminosity (= L_+ L ) of a hot

neutron star to its photon lumincsity as a function of
L.. The different curves represent different neutrgn star
equations of state: gq (quark matter); w, = (pion
condensate); the rest are more conventional equations of
state (from ref. 86).
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bounds. [For L. < 10%% grg s ', L, is typically < Ly; while for L, 2
102 erg s! L, can be (310%-10°) Ly, see Fig. 3.2.] Monopoles less
massive than about 0!'* GeV may be deflected away from neutroen stars
with B fields 2> 10'? G; monopoles inside neutron stars which have pion
condensates in their cores may be ejected by the so-called
'pion=slingshot effect', ®®

r
i
1

The strength of the neutron star catalysis bounds lies in the
number of different techniques which have been used. Individual objects
have been studied®® (PSR 1929 + 10 and 10 or so other old radic
pulsars); searches for bright, nearby x-ray point sources have been made
with negative results®! [the number density of old (= 10'° yrs) neutron
stars in our neighborhood should be > 10 * pc *, implying that there
should be 0{(100) or sc within 100 pec of the solar system - if due to
'monopole heating' their luminosities were > 10! erg s ' they would
surely have been detected]; the integrated contribution of old neutron
stars to the diffuse soft x~-ray background has been used to limit the
average luminosity of an old neutron star (£ 10%2 epg s ') and in turn
the monopole flux.®®'%!+?*2 The three technigques just mentioned involve
different astrophysical assumptions and uncertainties, but all result in

comparable bounds to <Fy>: <10 2 (ov) l,., em 2 sr ' s7'. Althnough
I will not discuss it here, ne same analysis has been applied to WDs,®?
and results in a less stringent bound, < 2 X

107 (ov) L, em ?sr”'s”!, but more importantly one whicg involves a
different astrophysical system.

If monopoles catalyze nucleon decay with a large cross section,

(ev)_,, not too much less than order unity, then, based upon the
astrophysical arguments, 1f seems certain that the monopole flux must be
small (<< 10 '®cm™2sr 'sec '). On the other hand, if the monopoles of

interest do not catalyze nucleon decay at a significant rate (for
whatever reason), then the 'Parker bound' is the relevant (and I beljeve
reliable)} constraint, with the outside possibility that it could be
exceeded due to monopole plasma oscillations {-~-a scenario which is very
astrophysically interesting!).

Monopole Hunting

There are two Dbasic techniques for detecting a monopole: (1)
inductive =~ a monopole which passes through a loop will induce a
persistent current « h/L (L = inductance of the loop « radius, for a
¢circular loop); (2) energy deposition - a monopole can depo§it energy
due to ionization [dE/dx = (10 MeV/em)(v/10 ?c)(p/1gem 2)], or
indirectly Dby any nucleon decays it catalyzes. Method (1) has the
advantage that the signal only depends upon the monopole's magnetic
charge (and <an be calculated by any first year graduate student who
knows Maxwell's equations), and furthermore because of its unique
signature (step function in the current) has the potential for clﬁan
identification. However, because the induced current « L ! « Area
the simplest loop detectors are limited in size to ¢ 1m? (1m? x 27 - sr
x 1yr = 10'* cm? sr sec). In method (2) the detection signal depends
upon other properties of the monopole (e.g. veloecity, abllity to
catalyze nucleon decay), and the calculation of the energy loss is not
80 straightforward, as it involves the physics of the detector material.
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dowever, 1t is very straightforward to fabricate very large detectors of
this type.

On 14 February 1982 wusing a superconducting loop Blas Cabrera
detected a jump in current of the correct amplitude for a Dirac magnetic
charge.®" His exposure at that time was about 2 x 10°* e¢m?* sr s--which
naively corresponds to an enormous flux (= 6 x 10 *° em™2 sr 1 s '),
especially when compared to the astrophysical bounds discussed above.
Sadly, Since then his exposure has increased more than 100-fold with no
additional candicdates.’® Ionization type searches with exposures upto
10'* em sr s, sensitivities to monopole velocities 3 x 10 * - 3 x 10?2
¢, and no candidates have been reported. Searches which employ large
proton decay detectors to search for multiple, colinear proton decays
caused by a passing monopole with similar exposures (although these
searches are only sensitive to specific windows in the (gv) - Vy space)
have seen no candidate events. [There is a bit of a Cateh 22 here; if av
is large enough so that a monopole would catalyze a string of proton
decays in a proton decay detector ((ov)_,, = 6{(1)},__ then the
astrophysical bounds strongly suggest that <F,> ¢ 10 2! em 2 sr ! s }!.]
The most intriguing search done to date involves the etching of a 1/2
3yr old piece of mica of size a few ¢cm? (exposure = 10!® ¢m? sr s).%% &
monopole passing through mica leaves no etchable track; however, a
monopole with a nucleus with Z 2 10 (e.g. Al) attached to it leaves an
etchable track. Unfortunately, the negative results of searches of this
type imply flux llmlts = (probability of a monopole picking a nucleus
and holding on to it) !, However exposures of up to 1022 ¢cm?® sr s can
possibly be achleved. and if a track is seen, it would be a strong
candidate for a monopole. (Very thorough and excellent reviews of
monopole searches and searching techniques can be found in refs.97, 98.]

Concluding Remarks

What have we learned about GUT monopoles? (1) They are exceedingly
interesting objects, which, if they exist, must be relics of the
earliest moments of the Universe. (2) They are one of the very few
predictions of GUTs that we can attempt to verify and study in our low
energy environment. (3) Because of the glut of monopoles that should
nave been produced as topological defects in the very early Universe,
the simplest GUTs and the standard cosmology (extrapolated back to times
as early as = 10 ** s) are not compatidble. This is a very lmportant
pliece of information about physics at very high energies and/or the
earliest moments of the Universe. (4) There i3 no believable prediction
for the flux of relic, superheavy magnetic monopoles. (5) Based upon
astrophysical considerations, we c¢an be reasonably certain that the flux
of relic monopoles is small. Since it is not obligatory that monopoles
catalyze nucleon decay at a prodigious rate, a firm upper limit to the
flux is provided by the Parker bound’?, <Fy> < 10 T's om™2 sr”! s
Note, this is not a predicted flux, it is only a firm upper bound to the
flux. It_is very likely that flux has to_be even smaller, say < 10 '°
em 2 sr” ! 87" or even 1072!' ¢cm™2 sr~! 87!, (6) There 1s every reason to
believe that typical monopoles are moving with velocities (relative to
us) of at least a few x 10 * c. [Although it is possible that the
largest contribution to the local monopole flux is due to a cloud of
monopoles orbiting the sun with velocities = (1 = 2) x 10 * ¢, 1 think
that it is very unlikely.®%r!°°]




LECTURE &4 -~ INFLATION

As I nave discussed in Lecture 1 the hot big bang model seems toO
provide a reliable accounting of the Universe at least as far back as
1072 sec after 'the bang' (T ¢ 10 MeV). There are, however, a number of
very fundamental 'cosmological facts' which the hot big bang model by
itself does not elucidate (although it can easily accomodate them). The
inflationary Universe paradigzm, as originally proposed by Guth,'®! and
modified by Linde,'®? and Albrecht and Steinnhardt,!®? provides for the
first time a framework for understanding the origin of these
cosmological facts in terms of dynamics rather than Just as particular
initial data. As we shall see the underlying mechanism of their solution
is rather generic~-the temporary abolition of particle horizons and the
production of entropy, and while inflaticn is the first realization of
this mechanism which is based wupon relatively well-known physics
(spontanecus sSymmetry breaking {(SSB) phase transitions), it may not
prove to be the only such framework. I will begin by reviewing the
cosmological puzzles, and then will go on to discuss the new
inflationary Universe scenaric.

Large-Scae Homogeneity and Isotropy

The observable Universe (d = H ! = 102®% cm = 3000 Mpc) is to a high
degree of precision isotropic and homogenous on the largest scales (>
100 Mpc). The best evidence for this is provided by the wuniformity of
the cosmic background temperature: AT/T < 10 ° (10 % if the dipole
anisotropy is interpreted as being due to our peculiar motion through
the cosmic rest frame; see Fig. b.1)., - Large—-scale <density
inhomogeneities or an anisotropic expansion would result in fluctuations
in the microwave background temperature of a comparable size {zee, €.8.,
refs., 104, 105), The smoothness of the observable Universe is puzzling
if o¢ne wishes to understand it as a result of microphysical processes
operating in the early Universe. As 1 mentioned in Lecture 1 the
standard cosmology has particle horizons, and when matter and radiation
last vigorously interacted (decoupling: t = 10 5, T = 1/3 eV¥) what was
to become the presently observable Universe was comprised of = 10°%
causally-distinet regions. Put slightly differently, the particle
horizon at decoupling only subtends an angle of about 1/2° on the sky
today; how is it that the microwave background temperature is so uniform
on angular scales >> 1/2°7?

Small-Scale Inhomogeneity

As any astronomer will gladly tell you on small scales (< 100 Mpe)
the Universe is very lumpy (stars, galaxies, clusters of galaxles,
etc.). [Note, today &p/p = 10° on the scale of a galaxy.] The uniformity
of the microwave background on very small angular seales (<<£1°)
indicates that the Universe was smooth, even on these scales at the time
of decoupling (see Fig. 4.1). [The relationship between angle subtended
on the sky and mass contained with}n the corresponding length scale at
decoupling is: & = 1' h(M/10'2*M_)1"*.] Whence came the structure that is
so conspicuous today? Once matter decouples from the radiation and 1is
free of the pressure support provided by ‘the radiation, small
inhomogeneities will grow via the Jeans (gravitational) instability:
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ip/s = =2/ a3 (in the linear regime). [If the mass density of the

Jniverse is dominated by a collisionless particle species, e.g., a light
relic neutrino species, or axions, . density perturbations 1in these
particles can begin to grow when the Universe becomes matter-dominated,
R *= 3 x 107°% thdhy for Qh%* = 1.] Density perturbations of amplitude

35/9 = 10 ' or so, on the scale of a galaxy (= 10'2 M_) at the time

of decoupling seem to be required to account for the small-scale
structure observed today. Their crigin, their spectrum (certainly
perturbations should exist on scales other than TOI’M@), their nature
ladiabatic or isothermal), and the composition of the dark matter (see
ref. 3) are all crucial questions for understanding the formation of
Structure, wnich to date remain unanswered.

flatness

The quantity Q@ = 5/,  measures the ratio of the energy density of
tne Universe to the crifical energy density (p_ = 34?/87G). Although 0
1s not «nown with great precision, from Lecture T we xnow that .01 < q

¢ few., Using Eqn. 1.5 2 can be written as

2= /01 = x(t)), (4.1a)
x(t) = (k/R?2)/(8nGp/3). . (4.10)
Note that @ is not constant, but varies with time since x(t) = R(t)? <(n
= 1 - matter-dominated, or 2 - radiation-dominated)., Since @ = 0(1)
today, x,.,.. must be at most 0(1). This implies that at the epoch of
nucleosynggegis: Xgpy_ ¢ 10 "% and fQzpy = 1 + 0(g10 '*), and that at the

Planck epoch: x_, ¢ 10 °° and Q 1 =1 £ 0(g10 *°). That is, very early
cn the ratio "of the curvatu?e term to the density term was extremely
small, or equivalently, the expansion of the Universe proceeded at the
critical rate (H?Z it = 87Gp/3) to a very high degree of precision. Since
¥x{(t) has apparengiy always been < 1, our Universe is today and has been
in the past closely-described by the k = 0 flat model. Were the ratio x
not exceedingly small early on, the Universe would have either
recollapsed long ago (k > 0), or began its coasting phase (k < 0) where
R« t. [If « <0 and xggy = 1, then T = 3K for t = 300 yrs!] The
smallness of the ra%?o X required as an 'initial condition' for our
Universe is puzzling. [The flatness puzzle has been emphasized in refs,
101,106, ]

Predominance of Matter Over Antimatter

The puzzle involving the baryon number of the Universe, and 1its
attractive explanation by B, C, CP violating interactions predicted by
GUTs has been discussed at length in Lecture 2.

The Monopocle Problem

The glut of monopoles predicted in the standard cosmology ('the
monopole problem') and the lack of a compelling solution (other than
inflation) has been discussed in Lecture 3.
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Tne Smallness of the Cosmological Constant

With the possible exception of: supersymmetry and supergravity
theories, the absolute scale of the effective potential V(¢) is not
determined in gauge theories (¢ = one or. more Higgs field). At low
temperatures Vig) is equivalent to a cosmological ternm (i.e.,
contributes Vg to the stress energy of the Universe). The_ observed
expansion raté of the Universe today (H = 50 - 100 km s ! Mpe ') limits
the total energy density of the Universe to be < o(10 *° g cm ?) = 107 "¢
GeV*. Thus empirically the vacuum energy of our T ®= O SU{3) x U{1)
vacuum (= V(4) at the SSB minimum) must be < 10 “® GeV", Compare this to
the difference in energy density between the false (¢ = 0) and true

vacua, wnich 1s 0(Tg) (T, = symmetry restoration temperature): for T =
10 GeV, V sp/Vie = g) ¢ 10 '°*! At present there is no satisfacgory
explanaticn f3F the vanishingly small value of the T = 0 vacuum energy

density (egquivalently, the cosmological term).

Today, the vacuum energy is apparently negligibly small and seems
to play no significant role in the dynamics of the expansion of the
Universe. If we accept this empirical determination of the absolute
scale of V(¢), then it follows that the energy of the false (¢ = Q)
vacuum is enormous (= T“), and thus could have played a significant role
in determining the dynamiecs of the expansion of the Universe. Accepting
this very non-trivial assumption about the zero of the vacuum energy 1is
the starting point for inflation (see Fig. 4.,2).

Generic New Inflation

The basic idea of the inflationary Universe scenario is that there
was an epoch when the vacuum energy density dominated the energy density
of the Universe. During this epoch p = V = constant, and thus R{t) grows
exponentially (= exp {(Ht)), allowing a small, causally-coherent region
(initial size £ H ') to grow to a size which encompasses the region
which eventually becomes our presently-observable Universe, In Guth's

original scenario'®!, this epoch occurred while the Universe was trapped
in the false (¢ = 0) vacuum during a strongly first—-order phase
transition. Unfortunately, in models which inflated enough (i.e.,

underwent sufficlent exponential expansion) the Universe never made a
rgraceful return' to the usual radiation-dominated FRW cosmology.®71°?7
Rather than discussing the original model and its shortcomings 1in
detail, I will instead focus on the variant, dubbed 'new inflation', .
proposed independently by Linde'®? and Albrecht and Steinnardt!®?®. In
this scenario, the vacuum—~dominated epoch occurs while the region of the
Universe in question is slowly, but inevitably, evolving toward the
true, SSB vacuum. Rather than considering specific models in this
section, I will discuss new Iinflation for a generic model.

Consider a SSB phase transition which occurs at an energy scale M.

For T 2 T, = M; the symmetric (¢ = 0) vacuum is favored, i.e., ¢ = O 1is
the global minimum of the finite temperature effective potential VT(¢)

(= free energy density). As T approaches T a second minimum develops at

¢ # 0, and at T = Tc the two minima are degenerate. [I am assuming that
this S8B transition is a first-order phase transition.]} At temperatures

below T, the SSB (¢ = ¢) minimum is the global minimum of V;(¢) (see
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Fig. 4.1 Summary of measurements of the anisotropy of the 3K
background on angular scales > 1' (from refs. 112, 113).
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Fig. 4.2 The finite temperature effective potential V., for T >

T:; T*= Tc; and T <X Tc; here ¢ = o 18 the SSB'minimum of

ve




il
o

rig. 4,2). However, the Universe does not instantly make the transition

from 3 = 0 to ¢ = o; the details and time required are a question of
dynamics. [The scalar field ¢ is the order parameter for the SSB
transition under discussion; in the spirit of generality ¢ might be a
gauge singlet fleld or might have nontrivial transformation properties
under the gauge- group, possibly even responsible for the SSB of the
GUT. ]

Assuming a barrier exists between the false and true vacua, thermal
fluctuations and/or quantum tunneling must be responsible for taking ¢
across the barrier. The dynamics of this process determine when and how
the process occurs (bubble formation, spinodal decomposition, ete.) and
the value of ¢ after the barrier is penetrated. For definiteness Suppose
that the barrier Is overcome when the temperature is TMS and the value
of ¢ is ¢ . From this peoint the journey to the true vacuum is downhill
(literally) and the evolution of ¢ should be adequately described by the
semi-classical equaticns of motion for ¢:

§ + 3H$ + rd + V' = 0, (4.2)

where ¢ has been normalized so that its kinetic term in the Lagrangian
is 172 d ¢a“¢, and prime indicates a derivative with respect to ¢. The
subscript on V has been dropped; for T <K< Tc the temperature
dependence of V. can be neglected and the zero temperature potential (=
V) can be used. ?he 3H$ term acts like a frictional force, and arises
because the expansion of the Universe ‘redshifts away' the kinetic
energy of ¢( =« R™*). The Id term accounts for particle creation due to
the time-variation of ¢[refs, 108-110]. The quantity I is determined by
the particles which couple to ¢ and the strength with which they couple
(r”' = lifetime of a ¢ particle). As usual, the expansion rate H is
determined by the energy density of the Universe: (H? = 8%Gp/3), with

bR /2 8%« V(g) + b, (4.3)

where P, represents the energy density in radiation produced by the time
variation of ¢. For T << T, the original thermal component makes a
negligible contribution to p. Thé evolution of P is given by

. + UHp. = T$*, (4.4)

where the Td? term accounts for particle creation by ¢.

In writing Eqns. 4.2-4.4 I have 1implicitly assumed that ¢ 1is
spatially homogeneous, In some small region (inside a bubble or a
fluctuation region) this will be a good approximation. The size of this
smooth region will be unimportant; take it to be of order the 'physics
norizon', H ', Now follow the evolution of ¢ within the small, smooth
patch of size H™ !,

If Vv is sufficiently flat somewhere between ¢ = ¢0 and ¢ = g, then
¢ will evolve very slowly in that region, and the motion of ¢ will be
'friction-dominated' so that 3Hd = -v°' {in the slow growth phase
particle «creation is not important'!®). If V is sufficiently flat, then
the time required for ¢ to transverse the flat region can be long
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cgmpared to the expansion timescale H ', say for definiteness, 1. -= 100
H '. During this slow growth phase p = V(¢) = V(¢ = 0); botn P, and 1/2

9% are << V{¢). The expansion rate h is then just

H = <swv(o”)'f3mplz)n/= (4.5)
Ma/mpl'
where V(0) i1s assumed to be of order MY, While H ® constant R grows

exponentially: R « exp(Ht); for 1, - 100 H—Q R expands by a factor of
2' % during the sliow rolling peri%d, and the physical size of the smooth
region increases to e'®°H !, This exponential growth phase is called a
deSitter phase. '

As the potential steepens, the evolution of ¢ quickens, Near ¢ = o,
¢ c¢scillates around the SSB minimum with frequency w: w2 = V''{g) = MG2
>>» H2 = MG“/m“ 2, As ¢ oscillates about ¢ = o its motiocn is damped by
particle creé%ion and the expansion of the Universe. If ©' ! << H'!, the
coherent field energy density (V = 1/2 $?) is converted intc radiation
in less than an expansion time (AtRH = p '), and the patch is reheated
to a temperature T = O(M,) ~ the vacuum energy is efficiently _converted
into radiation ('good "reheating'). On the other hand, if Tr ?* »>> H !,
then ¢ continues to oscillate and the coherent field energy redshifts
away with the expansion: (V + 1/2 ¢%) « R *, [The cohérent field energy
behaves like nonrelativistic matter; see ref. 111 for more details.]
Eventually, when t = © ! the energy in radiation begins t¢ dominate that
in c¢oherent field osci}lations, and ,the patech is reheated to a
temperature T = (T/H)! 2MG = (I'm 172 ¢« MG ('poor reheating'). The
evolution of 4 is summarized in Fig.p&.3.

For the following discussion let us assume 'good reheating' (r  >>
H). After reheating the patch has a physical size e!°°H™! (= 10'7¢cm for
Mg = 10'* GeV), 1is at a temperature of order M., and in the
approximation that ¢ was Initially constant throughou% the patch, the

patch is exactly smooth. From this point forward the region evolves like
a radiation-dominated FRW model. How have the cosmological conundrums
been 'explained'? First, the homogeneity and isotropy; our observable
Universe today (= 102%c¢m) had a physical size of about 10 cm (= 10%%cm x
3K/10'" GeV) when T was 10'* GeV. Thus it lies well within one of the
smooth regions produced by the inflationary epoch. At this peoint
the inhomogeneity puzzle has not been solved, since the patch |1is
precisely uniform. Due to deSitter space produced quantum fluctuations
in ¢, ¢ is not exactly uniform even in a small patch. Later, I will
discuss the density inhomogeneities that result from the quantum
fluctuations in ¢. The flatness puzzle involves the smalilness of the
ratio of the curvature term to the energy density term. This ratio is
exponentially smaller after inflation: Xofter = © zeoo Xpefore Since the

energy density before and after inflation is O(Ma), while k/R? has

decreased

exponentially (by e?°%), Since the ratio x is reset to an exponentially
small value, the inflationary scenario predicts that today Q should be 1
£ 0(10°7 ). If the Universe is reheated to a temperature of order MG'
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3 ©Saryon asymmetry can evolve in the 1sual way, although the
~uantitative details may be slightly different~®+''°. If the Universe is

act =fficlently reneated (TRH << Mq), it may be possible for ng/s to be
sroduced cdirectly in the decay c¢f the coherent Tleld oscillations (which

cehave Just like NR p particles). This is an example of very
sut-of-equilibrium decay (discussed in Lecture 27, in which case the
Ng/s produced 1s « TRH/(m¢ = u) and does not depend upon Tgy being of

ofcer 10' GeV or so. -n any case, it is absolutely necessary to have
caryogenesis occur after reheating since any baryon number (or any other
quantum humber) oresent before inflation s diluted Dy a factor
Mo/ Tygl? exp(3Ht,) ~ the factor by which the total entropy increases.
wofe thRat if C, CP are viclated spontaneocusly, then e {and ng/s) could
nave & different sign in different patches—-—-leading to a Universe which
on the very largest scales (>> e*®°H '} is baryon symmetric.

Since the patch that our observable Universe lies within was once
lat the beginning of inflation) causally-coherent, the Higgs fleld could
nave peen aligned throughout the patch (indeed, this 1s the lowest
eanergy configuration), and thus there is likely to be < 1 monopole
within the entire patch whiech was produced as a topological defect.
The glut of monopoles which occurs in the standard cosmology does not
cccur. _The production of other topological defects {such as domain
walls, ete.) is avoided for similar reasons.)] As discussed in Lecture 3,
some monopcles will be produced after reheating in rare, very energetic
particle collisions. The number produced 1is exponentially small and
exponentially uncertain. [In discussing the resolution of the monopole
problem I am tacitly assuming that the SSB of the GUT is occurring
during the SSB transition in question, or that it has already occurred
in an earlier SSB transition; if not then one has to worry about the
monopoles produced in the subsequent GUT transition.]

The key point is that although monopole production 1is intrinsically
small in inflationary models, the wuncertainties in the number of
monopcles produced are exponential, Of course, it is also possible that
monopoles might be produced as topological defects in a subsequent phase
transition''*, although it may be difficult to arrange that they not be
overproduced,

Finally, the inflationary scenario sheds no light upon the
cosmological constant puzzle. Although it can potentially successfully
resclve alli of the other puzzles in my 1list, inflation 1is, in some

sense, a house of cards built upon the cosmological constant puzzle,

Density Inhomogeneities

Before I discuss the production of density inhomcgeneities during
the inflationary transition I will briefly review some of the 'Standard
Lore'. [A more thorough and systematic treatment of the subject can be
found in ref.105.]

A density perturbation is described by its wavelength A or its
wavenumber k(= 2r/x), and its amplitude d&p/p (p = average energy
density). As the Universe expands the physical (or proper) wavelength of
a given perturbation also expands; it is useful to scale out the
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Fig. 4.3 The time evolution of ¢. During the slow growth phase
the time required for ¢ to change appreciably is >> H !,
As the potential steepens ¢ evolves more rapidly
(timescale << H !), eventually oscillating about the SSB
minimum, Particle_creation damps the oscillations in a
time = I ! (K<H ', 1f I>>H as shown here) reheating the
patch to T = min[MG, (rmpl)‘ 2].
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Fig. 4.4 Evolution of a galactic mass adiabatlce density
perturbation,



z2xpansion so that a particular perturbation is always labeled by the
same comoving wavelength A _ = A/R(t) or comoving wavenumber k, = kR(t).

tR(t) is often normalizéd so that R cdav ™ 1.] Even zmore common is to
iabel a perturbation by the comoving Earygn mass f{(or total mass in
nonrelativistiec particles if Ay # Qpgr) within a half wavelength M = i’
anN/6 (nB = net-baryocn number density, my = nucleon mass).

The relative sizes of % and H ' (= 'physics horizon' and particle
norizon also in the standard cosmology) are crucial for determining the
evolution of $ép/p. When x ¢ H ' {(the perturbaticon is said to be inside
the horizon) microphysics can affect the perturbation. If X > AJ = VSH-‘
{physically As;» the Jeans length, is the distance a pressure wave can
propagate in  an expansion time; v_ = sound speed) and the Universe is
matter—-dominated, then &p/p grows « £2/2 « R. Perturbations with i < A

oscillate as pressure-supported sound waves {and may even damp).

When a perturbation i{s outside the horizon (A > H ') the situation
is a bit more complicated. The quantity 6p/p is not gauge-invariant;
when A < H ' this fact creates no great difficulties, However when i >
H ! the gauge-noninvariance is a bit of a nightmare. Although Bardeen!?!?®
has developed an elegant gauge—invariant formalism to handle density
perturbations in a gauge-invariant way, his gauge invariant quantities
are not intuitively easy to understand., I will try to give a brief,
intuitive description in terms of the gauge dependent, but more
intuitive quantity é8p/p. Physically, only real, honest~to=~God wrinkles
in the geometry (called curvature fluctuations cr adiabatic
fluctuations) can 'grow'. In the synchronous gauge (gq,o = -1, Boy = 0)
§p/p for these perturbations grows « t? (n = 1 - radiation dominated, =
2/3 - matter dominated). Geometrically, when i > H™! these perturbations
are just wrinkles in the space time which are evolving kinematically
(since microphysical processes cannot affect their evoluticn). Adiabatic
perturbations are characterized by ép/p # 0 and 8{n,/s) = 0; while
isothermal perturbations {which do not grow ocutside the horizon) are
characterized by 4dp/p = 0 and §(np/s) # 0. [With greater generality
6(n,/s) can be replaced by any spatial perturbation in the equation of
state 4ép/p, where p = p(p, . . .).] In the standard cosmology H ! « ¢t
grows monotonically; a perturbation only crosses the horizon once (see
rig. 4.5). Thus it should be clear that microphysical processes cannot
create adiabatic perturbations {(on scales > H™!) since micropnysics only
operates on scales < H ‘. In the standard cosmology adiabatic (or
curvature) perturbations were either there ab initio or they are not

present, Microphysical processes can create isothermal {(or pressure
pgrturbations) on scales > §H ' (of course, they cannot grow until i ¢
H''). Fig., 4.4 shows the evolution of a galactic mass (= 10'2My)

adiabatic perturbation: for t < 10%® s, A > H ' and &p/p = t; for 10'* s
> t 2 10% s, A < H ' and §p/p oscillates as a scund wave since matter
and radiation are still coupled (vs = o) and hence A g = { '; for t >

10%% s, A < H! and 6p/p « t2/* since matter and radiation are decoupled

(vy << ¢) and Ay < AGalaxy" [Note: in an Q@ = 1 Universe the mass inside

the horizon = (t/sec)’/zM@,]
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Finally, at this point it should be ¢lear that a convenient epoch
te specify the amplitude of a density perturbation 1is when it crosses
the morizon., It is often supposed (in the absence of knowledge about the
origin of perturbations) that the spectrum of fluctuations is a power
law (i.e., no preferred scale):

(8p/p)y = eM &,

If a > 0, then on some small scale perturbations will enter the horizon
with amplitude > 0(1)--this leads to black hole formatiocn; if this scale
is 2 10'®* g (mass of a black hole evaporating today) there will be too
many black holes in the Universe today. On the other hand, if a < 0 then
the Universe becomes more irregular on larger scales {contrary to
observation). In the absence of a high or low mass cutoff, the ¢ = 0
(so-called Zel'dovich spectrum!®®) of density perturbations seems to be
the only 'safe' spectrum. It has the attractive feature that all scales
cross the horizon with the same amplitude (i.e., it is scale-free). Such
a spectrum 1s not required by the observations; however, such a spectrum
with amplitude of 0(10 *) probably leads to an acceptable picture of
galaxy formation (i.e., consistent with all present
observations——microwave background fluctuations, galaxy correlation
function, etc.; for a more detailed discussion see ref. 3.)

Origin of Density Inhomogeneities in the New Inflationéry Universe

The basic result is that quantum fluctuations in the scalar fileld ¢
(due to the deSitter space event horizon which exists during the
exponential expansion (inflation) phase) give rise to an almost
scale-free (Zel'dovich) spectrum of density perturbations of amplitude

(6p7p)y = (4 or 2/5)H ae/é(ty), (4.6)

where 4 applies if the scale in question reenters the horizon when the
Universe is radiaticn—-dominated and (6p/p)H is then the amplitude of the
sound wave; 2/5 applies if the scale in question reenters the horizon
when the Universe is matter~dominated and (6p/p)y is then the amplitude
of the growing mode perturbation at horizon crossing; H is the value of
the Hubble parameter during inflation; ¢(t,) is the value of $ when the
perturbation left the horizon during the deSitter phase; and A¢ = H/27%
is the fluctuation in ¢. This result was derived independently by the
authors of refs. 117=120. Rather than discussing the derivation in
detail here, I will attempt to physically motivate the result,. This
result turns out to be the most stringent constraint on models of new
inflation.

The crucial difference between the standard cosmology and the
inflationary scenario for the evolution of density perturbations is that
H ! (the 'physics horizon') is not strictly monotenic; during the
inflationary (deSitter) wepoch it is constant. Thus, a perturbation can
cross the horizon (2 = H ') twice (see Fig. U4.5)! The evolution of two
scales (A, = galaxy and Ay = presently observable Universe) is shown in
Fig. 4.5. Earlier than t, (time when A, = H ') A. ¢ H ' and microphysics
{quantum fluctuations, etec.) can operate on this scale. When t = ¢t,
microphysics 'freezes out' on this scale; the density perturbation which
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Fig. 4.5 The evolution of the 'physics horizon' (= H !) and the

physical sizes of perturbaticns on the scale of a galaxy
(XG) and on the scale of the present observable Universe
(1)), Reheating occurs at t = to.. For reference the
evolution of ¢ is also shown. The broﬁen line shows the
evolution of H ' in the standard cosmology. In the
inflationary cosmology a perturbation crosses the horlzon
twice, which makes it possible for causal microphysics
(in this case, quantum fluctuaions in ¢) to produce
large=-scale density perturbations.
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L e s

| 11 -
1 2 (Ps Ce 0'<mP‘ ()D

Fig. 4.6 The 'prescribed potential' for successful inflation.
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exists on this scale, say (8p/p),, then evolves 'kinematically' until it
reenters t he nerizon at L = t {during the 3ubsequent
radiation—dominated FRW phase) with amplitude (dp/p)y.

DeSitter space 1s exactly time-translationally-invariant; the
inflationary epoch is approximately a deSitter phase - ¢ is almost, but
not quite constant (see Fig. 4.3). [In deSitter space p + p = 0; during
inflation p + p = $?.] This time-translation invariance is crucial; as
each scale leaves the horizon (at ¢t = t,) &8p¥p on that scale is fixed by
microphysics to be some value, say, (ép/p),. Because of the
(approximate) time-translation invariance of the inflationary phase this
value (ép/p), is (approxmately) the same for all scales., [Recall H, ¢, ¢
are all approximately constant during this epoch, and each scale has the
same physical size (= H ') when it crosses outside of the horizon.] The
precise value of (8p/p), is Tfixed by the amplitude of the quantum
fluctuations in ¢ on the scale H }; for a free scalar field Ap = H/2n
(the Hawking temperature). {Recall, during inflation V'' (= the
effective mass-squared) is very small.]

While outside the horizon (t, < t ¢ ty) a perturbation evolves
'kinematically' (as a wrinkle in the geometry); viewed in some gauges
the amplitude changes (e.g., the synchronous gauge), while in others
{(e.g., the uniform Hubble constant gauge) it remains constant. However,
in' all gauges the kinematic evolution 1s independent of ‘scale
(intuitively this makes sense since this is the kinematic regime). Given
these 'two facts': (8p/p}, = scale~independent and tne kinematic
evolution = scale-independent, it follows that all scales reenter the
horizon (at t = ty) with (approximately) the same amplitude, given by
Eqn. 4.6. Not wonly 1is this a reasonable spectrum (the Zel'dovich
spectrum), but this is one of the very few instances that the spectrum
of density perturbations has been calculable from first principles. [The
fluctuations produced by strings are another such example, See,  e.g.
ref. 1215 however, in a string scenario without inflation the
nomogeneity of the Universe must be assumed. ]

Coleman—~Weinberg SU(5) Model

The first model of new inflationt?®2s103 studied was the
Coleman-Weinberg SU(5) model, with T = 0 effective potential
V(¢) = 1/72 Bo" + Be“[&n{(¢2/a2) ~ 1/2], (4.7)
= 1/2 Bo"* - A(¢)o*“ ($<<a)

where ¢ is the 24 dimensional field responsible for GUT SSB, ¢ is the
magnitude of ¢ in the SU(3) x SU(2) x U(1) SSB direction, B = 25g“/2567?2
(g = gauge coupling constant), ¢ = 1.2 x 10'* GeV, and for ¢ = 10° GeV,
A(¢) = 0.1, [V may not look familiar; this is because ¢ 1s normalized so
that its kinetic term is 1/2 §$%* rather than the usual (15/4)32.]
Albrecht and Steinhardt®® showed that when T = 10% - 10% GeV the
metastabllity limit is reached, and thermal fluctuations drive ¢ over
the T-dependent barrier (height = T*) in the finite temperature
effective potential. Naively, one expects that ¢, = T since for ¢ << ¢
there is no other scale in the potential (this is & point to which I
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will return). The potential is sufficiently flat that the approximation

3H$ = -V' is valid for ¢ << o, and it follows that

(¢/H)Y? = (3/2A)[H(1¢ - )] %, ' (4.8)
wnere Ht = (3/2A)kH/¢0)2 (recall v, = time it takes ¢ to traverse the
flat por%ion of the potential). Phygically. HT¢ is the number of e-folds
of R which oceur during inflation, which to solve the
nomogeneity-isotropy and flatness puzzles must ©De 2 0(60). For this
model H = 7 x 10° GeV; setting 9, = 10® - 10% GeV results in Hrx =

0(500-50000) - seemingly more than sufficient inflation. 9

There is however, a very basic problem here. Eqgn. .8 is derived
from the semi-classical equation of motion for ¢ CEqn. 4.11, and thus
only makes sense when the evolution of ¢ is 'classical’', that 1s when
$>>8¢,y (= gquantum fluctuations in ¢). In deSitter space the scale of
quantim fluctuations is set by H: Ao,y = H/27 (on the length scale H '),
Roughly speaking then, Zqn. L.8 is only valid for ¢>>H. However,
sufficient inflation requires ¢, ¢ H. Thus <the Coleman-Weinberg model
seems doomed for the simple reason that all the important physics must
occur when ¢ < A¢ny. This is Dbasically the coneclusion reached by
Linde**? and Vilénkin and Ford!'??® who have analyzed these effects
carefully. Note that by arti{ficially reducing A by a factor of 10-100
sufficient inflation can be achieved ¢, >> H (i.e., the potential
becomes sufficiently flat that the classical part of the evolution, ¢ >>
H, takes a time > ggo H ). In the Coleman-Weinberg model I >> H and the
Universe reheats te T = MG = 10" GeV.

Let's ignore for the moment the difficulties associated with the
need toc have $, < H, and examine the question of density fluctuations.
Combining Eqns. 4.6 and 4.8 it follows that

(6p/p)y = (4 or 2/5)1004 121 + Rn(M/102M ) /171 (4.9)
+ 2n(go/10'* Gev)/571%/%,

wnere M is the comoving mass within the perturbation. Note that the
spectrum is almost, but not quite scale-invariant (varying by less than

a factor of 2 from 1M to 10%%*My = present horizon mass). Blindly
plugging in A = 0.1, resul%s in (ép/p)y = 0(10%*) which is <c¢learly a
disaster. [(On angular scales >> 10 %he Zel'dovich spectrum results in

temperature fluctuations of'®* AT/T = 1/2(§p/p)y which must be < 10 ° to
be consistent Wwith the observed isotropy.] To ogtain perturbations of an
acceptable amplitude one must artificially set 3 = 10°'? or se. [In an
SU(5) GUT A is determined by tne value of a ;. = g2/4w = 1745, which
implies A = 0.1.] As mentioned earlier the density fluctuation
constraint is a very severe one; recall that a1 = 1072 ~ 10" * would solve
the difficulties associated with the quantum fluctuations in ¢. To say
the least, the Coleman-Weinberg SU(5) model seems untenable.

Lessons Learned——A Prescription for Successful New Inflation

Other models for new inflation have been studied, including
supersymmetric models which employ the inverse hierarchy scheme,'?"
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supersymmetric/supergravity models'2?“ 12% and just plain GUT models!?’
No model has led to a completely satisfactory new inflationary scenario,
some failing to reheat sufficiently to produce a baryon asymmetry,
others plagued by large density perturbations, etc. Unlike the situation
with 'old inflation' a few years ago, the situation does not appear
hopeless. The early failures have led to a very precise prescription for
a potential which will successfully implement new inflation.'?* Among
the necessary conditions are:

{1) A flat region where the motion of ¢ is 'friction~dominated',
i.e., term negligible so that 3H = =V', This i.e., § term negligible
so that 3H} = -V'. This requires an interval where V" < 9HZ.

(2) Denote the starting and ending values of ¢ in this interval by

¢S and ¢, -respectively (note: $g must be 2 ¢ The length of the
interval should be much greater than H (which sets ghe scale of quantum

fluctuations in ¢): ¢ _ - ¢g >> H. This insures that quantum fluctuations
will not drive ¢ across theé flat region too quickly.

(3) The time required for ¢ to traverse the flat region should be 2
1

60 H ! (to solve the homeogeneity-isotropy and flatness problems). This
implies that
« _rte _
[Hat = =l (302 de/v') 2 60. (4.10)
3 .
(4) In order to achieve an acceptable amplitude for density
fluctuations, (6p/p) = H2/4(t,), $ must be = 10" H? when a galactic

size perturbation crosses outside the horizon. This occurs about 50
Hubble times before the end of inflation.

(5) Sufficiently high reheat temperature so that the Universe is
radiation-dominated at the time of primordial nucleosynthesis (t = 10 2
-~ 10% sec; T = 10 MeV - 0.1 MeV), and so that a baryon-asymmetry of the
correct magnitude can evolve. As discussed earlier, the reheat

temperature is:
Tpy = min{Mg, (rmyy)t/?}; (4.11)

this must exceed min{10 MeV, T_}, where T, is the smallest reheat
temperature for which an acceptable baryon asymmétry will evolve.

(6) The potential be part of a ‘'sensible particle physics' model.

These conditions and a few others which are necessary for a
successful implementation of new inflation are discussed in detail in
ref.128. Potentlals which satisfy all of the constraints tend to be very
flat (for a 1long run in ¢), and necessarily involve fields which are
very weakly coupled (self couplings ¢ 19 '°; see Fig. u4.6). To insure
that radiative corrections do not spoil the flatness it is almost
essential that the field ¢ be a gauge singlet field.



concluding Remarks

New Inflation is an extremely attractive cosmological program. It
nas the potential to 'free' the present state of the Universe {(on scales
al least as large-as 102® cm) from any dependence on the initial state
of the Universe, in that the current state of the cbservable Universe in
these models depends only upon microphysical processes which occurred
very early on (t < 19 ®**s). [I should mention that this conjecture of
'Cosmic Baldness'?®?? is still just that; it has not been demonstrated
that starting with the most general cosmological soluticn to Einstein's
equations, there exist regions whiech undergo sufficient inflation. The
conjecture however has been addressed perturbatively; pre-inflatlionary
perturbaticns remain ccnstant in amplitude, but are expanded beyond the
present horizon'??® and neither shear nor negative-curvature can prevent
inflation from occurring'?!,]

At present there exists no completely successful model of new
inflation. However, one should not despair, as I have just described,
there does exist a clear-cut and straightforward prescription for the
desired potential (see rig. U4.6). Whether one can find a potential which
fits the prescription and also predicts sensible particlie physics
remains to TDbe seen. If such a theory is found, it would truly be a
monumental achievement for the Inner Space/Outer Space connection.

Now for some sobering thoughta. The inflationary scenaric does not
address the issue of the cosmological constant; in fact, the small value
of the cosmological constant today is its foundation, If some relaxation
mechanism is found *%to insure that the cosmological constant is always
small, the inflationary scenario (in its present form at least) would
vanish into the vacuum, It would be fair to point out that inflation is
not the only apprcach to resocolving the cosmological puzzles discussed
aZbove. The homogeneity, isotropy, and inhomogeneity puzzles all involve

~he apparent smallness of the horizon. Recall that computing the horizon
distance

dy = R(t) [T dt'/R(t") (4.12)

requires knowledge of R(t) all the way back to t = 0, If during an early
epoch (t < 10 “?s?) R increased as or more rapidly than t (e.g. t'°!),
then d + @ eliminating the 'horizon constraint'. The monopole and
flatness problems can be solved by producing large amounts of entropy
since both problems involve a ratio to the entropy. Ci=sipating
anisotropy and/c¢r inhomogeneity 1s one possible mechanism for preducing
entropy. One alternative to inflation is Planck epoch physics. Quantum
gravitational effects could both wmodify the behaviour of R{t) and
through quantum particle creation produce large amounts of entropy [see
e.g., the recent review in ref, 132].

_Efg of the key 'predictions' of the inflationary scenario, 0 = 1 *
a2(10 ) and scale~invariant <density perturbations, are such natural
and compelling features of a reasonable cosmological model, that their
ultimate verification (my personal ©bias here!) as cosmological facts
will shed little light on whether or not we 1live in an inflationary
Universe, Although the inflationary Universe scenarioc is not the only
game in town, right now it does seem to be the best game in town.
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Due to the brevity of this course in particle physics/cosmology

there are many important and interesting topics whiech I have nat covered
{some of which are discussed in refs. 1-3). I apologize for any
omissions and/or errors I may be guilty of. I thank my collaborators who
have allowed me to freely incorporate material from co-authored works;

they include E. W. Kolb, P. J. Steinhardt, G, Steigman, D. N, Schramm,
K. Clive and J. Yang. This work was supported in part by the DOE (at
Chicage and Fermilab), NASA (at Fermilab), and an Alfred P. Sloan
Fellowship.
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