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Abstract. These notes provide a pedagogical introduction to the theory of non-
leptonic heavy-meson decays recently proposed by Beneke, Buchalla, Sachrajda and
myself. We provide a rigorous basis for factorization for a large class of non-leptonic
two-body B-meson decays in the heavy-quark limit. The resulting factorization for-
mula incorporates elements of the naive factorization approach and the hard-scattering
approach, and allows us to compute systematically radiative (“non-factorizable”) cor-
rections to naive factorization for decays such as B → Dπ and B → ππ.

1 Introduction

Non-leptonic two-body decays of B mesons, although simple as far as the un-
derlying weak decay of the b quark is concerned, are complicated on account of
strong-interaction effects. If these effects could be computed, this would enhance
tremendously our ability to uncover the origin of CP violation in weak interac-
tions from data on a variety of such decays being collected at the B factories.
In these lecture, I review recent progress towards a systematic analysis of weak
heavy-meson decays into two energetic mesons based on the factorization pro-
perties of decay amplitudes in QCD [1,2]. My discussion will follow very closely
the detailed account of this approach given in [2]. (We have worked so hard on
this paper that any attempt to improve on it were bound to fail and leave the
author in despair.) Much of the credit for these notes belongs to my collaborators
Martin Beneke, Gerhard Buchalla, and Chris Sachrajda.

As in the classic analysis of semi-leptonic B → D transitions [3,4], our argu-
ments make extensive use of the fact that the b quark is heavy compared to the
intrinsic scale of strong interactions. This allows us to deduce that non-leptonic
decay amplitudes in the heavy-quark limit have a simple structure. The argu-
ments to reach this conclusion, however, are quite different from those used for
semi-leptonic decays, since for non-leptonic decays a large momentum is trans-
ferred to at least one of the final-state mesons. The results of our work justify
naive factorization of four fermion operators for many, but not all, non-leptonic
decays and imply that corrections termed “non-factorizable”, which up to now
have been thought to be intractable, can be calculated rigorously if the mass of
the decaying quark is large enough. This leads to a large number of predictions
for CP-violating B decays in the heavy-quark limit, for which measurements will
soon become available.

Weak decays of heavy mesons involve three fundamental scales, the weak-
interaction scale MW , the b-quark mass mb, and the QCD scale ΛQCD, which
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are strongly ordered: MW � mb � ΛQCD. The underlying weak decay being
computable, all theoretical work concerns strong-interaction corrections. QCD
effects involving virtualities above the scale mb are well understood. They renor-
malize the coefficients of local operators Oi in the effective weak Hamiltonian
[5], so that the amplitude for the decay B →M1M2 is given by

A(B →M1M2) =
GF√

2

∑

i

λi Ci(µ) 〈M1M2|Oi(µ)|B〉 , (1)

where each term in the sum is the product of a Cabibbo–Kobayashi–Maskawa
(CKM) factor λi, a coefficient function Ci(µ), which incorporates strong-interac-
tion effects above the scale µ ∼ mb, and a matrix element of an operator Oi. The
difficult theoretical problem is to compute these matrix elements or, at least, to
reduce them to simpler non-perturbative objects.

A variety of treatments of this problem exist, which rely on assumptions of
some sort. Here we identify two somewhat contrary lines of approach. The first
one, which we shall call “naive factorization”, replaces the matrix element of
a four-fermion operator in a heavy-quark decay by the product of the matrix
elements of two currents [6,7], e.g.

〈D+π−|(c̄b)V−A(d̄u)V−A|B̄d〉 → 〈π−|(d̄u)V−A|0〉 〈D+|(c̄b)V−A|B̄d〉 . (2)

This assumes that the exchange of “non-factorizable” gluons between the π−

and the (B̄dD+) system can be neglected if the virtuality of the gluons is be-
low µ ∼ mb. The non-leptonic decay amplitude then reduces to the product
of a form factor and a decay constant. This assumption is in general not justi-
fied, except in the limit of a large number of colours in some cases. It deprives
the amplitude of any physical mechanism that could account for rescattering in
the final state. “Non-factorizable” radiative corrections must also exist, because
the scale dependence of the two sides of (2) is different. Since such corrections
at scales larger than µ are taken into account in deriving the effective weak
Hamiltonian, it appears rather arbitrary to leave them out below the scale µ.
Various generalizations of the naive factorization approach have been proposed,
which include new parameters that account for non-factorizable corrections. In
their most general form, these generalizations have nothing to do with the ori-
ginal “factorization” ansatz, but amount to a general parameterization of the
matrix elements. Such general parameterizations are exact, but at the price of
introducing many unknown parameters and eliminating any theoretical input on
strong-interaction dynamics.

The second method used to study non-leptonic decays is the hard-scatter-
ing approach, which assumes the dominance of hard gluon exchange. The decay
amplitude is then expressed as a convolution of a hard-scattering factor with
light-cone wave functions of the participating mesons, in analogy with more fa-
miliar applications of this method to hard exclusive reactions involving only
light hadrons [8,9]. In many cases, the hard-scattering contribution represents
the leading term in an expansion in powers of ΛQCD/Q, where Q denotes the
hard scale. However, the short-distance dominance of hard exclusive processes
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is not enforced kinematically and relies crucially on the properties of hadro-
nic wave functions. There is an important difference between light mesons and
heavy mesons in this regard, because the light quark in a heavy meson at rest
naturally has a small momentum of order ΛQCD, while for fast light mesons a
configuration with a soft quark is suppressed by the endpoint behaviour of the
meson wave function. As a consequence, the soft (or Feynman) mechanism is
power suppressed for hard exclusive processes involving light mesons, but it is
of leading power for heavy-meson decays.

It is clear from this discussion that a satisfactory treatment should take into
account soft contributions, but also allow us to compute corrections to naive
factorization in a systematic way. It is not at all obvious that such a treatment
would result in a predictive framework. We will show that this does indeed
happen for most non-leptonic two-body B decays. Our main conclusion is that
“non-factorizable” corrections are dominated by hard gluon exchange, while the
soft effects that survive in the heavy-quark limit are confined to the (BM1)
system, where M1 denotes the meson that picks up the spectator quark in the
B meson. This result is expressed as a factorization formula, which is valid
up to corrections suppressed by powers of ΛQCD/mb. At leading power, non-
perturbative contributions are parameterized by the physical form factors for
the B → M1 transition and leading-twist light-cone distribution amplitudes of
the mesons. Hard perturbative corrections can be computed systematically in
a way similar to the hard-scattering approach. On the other hand, because the
B → M1 transition is parameterized by a form factor, we recover the result of
naive factorization at lowest order in αs.

An important implication of the factorization formula is that strong rescat-
tering phases are either perturbative or power suppressed in ΛQCD/mb. It is
worth emphasizing that the decoupling of M2 occurs in the presence of soft
interactions in the (BM1) system. In other words, while strong-interaction ef-
fects in the B → M1 transition are not confined to small transverse distances,
the other meson M2 is predominantly produced as a compact object with small
transverse extension. The decoupling of soft effects then follows from “colour
transparency”. The colour-transparency argument for exclusive B decays has
already been noted in the literature [10,11], but it has never been developed into
a factorization formula that could be used to obtain quantitative predictions.

The approach described in [1,2] is general and applies to decays into a heavy
and a light meson (such as B → Dπ) as well as to decays into two light mesons
(such as B → ππ). Factorization does not hold, however, for decays such as
B → πD and B → DD̄, in which the meson that does not pick up the spectator
quark in the B meson is heavy. For the main part in these lectures, we will
focus on the case of B → D(∗)L decays (with L a light meson), for which
the factorization formula takes its simplest form, and power counting will be
relatively straightforward. Occasionally, we will point out what changes when
we consider more complicated decays such as B → ππ. A detailed treatment of
these processes can be found in [12].

The outline of these notes is as follows: In Sect. 2 we state the factorization
formula in its general form. In Sect. 3 we collect the physical arguments that lead
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to factorization and introduce our power-counting scheme. We show how light-
cone distribution amplitudes enter, discuss the heavy-quark scaling of theB → D
form factor, and explain the cancellation of soft and collinear contributions in
“non-factorizable” vertex corrections to non-leptonic decay amplitudes. We also
comment on the implications of our results for final-state interactions in hadro-
nic B decays. The cancellation of long-distance singularities is demonstrated in
more detail in Sect. 4, where we present the calculation of the hard-scattering
functions at one-loop order for decays into a heavy and a light meson. Various
sources of power-suppressed effects, which give corrections to the factorization
formula, are discussed in Sect. 5. They include hard-scattering contributions,
weak annihilation, and contributions from multi-particle Fock states. We then
point out some limitations of the factorization approach. In Sect. 7 we consider
the phenomenology of B → D(∗)L decays on the basis of the factorization for-
mula and discuss various tests of our theoretical framework. We also examine
to what extent a charm meson should be considered as heavy or light. Section 8
contains the conclusion.

2 Statement of the Factorization Formula

In this section we summarize the factorization formula for non-leptonic B de-
cays. We introduce relevant terminology and provide definitions of the hadronic
quantities that enter the factorization formula as input parameters.

2.1 The Idea of Factorization

In the context of non-leptonic decays the term “factorization” is usually applied
to the approximation of the matrix element of a four-fermion operator by the
product of a form factor and a decay constant, as illustrated in (2). Corrections
to this approximation are called “non-factorizable”. We will refer to this appro-
ximation as “naive factorization” and use quotes on “non-factorizable” to avoid
confusion with the (much less trivial) meaning of factorization in the context of
hard processes in QCD. In the latter case, factorization refers to the separation
of long-distance contributions to the process from a short-distance part that de-
pends only on the large scale mb. The short-distance part can be computed in an
expansion in the strong coupling αs(mb). The long-distance contributions must
be computed non-perturbatively or determined experimentally. The advantage
is that these non-perturbative parameters are often simpler in structure than the
original quantity, or they are process independent. For example, factorization ap-
plied to hard processes in inclusive hadron–hadron collisions requires only parton
distributions as non-perturbative inputs. Parton distributions are much simpler
objects than the original matrix element with two hadrons in the initial state.
On the other hand, factorization applied to the B → D form factor leads to a
non-perturbative object (the “Isgur–Wise function”), which is still a function of
the momentum transfer. However, the benefit here is that symmetries relate this
function to other form factors. In the case of non-leptonic B decays, the simpli-
fication is primarily of the first kind (simpler structure). We call those effects
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non-factorizable (without quotes) which depend on the long-distance properties
of the B meson and both final-state mesons combined.

The factorization properties of non-leptonic decay amplitudes depend on the
two-meson final state. We call a meson “light” if its mass m remains finite in the
heavy-quark limit. A meson is called “heavy” if its mass scales with mb in the
heavy-quark limit, such that m/mb stays fixed. In principle, we could still have
m� ΛQCD for a light meson. Charm mesons could be considered as light in this
sense. However, unless otherwise mentioned, we assume that m is of order ΛQCD
for a light meson, and we consider charm mesons as heavy. In evaluating the
scaling behaviour of the decay amplitudes, we assume that the energies of both
final-state mesons (in the B-meson rest frame) scale with mb in the heavy-quark
limit.

2.2 The Factorization Formula

We consider a generic weak decay B → M1M2 in the heavy-quark limit and
differentiate between decays into final states containing a heavy and a light
meson or two light mesons. Our goal is to show that, up to power corrections of
order ΛQCD/mb, the transition matrix element of an operator Oi in the effective
weak Hamiltonian can be written as

〈M1M2|Oi|B〉 =
∑

j

FB→M1
j (m2

2) fM2

∫ 1

0
duT Iij(u)ΦM2(u)

if M1 is heavy and M2 is light,

〈M1M2|Oi|B〉 =
∑

j

FB→M1
j (m2

2) fM2

∫ 1

0
duT Iij(u)ΦM2(u) + (M1 ↔M2)

+ fBfM1fM2

∫ 1

0
dξ du dv T IIi (ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2(u)

if M1 and M2 are both light. (3)

Here FB→M
j (m2) denotes a B →M form factor evaluated at q2 = m2, m1,2 are

the light meson masses, and ΦX(u) is the light-cone distribution amplitude for
the quark–antiquark Fock state of the meson X. These non-perturbative quanti-
ties will be defined below. T Iij(u) and T IIi (ξ, u, v) are hard-scattering functions,
which are perturbatively calculable. The factorization formula in its general form
is represented graphically in Fig. 1.

The second equation in (3) applies to decays into two light mesons, for which
the spectator quark in the B meson (in the following simply referred to as the
“spectator quark”) can go to either of the final-state mesons. An example is
the decay B− → π0K−. If the spectator quark can go only to one of the final-
state mesons, as for example in B̄d → π+K−, we call this meson M1, and the
second form-factor term on the right-hand side of (3) is absent. The formula
simplifies when the spectator quark goes to a heavy meson (first equation in
(3)), such as in B̄d → D+π−. Then the second term in Fig. 1, which accounts for
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Fig. 1. Graphical representation of the factorization formula. Only one of the two
form-factor terms in (3) is shown for simplicity.

hard interactions with the spectator quark, can be dropped because it is power
suppressed in the heavy-quark limit. In the opposite situation that the spectator
quark goes to a light meson but the other meson is heavy, factorization does not
hold, because the heavy meson is neither fast nor small and cannot be factorized
from the B →M1 transition. Finally, notice that annihilation topologies do not
appear in the factorization formula, since they do not contribute at leading order
in the heavy-quark expansion.

Any hard interaction costs a power of αs. As a consequence, the hard-
spectator term in the second formula in (3) is absent at order α0

s. Since at this
order the functions T Iij(u) are independent of u, the convolution integral results
in the normalization of the meson distribution amplitude, and (3) reproduces
naive factorization. The factorization formula allows us to compute radiative
corrections to this result to all orders in αs. Further corrections are suppressed
by powers of ΛQCD/mb in the heavy-quark limit.

The significance and usefulness of the factorization formula stems from the
fact that the non-perturbative quantities appearing on the right-hand side of
the two equations in (3) are much simpler than the original non-leptonic matrix
elements on the left-hand side. This is because they either reflect universal pro-
perties of a single meson (light-cone distribution amplitudes) or refer only to a
B → meson transition matrix element of a local current (form factors). While
it is extremely difficult, if not impossible [13], to compute the original matrix
element 〈M1M2|Oi|B〉 in lattice QCD, form factors and light-cone distribution
amplitudes are already being computed in this way, although with significant sy-
stematic errors at present. Alternatively, form factors can be obtained using data
on semi-leptonic decays, and light-cone distribution amplitudes by comparison
with other hard exclusive processes.

After having presented the most general form of the factorization formula,
we will from now on restrict ourselves to the case of heavy-light final states.
Then the (simpler) first formula in (3) applies, and only the first term shown in
Fig. 1 is present at leading power.
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2.3 Definition of Non-perturbative Parameters

The form factors FB→M
j (q2) in (3) arise in the decomposition of current matrix

elements of the form 〈M(p′)|q̄Γ b|B̄(p)〉, where Γ can be any irreducible Dirac
matrix that appears after contraction of the hard subgraph to a local vertex with
respect to the B → M transition. We will often refer to the matrix element of
the vector current evaluated between a B meson and a pseudoscalar meson P ,
which is conventionally parameterized as

〈P (p′)|q̄γµb|B̄(p)〉 = FB→P
+ (q2) (pµ + p′µ)

+
[
FB→P

0 (q2) − FB→P
+ (q2)

] m2
B −m2

P

q2
qµ , (4)

where q = p − p′, and FB→P
+ (0) = FB→P

0 (0) at zero momentum transfer. Note
that we write (3) in terms of physical form factors. In principle, Fig. 1 could be
looked upon in two different ways. We could suppose that the region represented
by Fj accounts only for the soft contributions to the B → M1 form factor. The
hard contributions to the form factor would then be considered as part of T Iij
(or as part of the second diagram). Performing this split-up would require that
one understands the factorization of hard and soft contributions to the form
factor. If M1 is heavy, this amounts to matching the form factor onto a form
factor defined in heavy-quark effective theory [14]. However, for a light meson
M1 the factorization of hard and soft contributions to the form factor is not
yet completely understood. We bypass this problem by interpreting Fj as the
physical form factor, including hard and soft contributions. This avoids the above
problem, and in addition has the advantage that the physical form factors are
directly related to measurable quantities.

Light-cone distribution amplitudes play the same role for hard exclusive pro-
cesses that parton distributions play for inclusive processes. As in the latter case,
the leading-twist distribution amplitudes, which are the ones we need at leading
power in the 1/mb expansion, are given by two-particle operators with a certain
helicity structure. The helicity structure is determined by the angular momen-
tum of the meson and the fact that the spinor of an energetic quark has only
two large components. The leading-twist light-cone distribution amplitudes for
pseudoscalar mesons (P ) and longitudinally polarized vector mesons (V‖) with
flavour content (q̄q′) are defined as

〈P (q)|q̄(y)αq′(x)β |0〉 =
ifP
4

(	qγ5)βα
∫ 1

0
du ei(ūqx+uqy) ΦP (u, µ) ,

〈V‖(q)|q̄(y)αq′(x)β |0〉 = − ifV
4

	qβα
∫ 1

0
du ei(ūqx+uqy) Φ‖(u, µ) , (5)

where (x − y)2 = 0. We have suppressed the path-ordered exponentials that
connect the two quark fields at different positions and make the light-cone ope-
rators gauge invariant. The equality sign is to be understood as “equal up to
higher-twist terms”. It is also understood that the operators on the left-hand
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side are colour singlets. When convenient, we use the “bar”-notation ū ≡ 1 − u.
The parameter µ is the renormalization scale of the light-cone operators on the
left-hand side. The distribution amplitudes are normalized as

∫ 1
0 duΦX(u, µ) = 1

with X = P, V‖. One defines the asymptotic distribution amplitude as the limit
in which the renormalization scale is sent to infinity. In this case

ΦX(u, µ)
µ→∞
= 6u(1 − u) . (6)

The use of light-cone distribution amplitudes in non-leptonic B decays requi-
res justification, which we will provide in Sects. 3 and 4. The decay amplitude
for a B decay into a heavy-light final state is then calculated by assigning mo-
menta uq and ūq to the quark and antiquark in the outgoing light meson (with
momentum q), writing down the on-shell amplitude in momentum space, and
performing the replacement

ūαa(uq)Γ (u, . . .)αβ,abvβb(ūq) → ifP
4Nc

∫ 1

0
duΦP (u) (	qγ5)βα Γ (u, . . .)αβ,aa (7)

for pseudoscalars and, with obvious modifications, for vector mesons. (Even when
working with light-cone distribution amplitudes it is not always justified to per-
form the collinear approximation on the external quark and antiquark lines right
away. One may have to keep the transverse components of the quark and an-
tiquark momenta until after some operations on the amplitude have been carried
out. However, these subtleties do not concern calculations at leading-twist or-
der.)

3 Arguments for Factorization

In this section we provide the basic power-counting arguments that lead to the
factorized structure shown in (3). We do so by analyzing qualitatively the hard,
soft and collinear contributions to the simplest Feynman diagrams.

3.1 Preliminaries and Power Counting

For concreteness, we label the charm meson which picks up the spectator quark
byM1 = D+ and assign momentum p′ to it. The light meson is labeledM2 = π−

and assigned momentum q = E n+, where E is the pion energy in the B rest
frame, and n± = (1, 0, 0,±1) are four-vectors on the light-cone. At leading power,
we neglect the mass of the light meson.

The simplest diagrams that we can draw for a non-leptonic decay amplitude
assign a quark and antiquark to each meson. We choose the quark and antiquark
momenta in the pion as

lq = uq + l⊥ +
l 2⊥

4uE
n− , lq̄ = ūq − l⊥ +

l 2⊥
4ūE

n− . (8)

Note that q 	= lq+lq̄, but the off-shellness (lq+lq̄)2 is of the same order as the light
meson mass, which we can neglect at leading power. A similar decomposition
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(with longitudinal momentum fraction v and transverse momentum l′⊥) is used
for the charm meson.

To prove the factorization formula (3) for the case of heavy-light final states,
one has to show that:

i) There is no leading (in powers of ΛQCD/mb) contribution to the amplitude
from the endpoint regions u ∼ ΛQCD/mb and ū ∼ ΛQCD/mb.

ii) One can set l⊥ = 0 in the amplitude (more generally, expand the amplitude
in powers of l⊥) after collinear subtractions, which can be absorbed into the
pion wave function. This, together with i), guarantees that the amplitude is
legitimately expressed in terms of the light-cone distribution amplitudes of
pion.

iii) The leading contribution comes from v̄ ∼ ΛQCD/mb (the region where the
spectator quark enters the charm meson as a soft parton), which guarantees
the absence of a hard spectator interaction term.

iv) After subtraction of infrared contributions corresponding to the light-cone
distribution amplitude and the form factor, the leading contributions to the
amplitude come only from internal lines with virtuality that scales with mb.

v) Non-valence Fock states are non-leading.

The requirement that after subtractions virtualities should be large is ob-
vious to guarantee the infrared finiteness of the hard-scattering functions T Iij .
Let us comment on setting transverse momenta in the wave functions to zero
and on endpoint contributions. Neglecting transverse momenta requires that we
count them as order ΛQCD when comparing terms of different magnitude in the
scattering amplitude. This conforms to our intuition and the assumption of the
parton model, that intrinsic transverse momenta are limited to hadronic scales.
However, in QCD transverse momenta are not limited, but logarithmically dis-
tributed up to the hard scale. The important point is that contributions that
violate the starting assumption of limited transverse momentum can be absor-
bed into the universal light-cone distribution amplitudes. The statement that
transverse momenta can be counted of order ΛQCD is to be understood after
these subtractions have been performed.

The second comment concerns endpoint contributions in the convolution inte-
grals over longitudinal momentum fractions. These contributions are dangerous,
because we may be able to demonstrate the infrared safety of the hard-scattering
amplitude under assumption of generic u and independent of the shape of the
meson distribution amplitude, but for u → 0 or u → 1 a propagator that was
assumed to be off-shell approaches the mass-shell. If such a contribution were
of leading power, we would not expect the perturbative calculation of the hard-
scattering functions to be reliable.

Estimating endpoint contributions requires knowledge of the endpoint beha-
viour of the light-cone distribution amplitude. Since it enters the factorization
formula at a renormalization scale of order mb, we can use the asymptotic form
(6) to estimate the endpoint contribution. (More generally, we only have to as-
sume that the distribution amplitude at a given scale has the same endpoint
behaviour as the asymptotic amplitude. This is generally the case, unless there
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is a conspiracy of terms in the Gegenbauer expansion of the distribution am-
plitude. If such a conspiracy existed at some scale, it would be destroyed by
evolving the distribution amplitude to a different scale.) We count a light-meson
distribution amplitude as order ΛQCD/mb in the endpoint region (defined as the
region the quark or antiquark momentum is of order ΛQCD), and order 1 away
from the endpoint, i.e. (for X = P, V‖)

ΦX(u) ∼
{

1 ; generic u,
ΛQCD/mb ; u, ū ∼ ΛQCD/mb.

(9)

Note that the endpoint region has a size of order ΛQCD/mb, so that the end-
point suppression is ∼ (ΛQCD/mb)2. This suppression has to be weighted against
potential enhancements of the partonic amplitude when one of the propagators
approaches the mass shell. The counting for B mesons, or heavy mesons in ge-
neral, is different. Naturally, the heavy quark carries almost all of the meson
momentum, and hence we count

ΦB(ξ) ∼
{
mb/ΛQCD ; ξ ∼ ΛQCD/mb,

0 ; ξ ∼ 1.
(10)

The zero probability for a light spectator with momentum of order mb must be
understood as a boundary condition for the wave function renormalized at a scale
much below mb. There is a small probability for hard fluctuations that transfer
large momentum to the spectator. This “hard tail” is generated by evolution of
the wave function from a hadronic scale to a scale of order mb. If we assume
that the initial distribution at the hadronic scale falls sufficiently rapidly for
ξ � ΛQCD/mb, this remains true after evolution. We shall assume a sufficiently
fast fall-off, so that, for the purposes of power counting, the probability that
the spectator-quark momentum is of order mb can be set to zero. The same
counting applies to the D meson. (Despite the fact that the charm meson has
momentum of order mb, we do not need to distinguish the rest frames of B and
D for the purpose of power counting, because the two frames are not connected
by a parametrically large boost. In other words, the components of the spectator
quark in the D meson are still of order ΛQCD.)

3.2 The B → D Form Factor

We now demonstrate that the B → D form factor receives a leading contribution
from soft gluon exchange. This implies that a non-leptonic decay cannot be
treated completely in the hard-scattering picture, and so the form factor should
enter the factorization formula as a non-perturbative quantity.

Consider the diagrams shown in Fig. 2. When the exchanged gluon is hard
the spectator quark in the final state has momentum of order mb. But according
to the counting rule (10) this configuration has no overlap with the D-meson
wave function. On the other hand, there is no suppression for soft gluons in
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�a� �b�

Fig. 2. Leading contributions to the B → D form factor in the hard-scattering ap-
proach. The dashed line represents the weak current. The two lines to the left belong
to the B meson, the ones to the right to the recoiling charm meson.

Fig. 2. It follows that the dominant behaviour of the B → D form factor in the
heavy-quark limit is given by soft processes.

Because of this argument, we can exploit the heavy-quark symmetries to
determine how the form factor scales in the heavy-quark limit. The well-known
result is that the form factor scales like a constant (modulo logarithms), since
it is equal to one at zero velocity transfer and independent of mb as long as the
Lorentz boost that connects the B and D rest frames is of order 1. The same
conclusion follows from the power-counting rules for light-cone wave functions.
To see this, we represent the form factor by an overlap integral of wave functions
(not integrated over transverse momentum),

FB→D
+,0 (0) ∼

∫
dξd2k⊥
16π3 ΨB(ξ, k⊥)ΨD(ξ′(ξ), k⊥) , (11)

where ξ′(ξ) is fixed by kinematics, and we have set q2 = 0 for simplicity. The
probability of finding the B meson in its valence Fock state is of order 1 in the
heavy-quark limit, i.e.

∫
dξd2k⊥
16π3 |ΨB,D(ξ, k⊥)|2 ∼ 1 . (12)

Counting k⊥ ∼ ΛQCD and dξ ∼ ΛQCD/mb, we deduce that ΨB ∼ m
1/2
b /Λ

3/2
QCD.

From (11), we then obtain the scaling law FB→D
+,0 (0) ∼ 1, in agreement with the

prediction of heavy-quark symmetry.
The representation (11) of the form factor as an overlap of wave functions for

the two-particle Fock state of the heavy meson is not rigorous, because there is no
reason to assume that the contribution from higher Fock states with additional
soft gluons is suppressed. The consistency with the estimate based on heavy-
quark symmetry shows that these additional contributions are not larger than
the two-particle contribution.

3.3 Non-leptonic Decay Amplitudes

We now turn to a qualitative discussion of the lowest-order and one-gluon ex-
change diagrams that could contribute to the hard-scattering kernels T Iij(u) in
(3). In the figures below, the two lines directed upwards represent π−, the lines
on the left represent B̄d, and the lines on the right represent D+.
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Fig. 3. Leading-order contribution to the hard-scattering kernels T Iij(u). The weak
decay of the b quark through a four-fermion operator is represented by the black square.

Lowest-Order Diagram

There is a single diagram with no hard gluon interactions shown in Fig. 3. Ac-
cording to (10) the spectator quark is soft, and since it does not undergo a hard
interaction it is absorbed as a soft quark by the recoiling meson. This is evidently
a contribution to the left-hand diagram of Fig. 1, involving the B → D form fac-
tor. The hard subprocess in Fig. 3 is just given by the insertion of a four-fermion
operator, and hence it does not depend on the longitudinal momentum fraction
u of the two quarks that form the emitted π−. Consequently, the lowest-order
contribution to T Iij(u) in (3) is independent of u, and the u-integral reduces to
the normalization condition for the pion distribution amplitude. The result is,
not surprisingly, that the factorization formula reproduces the result of naive
factorization if we neglect gluon exchange. Note that the physical picture un-
derlying this lowest-order process is that the spectator quark (which is part of
the B → D form factor) is soft. If this is the case, the hard-scattering approach
misses the leading contribution to the non-leptonic decay amplitude.

Putting together all factors relevant to power counting, we find that in the
heavy-quark limit the decay amplitude for a decay into a heavy-light final state
(in which the spectator quark is absorbed by the heavy meson) scales as

A(B̄d → D+π−) ∼ GFm2
b F

B→D(0) fπ ∼ GFm2
b ΛQCD . (13)

Other contributions must be compared with this scaling rule.

Factorizable Diagrams

In order to justify naive factorization as the leading term in an expansion in αs
and ΛQCD/mb, we must show that radiative corrections are either suppressed
in one of these two parameters, or already contained in the definition of the
form factor and the pion decay constant. Consider the graphs shown in Fig. 4.
The first three diagrams are part of the form factor and do not contribute to
the hard-scattering kernels. Since the first and third diagrams contain leading
contributions from the region in which the gluon is soft, they should not be
considered as corrections to Fig. 3. However, this is of no consequence since
these soft contributions are absorbed into the physical form factor.

The fourth diagram in Fig. 4 is also factorizable. In general, this graph would
split into a hard contribution and a contribution to the evolution of the pion
distribution amplitude. However, as the leading-order diagram in Fig. 3 involves
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Fig. 4. Diagrams at order αs that need not be calculated.

only the normalization integral of the pion distribution amplitude, the sum of
the fourth diagram in Fig. 4 and the wave-function renormalization of the quarks
in the emitted pion vanishes. In other words, these diagrams would renormalize
the (ūd) light-quark current, which however is conserved.

“Non-factorizable” Vertex Corrections

We now begin the analysis of “non-factorizable” diagrams, i.e. diagrams contai-
ning gluon exchanges that cannot be associated with the B → D form factor
or the pion decay constant. At order αs, these diagrams can be divided into
three groups: vertex corrections, hard spectator interactions, and annihilation
diagrams.

The vertex corrections shown in Fig. 5 violate the naive factorization an-
satz (2). One of the key observations made in [1,2] is that these diagrams are
calculable nonetheless. Let us summarize the argument here, postponing the ex-
plicit evaluation of these diagrams to Sect. 4. The statement is that the vertex-
correction diagrams form an order-αs contribution to the hard-scattering kernels
T Iij(u). To demonstrate this, we have to show that: i) The transverse momentum
of the quarks that form the pion can be neglected at leading power, i.e. the two
momenta in (8) can be approximated by uq and ūq, respectively. This guaran-
tees that only a convolution in the longitudinal momentum fraction u appears
in the factorization formula. ii) The contribution from the soft-gluon region and
gluons collinear to the direction of the pion is power suppressed. In practice, this
means that the sum of these diagrams cannot contain any infrared divergences
at leading power in ΛQCD/mb.

Neither of the two conditions holds true for any of the four diagrams indi-
vidually, as each of them separately contains collinear and infrared divergen-
ces. As will be shown in detail later, the infrared divergences cancel when one
sums over the gluon attachments to the two quarks comprising the emission
pion ((a+b), (c+d) in Fig. 5). This cancellation is a technical manifestation of
Bjorken’s colour-transparency argument [10], stating that soft gluon interactions
with the emitted colour-singlet (ūd) pair are suppressed because they interact
with the colour dipole moment of the compact light-quark pair. Collinear diver-
gences cancel after summing over gluon attachments to the b and c quark lines
((a+c), (b+d) in Fig. 5). Thus the sum of the four diagrams (a–d) involves only
hard gluon exchange at leading power. Because the hard gluons transfer large
momentum to the quarks that form the emission pion, the hard-scattering factor
now results in a non-trivial convolution with the pion distribution amplitude.
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(a) (b) (c) (d)
Fig. 5. “Non-factorizable” vertex corrections.

“Non-factorizable” contributions are therefore non-universal, i.e. they depend on
the quantum numbers of the final-state mesons.

Note that the colour-transparency argument, and hence the cancellation of
soft gluon effects, applies only if the (ūd) pair is compact. This is not the case
if the emitted pion is formed in a very asymmetric configuration, in which one
of the quarks carries almost all of the pion momentum. Since the probability
for forming a pion in such an endpoint configuration is of order (ΛQCD/mb)2,
they could become important only if the hard-scattering amplitude favoured the
production of these asymmetric pairs, i.e. if T Iij ∼ 1/u2 for u → 0 (or T Iij ∼ 1/ū2

for u → 1). However, we will see that such strong endpoint singularities in the
hard-scattering amplitude do not occur.

To complete the argument, we have to show that all other types of con-
tributions to the non-leptonic decay amplitudes are power suppressed in the
heavy-quark limit. This includes interactions with the spectator quark, weak
annihilation graphs, and contributions from higher Fock components of the me-
son wave functions. This will be done in Sect. 5. In summary, then, for hadronic
B decays into a light emitted and a heavy recoiling meson the first factorization
formula in (3) holds. At order αs, the hard-scattering kernels T Iij(u) are compu-
ted from the diagrams shown in Figs. 3 and 5. Naive factorization follows when
one neglects all corrections of order ΛQCD/mb and αs. The factorization formula
allows us to compute systematically corrections to higher order in αs, but still
neglects power corrections.

3.4 Remarks on Final-State Interactions

Some of the loop diagrams entering the calculation of the hard-scattering kernels
have imaginary parts, which contribute to the strong rescattering phases. It fol-
lows from our discussion that these imaginary parts are of order αs or ΛQCD/mb.
This demonstrates that strong phases vanish in the heavy-quark limit (unless
the real parts of the amplitudes are also suppressed). Since this statement goes
against the folklore that prevails from the present understanding of this issue,
and since the subject of final-state interactions (and of strong-interaction phases
in particular) is of paramount importance for the interpretation of CP-violating
observables, a few additional remarks are in order.

Final-state interactions are usually discussed in terms of intermediate ha-
dronic states. This is suggested by the unitarity relation (taking B → ππ for
definiteness)



Theory of Exclusive Hadronic B Decays 17

Im AB→ππ ∼
∑

n

AB→n A∗
n→ππ , (14)

where n runs over all hadronic intermediate states. We can also interpret the
sum in (14) as extending over intermediate states of partons. The partonic inter-
pretation is justified by the dominance of hard rescattering in the heavy-quark
limit. In this limit, the number of physical intermediate states is arbitrarily large.
We may then argue on the grounds of parton–hadron duality that their average
is described well enough (up to ΛQCD/mb corrections, say) by a partonic calcu-
lation. This is the picture implied by (3). The hadronic language is in principle
exact. However, the large number of intermediate states makes it intractable to
observe systematic cancellations, which usually occur in an inclusive sum over
hadronic intermediate states.

A particular contribution to the right-hand side of (14) is elastic rescattering
(n = ππ). The energy dependence of the total elastic ππ-scattering cross section
is governed by soft pomeron behaviour. Hence the strong-interaction phase of
the B → ππ amplitude due to elastic rescattering alone increases slowly in the
heavy-quark limit [15]. On general grounds, it is rather improbable that elastic
rescattering gives an appropriate representation of the imaginary part of the
decay amplitude in the heavy-quark limit. This expectation is also borne out
in the framework of Regge behaviour, as discussed in [15], where the impor-
tance (in fact, dominance) of inelastic rescattering was emphasized. However,
this discussion left open the possibility of soft rescattering phases that do not
vanish in the heavy-quark limit, as well as the possibility of systematic cancella-
tions, for which the Regge approach does not provide an appropriate theoretical
framework.

Equation (3) implies that such systematic cancellations do occur in the sum
over all intermediate states n. It is worth recalling that similar cancellations are
not uncommon for hard processes. Consider the example of e+e− → hadrons at
large energy q. While the production of any hadronic final state occurs on a time
scale of order 1/ΛQCD (and would lead to infrared divergences if we attempted
to describe it using perturbation theory), the inclusive cross section given by
the sum over all hadronic final states is described very well by a (qq̄) pair that
lives over a short time scale of order 1/q. In close analogy, while each particular
hadronic intermediate state n in (14) cannot be described partonically, the sum
over all intermediate states is accurately represented by a (qq̄) fluctuation of
small transverse size of order 1/mb. Because the (qq̄) pair is small, the physical
picture of rescattering is very different from elastic ππ scattering.

In perturbation theory, the pomeron is associated with two-gluon exchange.
The analysis of two-loop contributions to the non-leptonic decay amplitude in
[2] shows that the soft and collinear cancellations that guarantee the partonic
interpretation of rescattering extend to two-gluon exchange. Hence, the soft final-
state interactions are again subleading as required by the validity of (3). As
far as the hard rescattering contributions are concerned, two-gluon exchange
plus ladder graphs between a compact (qq̄) pair with energy of order mb and
transverse size of order 1/mb and the other pion does not lead to large logarithms,
and hence there is no possibility to construct the (hard) pomeron. Note the



18 Matthias Neubert

difference with elastic vector-meson production through a virtual photon, which
also involves a compact (qq̄) pair. However, in this case one considers s � Q2,
where

√
s is the photon–proton center-of-mass energy and Q the virtuality of

the photon. This implies that the (qq̄) fluctuation is born long before it hits
the proton. It is this difference of time scales, non-existent in non-leptonic B
decays, that permits pomeron exchange in elastic vector-meson production in
γ∗p collisions.

4 B → Dπ: Factorization at One-Loop Order

We now present a more detailed treatment of the exclusive decays B̄d → D(∗)+L−,
where L is a light meson. We illustrate explicitly how factorization emerges at
one-loop order and compute the hard-scattering kernels T Iij(u) in the factoriza-
tion formula (3). For each final state f , we express the decay amplitudes in
terms of parameters a1(f) defined in analogy with similar parameters used in
the literature on naive factorization.

4.1 Effective Hamiltonian and Decay Topologies

The effective Hamiltonian for B → Dπ is

Heff =
GF√

2
V ∗
udVcb (C0O0 + C8O8) . (15)

We choose to write the two independent four-quark operators in the singlet–octet
basis

O0 = c̄γµ(1 − γ5)b d̄γµ(1 − γ5)u ,
O8 = c̄γµ(1 − γ5)TAb d̄γµ(1 − γ5)TAu , (16)

rather than in the more conventional basis of O1 and O2. The Wilson coefficients
C0 and C8 describe the exchange of hard gluons with virtualities between the
high-energy matching scale MW and a renormalization scale µ of order mb.
(These coefficients are related to the ones of the standard basis by C0 = C1+C2/3
and C8 = 2C2.) They are known at next-to-leading order in renormalization-
group improved perturbation theory and are given by [5]

C0 =
Nc + 1
2Nc

C+ +
Nc − 1
2Nc

C− , C8 = C+ − C− , (17)

where

C±(µ) =
(

1 +
αs(µ)

4π
B±

)
C̄±(µ) , B± = ±Nc ∓ 1

2Nc
B , (18)

and

C̄±(µ) =
[
αs(MW )
αs(µ)

]d± [
1 +

αs(MW ) − αs(µ)
4π

S±

]
. (19)
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Fig. 6. Basic quark-level topologies for B → Dπ decays (q = u, d): (a) class-I, (b)
class-II, (c) weak annihilation. B̄d → D+π− receives contributions from (a) and (c),
B̄d → D0π0 from (b) and (c), and B− → D0π− from (a) and (b). Only (a) contributes
in the heavy-quark limit.

For Nc = 3 and f = 5, we have d+ = 6
25 and d− = − 12

25 , as well as S+ = 6473
3174

and S− = − 9371
1587 . The scheme dependence of the Wilson coefficients at next-to-

leading order is parameterized by the coefficient B in (18). We note that BNDR =
11 in the naive dimensional regularization (NDR) scheme with anticommuting
γ5, and BHV = 7 in the ‘t Hooft–Veltman (HV) scheme. We will demonstrate
below that the scale and scheme dependence of the Wilson coefficients is canceled
by a corresponding scale and scheme dependence of the hadronic matrix elements
of the operators O0 and O8.

Before continuing with a discussion of these matrix elements, it is useful to
consider the flavour structure for the various contributions to B → Dπ decays.
The possible quark-level topologies are depicted in Fig. 6. In the terminology
generally adopted for two-body non-leptonic decays, the decays B̄d → D+π−,
B̄d → D0π0 and B− → D0π− are referred to as class-I, class-II and class-III,
respectively [16]. In B̄d → D+π− and B− → D0π− decays the pion can be
directly created from the weak current. We call this a class-I contribution, fol-
lowing the above terminology. In addition, in the case of B̄d → D+π− there
is a contribution from weak annihilation, and a class-II amplitude contributes
to B− → D0π−. The important point is that the spectator quark goes into the
light meson in the case of the class-II amplitude. This amplitude is suppressed in
the heavy-quark limit, as is the annihilation amplitude. It follows that the am-
plitude for B̄d → D0π0, receiving only class-II and annihilation contributions, is
subleading compared with B̄d → D+π− and B− → D0π−, which are dominated
by the class-I topology.

We shall use the one-loop analysis for B̄d → D+π− as a concrete example
to illustrate explicitly the various steps involved in establishing the factorization
formula. Most of the arguments given below are standard from the theory of
hard exclusive processes involving light hadrons [8]. However, it is instructive to
repeat these arguments in the context of B decays.

4.2 Soft and Collinear Cancellations at One-Loop Order

In order to demonstrate the property of factorization for the decay B̄d → D+π−,
we now analyze the “non-factorizable” one-gluon exchange contributions shown
in Fig. 5 in some detail. We consider the leading, valence Fock state of the
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emitted pion. This is justified since higher Fock components only give power-
suppressed contributions to the decay amplitude in the heavy-quark limit (as
demonstrated later). For the purpose of our discussion, the valence Fock state
of the pion can be written as

|π(q)〉 =
∫

du√
uū

d2l⊥
16π3

1√
2Nc

(
a†

↑(lq) b
†
↓(lq̄) − a†

↓(lq) b
†
↑(lq̄)

)
|0〉Ψ(u, l⊥) , (20)

where a†
s (b†s) denotes the creation operator for a quark (antiquark) in a state

with spin s =↑ or s =↓, and we have suppressed colour indices. The wave function
Ψ(u, l⊥) is defined as the amplitude for the pion to be composed of two on-shell
quarks, characterized by longitudinal momentum fraction u and transverse mo-
mentum l⊥. The on-shell momenta of the quark and antiquark are chosen as
in (8). For the purpose of power counting, l⊥ ∼ ΛQCD  E ∼ mb. Note that
the invariant mass of the valence state is (lq + lq̄)2 = l 2⊥/(uū), which is of order
Λ2

QCD and hence negligible in the heavy-quark limit unless u is in the vicinity of
the endpoints u = 0 or 1. In this case, the invariant mass of the quark–antiquark
pair becomes large, and the valence Fock state is no longer a valid representation
of the pion. However, in the heavy-quark limit the dominant contributions to
the decay amplitude come from configurations where both partons are hard (u
and ū both of order 1), and so the two-particle Fock state yields a consistent de-
scription. We will provide an explicit consistency check of this important feature
later on.

As a next step, we write down the amplitude

〈π(q)|u(0)αd̄(y)β |0〉 =
∫
du
d2l⊥
16π3

1√
2Nc

Ψ∗(u, l⊥) (γ5 	q)αβ eilq·y , (21)

which appears as an ingredient of the B → Dπ matrix element. It is now straight-
forward to obtain the one-gluon exchange contribution to the B → Dπ matrix
element of the operator O8. For the sum of the four diagrams in Fig. 5, we find

〈D+π−|O8|B̄d〉1-gluon = (22)

ig2s
CF
2

∫
d4k

(2π)4
〈D+|c̄A1(k)b|B̄d〉

1
k2

∫ 1

0
du
d2l⊥
16π3

Ψ∗(u, l⊥)√
2Nc

tr[γ5 	qA2(lq, lq̄, k)] ,

where

A1(k) =
γλ(	pc− 	k +mc)Γ

2pc · k − k2 − Γ (	pb+ 	k +mb)γλ

2pb · k + k2 ,

A2(lq, lq̄, k) =
Γ (	 lq̄+ 	k)γλ
2lq̄ · k + k2 − γλ(	 lq+ 	k)Γ

2lq · k + k2 . (23)

Here Γ = γµ(1 − γ5), and pb, pc are the momenta of the b- and c-quark, respec-
tively. There is no correction to the matrix element of O0 at order αs, because in
this case the (dū) pair is necessarily in a colour-octet configuration and cannot
form a pion.
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In (22) the pion wave function Ψ(u, l⊥) appears separated from the B → D
transition. This is merely a reflection of the fact that we have represented the
pion state in the form shown in (20). It does not, by itself, imply factorization,
since the right-hand side of (22) still involves non-trivial integrations over l⊥ and
the gluon momentum k, and long- and short-distance contributions are not yet
disentangled. In order to prove factorization, we need to show that the integral
over k receives only subdominant contributions from the region of small k2.
This is equivalent to showing that the integral over k does not contain infrared
divergences at leading power in ΛQCD/mb.

To demonstrate infrared finiteness of the one-loop integral

J ≡
∫
d4k

1
k2 A1(k) ⊗A2(lq, lq̄, k) (24)

at leading power, the heavy-quark limit and the corresponding large light-cone
momentum of the pion are again essential. First note that when k is of order
mb, J ∼ 1 by dimensional analysis. Potential infrared divergences could arise
when k is soft or collinear to the pion momentum q. We need to show that the
contributions from these regions are power suppressed. (Note that we do not
need to show that J is infrared finite. It is enough that logarithmic divergences
have coefficients that are power suppressed.)

We treat the soft region first. Here all components of k become small simul-
taneously, which we describe by scaling k ∼ λ. Counting powers of λ (d4k ∼ λ4,
1/k2 ∼ λ−2, 1/p · k ∼ λ−1) reveals that each of the four diagrams in Fig. 5, cor-
responding to the four terms in the product in (24), is logarithmically divergent.
However, because k is small the integrand can be simplified. For instance, the
second term in A2 can be approximated as

γλ(	 lq+ 	k)Γ
2lq · k + k2 =

γλ(u 	q+ 	 l⊥ + l2⊥
4uE 	n−+ 	k)Γ

2uq · k + 2l⊥ · k + l2⊥
2uEn− · k + k2

� qλ
q · k Γ , (25)

where we used that 	 q to the extreme left or right of an expression gives zero
due to the on-shell condition for the external quark lines. We get exactly the
same expression but with an opposite sign from the other term in A2, and hence
the soft divergence cancels out. More precisely, we find that the integral is in-
frared finite in the soft region when l⊥ is neglected. When l⊥ is not neglected,
there is a divergence from soft k which is proportional to l2⊥/m

2
b ∼ Λ2

QCD/m
2
b .

In either case, the soft contribution to J is of order ΛQCD/mb or smaller and
hence suppressed relative to the hard contribution. This corresponds to the stan-
dard soft cancellation mechanism, which is a technical manifestation of colour
transparency.

Each of the four terms in (24) is also divergent when k becomes collinear
with the light-cone momentum q. This implies the scaling k+ ∼ λ0, k⊥ ∼ λ,
and k− ∼ λ2. Then d4k ∼ dk+dk−d2k⊥ ∼ λ4, and q · k = q+k− ∼ λ2, k2 =
2k+k− + k2

⊥ ∼ λ2. The divergence is again logarithmic, and it is thus sufficient
to consider the leading behaviour in the collinear limit. Writing k = αq+ . . . we
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can now simplify the second term of A2 as

γλ(	 lq+ 	k)Γ
2lq · k + k2 � qλ

2(u+ α)Γ
2lq · k + k2 . (26)

No simplification occurs in the denominator (in particular, l⊥ cannot be neglec-
ted), but the important point is that the leading contribution is proportional to
qλ. Therefore, substituting k = αq into A1 and using q2 = 0, we obtain

qλA1 � 	q(	pc +mc)Γ
2αpc · q − Γ (	pb +mb) 	q

2αpb · q = 0 , (27)

employing the equations of motion for the heavy quarks. Hence the collinear
divergence cancels by virtue of the standard Ward identity.

This completes the proof of the absence of infrared divergences at leading
power in the hard-scattering kernel for B̄d → D+π− to one-loop order. Simi-
lar cancellations are observed at higher orders. A complete proof of factoriza-
tion at two-loop order can be found in [2]. Having established that the “non-
factorizable” diagrams of Fig. 5 are dominated by hard gluon exchange (i.e. that
the leading contribution to J arises from k of ordermb), we may now use the fact
that |l⊥|  E to expand A2 in powers of |l⊥|/E. To leading order the expansion
simply reduces to neglecting l⊥ altogether, which implies lq = uq and lq̄ = ūq in
(8). As a consequence, we may perform the l⊥ integration in (22) over the pion
distribution amplitude. Defining

∫
d2l⊥
16π3

Ψ∗(u, l⊥)√
2Nc

≡ ifπ
4Nc

Φπ(u) , (28)

the matrix element of O8 in (22) becomes

〈D+π−|O8|B̄d〉1-gluon = (29)

−g2s
CF
8Nc

∫
d4k

(2π)4
〈D+|c̄A1(k)b|B̄d〉

1
k2 fπ

∫ 1

0
duΦπ(u) tr[γ5 	qA2(uq, ūq, k)] .

On the other hand, putting y on the light-cone in (21) and comparing with (5),
we see that the l⊥-integrated wave function Φπ(u) in (28) is precisely the light-
cone distribution amplitude of the pion. This demonstrates the relevance of the
light-cone wave function to the factorization formula. Note that the collinear
approximation for the quark and antiquark momenta emerges automatically in
the heavy-quark limit.

After the k integral is performed, the expression (29) can be cast into the
form

〈D+π−|O8|B̄d〉1-gluon ∼ FB→D(0)
∫ 1

0
duT8(u, z)Φπ(u) , (30)

where z = mc/mb, T8(u, z) is the hard-scattering kernel, and FB→D(0) the form
factor that parameterizes the 〈D+|c̄[. . .]b|B̄d〉 matrix element. Because of the
absence of soft and collinear infrared divergences in the gluon exchange between
the (c̄b) and (d̄u) currents, the hard-scattering kernel T8 is calculable in QCD
perturbation theory.



Theory of Exclusive Hadronic B Decays 23

4.3 Matrix Elements at Next-to-Leading Order

We now compute these hard-scattering kernels explicitly to order αs. The effec-
tive Hamiltonian (15) can be written as

Heff =
GF√

2
V ∗
udVcb

{[
Nc + 1
2Nc

C̄+(µ) +
Nc − 1
2Nc

C̄−(µ) +
αs(µ)

4π
CF
2Nc

BC8(µ)
]
O0

+ C8(µ)O8

}
, (31)

where the scheme-dependent term in the coefficient of the operator O0 has been
written explicitly. Because the light-quark pair has to be in a colour singlet to
produce the pion in the leading Fock state, only O0 gives a contribution to zeroth
order in αs. Similarly, to first order in αs only O8 can contribute. The result of
evaluating the diagrams in Fig. 5 with an insertion of O8 can be presented in a
form that holds simultaneously for a heavy meson H = D,D∗ and a light meson
L = π, ρ, using only that the (ūd) pair is a colour singlet and that the external
quarks can be taken on-shell. We obtain (z = mc/mb)

〈H(p′)L(q)|O8|B̄d(p)〉 =
αs
4π
CF
2Nc

ifL

∫ 1

0
duΦL(u) (32)

×
[
−
(

6 ln
µ2

m2
b

+B
)

(〈JV 〉 − 〈JA〉) + F (u, z) 〈JV 〉 − F (u,−z) 〈JA〉
]
,

where

〈JV 〉 = 〈H(p′)|c̄ 	q b|B̄d(p)〉, 〈JA〉 = 〈H(p′)|c̄ 	qγ5b |B̄d(p)〉 . (33)

It is worth noting that even after computing the one-loop correction the (ūd) pair
retains its V −A structure. This, together with (5), implies that the form of (32)
is identical for pions and longitudinally polarized ρ mesons. (The production of
transversely polarized ρ mesons is power suppressed in ΛQCD/mb.) The function
F (u, z) appearing in (32) is given by

F (u, z) =
(
3 + 2 ln

u

ū

)
ln z2 − 7 + f(u, z) + f(ū, 1/z) , (34)

where

f(u, z) = −u(1 − z2)[3(1 − u(1 − z2)) + z]
[1 − u(1 − z2)]2 ln[u(1 − z2)] − z

1 − u(1 − z2)

+ 2
[

ln[u(1 − z2)]
1 − u(1 − z2) − ln2[u(1 − z2)] − Li2[1 − u(1 − z2)] − {u → ū}

]
, (35)

and Li2(x) is the dilogarithm. The contribution of f(u, z) in (34) comes from
the first two diagrams in Fig. 5 with the gluon coupling to the b quark, whereas
f(ū, 1/z) arises from the last two diagrams with the gluon coupling to the charm
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quark. Note that the terms in the large square brackets in the definition of the
function f(u, z) vanish for a symmetric light-cone distribution amplitude. These
terms can be dropped if the light final-state meson is a pion or a ρ meson, but
they are relevant, e.g., for the discussion of Cabibbo-suppressed decays such as
B̄d → D(∗)+K− and B̄d → D(∗)+K∗−.

The discontinuity of the amplitude, which is responsible for the occurrence
of the strong rescattering phase, arises from f(ū, 1/z) and can be obtained by
recalling that z2 is z2 − iε with ε > 0 infinitesimal. We find

1
π

ImF (u, z) = − (1 − u)(1 − z2)[3(1 − u(1 − z2)) + z]
[1 − u(1 − z2)]2

− 2
[
ln[1 − u(1 − z2)] + 2 lnu+

z2

1 − u(1 − z2) − {u → ū}
]
. (36)

As mentioned above, (32) is applicable to all decays of the type B̄d →
D(∗)+L−, where L is a light hadron such as a pion or a (longitudinally pola-
rized) ρ meson. Only the operator JV contributes to B̄d → D+L−, and only JA
contributes to B̄d → D∗+L−. Our result can therefore be written as

〈D+L−|O0,8|B̄d〉 = 〈D+|c̄γµ(1 − γ5)b|B̄d〉 · ifLqµ
∫ 1

0
duT0,8(u, z)ΦL(u) , (37)

where L = π, ρ, and the hard-scattering kernels are

T0(u, z) = 1 +O(α2
s) ,

T8(u, z) =
αs
4π

CF
2Nc

[
−6 ln

µ2

m2
b

−B + F (u, z)
]

+O(α2
s) . (38)

When the D meson is replaced by a D∗ meson, the result is identical except that
F (u, z) must be replaced with F (u,−z). Since no order-αs corrections exist for
O0, the matrix element retains its leading-order factorized form

〈D+L−|O0|B̄d〉 = ifLqµ 〈D+|c̄γµ(1 − γ5)b|B̄d〉 (39)

to this accuracy. From (35) it follows that T8(u, z) tends to a constant as u ap-
proaches the endpoints (u → 0, 1). (This is strictly true for the part of T8(u, z)
that is symmetric in u ↔ ū; the asymmetric part diverges logarithmically as
u → 0, which however does not affect the power behaviour and the convergence
properties in the endpoint region.) Therefore the contribution to (37) from the
endpoint region is suppressed, both by phase space and by the endpoint sup-
pression intrinsic to ΦL(u). Consequently, the emitted light meson is indeed
dominated by energetic constituents, as required for the self-consistency of the
factorization formula.

The final result for the class-I, non-leptonic B̄d → D(∗)+L− decay amplitu-
des, in the heavy-quark limit and at next-to-leading order in αs, can be com-
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pactly expressed in terms of the matrix elements of a “transition operator”

T =
GF√

2
V ∗
udVcb

[
a1(DL)QV − a1(D∗L)QA

]
, (40)

where

QV = c̄γµb ⊗ d̄γµ(1 − γ5)u , QA = c̄γµγ5b ⊗ d̄γµ(1 − γ5)u , (41)

and hadronic matrix elements of QV,A are understood to be evaluated in facto-
rized form, i.e.

〈DL|j1 ⊗ j2|B̄〉 ≡ 〈D|j1|B̄〉 〈L|j2|0〉 . (42)

Equation (40) defines the quantities a1(D(∗)L), which include the leading “non-
factorizable” corrections, in a renormalization-scale and -scheme independent
way. To leading power in ΛQCD/mb these quantities should not be interpreted
as phenomenological parameters (as is usually done), because they are dominated
by hard gluon exchange and thus calculable in QCD. At next-to-leading order
we get

a1(DL) =
Nc + 1
2Nc

C̄+(µ) +
Nc − 1
2Nc

C̄−(µ)

+
αs
4π
CF
2Nc

C8(µ)
[
−6 ln

µ2

m2
b

+
∫ 1

0
duF (u, z)ΦL(u)

]
,

a1(D∗L) =
Nc + 1
2Nc

C̄+(µ) +
Nc − 1
2Nc

C̄−(µ)

+
αs
4π
CF
2Nc

C8(µ)
[
−6 ln

µ2

m2
b

+
∫ 1

0
duF (u,−z)ΦL(u)

]
. (43)

We observe that the scheme-dependent terms parameterized by B have canceled
between the coefficient of O0 in (31) and the matrix element of O8 in (37).
Likewise, the µ dependence of the terms in brackets in (43) cancels against
the scale dependence of the coefficients C̄±(µ), ensuring a consistent result at
next-to-leading order. The coefficients a1(DL) and a1(D∗L) are seen to be non-
universal, i.e. they depend explicitly on the nature of the final-state mesons.
This dependence enters via the light-cone distribution amplitude of the light
emission meson and via the analytic form of the hard-scattering kernel (F (u, z)
vs. F (u,−z)). However, the non-universality enters only at next-to-leading order.

Using the fact that violations of heavy-quark spin symmetry require hard
gluon exchange, Politzer and Wise have computed the “non-factorizable” vertex
corrections to the decay-rate ratio of the Dπ and D∗π final states many years
ago [17]. In the context of our formalism, this calculation requires the symmetric
part (with respect to u ↔ ū) of the difference F (u, z) − F (u,−z). Explicitly,

Γ (B̄d → D+π−)
Γ (B̄d → D∗+π−)

=
∣∣∣∣
〈D+|c̄ 	q(1 − γ5)b|B̄d〉
〈D∗+|c̄ 	q(1 − γ5)b|B̄d〉

∣∣∣∣
2 ∣∣∣∣
a1(Dπ)
a1(D∗π)

∣∣∣∣
2

, (44)
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Fig. 7. “Non-factorizable” spectator interactions.

where for simplicity we neglect the light meson masses as well as the mass
difference between D and D∗ in the phase-space for the two decays. At next-to-
leading order

∣∣∣∣
a1(Dπ)
a1(D∗π)

∣∣∣∣
2

= 1 +
αs
4π
CF
Nc

C8

C0
Re
∫ 1

0
du [F (u, z) − F (u,−z)] Φπ(u) . (45)

Our result for the symmetric part of the kernel agrees with that found in [17].

5 Power-Suppressed Contributions

Up to this point we have presented arguments in favour of factorization of non-
leptonic B-decay amplitudes in the heavy-quark limit, and have explored in
detail how the factorization formula works at one-loop order for the decays B̄d →
D(∗)+L−. It is now time to show that other contributions not considered so far
are indeed power suppressed. This is necessary to fully establish the factorization
formula. Besides, it will also provide some numerical estimates of the corrections
to the heavy-quark limit.

We start by discussing interactions involving the spectator quark and weak
annihilation contributions, before turning to the more delicate question of the
importance of non-valence Fock states.

5.1 Interactions with the Spectator Quark

Clearly, the diagrams shown in Fig. 7 cannot be associated with the form-factor
term in the factorization formula (3). We will now show that for B decays into a
heavy-light final state their contribution is power suppressed in the heavy-quark
limit. (This suppression does not occur for decays into two light mesons, where
hard spectator interactions contribute at leading power. In this case, they con-
tribute to the kernels T IIi in the factorization formula (second term in Fig. 1).)

In general, “non-factorizable” diagrams involving an interaction with the
spectator quark would impede factorization if there existed a soft contribution
at leading power. While such terms are present in each of the two diagrams
separately, they cancel in the sum over the two gluon attachments to the (ūd)
pair by virtue of the same colour-transparency argument that was applied to the
“non-factorizable” vertex corrections.

Focusing again on decays into a heavy and a light meson, such as B̄d →
D+π−, we still need to show that the contribution remaining after the soft
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(a) (b) (c) (d)

Fig. 8. Annihilation diagrams.

cancellation is power suppressed relative to the leading-order contribution (13).
A straightforward calculation leads to the (simplified) result

A(B̄d → D+π−)spec ∼ GF fπfDfB αs

×
∫ 1

0

dξ

ξ
ΦB(ξ)

∫ 1

0

dη

η
ΦD(η)

∫ 1

0

du

u
Φπ(u)

∼ GF αsmb Λ
2
QCD . (46)

This is indeed power suppressed relative to (13). Note that the gluon virtuality
is of order ξη m2

b ∼ Λ2
QCD and so, strictly speaking, the calculation in terms

of light-cone distribution amplitudes cannot be justified. Nevertheless, we use
(46) to deduce the scaling behaviour of the soft contribution, as we did for the
heavy-light form factor in Sect. 3.2.

5.2 Annihilation Topologies

Our next concern are the annihilation diagrams shown in Fig. 8, which also
contribute to the decay B̄d → D+π−. The hard part of these diagrams could, in
principle, be absorbed into hard-scattering kernels of the type T IIi . The soft part,
if unsuppressed, would violate factorization. However, we will see that the hard
part as well as the soft part are suppressed by at least one power of ΛQCD/mb.

The argument goes as follows. We write the annihilation amplitude as

A(B̄d → D+π−)ann ∼ GF fπfDfB αs

×
∫ 1

0
dξ dη duΦB(ξ)ΦD(η)Φπ(u)T ann(ξ, η, u) , (47)

where the dimensionless function T ann(ξ, η, u) is a product of propagators and
vertices. The product of decay constants scales as Λ4

QCD/mb. Since dξ ΦB(ξ)
scales as 1 and so does dη ΦD(η), while duΦπ(u) is never larger than 1, the am-
plitude can only compete with the leading-order result (13) if T ann(ξ, η, u) can be
made of order (mb/ΛQCD)3 or larger. Since T ann(ξ, η, u) contains only two pro-
pagators, this can be achieved only if both quarks the gluon splits into are soft,
in which case T ann(ξ, η, u) ∼ (mb/ΛQCD)4. But then duΦπ(u) ∼ (ΛQCD/mb)2,
so that this contribution is power suppressed.
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Fig. 9. Diagram that contributes to the hard-scattering kernel involving a quark–
antiquark–gluon distribution amplitude of the B meson and the emitted light meson.

Fig. 10. The contribution of the qq̄g Fock state to the B̄d → D+π− decay amplitude.

5.3 Non-leading Fock States

Our discussion so far concentrated on contributions related to the quark–anti-
quark components of the meson wave functions. We now present qualitative
arguments that justify this restriction to the valence-quark Fock components.
Some of these arguments are standard [8,9]. We will argue that higher Fock
states yield only subleading contributions in the heavy-quark limit.

Additional Hard Partons

An example of a diagram that would contribute to a hard-scattering function
involving quark–antiquark–gluon components of the emitted meson and the B
meson is shown in Fig. 9. For light mesons, higher Fock components are related
to higher-order terms in the collinear expansion, including the effects of intrinsic
transverse momentum and off-shellness of the partons by gauge invariance. The
assumption is that the additional partons are collinear and carry a finite frac-
tion of the meson momentum in the heavy-quark limit. Under this assumption,
it is easy to see that adding additional partons to the Fock state increases the
number of off-shell propagators in a given diagram (compare Fig. 9 to Fig. 3).
This implies power suppression in the heavy-quark expansion. Additional par-
tons in the B-meson wave function are always soft, as is the spectator quark.
Nevertheless, when these partons are connected to the hard-scattering amplitu-
des the virtuality of the additional propagators is still of order mbΛQCD, which
is sufficient to guarantee power suppression.

Let us study in more detail how the power suppression arises for the simplest
non-trivial example, where the pion is composed of a quark, an antiquark, and an
additional gluon. The contribution of this 3-particle Fock state to the B → Dπ
decay amplitude is shown in Fig. 10. It is convenient to use the Fock–Schwinger
gauge, which allows us to express the gluon field Aλ in terms of the field-strength
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tensor Gρλ via

Aλ(x) =
∫ 1

0
dv vxρGρλ(vx) . (48)

Up to twist-4 level, there are three quark–antiquark–gluon matrix elements that
could potentially contribute to the diagrams shown in Fig. 10. Due to the V −A
structure of the weak-interaction vertex, the only relevant three-particle light-
cone wave function has twist-4 and is given by [18,19]

〈π(q)|d̄(0)γµγ5 gsGαβ(vx)u(0)|0〉

= fπ(qβgαµ − qαgβµ)
∫

Duφ⊥(ui) eivu3q·x

+ fπ
qµ
q · x (qαxβ − qβxα)

∫
Du

(
φ⊥(ui) + φ‖(ui)

)
eivu3q·x . (49)

Here
∫

Du ≡
∫ 1
0 du1 du2 du3 δ(1−u1 −u2 −u3), with u1, u2 and u3 the fractions

of the pion momentum carried by the quark, antiquark and gluon, respectively.
Evaluating the diagrams in Fig. 10, and neglecting the charm-quark mass for
simplicity, we find

〈D+π−|O8|B̄d〉qq̄g = ifπ 〈D+|c̄ 	q(1 − γ5)b|B̄d〉
∫

Du
2φ‖(ui)
u3m2

b

. (50)

Since φ‖ ∼ Λ2
QCD, the suppression by two powers of ΛQCD/mb compared to

the leading-order matrix element is obvious. Note that due to G-parity φ‖ is
antisymmetric in u1 ↔ u2 for a pion, so that (50) vanishes in this case.

Additional Soft Partons

A more precarious situation may arise when the additional Fock components
carry only a small fraction of the meson momentum, contrary to the assumption
made above. It is usually argued [8,9] that these configurations are suppressed,
because they occupy only a small fraction of the available phase space (since∫
dui ∼ ΛQCD/mb when the parton that carries momentum fraction ui is soft).

This argument does not apply when the process involves heavy mesons. Consider,
for example, the diagram shown in Fig. 11a for the decay B → Dπ. Its contri-
bution involves the overlap of the B-meson wave function involving additional
soft gluons with the wave function of the D meson, also containing soft gluons.
There is no reason to suppose that this overlap is suppressed relative to the soft
overlap of the valence-quark wave functions. It represents (part of) the overlap
of the “soft cloud” around the b quark with (part of) the “soft cloud” around the
c quark after the weak decay. The partonic decomposition of this cloud is unre-
stricted up to global quantum numbers. (In the case where the B meson decays
into two light mesons, there is a form-factor suppression ∼ (ΛQCD/mb)3/2 for
the overlap of the valence-quark wave functions, but once this price is paid there
is again no reason for further suppression of additional soft gluons in the overlap
of the B-meson wave function and the wave function of the recoiling meson.)
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(a) (b)

Fig. 11. (a) Soft overlap contribution which is part of the B → D form factor. (b)
Soft overlap with the pion which would violate factorization, if it were unsuppressed.

= +

Fig. 12. Quark–antiquark–gluon distribution amplitude in the gluon endpoint region.

The previous paragraph essentially repeated our earlier argument against the
hard-scattering approach, and in favour of using the B → D form factor as an
input to the factorization formula. However, given the presence of additional soft
partons in the B → D transition, we must now argue that it is unlikely that the
emitted pion drags with it one of these soft partons, for instance a soft gluon
that goes into the pion wave function, as shown in Fig. 11b. Notice that if the
(qq̄) pair is produced in a colour-octet state, at least one gluon (or a further
(qq̄) pair) must be pulled into the emitted meson if the decay is to result in a
two-body final state. What suppresses the process shown in Fig. 11b relative to
the one in Fig. 11a even if the emitted (qq̄) pair is in a colour-octet state?

It is once more colour transparency that saves us. The dominant configura-
tion has both quarks carry a large fraction of the pion momentum, and only
the gluon might be soft. In this situation we can apply a non-local “operator
product expansion” to determine the coupling of the soft gluon to the small (qq̄)
pair [2]. The gluon endpoint behaviour of the qq̄g wave function is then deter-
mined by the sum of the two diagrams shown on the right-hand side in Fig. 12.
The leading term (for small gluon momentum) cancels in the sum of the two
diagrams, because the meson (represented by the black bar) is a colour singlet.
This cancellation, which is exactly the same cancellation needed to demonstrate
that “non-factorizable” vertex corrections are dominated by hard gluons, provi-
des one factor of ΛQCD/mb needed to show that Fig. 11b is power suppressed
relative to Fig. 11a.

In summary, we have (qualitatively) covered all possibilities for non-valence
contributions to the decay amplitude and find that they are all power suppressed
in the heavy-quark limit.
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6 Difficulties with Charm

The factorization formula (3) holds in the heavy-quark limit mb → ∞. Correc-
tions to the asymptotic limit are power-suppressed in the ratio ΛQCD/mb and,
generally speaking, do not assume a factorized form. Since mb is fixed to about
5 GeV in the real world, one may worry about the magnitude of power correc-
tions to hadronic B-decay amplitudes. Naive dimensional analysis would suggest
that these corrections should be of order 10% or so. However, in some cases re-
lated to B → Dπ decays there are also corrections suppressed by ΛQCD/mc,
which are potentially much larger.

There are decay modes, such as B− → D0π−, in which the spectator quark
can go to either of the two final-state mesons. The factorization formula (3)
applies to the contribution that arises when the spectator quark goes to the D
meson, but not when the spectator quark goes to the pion. However, even in the
latter case we may use naive factorization to estimate the power behaviour of
the decay amplitude. Adapting (13) to the decay B− → D0π−, we find that the
non-factorizing (class-II) amplitude is suppressed compared to the factorizing
(class-I) amplitude by

A(B− → D0π−)class-II
A(B− → D0π−)class-I

∼ FB→π(m2
D) fD

FB→D(m2
π) fπ

∼
(
ΛQCD

mb

)2

. (51)

Here we use that FB→π(q2) ∼ (ΛQCD/mb)3/2 even for q2 ∼ m2
b , as long as

q2max − q2 is also of order m2
b . (It follows from our definition of heavy final-state

mesons that these conditions are fulfilled.) As a consequence, strictly speaking
factorization does hold for B− → D0π− decays in the sense that the class-II
contribution is power suppressed with respect to the class-I contribution.

Unfortunately, the scaling behaviour for real B and D mesons is far from
the estimate (51) valid in the heavy-quark limit. Based on the dominance of the
class-I amplitude we would expect that

R =
Br(B− → D0π−)
Br(B̄d → D+π−)

≈ 1 (52)

in the heavy-quark limit. This contradicts existing data which yield R = 1.89 ±
0.35, despite the additional colour suppression of the class-II amplitude. One
reason for the failure of power counting lies in the departure of the decay con-
stants and form factors from naive power counting. The following compares the
power counting to the actual numbers (square brackets):

fD
fπ

∼
(
ΛQCD

mc

)1/2

[≈ 1.5] ,
FB→π

+ (m2
D)

FB→D
+ (m2

π)
∼
(
ΛQCD

mb

)3/2

[≈ 0.5] . (53)

However, it is unclear whether the failure of power counting can be attributed
to the form factors and decay constants alone.

Note that for the purposes of power counting we treated the charm quark
as heavy, taking the heavy-quark limit for fixed mc/mb. This simplified the
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discussion, since we did not have to introducemc as a separate scale. However, in
reality charm is somewhat intermediate between a heavy and a light quark, since
mc is not particularly large compared to ΛQCD. In this context it is worth noting
that the first hard-scattering kernel in (3) cannot have ΛQCD/mc corrections,
since there is a smooth transition to the case of two light mesons. The situation
is different with the hard spectator interaction term, which we argued to be
power suppressed for decays into a D meson and a light meson.

7 Phenomenology of B → D(∗)L Decays

The matrix elements we have computed in Sect. 4.3 provide the theoretical basis
for a model-independent calculation of the class-I non-leptonic decay amplitudes
for decays of the type B → D(∗)L, where L is a light meson, to leading power in
ΛQCD/mb and at next-to-leading order in renormalization-group improved per-
turbation theory. In this section we discuss phenomenological applications of this
formalism and confront our numerical results with experiment. We also provide
some numerical estimates of power-suppressed corrections to the factorization
formula.

7.1 Non-leptonic Decay Amplitudes

The results for the class-I decay amplitudes for B → D(∗)L are obtained by
evaluating the (factorized) hadronic matrix elements of the transition operator T
defined in (40). They are written in terms of products of CKM matrix elements,
light-meson decay constants, B → D(∗) transition form factors, and the QCD
parameters a1(D(∗)L). The decay constants can be determined experimentally
using data on the weak leptonic decays P− → l−ν̄l(γ), hadronic τ− → M−ντ
decays, and the electromagnetic decays V 0 → e+e−. Following [16], we use fπ =
131 MeV, fK = 160 MeV, fρ = 210 MeV, fK∗ = 214 MeV, and fa1 = 229 MeV.
(Here a1 is the pseudovector meson with mass ma1 � 1230 MeV.)

The non-leptonic B̄d → D(∗)+L− decay amplitudes for L = π, ρ can be
expressed as

A(B̄d → D+π−) = i
GF√

2
V ∗
udVcb a1(Dπ) fπ F0(m2

π) (m2
B −m2

D) ,

A(B̄d → D∗+π−) = −iGF√
2
V ∗
udVcb a1(D

∗π) fπA0(m2
π) 2mD∗ ε∗ · p ,

A(B̄d → D+ρ−) = −iGF√
2
V ∗
udVcb a1(Dρ) fρ F+(m2

ρ) 2mρ η
∗ · p , (54)

where p (p′) is the momentum of the B (charm) meson, ε and η are polarization
vectors, and the form factors F0, F+ and A0 are defined in the usual way [16].
The decay mode B̄d → D∗+ρ− has a richer structure than the decays with at
least one pseudoscalar in the final state. The most general Lorentz-invariant
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decomposition of the corresponding decay amplitude can be written as

A(B̄d → D∗+ρ−) = i
GF√

2
V ∗
udVcb ε

∗µη∗ν
(
S1 gµν − S2 qµp

′
ν + iS3 εµναβ p

′αqβ
)
,

(55)
where the quantities Si can be expressed in terms of semi-leptonic form factors.
To leading power in ΛQCD/mb, we obtain

S1 = a1(D∗ρ)mρfρ (mB +mD∗)A1(m2
ρ) ,

S2 = a1(D∗ρ)mρfρ
2A2(m2

ρ)
mB +mD∗

. (56)

The contribution proportional to S3 in (55) is associated with transversely po-
larized ρ mesons and thus leads to power-suppressed effects, which we do not
consider here.

The various B → D(∗) form factors entering the expressions for the decay am-
plitudes can be determined by combining experimental data on semi-leptonic de-
cays with theoretical relations derived using heavy-quark effective theory [3,16].
Since we work to leading order in ΛQCD/mb, it is consistent to set the light
meson masses to zero and evaluate these form factors at q2 = 0. In this case the
kinematic relations

F0(0) = F+(0) , (mB+mD∗)A1(0)−(mB−mD∗)A2(0) = 2mD∗A0(0) (57)

allow us to express the two B̄d → D+L− rates in terms of F+(0), and the
two B̄d → D∗+L− rates in terms of A0(0). Heavy-quark symmetry implies that
these two form factors are equal to within a few percent [14]. Below we adopt
the common value F+(0) = A0(0) = 0.6. All our predictions for decay rates will
be proportional to the square of this number.

7.2 Meson Distribution Amplitudes and Predictions for a1

Let us now discuss in more detail the ingredients required for the numerical
analysis of the coefficients a1(D(∗)L). The Wilson coefficients Ci in the effective
weak Hamiltonian depend on the choice of the scale µ as well as on the value of
the strong coupling αs, for which we take αs(mZ) = 0.118 and two-loop evolution
down to a scale µ ∼ mb. To study the residual scale dependence of the results,
which remains because the perturbation series are truncated at next-to-leading
order, we vary µ between mb/2 and 2mb. The hard-scattering kernels depend on
the ratio of the heavy-quark masses, for which we take z = mc/mb = 0.30±0.05.

Hadronic uncertainties enter the analysis also through the parameterizations
used for the meson light-cone distribution amplitudes. It is convenient and con-
ventional to expand the distribution amplitudes in Gegenbauer polynomials as

ΦL(u) = 6u(1 − u)
[
1 +

∞∑

n=1

αLn(µ)C(3/2)
n (2u− 1)

]
, (58)
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Table 1. Numerical values for the integrals
∫ 1
0 duF (u, z)ΦL(u) (upper portion) and

∫ 1
0 duF (u,−z)ΦL(u) (lower portion) obtained including the first two Gegenbauer mo-

ments.

z Leading term Coefficient of αL1 Coefficient of αL2
0.25 −8.41 − 9.51i 5.92 − 12.19i −1.33 + 0.36i
0.30 −8.79 − 9.09i 5.78 − 12.71i −1.19 + 0.58i
0.35 −9.13 − 8.59i 5.60 − 13.21i −1.00 + 0.73i
0.25 −8.45 − 6.56i 6.72 − 10.73i −0.38 + 0.93i
0.30 −8.37 − 5.99i 6.83 − 11.49i −0.21 + 0.85i
0.35 −8.24 − 5.44i 6.81 − 12.29i −0.08 + 0.75i

where C(3/2)
1 (x) = 3x, C(3/2)

2 (x) = 3
2 (5x2 − 1), etc. The Gegenbauer moments

αLn(µ) are multiplicatively renormalized. The scale dependence of these quanti-
ties would, however, enter the results for the coefficients only at order α2

s, which
is beyond the accuracy of our calculation. We assume that the leading-twist dis-
tribution amplitudes are close to their asymptotic form and thus truncate the
expansion at n = 2. However, it would be straightforward to account for higher-
order terms if desired. For the asymptotic form of the distribution amplitude,
ΦL(u) = 6u(1 − u), the integral in (43) yields

∫ 1

0
duF (u, z)ΦL(u) = 3 ln z2 − 7

+

[
6z(1 − 2z)

(1 − z)2(1 + z)3

(
π2

6
− Li2(z2)

)
− 3(2 − 3z + 2z2 + z3)

(1 − z)(1 + z)2
ln(1 − z2)

+
4 − 17z + 20z2 + 5z3

2(1 − z)(1 + z)2
+ {z → 1/z}

]
, (59)

and the corresponding result with the function F (u,−z) is obtained by replacing
z → −z. More generally, a numerical integration with a distribution amplitude
expanded in Gegenbauer polynomials yields the results collected in Table 1. We
observe that the first two Gegenbauer polynomials in the expansion of the light-
cone distribution amplitudes give contributions of similar magnitude, whereas
the second moment gives rise to much smaller effects. This tendency persists in
higher orders. For our numerical discussion it is a safe approximation to truncate
the expansion after the first non-trivial moment. The dependence of the results
on the value of the quark mass ratio z = mc/mb is mild and can be neglected
for all practical purposes. We also note that the difference of the convolutions
with the kernels for a pseudoscalar D and vector D∗ meson are numerically very
small. This observation is, however, specific to the case of B → D(∗)L decays
and should not be generalized to other decays.

Next we evaluate the complete results for the parameters a1 at next-to-
leading order, and to leading power in ΛQCD/mb. We set z = mc/mb = 0.3.
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Table 2. The QCD coefficients a1(D(∗)L) at next-to-leading order for three different
values of the renormalization scale µ. The leading-order values are shown for compari-
son.

µ = mb/2 µ = mb µ = 2mb

a1(DL) 1.074 + 0.037i 1.055 + 0.020i 1.038 + 0.011i
−(0.024 − 0.052i)αL1 −(0.013 − 0.028i)αL1 −(0.007 − 0.015i)αL1

a1(D∗L) 1.072 + 0.024i 1.054 + 0.013i 1.037 + 0.007i
−(0.028 − 0.047i)αL1 −(0.015 − 0.025i)αL1 −(0.008 − 0.014i)αL1

aLO
1 1.049 1.025 1.011

Varying z between 0.25 and 0.35 would change the results by less than 0.5%.
The results are shown in Table 2. The contributions proportional to the second
Gegenbauer moment αL2 have coefficients of order 0.2% or less and can safely be
neglected. The contributions associated with αL1 are present only for the strange
mesons K and K∗, but not for π and ρ. Moreover, the imaginary parts of the
coefficients contribute to their modulus only at order α2

s, which is beyond the
accuracy of our analysis. To summarize, we thus obtain

|a1(DL)| = 1.055+0.019
−0.017 − (0.013+0.011

−0.006)α
L
1 ,

|a1(D∗L)| = 1.054+0.018
−0.017 − (0.015+0.013

−0.007)α
L
1 , (60)

where the quoted errors reflect the perturbative uncertainty due to the scale
ambiguity (and the negligible dependence on the value of the ratio of quark
masses and higher Gegenbauer moments), but not the effects of power-suppressed
corrections. These will be estimated later. It is evident that within theoretical
uncertainties there is no significant difference between the two a1 parameters,
and there is only a very small sensitivity to the differences between strange and
non-strange mesons (assuming that |αK(∗)

1 | < 1). In our numerical analysis below
we thus take |a1| = 1.05 for all decay modes.

7.3 Tests of Factorization

The main lesson from the previous discussion is that corrections to naive facto-
rization in the class-I decays B̄d → D(∗)+L− are very small. The reason is that
these effects are governed by a small Wilson coefficient and, moreover, are colour
suppressed by a factor 1/N2

c . For these decays, the most important implications
of the QCD factorization formula are to restore the renormalization-group inva-
riance of the theoretical predictions, and to provide a theoretical justification for
why naive factorization works so well. On the other hand, given the theoretical
uncertainties arising, e.g., from unknown power-suppressed corrections, there is
little hope to confront the extremely small predictions for non-universal (process-
dependent) “non-factorizable” corrections with experimental data. Rather, what
we may do is ask whether data supports the prediction of a quasi-universal para-
meter |a1| � 1.05 in these decays. If this is indeed the case, it would support the
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usefulness of the heavy-quark limit in analyzing non-leptonic decay amplitudes.
If, on the other hand, we were to find large non-universal effects, this would
point towards the existence of sizeable power corrections to our predictions. We
will see that within present experimental errors the data are in good agreement
with our prediction of a quasi universal a1 parameter. However, a reduction of
the experimental uncertainties to the percent level would be very desirable for
obtaining a more conclusive picture.

We start by considering ratios of non-leptonic decay rates that are related to
each other by the replacement of a pseudoscalar meson by a vector meson. In the
comparison of B → Dπ and B → D∗π decays one is sensitive to the difference of
the values of the two a1 parameters in (60) evaluated for αL1 = 0. This difference
is at most few times 10−3. Likewise, in the comparison of B → Dπ and B → Dρ
decays one is sensitive to the difference in the light-cone distribution amplitudes
of the pion and the ρ meson, which start at the second Gegenbauer moment αL2 .
These effects are suppressed even more strongly. From the explicit expressions
for the decay amplitudes in (54) it follows that

Γ (B̄d → D+π−)
Γ (B̄d → D∗+π−)

=
(m2

B −m2
D)2|q |Dπ

4m2
B |q |3D∗π

(
F0(m2

π)
A0(m2

π)

)2 ∣∣∣∣
a1(Dπ)
a1(D∗π)

∣∣∣∣
2

,

Γ (B̄d → D+ρ−)
Γ (B̄d → D+π−)

=
4m2

B |q |3Dρ
(m2

B −m2
D)2|q |Dπ

f2
ρ

f2
π

(
F+(m2

ρ)
F0(m2

π)

)2 ∣∣∣∣
a1(Dρ)
a1(Dπ)

∣∣∣∣
2

. (61)

Using the experimental values for the branching ratios reported by the CLEO
Collaboration [21] we find (taking into account a correlation between some sy-
stematic errors in the second case)

∣∣∣∣
a1(Dπ)
a1(D∗π)

∣∣∣∣
F0(m2

π)
A0(m2

π)
= 1.00 ± 0.11 ,

∣∣∣∣
a1(Dρ)
a1(Dπ)

∣∣∣∣
F+(m2

ρ)
F0(m2

π)
= 1.16 ± 0.11 . (62)

Within errors, there is no evidence for any deviations from naive factorization.
Our next-to-leading order results for the quantities a1(D(∗)L) allow us to

make theoretical predictions which are not restricted to ratios of hadronic decay
rates. A particularly clean test of these predictions, which is essentially free of
hadronic uncertainties, is obtained by relating the B̄d → D(∗)+L− decay rates to
the differential semi-leptonic B̄d → D(∗)+ l−ν decay rate evaluated at q2 = m2

L.
In this way the parameters |a1| can be measured directly [10]. One obtains

R
(∗)
L =

Γ (B̄d → D(∗)+L−)
dΓ (B̄d → D(∗)+l−ν̄)/dq2

∣∣
q2=m2

L

= 6π2|Vud|2f2
L |a1(D(∗)L)|2X(∗)

L ,

(63)
where Xρ = X∗

ρ = 1 for a vector meson (because the production of the lepton
pair via a V − A current in semi-leptonic decays is kinematically equivalent to
that of a vector meson with momentum q), whereas Xπ and X∗

π deviate from
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1 only by (calculable) terms of order m2
π/m

2
B , which numerically are below the

1% level [16]. We emphasize that with our results for a1 given in (43) the above
relation becomes a prediction based on first principles of QCD. This is to be
contrasted with the usual interpretation of this formula, where a1 plays the role
of a phenomenological parameter that is fitted from data.

The most accurate tests of factorization employ the class-I processes B̄d →
D∗+L−, because the differential semi-leptonic decay rate in B → D∗ transiti-
ons has been measured as a function of q2 with good accuracy. The results of
such an analysis, performed using CLEO data, have been reported in [23]. One
finds

R∗
π = (1.13 ± 0.15) GeV2 ⇒ |a1(D∗π)| = 1.08 ± 0.07 ,
R∗
ρ = (2.94 ± 0.54) GeV2 ⇒ |a1(D∗ρ)| = 1.09 ± 0.10 ,

R∗
a1

= (3.45 ± 0.69) GeV2 ⇒ |a1(D∗a1)| = 1.08 ± 0.11 . (64)

This is consistent with our theoretical result in (43). In particular, the data
show no evidence for large power corrections to our predictions obtained at
leading order in ΛQCD/mb. However, a further improvement in the experimental
accuracy would be desirable in order to become sensitive to process-dependent,
non-factorizable effects.

7.4 Predictions for Class-I Decay Amplitudes

We now consider a larger set of class-I decays of the form B̄d → D(∗)+L−, all
of which are governed by the transition operator (40). In Table 3 we compare
the QCD factorization predictions with experimental data. As previously we
work in the heavy-quark limit, i.e. our predictions are model independent up to
corrections suppressed by at least one power of ΛQCD/mb. The results show good
agreement with experiment within errors, which are still rather large. (Note that
we have not attempted to adjust the semi-leptonic form factors F+(0) and A0(0)
so as to obtain a best fit to the data.)

We take the observation that the experimental data on class-I decays into
heavy-light final states show good agreement with our predictions obtained in
the heavy-quark limit as evidence that in these decays there are no unexpec-
tedly large power corrections. We will now address the important question of
the size of power corrections theoretically. To this end we provide rough estima-
tes of two sources of power-suppressed effects: weak annihilation and spectator
interactions. We stress that, at present, a complete account of power corrections
to the heavy-quark limit cannot be performed in a systematic way, since these
effects are not dominated by hard gluon exchange. In other words, factoriza-
tion breaks down beyond leading power, and there are other sources of power
corrections, such as contributions from higher Fock states, which we will not
address here. We believe that the estimates presented below are nevertheless
instructive.

To obtain an estimate of power corrections we adopt the following, heuri-
stic procedure. We treat the charm quark as light compared to the large scale
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Table 3. Model-independent predictions for the branching ratios (in units of 10−3) of
class-I, non-leptonic B̄d → D(∗)+L− decays in the heavy-quark limit. All predictions are
in units of (|a1|/1.05)2. The last two columns show the experimental results reported
by the CLEO Collaboration [21], and by the Particle Data Group [24].

Decay mode Theory (HQL) CLEO data PDG98
B̄d → D+π− 3.27 2.50 ± 0.40 3.0 ± 0.4
B̄d → D+K− 0.25 — —
B̄d → D+ρ− 7.64 7.89 ± 1.39 7.9 ± 1.4
B̄d → D+K∗− 0.39 — —
B̄d → D+a−

1 7.76 8.34 ± 1.66 6.0 ± 3.3
×[F+(0)/0.6]2

B̄d → D∗+π− 3.05 2.34 ± 0.32 2.8 ± 0.2
B̄d → D∗+K− 0.22 — —
B̄d → D∗+ρ− 7.59 7.34 ± 1.00 6.7 ± 3.3
B̄d → D∗+K∗− 0.40 — —
B̄d → D∗+a−

1 8.53 11.57 ± 2.02 13.0 ± 2.7
×[A0(0)/0.6]2

provided by the mass of the decaying b quark (mc  mb, and mc fixed as
mb → ∞) and use a light-cone projection similar to that of the pion also for the
D meson. In addition, we assume that mc is still large compared to ΛQCD. We
implement this by using a highly asymmetric D-meson wave function, which is
strongly peaked at a light-quark momentum fraction of order ΛQCD/mD. This
guarantees correct power counting for the heavy-light final states we are inte-
rested in. As discussed in Sect. 5.2, there are four annihilation diagrams with
a single gluon exchange (see Fig. 8a–d). The first two diagrams are “factoriza-
ble” and their contributions vanish because of current conservation in the limit
mc → 0. For non-zero mc they therefore carry an additional suppression fac-
tor m2

D/m
2
B ≈ 0.1. Moreover, their contributions to the decay amplitude are

suppressed by small Wilson coefficients. Diagrams (a) and (b) can therefore sa-
fely be neglected. From the non-factorizable diagrams (c) and (d) in Fig. 8, the
one with the gluon attached to the b quark turns out to be strongly suppressed
numerically, giving a contribution of less than 1% of the leading class-I ampli-
tude. We are thus left with diagram (d), in which the gluon couples to the light
quark in the B meson. This mechanism gives the dominant annihilation contri-
bution. (Note that by deforming the light spectator-quark line one can redraw
this diagram in such a way that it can be interpreted as a final-state rescattering
process.)

Adopting a common notation, we parameterize the annihilation contribution
to the B̄d → D+π− decay amplitude in terms of a (power-suppressed) amplitude
A such that A(B̄d → D+π−) = T + A, where T is the “tree topology”, which
contains the dominant factorizable contribution. A straightforward calculation
using the approximations discussed above shows that the contribution of diagram
(d) is (to leading order) independent of the momentum fraction ξ of the light
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quark inside the B meson:

A � fπfDfB
∫
du
Φπ(u)
u

∫
dv
ΦD(v)
v̄2

� 3fπfDfB
∫
dv
ΦD(v)
v̄2

. (65)

The B-meson wave function simply integrates to fB , and the integral over the
pion distribution amplitude can be performed using the asymptotic form of the
wave function. We take ΦD(v) in the form of (58) with the coefficients αD1 = 0.8
and αD2 = 0.4 (αDi = 0, i > 2). With this ansatz ΦD(v) is strongly peaked at
v̄ ∼ ΛQCD/mD. The integral over ΦD(v) in (65) is divergent at v = 1, and we
regulate it by introducing a cut-off such that v ≤ 1 − Λ/mB with Λ ≈ 0.3 GeV.
Then

∫
dv ΦD(v)/v̄2 ≈ 34. Evidently, the proper value of Λ is largely unknown,

and our estimate will be correspondingly uncertain. Nevertheless, this exercise
will give us an idea of the magnitude of the effect. For the ratio of the annihilation
amplitude to the leading, factorizable contribution we obtain

A

T
� 2παs

3
C+ + C−
2C+ + C−

fDfB
F0(0)m2

B

∫
dv
ΦD(v)
v̄2

≈ 0.04 . (66)

We have evaluated the Wilson coefficients at µ = mb and used fD = 0.2 GeV,
fB = 0.18 GeV, F0(0) = 0.6, and αs = 0.4. This value of the strong coupling
constant reflects that the typical virtuality of the gluon propagator in the an-
nihilation graph is of order ΛQCDmB . We conclude that the annihilation con-
tribution is a correction of a few percent, which is what one would expect for
a generic power correction to the heavy-quark limit. Taking into account that
fB ∼ ΛQCD(ΛQCD/mB)1/2, F0(0) ∼ (ΛQCD/mB)3/2 and fD ∼ ΛQCD, we ob-
serve that in the heavy-quark limit the ratio A/T indeed scales as ΛQCD/mb,
exhibiting the expected linear power suppression. (Recall that we consider the
D meson as a light meson for this heuristic analysis of power corrections.)

Using the same approach, we may derive a numerical estimate for the non-
factorizable spectator interaction in B̄d → D+π− decays, discussed in Sect. 5.1.
We find

Tspec

Tlead
� 2παs

3
C+ − C−
2C+ + C−

fDfB
F0(0)m2

B

mB

λB

∫
dv
ΦD(v)
v̄

≈ −0.03 , (67)

where the hadronic parameter λB = O(ΛQCD) is defined as
∫ 1
0 (dξ/ξ)ΦB(ξ) ≡

mB/λB . For the numerical estimate we have assumed that λB ≈ 0.3 GeV. With
the same model for ΦD(v) as above we have

∫
dv ΦD(v)/v̄ ≈ 6.6, where the

integral is now convergent. The result (67) exhibits again the expected power
suppression in the heavy-quark limit, and the numerical size of the effect is at
the few percent level.

We conclude from this discussion that the typical size of power corrections to
the heavy-quark limit in class-I decays of B mesons into heavy-light final states
is at the level of 10% or less, and thus our prediction for the near universality of
the parameters a1 governing these decay modes appears robust.
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8 Conclusion

With the recent commissioning of the B factories and the planned emphasis
on heavy-flavour physics in future collider experiments, the role of B decays
in providing fundamental tests of the Standard Model and potential signatures
of new physics will continue to grow. In many cases the principal source of
systematic uncertainty is a theoretical one, namely our inability to quantify the
non-perturbative QCD effects present in these decays. This is true, in particular,
for almost all measurements of CP violation at the B factories.

In these lectures, I have reviewed a rigorous framework for the evaluation
of strong-interaction effects for a large class of exclusive, two-body non-leptonic
decays of B mesons. The main result is contained in the factorization formula
(3), which expresses the amplitudes for these decays in terms of experimentally
measurable semi-leptonic form factors, light-cone distribution amplitudes, and
hard-scattering functions that are calculable in perturbative QCD. For the first
time, therefore, we have a well founded field-theoretic basis for phenomenological
studies of exclusive hadronic B decays, and a formal justification for the ideas
of factorization. For simplicity, I have mainly focused on B → Dπ decays here.
A detailed discussion of B decays into two light mesons will be presented in a
forthcoming paper [12].

We hope that the factorization formula (3) will form the basis for future
studies of non-leptonic two-body decays of B mesons. Before, however, a fair
amount of conceptual work remains to be completed. In particular, it will be
important to investigate better the limitations on the numerical precision of the
factorization formula, which is valid in the formal heavy-quark limit. We have
discussed some preliminary estimates of power-suppressed effects in the present
work, but a more complete analysis would be desirable. In particular, for rare
B decays into two light mesons it will be important to understand the role of
chirally-enhanced power corrections and weak annihilation contributions [12,25].
For these decays, there are also still large uncertainties associated with the de-
scription of the hard spectator interactions.

Theoretical investigations along these lines should be pursued with vigor. We
are confident that, ultimately, this research will result in a theory of non-leptonic
B decays, which should be as useful for this area of heavy-flavour physics as the
large-mb limit and heavy-quark effective theory were for the phenomenology of
semi-leptonic decays.
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