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Abstract

An Investigation of Particle Identification by Energy Loss in Heterogeneous

Silicon Detector Systems
by

Wryatt Crockett

A method of generating energy loss distributions for particles of unit charge with a
specific incident momentum through a thickness of silicon is developed. Monte Carlo
methods are used to examine the significance of separation between kaon and pion energy
loss distributions of the same incident momentum. Several detector configurations,
including two homogeneous detectors each composed of 10 layers of 20 um and 320 um
silicon, and a heterogeneous detector composed of 5 layers of 20 pum silicon followed by
5 layers of 320 pum silicon are simulated. The heterogeneous detector is inspired by the
baseline concept of the innermost tracking system at the SiD. For the heterogeneous
configuration, the maximum momentum range for a significance of separation of two
(S = 2) is found to be 700 MeV/c, while the maximum range for S = 1 is found to be
940 MeV /c for the heterogeneous configuration. The effect of electronic noise on the
kaon pion separation is briefly explored, and found to be small over most of the range of

incident momentum for which there is a significant separation between kaons and pions.
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1 Introduction

For many years, the use of silicon diode sensors to measure the trajectories of particles
arising from the collision of high-energy particle beams has been on the rise. The in-
nermost tracking systems of both the CMS and ATLAS detectors at the Large Hadron
Collider are composed primarily of silicon-based tracking layers. Currently under de-
velopment within the particle-physics community are two designs (the ILC and CLIC)
for electron-positron colliding beam facilities. Two of the three detector concepts under
consideration for these machines include particle tracking systems composed entirely of
silicon-diode sensors.

The high granularity and high precision achievable with silicon diode detectors
is well established, making silicon diode sensors a natural choice when precision momen-
tum measurements and vertexing are needed to address physics goals. Less common,
though, is the use of silicon tracking systems in the identification of the type of parti-
cle passing through the detector (‘particle ID’). While the use of the rate of ionization
energy loss in gaseous detectors for particle ID is common, it is likely that at least
one of the detectors built for the next-generation electron-positron collider will be com-
posed entirely of solid-state sensors, with no gaseous volume for traditional energy-loss
measurements.

The ability to perform particle ID measurements via the rate of energy loss
could be very advantageous to the study of high-energy electron positron collisions. The
Standard Model (SM) of particle physics makes precise predictions about the quark fla-
vor content of the production and decay processes that will be observed in the collisions,
and thus flavor-specific precision studies of the electron-positron collision processes pro-
vide an important test of the Standard Model and an avenue to probe for new physics.
Bottom quarks, produced directly in the electron-positron collisions or through the de-

cays of W, Z and Higgs bosons or the top quark, decay with a strong preference to



Figure 1.1: A cutaway view of the SiD. SiD stands for Silicon Detector, and it lives up

to its name by using an all silicon tracking system.

strange quarks, which in turn produce kaons. Thus, being able to separate kaons from
the more commonly-produced pions can be an important tool in SM tests at electron-
positron colliders, and in the search for new physics effects.

In addition, several hypotheses about physics beyond the SM, such as Super-
symmetry and Universal Extra Dimensions, suggest the possibility that there may be
as-of-yet undiscovered massive charged particles with lifetimes great enough to allow
them to pass through the detector’s tracking system before decaying. If so, a measure-
ment of the rate of energy loss in the tracker would be essential to the demonstration
that new particle states were being observed in the collisions.

Of these two motivations for the incorporation of particle ID in electron-
positron collider detectors, the first (kaon-pion, or K-m, separation) is the most de-
manding, so that is what this thesis will focus on.

A rendering of the SiD detector, which is one of the two detectors with an
all-silicon tracking system that are currently being designed for future electron-positron
linear colliders, is shown in Figure 1.1. The inner five layers are optimized for precision

vertexing, and are composed of thin, highly granular, three-dimensional pixel sensors.



The outer five layers are composed of more conventional, and substantially thicker,
silicon strip sensors.

The goal of the work presented in this thesis is to develop a Monte Carlo based
simulation of the energy loss in silicon diode sensors caused by incident charged particles,
and then to use this simulation to explore the particle identification capabilities of such
a heterogeneous silicon tracking detector. The significance of separation of pions and
kaons as a function of momentum will be the measure used for evaluating the particle

identification capabilities of the detector.

1.1 Particle ID via the Rate of Energy Loss

If a particle passes through a detector it will lose some energy. The amount of energy
loss depends upon several factors, including the material that the detector is made of,
the charge of the incident particle, and the speed of the incident particle. Fortunately,
the particle momentum (P) can be determined from the radius of curvature of its
trajectory in a magnetic field. The momentum can then be used as a stepping stone

towards identifying the particle, and is given by Eq. 1.1:
P =~ympe (1.1)

where, 5 = v/c is the particle speed scaled to the speed of light, v is the relativistic time
dilation factor described in Table 2.1, ¢ is the speed of light, and m is the mass of the
incident particle. Since the momentum is independently measured to be known, then
the particle mass can be determined from Eq. 1.1 if the speed can be measured. Since
each particle has a unique mass, the particle species can be determined immediately.

If two particles have identical momentum but different masses, such as a kaon
and pion, then they must have unique velocities. What happens then, if the energy loss
distributions of the two particles are inspected? They would have different velocities,
and as such would lose energy at different rates while traveling through the detector,
causing different energy loss distributions. If the two energy loss distributions can be
separated from each other, then the particles may be identified. This is the basis of how
these studies will attempt particle identification via energy loss.

Several tracker configurations will be considered: the first two will be homo-

geneous trackers composed of 10 layers of either 20 um or 320 um silicon, the third



will be a heterogeneous tracker composed of 5 layers of 20 wm thickness followed by 5
layers of 320 wm thickness. The heterogeneous configuration is similar to the baseline
concepts of the SiD and CLIC detectors, where a thin pixel vertexing tracker lies closest
to the beam line and a thicker strip tracker lies outside that. However, the need for
ultra-precise tracking to exploit the intrinsic reach of electron-positron colliders creates
strong pressure to make the innermost sensor layers as thin as possible.

The very aggressive choice of 20 um for the inner pixel layers is made. While
actual sensors are likely to be somewhat thicker than this (the current baseline makes
use of 50 wm thick sensors), ongoing pixel R&D might develop workable sensors with a
thickness approaching 20 um. In addition, the use of this aggressive number provides
a better sense of the principles and limitations associated with combining information
from sensors of very different thickness, and places the most stringent requirements on

the development of the simulation code.

1.2 Outline

This thesis will first introduce the mechanisms of energy loss in silicon, as well as the
statistics that govern that loss. Then detail will be provided on how to numerically
replicate the expected energy loss distributions for use in Monte Carlo simulations.
The energy loss distribution generator will be compared to existing experimental and
theoretical constraints and modified to reproduce this established behavior. Next, a
baseline of separation between a pion and kaon will be established by examining ho-
mogeneous detectors, and the effects of electronic noise will be considered. Finally a
heterogeneous detector will be examined and an approach to making optimal use of
the information from the two separate sections of the detector will be introduced. the
resulting performance of the heterogeneous detector will then be compared to that of

the two homogeneous detectors.



2 The Energy Loss Model and

its Simulation

symbol definition value units

c speed of light 299,792,458 m/s

15} ratio of speed to c

v (157717
Ny Avogadro’s number 6.022 -10%3 mol !
N, electron density 3-10% (Si)  electrons/g
Te electron radius 2.817 .10~ 15 m
Me electron mass 510.999 keV /c?
K 4N gr?mec? 307.075 keV cm?/mol
z charge number

Z atomic number 14 (Si)

A atomic mass of target ~ 28.0855 (Si) g/mol

I mean excitation energy  0.173 (Si) keV

M incident particle mass keV /c?

Table 2.1: Summary of notation.

2.1 Energy Loss Mechanism in Silicon

It may seem natural that when two identical particles pass through the same absorber,

with identical incident momentum, they will not necessarily lose the same amount of

energy. This is because energy losses occur due to random interactions between the

incident particle and the atoms of the absorber. In the momentum range relevant to the

reconstruction of particles from colliding beam experiments, 0.1 < v < 1000, energy

losses are dominated by electromagnetic interactions with the absorber’s electrons [6].

The random nature of energy loss comes from both the quantity of interactions as

well as the amount of energy lost during each interaction. The quantity of energy lost



varies partly because there are two types of electromagnetic energy loss: excitation and
ionization.

Excitation occurs when an electron that is bound to an absorber atom is excited
to a higher energy level, but remains bound to that atom. Due to the quantum nature
of bound states, excitations take a well defined amount of energy from the incident
particle, as the excited electrons must move between energy levels. There is some
variation, however, because an electron can jump multiple levels; this is overcome in
Bethe theory by describing a material by a single number, the mean excitation energy,
1. This value describes how readily a material takes energy from an incident particle
and turns that absorbed energy into electronic excitations [7].

Tonization occurs when the energy that is transferred from the incident particle
to an absorber’s electron knocks that electron free of the atom it was originally bound
to. As the electron is no longer bound to an atom, the energy transfer is not confined to
well defined quantities as an excitation would be. The fact that the electron is knocked
free allows the possibility of receiving a large amount of energy all at once. The total loss
due to ionizations as a particle passes through a thickness of absorber is well described
by the Landau distribution, and will be further discussed in the following section.

Finally, the quantity of non-ionizing electromagnetic interactions can be mod-
eled according to the Poisson distribution and will be discussed in more detail in the

following section.

2.2 The Landau and Poisson Distributions

The variation of the energy loss of a particle traveling through a medium is described
by a combination of the Landau and Poisson distributions. The Landau distribution
describes the shape of the total energy lost due to ionizing electromagnetic interactions,
while the Poisson distribution describes how many interactions occur as a particle tra-
verses an absorber. The total energy loss distribution that will be generated from these
two distributions will be discussed in Section 2.3. The numerical properties of these
distributions will be discussed immediately below.

The original Landau probability density function (henceforth, PDF) was de-
scribed by Lev Landau in 1944 specifically to model the energy loss of fast moving

charged particles [4]. The original form of the Landau PDF was written as a complex
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Figure 2.1: The Landau PDF, highlighting the non-vanishing tail.

integral, while the equivalent real integral form is written as Eq. 2.1, which will be used

in modeling energy losses due to ionization:

p(z) = 71r/000 et W=t 6in (7t)dt (2.1)
This distribution somewhat resembles a Poisson distribution in shape, but
differs in that it is continuous and exhibits a long and thick tail. This tail shape means
that the probability of an arbitrarily large x is non-zero, while the negative tail vanishes
exactly at © = —3.809. In other words, the positive tail is non-vanishing, as is shown in
Fig. 2.1. The thick tail can cause significant grief when trying to work with numbers
that are Landau distributed. Since the probability of an arbitrarily large x decreases
slowly, rather than exponentially, both the mean and variance are undefined for the
continuous PDF shown above (Eq. 2.1). When looking at a finite quantity of Landau
distributed numbers, a mean and variance can be calculated through normal methods,
but they exhibit some odd behaviors. Notably, both the mean and variance tend to
increase as the number of trials increases. This leads to the mode (or most probable
value) being a much more useful metric than the mean when working with Landau
distributed numbers.
The Landau distribution is stable, meaning that if two independent Landau

distributed numbers are added together, the result is also Landau distributed. This is
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Figure 2.2: Several samples of Poisson probability mass function. All of these A are
possible mean quantities of interactions depending on incident particle energy and silicon

layer thickness.

essential for simulating energy loss, as it means that the sum of many Landau distributed
losses is also Landau distributed. This distribution also has the property that translating
the distribution from side to side is equivalent to taking a Landau distributed number
and adding the translation directly to it. These properties mean that the width of a
Landau distribution can be changed by simply multiplying a Landau distributed number
by some quantity and that the most probable value (or mode, represented by the peak
in Fig. 2.1) can be translated by simply adding to a Landau distributed number. The
mode and width of Eq. 2.1 are —0.222784 and 4.019 respectively, both of which were
found via numerical methods.

The Poisson distribution (Eq. 2.2) describes the probability of n events occur-
ring during an observation where a mean quantity of events, A, is expected to occur.
Since an event either happens or does not happen, the Poisson distribution must be
discrete, meaning that n can only be a non-negative integer. The quantity of inter-
actions occurring between an incident particle and the absorber’s electrons is Poisson
distributed. A handful of Poisson probability mass functions are plotted in Fig. 2.2 to
display the general shape of the distribution with various .

)\TL
. A

While the Poisson distribution has a well defined mean (in fact, the distribution



is completely defined by the mean), it is worthwhile to know the mode of the Poisson
distribution, as the mode is a much more useful tool than the mean when working
with the Landau distribution, and both distributions will be needed. The mode of the
Poisson distribution when A is not an integer is simply the largest integer that is less
than A. The mode then is just the mean, rounded down to the nearest integer. When

the mean is an integer the distribution has two modes, A and A — 1.

2.3 The Energy Loss Generator: SimSIdE

The studies in Ch. 3 and 4 will compare the separation of the mean energy losses for
pions and kaons to the resolution of those means. To accomplish this, the energy loss of
a particle traveling through silicon must be simulated. This will be done by making use
of SimSIdE, a routine originally written by Gerry Lynch [5], to simulate the energy loss
of an incident particle with some 5 and unit charge through a thickness of silicon. For
this study, SimSIdE was significantly modified (as described below); for instructions on
obtaining the modified SimSIdE code, see Appendix A.

SimSIdE simulates the energy loss in two parts: excitation and ionization.
SimSIdE does not include any other sources of energy loss, and by extension our sim-
ulations will not include any other sources of energy loss. These two parts have been
constrained to produce the energy loss behavior that has been extensively studied and
parameterized in Ref. [1].

First the energy loss via excitation is found. The excitations are calculated
individually for electrons within the K, L, and M shells. For each shell, the mean number
of interactions is computed, and from that, a Poisson distributed number of interactions
is generated. The mean quantity of interactions is known to be N.ox(do/dW)dW for
an energy loss interval of W to W + dW across a thickness dz[6]. Here, do/dW is the
energy differential cross section for excitation described in Ref. [6]. Since the entire
Poisson distribution is defined by the mean (Eq. 2.2), this mean is the only thing that
is needed to generate the Poisson distributed number of interactions. Every individual

excitation is then simulated based on the shell energy. The excitations within each shell

1

are weighted by a factor of 2z,

where F is the maximum energy loss due to excitation
(beyond which ionization occurs), and the exponent « has been tuned such that the

excitation simulations are within 2% of the predictions of Ref. [1]. Finally, all of the



excitations are summed to create the total energy lost to excitation for the passing
particle.

The process for simulating the energy lost to excitations is understandably
computing intensive. Because of this, SimSIdE includes an option to calculate exci-
tations in lower detail. In the maximum detail case (described above) every single
excitation is simulated based on the shell energy. The lower detail settings instead sim-
ulate an average excitation energy for each shell and use that average for each excitation
within that shell. While the highest detail (level = 3) setting simulated every excitation,
the lowest detail (level = 0) setting applies the averaging approach to all excitations.
As the detail increases to level = 1, the K shell is simulated fully while the L. and M
shells use the averaging approach. For a detail level of 2, the K and L shells are fully
simulated, while the M shell uses the average value. In the following studies, a detail
level of 2 is used, as it offers a significant reduction in run time compared to level 3
while having only a minor (< 1%) impact on precision.

The energy loss via ionizations is calculated by assuming that the total sum
of the ionizations across the entire thickness follows a Landau distribution. This is
reasonable because the Landau PDF is stable, as discussed in Section 2.2. A number
is pulled from a Landau distributed random number generator and is translated and
stretched to represent the behavior described in Ref. [1]. This will be discussed in
greater depth in Section 2.6. The random number generator used by SimSIdE is the
RandLandau function included in the CLHEP library provided by CERN [3]. The
documentation for this generator does not state whether it exactly replicates the PDF
described by Eq. 2.1, or if it produces some other Landau distribution. To verify that
RandLandau replicates Eq. 2.1, the mode and width were examined. The mode was
found to be —0.223 (found via numerical methods described in Section 2.6). The full
width at half maximum was found to be 4.0 (found by inspecting a histogram of the
distribution). These values of the mode and width agree with those described in Section
2.2.

As the mean energy loss (Eq. 2.3) and most probable loss (Eq. 2.6) are well
understood [1, 6], one might simply take the known values for the mean energy loss
and the width to estimate the separation between incident particle species. However,
due to the Landau tail, the separation will not be statistically significant unless the

largest energy losses are removed in a process called truncation (discussed in great
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Figure 2.3: A sample comparison of the Bethe curve with and without the density

correction. This highlights the effective truncation described by Ref.[6].

detail in Section 3.3). This process changes the energy loss distribution in a fundamental
manner, and that change cannot be inferred from Eqs. 2.3 and 2.6. As such, it becomes
imperative that the mean and mode of energy loss are understood and that SimSIdE
replicates these as closely as possible so that truncation can be utilized to find the best

separation possible between the pion and kaon.

2.4 Mean Energy Loss in Silicon

It is clear that simulations must be as realistic as possible, specifically, the energy loss
distribution produced by SimSIdE needs to have an appropriate width and positioning.
There are two obvious measures of the typical amount of energy lost by a traversing
particle: the mean and the mode. The well known Bethe equation (Eq. 2.3) describes
the mean stopping power of an absorber primarily due to excitation and ionization of

the absorber’s electrons:

dE o QZ 101 Qmec252V2Wmax 2 6(67)

where all of the symbols except Winax and §(57) are defined in Table 2.1. A sample

Bethe curve is shown in Fig. 2.3 for a kaon passing through silicon. The value of Wi ax

11



can be computed via Eq. 2.4:

2o 5242
1+ 2yme/M + (me/M)?
where all symbols are again defined in Table 2.1. Note that the energy limit Wiyax

Wmax =

(2.4)

depends on the mass of the incident particle. While this means that the Bethe curve
has a weak dependence on particle species, in practice the mean energy energy loss
depends only on (57, especially after the truncation procedure described later.

Finally, the symbol 6(37) is a density effect correction that arises, according to
Ref. [6], “As the particle energy increases, its electric field flattens and extends, so that
the distant-collision contribution to Eq.(2.3) increases as In (37). However, real media
become polarized, limiting the field extension and effectively truncating this part of the
logarithmic rise.” Note that since the density effect correction mitigates the growth
of Eq. 2.3, it also will lessen the ability to distinguish between the pion and kaon.
Thus it is important to include an accurate model for d(f7). These studies will use the

Sternheimer parameterization of 0(57), described by Eq. 2.5 [8]:

( _
xIn100 — C if © > xq;
rIn100 — C 4 a(x; — 2)F  if 2o < 2 < 2y;
5(By) = (2.5)
0 if x < xo for insulators/gases.
50102(@—20) if x < xg otherwise.

where all symbols except for x are unitless fitted parameters for a specific absorber
material. The x used in Eq. 2.5 is defined as log;, (57). The values of those parameters
are listed for silicon in Table 2.2.

parameter  value

a 0.1492
x0 0.2014
T 2.8715
k 3.2546
C 4.4351
5o 0.1400

Table 2.2: Summary of density effect parameters for silicon, listed to the same precision

as Ref. [8].

Due to the kinematics of a two particle collision, only so much energy can be

transferred between an incident particle and an individual electron during a single event.
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This energy limit is represented by Wiax within the Bethe equation and is defined by
Eq. 2.4 [6]. By limiting the maximum energy transfer, the long and thick tail of the
Landau distribution is truncated to be a thick tail with an abrupt end at Wy, With
this energy limit in place, the mean and variance are no longer undefined and can be
studied, despite the variance still being much larger than the mean.

The mean of a distribution is an extremely familiar and efficient metric to
compute, making it a natural choice as a measure for comparing the distribution to
expectations. Unfortunately, the variance of the energy loss distribution is still pro-
hibitively large, despite the energy cutoff of Wiay, which grows as (3v)?, and thus
excludes only the most extreme energy losses (as seen in Fig. 2.1). Without an un-
reasonable computing time the mean isn’t appropriate for comparing SimSIdE to the
expected mean from the Bethe equation. Thus, the most probable loss, or mode, of the

energy loss distribution will be used instead.

2.5 Landau-Vavilov Most Probable Energy Loss

Since the mean energy loss is not an appropriate method of comparing SimSIdE to real-
world expectations, the next obvious choice is the mode of the energy loss distribution.
The mode is not sensitive to the high energy Landau tail, representing instead only the
most common value, where the PDF is maximal. Graphically this is represented by a
peak in the PDF (as seen in Figs. 2.1 and 2.2). Because the mode is not influenced
by the size of the largest energy losses, it lacks the weakness that the mean has of
being influenced by the Landau tail. In addition, the truncation procedure described
later will eliminate contributions from the high energy end of the Landau tail, providing
another motivation for constraining the mode rather than the mean of the energy loss
distribution.

The Landau-Vavilov most probable energy loss (A,) is modeled by Eq. 2.6 [6]:

et || €

A, =¢|In =2 > - 87— 48(8) (2.6)

where all symbols except £ are described in Table 2.1. The symbol £ here represents
(K/2)(Z/A)(X/B?) keV, where X is the thickness of the absorber in ¢cm, and all other
symbols are found in Table 2.1. The mode of simulated energy losses from SimSIdE will

be compared to this equation in the following section to ensure that the simulations are
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Figure 2.4: Landau-Vavilov most probable loss and SimSIdE mode for a kaon traversing
a 320 pm silicon slab. The momentum range of 100 MeV /c to 100 GeV/c is equivalent
to 0.2 < By < 203 for the kaon. Note that the mode of SimSIdE is approximately 5x

larger than the Landau-Vavilov most probable value at the lowest momentum.

as realistic as possible.

Figure 2.4 shows an example of the most probable energy loss as a function
of momentum, alongside the SimSIdE mode. Note that the mode plateaus at large
momenta. This is because the growth in (%> is primarily driven by the growth in the
Landau tail, which the mode is not sensitive to. Figure 2.4 also highlights the fact
that SimSIdE was originally written to exclusively be used at large momenta. The
SimSIdE mode is much too large at low momenta. In Fig. 2.4, the SimSIdE mode

is approximately 5x larger than the Landau-Vavilov most probable loss at the lowest

displayed momentum. This will be addressed immediately below.

2.6 Scaling SimSIdE

SimSIdE isn’t perfect, most notably because it was tuned to agree with expectations at
B ~ 1. It is necessary to compare the mode of SimSIdE to the Landau-Vavilov most
probable loss at a variety of 5 for the thicknesses and particles involved in these studies.

There are four cases to examine, both kaons and pions in 20 and 320 micron thickness
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silicon. The initial momentum ranges from 100 MeV/c to 100 GeV/c. This range is
equivalent to 0.2 < By < 203 for a kaon and 0.7 < v < 717 for a pion, so this range
lies firmly within the region where ionization and excitation dominate energy losses[6],
ensuring that comparing to the Landau-Vavilov most probable loss is appropriate.
The mode produced by SimSIdE must be found for each of these cases at every
momentum that is to be compared to the Landau-Vavilov most probable loss. For each

220 iterations/momentum). The list is then

point a list is populated by many losses (
sorted from smallest to largest loss. The algorithm used to find the mode of the ordered

list is as follows:

1. An integer N is picked to be the quantity of losses within each interval. In this
method, N is picked to be one half of the quantity of entries in the total list.

2. A single interval beginning at an index i and ending at index i+N, is calculated

by subtracting the value located at index i from the value located at index i+N.

3. The density of that interval is calculated by taking it and dividing by N, the
number of included entries. This means that the more similar the values located

at indices i and i+N, the more dense that interval is.

4. The density is found for every valid index. Since N is one half of the quantity of

entries, i must run from 0 to N-1.

5. Once the most dense interval of N losses is found, that set of entries is treated as
a new list. The algorithm is then repeated from step 1. many times, until only

two entries remain.

The mode is taken to be the average of those two final entries. In other words,
the mode is found by locating the most dense half, then quarter, then eighth, and so on
until only a pair of losses are left. This method is called the “Half Sample Mode” and
is a robust estimator of the mode for a sample [2] , provided there is only one peak in
the PDF. Using this method to estimate the mode avoids potential issues involving bin
width when compared to a histogram approach.

With a method for estimating the mode of SimSIdE, that mode may be in-
spected and compared to the Landau-Vavilov most probable loss. An example of this

was shown in Fig. 2.4, showing that the mode of the original iteration of SimSIdE
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disagrees with the expected most probable loss at lower momenta. This means that
SimSIdE should be scaled to match real world expectations. Two methods of making
the SimSIdE mode agree with the most probable loss are considered. The mode of the
SimSIdE distribution could be translated to the correct location, or it could be multi-
plied by a scale factor. These two methods have differing effects regarding the width
of the energy loss distribution. A translation would simply move the mode of SimSIdE
to the expected value, without changing the width, while a multiplicative scale would
change both the position and the width in the same manner, at the same time.

The question becomes: is the width produced by SimSIdE correct? If so, then
a translation can be used. If the width of the SimSIdE distribution is too large and
on the same scale as the mode being too large, then a multiplicative factor may be
sufficient. The intrinsic width of the Landau PDF is 4.019 (Section 2.2). According to
Ref. [1], the normalized Landau width of 4¢ then is appropriate for large thicknesses
(~ lcm) of silicon. However, Ref. [1] also demonstrates that thinner layers require an
expansion of the Landau width. For a particle with g+ 2 100, the width in 20 pm Si
is expanded by a factor of 2.465, and the width in 320 um Si is expanded by 1.382.
Compiled in Table 2.3 is a comparison of the expected widths to the width of SimSIdE.

Species Thick(um) Gy  Mom.(GeV/c) 4&(keV) Exp.(keV) SS(keV)*

pion 20 100.31 14.00 1.43 3.34 3.20
pion 320 100.31 14.00 22.81 31.57 31.00
kaon 20 100.17 49.45 1.43 3.34 3.20
kaon 320 100.17 49.45 22.81 31.57 32.00

Table 2.3: Summary of thickness dependent widths where Exp. and SS are abbreviations
for Expected and SimSIdE respectively. Expected widths are from Table VI in Ref. [1].
*Estimated from a histogram of the SimSIdE energy distribution.

Table 2.3 makes it clear that the widths produced by SimSIdE are appropriate,
thus a translation rather than a multiplicative scale is sufficient to make the mode of
SimSIdE agree with the most probable loss.

However, upon further inspection of the original SimSIdE code, it was noticed
that a high energy approximation is used when establishing the mode of the ioniza-
tion Landau curve. The can be shown by histogramming the individual excitation and
ionization energy distributions produced by SimSIdE as shown in Fig. 2.5. This is cor-

rected by replacing the value of the ionization energy loss mode with a more computing
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Figure 2.5: Separated excitation and ionization distributions for a 100 MeV /¢ kaon in
320 micron silicon. The positioning of the ionization distribution is far too far to the
right, causing the discrepancy shown in Fig. 2.4. The spike in the ionization distribution

is due to the last bin being an overflow bin, encompassing all losses greater than 10 MeV.

intensive, but more accurate, value. This value is provided by the most probable loss
as described in Eq. 2.6 after subtracting away the mode of the excitation energy loss
distribution. The mode of the excitation energy loss distribution is determined by the
mode of the Poisson-distributed quantity of interactions and the mean energy loss from
each shell.

This correction places the SimSIdE mode close to the values calculated from
Eq. 2.6. Figure 2.6 shows all of the corrected SimSIdE modes along their Landau-
Vavilov counterparts. Figure 2.7 shows that the ratios of the Landau-Vavilov most
probable loss to the SimSIdE mode in all four cases (pion/kaon and 20/320 pm) are
close to 1. Finally the slight negative trend of those ratios can be fit by the function
F =0.977530 — 0.017845In (37) to provide the final a small scaling correction.
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Figure 2.6: Adjusted SimSIdE modes and the Landau-Vavilov most probable losses in
keV as functions of fy. These 37 ranges are identical to 100 MeV /c to 100 GeV/c.
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all cases, across the momentum range 100 MeV /c to 100 GeV /c.
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Figure 2.8: A comparison of kinetic energy, W4, and mean energy loss according to
the Bethe equation with Sternheimer corrections. These calculations all assume a kaon
incident upon 320 micron silicon. The displayed momentum range (100 MeV/c to 10

GeV/c) is equivalent to 0.2 < By < 20.

2.7 Maximum Energy Loss

Another flaw of SimSIdE is that it does not include an upper limit on the quantity of
energy that can be lost by a single incident particle. While this is in perfect accordance
with the long and thick tail of the Landau distribution, it is unphysical when 5 < 1.
There exist two natural limits on the energy loss. In addition to Wiy, the maximum
loss from a single collision, it is also obviously true that the particle can’t lose more that
its incident kinetic energy. Beyond that point the particle would be absorbed completely
by the silicon. The other limit, Wi,ax, is a reasonable upper limit for higher momentum
incident particles where a single large energy transfer is expected to dominate the entire
energy loss. Figure 2.8 shows that there is a region of momenta where the expected
mean energy loss (Bethe) is much greater than Wi,.y, implying that at lower momenta
there must be multiple energy transfers on the order of Wiax.

The solution employed here is to make use of the Poisson distributed number
of interactions introduced in Section 2.2 to scale up Wiax by an appropriate amount.

After a slight change to SimSIdE to allow the routine to pass back the number of
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interactions, the total energy limit across the entire silicon slab can be computed. Since
the Poisson distribution includes zero, the exact number that Wy, is scaled by is the
number of interactions from SimSIdE plus one, since the minimum limit should be
Whnax- Enforcing an upper limit on energy loss significantly reduces the variance of the
energy loss.

There is one caveat to this method of computing an energy limit. Wiyax is the
maximum energy transfer per interaction, and as such, it would be most realistic if it
were recalculated between each interaction. This is not really possible, however, because
any large energy loss will be due to the thick Landau tail, and SimSIdE determines
ionization all at once for the entire layer of Silicon. Since there is no differentiating
between individual ionizations, there is no way to update Wy, between interactions.
If it was possible to update Wiyax between ionizations, it would always decrease, as
energy is transferred from the incident particle to the absorber’s electron, the incident
particle must slow down, decreasing v, and thus decreasing Wiax. The take away of
this caveat is that it is expected that the energy limit used here overestimates the real
energy transfer limits, especially since any single large energy transfer would severely
dampen Wiyax.

The overestimation of maximum energy loss will not matter in the studies,
however, due to the layer truncation procedure required to mitigate the statistical effects

of the Landau tail. This will be discussed in detail in Section 3.3.

2.8 Mean Case Study

While the mean energy loss across a single slab of absorber is problematic to work with
and is too unreliable to be used on its own, it is still interesting to see the average effects
of correcting the ionization positioning, applying the slight fractional scale factor, and
enforcing energy limits upon losses. Figure 2.9 summarizes these changes to SimSIdE.
Note that the variance is large and causes significant jitter, which is reduced after
enforcing energy limits. The fact that the SimSIdE mean consistently overestimates the

Bethe calculation highlights the effects of the caveat discussed in Section 2.7.
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Figure 2.9: Comparison of mean energy loss for a kaon through a 320 micron silicon slab
with various rules (scaling, energy limits) applied. The Raw SimSIdE curve shows what
would be obtained if SIimSIdE was used in its original form, without any interference.
The Scaled SimSIdE curve shows the output of SimSIdE after fixing the translation of
the ionization curve and applying the slight scale factor determined in Section 2.6. The
Energy Limited SimSIdE curve is the final version, after fixing translation, scaling, and
then enforcing energy limits. The large fluctuations in the SimSIdE mean illustrate the

difficulty of using the mean energy loss to assess and correct the overall scale.
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3 Pion-Kaon Particle ID in a

Homogeneous Detector

3.1 A Layered Detector

With a method in hand that implements SimSIdE so that it accurately replicates real
world expectations across a wide range of 3, it is now possible to model how well a
multi layer semiconductor tracker can be used to differentiate between pions and kaons.
Recall from Section 2.3 that SimSIdE only depends on the speed (3) of the incident
particles and the thickness of the silicon layer when it simulates the energy distribution
of particles passing through a single thickness of silicon. The energy loss from SimSIdE
is then scaled according to Section 2.6 and limited according to Section 2.7. The mass
of the particle only plays an extremely small role in this process via the energy limit of
Whax (Eq. 2.4). This means that a pion and kaon with the same § traveling through
the same individual silicon slab will behave nearly identically.

However, the momentum of the incident particles is assumed to be already
known from the radius of curvature in the tracking system of the hypothetical detector.
If two particles have the same momentum, but different masses, then they will have
different speeds, as well as different kinetic energies. Their energy loss distributions can
be modeled, and if those distributions are separable, then the particles can be identified.

This particle identification process is greatly improved by including many lay-
ers in the detector for two reasons. First, using many layers allows for the layers where
the highest energy losses occur, those that inhabit the Landau tail, to be excluded from
the total mean energy loss. This process, called “truncation” reduces the mean some-

what, while reducing the variance significantly. In addition, if both particles start with
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the same momentum, and they each lose (by chance) the same energy, that energy loss
will be different fractions of their kinetic energy. In other words, one particle will slow
down more while the other will slow down less. This process will affect the total energy
loss distributions across many layers.

This will be the basis for separating the two particles: run each through the
same layered detector many times with the same incident momentum, find the mean
energy loss across several layers, and compare that mean for each of the particles in units
of total variance. This allows several potential studies to be done, including separation
in homogeneous detectors as well as separation in a heterogeneous detector inspired by
the proposed tracking systems of the SiD and CLIC detectors.

In this chapter the tools needed to simulate and optimize the performance of
a homogeneous multi-layer tracker, i.e., one for which all layers are the same thickness,
are discussed. Then two such homogeneous trackers: one composed of 10 layers of 20
um silicon and the other of 10 layers of 320 um silicon, are simulated. These studies will
form an important baseline for comparison with the performance of the heterogeneous
detector.

In these studies, it will be assumed that the detector readout makes a perfect,
stable, noise-free measurement of the energy loss in the sensor. While this is certainly
not true in reality, in practice the Landau fluctuations discussed at length in the previous
chapter dominate other experimental shortcomings in most situations. Electronic noise

will be briefly examined in Section 3.7 to verify that the impact is minor.

3.2 Absorption

The smallest incident particle speeds included in these studies leave certain particles
with very little kinetic energy of their own. The slowest case, for example, is a 100
MeV/c kaon; at this momentum the kaon only has 10.0 MeV of kinetic energy. The
expected loss (or mean stopping power) for this particle traversing a 320 um layer can
be calculated from Eq. 2.3 to be 1.56 MeV. It is clear then that a 100 MeV/c kaon is
unlikely to make it through 10 layers of 320 um silicon, and a rule for determining when
a particle is absorbed must be developed.

For each case (pion/kaon and 20/320 um) there exists a  at which the parti-

cle’s kinetic energy is equal to the mean loss calculated from Eq. 2.3. In other words,
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there is a speed at which the average particle is absorbed in a layer of the detector.
The rule used in these studies will be that if a particle falls below this threshold 3 then
the particle will be considered absorbed, with the loss for that layer being set equal to
its remaining kinetic energy. In the event that a particle is absorbed, the energy loss
for the remaining layers will be set equal to zero, as the particle has stopped moving
and has no more energy to give. In the truncation procedure described below, layers
for which the particles traverse the sensor are maintained in the energy loss sum, since

this provides additional information about the speed of the incoming particle.

3.3 Truncation

Studying the particle identification performance of a multi-layer detector requires a new
tool called “truncation,” which is useful when trying to maximize the separation between
pions and kaons. Here, truncation means omitting certain layers from the summed total
loss across a detector. The notation used will be that a truncation of zero (7' = 0) means
that no layers are omitted, a truncation of one (7' = 1) means that the layer where the
largest energy loss occurred will be omitted, a truncation of two (7" = 2) means the two
largest losses are omitted, and so on.

Truncation in this manner has several effects. First, by omitting the largest
losses that occur through a detector, the tail of the Landau distribution is effectively
removed. Also, the skewness of the energy loss distribution is reduced with increased
truncation up until a point, typically as 1" approaches the total number of layers, where
additional truncation begins to increase skewness. Another benefit of truncation is that
since it excludes the largest losses, it renders the fact that the energy limits discussed in
Section 2.7 are overestimated to be a non-issue. This is because the rare energy loss that
falls within the extension on the energy limit will likely be filtered out by a truncation
of just T'= 1, and will almost certainly be filtered out by any higher truncation. Most
importantly though, truncation greatly reduces variance, allowing the mean energy loss
to be used much more effectively for separating the pion and kaon. Figure 3.1 shows
the evolution of the energy loss distribution from a Landau shape towards a Gaussian
shape as truncation increases. An example of the numerical effects of truncation are

shown in Table 3.1 by examining the mean loss of a kaon with an incident momentum

of 10 GeV/c.
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Figure 3.1: Energy loss distributions for a 10 GeV/c kaon passing through 10 layers of
320 micron silicon with various truncations. Note that only the 7' = 0 distribution has
a large overflow bin. Extremely large losses, like those that would populate overflow

bins, and almost completely removed by a truncation as low as T' = 1.

T 9 8 7 6 ) 4 3 2 1 0

Lo 75.6 156.9 2427 332.8 4274 5275 6352 7555 908.8 1648.6
o 58 104 151 204 265 343 454 66.5 181.2 14560.6

Table 3.1: Truncation example for a 10 GeV/c kaon traversing a detector of 10 layers
of 320 micron silicon. The mean (p) and variance (o) are in keV. Note how quickly the

variance drops with truncation for small numbers of truncated layers.

3.4 Significance of Separation

The next step is to pick a quantitative measure of how well the pion and kaon can be

separated. This measure is the significance of separation (S), defined as Eq. 3.1.

\/ 02+ 0%
Where the mean is denoted by w and the variance is o. In other words, S is the separa-
tion of the pion and kaon means in units of total variance. The larger the significance of

separation, the more reliably the pion and kaon can be distinguished from each other.
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Figure 3.2: Composite significance of separation for all truncations of a homogeneous
detector composed of 10 layers of 20 pwm silicon. The legend is ordered from highest

significance to lowest, matching the graph.

The goal of the homogeneous layer studies is to learn what value of T' yields the most
significant separation, and to find the momentum range over which pions and kaons can

be separated.

3.5 Homogeneous 20 Micron Silicon Detector

Initially, two homogeneous detector layouts will be considered, to serve as a base line
to compare the heterogeneous detector to in terms of significance of separation. The
first will be a detector constructed from 10 layers of 20 um silicon. The significance of
separation will be found for all truncations across the momentum range 100 MeV/c to
100 GeV/c, as shown in Fig. 3.2.

Although somewhat busy, Fig. 3.2 shows that truncations of T =5and T =6
are very similar for this detector configuration, and that those truncations provide the
highest significance of separation for incident momenta less than 1 GeV/c. It also
confirms that the significance of separation is greatly improved by truncation, but too
much truncation will inhibit the ability to separate the two distributions. Finally, Fig.

3.2 shows that the significance of separation is small beyond an initial momentum of
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Figure 3.3: Selected significance of separation plots for a homogeneous detector com-
posed of 10 layers of 20 wm silicon. The plots shown here are for the minimum (7" = 0)
and maximum (7" = 9) truncations, as well as the maximum significance of separation

(T =5,6). For the most part, the T'= 6 curve lies slightly above the T'= 5 curve.

~800 MeV/c. With that in mind, Fig. 3.3 has been created from the same data as
Fig. 3.2, but only displays truncations of 7' = 0,5,6,9 in the momentum range of 100
MeV/c to 10 GeV/c, in order to give a more clear picture of what is observed.

The general shape is expected: at the lowest momenta the incident particles
don’t have much energy to lose. As they gain momentum they have more energy to
relinquish, increasing the mean loss and the numerator of Eq. 3.1. However, the faster
the particles traverse the detector, the less time they spend inside, transferring less
energy, thus decreasing the difference in the means. The maximum significance of
separation for the 20 pum detector is observed at ~130 MeV/c, and is the incident
momentum for which the decrease in mean energy loss starts to dominate the increase
in the kinetic energies of the incident particles.

Figure 3.4 shows the individual contributions to the significance calculation
(Eq. 3.1) for the optimal truncation 7" = 6 curve from Figures 3.2 and 3.3. Shown are
the individual means and variances for pions and kaons, as well as the significance of
separation. The small rise in significance at approximately 175 MeV /c appears to be

due to a flattening of the kaon mean energy loss in that region while the kaon variance
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Figure 3.4: Truncated mean losses, variances, and significance for T' = 6 for a detector
composed of 10 layers of 20 pwm silicon. The small increase in significance at ~175

MeV /c is due to the local flattening of the mean loss from kaons in that region.

is still decreasing. Determining the cause of this flattening would require further study.

Overall, is it seen that for the homogeneous 10 layer 20 pm detector that a
truncation of 5 or 6 produces the optimal separation over the full range of momentum for
which a significant separation can be achieved. The following momenta and significances
were all found for a truncation of T' = 6, as the T' = 5 curve only exceeds the T' = 6
curve at the lowest momenta. At an incident momentum of 150 MeV /¢ (the momentum
at which kaons reliably make it through 10 layers of 320 wm silicon), the separation is
found to be 8.62. At an incident momentum of 230 MeV/c (the incident momentum
that provides the most significant separation in the 320 um tracker) the separation is
7.21. The significance of separation exceeds S = 2 up to 581 MeV/c and exceeds S =1
up to 765 MeV /c.

3.6 Homogeneous 320 micron Silicon Detector

Before a deeper investigation of the ten layer 320 um tracker can begin, the relevant
incident energy range must be determined, since low energy kaons that would pass all

the way through a detector composed of 20 um layers would be absorbed by a detector
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Figure 3.5: Mean losses in a tracker composed of 10 layers of 320 wm thick sensors
at a truncation of 7' = 0. Note the sharp peak in the kaon mean energy loss at 150
MeV /c. Up to that momentum kaons are being absorbed inside the detector, while after
that point the kaons are passing all the way through. The noise observed at the higher

momenta is because this truncation doesn’t filter out the Landau tail.

composed of 320 pm sensors. In this case, a pion of the same momentum would penetrate
the 320 pm tracker, leaving a signal in the outer detector (hadronic calorimeter) that
would clearly distinguish it from the kaon. This is a very reliable way to separate low
momenta pions from kaons, and so here there is no need to consider momentum below
this threshold.

Figure 3.5 shows the mean energy loss in a 320 um tracker as a function of
incident momentum, separately for pions and kaons. The peak in the mean kaon energy
loss at 150 MeV /c indicates that this is the energy for which the kaon begins to penetrate
the entire detector and enter the calorimeter. Thus, for the 320 um tracker as well as
the heterogeneous tracker of Ch. 4 our studies will extend down to only 150 MeV /c.

With the lower limit of 150 MeV /c in place, Fig. 3.6 is unsurprising, with the
general shape being the same as that of the 20 um homogeneous detector. The 320
um tracker displays a higher maximum significance as expected since the ratio of the
mean variance to the mean energy loss is smaller for the 320 wm tracker than the 20 wm

tracker. Figure 3.6 shows that a truncation of T' = 7 yields the maximum significance
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Figure 3.6: Composite significance of separation for all truncations of a homogeneous

detector composed of 10 layers of 320 pum silicon for momenta beyond 150 MeV /c.
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Figure 3.7: Selective significance of separation plots for a homogeneous detector com-
posed of 10 layers of 320 um silicon for momenta above 150 MeV /c. The plots shown
here are for the minimum and maximum truncations, as well as the maximum signifi-
cance of separation. The T' = 7 curve yields the greatest significance of separation over

the displayed range.
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of separation across the displayed momentum range, somewhat higher than the optimal
value for the 20 um tracker, which was T' = 6. It also confirms that the significance is
low beyond an incident momentum of ~1 GeV/c.

Figure 3.7 shows the significance as a function of incident momentum for se-
lected values of T. The T'= 0, 1 curves are included to illustrate that a large truncation
gives a significant improvement in the separation. T = 7 is the optimal truncation
value, while the T' = 9 curve is shown to illustrate that the significance degrades for
truncations beyond T' = 7.

Thus, it is concluded that energy loss particle identification for a 320 pm
tracker is only relevant for incident momenta at and above 150 MeV/c. The following
momenta and significances were all found using the optimal truncation of T'= 7. At the
minimum incident momentum of 150 MeV /c, the significance of separation is 8.14. At an
incident momentum of 230 MeV /c the significance of separation is 11.3. The separation
exceeds S = 2 up to an incident momentum of 842 MeV /c, and the separation exceeds
S =1 up to 1020 MeV /c.

To summarize, Table 3.2 shows four measures of the particle identification
performance for the 10 layer homogeneous trackers: the significance of separation at
an incident momentum of 150 MeV /¢, the maximum significance of separation (at 230
MeV /c for the 320 pm tracker), the maximum incident momentum for which pions and
kaons can be separated by S = 2, and the maximum incident momentum for which
pions and kaons can be separated by S = 1. These values will be used as a baseline of

comparison for the heterogeneous tracker, which is presented in the next chapter.

tracker T Siso  Saz0 25(MeV/c) 1S(MeV/c)

20um 6 8.62 7.21 581 765
320 pm 7 814 11.3 842 1020

Table 3.2: Summary table of four points of comparison in the homogeneous trackers.
S150 represents the significance at 150 MeV /¢, the lowest momentum at which kaons
reliably penetrate into the calorimetry. Sa3p is the significance at 230 MeV/c, the
momentum at which the highest significance has been observed (as the peak of the
320 pm tracker), 25 is the upper momentum limit at which a significance of S = 2 is

observed. 15 is the upper momentum limit at which a significance of S = 1 is observed.
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3.7 Electronic Noise

Throughout this study, the contributions of electronic noise to the spread of the energy
loss distribution has not been considered. In this section, the validity of this assumption
is explored by adding in an additional Gaussian contribution to each layer’s energy
deposition. The Gaussian distribution is centered on zero, since electronic noise is as
likely to subtract from the overall collected charge as it is to add to it.

In general, the channels of a multi-channel solid state tracking systems require
a median signal-to-noise of 12:1 or greater in order to adequately suppress the noise-
induced hit rate while maintaining efficiency for sensing through-going tracks. Thus, the
width of the Gaussian is set to be 1/12 of the median charge deposition for a minimum
ionizing track that passes through the layer (S ~3), corresponding to a median energy

loss of 5.3 keV for a 20 um thick layer, and of 98 keV for a 320 um thick layer.

tracker T S150 S9230 25(MeV/c) 1S(MeV/c)

20 um 6 8.61(8.62) 7.15(7.21) 570(581)  751(765)
320 um 7 8.10(8.14) 11.1(11.3)  775(842)  987(1020)

Table 3.3: Summary table of four points of comparison in the homogeneous trackers with
added electronic noise. The noise-free simulations have been included in parentheses for

ease of comparison.

Table 3.3 shows the comparison between the performance of both the 20 pm
and 320 pm homogeneous detectors with and without noise, for the four comparison
points at the optimal truncations for the noise-free detector. The 20 pm homogeneous
detector suffered less than a 1% difference for peak significances, and less than 2% for
the S =1 and S = 2 ranges. The 320 um homogeneous detector suffered less than 2%
difference for peak significances, but up to 12% for the S = 1 and S = 2 ranges. The
significant effects of electronic noise, especially on the 320 pm configuration, warrant

additional study.
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4 Pion-Kaon Particle ID in a

Heterogeneous Detector

The heterogeneous tracker that we’ll discuss in this chapter is composed of 5 layers of
20 wm thickness followed by 5 layers of 320 um thickness. This configuration reflects
the base concepts of the SiD and CLIC detectors, where a thin pixel vertex tracker lies
closest to the beam line and a thicker strip detector lies outside that.

There is one thing to address before studying this tracker configuration: trun-
cation. For the heterogeneous tracker, truncation will almost always remove the 320
um layers first, since they are 16 times thicker than the 20 um layers, and will be very
likely to have the largest energy loss. This is undesirable because the energy losses in
the thinner layers tend to have higher variance relative to the mean energy loss [6]. This
is verified by Sections 3.5 and 3.6, which show that the 320 um detector yields a higher
significance than the 20 um detector. There are several ways to address this issue, two
of which were considered: the truncation could selectively remove thin layers before
thick layers, or the thin layers could be weighted by some multiplier, allowing them a
higher chance of being truncated.

The second option is chosen because an energy loss in a thin layer that is
close to the mean of the distribution in that layer carries more information about the
particle’s velocity than an energy loss in a thicker layer that’s far above its mode.
It also provides a second parameter (in addition to the truncation parameter T') over
which the particle identification performance can be optimized. Thus, such an approach
would be expected to lead to a more efficient use of the information at hand. To be
clear, the weighted simulation runs identically to the unweighted heterogeneous tracker
simulation: the simulated losses (between particle energy updates, or between layers)

are not changed by weighting. The only difference is in the recording of the losses. The
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weighted layers are recorded with their weight multiplied in, then truncation can take
place on the weighted losses. The significance is then computed from those weighted
and truncated losses.

The weighting procedure was done for a wide range of thin to thick weights,
including 1:1, 4:1, 8:1, and so on up to 40:1. As in Chapter 3, four points of comparison
are used in evaluating the particle ID performance. The first two are the observed
significance for incident particle momenta of 150 MeV /c (the energy below which kaons
tend to get absorbed and don’t exit the tracker) and 230 MeV/c (the incident energy
that produces the greatest significance for the 320 um tracker). The second two are the
maximum incident momenta that provide separations of S =2 and S = 1, respectively.
These four points of comparison are shown in Table 4.1 for each weight ratio that was
studied. Table 4.1 also repeats the results of Chapter 3 for the 20 um and 320 pm

homogeneous trackers, for ease of comparison.

weight T Siso  Sa230 QS(MQV/C) 1S(MGV/C)
1:1 3 7.70 6.18 605 850
4:1 2 6.73 548 592 829
8:1 3 6.54 5.97 596 814
12:1 3 T7.24 6.86 624 846
16:1 4 8.26 7.99 657 874
20:1 5 9.41 8.82 683 904
24:1 7 991 9.07 692 918
28:1 7 9.41 8.38 699 935
32:1 8 8.49 8.03 693 935
36:1 8 T.98 7.77 691 936
40:1 8 T7.71 7.65 688 935

20um 6 8.62 7.21 581 765

320 um 7 8.14 11.3 842 1020

Table 4.1: Summary table of four points of comparison in the heterogeneous tracker as
a function of the weight ratio. The “weight” column shows the factor by which the thin
layer energy losses were scaled relative to the those of the thick layers. The contents of

Table 3.2 have been included at the bottom, for easier comparison.

Figures 4.1 through 4.6 show the K-m separation as a function of incident
momentum for weights of 1:1, 8:1, 16:1, 24:1, 32:1, and 40:1, respectively. For each
figure, the significance trajectory for the optimal value of T is displayed, as well as the

trajectory for T' = 0 and for a value of T" a few units larger than the optimal trajectory
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Figure 4.1: Significance trajectories for the heterogeneous tracker with a 1:1 weighting.

in order to get a sense of the degradation that arises from over-truncation.

The performance of the heterogeneous tracker is seen to improve with increased
weight ratio, reaching an optimum significance of separation at a weight ratio of approxi-
mately 24:1 for lower incident momentum, and 28:1 for incident momentum approaching
1 GeV/c. This is somewhat surprising, in that the ratio of layer thicknesses, and thus
of the most likely energy loss, is 16:1, significantly less than the observed optimal ratio
of 24:1. In addition, the ratio of the width to the mean of the energy loss is greater
for the 20 um thickness, which would naively suggest that one might expect a weight
ratio smaller than the thickness ratio of 16:1 to produce optimal results. Developing an
understanding of this behavior would be an interesting avenue for further study.

After optimization, the K- separation performance of the heterogeneous tracker
is seen to lie between that of the two homogeneous trackers, which is expected since
the heterogeneous tracker is a mixture of layers from the 20 um and 320 pm trackers.
The exception to this is at the lower energy bound of 150 MeV /¢, where the separation
power of the heterogeneous tracker seems to exceed that of both the 20 um and 320
um homogeneous trackers. This is most likely due to the fact that many of the kaons
that get absorbed in the 320 um homogeneous detector are able to make it all the
way through the heterogeneous detector, providing more layers for the measurement of

energy loss.
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Figure 4.3: Significance trajectories for the heterogeneous tracker with a 16:1 weighting.
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Figure 4.4:
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Significance trajectories for the heterogeneous tracker with a 24:1 weighting.
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Figure 4.5: Significance trajectories for the heterogeneous tracker with a 32:1 weighting.
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Figure 4.6: Significance trajectories for the heterogeneous tracker with a 40:1 weighting.

It’s interesting to note that the low-incident-momentum performance of the
heterogeneous tracker begins to degrade as the weight ratio increases beyond 24:1, while
for incident momenta about 500 MeV /c or so, the performance remains robust even for
the 40:1 weight ratio. This suggests that the use of weight ratios that vary with incident
momentum might yield the best K-m separation performance for the heterogeneous
tracker. The maximum of the range over which kaons and pions can be distinguished
to better than two (one) standard deviations by the heterogeneous tracker is relatively
stable with respect to the weight ratio, reaching values of about 690 (940) MeV /c for

weight ratios above 28:1.
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5 Conclusion

The purpose of these studies was to assess the ability of a colliding beam detector
tracking system composed of layers of silicon sensors of varying thickness to perform
particle identification via the measurement of mean energy loss. The significance of
separation between the kaon and pion energy loss distributions was chosen to be the
metric of the particle ID performance. The interest in separating a kaon from a pion via
energy loss measurements in solid state trackers arises from heavy flavor production in
colliding beam experiments, which has a strong tendency to produce kaons. To achieve
this goal, the energy-loss MC simulation program SimSIdE [5] was significantly modified
to match expectations for the mean and variance of the energy-loss distributions from
Refs. [1, 6].

Three tracker configurations were considered: two homogeneous trackers each
composed of 10 layers of either 20 um or 320 um silicon, and a heterogeneous tracker
composed of 5 layers of 20 pum silicon followed by 5 layers of 320 pwm silicon. The two
homogeneous trackers were considered as points of comparison for the heterogeneous
tracker, which represents the baseline configuration of the tracking system of two of
the three detector systems being designed for use at prospective new electron-positron
linear colliders.

The precise measurement of energy loss for multi-layered detectors such as
these requires the use of truncation to remove the highest loss layers, cropping off the
Landau tail of the energy loss distributions to significantly increase the ratio of mean of
the energy loss distribution to its variance. Independent of the thickness of the layers
and the momentum of the incident particles, optimal performance was achieved for
truncation of greater than 50% of the tracking layers, and as much as 80% of the layers,
which was somewhat unexpected.

The energy losses in the thin layers of the heterogeneous tracker were multiplied
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by a weighting factor before truncation so that the information from the thin layers
would make a significant contribution to the energy loss mean, and to ensure that
losses from the Landau tail would be truncated as readily as those from the thicker
layers. A range of weighting factors from 1 to 40 were examined. For lower incident
momentum (several hundred MeV /c or less), the optimal weight ratio (i.e., the weight
factor achieving the highest possible significance of separation) was found to be around
24:1, while for incident momenta approaching 1 GeV /c the optimal weight was found to
be somewhat higher, with a plateau in the performance for a range of weighting factors
between 28:1 and 40:1.

As expected, the optimized performance of the heterogeneous tracker lay some-
what between that of the 20 um and 320 pm homogeneous tracker, since it is composed
of equal amounts of each thickness of the two homogeneous trackers. The maximum ob-
served significance of separation for the heterogeneous tracker was found to be S = 9.91
for an incident momentum of 150 MeV; this performance was achieved with a weighting
factor of 24:1. The maximum range found for a significance of separation of S =1 was
936 MeV/c at a weight of 36:1 while the maximum range for S = 2 was 699 MeV /c, for
a weight of 28:1. K-m separation using energy loss measurements in silicon for incident
momenta approaching and exceeding 1 GeV /c seems very difficult.

Three items requiring further inquiry were identified during the study. For a
homogeneous tracker with 20 pm thick layers, a small plateau in the generally decreasing
mean energy loss was observed for kaons of an incident momentum of ~175 MeV /c.
In addition, the optimal weighting factor for the thinner layers of the heterogeneous
tracker is found to be significantly greater than the naive upper bound of 16:1 (the ratio
of thicknesses). Finally, the effects of Gaussian electronic noise seem significant in the
estimation of the S = 1,2 ranges. The cause of these observations remains unknown,

but would be interesting and perhaps revealing to understand.

40



A Obtaining and Using SimSIdE

and my Simulations

All source code can be found online at:

http://scipp.ucsc.edu/ schumm/dEdX/

These simulations were compiled via the GNU Compiler Collection.

Specifically g++ v4.4.7.
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