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We use the recently developed generalized double-copy construction to obtain an improved repre-
sentation of the five-loop four-point integrand of N ¼ 8 supergravity whose leading ultraviolet behavior
we analyze using state-of-the-art loop-integral expansion and reduction methods. We find that the five-loop
critical dimension where ultraviolet divergences first occur is Dc ¼ 24=5, corresponding to a D8R4

counterterm. This ultraviolet behavior stands in contrast to the cases of four-dimensional N ¼ 4

supergravity at three loops and N ¼ 5 supergravity at four loops whose improved ultraviolet behavior
demonstrates enhanced cancellations beyond implications from standard symmetry considerations. We
express this Dc ¼ 24=5 divergence in terms of two relatively simple positive-definite integrals with
vanishing external momenta, excluding any additional ultraviolet cancellations at this loop order. We note
nontrivial relations between the integrals describing this leading ultraviolet behavior and integrals
describing lower-loop behavior. This observation suggests not only a path towards greatly simplifying
future calculations at higher loops, but may even allow us to directly investigate ultraviolet behavior in
terms of simplified integrals, avoiding the construction of complete integrands.
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I. INTRODUCTION

Since the discovery of supergravity theories [1], a
complete understanding of their ultraviolet properties has
remained elusive. Despite tremendous progress over the
years, many properties of gravitational perturbation theory
remain unknown. Power-counting arguments, driven by the
dimensionality of Newton’s constant, suggest that all
pointlike theories of gravity should develop an ultraviolet
divergence at a sufficiently high-loop order. However, if a
pointlike theory were ultraviolet finite, it would imply the
existence of an undiscovered symmetry or structure that
should likely have a fundamental impact on our under-
standing of quantum gravity. Explicit calculations in recent
years have revealed the existence of hidden properties, not
readily apparent in Lagrangian formulations. One might
wonder whether these tame the ultraviolet behavior of

pointlike gravity theories. For example, all-loop-order
unitarity cuts exhibit remarkable infrared and ultraviolet
cancellations [2] whose consequences remain to be fully
explored. Indeed, we know of examples in N ¼ 4 [3] and
N ¼ 5 [4] supergravity theories that display “enhanced
cancellations” [5–9], where quantum corrections exclude
counterterms thought to be consistent with all known
symmetries. In addition, there are indications that anoma-
lies in known symmetries of supergravity theories play a
role in the appearance of ultraviolet divergences [10,11].
Restoration of these symmetries in S-matrix elements by
finite local counterterms may lead to the cancellation of
known divergences. In this paper, we take a step forward by
presenting a detailed analysis of the ultraviolet behavior of
the five-loop four-point scattering amplitude in the max-
imally supersymmetric theory, N ¼ 8 supergravity1 [12],
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1Strictly speaking the maximally supersymmetric theory
is only recognized as N ¼ 8 supergravity in four dimensions.
While we concern ourselves with mainly higher dimensions, in
this paper we take the liberty to apply the four-dimensional
nomenclature.
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and observe properties that should help us determine its
four-dimensional ultraviolet behavior at even higher loops.
Its many symmetries suggest that, among the pointlike

theories of gravity, the maximally supersymmetric theory
has the softest ultraviolet behavior. These symmetry prop-
erties also make it technically easier to explore and
understand its structure. Over the years there have been
many studies and predictions for the ultraviolet behavior of
N ¼ 8 supergravity [13,14]. The current consensus, based
on standard symmetry considerations, is thatN ¼ 8 super-
gravity in four dimensions is ultraviolet finite up to at least
seven loops [15–17]. Through four loops, direct compu-
tation using modern scattering amplitude methods prove
that the critical dimension of N ¼ 8 supergravity where
divergences first occur is [18–20]

Dc ¼
6

L
þ 4; ð2 ≤ L ≤ 4Þ ð1:1Þ

where L is the number of loops. This matches the formula
[18,21] for N ¼ 4 super-Yang-Mills theory [22] which is
known to be an ultraviolet finite theory in D ¼ 4 [23]. At
one loop the critical dimension, for both N ¼ 4 super-
Yang-Mills theory andN ¼ 8 supergravity [13], isDc ¼ 8.
We define the theories in dimensions D > 4 via dimen-
sional reduction of N ¼ 1 supergravity in D ¼ 11 and
N ¼ 1 super-Yang-Mills theory in D ¼ 10 [13].
In this paper we address the longstanding question of

whether Eq. (1.1) holds for N ¼ 8 supergravity at five
loops. Symmetry arguments [16] suggest D8R4 as a valid
counterterm and that the critical dimension for the five-loop
divergence should be Dc ¼ 24=5 instead of that suggested
by Eq. (1.1), Dc ¼ 26=5. (See also Refs. [15,17].) Such
arguments, however, cannot ascertain whether quantum
corrections actually generate an allowed divergence.
Indeed, explicit three-loop calculations in N ¼ 4 super-
gravity and four-loop calculations in N ¼ 5 supergravity
reveal that while counterterms are allowed by all known
symmetry considerations, their coefficients vanish [5,6].
These enhanced cancellations are nontrivial and only
manifest upon applying Lorentz invariance and a repar-
ametrization invariance to the loop integrals [8]. This
implies that the only definitive way to settle the five-loop
question is to directly calculate the coefficient of the
potential D8R4 counterterm in D ¼ 24=5, as we do here.
This counterterm is of interest because it is the one that
would contribute at seven loops if N ¼ 8 supergravity
were to diverge in D ¼ 4.
Our direct evaluation of the critical dimension of the

N ¼ 8 supergravity theory at five loops proves unequivo-
cally that it first diverges in Dc ¼ 24=5 and no enhanced
cancellations are observed. The fate ofN ¼ 8 supergravity
in four-dimensions remains to be determined. Even with
the powerful advances exploited in this current calcula-
tion, direct analysis at seven loops would seem out of

reach. Fortunately the results of our current analysis,
when combined with earlier work at lower loops
[5,6,11,19,20,24], reveal highly nontrivial constraints on
the subloops of integrals describing the leading ultraviolet
behavior through five loops. These patterns suggest not
only new efficient techniques to directly determine the
ultraviolet behavior at ever higher loops, but potentially
undiscovered principles governing the ultraviolet consis-
tency. In this work we will describe these observed
constraints, leaving their detailed study for the future.
The results of this paper are the culmination of many

advances in understanding and computing gauge and
gravity scattering amplitudes at high-loop orders. The
unitarity method [25,26] has been central to this progress
because of the way that it allows on-shell simplifications to
be exploited in the construction of new higher-loop
amplitudes. We use its incarnation in the maximal-cut
(MC) organization [26] to systematically build complete
integrands [27,28].
The unitarity method combines naturally with double-

copy ideas, including the field-theoretic version of the
string-theory Kawai, Lewellen and Tye (KLT) relations
between gauge and gravity tree amplitudes [29] and the
related Bern, Carrasco and Johansson (BCJ) color-
kinematics duality and double-copy construction [30,31].
The double-copy relationship reduces the problem of con-
structing gravity integrands to that of calculating much
simpler gauge-theory ones. For our calculation, a generali-
zation [27] of the double-copy procedure has proven
invaluable [28].
The analysis in Ref. [28] finds the first representation

of an integrand for the five-loop four-point amplitude of
N ¼ 8 supergravity. The high power counting of that
representation obstructs the necessary integral reductions
needed to extract its ultraviolet behavior. Here we use
similar generalized double-copy methods [27] to construct
an improved integrand that enormously simplifies the
integration. The key is starting with an improved gauge-
theory integrand, which we build by constraining a mani-
fest-power-counting ansatz via the method of maximal cuts.
The needed unitarity cuts are easily obtained from the
gauge-theory integrand of Ref. [32].
The earlier representation of the supergravity integrand,

given in Ref. [28], is superficially (though not actually)
quartically divergent in the dimension of interest. The new
representation shifts these apparent quartic divergences to
contributions that only mildly complicate the extraction of
the underlying logarithmic divergences. Our construction
proceeds as before except for small differences related to
avoiding certain spurious singularities. We include the
complete gauge and supergravity integrands in plain-text
ancillary files [33].
Recent advances in loop integration methods proved

essential for solving the challenges posed by the calculation
of ultraviolet divergences at five loops. Related issues
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appeared in the five-loop QCD beta function calculation,
which was completed recently [34]. For supergravity,
higher-rank tensors related to the nature of the graviton
greatly increase the number of terms while the absence of
subdivergences dramatically simplifies the calculation. At
high-loop orders the primary method for reducing loop
integrals to a basis relies on integration-by-parts (IBP)
identities [35,36]. The complexity of such IBP systems
tends to increase prohibitively with the loop order and the
number of different integral types. Ideas from algebraic
geometry provide a path to mitigating this problem by
organizing them in a way compatible with unitarity
methods [37–40]. We also simplify the problem by organ-
izing the IBP identities in terms of an SL(5) symmetry of
the five-loop integrals [8].
The final expression for the leading ultraviolet behavior

is incredibly compact, and exposes, in conjunction with
previous results [5,6,11,19,20,24], simple and striking
patterns. Indeed, analysis of this leading ultraviolet behav-
ior indicates the existence of potentially more powerful
methods for making progress at higher loops.
This paper is organized as follows. In Sec. II, we review

the generalized double-copy construction, as well as the
underlying ideas including BCJ duality and the method of
maximal cuts. We also summarize properties of the
previously constructed five-loop four-point integrand of
Ref. [28]. In Sec. III, we construct newN ¼ 4 super-Yang-
Mills and N ¼ 8 supergravity integrands with improved
power-counting properties. Then, in Sec. IV we describe
our procedure for expanding the integrands for large loop
momenta, resulting in integrals with no external momenta,
which we refer to as vacuum integrals. In Sec. V, as a warm
up to the complete integral reduction described in Sec. VI,
we simplify the integration-by-parts system of integrals by
assuming that the only contributing integrals after expand-
ing in large loop momenta are those with maximal cuts. The
results for the five-loop ultraviolet properties are given in
these sections. In Sec. VII, by collecting known results
for the leading ultraviolet behavior in terms of vacuum
integrals we observe and comment on the intriguing and
nontrivial consistency for such integrals between higher
and lower loops. We present our conclusions in Sec. VIII.

II. REVIEW

The only known practical means for constructing higher-
loop gravity integrands is the double-copy procedure that
recycles gauge-theory results into gravity ones. Whenever
gauge-theory integrands are available in forms that mani-
fest the BCJ duality between color and kinematics [30,31],
the corresponding (super)gravity integrands are obtained
by replacing color factors with the kinematic numerators of
the same or of another gauge theory. Experience shows that
it is sometimes difficult to find such representations of
gauge-theory integrands. In some cases this can be over-
come by increasing the power count of individual terms

[41], or by introducing nonlocalities in integral coefficients
[42]. Another possibility is to find an integrand where BCJ
duality holds on every cut, but does not hold with cut
conditions removed [43]. Unfortunately, these ideas have
not, as yet, led to a BCJ representation of the five-loop four-
point integrand of N ¼ 4 super-Yang-Mills theory.
To avoid this difficulty, a generalized version of the BCJ

double-copy construction has been developed. Although
relying on the existence of BCJ duality at tree level, the
generalized double-copy construction does not use any
explicit representation of tree- or loop-level amplitudes that
satisfies BCJ duality. It instead gives an algorithmic
procedure which converts generic gauge-theory integrands
into gravity ones [27]. This is used in Ref. [28] to construct
an integrand for the five-loop four-point amplitude of
N ¼ 8 supergravity.
In this section we give an overview of the ingredients and

methods used in the construction of the five-loop integrand.
We begin with a brief review of BCJ duality and the
maximal-cut method which underlies and organizes the
construction, and then proceed to reviewing the generalized
double copy and associated formulas. We then summarize
features of the previously constructed integrand [28] for the
five-loop four-point amplitude of N ¼ 8 supergravity. In
Sec. III we use the generalized double copy to find a greatly
improved integrand for extracting ultraviolet properties,
which we do in subsequent sections.

A. BCJ duality and the double copy

The BCJ duality [30,31] between color and kinematics is
a property of on-shell scattering amplitudes which has so
far been difficult to discern in a Lagrangian formulation of
Yang-Mills field theories [44,45]. Nevertheless various
tree-level proofs exist [46].
The first step to construct a duality-satisfying represen-

tation of amplitudes is to organize them in terms of graphs
with only cubic (trivalent) vertices. This process works for
any tree-level amplitude in any D-dimensional gauge
theory coupled to matter fields. For the adjoint representa-
tion case, anm-point tree-level amplitude may be written as

Atree
m ¼ gm−2

X
j

cjnjQ
αj
p2
αj

; ð2:1Þ

where the sum is over the ð2m − 5Þ!! distinct tree-level
graphs with only cubic vertices. Such graphs are the only
ones needed because the contribution of any diagram with
quartic or higher-point vertices can be assigned to a graph
with only cubic vertices by multiplying and dividing by
appropriate propagators. The nontrivial kinematic informa-
tion is contained in the kinematic numerators nj; they
generically depend on momenta, polarization, and spinors.
The color factors cj are obtained by dressing every vertex
in graph j with the group theory structure constant,
f̃abc ¼ i

ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ, where the Hermitian
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generators of the gauge group are normalized via
TrðTaTbÞ ¼ δab. The denominator is given by the product
of the Feynman propagators of each graph j.
The kinematic numerators of an amplitude in a BCJ

representation obey the same algebraic relations as the
color factors [20,30,31,47]. The key property is the require-
ment that all Jacobi identities obeyed by color factors are
also obeyed by the kinematic numerators,

ci þ cj þ ck ¼ 0 ⇒ ni þ nj þ nk ¼ 0; ð2:2Þ

where i, j, and k refer to three graphs which are identical
except for one internal edge. Figure 1 shows three basic
diagrams participating in the Jacobi identity for color or
numerator factors. They can be embedded in a higher-point
diagram. Furthermore, the kinematic numerators should
obey the same antisymmetry under graph vertex flips as the
color factors. A duality-satisfying representation of an
amplitude can be obtained from a generic one through
generalized gauge transformations—shifts of the kinematic
numerators,

ni → ni þ Δi; ð2:3Þ
which are constrained not to change the amplitude. When
the duality is manifest, the kinematic Jacobi relations (2.2)
express all kinematic numerators in terms of a small set of
“master” numerators. While there is a fairly large freedom
in choosing them, only the numerators of certain graphs can
form such a basis.
Once gauge-theory tree amplitudes have been arranged

into a form where the duality is manifest [30,31], we obtain
corresponding gravity amplitudes simply by replacing the
color factors of one gauge-theory amplitude with the
kinematic numerators of another gauge-theory amplitude,

ci → ñi; ð2:4Þ
as well as readjusting the coupling constants. This
replacement gives the double-copy form of a gravity tree
amplitude,

Mtree
m ¼ i

�
κ

2

�
m−2X

j

ñjnjQ
αj
p2
αj

; ð2:5Þ

where κ is the gravitational coupling and ñj and nj are
the kinematic numerator factors of the two gauge theories.

The gravity amplitudes obtained in this way depend on the
specific input gauge theories. As discussed in Refs. [31,44],
Eq. (2.5) holds provided that at least one of the two
amplitudes satisfies the duality (2.2) manifestly. The other
may be in an arbitrary representation.
An earlier related version of the double-copy relation

valid at tree level is the KLT relations between gauge and
gravity amplitudes [29]. Their general form in terms of a
basis of gauge-theory amplitudes is

Mtree
m ¼ i

�
κ

2

�
m−2 X

τ;ρ∈Sm−3

KðτjρÞ

× Ãtree
m ð1; ρ2;…; ρm−2; m; ðm − 1ÞÞ

× Atree
m ð1; τ2;…; τm−2; ðm − 1Þ; mÞ: ð2:6Þ

Here the Atree
m are color-ordered tree amplitudes with the

indicated ordering of legs and the sum runs over ðm − 3Þ!
permutations of external legs. The KLT kernelK is a matrix
with indices corresponding to the elements of the two
orderings of the relevant partial amplitudes. It is also
sometimes referred to as the momentum kernel.
Compact representations of the KLT kernel are found in
Refs. [46,48,49].
At loop level, the duality between color and kinematics

(2.2) remains a conjecture [31], although evidence con-
tinues to accumulate [20,42,50,51]. As at tree level, loop-
level amplitudes in a gauge theory coupled to matter fields
in the adjoint representation can be expressed as a sum over
diagrams with only cubic (trivalent) vertices:

AL-loop
m ¼ iLgm−2þ2L

X
Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

cjnjQ
αj
p2
αj

: ð2:7Þ

The first sum runs over the set Sm ofm! permutations of the
external legs. The second sum runs over the distinct L-loop
m-point graphs with only cubic vertices; as at tree level, by
multiplying and dividing by propagators it is trivial to
absorb numerators of contact diagrams that contain higher-
than-three-point vertices into numerators of diagrams with
only cubic vertices. The symmetry factor Sj counts the
number of automorphisms of the labeled graph j from both
the permutation sum and from any internal automorphism
symmetries. This symmetry factor is not included in the
kinematic numerator.
The generalization of BCJ duality to loop-level ampli-

tudes amounts to demanding that all diagram numerators
obey the same algebraic relations as the color factors [31].
The Jacobi identities are implemented by embedding the
three diagrams in Fig. 1 into loop diagrams in all possible
ways and demanding that identities of the type in Eq. (2.2)
hold for the loop-level numerators as well. In principle,
given any representation of an amplitude, one may attempt
to construct a duality-satisfying one by modifying the

FIG. 1. The three four-point diagrams participating in either
color or numerator Jacobi identities.
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kinematic numerators through generalized gauge trans-
formations (2.3); however, a more systematic approach
is to start with an ansatz exhibiting certain desired proper-
ties and impose the kinematic Jacobi relations. As at tree
level, when the duality is manifest all kinematic numerators
are expressed in terms of those of a small number of
“master diagrams” [20,42].
Just like with tree numerators, once gauge-theory

numerator factors which satisfy the duality are available,
replacing the color factors by the corresponding numerator
factors (2.4) yields the double-copy form of gravity loop
integrands,

ML-loop
m ¼ iLþ1

�
κ

2

�
m−2þ2LX

Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

ñjnjQ
αj
p2
αj

;

ð2:8Þ

where ñj and nj are gauge-theory numerator factors. The
theories to which the gravity amplitudes belong are dictated
by the choice of input gauge theories.
Thus, the double-copy construction reduces the problem

of constructing loop integrands in gravitational theories to
the problem of finding BCJ representations of gauge-theory
amplitudes.2 Apart from offering a simple means for
obtaining loop-level scattering amplitudes in a multitude
of (super)gravity theories, the double-copy construction has
also been applied to the construction of black-hole and
other classical solutions [52] including those potentially
relevant to gravitational-wave observations [53], correc-
tions to gravitational potentials [54], and the relation
between symmetries of supergravity and gauge theory
[55–57]. The duality underlying the double copy has also
been identified in a wider class of quantum field and
string theories [49,58–62], including those with fundamen-
tal representation matter [63]. For recent reviews, see
Ref. [47].
When it turns out to be difficult to find a duality-

satisfying representation of a gauge-theory amplitude, as in
the case for the five-loop four-point amplitude of N ¼ 8
supergravity, an alternative method is available. We use the
generalized double-copy procedure [27] that relies only on
the existence of duality-consistent properties at tree level.
This type of approach may also potentially aid applications
of BCJ duality to problems in classical gravity.

B. Method of maximal cuts

Thegeneralizeddouble-copy constructionofRefs. [27,28]
relies on the interplay between the method of maximal cuts

[26] and tree-level BCJ duality. The maximal-cut method
is a refinement of the generalized-unitarity method [25],
designed to construct the integrand from the simplest set of
generalized-unitarity cuts. In the generalized double-copy
approachwe apply themaximal-cut method in a constructive
way, assigning missing contributions to new higher-vertex
contact diagrams as necessary.
In both gauge and gravity theories, the method of

maximal cuts [26] constructs multiloop integrands from
generalized-unitarity cuts that decompose loop integrands
into products of tree amplitudes,

CN
kMC¼

X
states

Atree
mð1Þ � � �Atree

mðpÞ; k≡Xp
i¼1

mðiÞ−3p; ð2:9Þ

where the Atree
mðiÞ are tree-level mðiÞ-multiplicity amplitudes

corresponding to the blobs illustrated for various five-loop
examples in Figs. 2 and 3. We organize these cuts according
to levels that correspond to the number k of internal
propagators that remain off shell.
When constructing gauge-theory amplitudes, we use tree

amplitudes directly as in Eq. (2.9). ForN ¼ 4 super-Yang-
Mills it is very helpful to use a four-dimensional on-shell
superspace [64] to organize the state sums [65]. Some care
is needed to ensure that the obtained expressions are valid
in D dimensions, either by exploiting cuts whose super-
sums are valid in D ≤ 10 dimensions [21,32] or using six-
dimensional helicity [66]. Once we have one version of a
gauge-theory integrand, we can avoid reevaluating the state
sums to find new representations, simply by using the cuts
of the previously constructed integrand instead of Eq. (2.9)
to construct target expressions. In the same spirit, for
N ¼ 8 supergravity we can always bypass Eq. (2.9) by
making use of the KLT tree relations (2.6). The state sums
also factorize allowing us to express the N ¼ 8 super-
gravity cuts directly in terms of color-order N ¼ 4 super-
Yang-Mills cuts. (See Sec. 2 of Ref. [28] for further details.)
Figures 2 and 3 give examples of cuts used in the

construction of the integrands of five-loop four-point
amplitudes. At the MC level, e.g., the first two diagrams
of Fig. 2, the maximum number of internal lines are placed
on shell and all tree amplitudes appearing in Eq. (2.9) are
three-point amplitudes. At the next-to-maximal-cut (NMC)
level, e.g., the third and fourth diagrams of Fig. 2, all except
one internal line are placed on shell; all tree amplitudes are

FIG. 2. Sample maximal and next-to-maximal cuts. The
exposed lines connecting the blobs are taken to be on-shell delta
functions.

2Through four loops, there exist BCJ representations ofN ¼ 4
super-Yang-Mills amplitudes that exhibit the same graph-by-
graph power counting as the complete amplitude, i.e., all ultra-
violet cancellations are manifest. It is an interesting open problem
whether this feature will continue at higher loops.
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three-point amplitudes except one which is a four-point
amplitude. Similarly, for an N2MC, two internal lines are
kept off shell and so forth, as illustrated in Fig. 3.
In the method of maximal cuts, integrands for loop

amplitudes are obtained by first finding an integrand whose
maximal cuts reproduce the direct calculation of maximal
cuts in terms of sums of products of three-point tree-level
amplitudes. This candidate integrand is then corrected by
adding to it contact terms such that all NMCs are correctly
reproduced and systematically proceeding through the
nextk-maximal cuts (NkMCs), until no further corrections
are necessary. The level where this happens is determined
by the power counting of the theory and by choices made at
earlier levels. For example, for five-loop amplitudes in
N ¼ 4 super-Yang-Mills theory, cuts through the N3MC
level are needed, though as we describe in the next section,
it is useful to skip certain ill-defined cuts at the N2MC and
N3MC level and then recover the missing information by
including instead certain N4MC level cuts. For the four-
pointN ¼ 8 supergravity amplitude at the same loop order,
cuts through the N6MC level are necessary. In general, it is
important to evaluate more cuts than the spanning set
(necessary for constructing the amplitude) to gain non-
trivial crosschecks of the results. For example, in Ref. [28]
all N7MC cuts and many N8MC cuts were checked,
confirming the construction.
To make contact with color/kinematics-satisfying repre-

sentations of gauge-theory amplitudes it is convenient to
absorb all contact terms into diagrams with only cubic

vertices [5,6,11,19,20,24,51]. For problems of the com-
plexity of the five-loop supergravity integrand, however, it
can be more efficient to assign each new contribution of an
NkMC to a contact diagram instead of to parent diagrams,
consisting of ones with only cubic vertices. These new
contributions are, by construction, contact terms—they
contain only the propagators of the graph with higher-
point vertices—because any contribution that can resolve
these vertices into propagator terms is already accounted
for at earlier levels. In this organization each new contact
diagram can be determined independently of other contact
diagrams at the same level and depends only on choices
made at previous levels. More explicitly, as illustrated in
Fig. 4, a new contribution arising from an NkMC is
assigned to a contact diagram obtained from that cut by
replacing the blobs representing tree-level amplitudes by
vertices with the same multiplicity. The contact terms
should be taken off shell by removing the cut conditions
in a manner that reflects the diagram symmetry. Off-shell
continuation necessarily introduces an ambiguity since it is
always possible to include terms proportional to the inverse
propagators that vanish by the cut condition; such ambi-
guities can be absorbed into contact terms at the next
cut level.

C. Generalized double-copy construction

Whenever gauge-theory amplitudes are available in a
form that obeys the duality between color and kinematics,

FIG. 3. Sample NkMCs used in the construction of five-loop four-point amplitudes. The exposed lines connecting the blobs are taken
to be on-shell delta functions.
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the BCJ double-copy construction provides a straightfor-
ward method of obtaining the corresponding (super)gravity
amplitudes. If a duality-satisfying representation is ex-
pected to exist but is nonetheless unavailable, the gener-
alized double-copy construction supplies the additional
information necessary for finding the corresponding
(super)gravity amplitude. Below we briefly summarize
this procedure. A more thorough discussion can be found
in Ref. [28].
The starting point of the construction is a “naive double

copy”of two (possibly distinct) gauge-theory amplitudes
written in terms of cubic diagrams obtained by applying the
double-copy substitution (2.4) to these amplitudes despite
none of them manifesting the BCJ duality between color
and kinematics. While the resulting expression is not a
(super)gravity amplitude, it nonetheless reproduces the
maximal and next-to-maximal cuts of the desired (super)
gravity amplitude as the three- and four-point tree-level
amplitudes entering these cuts obey the duality between
color and kinematics. Contact term corrections are
necessary to satisfy the NkMC with k ≥ 2; the method
of maximal cuts can be used to determine them. For N3MC
and N3MC at five loops, whose associated contact terms are
the most complicated [25,32], it is advantageous to obtain
these corrections using formulas that express the cuts in
terms of violations of the BCJ relations (2.2).
The existence of BCJ representations at tree level implies

that representations should exist for all cuts of gauge-theory
amplitudes that decompose the loop integrand into products
of tree amplitudes to any loop order. This further suggests
that the corresponding cuts of the gravity amplitude can be
expressed in double-copy form,

CGR ¼
X

i1;…;iq

nBCJi1;i2;…iq
ñBCJi1;i2;…iq

Dð1Þ
i1
…DðqÞ

iq

; ð2:10Þ

where the nBCJ and ñBCJ are the BCJ numerators associated
with each of the two copies. In this expression the cut
conditions are understood as being imposed on the numer-
ators. Each sum runs over the diagrams of each blob and

DðmÞ
im

are the product of the uncut propagators associated to
each diagram of blobm. This notation is illustrated in Fig. 5
for an N2MC. In this figure, each of the two four-point

blobs is expanded into three diagrams, giving a total of nine
diagrams. For example, the indices i1 ¼ 1 and i2 ¼ 1 refer
to the five-loop diagram produced by taking the first
diagram from each blob and connecting it to the remaining
parts of the five-loop diagram. The denominators in
Eq. (2.10) correspond to the thick (colored) lines in the
diagrams.
The BCJ numerators in Eq. (2.10) are related [31,44] to

those of an arbitrary representation by a generalized gauge
transformation (2.3); the shift parameters follow the same
labeling scheme as the numerators themselves,

ni1;i2;…iq ¼ nBCJi1;i2;…iq
þ Δi1;i2;…iq : ð2:11Þ

The shifts Δi1;i2;…iq are constrained to leave the correspond-
ing cuts of the gauge-theory amplitude unchanged. Using
such transformations we can reorganize a gravity cut in
terms of cuts of a naive double copy and an additional
contribution,

CGR ¼
X

i1;…;iq

ni1;i2;…iq ñi1;i2;…iq

Dð1Þ
i1
…DðqÞ

iq

þ EGRðΔÞ; ð2:12Þ

where the cut conditions are imposed on the numerators.
Rather than expressing the correction EGR in terms of the
generalized-gauge-shift parameters, it is useful to reexpress
the correction terms as bilinears in the violations of the
kinematic Jacobi relations (2.2) by the generic gauge-
theory amplitude numerators. These violations are known
as BCJ discrepancy functions.
As an example, the cut in Fig. 5 is composed of two four-

point tree amplitudes and the rest are three-point ampli-
tudes. For any cut of this structure, two four-point trees
connected to any number of three-point trees, the correction
has a simple expression,

E4×4
GR ¼ −

1

dð1;1Þ1 dð2;1Þ1

�
J•1;1J̃1;•2 þ J1;•2J̃•1;1

�
; ð2:13Þ

where dðb;pÞi is the pth propagator of the ith diagram inside
the bth blob and

FIG. 4. New contribution found via the method of maximal cuts can be assigned to contact terms. The labels (X: Y) correspond to the
labeling of Ref. [28] and refer to the level and contact diagram number.
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J•;i2 ≡
X3
i1¼1

ni1i2 ; Ji1;• ≡
X3
i2¼1

ni1i2 ;

J̃•;i2 ≡
X3
i1¼1

ñi1i2 ; J̃i1;• ≡
X3
i2¼1

ñi1i2 ð2:14Þ

are BCJ discrepancy functions. Notably, these discrepancy
functions vanish whenever the numerators involved satisfy
the BCJ relations, even if the representation as a whole does
not satisfy them. Such expressions are not unique and
can be rearranged using various relations between J s
[27,28,67]. For example, an alternative version, equivalent
to Eq. (2.13), is

E4×4
GR ¼ −

1

9

X3
i1;i2¼1

1

dð1;1Þi1
dð2;1Þi2

ðJ•;i2 J̃i1;• þ Ji1;•J̃•;i2Þ: ð2:15Þ

Similarly, a cut with a single five-point tree amplitude
and the rest three-point tree amplitudes is given by

C5GR ¼
X15
i¼1

niñi

dð1Þi dð2Þi

þ E5
GR with

E5
GR ¼ −

1

6

X15
i¼1

Jfi;1gJ̃fi;2g þ Jfi;2gJ̃fi;1g
dð1;1Þi dð1;2Þi

; ð2:16Þ

where Jfi;1g and Jfi;2g are BCJ discrepancy functions
associated with the first and second propagator of the ith
diagram. (See Ref. [28] for further details.)
As the cut level k increases the formulas relating the

amplitudes’ cuts with the cuts of the naive double copy
become more intricate, but the basic building blocks remain
the BCJ discrepancy functions. The formulas often enor-
mously simplify the computation of the contact term
corrections and are especially helpful at five loops at the
N2MC and N3MC level, where calculating the contact
terms via the maximal-cut method can be rather involved.
Beyond this level the contact terms become much simpler
due to a restricted dependence on loop momenta and are
better dealt with using the method of maximal cuts and
KLT relations [29], as described in Ref. [28].

D. Previously constructed five-loop
four-point integrands

Five-loop four-point integrands have previously been
constructed for N ¼ 4 super-Yang-Mills [32] and N ¼ 8
supergravity [28]. Here we review some of their properties
which serve as motivation for the construction in Sec. III of
new N ¼ 4 super-Yang-Mills and N ¼ 8 supergravity
integrands with better manifest ultraviolet properties.
The five-loop four-point integrand of N ¼ 8 super-

gravity constructed in Ref. [28] is obtained through
the generalized double-copy procedure, starting from a
slightly modified form of the corresponding N ¼ 4
super-Yang-Mills integrand of Ref. [32]. This modified

FIG. 5. An example illustrating the notation in Eq. (2.10). Expanding each of the two four-point blobs gives a total of nine diagrams.
The label N2MC 867 refers to the 867th diagram of the second level cuts, and the ni;j correspond to labels used in the cut. The shaded
thick (blue and red) lines are the propagators around which BCJ discrepancy functions are defined.
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super-Yang-Mills representation is given explicitly in an
ancillary file of Ref. [28].
All representations of the five-loop four-point N ¼ 4

super-Yang-Mills amplitude that we use contain solely
diagrams with only cubic (trivalent) vertices, so can be
written using Eq. (2.7) as

Að5Þ
4 ¼ ig12stAtree

4

X
S4

XND

i¼1

Z Y9
j¼5

dDlj

ð2πÞD
1

Si

ciNiQ
20
mi¼5 l

2
mi

;

ð2:17Þ

where we have explicitly extracted an overall crossing
symmetric prefactor of stAtree

4 from the kinematic
numerators when compared to Eq. (2.7). The gauge
coupling is g, the color-ordered D-dimensional tree
amplitude is Atree

4 ≡ Atree
4 ð1; 2; 3; 4Þ, and s¼ðk1þk2Þ2

and t¼ðk2þk3Þ2 are the standard Mandelstam invariants.
We denote external momenta by ki with i ¼ 1;…; 4 and the
five independent loop momenta by lj with j ¼ 5;…; 9.
The remaining momenta lj with 10 ≤ j ≤ 20 of internal
lines are linear combinations of the five independent loop
momenta and external momenta. As always, the color
factors ci of all graphs are obtained by dressing every three-
vertex in the graph with a factor of f̃abc.
The number ND of diagrams that we include depends on

the particular representation we choose. The form given in
Ref. [32] has 416 diagrams, while the one used in Ref. [28]
has 410 diagrams. Some sample graphs from this list of 410
diagrams are shown in Fig. 6.
It is useful to inspect some of the numerators associated

with the sample diagrams. Choosing as examples diagrams
14, 16, 31 and 280 from the 410 diagram representation of
Ref. [28], we have theN ¼ 4 super-Yang-Mills numerators

N14 ¼ s

�
s2s3;5 −

5

2
l2
5l

2
13l

2
15

�
;

N16 ¼ −s
�
s3 þ s2τ3;15 −

3

2
sl2

7l
2
10 þ

3

2
l2
7l

2
10ðτ1;15 þ τ2;15 þ τ4;15 þ l2

9 − l2
14 − l2

17 þ l2
20Þ

�
;

N31 ¼ s

�
s

�
−s2 − l2

13l
2
20 þ s

�
τ6;19 þ l2

13 þ
1

2
l2
20

�
þ l2

6ðl2
20 − l2

19Þ
�
−
1

2
l2
6l

2
7l

2
19

�
;

N280 ¼ s4 þ s3ðτ10;13 þ τ18;20Þ þ
1

2
s2ðτ210;13 þ τ218;20Þ þ 2tðl2

5 þ l2
6Þðl2

13l
2
18 þ l2

10l
2
20Þ; ð2:18Þ

where s and t are the usual Mandelstam invariants and

si;j ¼ ðli þ ljÞ2; τi;j ¼ 2li · lj: ð2:19Þ

The corresponding naive double-copy numerators are
obtained by simply squaring these expressions.
The N ¼ 8 integrand found in Ref. [28] suffers from

poor graph-by-graph power counting, which obstructs the

extraction of its leading ultraviolet behavior. Many of its
diagrams in the naive double-copy part contain spurious
quartic power divergences in D ¼ 24=5, which are equiv-
alent to logarithmic divergences in D ¼ 4. As discussed in
[15–17], such divergences are spurious and should cancel
out. The difficulties raised by the spurious power counting
are twofold. First, we will see in Sec. IV that their presence
causes a rapid growth in the number of terms in the series

FIG. 6. Sample graphs for the five-loop four-point N ¼ 4 super-Yang-Mills amplitude. The graph labels correspond to the ones in
Ref. [28] and here.
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expansion of the integrand necessary to isolate the potential
logarithmic divergence in D ¼ 24=5. Second, this expan-
sion yields graphs with propagators raised to a high power,
which leads to an IBP system with billions of integrals.
There are two distinct ways to overcome these difficul-

ties. The first is to construct a new super-Yang-Mills
integrand which improves the power counting of the naive
double copy. This in turn minimizes the number of integrals
and equations in the full IBP system. We will give the
construction of this new representation of theN ¼ 4 super-
Yang-Mills integrand as well as of the N ¼ 8 supergravity
integrand that follows from it in the next section. This
represents a complete solution. Still it is useful to have a
separate check. Our second resolution is to make simplify-
ing assumptions on the type of integrals that can contribute
to the final result after applying IBP integral identities. This
approach will be discussed in Sec. V and will allow us to
integrate the more complicated integrand of Ref. [28]. The
agreement between the results of these two approaches
represents a highly nontrivial confirmation of both the
integrands and the integration procedure.

III. IMPROVED INTEGRANDS

In this section we describe the construction of a new
form of the five-loop four-point integrand forN ¼ 4 super-
Yang-Mills theory and then use it to construct an improved
N ¼ 8 supergravity integrand. The N ¼ 8 integrand we
obtain still exhibits power divergences in D ¼ 24=5 but, as
we shall see, their structure is such that they do not lead to a
dramatic increase in the number of integrals needed for the
extraction of the leading logarithmic ultraviolet behavior of
the amplitude. In Sec. VI we extract the ultraviolet proper-
ties using this improvedN ¼ 8 five-loop integrand without
making any assumptions on the final form of the large-loop
momentum integrals.

A. Construction of improved N = 4
super-Yang-Mills integrand

The key power-counting requirement we demand of
every term of the improved Yang-Mills representation is
that its naive double copy, as described in Sec. II, has no
worse than a logarithmic divergence in D ¼ 24=5. This
translates to a representation with no more than four powers
of loop momenta in the kinematic numerator of any one-
particle-irreducible diagram. These conditions require us to
introduce new diagrams of the type illustrated in Fig. 7.
These graphs are characterized by the vanishing of their
maximal cuts. For these diagrams, this implies that the
poles due to the propagators independent of loop momenta
(to which we will refer to as “dangling trees”) are spurious.
It also turns out that their numerators have fewer than 4
powers of loop momenta. Such dangling tree diagrams are
crucial for obtaining ultraviolet-improved supergravity
expressions via the generalized double-copy procedure.

The general pattern is that, to improve the double-copy
expression, the terms with the highest power counting in
the super-Yang-Mills integrand should come from dia-
grams with dangling trees. Due to the reduced number of
possible loop-momentum factors in their kinematic numer-
ators, the squaring of the numerator (naive double copy) of
such diagrams keeps the superficial power counting under
control.
To construct such a representation of the five-loop four-

point N ¼ 4 super-Yang-Mills integrand we apply the
maximal-cut method to an ansatz that has the desired
power-counting properties. Inspired by the structure of the
lower-loop amplitudes [18,20,31,68] we further simplify
the ansatz and improve the power-counting properties
of the naive double copy by imposing the following
constraints:

(i) Each numerator is a polynomial of degree eight in
momenta, of which no more than four can be loop
momenta.

(ii) Every term in every numerator contains at least one
factor of an external kinematic invariant, s or t.

(iii) No diagram contains a one-loop tadpole, bubble
or triangle subdiagram. Also, two-point two-loop
and three-loop subdiagrams, and three-point two-
loop subdiagrams, are excluded.

(iv) For each one-loop n-gon the maximum power of the
corresponding loop momentum is n − 4. In particu-
lar, this means that numerators do not depend on the
loop momenta of any box subdiagrams.

(v) Diagram numerators respect the diagram symmetries.
(vi) The external state dependence is included via an

overall factor of the tree amplitude.
Such simplifying conditions can always be imposed as long
as the system of equations resulting from matching the cuts
of the ansatz with those of the amplitude still has solutions.
The conditions above turn out to be incompatible with a
representation where BCJ duality holds globally on the
fully off-shell integrand. They are nevertheless compatible
with all two-term kinematic Jacobi relations [meaning
where one of the three numerators of the Jacobi relation
(2.2) vanishes by the above constraints], which we impose
a posteriori:

(i) The solution to cut conditions is such that the ansatz
obeys all two-term kinematic Jacobi relations.

Similarly with the earlier representation of the five-loop
four-point N ¼ 4 super-Yang-Mills amplitude, we organ-
ize the integrand in terms of diagrams with only cubic
vertices; the numerators have the structure shown in
Eq. (2.17). In the present case we have 752 diagrams.
The first 410 diagrams are the same as for the previous
integrand [28], some of which are displayed in Fig. 6. There
are an additional 342 diagrams, a few of which are
displayed in Fig. 7. In addition to the dangling tree graphs
discussed above, this includes other diagrams such the ones
on the first line of Fig. 7.
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For each diagram we write down an ansatz for the Ni
which is a polynomial of fourth degree in the independent
kinematic invariants, subject to the constraints above. Each
independent term is assigned an arbitrary parameter. This
ansatz is valid for all external states, as encoded in the
overall tree-level amplitude factor in Eq. (2.17). This
simple dependence on external states is expected only
for the four-point amplitudes.3 The most general ansatz that
obeys the first four constraints above has 537,226 terms;
requiring that each numerator respects the graph’s sym-
metries and also imposing the maximal cuts of the
amplitude reduces this to a more manageable size.
The parameters of the ansatz are determined via the

method of maximal cuts. Rather than constructing unitarity
cuts directly from their definition as products of tree-level
amplitudes, it is far more convenient to use the previously
constructed versions [28,32] of the amplitude integrand as
input. This approach circumvents the need for supersym-
metric state sums [65] (which become nontrivial at high-
loop orders and in arbitrary dimensions) and recycles the
simplifications which have already been carried out for the
construction of that integrand. Moreover, it makes full use
of the D-dimensional validity of that integrand, which is
confirmed in Ref. [32].
The maximal cuts impose simple constraints on the free

parameters; it is convenient to replace them in the ansatz.
Next, NMC conditions are solved; as their solution is quite
involved, it is impractical to plug it back directly into the
ansatz. To proceed, we introduce the notion of a presolution
of a given NkMC as the solution of all constraints imposed
by all lower-level cuts which overlap with the given cut.
The advantage of using presolutions is that they account for

a large part of the lower-level cut constraints on the
parameters entering the given cut without the complications
ensuing from simultaneously solving all the lower-level cut
conditions and replacing the solution in the ansatz. Thus,
instead of simultaneously solving all the NMC cut con-
straints and evaluating the ansatz on the solution before
proceeding to the N2MC cuts, we construct all the N2MC
presolutions and then solve each of them simultaneously
with the N2MC cut condition. We proceed recursively in
this way through all relevant cut levels. The integrand of the
amplitude is then found by simultaneously solving all the
new constraints on the parameters of the ansatz derived at
each level. While this is equivalent to adding contact terms,
the ansatz approach effectively distributes them in the
diagrams of the ansatz and prevents the appearance of any
terms with artificially high power count.
In carrying out this application of the method of maximal

cuts we encounter a technical complication with diagrams
with four-loop bubble subdiagrams, three of which are
illustrated in Fig. 7: (0: 430), (0: 547) and (0: 708). The
main difficulty stems from the fact that both propagators
connecting the bubble to the rest of the diagram carry the
same momentum so the diagram effectively exhibits a
doubled propagator. While such double propagators are
spurious and can in principle be algebraically eliminated
since the representations of Refs. [28,32] do not have them,
they nevertheless make difficult the evaluation of the cuts.
It moreover turns out that, with our strict power-counting
requirements, there is no solution that explicitly eliminates
the double poles from all diagrams, even though they
cancel in all cuts. Such graphs cause certain cuts to be ill-
defined without an additional prescription. Indeed, if only
one of the two equal-momentum propagators is cut the tree
amplitude containing the second one becomes singular
unless a specific order of limits is taken. This phenomenon

FIG. 7. Some of the additional graphs for the improved representation of the integrand of the five-loop four-pointN ¼ 4 super-Yang-
Mills amplitude. These graphs were not needed in earlier constructions [28,32]. The labeling scheme is to the contact level and then the
diagram number corresponding to the labels of the ancillary files [33].

3For higher-point amplitudes the necessary ansatz is more
involved [42] and it will not exhibit a clean separation between
external state data and loop kinematics.
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is illustrated in Fig. 8; by replacing the propagator on one
side of the bubble subdiagram with an on-shell delta
function, the propagator on the other side, marked by a
shaded (red) ×, becomes singular.
One can devise a prescription that realizes the expected

cancellation of such 1=0 terms among themselves. It is,
however, more convenient to simply skip the singular cuts
altogether and recover the missing information from
higher-level cuts that overlap with the skipped ones (i.e.,
cuts in which the doubled propagator is not cut). In the
absence of doubled propagators, cuts through N3MC level
contain all the information necessary for the construction of
the amplitude, as seen in [28], because the power counting
of the theory implies that numerators can have at most three
inverse propagators and thus there can be at most N3

contact terms. In our case, to recover cut constraints absent
due to the unevaluated singular cuts we must include
certain N4MC cuts; the complete list is shown in Fig. 9.
All other N4MC as well as some N5MC cuts serve as
consistency checks of our construction.
Our new representation for the five-loop four-point

integrand is given in an ancillary file [33]. Generalized
gauge invariance implies that there is no unique form of the
integrand; indeed, the global solution of the cut conditions
and of the two-term Jacobi relations leaves 10 607 free
parameters. They “move” terms between diagrams without
affecting any of the unitarity cuts. These parameters should
not affect any observable; in particular, they should drop
out of the gravity amplitude (after nontrivial algebra)
resulting from the generalized double-copy construction
based on this amplitude. To simplify the expressions we set
them to zero.

It is instructive to see how the power counting of the new
representation differs from that of the previous one [28].
Setting the free parameters to zero, the counterparts of the
numerators N14, N16, N31 and N280 shown for the previous
representation in Eq. (2.18) are

N14 ¼
1

2
s3ðτ3;5 − τ4;5 − sÞ;

N16 ¼ N14;

N31 ¼
1

2
s3ðτ1;5 þ τ1;6 þ τ2;5 þ τ2;6 þ 2τ3;6 þ 2τ5;6 − sÞ;

N280 ¼ s4 þ 2s3u− uτ2;5τ3;5l2
6 þ sτ23;5l

2
6 þ � � � þ 8u2l2

5l
2
6;

ð3:1Þ

where in N280 we have kept only a few terms, since it is
somewhat lengthy. The complete list of kinematic numer-
ators is contained in the ancillary file [33]. Compared to the
super-Yang-Mills numerators in Eq. (2.18), the maximum
number of powers of loop momenta dropped from six to
one in the first three numerators and to four powers in N280.
Consequently, the naive double-copy numerators have only
up to eight powers of loop momenta. The naive double-
copy numerators also inherit the property that every term
carries at least two powers of s or t, a property that all
contact term corrections share by construction.
Similarly, the additional diagrams in Fig. 7 also behave

very well at large loop momenta. An illustrative sample of
the additional numerators is

N547 ¼
3

2
sl2

5ðtτ1;5 − uτ2;5 − 3sτ3;5 − 6uτ3;5Þ;

N624 ¼ −
61

10
s3ðu − tþ τ1;5 − τ2;5Þ;

N708 ¼ 6s2ðt − uÞl2
5; ð3:2Þ

where the labels correspond to those in Fig. 7.
The naive double copy of all 752 diagrams gives diagrams

that are completely ultraviolet finite in D ¼ 22=5. In
D ¼ 24=5 it exhibits no power divergences, in contrast to
the double copy of the earlier representation of the super-
Yang-Mills amplitude.Aswewill see below, the contact term
corrections needed to obtain theN ¼ 8 supergravity ampli-
tude will lead to contributions that individually have power

FIG. 9. The list of additional N4MCs that are needed to fix the diagrams with doubled propagators.

FIG. 8. This cut is not considered as it contains a singular
diagram; instead we recover the missing information from higher
level cuts. The shaded (red) “×”marks complete propagators (not
replaced by delta functions), the other exposed propagators are all
placed on shell (replaced by delta functions).
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divergences but, as wewill discuss in Sec. IV, it is such that it
that does not increase the number of integrals that must be
evaluated. Furthermore, as we note in Sec. VI, inD ¼ 22=5
the contact term contributions all cancel after IBP reduction,
leaving a completely ultraviolet finite result.
To confirm our construction, we have performed the

standard checks of verifying cuts beyond those needed for
the construction, such as all nonsingular cuts at the N4MC
and N5MC levels. We have confirmed that our improved
N ¼ 4 super-Yang-Mills integrand generates exactly the
same ultraviolet divergence in the critical dimension Dc ¼
26=5 as obtained in Ref. [28] using the earlier representation
of the amplitude. To carry out this check we followed the
same procedure explained in that paper for extracting the
ultraviolet divergence, using the same integral identities.

B. Improved N = 8 supergravity integrand

Armed with the new five-loop four-point integrand of
N ¼ 4 super-Yang-Mills theory we now proceed to the
construction of the corresponding improved integrand of
N ¼ 8 supergravity, following the generalized double-
copy construction [27] outlined in Sec. II. Our construction
essentially follows the same steps as in Ref. [28], so we will
not repeat the details. We obtain a set of contact terms,
organized according to levels, which correct the naive
double copy to an integrand for the N ¼ 8 supergravity
amplitude. As a consequence of the improved term-by-term
ultraviolet behavior of the gauge-theory amplitude, the
individual terms of the resulting supergravity integrand are
also better behaved at large loop momenta.
The difference with the construction in Ref. [28] is

related to the existence of the diagrams with doubled
propagators in the super-Yang-Mills amplitude, such as
(0: 430), (0: 547) and (0: 708) of Fig. 7. Unlike the gauge-
theory construction, here we can avoid needing to identify
and skip cuts with ill-defined values. To this end we notice
that, since the maximal cuts of these diagrams vanish, they
contribute only contact terms even in the naive double
copy. We may therefore simply set to zero these diagrams in
the naive double copy and recover their contributions
directly as contact terms at the relevant level. For the same
reason we can also set to zero in the naive double copy
other diagrams with vanishing maximal cuts. The consis-
tency of this reasoning is checked throughout the calcu-
lation by the absence of ill-defined cuts as well as by the
locality of all contact term numerators. Had the latter not be
the case it would imply the violation of some lower-level
cuts. This in turn would have meant that some term we set
to zero contributed more than merely contact terms to the
amplitude. The net effect is that we can build the complete
integrand by using cuts through the N6MC level, just as in
the previous construction [28], and there is no need to go
beyond this, except to verify the completeness of the result.
As discussed in Sec. II, the cuts of the supergravity

amplitude can be computed in terms of the BCJ

discrepancy functions of the full gauge-theory amplitude
rather than from the discrepancy functions of the amplitude
with the doubled-propagator diagrams set to zero. It turns
out that the cuts touching the doubled-propagator diagrams
are sufficiently simple to be efficiently evaluated using KLT
relations on the cuts. The completeness of the construction
is guaranteed by verifying all (generalized) unitarity cuts.
The complete amplitude is given by a sum over the 752

diagrams of the naive double copy and the 85,926 contact
term diagrams,

M5-loop
4 ¼ i

�
κ

2

�
12

stuMtree
4

X6
k¼0

X
S4

XTk

i¼1

Z Y9
j¼5

dDlj

ð2πÞD

×
1

Si

N ðkÞ
iQ

20−k
mi¼5 l

2
mi

; ð3:3Þ

where Mtree
4 is the four-point N ¼ 8 supergravity tree

amplitude and u ¼ −s − t. Here Tk is the total number
of diagrams at level k; they are given in Table I. The
diagram count at each level differs somewhat from the
earlier construction [28] because here we include all the
daughter diagrams that arise collapsing propagators of any
of the 752 parent diagrams of the naive double copy instead
of those obtained only from the first 410 diagrams. The
parent-level diagrams are obtained from the improved
representation of the N ¼ 4 super-Yang-Mills four-point
amplitude through the double-copy substitution (2.4) and
setting to zero the numerators of the diagrams shown in
Fig. 10. The contact terms are generated using the proce-
dures summarized above; examples corresponding to the
cuts in Fig. 3 are shown in Fig. 11. We collect the results for

all diagrams, numerators N ðkÞ
i and symmetry factors, Si, at

each level in the plain-text Mathematica-readable ancillary
files [33].
A striking property of the supergravity contact terms,

which is obvious from Table I, is that most of them vanish.
The precise number of vanishing diagrams depends on the
particular starting point used in the naive double copy and

TABLE I. The number of diagrams at each contact-diagram
level as well as the number of diagrams at each level with
nonvanishing numerators.

Level No. Diagrams No. Nonvanishing Diagrams

0 752 649
1 2,781 0
2 9,007 1,306
3 17,479 2,457
4 22,931 2,470
5 20,657 1,335
6 13,071 256
total 86,678 8,473
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on details of the off-shell continuation of the contact terms
at each level. As for the previously constructed integrand in
Ref. [28], this is a consequence of the many kinematic
Jacobi identities that hold for the super-Yang-Mills ampli-
tude used in our construction. This effect is even more clear
here, where the N ¼ 4 super-Yang-Mills integrand obeys
all the two-term kinematic Jacobi relations. While this
integrand does not support a solution for all three-term
Jacobi relations, it may be possible to further reduce the
number of supergravity contact terms by imposing a
judiciously chosen subset of these relations.

IV. ULTRAVIOLET VACUUM INTEGRAL
EXPANSION

In previous sections we reviewed the integrand of the
five-loop four-point amplitude of N ¼ 8 supergravity
found in Ref. [28] and constructed a new one, with certain
improved power-counting properties. In this section we
expand these integrands in the ultraviolet, i.e., for external
momenta small compared to the loop momenta, and point
out key features of the new integrand. This expansion
generates integrals reminiscent of vacuum integrals with
no external momenta; we call such integrals “vacuum

FIG. 11. Sample contact term diagrams corresponding to the cuts in Fig. 3. The labels (X: Y) refer to the level and contact diagram
number. The final four diagrams have vanishing numerator; the first eleven are nonvanishing.

FIG. 10. The diagrams whose numerators were set to zero, to simplify the supergravity construction by avoiding doubled
propagators.
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integrals” as well. While we are interested in the loga-
rithmic divergence in D ¼ 24=5, both integrands also
exhibit spurious quadratic and quartic divergences in this
dimension. Finiteness of the five-loop amplitude in D <
24=5 guarantees that they should cancel out. However, the
graph-by-graph presence of spurious singularities both in
the naive double-copy part and in the contact terms of
the integrand of Ref. [28] leads to a rapid increase in the
number of terms when extracting the logarithmic diver-
gence. By construction, the new integrand can have power
divergences only through its contact terms. Moreover, their
structure is such that the number of different integrals
which appear in the ultraviolet expansion is substantially
decreased compared to the earlier integrand.

A. Vacuum expansion of integrands

The basic challenge is to extract logarithmic divergences
underneath spurious power divergences. To do so we
follow the standard method of series expanding the
integrand in the ultraviolet region [69], where the external
momenta are much smaller than loop momenta, which
are commensurate. This strategy was applied to various
supergravity calculations in Refs. [5,6,11,24]. The different
orders in this expansion are expressed as vacuum integrals
with different degrees of ultraviolet divergence. In dimen-
sional regularization, only logarithmically divergent
vacuum integrals can result in a pole. Logarithmically
divergent terms in lower dimensions are power divergent in
higher dimensions. Thus, by integrating all logarithmically
divergent terms in D < 24=5, we are checking that power
divergences cancel in D ¼ 24=5. Indeed, as we explain in
Sec. VI, we explicitly verify that in D ¼ 22=5 all the
divergences cancel. This also proves that any power
divergences in D ¼ 24=5 are artifacts of our representa-
tions. While we do not have representation of the integrand
that exhibits only logarithmic divergences in this dimen-
sion, the naive double-copy contributions in our new
representation were constructed to have this property.
Dimensional analysis shows that the local term4 in the

effective action that corresponds to a logarithmic diver-
gence in D ¼ 24=5 at five loops has the generic structure

D8R4. Its momentum space form has 16 momentum
factors; of them, eight correspond to the ðstAtreeÞ2 ¼
stuMtree

4 prefactor of the amplitude. Thus, the logarithmi-
cally divergent part of each integral has eight factors of
external momenta. Because every term in every super-
gravity numerator N has at least two powers of s or t, we
need to expand the integrand to at most fourth order in
small external momenta.
The dependence of the numerator polynomial on

external momenta determines the order to which each
term must be expanded. It is therefore useful to decom-
pose each numerator into expressions N ðmÞ with fixed
numberm of external momenta (and 16 −m powers of loop
momentum)

N ¼ N ð4Þ þN ð5Þ þN ð6Þ þ � � � þN ð16Þ: ð4:1Þ

There is freedom in this decomposition, including that
induced by the choice of independent loop momenta.
Terms with more than eight powers of external momenta
in the numerator are ultraviolet finite in D ¼ 24=5 and
can therefore be ignored. For terms N ð8Þ with exactly
eight powers of external momentum in the numerator we
need only the leading terms in the expansion of the
propagators as higher-order terms are finite. It suffices
therefore to set to zero all external momenta in propa-
gators, e.g., for the N ð8Þ terms in the diagram shown in
Fig. 12(a)

N ð8Þ

ðl2
5Þ3ðl2

6Þ3l2
7l

2
8l

2
9ðl5 þ l7Þ2ðl5 − l9Þ2ðl5 þ l6 þ l7Þ2ð−l5 − l6 þ l9Þ2

×
1

ðl5 þ l6 þ l8 − l9Þ2ðl5 þ l6 þ l8Þ2ðl5 þ l6 þ l7 þ l8Þ2
: ð4:2Þ

The leading divergence of terms with 4 ≤ m ≤ 7 is powerlike. The extraction of the logarithmic divergence underneath
requires that propagators be expanded to (8 −m)th order in the momenta ki:

(a) (b) (c)

FIG. 12. After series expanding one encounters vacuum dia-
grams with up to 8 additional propagators, as well as numerators
which are suppressed here. Each (blue) dot corresponds to a
repeated propagator. Diagrams (a), (b) and (c) are examples with
four, six and eight higher-power propagators.

4This is the same term that may appear at seven loops in D ¼ 4, though the appearance of the former of course does not immediately
imply the presence of the latter.
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N ðmÞQ
I
i¼1 di

→
N ðmÞ

ð8 −mÞ!
X3

i1;…;i8−m¼1

kμ1i1 …kμ8−mi8−m

� ∂
∂kμ1i1

…
∂

∂kμ8−mi8−m

1Q
I
i¼1 di

����
kj¼0

�
; ð4:3Þ

where I is the number of internal lines of the diagram and
di the corresponding inverse propagators. The action of
derivatives leads to propagators raised to higher powers—
i.e., to repeated propagators—which we denote by dots,
one for each additional power. Up to four further dots
appear when derivatives act four times and external
momenta are set to zero. Examples, with numerators
suppressed, are included in diagrams (b) and (c) of
Fig. 12. The increase in the number of classes of vacuum
integrals (as specified by the number of dots) leads in turn
to an increase in the complexity of the IBP system
necessary to reduce them to master integrals. The expan-
sion also leads to higher-rank tensor vacuum integrals,
which appear as integrals with numerators containing
scalar products of loop and external momenta. We discuss
dealing with such integrals below.
It is instructive to contrast, from the standpoint of the

vacuum expansion, the old and new four-point five-loop
N ¼ 8 supergravity integrands; we will choose the level-0
diagrams 14, 16, 31, 280 shown in Fig. 6 as illustrative
examples. The numerators of these diagrams are, respec-
tively, the naive double copies (i.e., squares) of the
numerator factors of the old representation of the N ¼ 4
super-Yang-Mills amplitude, given in Eq. (2.18), and the
new representation, given in Eq. (3.1). In the old repre-

sentation, N ð4Þ
0∶14, N

ð4Þ
0∶16, N

ð4Þ
0∶31, N

ð4Þ
0∶280 are all nonvanish-

ing and, for these terms, the logarithmic divergence is given
by Eq. (4.3) with m ¼ 4. The resulting vacuum diagrams
exhibit up to eight dots.5 In the improved representation
constructed in Sec. III, the first nonvanishing terms in

the decomposition of supergravity numerators are N ð8Þ
0∶14,

N ð8Þ
0∶16, N

ð8Þ
0∶31, N

ð8Þ
0∶280. Thus, no expansion of propagators

is needed and the leading term obtained by setting to zero
external momenta in the propagators gives the logarithmic
divergence in D ¼ 24=5. The corresponding vacuum inte-
grals have four dots.
Because of the complexity of the expressions, essentially

all combinations of repeated propagators—up to the
maximally allowed number of dots—and numerators can
appear either in the expansion itself or as part of the IBP
system. Thus, a clear requirement to simplify the integra-
tion is to reduce the maximal number of dots. As discussed
above, we would naively expect up to eight dots from the
expansion of the naive double-copy (level-0) diagrams in

the representation of Ref. [28]. It turns out however that,
upon reduction of tensor integrals, all seven- and eight-dot
vacuum integrals drop out diagram by diagram. This is a
consequence of the structure of the representation of the
gauge-theory amplitude. As will be seen in Sec. VI, the IBP
system does not close unless it includes integrals with an
extra dot compared to the desired ones. Thus, for the old
representation we need vacuum integrals with up to seven
dots. There are 1 292 541 186 different such vacuum
integrals of which 16 871 430 are distinct integrals. It is
nontrivial to construct and solve the relevant complete IBP
system.
For the improved representation of Sec. III, every term in

the numerators of level-0 diagrams has at least eight
external momenta; thus, the leading term corresponds
already to logarithmic divergences inD ¼ 24=5. No further
expansion of propagators is necessary, implying that the
integration of level-0 diagrams in the vacuum expansion
requires vacuum integrals with at most four dots and an IBP
system relating integrals with up to five dots. This is an
enormous simplification over the earlier integrand.
Although simpler, the contact diagrams of the new

representation of the four-point five-loop N ¼ 8 integrand
contain nonvanishingN ð4Þ numerator components and thus
up to quartic power divergences. Extraction of their
logarithmic divergences requires therefore an expansion
to fourth order. One might therefore expect vacuum graphs
with up to eight dots, which would ruin the simplification
of the naive double-copy terms. It turns out however that
N ðmÞ with m ≤ 7 are nonzero only in contact terms in
which at least (8 −m) external lines are attached with four-
or higher-point vertex. In the absence of any expansion, the
vacuum limit of these graphs has only at most (m − 4) dots;
expanding to (8 −m)th order (4.3) to extract the logarith-
mic divergence yields therefore at most four dots. To
illustrate this phenomenon, consider the toy example

2l5 · k1
l2
5ðl5 þ k1Þ2

¼ 1

l2
5

−
1

ðl5 þ k1Þ2
; ð4:4Þ

which we embed in a term that is logarithmically divergent,
i.e., the numerator on the left-hand side is part of the
numerator component N ð8Þ of some graph. As discussed
before, such terms require no expansion and yield vacuum
graphs with four dots. The terms on the right-hand side
mimic the way contact terms are constructed by canceling
propagators. Because each numerator on the right-hand
side is missing a power of external momentum compared to
the left-hand side, it is now of N ð7Þ type and we need to

5The leading term in the small momentum expansion is
quartically divergent and corresponds to a logarithmic divergence
in D ¼ 4 which should cancel on general grounds when all
contributions are collected.
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series expand the denominator to first order in external
momenta (which may be either k1 or the other external
momenta of the graph). This series expansion produces
exactly one doubled propagator. This however it does not
increase the number of repeated propagators compared to
the left-hand side because in going from the left- to right-
hand side we lost a repeated propagator when setting the
external momentum k1 to zero. The net effect is that the total
number of dots in any vacuum graphs arising from the
expansion of the contact diagrams does not increase beyond
the four that arise from naive double-copy diagrams.
Closing the IBP system by including the diagrams

with an additional repeated propagator, we obtain
845,323 independent integrals. We will discuss the con-
struction of this system and its solution in Sec. VI.
A further important simplification is that since we are

working near a fractional dimension, D ¼ 24=5 − 2ϵ,
which in any case is below the critical dimensions at
lower-loop orders, no subdivergences are possible. Only
genuine five-loop vacuum integrals, which do not factorize
into lower-loop integrals, can contribute to the logarithmic
ultraviolet divergence. Factorized integrals, such as those
shown in Fig. 13, are finite in this dimension and can be
ignored.
The result of the expansion in external momenta is a

collection of vacuum tensor integrals, in which the numer-
ator factors are polynomials in Mandelstam invariants of
external momenta, inverse propagators and scalar products
of loop and external momenta. For each integral the
numerator is separately homogeneous in the loop and
external momentum dependence. These integrals can be
further reduced by making use of Lorentz invariance—
specifically, that any vacuum tensor integral is a linear
combination of products of metric tensors—to separate the
dependence on external momenta from that on loop
momenta. More precisely, under integration we can replace
a two-tensor which is dotted into external momentum by

lμ
i l

ν
j →

1

D
ημνli · lj; ð4:5Þ

and a four-tensor by

lμ
i l

ν
jl

ρ
kl

σ
l ↦

1

DðD − 1ÞðDþ 2Þ
× ðAημνηρσ þ Bημρηνσ þ CημσηνρÞ; ð4:6Þ

where

A ¼ ðDþ 1Þli · ljlk · ll − li · lklj · ll − li · lllj · lk;

B ¼ −li · ljlk · ll þ ðDþ 1Þli · lklj · ll − li · lllj · lk;

C ¼ −li · ljlk · ll − li · lklj · ll þ ðDþ 1Þli · lllj · lk:

ð4:7Þ

Since in both cases the highest divergence is quartic, the
expansion in small external momenta is to at most fourth
order. Thus, there can be at most four scalar products of
loop and external momenta and consequently reduction
formulas of tensor integrals of rank six or higher are not
necessary.

B. Labeling the vacuum diagrams

After applying Lorentz invariance to reduce the
expanded integrals to a collection of scalar vacuum
integrals, with possible numerators and repeated propaga-
tors, we need to organize them into a standard form and
eliminate further redundancies. The relevant graph topol-
ogies are shown in Fig. 14. A particularly good labeling
scheme has been devised by Luthe [70]. Straightforward
counting shows that every vacuum integrand in Fig. 14 has
15 independent Lorentz dot products between loop
momenta. Depending on the integral, these dot products
are either inverse propagators or irreducible numerators i.e.,
quadratic combinations of loop momenta that are linearly
independent of the propagators. Remarkably, a global
labeling scheme for momenta can be found for vacuum
integrals at five loops. We define, following Ref. [70],

q1¼l1; q2¼l2; q3¼l3; q4¼l4; q5¼l5;

q6¼l1−l3; q7¼l1−l4; q8¼l1−l5; q9¼l2−l3;

q10¼l2−l4; q11¼l2−l5; q12¼l3−l5;

q13¼l4−l5; q14¼l1þl2−l4; q15¼l3−l4: ð4:8Þ

For example, the labeling of the four parent vacuum
integrals—vacuum integrals with only cubic vertices—in
this scheme is shown in Fig. 15, where the propagator
labeled with i corresponds to q2i . The irreducible numer-
ators are q2i for the three i labels missing from that diagram.
For daughter diagrams, i.e., the 44 diagrams in Fig. 14 with
fewer than 12 distinct propagators, the number of irreduc-
ible numerators is larger, so that the total number of
independent Lorentz dot products between loop momenta
remains the same. For each daughter diagram there are
several possible labelings, inherited from its parents. We
pick a standard one and map to it all other occurrences of
the diagram.
After applying momentum conservation we can rewrite

any term in the integrand of a vacuum integral using the 15
invariants. With this labeling scheme we can specify each

FIG. 13. Sample factorized vacuum integrals that do not
contribute because of the absence of subdivergences.
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FIG. 14. All 48 independent vacuum propagator structures that do not factorize into products of lower-loop diagrams.
The first number in the diagram label is the number of propagators and the second is the diagram number at that
level.
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integral by a list of the indices representing the exponent of
each of the 15 q2i ,

1

ðq21Þa1ðq22Þa2ðq23Þa3 � � � ðq214Þa14ðq215Þa15
⇔ Fða1; a2; a3;…; a14; a15Þ; ð4:9Þ

where a negative power indicates an irreducible numerator
rather than a propagator denominator. This description is
agnostic to whether the integral is planar or nonplanar, or
which diagram the integral is a daughter of. Along with the
symmetry relations presented next, it elegantly controls the
large redundancies introduced by the vacuum expansion.
In terms of these F s, the four diagrams in Fig. 15 with

no irreducible numerators and no repeated propagators are

Fð1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 1; 1; 0; 0Þ;
Fð1; 1; 1; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 0Þ;
Fð1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 0; 1; 1; 0; 1Þ;
Fð1; 1; 1; 0; 0; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1Þ: ð4:10Þ

C. Symmetry relations among vacuum integrals

In order to efficiently express all integrals in terms of a
basis it is useful to first eliminate redundant integrals that
are identical under relabelings. Figure 16 shows an example
of using graph symmetries to rearrange into a canonical
format dots that might appear in diagram (12,4), the cube.
In terms of the F s, this symmetry maps

Fð1; 2; 1; 1; 0; 1; 2; 1; 1; 1; 1; 1; 1; 0; 0Þ
→ Fð1; 1; 2; 1; 0; 1; 1; 2; 1; 1; 1; 1; 1; 0; 0Þ: ð4:11Þ

When irreducible numerators are present, the situation is a
bit more complex because we also need to map the
numerators according to the symmetry transformation.
This can generate many contributions when we reexpress
the numerators back in terms of the basis q2i monomials.
A simple example we encounter is

Fð1; 1; 1;−1; 0; 3; 2; 0; 0; 0; 0; 2; 2; 1; 0Þ
→ Fð3; 1; 1; 0; 0; 0; 0; 2; 1; 1; 0; 2; 0; 1; 0Þ
− Fð3; 1; 2;−1; 0; 0; 0; 2; 1; 1; 0; 2; 0; 1; 0Þ
þ Fð3; 1; 2; 0; 0; 0; 0; 2; 1; 1; 0; 2; 0; 1;−1Þ: ð4:12Þ

The vast majority of these numerator relabeling relations
often involve iterating the process many times, generating
relations between hundreds of different integrals.
Graph isomorphism is not sufficient to remove all the

trivial redundancy, since certain nonisomorphic graphs can
represent the same Feynman integral. Such relations
typically involve “sliding” a bubble subdiagram along
the propagators that connect it to the rest of the graph.
In addition to a different graph structure, these trans-
formations can change the number of dots, as illustrated
in the example in Fig. 17. We implement these noniso-
morphism graph relations via a graph transformation that
swaps bubble subdiagrams and propagators, corresponding
to the swaps which map the diagrams in e.g., Fig. 17 into
each other. We will refer to this as “enhanced graph
isomorphisms.” This method efficiently identifies equiv-
alent five-loop vacuum integrals not related by graph
isomorphisms.
A less efficient alternative, which we use in parts of the

calculation as a consistency check, is to compute the
Symanzik polynomials and bring them to a canonical form
[71,72]. This uses analytic properties of Feynman integrals
without resorting to their graph representation.
Implementing the isomorphism and nonisomorphism

relations, we map all integrals to a set of canonical ones.
There are 3 079 716 scalar vacuum integrals with up to five
dots and unit numerator, which map onto 94 670 canonical
configurations, as demonstrated in Fig. 16.
In the presence of momentum-dependent numerator

factors there also exist symmetry relations due to

FIG. 15. The parent vacuum integrals—vacuum integrals with
only cubic vertices—with 12 distinct propagators and their labels.

FIG. 16. Moving dots via symmetry in diagram (12,4) corre-
sponding to the cube.

FIG. 17. Example of nonisomorphic graphs that all correspond to the same Feynman integral.
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automorphisms that preserve both the graph structure and
the position of the dots but change the numerator. This is
distinct from relations of the type in Eq. (4.12) which do not
relate canonical integrals, but are used to move dots to
canonical positions. An example of one particularly simple
such relation is given in Fig. 18. Transformations of this
type generate linear relations between canonical integrals,
which are similar to IBP relations. Because of this, it is
convenient to include and analyze them together with the
IBP relations in Sec. VI.

V. SIMPLIFIED ULTRAVIOLET INTEGRATION

In this section we discuss the large-loop-momentum
integration of the original form [28] of the five-loop four-
point N ¼ 8 supergravity integrand. Although, an assum-
ption will be required, this will not only provide a strong
cross-check of the complete result obtained in the next
section, but will also point to more powerful ways of
extracting the ultraviolet properties of supergravity theo-
ries, especially when combined with the observations of
Sec. VII. As explained in the previous section, after series
expanding and simplifying the original form of the inte-
grand we encounter vacuum integrals with up to six dots, or
repeated propagators, and irreducible numerators. Together
with the additional dot needed to close the system, this
causes a rather unwieldy IBP system. We will see here that
the problem can be enormously simplified by targeting
parent vacuum integrals—vacuum integrals with only cubic
vertices or, equivalently, vacuum integrals that have maxi-
mal cuts, or also as vacuum integrals with the maximum
number of distinct propagators. The relevant parent vacuum
integrals are shown in Fig. 15. We solve the integration-by-
parts system on the maximal cuts of the vacuum integrals,
using modern algebraic geometry methods that combine
unitarity cuts with IBP reduction for Feynman integrals
[37–39,73,74].
Besides enormously simplifying reduction to a set of

master integrals by focusing on the vacuum integrals with
maximal cuts, targeting parent vacuum integrals also has
the added benefit of allowing us to immediately drop large
classes of contact terms from the integrand, including all
contact terms obtained from the N5MC and N6MC levels,
even before expanding into vacuum diagrams. Any term
where a propagator is completely canceled in the vacuum
graph can be dropped.

In manipulating the vacuum integrals, there are two
important issues that must be addressed. The first one is the
separation of the infrared and ultraviolet divergences. This
is an important ingredient in various studies of ultraviolet
properties, such as the analysis of N ¼ 4, N ¼ 5 and
N ¼ 8 supergravity at three and four loops [5,6,11,19], and
the computation of the five-loop beta function in QCD [34].
Although there are no physical infrared singularities in
D > 4, our procedure of series expanding around small
external momenta introduces spurious ones. We will show
in detail in the next section that in an infrared-regularized
setup for integrals with no ultraviolet subdivergences, terms
in the IBP system that are proportional to the infrared
regulator involve only ultraviolet-finite integrals. Thus,
since we are interested only in the ultraviolet poles, we
can effectively reduce the vacuum integrals without explic-
itly introducing an infrared regulator. For the rest of this
section, when we discuss linear relations between integrals,
it should be understood that we actually mean linear
relations between the ultraviolet poles of the integrals.
A second issue is that the vacuum expansion of our

integrand contains propagators with raised powers, which
is in contradiction with the naive unitarity cut procedure
of replacing propagators by on-shell delta functions.
Fortunately, two solutions to this problem are available
in the literature. One option [75] is to define the cut as the
contour integral around propagator poles; this effectively
identifies the cut as the residue of the propagator pole even
for higher-order poles. Another, proposed in Ref. [40], is to
use dimension shifting [76] such that all propagators appear
only once at the cost of shifting the integration dimension
and raising the power of numerators, before imposing the
maximal-cut conditions to discard integrals with canceled
propagators. Here we will use the second strategy.
Starting with the integrand of Ref. [28], the end result of

dimension shifting procedure is a set of vacuum integrals in
D ¼ −36=5 − 2ϵ with a total 30 powers of the irreducible
numerators. For example, for the crossed-cube vacuum
diagram shown in the second diagram of Fig. 15, we have
integrals of the form

Z Y5
k¼1

dDlk

ð2πÞD
ðq24ÞA4ðq25ÞA5ðq215ÞA15

q21q
2
2q

2
3q̂

2
4q̂

2
5q

2
6q

8
7q

2
8q

2
9q

2
10q

2
11q

2
12q

2
13q

2
14q̂

2
15

;

ð5:1Þ

where D ¼ −36=5 − 2ϵ and the “hats” in the denominator
mean to skip those propagators. The qi are the uniform
momenta defined in Eq. (4.8). Here the three irreducible
numerators are q24, q

2
5 and q215; these cannot be written as

the linear combinations of the 12 propagator denominators,
as explained in the previous section. To obtain a logarith-
mic divergence in the shifted dimension −36=5, we need
30 powers of numerator factors

FIG. 18. Numerator relations from residual automorphisms that
keep the dot positions invariant.
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A4þA5þA15¼ 30; with A4 ≥ 0; A5 ≥ 0; A15 ≥ 0:

ð5:2Þ

In total there are 496 different combinations of Aj that
satisfy Eq. (5.2). With the new integrand of Sec. III the
power counting is greatly improved so we need only shift to
D ¼ −16=5 − 2ϵ with 20 powers of numerators. This gives
231 integrals to evaluate.
Consider the cross-cube diagram shown in the second

diagram in Fig. 15. The IBP identities relating the 496
integrals are of the form

Z Y
k

dDlk

ð2πÞD
∂
∂lμ

i

vμiQ
jdj

¼ 0; ð5:3Þ

where vμi has polynomial dependence on external and
internal momenta and the dj are the various propagators.
We refer to

vμi
∂
∂lμ

i
; ð5:4Þ

as the IBP-generating vector, while the rest of Eq. (5.3),

Z Y
k

dDlk

ð2πÞD
1Q
jdj

; ð5:5Þ

is referred to as the seed integral. Integration by parts as
above reintroduces auxiliary integrals with propagators
raised to higher powers, since the derivatives can act on
the propagator denominators. Lowering again the propa-
gator powers through dimension shifting leads still to new
integrals because, while of the same topology at the starting
ones, they are now in a different dimension.
To eliminate these auxiliary integrals Gluza, Kadja and

Kosower [37] formulated IBP relations without doubled

propagators, using special IBP-generating vectors that
satisfy

vμi
∂
∂lμ

i
dj ¼ fjdj; ð5:6Þ

for all values of j with fj restricted to be polynomials (in
external and loop momenta). This cancels any squared
propagator generated by derivatives, and does not intro-
duce spurious new denominators since fj are polynomials.
Since the original publication, strategies for solving
Eq. (5.6) have been explored in Refs. [37,39,74]. We
use the strategy in Ref. [74] to obtain a complete set of
vectors vμi using computational algebraic geometry algo-
rithms implemented in SINGULAR [77]. They in turn give
the complete set of IBP relations among the 496 cross cube
integrals discussed above (5.1), (5.2) and implies that all of
them are expressed in terms of a single integral—the
second diagram in Fig. 15. A similar analysis solves the
analogous problem for the 496 integrals of cube topology
and expresses them in terms of the integral corresponding
to the first graph in Fig. 15. The IBP systems restricted to
integrals with maximal cuts for the parent topologies with
internal triangles, corresponding to the third and fourth
graph in Fig. 15, sets all integrals to zero, implying that
they are all reducible to integrals that do not have
maximal cuts.
As a cross-check for the crossed-cube topology, we have

also analytically solved for the integrals in closed form by
contour integration [73] using the Baikov representations
[78], without making use of integral relations of the type
(5.3). We refer the reader to Ref. [28] for the details of the
analogous computation in D ¼ 22=5. In that case, all
parent vacuum diagrams cancel, as expected.
By inverting the dimension shifting relations we can

reexpress the final result in terms of parent master integral
in the original dimension D ¼ 24=5 − 2ϵ. The final result
for the leading ultraviolet behavior is remarkably simple:

ð5:7Þ

We obtain identical result, whether we start from the
integrand of Ref. [28] or the improved one in Sec. III.
This provides a highly nontrivial check on the cut con-
struction and the integral reduction procedure. Most
importantly, as we show in the next section, the result in
Eq. (5.7) is complete, even though we kept only the parent
master integrals, which have no canceled propagators.
As we shall see in Sec. VII, this seems unlikely to be
accidental.

VI. FULL ULTRAVIOLET INTEGRATION

In this section, we extract the ultraviolet divergence of
the five-loop four-point N ¼ 8 supergravity amplitude
without making any assumptions on the class of vacuum
integrals that contribute. To keep the IBP system under
control, we use the improved representation of the inte-
grand found in Sec. III, expanded at large loop momentum,
as described in Sec. IV. We organize the IBP relations using
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and SLðLÞ reparametrization symmetry of L loop momenta
[8]. We also incorporate the integral relations resulting
from graph automorphisms that change kinematic
numerator factors, a simple example of which is shown
in Fig. 18.

A. IBP for ultraviolet poles modulo finite integrals

Since standard IBP reduction is usually performed for
full integrals in dimensional regularization, there is a large
amount of unnecessary computation for our purpose of

extracting only the ultraviolet poles.6 We now review
setting up a simplified IBP system that only gives linear
relations between the leading ultraviolet poles of different
vacuum integrals [8].
As a warm up, consider the toy example of two-loop

vacuum integrals in D ¼ 5 − 2ϵ shown in Fig. 19. This
example will mimic the supergravity situation because
there are no (one-loop) subdivergences due to the proper-
ties of dimensional regularization. We define such two-loop
integrals as

VA;B;C ¼
Z

dDl1

ð2πÞD
dDl2

ð2πÞD
1

½ðl1Þ2 −m2�A½ðl2Þ2 −m2�B½ðl1 − l2Þ2 −m2�C ; ð6:1Þ

where we require Aþ Bþ C ¼ 5 since we are interested in logarithmically divergent integrals. In this case, there are no

irreducible numerators.
Consider GL(2) transformations of the loop momenta Δli ≡Ωijlj, which generate IBP relations of the form,

0 ¼
Z

dDl1

ð2πÞD
dDl2

ð2πÞD
∂
∂lμ

i

Ωijl
μ
j

½ðl1Þ2 −m2�A½ðl2Þ2 −m2�B½ðl1 − l2Þ2 −m2�C ; ð6:2Þ

where D ¼ 5 − 2ϵ. We first look at the SL(2) subalgebra which excludes the trace part of the GL(2) generators. For
example, the SL(2) generator,

Ωij ¼
�
1 0

0 −1
�
; ð6:3Þ

produces the IBP relation

0 ¼
Z

dDl1

ð2πÞD
dDl2

ð2πÞD
�
lμ
1

∂
∂lμ

1

− lμ
2

∂
∂lμ

2

�
1

ðl2
1 −m2ÞAðl2

2 −m2ÞB½ðl1 − l2Þ2 −m2�C
¼ ð−2Aþ 2BÞVA;B;C − 2CVA−1;B;Cþ1 þ 2CVA;B−1;Cþ1 þm2ð−2AVAþ1;B;C þ 2BVA;Bþ1;CÞ; ð6:4Þ

where we used Aþ Bþ C ¼ 5. The second-to-last line of
the above equation contains integrals that are logarithmi-
cally divergent in the ultraviolet, while the last line contains
integrals that are ultraviolet finite by power counting—as
indicated by simple considerations of dimensional analysis,
since the last line is proportional to m2. Absence of
subdivergences implies that overall power counting is
sufficient for showing whether an integral is ultraviolet
finite. Therefore, for the purpose of extracting ultraviolet
divergences, we can disregard the last line of the above
equations, and instead work with an IBP system modulo
finite integrals. Since the generators of the SL(2)

subalgebra are traceless, the IBP relations we generate
have no explicit dependence on the dimension D.
Inspecting Eq. (6.4) we see that, setting m ¼ 0 from the

beginning removes the last line of that equation while
preserving the relation between integrals exhibiting ultra-
violet poles. Thus, even though setting m ¼ 0 turns these
vacuum integrals into scaleless integrals that vanish in
dimensional regularization, the SL(2) subalgebra nonethe-
less generates the correct IBP relations between ultraviolet
poles. In contrast, including the trace generator,

6We have already performed expansion in the ultraviolet
region to produce vacuum integrals, but even the (infrared-
regulated) vacuum integrals contain finite parts that are not of
interest to us here. FIG. 19. Two-loop example for illustrating SLðLÞ symmetry.
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Ωij ¼
�
1 0

0 1

�
; ð6:5Þ

which extends SL(2) to GL(2), requires nonvanishing m. Indeed, this generator produces the IBP relations

0 ¼
Z

dDl1

ð2πÞD
dDl2

ð2πÞD
∂
∂lμ

i

lμ
i

½ðl1Þ2 −m2�A½ðl2Þ2 −m2�B½ðl1 − l2Þ2 −m2�C
¼ −4ϵVA;B;C − 10m2ðVAþ1;B;C þ VA;Bþ1;C þ VA;B;Cþ1Þ: ð6:6Þ

If we set m ¼ 0, the above relations imply that VA;B;C ¼ 0.
The factor ð−4ϵÞ is expected because the diagonal trans-
formation probes the scaling weight of the integral, which
would be exactly zero in D ¼ 5. As long as the IBP
relations corresponding to the trace part of GL(2) are
omitted, the IBP system no longer sets to zero massless
vacuum integrals and correctly reflects the ultraviolet poles
of these integrals without contamination from IR poles.
The above argument straightforwardly carries over to the

five-loop vacuum integrals in D ¼ 24=5 − 2ϵ, since no
subdivergences exist in this dimension. The resulting IBP
system only involves logarithmically divergent vacuum
integrals, and does not include any finite integrals or power-
divergent integrals (which do not produce poles in dimen-
sional regularization). This enormously reduces the size of
the linear system to be solved.
A useful property of the SLðLÞ-generated IBP system is

that, even though each vacuum integral depends on the
dimension D implicitly, the relations between them do not
contain any explicit dependence onD [8]. This fact appears
to help explain the observations in Sec. VII.

B. The IBP system at five loops

The complete set of integral topologies—suppressing
dots or numerators—that we need to consider for the
reduction of the vacuum integrals of the five-loop four-
point N ¼ 8 supergravity amplitude is shown in Fig. 14.
This list does not include any diagram that factorizes, such as
those illustrated in Fig. 13. It also removes integrals related to
kept ones by identities between integrals not isomorphic to
each other, such as those illustrated in Fig. 17.
By acting with the SL(5) generators on all logarithmi-

cally divergent canonical integrals with up to four dots, we
find IBP relations between vacuum integrals with up to five
dots, the additional dot following from acting with deriv-
atives on propagators. While such integrals do not appear in
the expansion of the integrand in D ¼ 24=5, they are
necessary for finding the relations between integrals with
four dots. We also include relations between integrals
generated by graph automorphisms which transform non-
trivially the numerator factors, as illustrated in Fig. 18. In
these relations, all the integrals are mapped to canonical
integrals using enhanced graph isomorphisms as described

in Sec. IV C. Because of their similarity with the IBP
relations it is convenient to solve them simultaneously. The
solution to this system of equations expresses all needed
vacuum integrals in terms of master integrals.
As a warm up to setting up and solving the IBP system

for the supergravity problem in D ¼ 24=5, we solved the
much simpler cases of N ¼ 8 supergravity in D ¼ 22=5
and N ¼ 4 super-Yang-Mills theory in D ¼ 26=5. The
integrals which appear in both these simpler cases have at
most two dots and thus, the IBP system contains integrals
with up to three dots. In the case of N ¼ 8 supergravity in
D ¼ 22=5, the three-dot system has 44 428 different
integrals, and about 1.7 × 105 linear relations generated.
The simpler numerator factors of N ¼ 4 super-Yang-Mills
make this case much simpler, containing only 5 975 distinct
integrals and about 9 900 linear relations between them.
The solution of the latter system expresses all the two-dot
vacuum integrals, divergent inD ¼ 26=5, in terms of the 16
master vacuum integrals displayed in Fig. 20.
For the main problem of N ¼ 8 supergravity in D ¼

24=5 with the improved integrand obtained in Sec. III, we
have to reduce integrals with up to four dots. There are
141 592 distinct integrals of this type. The relevant five-
dot system has 3 687 534 integrals of which 845 323
are distinct. The SL(5) transformations generate about
2.8 × 106 IBP relations, while numerator-changing isomor-
phisms generate about 9 × 105 further relations. This
system is straightforward to solve using sparse Gaussian
elimination and finite-field methods [79]; we used the
linear system solver LinBox [80], and confirmed the
solution with FinRed [81]. The result is that all vacuum
integrals for the expansion of N ¼ 8 supergravity ampli-
tude in D ¼ 24=5 are expressed as linear combinations of
the eight master integrals shown in Fig. 21.

C. Result for ultraviolet divergences

As a first test for the full calculation, we used the
reduction of the vacuum integrals to verify that our
integrand exhibits the known ultraviolet properties in
D ¼ 22=5. We find that, as expected, all vacuum integrals
cancel after IBP reduction, the five-loop four-point N ¼ 8
amplitude is ultraviolet finite,
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Mð5Þ
4 jD¼22=5

leading ¼ 0: ð6:7Þ
With our new integrand there are few potential contribu-
tions because the naive double-copy terms are manifestly
ultraviolet finite in D ¼ 22=5 and only the contact terms
give potential contributions. A similar check is performed
for the earlier form of the integrand in Ref. [28], but that
case only confirms the cancellation of the vacuum diagrams
with the maximum imposed.

As another test of our approach, we also recovered the
leading divergence of N ¼ 4 super-Yang-Mills theory in
its five-loop critical dimension, D ¼ 26=5, originally
found in [32]. Starting from our improved N ¼ 4
super-Yang-Mills integrand of Sec. III, extracting the
leading divergence in terms of vacuum integrals and then
substituting their expressions in terms of master integrals,
we obtain

ð6:8Þ

The f̃abc are the group structure constants, as normalized
below Eq. (2.1), and the s and t are the usual Mandelstam
invariants. Here Atree ≡ Atreeð1; 2; 3; 4Þ is the color-
ordered tree amplitude with the indicated ordering of

external legs. This reproduces the result of
Ref. [32], providing a nontrivial check of both our
gauge-theory integrand construction and IBP reductions
methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 20. The sixteen master integrals to which any five-loop vacuum integrals inN ¼ 4 super-Yang-Mills with up to two dots can be
reduced. The dots represent repeated propagators. The labels of the diagrams match those of Fig. 15. We shall refer to the corresponding
integrals either through their graph or as IðaÞ, IðbÞ, etc.
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Interestingly, the thirteen master integrals in Fig. 20 that
have vanishing coefficients in Eq. (6.8) violate a “no-one-
loop-triangle” rule.7 Indeed, diagrams (e)–(p) contain one-
loop triangle subdiagrams while diagram (d) contains a
loop momentum-dependent numerator in one-loop box
subdiagrams, which upon expanding and reducing of that
one-loop subintegral also leads to triangle subintegrals.
Another interesting feature of these results is that the
relative factors of the subleading-color term are given by
the symmetry factors of the corresponding integrals. In the
next section, we will show that these observations are part
of a more general pattern.
Extracting the leading ultraviolet terms forN ¼ 8 super-

gravity in D ¼ 24=5 follows the same strategy. After
reducing the vacuum integrals obtained from our improved
integrand to the basis of master integrals we find

ð6:9Þ

This is the same result as obtained in the previous section by
assuming that only vacuum diagrams with maximal cuts
contribute, and proves that Eq. (5.7) is complete. As in the
case of the reduction of the expansion of the four-point five-
loop N ¼ 4 super-Yang-Mills amplitude, all master inte-
grals containing triangle subdiagrams, or with numerators
which upon further one-loop reduction lead to triangle
subdiagrams, enter with vanishing coefficients. Moreover,
similarly to the subleading color in the gauge-theory case,
the relative coefficients between the integrals are the
symmetry factors of the vacuum diagrams. As we discuss
in the next section, these observations do not appear to be
accidental.
The two Wick-rotated vacuum integrals in Eq. (6.9) are

both positive definite, proving that no further hidden
cancellations are present. We evaluated numerically, using
FIESTA [82], the two master integrals entering Eq. (6.9),
given by diagrams (a) and (b) in Fig. 21, and find

VðaÞ
5 ¼ 1

ð4πÞ12
0.563
ϵ

; VðbÞ
5 ¼ 1

ð4πÞ12
0.523
ϵ

: ð6:10Þ

The dimensional-regularization parameter is ϵ ¼
ð24=5 −DÞ=2. Using Eq. (6.9), the numerical value of
the divergence is

Mð5Þ
4

���
leading

¼−17.9
�
κ

2

�
12 1

ð4πÞ12 ðs
2þ t2þu2Þ2stuMtree

4

1

ϵ
:

ð6:11Þ

We leave as a problem for the future the question
of obtaining an exact analytic expression instead of
the numerical one found here.

VII. OBSERVATIONS ON ULTRAVIOLET
CONSISTENCY

Given the wealth of results from previous papers
[13,18–21,32,83], as well as those from Sec. VI, we are
in the position to search for useful structures that can lead to
a more economic identification of the leading ultraviolet
behavior of N ¼ 4 super-Yang-Mills theory and N ¼ 8
supergravity. In this section we analyze the available results
in both these theories, observing remarkable consistency
and recursive properties, whereby leading L-loop ultra-
violet divergences in the L-loop critical dimension appear
to be tightly constrained by the lower-loop vacuum dia-
grams describing leading behavior in the lower-loop critical
dimension.
First we collect the known results for the leading

ultraviolet behavior of both N ¼ 4 super-Yang-Mills
theory and N ¼ 8 supergravity. We then demonstrate that
appropriately defined subdiagrams of the vacuum diagrams
are simply related to the vacuum diagrams describing
lower-loop leading ultraviolet behavior.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 21. The eight master integrals to which any five-loop
vacuum integrals in N ¼ 8 supergravity with up to four dots can
be reduced. The dots represent repeated propagators. We shall
refer to the corresponding integrals either through their graph or
as IðaÞ, IðbÞ, etc.

7When counting the number of propagators around a loop,
each dot should be counted as well.
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Within the generalized-unitarity method, higher-loop
scattering amplitudes are constructed in terms of lower-
loop ones. The one-particle cut, setting on shell a single
propagator, provides a direct link between L-loop n-point
amplitudes and (L − 1)-loop (nþ 2)-point amplitudes. One
may therefore suspect that there may exist a relation
between the leading ultraviolet properties of these ampli-
tudes in their respective critical dimensions, which echoes
the relation between the complete amplitudes. We will find,
however, more surprising consistency relations between the
leading ultraviolet behavior of L- and (L − 1)-loop ampli-
tudes with the same number of external legs for L ≤ 6 for
N ¼ 4 super-Yang-Mills theory and for L ≤ 5 for N ¼ 8

supergravity. The nontrivial manipulations necessary for
extracting the leading ultraviolet divergence adds to the
surprising features of these relations. Indeed, without
appropriate choices of integral bases, they would be
obfuscated. They point to the possibility of a principle
governing perturbative consistency in the ultraviolet. We
close by noting the possibility that one may exploit these
patterns to directly make detailed predictions of ultraviolet
properties at higher-loop orders.

A. Review of results

After IBP reduction, we obtain a simple description of
the leading ultraviolet behavior in terms of a set of master
vacuum integrals defined as

V ¼ −iLþ
P

j
Aj

Z YL
i¼1

dDli

ð2πÞD
Y
j

1

ðp2
j −m2ÞAj

; ð7:1Þ

where the pi are linear combinations of the independent
loop momenta and the Ai are the propagators’ exponents.
The number of dots on propagator j is Aj − 1 for Aj ≥ 2

The indices can be negative, in which case they represent
irreducible numerators, as discussed in Sec. VI. While there
is no need to explicitly introduce a mass regulator for
carrying out the IBP reductions, we do so here to make the
integrals well defined in the infrared.
Collecting the results from Refs. [13,18–20] and from

Eq. (6.9), the leading ultraviolet behavior of N ¼ 8 super-
gravity at each loop order through five loops is described by
vacuum diagrams as

ð7:2Þ

where the universal factor is KG ≡ stuMtree
4 ð1; 2; 3; 4Þ. For each loop order, the critical dimension is different and is

summarized in Table II.
We also collect all known vacuum graph expressions of the leading ultraviolet behavior in the maximally supersymmetric

SUðNcÞ Yang-Mills theory [13,18,20,21,32,83],

TABLE II. The critical dimensions where ultraviolet divergen-
ces first occur in N ¼ 4 super Yang-Mills theory and N ¼ 8
supergravity, as determined by explicit calculations.

Loops Dc for N ¼ 4 sYM Dc for N ¼ 8 Supergravity

1 8 8
2 7 7
3 6 6
4 11=2 11=2
5 26=5 24=5
6 5 � � �
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ð7:3Þ

where the universal factor is KYM ≡ stAtree
4 ð1; 2; 3; 4Þ, and

Fa1a2a3a4 ≡ tf̃a1a2bf̃ba3a4 þ sf̃a2a3bf̃ba4a1 ;

Ga1a2a3a4 ≡ sδa1a2δa3a4 þ tδa4a1δa2a3 þ uδa1a3δa2a4 ;

Ba1a2a3a4 ≡ f̃a1b1b2 f̃a2b2b3 f̃a3b3b4 f̃a4b4b1 : ð7:4Þ

As before, f̃abc are the group structure constants, with
normalization given below Eq. (2.1). As in the gravity case,
the critical dimension at each loop order is different, and is
included in Table II.
Inspecting Eqs. (7.2) and (7.3) we already note a

remarkable property in both the supergravity and sublead-
ing-color gauge-theory expressions: the relative coeffi-
cients between vacuum integrals in these representations,
ignoring signs, are given by the symmetry factors of the
corresponding vacuum graphs. For example, at five loops
in Eq. (7.2), the first vacuum graph has 48 automorphisms
and the second has 16 automorphisms, matching the
relative factors. While the amplitude has such coefficients
for each integral [see e.g., Eq. (3.3)], their appearance in the
leading ultraviolet divergence is unexpected due to both the
nontrivial manipulations and the choices of master integrals
that are required to arrive at the final result.

Further inspection of Eqs. (7.2) and (7.3) reveals further
interesting structures, showing that the relative coefficients
of vacuum integrals are consistently related between the
different loop orders.

B. Observed ultraviolet consistency

An L-loop (vacuum) integral has many L0 < L subin-
tegrals. A way to isolate one and expose its associated
ultraviolet properties is to take its loop momenta to be much
larger than the other ðL − L0Þ ones. We define an L0-loop
subdiagram of an L-loop diagram as the sum over all of its
L0-loop subintegrals. Since each subintegral may have a
different critical dimension, the critical dimension of an L0-
loop subdiagram is the minimum of the critical dimensions
of all the L0-loop subintegrals.
With this definition, to compare the higher- and lower-

loop leading ultraviolet properties of four-point amplitudes
we carry out the following steps:
(1) For each L-loop vacuum diagram construct its

L0-loop subdiagram.
(2) Keep only those contributions with leading ultra-

violet behavior, i.e., those that are divergent in the
lowest critical dimension.
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(3) Apply IBP identities, as needed, to map the lower-
loop vacuum integrals into the same vacuum integral
basis as the one used in the ultraviolet expansion of
the lower-loop amplitude.

As we now show by example, every result in Eqs. (7.2) and
(7.3) supports the observation that the leading ultraviolet
behavior at L and L0 loops in their respective critical
dimensions are consistent.
To see the power of this observation, consider the all-

order constraints from one-loop subdiagrams. From
Eqs. (7.2) and (7.3), we see that the one-loop leading
ultraviolet divergence is given by a vacuum integral with
four propagators. For the higher-loop vacuum graphs this
amounts to the statement that there exists an integral basis
such that all one-loop subloops of any higher -loop vacuum
must contain at least four propagators.8 This is equivalent to
the no-triangle property of one-loop amplitudes in both
N ¼ 8 and N ¼ 4 super-Yang-Mills amplitudes [84],
except that here it applies to the reduction to an integral
basis of the vacuum integrals describing the leading ultra-
violet behavior. One-loop subgraphs with more than four
propagators give a subleading behavior which we discard
according to our procedure which focuses on the leading
ultraviolet properties. Because there is only a single type of
leading one-loop subdiagram, this property of one-loop
subgraphs places no constraint on the relative coefficients
of the higher-loop vacuum graphs. Nevertheless, the con-
straint that each one-loop subgraph has at least four
propagators is extremely powerful. In particular, as dis-
cussed in Sec. VI, the only integrals in our basis of five-
loop vacuum integrals without triangle subdiagrams are the
two five-loop integrals contributing to Eq. (7.2). A similar
property holds for N ¼ 4 super-Yang-Mills theory, where
the only five-loop vacuum integral basis elements without
any triangle or bubble subintegrals are the ones appearing
in Eq. (7.3). This is quite a remarkable property because, in
an appropriately chosen integral basis that maximizes the
number of one-loop triangle and bubble subintegrals, it
severely limits the vacuum integrals that can appear in the
final expressions.
While the one-loop properties discussed above should

hold for each one-loop subintegral at any loop order,
understanding the consequences of higher-loop ultraviolet
divergences in (7.2) and (7.3) can be best appreciated via a
case by case analysis. We choose three illustrative exam-
ples. We begin by showing the consistency of subleading-
color N ¼ 4 super-Yang-Mills between five and four
loops. We focus on the subleading-color part, because it
has a more complex structure than the leading-color part

and it is similar to the supergravity case. We then examine
the consistency of the four-loop ultraviolet divergences with
those at lower loops,which are the same for theN ¼ 4 super-
Yang-Mills theory at subleading color and the N ¼ 8
supergravity. Last, we discuss the five-to-four loop consis-
tency of our results for the five-loop N ¼ 8 supergravity.
As mentioned earlier, not all terms in the sum that

defines a lower-loop subdiagram have the same critical
dimension. For example, when relating L and (L − 1)-loop
diagrams, excluding a dotted propagator leads to a term
with a lower critical dimension than one obtained by
excluding an undotted one. Thus, when focusing on the
ultraviolet critical dimension of lower-loop diagrams it
suffices to keep only terms obtained by disconnecting
the propagators with the largest number of dots. Once the
subdiagrams are identified, we can compare them to the
lower-loop result by treating the subdiagram as a new
vacuum diagram where we have kept the leading order in
small-momentum expansion for the excluded leg. This
results in lower-loop vacuum diagrams with dots on the
propagators where the excluded leg is connected to the
subgraph.
For the N ¼ 4 super-Yang-Mills five-loop vacuum

diagrams, the leading four-loop subdiagrams are all those
that exclude the leg that carries the dot. Diagrammatically,
we write

ð7:5Þ

Excluding the propagator outside the dashed box and
taking its momentum small compared to the remaining
ones leads to

ð7:6Þ

This exactly matches the subleading-color four-loop vac-
uum diagrams describing their relative coefficients in
Eq. (7.3).
Showing the consistency of the four loop expression

with lower loops follows similar steps. Now there are two
dotted legs that can be excluded. Summing over the two
expansions of each subdiagram, we find

8In an arbitrary integral basis this property is not manifest and
emerges only after the summation over all one-loop subintegrals
of all diagrams and reduction to a one-loop integral basis.
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ð7:7Þ

Using this we see that the subdiagrams match the relative factors and three-loop vacuum diagrams in Eq. (7.3),

ð7:8Þ

Additionally, we can extract the two-loop subdiagrams in the four-loop divergence by expanding around both dotted
propagators. This gives

ð7:9Þ

Using this we find that with the relative coefficients from the four-loop expression, these subdiagrams are also consistent
with the leading lower-loop behavior

ð7:10Þ

It is straightforward to confirm that the same relative
coefficients arise by starting from the three-loop expres-
sion in Eq. (7.8) and extracting the leading two-loop
subdiagrams.
Since master integrals giving the ultraviolet divergence

of the five-loop supergravity amplitude inD ¼ 24=5 do not
have doubled propagators, all ways of excluding one
propagator lead to integrals of the same critical dimension
and must therefore be kept. The planar diagram is a cube, so
all of its edges are equivalent. Summing over all the four-
loop subintegrals leads to

ð7:11Þ

The nonplanar diagram has two inequivalent types of legs
to exclude. There are eight legs that, when expanded
around, lead to a planar four-loop subdiagram. The other
four legs lead to a nonplanar subdiagram. Thus, after
isomorphisms, the subintegrals of the nonplanar five-loop
diagram contribute

ð7:12Þ

After accounting for the relative symmetry factors of 1=48
and 1=16 between the two five-loop diagrams in Eq. (7.2),
we get

ð7:13Þ

matching the relative factors between the four-loop vacuum
diagrams also given in Eq. (7.2).
Through four loops super-Yang-Mills subleading-color

and supergravity divergences follow the same pattern, being
related between different loop orders by removing a dotted
propagator. While in both theories the consistency relations
hold at five loops as well, they now involve removing a
dotted and an undotted propagator, respectively. The addi-
tional propagator in the gauge-theory expression raises its
critical dimension to D ¼ 26=5. It is remarkable that, even
though the various integrals and symmetry factors at five
loops differ in the two theories, consistency requires that the
relative coefficients for four-loop subdiagrams are the same.
Let us elaborate briefly on the structure of the planar

N ¼ 4 super-Yang–Mills vacuum integrals at six loops.
Unlike the previous examples, the lower-loop integrals
given by our construction are not among the five-loop
master integrals in Fig. 20 and a comparison with the five-
loop expression (7.3) requires use of IBP identities. As in
the five-to-four loop relation, the integrals with lowest
critical dimension arise from subdiagrams that exclude the
doubled propagator in the six-loop vacuum diagrams. Thus,
the leading five-loop subdiagram result is
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ð7:14Þ

Using an integration-by-parts relation [see Eq. (4) of
Ref. [32]]

ð7:15Þ

to map (7.14) to the five-loop integral basis, we find that it
is proportional to the five-loop leading color term in
Eq. (7.3). It is gratifying that the subdiagram consistency
holds even if not initially obvious.

C. Applications

The consistency observations discussed above give us
additional confidence that we have correctly computed the
leading ultraviolet behavior of N ¼ 8 supergravity at five
loops by showing that in the sense discussed above, it fits
the pattern of ultraviolet properties at all lower loops. The
simple structures at the vacuum diagram level uncovered
here also offer the exciting possibility of probing seemingly
out of reach ultraviolet properties at even higher loops.
Apart from the possibility of imposing them on an ansatz
for the leading ultraviolet terms of gauge and gravity
amplitudes, we can use them to simplify the IBP system
by focusing only on the vacuum integrals that are expected
to appear. For example, in Sec. V we vastly simplified the
five-loop N ¼ 8 IBP system by assuming that only the
vacuum integrals with maximal cuts survive in the final
result. As emphasized above, this condition follows from
demanding consistency of the five-loop vacuum master
diagrams with one-loop subdiagrams, which rules out one-
loop triangle subgraphs and all but two five-loop master
vacuum diagrams in the basis of Fig. 21. More importantly
this condition eliminates nearly all integrals from the IBP
system as well as a substantial part of the expansion of the
integrand. The same strategy should continue to be fruitful
at even higher-loop orders. Alternatively, it may be possible
to completely bypass the construction of the integrand, its
ultraviolet expansion and integration, and instead extrapo-
late the final result in terms of vacuum diagrams to higher-
loop orders. We leave this task for future study.
We emphasize that the observed ultraviolet consistency

is a property of the leading behavior after simplifying the
integrals via Lorentz invariance and integration-by-parts
relations. It relies on nontrivial simplifications that occur in
the integral reduction and is manifest because we judi-
ciously chose the vacuum integral bases. A key property of

our IBP systems is that the space-time dimension enters
only implicitly through the critical dimension where the
integrals are logarithmically divergent. Had there been
explicit dependence on the dimension, one would naturally
expect a nontrivial dependence on dimension in the relative
coefficients of master integrals and thus, given the differing
critical dimensions at different loop orders, it would disrupt
any systematic cross-loop-order relations. Simplifications
based on Lorentz invariance in Eqs. (4.5) and (4.6) were
used, and introduce explicit dependence on dimension. It is
rather striking that this dependence drops out once the IBP
relations are used and consequently it does not complicate
relations between vacuum diagrams and their subdiagrams.
These properties are worth investigating.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we determined the ultraviolet behavior of
the five-loop four-point amplitude of N ¼ 8 supergravity,
finding the critical dimension where it first diverges to be
Dc ¼ 24=5. In analyzing the results we made the rather
striking observation that the vacuum diagrams that describe
the leading ultraviolet behavior satisfy certain nontrivial
relations to the analogous lower-loop vacuum diagrams.
Previous work found examples of enhanced ultraviolet

cancellations that render ultraviolet finite [5,6] certain
amplitudes in N ¼ 4 and N ¼ 5 supergravity in D ¼ 4,
despite the possibility of counterterms allowed by all
known symmetry considerations [9,17]. Related arguments
suggest that N ¼ 8 supergravity should diverge at five
loops in D ¼ 24=5 [16]. While one might have suspected
that there could be corresponding enhanced cancellations in
N ¼ 8 supergravity at five loops, our results conclusively
demonstrate that, at this loop order, there are no further
cancellations of ultraviolet divergences beyond those iden-
tified by symmetry arguments.
The divergence we find in D ¼ 24=5 at five loops

corresponds to a D8R4 counterterm. This counterterm is
especially interesting because it corresponds to a potential
D ¼ 4 divergence believed to be consistent with the E7ð7Þ
duality symmetry of maximal supergravity. It is, however,
not clear that our result in D ¼ 24=5 points towards a
seven-loop divergence in D ¼ 4, because the existence of
counterterms does not transfer trivially between dimensions
and loop orders. For example, one might be tempted to
argue for a three-loop divergence in N ¼ 4 or N ¼ 5
supergravity in D ¼ 4 based on the existence [7] of a
nonvanishing one-loop R4 counterterm in D ¼ 8 in both
theories; we know however that both theories are finite at
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three loops [5,6]. Another result that indicates that further
investigation of the ultraviolet structure of supergravities
in four dimensions is warranted is the suspected link
between anomalies and divergences in supergravity theo-
ries on the one hand, and the anticipated lack of anomalies
in theories with N ≥ 5 supersymmetry on the other
[10,11]. Of course, not every divergence necessarily has
an anomaly behind it. Nevertheless, it is surprising that
N ¼ 5 supergravity at four loops in D ¼ 4 appears to have
additional cancellations beyond those predicted by sym-
metry considerations [6], while N ¼ 8 supergravity at five
loops in D ¼ 24=5 does not.
The ultraviolet properties of the amplitude were

extracted, following standard methods [69], by expanding
the integrand at large loop momenta or equivalently small
external momenta, to identify the logarithmic divergences
in various dimensions. The result was then reduced to a
combination of master integrals; to this end we made use of
modern ideas of organizing the system of IBP identities in
terms of an SL(L) symmetry [8] (where L is the number of
loops) and restricting to integrals with leading ultraviolet
behavior. In addition to integrating the complete expansion
of a new integrand in both D ¼ 22=5 and D ¼ 24=5, we
also integrated the expansion of the previously obtained
integrand [28] in these dimensions, under the assumption that
the only master integrals that appear in the final result have
maximal cuts. These results, obtained by using unitarity-
compatible integration-by-parts techniques [37,39], agree
with those of the full integrationof the simpler integrand, thus
providing a highly nontrivial check of our calculations.
The agreement of the two approaches highlights an

important trend: the only integrals that contribute to the
divergence of the four-point 1 ≤ L ≤ 5 amplitudes in their
critical dimensions are those with maximal cuts at the
vacuum level. At higher loops we expect a systematic
application of similar considerations to lead to a drastic
reduction in the computational complexity. An approach
based on exploiting these observations may make it
possible to directly determine the critical dimension of
the six- and seven-loop N ¼ 8 supergravity amplitudes.
An even greater efficiency gain may lie in the observed

ultraviolet consistency relations described in Sec. VII. That
is, L0-loop subdiagrams of the leading ultraviolet diver-
gence in the L-loop critical dimension reproduce, upon
reduction to master integrals, the combination of vacuum
diagrams describing the leading ultraviolet behavior in the
L0-loop critical dimension. Moreover, in an appropriate
basis, the relative coefficients of the vacuum master
integrals are given by the order of the automorphism
groups of the diagrams. We also observed similar patterns

in the vacuum diagrams ofN ¼ 4 super-Yang-Mills theory
through six loops, suggesting that they will continue to
hold to higher-loop orders in both theories. While these
observations are likely connected to standard consistency
relations between multiloop amplitudes and their subam-
plitudes, in our case they remain a conjecture due to the
nontrivial steps needed to relate an amplitude to a basis of
master vacuum graphs in the critical dimension. These
vacuum diagram patterns should be very helpful to identify
those terms in higher-loop amplitudes that are important for
determining the leading ultraviolet behavior, and for
enormously simplifying the integration-by-parts system.
By enforcing the patterns described here, it may even be
possible to obtain detailed higher-loop information includ-
ing a determination of the critical dimensions, bypassing
the construction of complete loop integrands.
In summary, the success of the newly developed gen-

eralized double-copy construction [27,28], and integration
tools [8,37–39,79–81] used in our five-loop calculations, as
well as our observed vacuum subdiagram consistency
constraints, indicates that problems as challenging as
seven-loop N ¼ 8 supergravity in four dimensions may
now be within reach of direct investigations.
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