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PREFACE

THE 1962 Conference on Relativistic Theories of Gravitation, the pro-
ceedings of which are before you, was preceded by a meeting of the Interna-
tional Gravitational Committee in Paris. Most of us there thought that the
meeting should be fairly leisurely and the number of participants restricted.
We decided against the usual shOWer of ten or fifteen minute contributions.
Instead, we thought that the most suitable form would be invited lectures
and extensive discussions around them. The rest was left to the Polish Organ—
izing Committee.

Our first task was to make a list of invited participants. Here I believe
we made some mistakes by omitting the names of several important work-
ers in the field of relativity. These mistakes were hard to avoid and we can
only apologize for them.

Then we had to prepare a list of lectures and invited speakers. As a rule,
we planned three lectures every morning, each of them 45 minutes long.
The afternoons were for discussion. However, the official discussions were
not as vivid and not as time absorbing as we had hoped. On the other hand
some of the guests came with prepared reports. Therefore, in the afternoon,
after the discussions were finished, We introduced informal seminars. During
the conference, Professor A. Schild was kind enough to devote much of
his time to arranging these seminars.

We took care that the general lectures would not be the privilege of the
older generation only. The younger active people also had a prominent part
in them.

As it was July and Warsaw is fairly warm at that time, we decided to
have our meetings outside Warsaw, at Jablonna, in a palace which belongs
to the Polish Academy of Science. However, there were not enough rooms
for all the participants to live there. Therefore, about half of the guests had
to stay in Warsaw and we arranged a Warsaw—Jablonna car and bus service.
The opening of the conference took place in the Academy’s Palac Staszyca
in Warsaw.

Dr J. Stachel helped us greatly in preparing this report. The discussion
and some of the lectures had to be transcribed from tape recordings. One
day the electric current failed in Jablonna and for that afternoon the records
are not complete. Parts of the discussion were hard to transcribe for technical
reasons. If certain passages of the report are not clear, the fault may be the
editors’ rather than speakers’.

LEOPOLD INFELD
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L. INFELD

DEAR FRIENDS,
It gives me great pleasure to open this Conference on Gravitation. Whether

this is the fourth or the second such meeting depends upon whether we
count them from the Berne Conference or from the founding of our organ-
ization.

I believe that when most of us use the term “Gravitation Theory” we
refer to General Relativity, and this theory is about half a century old. I can-
not say exactly how old it is because I do not know whether we should con-
sider its beginning as Einstein’s first paper in 1911 or the paper which laid
the foundation of the theory, in 1916. In any case, the greatest interest in
this discipline was evinced by scientists in the 1920’s. Then, already in 1936,
when I was in contact with Einstein in Princeton, I observed that this interest
had almost completely lapsed. The number of physicists working in this
field in Princeton could be counted on the fingers of one hand. I remember
that very few of us met in the late Professor H. P. Robertson’s room and
then even those meetings ceased. We, who worked in this field, were looked
upon rather askance by other physicists. Einstein himself often remarked
to me “In Princeton they regard me as an old fool: Sie glauben ich bin ein
alter Trottel”. This situation remained almost unchanged up to Einstein’s
death. Relativity Theory was not very highly estimated in the “West” and
frowned upon in the “East”.

Yet the situation has changed completely in the last few years. Twenty
years ago people thought that Relativity Theory was finished and that it
offered no new problems. The sudden revival of General Relativity Theory
and the interest shown in it by so many young people is due to several causes.

I should like to mention a few of them. First ~ I believe that our bian-
nual meetings, beginning with the Berne Conference, contributed greatly to
the increased interest in gravitational problems. On the other hand I am well
aware that these meetings are at the same time only an indication of this
growing interest.

The second reason is that we now know much more about the mathe-
matical structure of Relativity Theory. Indeed the horizons of our knowledge
are widening very much and this is mostly due to the work of young scien-
tists. Progress has been made especially on gravitational waves and on quan-
tizing the: gravitational field. These are the chief problems of the present
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day and I hope that most of the discussions during our Conference will be
devoted to them.

Last, but not least, the experimental evidence supporting General Rela-
tivity Theory has been much enlarged by the Mossbauer effect and we look
forward to possibilities of observing new effects with artificial satellites.

Yet, much as we treasure the work of younger people, we should not
forget the older men who have left us and who contributed an important
share toward developing General Relativity Theory. Among the names fore-
most in my mind and who passed away since the Royaumont Conference
are Max von Laue, H. P. Robertson, Erwin Schrodinger.

In the early twenties Professor Laue finished his two-volume work on
Relativity Theory which has been studied by many physicists.

Professor Schrodinger, known mostly as the founder of wave mechanics,
in his last years did much work on the unified gravitational theory.

Professor Robertson, whose loss I feel in an especially personal way,
did a great deal of work on cosmology and General Relativity Theory.

I ask you now to rise and to devote a period of silence to these three men.
Thank you.
The organizing committee are especially glad that the conference is taking

place in Poland near a city that was over 80% destroyed by the Nazis and
is now rebuilt.

I hope you will find enough time to observe, at least in part, the progress
made in reconstruction and also to experience something of the active cul-
tural life here.

In the name of the organizing committee I welcome you to Poland and
to our conference.
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ALLOCUTION INAUGURALE
DU MINISTRE DE L’ENSEIGNEMENT SUPERIEUR,

Monsieur H. GOLANSKI

JE SUIS heureux de pouvoir saluer dans notre pays 1a conference des specia-
listes les plus éminents dans le domaine des théories relativistes.

La théorie de la relativité est sfirement l’une des plus grandes acquisitions
intellectuelles du XXe siecle. L’oeuvre d’Albert Einstein a donné le départ
a l’essor impétueux de la physique de nos temps. L’importance de ses con-
sequences primordiales de la conception du monde ne peut guere étre sur-
estimée.

La signification de la conference consacrée au domaine 01‘1 sont indis-
solublement liés les problémes complexes du temps, de l’espace et de la
gravitation, 01‘1 l’essentiel est de trouver 1a jonction entre les grandes idées
générales de la théorie de la relativité et le courant principal de la physique
contemporaine des quanta—est évidente meme pour un non-initié.

La conference a lieu a une époque 01‘1 1a théorie de la relativité vit—si
l’on peut s’exprimer ainsi—sa période de deuxiéme jeunesse. La preuve,
c’est le nombre toujours croissant des physiciens faisant des recherches dans
ce domaine, et surtout 1a quantité de re’sultats extrémement précieux obtenus
au cours des derniéres années.

II m’est fort agréable de constater, que la majorité de ces éminents hommes
de science se trouvent dans cette salle.

Aprés les immenses succés de la mécanique des quanta, lorsque l’intérét
principal s’est porté vers la physique nucléaire et la physique des particules
élémentaires, la théorie géne’rale de la relativité s’est trouvée comme misc
:1 l’écart. Sa profondeur et sa belle structure logique en tant que théorie fon-
damentale du temps et de l’espace, n’était pas liée jusqu’alors avec la réalité
des quanta du microcosme.

Pour quelqu’un qui n’est pas physicien les phénoménes dc gravitation
ont une valeur essentielle: i1 y est le plus habitué.

La physique des quanta les a néglige’ jusqu’a maintenant comme étant
super-faibles, ne s’intéressant qu’aux phénoménes électromagnétiques, forts
et faibles. Il est difficile a un non spécialiste d’émettre un jugement en cette
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matiere. Je crois cependant, ne serait-ce que d’aprés les themes de la con-

ference, ou le probleme des quanta va jouer un role important a coté des
questions (in rayonnement de gravitation, que l'espoir est aujourci’hui plus

grand que jamais dc voir 5e réaliser l’oeuvre dc synthesc -r1'ocuV're dc jonction

entre la physique quantiquc at 13 théorie générale de la relativité.
Comme en témoigne l’histoire des sciences exactes, des problémes parti-

culierement intéressants se manifestent aux confins de difiérents domaines,
ou comme résultat des manieres diverses d’aborder 1a meme question. Plus
d’une découverte en est issue, qui fait progresser la science a pas de ge'ant,
aussi fertile en idées nouvelles qu’en acquisitions révolutionnaires de la techni-
que qui transforme n’otre civilisation.

11 y a plus d’un demi siécle, lors de la jonction de l’électrodynamique

et de la mécanique, est née 1a théorie particuliére de la relativité, en fonction
avec la nécessité de créer une théorie abordant d’une facon uniforme les

deux genres de phénoménes. La mécanique fut Soumise, pour ainsi dire,
a l’électrodynamique. Aujourd’hui, i1 s’agit de combler 1a lacune entre la
theorie générale de la relativité et la physique des quanta. Ce probleme est
en liaison avec les conceptions fondamentales du temps et de l’espace; c’est
donc un probleme de la plus grandc importance.

Je suis tr‘es heureux que la conference qui traite des problemes d’une telle

portée, se tienne dans notre pays. Le fait que le Comité International de
Gravitation a décidé d’organiser cette conference en Pologne, pays ou la

vie scientifique — qui, dans la péridde d’aprés-guerre, a due étre batie a neuf, ——
te'moigne de l’estime portée aux réalisations scientifiques de nos savants
et de nos jeunes chercheurs.

Qu’il me soit permis de vous remercier en leur nom pour cet honneur,
et de souhaiter aux participants de cette conference de fructueux débats.
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RELATIVISTIC INTERPRETATION AND MODIFICATION
OF NEWTONIAN MODELS

J. L. SYNGE
Dublin Institute for Advanced Studies

AT ANY conference there must be a first word and there must also be a last
Word. I feel much honoured by having been asked to speak the first word,
and, before I proceed to scientific details, I welcome the opportunity to greet
publicly my old friend and colleague Leopold Infeld and to congratulate
him on his achievement in building up such an active centre of research in
theoretical physics. Let me also thank him and his colleagues, in particular
Professor Trautman, for their work in organizing this meeting. Anyone with
experience in such matters knows how much labour is involved in organi-
zation. On behalf of us all, I wish to express our appreciation.

In broad terms, what I want to discuss on the present occasion is the
relationship between Newtonian physics and the physics of general rela-
tivity. To narrow the discussion let us think only of macroscopic physics,
so that the indeterminacy of quantum mechanics is entirely omitted. To
narrow the matter still further, let us think of problems of celestial mechanics,
in particular of the solar system.

Since the sun and the planets are nearly spherical, and are separated by
distances large relative to their radii, we may decide to introduce at once an
approximation based on these facts, and treat the bodies as point-particles.
I prefer however to regard this as an approximation to be introduced only
at a much later stage. Let us regard the bodies as finite, and write down the
appropriate: partial differential equations.

In Newtonian physics we have the following basic partial diflerential
equations

3 a a
Q ’57 + (Quaufi—safl),fi = QVJI 9 9.3+ (Qufi).fi = 0' (1)

Here we are using rectangular Cartesian coordinates xa, the Greek sufiixes
taking the values 1, 2, 3; g is density, ua velocity, Sap the stress, and V the
potential (V: fgd3v/r); the summation convention is understood. These
equations apply for all space and time, with Q = 0, Sufi = 0 outside the
bodies. We have 4 equations for 10 dependent variables, and so we have
a highly indeterminate problem. This indeterminacy is often lost sight of
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4 J. L. SYNGE

in Newtonian theory. Indeed it is usually avoided by adding subsidiary con-
ditions. For example, we may assume each body to be a perfect fluid with
a pressure-density relation

Or we may complicate the problem by making the bodies elastic. Or we may
make the bodies rigid by introducing the condition

ua,fi+ uflfi = 0: (3)

thus making the velocity a Killing vector.
All these are in the nature of ad hoc assumptions. When we add the assump-

tion that the bodies are far apart, deductions based on the several different
assumptions may not be observationally distinguishable in view of the inac-
curacy of astronomical observation and the comparatively short period over
which observations have been made. But I want to emphasise that Newtonian
theory does contain elements of indeterminacy which prevent us from writing
down exact equations of motion for a system like the solar system, unless
the indeterminacy is deliberately removed by special assumptions.

The field equations of general relativity read

GU- = ~xTi- (% = 81:) (4)
the units being chosen so that the gravitational constant and the speed of
light are each unity. Latin suffixes take the values 1, 2, 3, 4. In (4) we see
10 equations connecting the 20 components of two symmetric tensors —- the
Einstein tensor G“- which is to be described as chronometric since it can be
calculated directly from the metric tensor gij which gives the proper-time
element :19, and energy tensor TU. The physical interpretation of T,,- is delicate
and important. One plan is to write down the equations

Tijlj = —9gijlj (5)

these four equations determine four eigenvalues 0 and corresponding direc-
tions 11' and we may identify the mean velocity and density of matter with
the timelike direction and its eigenvalue 0(4) at the same time identifying
the other (spacelike) eigendirections with the principal axes of stress and
the corresponding eigenvalues with the principal stresses, reversed in sign
(we regard tension as positive). However, these eigenvalues and directions
may not all be real, and it is advisable to seek rather physical names for the
invariants

T(ab) = Tijliaylib) (6)

where 12,) is any selected orthonormal tetrad; the appropriate names are
stress components, energy density (= flux of momentum), and density!“

(1) The inadequacy of (5) appears in the case where there is an electromagnetic field
present without matter in the ordinary sense; this was pointed out to me by Professor G.
Y. Rainich.
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We are then to regard (4) as 10 equations connecting 20 dependent varia-
bles gij and Ti,- with physical meanings. We recognize the presence of an
indeterminacy somewhat greater than the indeterminacy present in the New-
tonian formulae (1). As in the Newtonian case, we may try to remove the
indeterminacy by taking the bodies to be perfect fluids with pressure-density
relations, writing

Ti] = (fl+P)vivj+Pgija f (.11: P) = 0 (7)
where y is density, p pressure, and v‘ 4-velocity, with viv‘ = —1. (The signa-
ture of gu- is taken to be + + + —.) But as in the Newtonian case, any such
assumption is physically unrealistic, and it is best to work with the general
equations (4) and recognize the presence of indeterminacy.

In View of inherent indeterminacy, we should, I think, not regard the
problems of celestial mechanics as well-defined problems’seeking solution.
Rather we should try to construct model universes vw'th properties resembling
as closely as may be the properties of the actual universe, or some portion
of it selected for discussion.

In constructing a model of the solar system, we seek 20 functions (g,-
and TU) of the coordinates xi to satisfy the 10 equations (4) with certain
requirements of a qualitative character. The first demand is that the metric
tensor should have the signature (+ + + —). If that were all, then we could
construct at once an infinity of universes simply by choosing gij arbitrarily
save for this restriction, and then using (4) to calculate TU. Outside cho-
sen world-tubes we might give gij flat values (making G”- = O) and extend
gij smoothly into the interiors of the world tubes. However, at this point
we see the relevance of the physical condition of positive density; any
arbitrary approach of this type is almost certain to give negative density
somewhere. In fact, the challenge in constructing models is to make
density positive in the bodies (and zero outside them). I have spoken of
the solar system, but it would be better to start with something simpler. So
I would ask you to consider the following systems:

(i) a single body at rest;
(ii) a single body of revolution rotating about its axis of symmetry;
(iii) two bodies moving under their mutual attraction. In each case the

object is to construct a relativistic model which agrees with our intuitive
concept of a system of the type described.

During the past two years we have given much thought in the Dublin
Institute to these problems. In the case of (i) and (ii) we have succeeded in
constructing models which appear to us to be satisfactory. Our work has been
published in a joint paper, Das, Florides, Synge 1961 (referred to below as
DFS); further work dealing with (ii) for a fluid body by Florides and Synge
has not yet been published (referred to below as FS). We have had some
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interesting thoughts about (iii) but we have not succeeded in constructing
a model; in fact we have been led to wonder whether a model can be found
at all.

It is hard to decide whether it would be more interesting to present on
the present occasion the models we have succeeded in creating or our thoughts
about the models we have failed to create. 1 shall not have time to do both.
On the whole it seems best to tell you about our successful constructions and
indicate briefly why the method cannot be used in the two-body problem.

Consider then a stationary system, i.e. a system in which everything is
independent of time. Then Newtonian equations (1) read

(QuauB_Safl):fi = 917,11, (9145),]3 = 0 . (8)

Observe that these equations are invariant under the following transfor-
mation, k being an arbitrary constant:

9 —> [‘29: “a —) kua: Sufi ’9' k45afi- (9)

This tells us that if we have one Newtonian model, we have in fact a single
infinity of such models, obtained from the first by making the transformation
(9). This suggests that a relativistic model of a stationary system should have
the same property, and that we should use a metric tensor containing an
arbitrary parameter k. Therefore, using imaginary time x4 = it, we write
down

gij = 51j+§ij+§ij+ ..., (10)

a numerical subscript indicating a power of k contained in the term. Having
committed ourselves in this way, we see that all geometrical quantities in
space-time admit expansions in k. Thus

gt: 6U+§U+§+ (11)
G” = Gij-l—Gij—i— (12)

2 3

We think of k as small (but not infinitesimal) and recognize that k should
appear first in the second power in (10) because the gravitational field arises
primarily from density and in (9) density is associated with k2. (I use here
the modification, adopted in PS, of the notation of DFS.)

At this point some notation must be defined. The star-conjugate is (for
any symmetric matrix)

A; = Aij_ % 5ijAkk- (13)

We need the linear form Lij defined by

LEE-(w) = i (yij,..+y..,.,-—y..,.j—y..-,..). (14)
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We easily verify that
Lij,j = 0 (15)

identically, and that. if yij satisfies the ‘coordinate condition’
7331' = 0 (16)

then

1470’) = g ya“ (17)
Armed with this notation, we return to (12) and find that

G“ = Lij(g)+M‘j(g,g, mg ), (18)N N N 2 3 N—2
in which the M—term is a rather complicated expressioh whose, form need
not concern us here. We have also identically

GUI} = Gi’fi—K" = 0 (19)
where the stroke indicates covariant differentiation and

K‘- : _F:jGflj__F£lfl, (20)

and hence
Gi’i’j = Ki. (21)
N N

Hence by (18)
Mid. = K. (22)
N N

Note that Ki is a linear homogeneous function of
N

G“, GU, G”. (23)
2 3 N—2

Expanding the energy tensor in powers of k,

T” = Tij+ Tij—l— , (24)
2 3

we see that the field equations (4) are equivalent to
Gv' = _MTU (N: 2, 3, ...). (25)
N N

Our problem then is to construct a suitable set of functions

gij, Tr (N=2, 3,...) (26)
N N

to satisfy these equations and the requirements of signature and of positive
density in the body and vanishing Tij outside it. There is also a further re-
quirement on the boundary B of the body, viz.

T'J'nj :0 (N: 2,3,...) (27)
N

where n, is the unit covariant normal to B.
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The sequence of operations employed may be shown as follows:
T-—>g—>T—>g——>T—>g—>... (28)
2 2 3 3 4 4

The arrows indicate steps which are partly deductive and partly guesswork.

Guesswork is quite legitimate, because we are not engaged in solving some

definite mathematical problem, but rather in constructing a model with cer-
tain desirable features. I have now to tell how the steps are carried out.

CD

FIG. 1. Body at rest in equilibrium under FIG. 2. Body of revolution spinning about
its own attraction. its axis of symmetry.

Think first in a purely Newtonian way. Figure 1 shows a body of any shape
in equilibrium under its own gravitational attraction. Figure 2 shows abody
of revolution spinning about its axis of symmetry under its own gravitational
attraction. In each case let I be the interior of the body, B its surface, and
E the domain exterior to it; B is a fixed surface with equation f(x1, x2, x3)=0,
so that the direction cosines n, of its normal are proportional to f,.,. No
particular assumptions are made about the constitution of the matter in
either case.

The construction of these Newtonian models is not altogether trivial.
We can deal with them both in a single argument, putting velocity equal
to zero for the body at rest. Then what we need is a set of functions of po-
sition, 9,14,, and Sufi to satisfy (8), together with boundary conditions

uanfl = 0, Sufinfi = 0 on B. (29)
We have however complete confidence that such functions exist, and we
know that, once we have set dowu such functions, then we can obtain by
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the transformation (9) a single infinity of such functions. Accordingly, we
have, as basis for the construction of a relativistic model, a set of functions
9, ua, S05, V satisfying partial differential equations and boundary condi-
2 1 4 2
tions as follows:

(Quaufi_Safi),fi = 9V,a (9115M = 0 in I,
2 1 l 4 2 2 2 l

ufinfi = 0, Safinfi = 0 on B, (30)
1 4
9:0, Sa5=0in E.
2 4

All quantities are independent of time.
In approaching the construction of relativistic models based on those

Newtonian ones, we are all familiar with Einstein’s linear approximation
and this is indeed the first step in the construction. However, we are not
to be satisfied with a first step or with a second step—we seek a procedure
which can be used for any number of steps. There are two delicate questions.
These involve the convergence of certain infinite integrals and the existence
of certain functions in a finite domain I. These questions are covered by
the following theorem.

THEOREM: All space is divided into a finite connected domain I and an
infinite domain E, with a surface B separating them. Suppose that in E+I
we are given functions gij, gij, gij, each independent of x4, of class C1,

2 3 N—l
small of order r—1 at infinity in E, and such that, for the metric tensor

g9“) = 5ij+gij+gij+ +32], (31)
2 3 N—l

we have

Gi-i = Gij = = Gi-i = 0 in E. (32)
2 3 N—l

Then gt,- exists, independent of x,, of class C1, small of order r—1 at infinity
N

in E, and such that, for the metric tensor

35,”) = 6ij+gij+gij+ +gij: (33)
2 3 N

we have

G“ = 0 in E. (34)
N

Before proving this theorem, it is necessary to clarify a possible ambi-
guity in notation. By definition, we understand G” to mean the term con-

N
taining k” in the expansion of GU for any metric of the form (10); accord-
ingly this symbol has different meanings for the metrics (31) and (33).
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Having committed ourselves in (34) to the metric (33), let us write 6‘" for
N

the metric (31). Then we have as in (18)
GU = Li] (g)+Mij(g,g, )a (35)N N N 23 ,g

N—2

bi = Mii(g.g. Mg ), (36)N 2 3 N—2
the M—symbol having the same meaning in both cases. From (36) we extract
an important fact. It is well known that for a C1 metric, Gijnj is continuous
across any 3-space with unit normal nj; then

Mijnj is continuous across B, (37)
N

where nj=(n1, n2, n3, 0) is the unit (Euclidean) normal to B.
To prove the stated theorem, we now define T—symbols by

G‘j = —xTiJ', Gii = —zTii, G” = —xT"i, (38)
2 2 3 3 N—l N—l

and we seek to find T‘1 to satisfy
N

[rig =0 in E—l—I,
:rii,j+x—1Ki = 0 in I,
N N

Tijnj =0 on B, (39)N
TU = 0 in E.
N

Here we are faced with the problem of solving 3+1 partial differential equa-
tions in I, with boundary conditions on B:

Taflg +x‘1K“ = 0 in I, Tapnfl = 0 on B; (40)N N N
T4fi,5+x—1K4 = 0 in I, T4513 = 0 on B. (41)N N

But this is nothing but a Newtonian problem concerning a stress-field and
a vector field. Necessary and suflicient conditions for the existence of solu-
tions are

f Kagad3v = o, f K4d3'v = o (42)
I N I N

where Ea is an arbitrary Euclidean Killing vector, so that

Eafl—l—gflfi = 0- (43)

The integrals in (42) are dealt with by changing them to integrals over B
and then to integrals over Boo, the infinite sphere in E.’ Here the topology
of I is involved. The method works only if I is connected. If it consisted of
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several disconnected parts, we would need to satisfy conditions of the form
(42) for each of the parts, and we would not be able to convert each of these
integrals to an integral over Boo. The existence of holes inside I presents
no difliculty.

The proof of the first of (42) is as follows:
K“ ad 7) = M” ad 2;,1. . 3 M 3

2 f MafisanfidB
B N

= f MaflfanfidBoo. (44)
Boo N I

Here we have made use of (22), (23) and (32). We have still to show that
the last integral in (44) vanishes, and that demands consideration of the
behaviour of the M—term at great distance r. This requires examination of
the structure of the M—term, and, details will not be given here. It suffices
to say that each g involved in M is of order r—l, and diflerentiation with
respect to x1, x2 or x3 reduces it to r—Z, while differentiation with respect to
x,1 destroys it. It results that

Mi’" = 0(r-4) (45)
N

and hence the last integral in (44) vanishes. The second integral in (42) is
treated similarly, and we conclude that (42) is true.

To complete the proof of the stated theorem, we now define g” by the
N

formula

dsy
(46)lx—ylgrim = 4f [T‘J’(.v)+x—1M"'(y)]

N N
E+I

in an obvious notation. By virtue of (45) this integral converges and has
moreover a value of order r—1 for large r=|xl. It is easy to see that the coor-
dinate condition

giiij : 0 (47)
is satisfied, and hence by (17) we get, on applying the Laplace operator
to (46),

L:j(g) = —MT”—M‘j, (48)
N N N

or by (35)

G” .— ~MT'j. (49)N N
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which vanishes in E. Since (46) is a potential integral, g” is of class C1, and
N

thus the proof of the stated theorem is complete.
To start the process (28), we make a rather natural choice

T°5=0, T"4=0, T44=—9, (50)
2 2 2 2

using the Newtonian g of (30), and obtain from (46)
2

gafi = 21/6115: ga4 = 0, g44 = _2Va (51)
2 2 2 2 2

where V is the Newtonian potential as in (30). For the next step we satisfy
2

(39) by choosing
Tats = 0, T"4 = igua, T44 = 0, (52)
3 3 21 3

and get
gafi = 0! gm]. 2 4a9 g44 = 09
3 3 3 3

(53)
= day(Sm-x) fgwlto)

Ix-yl
I

So far we have merely recovered the formulae of Einstein and Lense-
Thirring, except for a slight generalization. We now begin to overlap with
work of Fock, although the approach is diflerent. We need a solution 0
(39) for N = 4, and for this we require to calculate the K-term; we find

x—IK“ = —QV,,,, x—IK“ = 0. (54)
4 2 2 4

Thus we satisfy (39) by taking from the Newtonian formulae (30)

Tats = guaufi—Safi, T14 = 0, T44 arbitrary. (55)
4 21 1 4 4 4

We get g”- from (46), which yields a very complicated expression.
4

As for the next step, we find that (39) with N = 5 are satisfied by taking
TI'J‘ = 0 (56)
5

and then gij is given by (46).
5

There is little point in carrying the calculations any further. They get
complicated and we know from the theorem stated above that nothing can
go wrong in the way of convergence of integrals. But no matter how far we
go (there is no question here of taking an infinite number of steps and be-
coming involved in a different question of convergence) we shall not achieve
a perfect vacuum in E. However we can get as near a vacuum as we like.
For suppose we stop with the metric

gij = 6ij+gij+gij+ +gij: (57)
2 3 N
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and then calculate the Einstein tensor GU; in E it will contain the factor
kN+1, and so will be very small if N is large and k small. We may then say
that in E there is only a very small residual energy tensor, as small as we
please if we make N large enough; or preferably, since T‘1' has physical di-
mensions, we may say that the dimensionless product aZT‘j is very small,
a being some typical length or time. The residual energy tensor falls off like
r—4 at large distances.

That I have dealt with so far is merely a restatement in improved form
of the results obtained in DFS and FS. Since a near-vacuum which can be
made as close to a vacuum as we like is not to be distinguished physically
from the perfect vacuum (which in fact does not exist in nature), I think
we are to regard the problem of the stationary field as solved in the sense
that we have a scheme for constructing models of sufficient variety. Indeed
the variety is perhaps more than one might at first desire, because the solu-
tions of (39) have a considerable degree of arbitrariness corresponding to
self stress and to a vector field of vanishing divergence and vanishing normal
component. Moreover (39) does not actually contain 544 and so at each

stage there enters a further indeterminacy as indicated in (55). This does
not mean that the question of models of stationary fields is closed. In the
above method there is a certain clumsiness about some of the formulae, so
much so that the calculation of the Schwarzschild field by this method proves
very tedious (cf. Florides and Synge, 1961). There may be some neater way
of handling stationary fields.

However, the most interesting problems are always the unsolved ones,
and so one naturally wonders whether the above method can be used for
non-stationary cases, such as the spinning rod or the two-body problem.
To see how we stand in the matter, we turn back to the theorem stated ear-
lier and ask whether the stationary condition (symbolically, 8/3x4=0) can
be removed. It cannot be removed for the following reason. If we differen-
tiate a term of order r—1 with respect to a space coordinate, we get a term
of order r—2, and this fact was essential in the proof of the theorem. But if
we difierentiate such a term with respect to x4, its order remains unchanged.
The divergence of integrals of the type (46) becomes a real danger. In fact,
the method which has proved successful in stationary cases fails in non-
stationary cases.

Does the method merely require some ingenious modifications in order
to cope with non-stationary cases? Or can it be that we are looking for
something that does not exist?

Let me try to put the question in proper perspective as I understand it.
There is vast body of astronomical observations on the basis of which we
have a pretty good idea how celestial bodies move, and within a pretty high
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degree of accuracy we know that these observations agree with Newtonian
dynamics, so much so that most astronomers are satisfied with Newtonian
models. If the system in question contains only two bodies, say for simpli-
city two spheres of equal masses, then an astronomer would probably accept
a Newtonian model of this system in which the centres of the spheres rotate
for all time on a common circle. The relativist cannot accept Newtonian
theory and seeks to construct a relativistic model of such a system. Since
he knows that Newtonian theory gives very good practical results, he nat-
urally tries to construct a relativistic model which differs very little from
the Newtonian one. He takes two tubes in space-time to represent the two
bodies and writes down, for the exterior and interior domains,

G,- = 0 in E, (58)

Einstein himself attached more importance to the vacuum equations (58)
than to (59), and in this he has been followed by most relativists. According
to that point of View, the two-body problem consists in finding solutions
of (58) in all space-time except on two singular world-lines, with suitable
conditions at infinity. Any such model would of course be of interest, but
it could not be regarded as final, for we know from Newtonian mechanics
that the finite size of bodies does play a part, in tidal effects and in other
ways. Sooner or later, we must include the equations (59) in order to explore
the interior field.

I want to throw out a suggestion that perhaps in the two-body problem
there exists no suitable model with (58) satisfied rigorously outside the bo-
dies. If such a system does in fact radiate energy, as is commonly supposed,
perhaps that energy appears as a non-vanishing GU. If this sceptical view
is acceptable, then we disregard (58) and deal with (59) alone, seeking
a model in which T“- has a suitable form inside the bodies and is very small
outside them.
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QUANTIZATION OF THE GRAVITATIONAL FIELD*

S. MANDELSTAM
Department of Mathematical Physics, University of Birmingham

PRESENT quantum theories of the gravitational field generally work in “flat
space”. The original attempt at quantization was made by Gupta (1952)
and carried out by him to first order. He started with the Lagrangian of the
classical theory and applied the normal methods of quantization to it, treat-
ing the g,” as ordinary variables which have no connection with the metric.
Owing to the ambiguities in the ordering of the factors, such a programme
cannot be carried through exactly. However, it may be that one can write
down a Lagrangian to any order in the gravitational constant and obtain
consistent equations of motion up to that order.

Quantization in flat space can only be regarded as a provisional solu-
tion of the problem for several reasons. One would like to be able to formu-
late the equations of a theory exactly, even though approximations have
to be made in their solution. This cannot be done or, at any rate, has not
yet been done, in the flat space gravitation 'theory. Also, one has to introduce
an indefinite metric and unphysical states, just as in quantizing electrody-
namics with the Lorentz gauge. Both these disadvantages would be over-
come if Arnowitt, Deser and Misner (1960) succeed in their programme
of finding canonical variables for the quantum theory. At the moment a so-
lution does not appear to be in sight, and in any case it would yield a theory
which completely lacked manifest Lorentz covariance.

But the main objection to both these approaches lies surely in the physi—
cal sacrifices they make by going to flat space. The variables specifying the
coordinates are numbers without physical significance which can be chosen
in an infinite variety of ways. On the other hand distances in space-time,
which are physically significant entities, are related to the coordinates and
the field variables in a manner which has not been elucidated when the
metric is quantized. It may be possible to add to the theory a prescription
for interpreting its results physically. If it could then be shown that the phys-
ical predictions of the theory were independent of the coordinate condi-
tions used, and that they tended to the predictions of unquantized general
relativity in the classical limit, we would have a satisfactory theory. Pro-

‘ Report based on two papers submitted to the Annals of Physics.
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gress in this direction has recently been made by Thirring (1959, 1961) who,

however, considered only unquantized g’s.

An ingeneous attempt to quantize the gravitational field has recently

been made by DeWitt (1961a) who avoids going to flat space. He examines

a gravitational field in interaction with a stiff elastic medium and a network
of clocks, which are essential to his method in order to identify points in
curved space-time. Our aim here will be to avoid the introduction of such
a system, which is absent in most practical cases.

It has been realized for some time, mainly through the work of Berg-

mann and his collaborators, that a quantized theory of gravitation should

deal only with observable quantities, in other words, with quantities inde-
pendent of the coordinate system (Bergmann and Goldberg, 1955). The

main problem is to find such quantities, and we shall suggest a method for

doing so in what follows. It will be easiest first to examine quantum electro-
dynamics, with which we are much more familiar and where an analogous

problem exists. The solution of the problem in that case will give us insight
into the gravitational case.

The conventional methods of quantizing electrodynamics suffer either

from lack of manifest covariance or from the use of unphysical states and

an indefinite metric. As has been pointed out by Bergmann and Goldberg

(1955, also Goldberg 1958) a satisfactory theory would have to work with

gauge independent quantities only. Thus one should not introduce electro-
magnetic potentials at all, but should work entirely in terms of the fields.

For an electromagnetic field interacting with charged particles, the particle

operators (p are also not gauge independent, as they undergo a phase trans-

formation associated with a change of gauge. However, it has been realized

for some time that the variables

as (x,P) = (p (x) exp {—iefxdzflAfl (2)} (1)
P

remain unchanged under a gauge transformation. (To avoid ambiguities in

ordering, we assume that the path of integration is space-like or has at most

an infinitesimal time-like part). The integration in (1) will depend on the
path and, in fact, it is easy to show that, if two paths are identical except
for a small area a”, between them at the point 2,

6,45 (x,P) = —ieF,,', (z)(D(x,P) 0“,, (2)

6 being the difference between the (15’s defined according to the two paths.
It follows from (2) that, although the number of operators 45 is equal to the
number of paths, the number of independent (F5 is (speaking roughly) equal
to the number of points.

The proposal is now to work entirely in terms of the electromagnetic
field variables and the variables @(x, P). Equation (2) is postulated as-the
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fundamental equation giving the dependence of <15 on the path. For consis-
tency one has to postulate the integrability conditions

sxlpvaAFMv = 0, (3)

which are just the homogeneous Maxwell equations. One can then obtain
a theory of quantum electrodynamies which is manifestly covariant and
which does not introduce unphysical states and an indefinite metric. The po-
tentials can be introduced as a mathematical aid for calculation, and current
computations in the Coulomb or Lorentz gauges can be justified on our
formalism.

The use of path-dependent variables defined by (l) for quantizing electro—
dynamics was suggested independently to the present author by DeWitt
(1961) and by Pandres (1961) and both authors also mention the possibility
of using similar variables for quantizing gravitation.

It may be objected that the use of path-dependent variables is a com-
plication at least as serious as those of current quantization schemes, if not
more so. We feel, however, that this path dependence is a fundamental phys-
ical property, unlike, for instance, the indefinite metric, which is comple-
tely unphysical. It is ultimately connected with the arbitrariness in the choice
of phase factors associated with the operators of charged fields. One can choose
the phase factors arbitrarily at one point. Once this has been done, however,
the phase factors at a neighbouring point will be fixed. If one chooses the
wrong phase factor here, one has to add extra terms to the equations of mo-
tion. Such terms are unphysical and can be removed by a gauge transfor-
mation, which re-establishes the correct choice of phase at the second point.
In order to choose the phase factors at a field point a finite distance away
from the reference point one cannot proceed directly, but one must con-
struct a path joining the two points and go from point to point along the path.
If there is an electromagnetic field present the result will depend on the path
chosen. One thereby obtains the path-dependent operators of our theory.

The physical nature of the path dependence under discussion is exhibited
in the Aharonov-Bohm experiment. According to the authors, the experi-
ment indicates that electromagnetic potentials in quantum theory do have
some physical significance, in that the line integral of the potential round
a closed curve is measurable. Nevertheless, no local measurement would
reveal the existence of the potentials; a type of non—locality appears to be
indicated. In our way of looking at the problem, the effect exhibited by the
experiment is fundamental, and the remaining unphysical effects of the
potentials have been eliminated. The theory has no arbitrary non-local
character.

The electromagnetic field viewed in this light bears a striking analogy to
the Riemann tensor of gravitational theory. The coordinate system instead
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of the phase is now the arbitrary quantity. Once a local coordinate system
has been specified at one point, we must obtain it at a neighbouring point

by parallel displacement, otherwise there will be extra terms in the equations
of motion. To obtain the local coordinate system at a distant point one
cannot proceed directly, but one must take the local coordinate system from
point to point along a path by parallel displacement. If the Riemann tensor
is non-zero, the final result will depend on the path chosen. The electroma-
gnetic field is thus related to the arbitrariness of the phase factor in exactly

the same way as the gravitational field is related to the arbitrariness in the

coordinate system.
It is now evident how one can construct variables for the gravitational

field which do not depend on the coordinate system. Instead of defining

a point in space-time by four numbers, which we are able to do only with respect
to a coordinate system, we must give a prescription for constructing a path

from the initial reference point to the field point. The prescription is always
referred to a local coordinate system which is being moved along the path

by parallel displacement. For instance, a specimen prescription may run as

follows: Start at a reference point P1, at which a local coordinate system

is fixed arbitrarily. Now move a distance d1 in the x-direction to a point P2,
and take the coordinate system along by parallel displacement. Next move
a distance d2 in the y-direction, defined with respect to the coordinate system

which had been moved to P2. Denote the point reached by P3. Again take
the coordinate system along by parallel displacement. Finally, move a fur-

ther distances d3 in the x-direction, defined with respect to the coordinate

system which had been moved to P3. Denote the point reached by P4. Again

we take the coordinate system along by parallel displacement, and perform
the required measurement.

Thus in gravitation theory, as in electromagnetism, all variables are func-

tions of paths rather than of points. Again we shall require an equation giv-
ing the dependence of the variable on the path, so that the number of indepen-
dent variables is only equal to the number of points. The equation essentially

tells .us the curvature of the space. Before deriving it, let us rewrite the cor-
responding electromagnetic equation (2) in a more general form. As it is
written at the moment, the right hand side would have the opposite sign

if d5 were replaced by (15* and would be zero if Q5 were replaced by FM. We
can however comprise all cases under the formula

62X(x5 P) = ieFln(z)[J09 X(xs P)] U]; (4)

where X is any operator (15*, <15 or FM, and J is the total charge of the system.

To obtain the gravitational analogue of (4) we again examine two paths
which are constructed by indentical prescriptions except that, at the point
2, they difler by an infinitesimal area 03,1. According to a fundamental for-
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mula of Riemannian geometry, two vectors taken along the paths by parallel
displacement whitch were identical before passing 2 will differ after it by
an amount

day = i— flmaflfi“ (5)

As we always use local coordinate systems, we do not distinguish between
upper and lower indices. Equation (5) indicates that all vectors are rotated

by an amount %Rmo',,z in the luv-plane. Similar formulae hold for ten-

sors and spinors, so that we may write in general

6.X(x, P.) = — f Rare, P3)[J,..(z, P3),X(x. P910... (6)

In this formula, X is any operator (Raw (x, P1), @(x, P1) etc.), and P3 is that
portion of P1 leading to z. The symbol —i [1,”(2, P3),X(x,P1)] is defined as
the effect of an infinitesimal rotation of X about 2 in the [iv-plane. For the
moment we shall ignore the question of the ordering of factors.

Equation (6) is the gravitational analogue of (4). In this form 'of the
theory, no mention is made of variables such as g”, or Pf}, but the Riemann
tensor is introduced directly as a quantum variable. The relation of this
tensor to space curvature is given immediately by Eq. (6) so that besides
being a dynamical variable, it has its usual geometric significance.

The type of path dependence encountered in gravitation theory is in-
herently more complicated than that encountered in electrodynamics. If two
paths are defined by identical prescriptions except for a small area between
them at one point, they will begin to diverge from one another after passing
that point. The reason is that the local coordinate systems which are being
moved along the paths become rotated with respect to one another when
passing the area, and directions along the path are always defined with respect
to these coordinate systems. As a result of this feature, it is not a simple
problem to determine whether two paths lead to the same point. In classical
theory, the question can in principle be answered if we have sufficient know-
ledge of the Riemann tensor for intermediate paths. For, in certain cases
it follows from (6) that any measurement performed at the end of the paths
will yield the same result. The physical criterion for two paths leading to the
same point is thereby fulfilled. In the quantum theory, the elements of the
Riemann tensor which one requires do not commute, so that the question
does not have a meaning. It was always expected that the uncertainty prin-
ciple would affect the precise location of points in a quantized gravitational
theory, and this is the form the uncertainty takes.
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As in electrodynamics, we require integrability conditions in order that
(6) be consistent. The conditions turn out to be

Rpm/1.0" P) = Ruin» (x: P),

SymlRWl (xa P) = 0: (7)

ewe, (2)12,“ (x, P) = 0.
These equations are the familliar symmetry conditions and Bianchi identities
which the Riemann tensor must satisfy. (It is also taken for granted that
Rm, is anti-symmetric in [,l. and v and in x and l of course).

We now require equations of motion and commutation relations for
our path—dependent variables. We have not succeeded in writing a Lagrangian
for our theory in terms of path-dependent variables. The difficulty lies not
in writing down a Lagrangian density, but in integrating it over volume.
Our method was therefore to take the results over from the classical theory
using the correspondence principle. The consistency of all equations of mo-
tion and commutation relations must then be verified directly. There is no
difl'iculty in writing dowu equations of motion in the classical theory, as
(for interacting gravitational and scalar fields) both the Klein-Gordon equa-
tion and the Einstein equations can immediately be written down in terms
of path—dependent variables. The calculation of the space-like Poisson brac-
kets is not quite so straightforward, but can also be done without too much
difficulty, as our path-dependent variables can always be expressed in terms
of the gfl,’s of the conventional theory. The Poisson brackets can then be
found by a procedure given by DeWitt (1960). The calculations are greatly
simplified by using Fermi coordinates along the paths.

One cannot simply quantize the classical gravitational theory of path-
dependent variables as it stands, owing to ambiguities in ordering. Even in
the fundamental path-dependence equation (6) we would not know how to
order the two factors. Such an ambiguity does not exist in electrodynamics,
where the two factors commute for space-like paths. We can overcome the
difliculty by requiring for the specification of an operator, not only the spatial
position of the path, but the ordering of all the elements of the path with
respect to one another and to the operator itself. When dealing with a pro-
duct of two operators we have to specify the orderings of the elements of
both paths with respect to one another and to the operators. Only if all the
elements of one path and its operator are ordered before (or after) all the
elements of the other path and its operator will such a generalized product
be a true product. The classical Poisson-bracket relations can then be adapted
in a more or less obvious way to give space-like “commutation relations”
for the difference between two operators or generalized products in which
the ordering of the operators themselves, of an operator and a path element
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or of two path elements has been interchanged. Thus the number of indepen-
dent variables is not increased by the present modification, and we have
information equivalent to the space-like commutation relations of other
field theories. Further, there is now no ambiguity in passing from the classical
to the quantum theory. In Eq. (6), for instance, the operator RM is to be
ordered in the same position as the elements of the path surrounding the
area 0,1,1.

Another complication which occurs when writing down commutation
relations is that one can only state them explicitly for space-like separated
operators or path elements, i.e., for elements or operators defined either
at the same point or at two points between which signals cannot propagate
without exceeding the velocity of light. In a curved space we do not in general
know whether two points are space-like separated without a knowledge
of the Riemann tensor over a certain region, and in the quantized theory
the question does not always have a meaning. It appears, however, that
statement of the local commutation relations in a Lorentz-invariant theory
with given equations of motion is suflicient to define the theory. One cannot,
of course, prove such a theorem since, at present, nothing is known with
certainty about the existence and uniqueness of solutions of quantum field
theory equations. The assertion can easily be proved for free fields, and it
should not be difficult to extend it to any order of perturbation theory for
interacting fields. We shall, therefore, assume that it is sufficient to give the
local commutation relations between operators and path elements in our
theory, so that the difficulty regarding the lack of knowledge of space-like
separation is not relevant.

One can thus obtain local commutation relations and equations of motion
for our variables which, together with the path-dependence equation, pro—
vides us with a theory of the quantized gravitational field. The theory can be
expanded in a perturbation series and, in first order, the results are equi-
valent to those of the Gupta theory, though the quantities in that theory
are now regarded as auxiliary quantities for calculating coordinate inde-
pendent functions. It is not known whether our theory would give results
in higher order equivalent to the prescription of Feynman for calculating
the S—matrix, nor have we investigated the problem of renormalization.

Though the theory of gravitation as formulated here may appear compli-
cated, we should like to stress that it does not contain more arbitrary compli-
cations than classical gravitation theory. Once one postulates the absence
of an overall inertial frame one is forced to quantize the theory in terms of
coordinate independent quantities, of which our path-dependent variables
appear to be an obvious choice. To avoid ambiguities in ordering and, in
fact, for consistency, one must also specify the ordering of the path
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elements and the operator. We, therefore, feel that the ideas outlined here
provide us with a natural method of quantizing a theory of curved space
in which the curvature itself is a dynamical variable.
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DISCUSSION

L. H. THOMAS:

I want to ask whether there is notadifliculty in aformulation like this
from the Poisson bracket form: if you take the quantum-mechanical or the
classical Poisson bracket of two functions giving operators then this gives
you a function giving their commutator; but here you have a linear combi-
nation of operators given by Poisson brackets with variable coefiicients, and
in general this will not be in Hamiltonian form; it will not be given by the
Poisson bracket with anything, unless you introduce extra variables.

S. MANDELSTAMZ

I’m not quite sure if I understand the question. Anyhow, the position
is, in the classical theory, that one can construct Poisson bracket between
two variables which are independent of the coordinate system. One can
actually take something like coordinate conditions in order to work out
the Poisson brackets, but it’s not diflicult to prove that the result one gets
would be independent of the coordinate system. So I think that the calcu-
lation of the Poisson bracket between two variables, at any rate in the classi-
cal theory, is something which is quite unambiguous, provided the variables
are independent of the coordinate system. I don’t know what Prof. DeWitt
would say to that.
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B. S. DEWITT:
Again, I’m not quite sure what is meant by adding extra variables. You

certainly don’t need to add specified canonical variables in order to calculate
Poisson brackets.

L. H. THOMAS:

No, since the question was not clear, perhaps I should repeat it. If
you have infinitesimal operators given by functions which give you infini-
tesimal changes as Poisson brackets of the functions and the operands,
then the commutators of the operators will be got from the Poisson brackets
of the functions; but if you have a linear combination of such operators,
namely rotation operators or in fact any from the components of the Rie-
mann tensor, the whole thing is not necessarily of the same form and in
general cannot be of the same form. There will be difficulties in expressing
the whole thing without using operators not in a canonical form or intro—
ducing new variables.

A linear combination of Poisson brackets with functions of the variables
as coeflicients is not immediately a Poisson bracket and usually cannot be
put in that form without introducing further variables.

S. MANDELSTAM:

I’m coming to see more and more that I’ve been using a rather bad no-
tation. I’ve used the expression [J,,V(z),X] as a definition for the process of rota—
ting the path by the amount Jw, in the luv-plane; and I chose the notation by ana-
logy With ordinary quantum mechanics. I’m beginning to think I should not
have used it in this quantized gravitational theory, because I’m not thinking
of it as a Poisson bracket between an angular momentum that we know
and another operator that we also know; that’s true in other theories, but
it doesn’t necessarily seem to be true in the gravitational field. I consider
this whole expression as a unit which is defined by the effect of taking an
infinitesimal rotation in the ‘u/V-plane at the point 2; not as a Poisson bra-
cket.

P . G. BERGMANN:

I first would like to take this opportunity to offer an apology of my own
to somebody who probably doesn’t expect it, and that is Prof. Rosenfeld.
To the best of my knowledge, the first comprehensive attempt at quanti-
zation goes back to two papers by Rosenfeld, 1930 and 1932. The apology
is due because I was totally unaware of these papers until several years after
I had begun to work on this problem myself, and this meeting gives me
the chance to state that as far as I know Prof. Rosenfeld was the first one to
recognize the physical interest of this problem, and to make a remarkably
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comprehensive attempt at quantization. These papers, incidentally, work
with tetrads, although probably not exactly the same tetrads that are being
used in attempts that we shall hear about later in this conference. There was
a paper in the Annalen der Physik, 1930 and one in the Institut Henri
Poincare’ about two years later, 1932.

As far as the proposal by Dr. Mandelstam is concerned,Ithink it is fairly
unanimously the opinion, shared by you, that quantization should be attemp-
ted, as far as possible, in terms of intrinsic variables; though there may be
same limitations to this program. But if you accept this objective, then I
think the question may be phrased in terms of usefulness or practicability:
whether a program of formulating intrinsic quantities by means of paths
is likely to lead to results more convincing, or at least as convincing, as other
attempts. I think that probably much more work has to be done to decide
that question. The remarks that I want to make are not to say that this is
either very wonderful or no good at all; but they are simply preliminary
comments.

One problem that I see is this: if you try to fcrmulate a path you must
do it in term of some prescriptions, if you do not wish to introduce more
than a local coordinate system, or the term of a coordinate system, you
must phrase your prescription, perhaps, in terms of geodesics; that is, you
say, we proceed for such-and-such a distance along a geodesic, then we turn
a corner through such an angle, and so forth. If you do that, I think the
following problem immediately arises. You wish to consider two paths,
both leading from your reference point to a fixed end point x. On the
other hand, it is obvious that in a non-flat space a rectangle of paths is
not closed. Therefore, in the absence of knowledge of the c-number metric,
you cannot a priori state that two certain paths will lead to the same end
point. You already have to presume knowledge of the Riemann-Christoffel
tensor before you can get started with your system of paths. And there I
see a serious difficulty.

S. MANDELSTAM:

I would think that is just a fact of life. I see the point you make, but
I don’t think it prevents us from applying the prescription to construct the
paths, does it?

P. G. BERGMANNZ

It seems to me that it prevents you a priori from considering the set of
paths that has one end point in common.

S. MANDELSTAMZ

I agree fully with that but isn’t it just a real physical consequence of
the uncertainty principle, that we don’t know whether the two paths lead
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to the same point or not; that in fact in the quantum theory the question
doesn’t necessarily have any definite meaning?

P. G. BERGMANN:
Well, you see, the reason that I’m raising this question is that you wish

to compare with each other, for instance, the Riemann-Christofiel tensor,
or rather the equivalent of the R-C tensor at the same point, arrived at
by different paths.

S. MANDELSTAM:

I don’t know what the same point means.

P. G. BERGMANN:

Neither do I, and that was my question. So the end points of diflerent
paths may be in an unknown relationship to each other.

B. S. DEWITT:
Prof. Mandelstam hasn’t had time to go on and show the details of how

you perform the perturbation calculations, but at least in the case of electro-
dynamics it is fairly straightforward; and I wanted to tell Prof. Mandelstam
that I have attempted to follow out his prescription in detail to calculate,
say, the photon propagator to the lowest radiation correction order. Because
the F,” to begin with is path independent, you should get a result which is
path independent. The outcome of the calculation was that in momentum
space, you get a kind of a mixed theory, where you have the paths in confi-
guration space and the calculation in momentum space; and by the time you
have shifted the origin of momentum space in the usual way to evaluate
the integrals you have lost the explicit path independence of the result. It has
been my experience that it is simply necessary to reimpose the condition that
the result be path independent in order to obtain the usual gauge-invariant
result. Should this be regarded as a defect, or is there any way to improve
this so that the theory is better than with the usual calculations; for example,
one might try, instead of doing the calculation in momentum space, to do
it in coordinate space; and there may be other methods.
S. MANDELSTAM:

The comments I make are based on work by Kenneth Johnson (M.I.T.).
The problem consists of finding the photon propagator in second order
of perturbation theory. As I understand it, what Johnson did was instead
of considering the usual current j,,=e@(x)y,,1p(x) to take the expression

x!

eE(x’)y,, exp (ie f Audx")1p(x). He considers the x’ to be separated from the
x

x, and then later on at the end of the calculation he will let x’ tend to x.
However, once you separate x’ from x the first expression becomes, gauge
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dependent, so he does what, in my formalism, would be transforming 1/) to
9”. Then he does the calculation, and finally makes x’ tend to x. He claims
that when he does so the offending term never appears, and the calculation
is completely gauge-independent without the quadratic divergence all the
time.

F. J. BELINEANTE:

Why do you Write X(x, p) and not X(p), if you admit that you cannot
tell whether or not paths P1 and P2 do or do not end up in the same point x?

S. MANDELSTAM:

Strictly speaking I should write it X(p). The reason I don’t is just for
convenience. x is the total displacement in the Fermi coordinates along the
path; and the only reason I keep it in is for taking Poisson bracket relations.
We are dealing with two points which are infinitesimally separated, in other
words with two paths which are almost the same except at their end points;
so that it’s worth keeping the x’s.

But you’re right; stritcly speaking we shoudn’t have the x’s. At any rate,
of two operators have the same x, it does not imply that they are at the same
point; it just means that the displacement in the Fermi coordinate system
of the two paths is the same.
A. I. JANIs:

How do you specify the beginning point of your path?

S. MANDELSTAM:
That’s a hard question. As a matter of fact, if you don’t have a space

that is asymptotically flat at infinity I don’t know how to answer it. I’m con-
sidering the case of a space that is asymptotically flat at infinity, and I just
take any point in the asymptotic region.
J. A. WHEELER:

The insights that come from this very beautiful talk lead me to try to
take advantage of Prof. Mandelstam’s being here to ask a more general
question. Over a 20 year period what would you think of as being the que-
stions that one would try to ask of quantized general relativity? Answering
problems is very difficult, but stating problems is even more diflicult, and
that’s why I ask this particular question. Of course, you think of setting
up operators and commutation relations, but this is machinery. But I would
welcome very much your thoughts on what sorts of physical questions you
would apply the machinery to.

S. MANDELSTAM:

By “you” you mean people in general? Well, I think one thing would
be to find a reasonable practical prescription for writing down diagrams in



QUANTIZATION OF THE GRAVITATIONAL FIELD 27

perturbation theory, which I haven’t really looked at yet, but which Feyn-
man is now working at very adeptly. I think such a programme should be
related to some formalism operating in terms of quantized fields. Of course,
questions of renormalizability will come in. If it’s found that the theory is
not renormalizable in perturbation theory, or even if it is renormalizable in
perturbation theory, there is the very general question as to whether the sort
of fuzziness in space associated with the quantized gravitational field would
manage to eliminate the divergences if one tries to use the Lagrangian forma-
lism for any field theory. Isuppose you also think of these topological
questions of what wormholes and other such objects would be like in
a quantized gravitational field. It’s really a question I can’t answer.

S. MANDELSTAM:

I think the equations analogous to the divergence equation of quantum
electrodynamics are the Bianchi identities and the other symmetry relations
of the Riemann tensor. I should have said that they come out as consi-
stency conditions, just as the homogenous Maxwell equations come out as
consistency conditions in the electrodynamic case.

D. IVANENKo:

You have a very general formalism. I have not understood rightly just
where have you so to say lost the torsion terms? Is your formalism adequate
only for curved spaces or also for spaces endowed with torsion? For the
case of absolute parallelism, for instance? Indeed, torsion seems to be
important, e.g. it leads to non-linear supplement in Dirac equation.

S. MANDELSTAM:
I have not introduced torsion in path dependence equation where the

only path dependence is caused by the rotations in going around a small
area. There is no torsion. It may be possible to include another term
into this path dependence equation which takes torsion into account, but
I haven’t been looking at this question.

C. W. MISNER:
I just wanted to make a few comments on how this method might com-

pare with the work of ADM, especially as regards points, and the idea
of elimination of coordinates. I think that the elimination of coordinates
in this work is, in a sense, equivalent to the imposition of a coordinate con-
dition that many other workers have tried to use. That is, you haven’t said
in complete detail how you specify a point on a path, but it is pretty clear
that the easiest thing to do is to move successively distances x”, x1, x2, x3
along the axes of a parallel-propagated frame and thus to lay out a coordi-
nate system. I think that the most essential diflerence is the somewhat more
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local procedure used to identify points here than would be used in the
attempt to define quantum canonical variables Arnowitt, Deser and I have
made. There the coordinate conditions require one first to investigate es-
sentially all of space-time, then begin laying down coordinates afterwards
to say unambiguously where one is looking; but that procedure does allow
one to talk about different path leading to the same point. The aspect of
the points becoming fuzzy and not entirely unambiguous again does show
up as a result of the quantum theory; namely the relationship between one
set of physically measurable, meaningful coordinates which commute with
certain of the gravitational field variables, and another such set, depends
strongly on the gravitational field itself which is subject to quantum fluctu—
ations. Therefore a point within one set of coordinate condition fluctuates
relative to a fixed point in another set of coordinate conditions.

S. MANDELSTAM:
I think I agree with most of what Misner has said.

S. DESER:

I just want to add a comment to what Misner has said, and that is that
the one big problem in quantization is the consistency of a given procedure.
Having written down commutation relations one has to show that they
match with the field equations into a consistent theory. The investigation of
this problem is probably going to be a very very difficult task, in any ap-
proach to quantization.

A. PEREs:

I have a technical question. If you consider two different deformations
of the same path and then take them in reverse order you get something
like a double commutator. I wonder whether that will satisfy something like
the Jacobi identity. This is necessary for the consistency of the theory.

S. MANDELSTAM:

I think it’s just a simple geometrical question. This is the effect of infi-
nitesimal rotations; so the question is, if you perform two rotations does
the result depend on the ordering. I don’t see what can go wrong.

F. J. BELINFANTE:

In the case of electromagnetism the most commonly used gauge-inva—
riant quantities are defined for a given Lorentz frame; in that case you simply
take the radiation gauge. But radiation gauge can be obtained from this line
definition if you use for the line first a straight leading to the field point in
the surface t=const., and then average over all possible directions. Suppose
in the gravitational case you also have this definition with this line; would
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there be some possibility of arriving at the type of variables that ADM have
been looking for by some kind of an averaging process over paths?

S. MANDELSTAM: .
Possibly; it’s an interesting idea. I just dont’ know.

R. SACHS:

May I ask whether you can get anything like a total energy, and a total
angular momentum of the field in terms of this approach?

S. MANDELSTAM:

I don’t think they could be the result of an integral of some quantity
over space. I think there is a meaning to the total energy of the system; it
is just the displacement operator in the time direction. But I don’t think
that one can express it in the form of an integral over the energy density,
or anything like that.

R. SACHS:

Well, never mind how it can be expressed; would you have any way of
writing down this quantity?

S. MANDELSTAM:

Yes, it’s just the operator shifting all paths rigidly by a small distance
in the time direction.

C. W. MISNER:
Including the initial point?

S. MANDELSTAM:
Yes, including the initial point.

B. S. DEWITT:
Can you find such an operator?

S. MANDELSTAM:

I don’t think I can express such an operator in terms of the other oper-
ators, if that’s what you mean.

P. G. BERGMANN:
If I may come back once more to the question of identifying points, in

terms of the paths that lead to them: first of all, I would like to say that I think
the application of the term ‘uncertainty relation’ may be a bit misleading,
because the things that we are discussing here are already properties
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of the c-number theory. That is, it is already true in the c-number
theory that, in the absence of knowledge of the metric field, by specifying
several paths we may not know to which point we finally get. Now this would
be quite acceptable, because I think that we do not know for certain that the
concept of world point has any physically intrinsic significance. Nonetheless,
in relativity one can identify points in terms of local properties without refe-
rence to paths and without reference to conventional coordinates, by some
prescription based on intrinsic coordinates. This need not be the one that
Komar and I gave on the basis of Géhéniau and Debever’s work—there
are other methods of doing it. The main point is not how to do it, but that
it can be done at all. You can, therefore, specify paths leading from one point
to another in terms of local intrinsic properties, rather than in terms of an
arbitrary coordinate system; and thus it looks as if you might be depriving
yourself of a degree of determinacy that is available in the theory.

S. MANDELSTAM:

I think that in the classical theory the problem, although it is an extre-
mely complicated one mathematically, is one that can be carried out. In
other words, if one is given two paths and one also knows the value of the
Riemann tensor for suflicient intermediate paths, then I think one can in
principle calculate, in the classical theory, whether or not these two paths
lead to the same point. Suppose that we are working in terms of the conven-
tional formalism, with the g,” and so on, and we take two paths which do lead
to the same point. We then go to the path-dependent formalism, and ex-
press all variables in terms of these paths; and we also find the Riemann
tensor for intermediate paths. Then, I think that one can show from the
path dependence equation that if the Riemann tensors for all these inter-
mediate paths have certain relations to one another, then any variable in
the classical theory defined by means of one path is the same as that variable
defined by means of the other and therefore the criteria for the two paths
leading to the same point are satisfied. Now, the reason why I say it is
connected with the uncertainty principle is that the components of the
Riemann tensor that one requires in order to carry out this calculation do
not necessarily commute with one another in the quantum theory.

C. W. MISNER:
Even if the entire construction lies on a space-like surface?

S. MANDELSTAMZ

In the quantum theory you don’t always know when the surface is space-
like.
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1. INTRODUCTION

During recent years the 01d question of the localizability of the energy in
gravitational fields has been treated anew in a number of papers by different
authors, and in a recent paper [1] it was finally shown that a satisfactory
solution of this problem can be obtained within the framework of a tetrad
description of the gravitational field. The conclusion of the foregoing inves-
tigations was that a satisfactory solution of the energy problem requires the
existence ofan “energy-momentum complex” T1." with the following prop-
erties:

I. Tikis an affine tensor density which depends algebraically on the gra—
vitational field variables and their derivatives and which satisfies the diver-
gence relation

arkT-" E —‘— = 0. (1)"" M
II. For a closed system where space-time is asymptotically flat at spatial

infinity, and where we can use asymptotically rectilinear coordinates (x‘)
= (x,y,z,ct), the quantities

pi =ifff Ti4dx1dx2dx‘ (2)
C

x4 =const.

are constant in time, and they transform as the covariant components of
a free vector under linear space-time transformations.

This property is essential for the interpretation of Pi = {PL—H/c} as
the total momentum and energy vector.

III. T" E T4" transforms like a 4-vector density under the group of pure—
ly spatial transformations

El =f"(x"), 75* = x4. (3)

31
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The last mentioned property is necessary in order to make the energy
content of a finite volume of space V, i.e.

Hy = — ff] T44dx1dx2dx3, (4)
V

independent of the spatial coordinates used in the evaluation of the integral
(4). Thus, III is the condition of localizability of the energy in a gravitational
field.

Further we must have

l = Tik+tik (5)

where ”a" is the matter tensor density, which appears as the source of the
gravitational field in Einstein’s field equations

9m = -—z (Cik (6)

and ti" is the complex of the gravitational field, which vanishes in the limit
of special relativity.

The expression for the energy-momentum complex given by Einstein
more than forty years ago is of the form

91'" = (Gk—l”?! (7)
1 625

191'" = — mai— 5i" 82% ( agm, g! .8.) ( >
where

£1: = Brig“: gait) (9)

is the usual Lagrangian of the gravitational field. It deviates from the scalar
curvature density

ER 2 m(gabgfl‘,t,gik,l,m) (10)

by a divergence. Therefore the field equations may be derived from a varia-
tional principle in which either 5R or .85 is taken as variant, i.e. we have

65)? 6.85
91k = 'k = —.'6g: 6g'k

6 . . . . . .
where‘s—7km (11) means variational derivatives of St and .95, respectively.

g

(11)

In contrast to St which is a true scalar density BE is only an afline
scalar density. On the other hand, ,QE has the advantage of being
a homogeneous quadratic function of the first-order derivatives only.

Starting from the Bianchi identities which by (6) may be written

fitfificmg'm = 0 (12)
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one is led to the Einstein expression Q" in the usual way by eliminating CL,”
in the last term in (12) by means of the field equations and the last expression
(11) for 3m. The equation (12) is then easily seen to take the form

Qikak = 0 (13)
where Q" is the complex defined by (7), (8). It is well-known that Einstein’s
expression satisfies the conditions I and 11 above, but not the localizability
condition III. It is important here to note that the validity of II hinges on
the property that .85 and therefore also 2%" is a homogeneous quadratic func-
tion of the first-order derivatives of the field variables gil‘. On the other hand,
the circumstance that £5 is not a true scalar density is responsible for the
non-localizability of the energy in Einstein’s theory.

At the time of the last relativity conference at Royaumont I advocated
a different expression a" for the energy-momentum complex [2] which has
the advantage of satisfying the localizability condition III. It can be obtained
from (12) by the same procedure as that mentioned above but on using the
first expression (11) instead of the second expression for 91m [3]. In this way
(12) takes the form

Qik’k = 0 (14)

where

81'" = gik+ 1%" (15)
and ii" is an algebraic function of gi" and its first— and second-order deriva—
tives. The complex 63" was also obtained by applying the “method of infini-
tesimal coordinate transformations” to the scalar density 3% [4], and the faCt
that 9% as a true scalar density is essential for the validity of 111. According
to (14), Qi" also satisfies I but, as was recognized in a later paper [5], the de-
pendence of {9} on the second order derivatives of the metric tensor will in
general invalidate 11.

Thus, we are in the embarrassing situation that we have tw0 different
expressions for the energy-momentum complex, viz. 03‘ and Q", neither
of which satisfies all the conditions I—III. The first satisfies the conditions I
and II but not III, while the second expression satisfies I and III but in gen-
eral not II. It can even be shown that if we do not allow higher order deri-
vatives of the metric tensor then the second order to appear in our complex,
the Einstein expression 81-", is the only one satisfying I and II [5] and Q"
is the only expression satisfying I and III [6]. As one of my students at the
1960 Summer School at Brandeis University said when confronted with
this situation: “It looks as if nature wanted to tell us something”. The later
development [1], [9] seems to indicate that what nature wanted to tell is that
the gravitational field is not a simple metric field but fundamentally a tetrad
field. This means that space-time is not simply a Riemannian space but a space
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of the type considered first by Weitzenb'ock [7] which may be pictured as
a Riemannian space with a built-in tetrad lattice.

As a result of the investigations in recent years we can state that a satis-
factory solution of the energy problem is possible only if the gravitational
equations are derivable from a variational principle where the Lagrangian
density .8 has the following properties:

a) ,8 depends algebraically on the gavitational field variables and their
first-order derivatives and it is a homogeneous quadratic function of the
latter quantities.

b) .8 is a true scalar density under arbitrary space-time transformations.
Now, if the components of the metric tensor are taken as the gravitational
field variables such a function .8 simply does not exist. However, as was
Shown in [1], the situation is quite diflerent if one assumes that the true gra-
vitational variables are the components of a tetrad field. This assumption is
corroborated by the well-known fact that the influence of a gravitational
field on a Fermion matter field is described by means of a tetrad field and
not directly by the metric field.

2. THE TETRAD THEORY OF GRAVITATION

Let hf“), hm, denote the contravariant and covariant components, re-
spectively, of a tetrad vector numerated by an index (a) running from 1 to
4, and let us assume that hi4) is time-like, the other three tetrad vectors being
consequently space-like. With the notation

hmi = ”(awhib), hia) = ”(awhmi (1)

where 7701b) :17“) is the constant 4X4 diagonal matrix with diagonal ele-
ments {1, 1, 1, — 1}, the connection between the tetrad field and the metric
field g;k(x) is given by

h(a)ih1(c")=gik 01' ia)h(a)k =gi" 0r hinhi‘“) = 5;. (2)
For a given tetrad field the metric field is given by (2). However, for a given
metric field gik(x) the tetrad field is determined by (2) only up to an arbi-
trary Lorentz-rotation of the tetrads. For if hm): satisfies (2) with a given

amt), then
(«an = 9(a)(b)(x)h(b)i (3)

will also be a solution of (2) provided the functions 9(a)“)(x) at any point
(x) satisfy the usual orthogonality relations. Any function of the metric tensor
and its derivatives may by (2) be written as a function of the tetrad functions
and their derivatives and such functions will be invariant under arbitrary
rotations of the type (3).
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Now we assume that the gravitational field equations can be derived from
a variational principle

5f (.B+.Q(’"’)dx = o ‘ (4)
where ,Q is. the gravitational Lagrangian with the properties a) and b) above
and £0") is the matter Lagrangian which is a function of the tetrad field var—
iables and the matter field variables and their first-order derivatives. Let us
first consider the general consequences of this assumption.

The field equations following from (4) are
6,8 5,90") _

6h?! aha“) (5)
If we put

6,80")
6h}?

the equations (5) may be written

63 '—=€,." or hi“’—=‘C,-" 75125:) ‘ " * 6h}? ( )
Ta; = r(“’Qi,‘/]/—_g is the matter tensor which acts as source of the gravitational
field in (7). In general Ta: = T,“- is a symmetrical tensor. This is certainly; the
case if the matter is an electromagnetic field or an ordinary elastic body,
but it also holds for a Fermion field provided the corresponding Lagrangian
.80") is chosen so as to be invariant under arbitrary tetrad rotations (3) [8].

The condition b) that B is a true scalar density entails the identity (see
f. inst. [4])

h?) 6,0 _ 6.9 kg? =0 (8)

611,?) ,k 6h?”
which, by means of (7), leads to the conservative law

(Cik,k“(cl(a)hif)ii = 0- (9)

= —r<t(a,*, a" 49m)" (6)

6,8

If we introduce the tensor
7.7:: = hwhff’ia = —ykil (10)

where the semicolon means covariant difierentiation, (9) may be written as
a tensor equation:

Tik;,c+ T'mym, = 0. (11)
For a symetrical matter tensor, (11) reduces to the usual conservation law
of the Einstein theory.

To obtain an expression for the energy-momentum complex we proceed
in the same way as in section 1, i.e. we eliminate (Ca) in (9) by means
of the field equations (7). In this way the equation (9) takes the form

m = 0, (12)
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with
Tit = (Cik'l—tik

t-" = 6’8‘ ahwhk
on the analogy of (1.7), (1.8). Like ,8 ti is also ahomogeneous quadratic func-
tion of the first-order derivatives of the tetrad functions.

A further consequence of b) is the existence of a superpotential (see [4])

hwm— 5129 (13)

mm = _ dB h‘ga) = 0‘8 hga) = _uilk (14)
aha)” (”100m

by which the complex Ti" is represented as

Tik = uiHJ - (15)

From the properties a) and b) of ,8 it follows that 11‘“ is a true tensor den-
sity and it is easy to verify that the complex given by (15) and (14) satisfies
all the conditions I—III in the introduction.

If we multiply (14) by h{,) we get on account of (2)
0.9

Ohm”
so that the field equations (7) take the form

0.9
+ u a H = (C a k' 176h}? ( ) ,1 < ) ( )

Each term in this equation is a vector density. From the antisymmetry of
11(0)“ in k and I it follows that the vector density

0.8
0h}? () ,1 ( )

= —hia)uikl = _u(a)k'! (16)

110:)" E To)" —

has a vanishing divergence, i.e.

11(a)k’k = 0. (19)

The tensor density
0use Mama)" = W—ht“) -—°9 = h5“11(..)"',z (20)any)

is closely connected with the energy-momentum complex Ti". In fact it is
equal to the tensor part of Ti". On account of (15), (20) may be written

11." = nik',z—u..)*'h§"),. = nk—umk‘h(.§m)h“%,z.
Hence

Tik = uik+umklAmfi , (21)

with

Aim 2 hia)h(a)k,z - (22)
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Further, we get for the gravitational complex ti", by comparison of the first
equation (13), (21) and (20)

b
tik = _h§“) “ah—3‘9“)— + 1ImMAmil' (23)k

The last terms in (21) and (23) are not tensorial since N,” is not a tensor.
In order to get an explicit expression for .8 we started in [1] from the

remark that the scalar curvature density 9%, when written in terms of the
tetrad field functions, is of the form

5R = Br+b',z , (24)
where the last term is the divergence of a vector density I)’ and the term £1
has the properties a) and b) of section 1. The explicit expression for .81 is

£1 = Ihi[Yrstytsr—¢r@r]’ (25)

where h is the determinant
h = det {h(a)i} (26)

with the absolute value

lhl =V—_g, (261)
and the vector (p, is defined by

@k = yiki‘ (27)
On account of (2) and the first equation (1.11) we get from (24)

6.81 __6’J_i__ 69% 6g” _
6h}? 6h?) 6g” aha”) _grs[hza)gxk+hfa)g:k] = “2950- (28)

Thus, choosing as Lagrangian
.Q = kl (29)

with
_ 1
— 2%

the field equations (7) are seen to be identical with Einstein’s field equations
(1.6). Further, With .8 given by (25), (29) the superpotential (14) becomes [1]

k1 (30)

(1)11.“ =fl [wi—arafi'wim a 11.“. (31)
K

The Lagrangian ,9 defined by (25), (29) has the essential property of being
invariant under tetrad rotations (3) with constant coefl'icients 9(a)“) but it
is not invariant under the full group of rotations (3). The same holds for
the quantities 11;“ and Ti" given by (31) and (15). On the other hand, the
field equations (7), which in this case are identical with Einstein’s equations
are invariant under the full group of rotations (3) and they will therefore
not determine the tetrad field sufliciently accurately to give a unique expression
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for the energy distribution by (15) and (31). Thus, these field equations, which
determine the metric only, have to be supplemented by six further equations
which in [1] were given in the form

‘Pik = 0 (32)

where 99,7, is an antisymmetric tensor constructed from the tetrad field functions
and their first and second order derivatives. The condition that the equations
(32) must be generally covariant does not lead to a unique expression for
the left-hand side. However, the further requirement that (32) together with
Einstein’s field equations and suitable boundary conditions should deter—
mine the tetrad field completely (apart from constant tetrad rotations) allow-
ed us to arrive at a certain restricted class of expressions q)”, for which the
equations (32) lead to unique expressions for the tetrad field in the two most
important cases of a general weak field and of a “strong” static spherically
symmetric field. Actually these are the only cases of practical importance.

In the case of a static spherically symmetric system it is convenient to
use a system of isotropic coordinates in which

gik = g(ii)(r)6ik: r = 1/25 (3")2-

In this system the solution of our equations was found in [1] to be

hga) = Vlgjag (33)
and the expression for Ti" following from this solution turns out to be iden-
tical with the Einstein expression 0}. This identity of Ti" and 03‘ holds in
all systems of coordinates which can be obtained from the isotropic system
by a linear transformation. However, in all other coordinate systems 69;"
will be difierent from Ti" and in such systems 01‘ cannot be interpreted as
the energy density since Q", in contrast to Ti", does not satisfy the condition
III. In particular this holds in the system of harmonic coordinates which
is obtained from the isotropic system by a (non-linear) transformation of the
type (1.3) [1].

In the case of general weak fields, where

gik = 77m+yik(x) (34)

with yd, = yki small of the first order, we get in a system of harmonic coor-
dinates the solution

h...» = n..+;—y... (35)
and to the first order we find again Ti" = 0,-". In fact both of these expres-
sions are equal to the matter-tensor density YT," in this approximation, but
the identity of 71-" and @i" holds in general only in the weak field approxi—
mation [1].
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The theory developed in [1] is not quite satisfactory in so far as the field
equations following from the Lagrangian (29) had to be supplemented by
a set of extra equations (32) which were not even uniquely determined. Al-
though the indeterminacy involved in the expression for (pm was of no impor—
tance in the cases considered explicitly in [1] this situation cannot be regarded
as quite satisfactory. As pointed out by Plebar’iski the indeterminacy in 90,7,
is even somewhat larger than assumed in [l] where we only considered
covariant functions of 7m and its derivatives. However, it is easily seen that
the quantity

iklm _ 1 iklmn h 6 (36)

where 6'7“" is the usual Levi-Civita symbol transforms as a tensor of rank
4 under arbitrary coordinate transformations. Further, the quantity

_fl=lflh h (37)

is a constant pseudoscalar. This obviously widens the possibility of construct-
ing covariant expressions (pm.

In order to limit the arbitrariness as much as possible it is natural to
require that all the equations for the tetrad field should be derivable from
a variational principle. Obviously this means that we have to look for another
Lagrangian which, however, must contain the term (29) as an important
part. Besides the properties a) and b) of section 1 the Lagrangian we are
looking for must satisfy the following conditions:

c) ,9 is invariant under constant Lorentz-rotations of the tetrads.
This means that the tetrad index (a) can appear as a dummy index only.
d) The variational equations together with suitable boundary conditions

determine the tetrad field completely.
e) As regards the metric tensor the formalism must give the same result

as Einstein’s theory in the cases where this theory has been verified by ex-
periments. In particular, the Newtonian theory of gravitation must follow
in the limit of weak quasi—stationary fields.

The conditions a)—e) may serve as a guide in the search for a suitable
Lagrangian.

This program was carried through by Pellegrini and Plebafiski in an
interesting paper which is now in course of publication in the proceedings
of the Danish Academy [9]. These authors showed that a suitable Lagrangian
is given by

B = k1£1+k2£2 (38)
with

482 = ihlnrm ry.stu' (39)
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k1 and k2 are constants of which the first is again connected with Einstein’s
gravitational constant by (30).

If we put
6.92
6h?”

the field equations (7) may, by (28) and (40), be written

= 91.)", CI." = h.<"’%.)" = 1/ :g—Fi" (40)

’62G, —F- = —%T; .k+ 2k 1k k (41)
1

Further, if we denote the even and odd parts of Fa, by

F<ik> =§ (Fm—FF“), Fm] = i— (Fik—Fki) (42)

the 16 equations (41) fall into two sets of 10 and 6 equations, respectively:

k
Gik + —2 F<ik> = —”Tik (43)

94

FM = 0. (44)
Here we have made use of the symmetry of the tensors Ga, and Ta;-

The six equations (44) are analogous with the supplementary equations
(32) used in [l] and they are identical with these equations in the weak field
approximation. Similarly the ten equations (43) become identical with Ein-
stein’s field equations in the limit of weak fields, [9]. Thus, the equations
(41) or (43), (44) contain the Newtonian theory in the limit specified in e).

In general the field equations (41) contain an extra constant kz/x which
has not hitherto been revealed in any gravitational phenomena inside our
solar system. At first sight one would be inclined to believe that this requires
k2 to be small compared with x. However, this is not necessarily so. As re-
marked above the constant k2 drops out in the weak field approximation
and the solution of (41) is here the same as that found in [1], i.e. in har-
monic coordinates the solution is given by (35). But also in the static spheri-
cally symmetric case the solution of (41) or (43), (44) is the same as in [1],
i.e. the solution (33), for with h?) = 1/ lg,,,[ 55' it can be shown that the tensor
2-,, defined by (40) and (39) vanishes, [9]. Now, the cases just mentioned
are the only ones which are of any importance for the eflécts which so far
have been accessible to experimental verification, and it is therefore not
surprising that the terms containing the new constant k2 could have escaped
detection.

In this respect one might think that the situation is different when one
considers cosmological problems. However, for a homogeneous isotropic
model of the universe it is easily seen that the equations (41) lead to the same
metric as the usual Einstein theory. For a homogeneous isotropic system
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it is always possible to introduce a system of coordinates for which the line-
element has the form

(132 = G2(t)A2(r)(dxlz—l—a’xZZ—l—a'xi‘z)—a’x42 I
= g ii 6 dxidxk1 ( ) 1k (45)

= , r2 = E(x‘)2. 1
14—e t J

Then, using the explicit expression for 3% given by Pellegrini and Plebar’lski
it is easily seen that the tetrad field

hi”) = V lgaal 5? (46)

A(r)

gives

9-2,, = 0 (47)

so that (46) is a solution of (43), (44) if G(t) is the function of the time va-
riable corresponding to the usual Friedmann solution.

The superpotential (14) corresponding to the Lagrangian (38) is now
(1) (2)

Hi“: Him—build, (48)
(1)

where 11;“ is given by (31) and

‘13).“ = _Mhm
‘ 012(0),“, '

= k21h1{(5M'”‘— 5171'”) Yrsx+gir<15m’s"'} - (49)
In the static spherically symmetric case one finds by means of (33)

(2)
11'. “,1 = 0 (50)

so that the energy-momentum complex reduces to the complex

I: (1) klT. =ui ,1 (51)
which was calculated in [1]. The same is true in the case of a weak field to
the first order in the field variables. In higher-order approximations the
expression for the energy-momentum complex given in [9] differs slightly
from the expression derived in [1] by a term depending on the constant k2.

In the preceding considerations it has been assumed that the matter ten-
sor (6) is symmetric as is usually the case. In the paper by Pellegrini and
Plebafiski [9] it is pointed out that the field equations (41) might be valid
also if C7; is not symmetric. As an example they consider a Fermion field
with a Lagrangian which is not invariant under the full group of tetrad ro-
tations (3) but only under rotations with constant 9(a)“). In this formalism
which seems to be consistent and much simpler than the usual covariant
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theory of Fermion fields, 7,7, is not symmetric. The antisymmetric part ETD-k],
which is closely connected with the spin of the system, now appears as a
source on the right-hand side of (44) in a similar way as the symmetric part
70k): the energy-momentum stress tensor of the matter, is the source in
the equations (43). It remains to be seen if this generalization of the for-
malism which implies an extra term in the “conservation law” (11) corre-
sponds to anything realized in nature.
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DISCUSSION

J. L. ANDERSON:

There are two comments I should like to make with regard to your re-
quirements for a satisfactory energy-momentum complex in general rela-
tivity. While your two requirements appear to be quite natural from many
points of view I would like to suggest that there are others for which one
can advance strong arguments. I would like to suggest one which seems
to me to be essential for any definition of a physical object and to ask if your
complex satisfies it. The requirement that I would impose on any physical
object is that it be represented mathematically by a corresponding geome-
trical object. It need not be a tensor or any other geometrical object with
a linear homogeneous transformation law but I feel that it must be repre-
sented by some geometrical object before we can ascribe independent exist-
ence to it. Whether or not we have been aware of it, the whole of phys-
ical theory consists in assigning geometrical objects to physical entities
and then finding relations between them. It was the realization that
energy-density was not by itself a geometrical object that led Einstein to
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consider the metric tensor as the proper geometrical object to asociate
with the gravitational field. Unless physical objects are representable by
geometrical objects it is impossible to see how we can recognize them
in difierent situations as described by different observers. I have checked
that the Einstein energy-momentum complex is not a geometrical object.
Is your complex a geometrical object?

The second comment I should like to make is that perhaps one should
not feel too unhappy about not being able to define a local energy-momentum
complex in all cases in general relativity. We have learned to live with such
a situation in elementary particle physics where strangeness and isospin
are conserved and therefore well-defined only for the strong interactions.
It’s just that strangeness and isospin haven’t been around as long as energy
and momentum and so we aren’t disturbed when they loose their meaning
in the weak interactions. It should be pointed out that an entirely analogous
result obtains in the Yang-Mills theory, where it is impossible to define a
local, gauge-invariant, conserved isospin current. This situation seems to be
a general feature of any theory which arises from the enlargement of a non-
abelian Lie group to a function group a la Utiyama.
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LET V4 be a hyperbolic normal Riemann space. Let Coo be the group of
arbitrary coordinate transformations. From the assumed signature (+,—, —, —)
there follows the existence at any point of the space, x“, of four orthonormal
vectors g§(x) (greek indices are vectorial indices; “roofed” indices, which
run through (i=6, i, i, 3 do not refer to C00, but just label the tetrad vec-
tors). Their orthonormality properties may be expressed as:

g°5(x)g;°(x)g§(x =g5§ where llgagll=|IDiag(1,—1,—1,—1,)l|=l gag H-
. . . (1)By a Simple algebraical argument, 1t follows that

gage) =gagg§(X)g§(X)- (2)
If g§(x) as functions of x are assumed to be of class C3, one may speak of
a normal hyperbolical V4 with a built-in regular tetrad lattice. Observe that
if g=Det ”gag” and g?=Det “gin then (2) yields: —g=(g?)2. Note also
that the assumption that gas may be algebraically expressed by the right
hand member of (2) is equivalent to Hilbert’s conditions which assure the
correct signature of the metric.

Clearly left hand member of (2) remains unchanged if tetradial indices
are transformed by a Lorentz rotation,

gi'cx) =La' a<x)g§:(x), gait, L“'a(X)Lp’3(X) = gas-
The group of x—dependent Lorentz rotations of the tetrads will be referred
to as Lx. Observe at once that these do not have anything in common with
Lorentz transformations of coordinates. If the L, transformations are to
transform a regular tetrad lattice into another regular lattice, it is reason—
able to assume that L32; as functions of x are of class C3.

Now, formula (2) shows that the 16 quantities g§(x) determine uniquely
the 10 gags. Conversely, the 10 gafi’s determine the 16 g2‘(x) only up to
Lorentz rotations (x dependent!) of the tetradial indices.

45
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Therefore, there are two possible approaches to tetrads in general
relativity.

The first, the conventional approach, consists in the following: because
the tetrad field gf(x) in (2) is determined only with accuracy up to L, trans-
formations, i.e. the concept of gag is so to speak gauge invariant with
respect to Lx, the physical content of the theory has to be gauge invariant
with respect to tetrad rotations. The additional 6 degrees of freedom (to
the conventional 10 metrical degrees of freedom) have to be understood
here as physically spurious. However, just as in electrodynamics where in-
stead of working all the time with gauge invariant fafi it is convenient to
work with non-gauge invariant Ad’s in general relativity it is also justifiable
to work with tetrads as mathematical tools. Of course, in the framework of
this philosophy, in any construction which operates with tetrads, it is
neccessary to demonstrate that the final result—if physical—is Lx invariant.

In electrodynamics the explicit use of potentials Au allows us to forget
about restrictions which impose, so to speak, half of Maxwell’s equations.
In relativity the explicite use of tetrads as field-theoretical degrees of freedom
enables us to forget about restrictions which follow from the signature of
the metric. Here is precisely the chief merit of all formalisms which operate
with tetrads, if we restrict ourselves to the conventional approach discussed
above.

The second, the unconventional or unorthodox approach to tetrads
consists in the hypothesis that not only the 10 metrical degrees of freedom
hidden in the 16 g5: (x), but all of them, may represent true physical degrees
of freedom. It is equivalent to saying that the 16 g3 (x) unify the 10 metrical
degrees of freedom with some additional 6, which also have a dynamical
interpretation. As is well known, Einstein [I] tried to associate these with
the degrees of freedom of the electromagnetic field in the framework of a
unified field theory. Recently Moller [2], [3] has demonstrated that by sub-
jecting the 6 additional tetradial degrees of freedom to some dynamical
conditions one can construct an energy-momentum complex which satis-
fies all necessary physical requirements. That the original Moll-er complex
[4] does not satisfy these; moreover, that no such complex can be construct-
ed by operating only with metrical degrees of freedom, was demonstrated
previously by Maller himself [5]. Rayski [6], [7] also pointed out recently
that the problem of localisation of energy may be conveniently approached
from the point of view of the tetrad formalism.

Why, if tetradial degrees of freedom are fixed by some restrictions, one
may hope for well-defined energy and momentum (as local quantities), is
intuitevely obvious. According to the general argument of Komar [8], any
distinguished vector field gives rise to a conservation law. But the difficult
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question still has to be answered: what physical cause, if any, may impose
the necessity of choosing the tetrad directions in a preferredmanner? In a paper
by C. Pellegrini and the author [9] we tried to approach this problem guided
by rather formal mathematical arguments, but in the framework of a definite
physical interpretation. The chief idea was the following: if the tetrad field
were to unify, in fact, the metrical degrees of freedom with some 6 new
(but again physical and dynamical) field-theoretical degrees of freedom
which correspond to some new interaction of physical matter, then locali-
zation seems to be indeed possible. If we knew only about the electric field
E, not knowing about the magnetic field H, it would not make any sense
to talk about localizable energy. Similarly, if conventional general relativity
were an incomplete theory, which fixes only the metrical degrees of freedom,
and the “true” field-theoretical complex should unify these with some others,
the localization impossible on the conventional level seems feasible in the
“unified” version of the theory. Because of the algebraical simplicity of the
tetrad field there arises the conjecture that the “true” field-theoretical
complex is just g3 (x), undertermined only to a constant Lorentz gauge (the
group of constant tetrad rotations is subsequently called L). Now, the rea-
sonable extension of this idea is to study the structure of the most general
Lagrange function which would determine the dynamics of the object g} (x)
with accuracy up to constant Lorentz rotations. This was precisely the chief
objective of the paper [9], where the admissible form of such a Lagrange
function was explicitly found. Of course, the physical validity of the theory
studied there, depends very much on the answer to the question whether
new dynamical degrees of freedom introduced that way have anything to
do with reality.

It is true that conventional general relativity can do perfectly well with-
out them. However, these degrees of freedom, although they have been
introduced into our theory in purely formal fashion, lead in a straightfor-
ward way to a coupling between fermions, and not between bosons; and
as such, could have meaning on the level of the quantized theory. The
theories of Moller [2], [3] and our study [9] have rather as a moral the con-
clusion that in order to talk about a sensible localizable energy and momen-
tum one has to go beyond conventional general relativity to some version
of a unified field theory. But it has to be admitted that the fact as such that
in this theory it is logical to talk about localizable energy, does not form
a definite physical argument in its favour. Conventional general relativity
without localizable energy is logically consistent, which must be admitted
even by all those who as physicists would be more happy being able to talk
about localizable energy-momentum as quantities which may be transformed
by gravitational waves.
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In this paper we shall not go any further into details of ideas associated
with the unortodox approach (referring the reader interested in these to the
more complete study given in [9]). We should like, however, to concentrate
on possible advantages of the use of the tetrad formalism on the conventional
level, where additional degrees of freedom remain spurious and energy-
momentum stays unlocalizable.

First we would like to point out that even in conventional general rela-
tivity one has to use tetrads. There are in nature fermions as well as bosons.
Therefore, the necessity of general relativistic spinors [see Eq. (10)] is evident.
The “Pauli-matrices”, gm." (x), are fundamental in general relativistic spinor
calculus (notation similar to that of [11] is adapted); together with the spi-
norial metric tensor [lgABll = |]_2 311 they determine the metric

gRSgafi = % gr); (ga’iRgBBegg‘Rgal (3)
They are just related to the “flat” Pauli matrices g?“113

nn = (Hti’ll, Hm, 1142311, HHII) (4)
by the formula

gm(x)=g§(x)g34:;. (5)
Formula (3) is just the spinorial counterpart of the foundamental Eq.

(2). Although the group L, as introduced on the level of tetrads seems to
be purely formal, one has to realize that—as is well known [12], [l3]—uni-
modular transformations of general relativistic spinors are just the represen-
tation D(%,0) of Lx. Therefore, it can be manifestly seen, at least on the
level of the spinor calculus, that the original field-theoretical degrees of the
conventional theory are just tetrads defined with accuracy up to L, gauge.

Secondly, we would like to demonstrate that tetrads may be useful as
mathematical tools in the construction of the global conserved quantities
(conserved in the absence of radiation) which, as is well known (see e.g.
[14], [15], [16]) have a perfectly well defined meaning in the conventional the—
ory in the case of “insular matter”. The construction given below is essentially
equivalent to the usual construction which uses a reasonably defined energy
momentum complex (e.g. that of Mgller), but has the merit of being mani-
festly covariant With respect to C00. Roughly speaking, by the use of tetrads
we shall be able to keep covariance with respect to C00 throughout the calcula-
tion. The price for that is loss of Lx covariance in the intermediate steps. The
proof that the final result is Lx invariant seems to be simpler than the proof
in the case where C0° invariance is violated.

Let us choose g§(x) arbitrarily of class C3. Now, define the quantity

:2 ad! C4

’3 : 167m afieflgfig'ag"3' (6)
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The object defined that way is clearly Cco covariant; it is however only
L covariant and is not Lx covariant. Now

4go C (19032. in C
tfim = 161C” (3n :9:0g3gfi + m aflgdw (gaggla' (7)

But clearly
A

gazeza “gauze 2 _gmegtr (8)

The remark that 62,9; is skew in 90', and the use of (8) enable us to see
at once that the term on the right-hand side of (7) which contains second

4

derivatives is just equal to % Gfigg where G; is the Einstein tensor. Hence,

. . . . 87m .1f Emstem’s equations are assumed, GE: T Tg and we wrrte
c

B a C4 a AT3 = nfi, tfz‘ = @ aggpgdm (gr? g5):aa (9)

we may rewrite (7) as
t”; “1;. = T§+t§. (10)

Note that TE is both C00 and Lx covariant, whereas t; just as téw, is Coo
covariant but not Lx covariant. Clearly, t§° is linear in first derivatives, when
t; is quadratic in these. Obviously (10) may also be rewritten as (remember
that —g=|gf[!):

(g‘: rim). = g? [T§+t;1. (11)
Therefore

(gf[T§+t§1),. = 0. (12)
Now let 0' be a 3-dimentional space-like surface (with time-like normal)

which extends to spatial infinity. Define

P.9- [a] = % f dsaag‘: (t§+:r§). (13)
The four functionals of 0‘ so defined are “conserved” in the general sense:

6P3[o‘] _

If 1: denotes a time-like 3-dimensional surface (i.e. one with a space-like
normal) which closes the 4-region between 0‘2 and 01 at spatial infinity, we
have in general

P§[crz]—P3[a]] = APg, where APg :01 f (131.551:n T3). (15)
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If IE, T2, tend to zero strongly enough when one approaches spatial in-
finity (no radiation), APB vanishes and P§[o] in reality does not depend on
a; and, therefore is conserved in the literal sense. We do not assume that,
leaving room for radiation.

The quantities P3 are manifestly C00 scalars (vectorial index contracted
with vectorial index). But, at first sight since constructed with L, non-co-
variant quantities they seem to depend strongly on the chosen orientation
of the tetrads. But, substituting into (13) the left hand member of (11) one
gets after the use of the Stokes’ theorem:

1 1 cm]ma] =: f azo[ap]t[,§ ; (16)
where 3 denotes the 2—dimensional boundary of a at spatial infinity, and déflzfi]
its (dual!) surface element (g? is “absorbed” by the duality operation).
Therefore, the P3 ’5 do not depend on the orientation of tetrads “inside” of
V4, being sensitive only to their asymptotic orientation.

But even if “inside” of V4 there were no way of making some orienta-
tions of tetrads preferable to others (which is responsible for the impossi-
bility of the localization), asymptotically it certainly is possible to introduce
preferred directions, at least in the case of insular matter when the space-
time is “asymptotically flat”. Speaking intuitively: if the space-time is
asymptotically flat one may choose asymptotically quasi-Cartesian coordi-
nates, so that the metric deviates from Minkowskian values nafi only by
quantities tending to zero. The reasonable asymptotical choice of tetrads
would consist in orienting them along the versors of quasi-Cartesian co-
ordinates.

Although this intuitive argument seems to be fair enough, to make it
mathematically precise is not as simple. Every one, who has dealt with the
problem of boundary conditions in general relativity certainly has had not
quite pleasant experiences with the difficulties involved — and in our problem
we again have to confront them, quite independently of the specifics of
the tetrads. Recent works of Komar [17], [18] with semi-Killing vectors
ofier a mathematical tool which could be used in our problem (one could
try to orient the tetrads asymptotically along the semi-Killing Vectors).
For purposes at preliminary orientation it is convenient to proceed with
a less covariant approach, similar to that used by Trautman in the work
where he obtained his boundary conditions [19].

Namely, if the world is asymptotically flat one usually assumes that such
coordinates x‘2 = (x0, x“) may be introduced that

gafi =nafi+h<afl» and h<afl) = 0(—’1.—), Where 1‘ I l/a (17)
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. 1 ‘ . .(But not necessarlly gum = 0‘15»). The non-covarlant element 1n this definition

consists in the use of the concept of r. However, the definition is self-consistent
and “fits in” with all practical experience—the theory of equations of mo-
tions for instance [20].

Suppose, therefore, that such coordinates are adopted, and the metric
is given in terms of these. Introduce now a group of coordinate transforma-
tions which preserves the asymptotical form of the metric (17). Clearly,
such transformations are arbitrary “inside” of V4 and asymptotically have
the form

1x/a : Lalfixfi+Lar+0(T), (18)

where g’ are constant Lorentz matrices and the derivatives of terms de-, .
noted as 0 (g) are again at least of order 0 (%)(but not necessarily 0 (i2)!).

r

The group of transformations of this type will subsequently be called C53.
Now, if the tetrads have to be oriented asymptotically along the versors

of quasi-Cartesian coordinates defined by (17), the following equation must
hold

gfi = 63+ % hf, where hi = 0 (é) (gig not necessarily 0 (g)!). (19)

If this has to hold it is clear that we have to restrict the previously unde-
termined matrices L; (x) by the condition

lim Lg” (x) = n’ = const., (20)
7—)00

where matrices with superscript 00 form a group: L°° = lim Lx. However,
r—>oo

if the condition (19) has to hold in any coordinates which are admissible
from the point of view of C53, clearly the transformations of tetrads must
be linked with coordinate transformations asymptotically. Namely, if we
carry out transformation C53, (18) simultaneously we must make an LC trans-

formation with the “boundary” L°°§I such that

53‘; = L0°§’5§L;,1I3. (21)
This simply means that the matrices llg’ll have to be identical with

matrices ”LE’H.
Summarizing: adopting asymptotically, quasi-Cartesian coordinates, and

the boundary condition for tetrads (19) we restrict the L, transformations
to those such that the matrices lim La’fi have to be identical with these
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which determine the asymptotical Lorentz transformations of the quasi-Car-
tesian coordinates.

Now, define
ha, = afigaghé. (22)

Clearly the symmetric part of this quantity, hmfi, coincides with the
“correction” to the Minkowskian metric in (17). Therefore, the quantities
hug], the skew part of hag describe the unconventional degrees of freedom
which are physically meaningless in the framework of the conventional in-
terpretation.

We now obtain the following result: if one substitutes (19) into (16),

and computes P3 only with accuracy up to terms linear in hi; then after ex-
pressing these by hmfi, and hm] one obtains two contributions to P3; 1° depend-
ing linearly on the conventional degrees of freedom, 2° depending on the
physically meaningless hm]. But it happens that the latter contribution

has just the form f5d2sn rot H, where H is constructed from hm], and as
S

such, in the virtue of Stokes’ theorem, it vanishes.
Hence, in reality, the P3 do not depend on the spurious degrees of free-

dom, and these quantities are invariant with respect to L, gauge transfor-
mations provided condition (20) is adopted.

One can also easily see that, if the tetrads are transformed by an L, trans-

formation, the P3 transform like a vector with respect to n'. On the other
hand, because of (21) this means that asymptotically Lorentz coordinate
transformations transform P3 like a vector.

One also may add that for worlds for which the following hold asymp-
totically

2 l
ham—11 1— m ‘i‘ 0(3): hub) = _ (sub (1+ 2m (0) + 0(é‘) (23)

r

l
h<0a> = 0 (F)

and all 0’s difierentiated with respect to x” are one order higher in (3—),
one obtains easily .r

2mm)P5 = M(t)c6§, where m(t) = c2 . (24)

There are reasons to believe that similar results hold under much less
restrictive boundary conditions.

Of course, the material given above must be understood as only aprelim-
inary investigation of the properties of P3. One can hope for more con-
clusive results after approaching the problem of boundary conditions more
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covariantly in the language of tetrads. That tetrads may be found to be a use-
ful tool in the problem of boundary conditions follows from this simple
argument. First derivatives of gas clearly cannot be handled covariantly;
but 83:5 even if not Lx covariant are C,o covariant! On the other hand the
asymptotical existence of the group of motions gives grounds to hope that
with the help of gig the boundary conditions for the metric field could be
approached conveniently. On the other hand clearly investigating the prop-
erties of P3 one should learn more about the asymptotic properties of gig

Two additional remarks about possible advantages of the tetrads for-
malism may be added.

If follows from (8) that:

Rafiyd = g; (8%;y;a—g§:¢s;y) : g3 asgggzem (25)

This leads straightforwardly to the result that

n = (563:; Sgaég).+gf damage... (26)
This result originally obtained by Maller [2], presents an interesting decom—
position of the Lagrange function of the conventional theory into two Cc,o
scalar densities (but not Lx scalars), one of which is a pure divergence. It
has to be contrasted with the usual decomposition

1/TgR = — {fa ((—g)g°fi),fi},.+ 1/aflrs. g. — Pars.) (27)
into a divergence plus an “effective” Lagrange function quadratic in the
first derivatives. But this usual expression for the effective Lagrange function
in not any simple Cco invariant. Hence the canonical treatment of the theory
meets familiar difliculties, and is rather a non-covariant procedure.

On the other hand, adopting for the effective Lagrange function

Len = giaggggwgaéa (28)

we deal with a C,o scalar quadratic in first derivatives, which is not an L,
scalar (a scalar only up to a divergence). Hence, the canonical treatment
of the theory based on Leff from (28) will be manifestly C0° covariant; we
would only have to Worry about the lack of covariance with respect to a rela-
tively simpler group than Cw, namely Lx. Clearly, increasing the number
of variables to 16, also leads to an increased number of constraints. But
all of these shall be C00 covariant.

The last remark consists in the observation that if one approaches the
problem of quantization of gravity from the side of functional integrals,
6g. [21], in order to compute the amplitude one integrates over all possible
histories of the metric field, including situations where the signature is ellip-



54 J. PLEBANSKI

tical or ultrahyperbolical, etc. In the tetradial formalism such histories are
at once excluded. Namely, if we understand in the usual formula

A =feFfVTgR6[gw], [=1/ 1671371 (29)
C

(over histories)

]/——gRas gAIR from (26) (expressed explicitly by tetrads); and compute the
usual functional measure 5[g,,,], which is clearly Lx invariant as expressed
through tetrads, and integrate over all possible histories of tetrads, one al-
ways gets an L, invariant result.

However, as soon as tetrads are explicitly introduced the correct hyper—
bolic normal signature of the metric is automatically secured.

I would like to express my gratitude to Prof. Moller for kind interest in this
work. I owe also many thanks to Dr. C. Pellegrini for stimulating disscusions
whose conclusions found their place mainly in our joint publication and
partly also here. Interesting disscusions and help in preparing the English
manuscript offered by Dr. J. Stachel are sincerely appreciated.
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EXPERIMENTAL VERIFICATION OF GENERAL RELATIVITY
THEORY

V. L. GINZBURG

The Academy of Sciences, Moscow

THE aim of this article is to present the progress made in the experimental
verification of General Relativity Theory (G.R.T.). Of course, in the first
place all the facts available should be reported. But perhaps since the facts
in this field are very poor, experimental verification of G.R.T. has shown
itself to be particularly connected with various, so to say, collateral features.
Here we mean above all a discussion of non-Einsteinian gravitational the-
ories and also the significance of various experiments from the point of view
of testing with their help the various aspects of G.R.T. In order to avoid
any misunderstanding it should be stressed that in discussing these problems
below, the present author will not strive either for any detailed analysis or
comparison of various views found in the literature but he will only pre-
sent his own views.

As is well known there is (at least in a logical plan) a profound asymmetry
between the denial and proof of a theory. Indeed, it is sufficient to have one
reliably established fact which definitely contradicts a theory in order for
the theory to be overthrown. At the same time the coincidence between in-
dividual experiments or observations and conclusions from a theory to some
extent confirms the theory, indicates that it does not contradict experiment,
gives us every reason to believe that the theory is true, but it does not yet
prove the theory. This last statement is obviously connected with the
fact that all the conclusions considered arising from a given theory could
also follow from other theories. For instance, the three well-known “critical
effects” pointed out by Einstein for testing G.R.T. follow from some non-
Einsteinian gravitational theories. And this is precisely the reason why some-
times one has doubts as to whether Einstein’s G.R.T. is proved experi-
mentally.

We, however, decidedly do not share this point of view, in particular
because of the above-mentioned character of the statement as to the experi-
mental testing of a theory. The only thing that is specific about G.R.T. is
the small number of experiments accesible; these just allow us by some effort
to combine the results of observations with some non-Einsteinian gravi-
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tational theories. Therefore, in the light of this fact is is most desirable to
go beyond the limits of a study of the three “critical effects”.

At the same time even now Einstein’s G. R. T. cannot be considered
unproved by experiment. This will be dealt with later on. First we shall pro-
ceed to an exposition of fundamental facts concerning the confirmation
of G.R.T. Einstein’s G.R.T. will be taken to mean the theory of the gravita-
tional field in which the field g“, satisfies the equations

1 87m
Rik — EgikR = — ik' (1)04

According to the comments made above, we shall start with the following
statement:

I. There are no clear-cut experimental results or observations which
would negate G.R.T. There is not even the smallest cloudlet on the horizon,
which would foreshadow the emergence of such difliculties or restrictions
as to the field of application of G.R.T. (of course this refers to macroscopic
physics). It applies equally well even to cosmology where the necessity of
some generalizations or other would not cause any particular surprise (the
simplest known such generalization is the addition of a A-term to get 11g,‘
on the left-hand side of Eq. (1)).

Now we shall go on to a comparison of the predictions of G.R.T. with
observations!”

Of the three “critica ” effects the simplest one is the gravitational shift
of frequency pointed out by Einstein in 1907 in the very beginning of his
work on G.R.T. [4]. This effect, in the first approximation follows from
the principle of equivalence and from Special Relativity Theory. The cor-
responding formula is most conveniently expressed in quantum language:

a photon With an 1nert1al mass of —2 would possess the same grav1tat10nal
0

mass; in a gravitational field with a potential (p a photon performs work,
that is

ha)
72— (‘Pl—(Pz) = 71(w2—wQEhAa).

Hence
Aw _ _ All __ (pl—(p2
w l c2

(2)

(1) For more details see [1] and [2]. The problem of the experimental verification of
the Special Theory of Relativity as well as that of experiments of the Eotvos type will not
be analysed here. We shall only mention that the equality of the inertial and] gravitational
masses has now been established with an accuracy of the order of 10-10 (see R. H. Dicke
[3]). Moreover, the study of the Mossbauer effect has shown that the rate of “ideal clocks”
does not depend on their acceleration, as is assumed in G.R.T., even for accelerations
of the order of 10“ g: 1019 cm/secz.
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/,___
The precise formula of G.R.T., fl = 300(1) : goes over into (2) in

. c01 ' £000)
a weak field, that is when

M< 1, (3)(:2

the component g00 = —1— 2—? and everywhere we neglect all terms of order
c

higher than 90/62.
For the Sun and the Earth

I l %M l I %M .L0 =_—0 =2.12><10-“, L5 = —0 =7><10‘1°- (4)2 2 2 2C crO C Cl'é

. . A}.
On the Earth the spectral hues of the Sun are shifted by T = — _l‘PTOl

c
and the lines in the spectrum of radiation emitted from a transmitter placed on

I I
a distant Sputnik (artificial satellite) of the Earth are shifted by A; = 995 .

CZ

It is interesting that the gravitational shift of frequency, one of the simplest
and earliest effects pointed out by G.R.T., was not measured reliably until
after the two other critical effects. It is true that the red shift was observed
long ago in the spectra of white dwarf stars as well as in that of the Sun,
but the lack of reliable (and independent) date about the radii of white dwarf
stars and velocities of convectional motions in the solar photosphere hin-
dered the use of corresponding data for the quantitative verification of
formula (2). These old results will not be taken into account here (see
[1], [2], [8], [10]). Recently J. E. Blamont and F. Roddier [5] carried out
new measurements of the red (gravitational) shift of lines in the solar spec-
trum. It has been shown that for the strontium line A = 4607.3 A the red
shift observed coincides with the theoretical one AA = 9.76><10‘3 A with
an accuracy which seems not to exceed a few percent (in the short commu-
nication [5] the accuracy is not given). Even before these measurements,
the gravitational shift of frequency had been measured for y-radiation with
the help of the Mossbauer effect. These experiments (P. V. Pound and G. A.
Rebka [6]) are probably familiar to all. The measurements were carried out
with an effective difference in altitudes H of 45 m, i.e. the theoretical value
Aw gH
— = T = 4.92X 10‘“. According to the latest data [7] knowu to us such

60 c
experiments give the value

A erL— = 0.97+0.035,
Awtheor.

i.e. the theory coincides with experiment with the accuracy of 3%.
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A few years ago some authors (for instance the present author in 1954
[8]) suggested a way of measuring the gravitational shift of frequency with
the help of sputniks. For a Sputnik which is at an altitude of, let us say,

800 km the proportion % = 7.7 X 10‘11 and, therefore, the effect can already

be measured, in principle, with the help of methods available to-day. But
now, after the other measurements mentioned above, the determination
of the gravitational shift of frequency with the help of sputniks has lost its
urgency, purely technical aspects aside (here we have in mind the develop-
ment of precise apparatus for frequency and time measurements).

Measurement of the frequency shift with an accuracy up to the terms
2

of order (:32) would be of great interest. However, even for the Earth, i.e. with

2

the help of distant satellites, (g) = 5><10‘19 and we do not know any way

of attaining such accuracy.
The second “critical” effect is the deflection of light rays in the field of

the Sun: a ray passing at the distance R from the center of the Sun is de-
flected by the angle (r0 is the radius of the photosphere)

4~ .a= ”MQ=1".75’—0. (5)
czR R

The angle am“ =1".75 corresponds approximately to the angle at
which a match-box is seen from a distance of 5 km.

Only a little more than 10 observations of the deflection of light rays
have been carried out. Perhaps there are data obtained in the last 2—3 years
of which we do not know, but with this reservation the following can be

. . . 1 . .sa1d. The law of varlation a NE cannot yet be cons1dered as hav1ng been

verified, but if it is assumed and extrapolated to the edge of the disk, then
the mean value of many observations is ormax = 2".0, with an accuracy of
about 10—20% (the sign of the effect is, of course, the same as predicted by
theory—the light rays are attracted towards the Sun). Thus, within the
limits of the accuracy attained, the theory agrees with experiment and we
know already that the deflection of rays is not equal to twice the smaller
value or;mix = 0”.87, which is obtained when space curvature is disregard-
ed!”

224M
(2) It is interesting that such a deflection of light rays in the Sun’s field as”), = We

0
was predicted in 1801 by J. Soldner on the basis of the corpuscular theory of light (see [9],
[10])-
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It should be mentioned here that in the literature one encouters the opin-
ion that the deflection of light rays in the Sun’s field follows from the prin-
ciple of equivalence and from Special Relativity Theory and, therefore, is of
little importance for testing G.R.T. (see [11]). In the first place, however,
the connection and, so to say, combination of the principle of equivalence with
Special Relativity Theory constitutes the basis or, if you will, the foundation
of G.R.T., and here any contraposition seems to be very artificial. At
the same time, the deflection of rays in the Sun’s gravitational field ap-
pears evidently as a more subtle effect than the gravitational shift of fre-
quency which follows directly from the principle of equivalence and Special
Relativity Theory. Indeed, the true value of the angle a is obtained only
when the curvature of space is taken into account. Secondly, and this is of
importance here, the deflection of rays in the Sun’s field constitutes
a global effect and cannot be removed by some suitable choice of a frame
of reference near the Sun. On the other hand the principle of equivalence
is of a local character and its direct use cannot lead to any explanation of
global effects. It is not possible to discuss this problem here, and perhaps
there is even no need to do so as it was recently analysed in detail by R. Sexl
[12].

The discovery and measurement of the deflection of rays passing near
the Sun is a feasible test of G.R.T. and, therefore, it is perfectly justifiable
to improve the accuracy of the observations. The classical astronomical
method will allow us, by good measurements during eclipses, to test the

1 .law a N — and to measure the angle ozmax With an accuracy of a few percent.
R

A new method of measurement using balloons or, still better, artificial satel-
lites was suggested by R. Lillestrand [13] in 1960. According to Lillestrand,
his method allows an accuracy of up 0”.01 (formula (5) would be then checked
with an accuracy of more than one percent). To the present author this meth-
od appears to be very elegant, but it is diflicult for us to judge the experi-
mental aspect of the method.

Let us now proceed to the third “critical” effect: the precession of the
perihelion of planets. During one revolution this precession is

8': 2471:3a2 : 67MMO . . (6)
c2T2(1——e2) c2a(l—e2)

‘ 7 b2' . .Here, a denotes the semi-major axis, e = l/ 1 — 217 —the eccentr1c1ty and

. 3 ”MO 2 .T —— the period (a :ET >. For Mercury the angle of precesswn per

century ought to be equal to wtheor, = 43”.03 and eqptheor. = 8”.847. In
Einstein’s paper [14], in which formula (6) was obtained, the value I}: =
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= 45”:|:5 is cited as a result of observations (and astronomical computa-
tions). The best value known to us today is 1p = 42”.56:|:0”.94 (G. Cle-
mence, for references see [1], [2]). Recently a result for Venus was obtained
(R. Duncombe; it is given here a value according to M. F. Subbotin): 81p
=0”.057+0”.033, while according to G.R.T. etpflwon =0”.059. For the
Earth 1pm.,“ = 3”.84, while the value obtained from observations is 1/)
= 4”.6;|:2.7.

Thus, for Mercury the theory agrees with the observations with an ac-
curacy of about 3%. For Venus as well as for the Earth this effect can also
be considered to have been established. Undoubtedly, the data can be made
even more accurate, in particular in the case of planets (Mercury, Venus,
Earth). The effect of G.R.T. can be expected to be chosen for Mars and
perhaps also for the small planet Icar (in this case etptheon = 8”.3 and there
is hope to obtain data even more precise than for Mercury; see [10]). The
orbiting of an artifical planet (cosmic rocket) opens up still another possi-
bility — in this case the value when reaches 1000” per century. However,
the possible accuracy of measurement of 1/) is not clear enough. The same
can be said as to the artificial satellites of the Earth. In this case the maxi-
mal angle of precession is 1,0 g. 1700” per century (for details see [1], [2],
[10]). Other effects (perturbations) which lead to a variation in the orbits
of satellites are at the same time considerably greater and there is little hope
of testing the effect for satellites in the near future.

Thus
II. All the three “critical” effects of G.R.T. pointed out by Einstein about

50 years ago may be considered as having been demonstrated and the cor—
responding values agree with the theoretical ones within attained accuracy
of a few percent (in the case of the deflection of light rays in the Sun’s field
the accuracy is a little lower). Naturally, this confirms the theory and is a
great success for it.

However, according to What has been said above, strictly speaking, it
cannot yet be maintained that G.R.T. has been verified by experiment.
Of course, every further effort for greater accuracy in the values for the three
critical effects is justified and highly desirable.

Since, however, at present the transition to an accuracy of the order of
(P 2

(-3) is, apparently, not being considered, greater accuracy in the data con-
c

cerning the three critical effects will not lead to any new essential information
(it is, of course, assumed that no disagreement between theory and experi-
ment will be found).

The most urgent problem today in the field of experimental confirmation
of G.R.T. is that of measuring some new independent effects. Why is this
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necessary? In the first place, this is necessary for overthrowing non-Ein-
steinian gravitational theories.

The widely-held opinion, entirely shared by the present author, is that
General Relativity Theory unquestionably holds first place among all phys-
ical theories for its internal consistency and beauty. The principle of equiva-
lence, Special Relativity Theory, the transition in the limit to Newton’s theory
of gravity and some natural mathematical conditions (as, for instance, co-
variance, and non-occurrence of higher derivatives of the field gag—«this
in practice is all that is necessary to obtain field equations (1) which do not
contain any free parameters. The non—Euclidean character of the geometry
of space-time as well as the non-linearity of the equations of the gravita-
tional field bear a profound and clear sense. Therefore, the present author
(and, apparently, the majority of physicists) absolutely does not understand
the tendency to build up non-Einsteinian gravitational theories; there is no
evident physical foundation for doing so, not to speak of facts.(3)

Since, however, such theories do exist (there are about ten of them) and
are being discussed rather widely, this paper must take into consideration
the possibility of their being distinguished from G.R.T. by observational
data.

The very requirement of obtaining the correct results concerning the
three critical effects in itself allows us to reject a number of non-Einsteinian
theories (see G. J. Whitrow and G. E. Morduch [16]). Nevertheless, for two
or three versions of such theories one is able to attain the same values as
in G.R.T. for all three effects. All these versions (Birkhoff, Belinfante and
Swihart, Whitehead; see [16], [17]) are connected with profound difficulties
such as, for example, the arbitrariness of choosing the constants, etc. How-
ever, at this point I should like to stress another aspect of the question:
it is sufficient merely to take into consideration the fourth effect of G.R.T.
(namely the “rotational effect”) for none of the known non-Einsteinian the-
ories give results in strict agreement with the predictions of G.R.T. (see
[16] and also a paper of W. I. Pustovoit [17]).“)

The “rotational effect” is taken to mean the influence of the rotation of
a central body upon the motion of the perihelion and the nodes of planetary
orbits. This effect was investigated for the first time in 1918 (J. Lense and
H. Thirring [18]). For Mercury this effect due to the rotation of the Sun,

(3’ We are not discussing here an approach to G.R.T. of some methodical interest,
starting from Lorentz-invariant field theory (see W. E. Thirring [15]).

(4) During the discussion at the conference Prof. F. Belinfante observed that in aversion
a linear theory which he proposed the deflection of light rays in the Sun’s field is greater
than the value (5) and am“ = 2”.15. Therefore, measurement of deflection of rays with
an accuracy of a few percent is already suflicient for a decision as to fate of this non-Ein-
steinian theory.
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gives only 1pm : 0".02 per century, whereas the accuracy attained nowadays
in determining the angle 1;; for Mercury amounts to about 1”. For the Moon
the relativistic shift of its perihelion due to the Sun’s field gives 1”.9; the
shift due to the Earth’s field equals 0”.06; on the other hand, the influence
of the Earth’s rotation leads to an additional rotation of the order of 3 x 10‘4
seconds per century. Such an effect obviously cannot be measured. In this
connection in 1956, before the first sputniks were launched, the author found
very interesting the fact [19] that for satellites close to the Earth the addi-
tional rotation of the perihelion (i.e. due to the Earth’s rotation) attains
a value of 1pm 2 60” and the rotation of their orbital nodes reaches A9 2 20”
per century, i.e. the values obtained are of the same order as the full effect
of G.R.T. for Mercury. Unfortunately, the perturbations in the orbits of
near satellites are so great that it is obviously unrealistic at present to measure
the “rotational effect” for them.

Nevertheless, we have mentioned the proposal of using satellites for
measurement of the “rotational effect”, in particular because this proposal
has induced Prof. H. Thirring to recall an interesting historic event. In the
year 1918 on an evening in May Thirring was telling Einstein about his work
with Lense. Einstein was complaining that the “rotational effect” is so small
for the Moon and, looking at the evening sky, he exlaimed; “Wie schade,
daB wir nicht einen Erdmond haben, der gerade nur auBerhalb der Erd-
atmosphere umlauft!” Nowadays we have such a “near Moon”, and not only
one; but in all probability these cannot yet be used to verify the “rotational
effect”.

Another (in some sense congenerous) effect, the precession of a gyroscope,
can apparently play the role of the fourth observed effect of G.R.T.
This effect has been examined in detail by L. I. Schiif (see [11] and also [7]). At
this conference L. I. Schiff is expected to read a paper on the experiment
with the gyroscope, therefore, we shall limit ourselves to a few remarks.

If the angular momentum (spin) of a gyroscope in the frame of re-

ference accompanying it is So, then, according to G.R.T. [11],

d5) —‘ —> -—)

W — [950]

—> 1 »—> 3xM —)—> 3d 37 ->—> —> (7)
Q = §[fv]+ 2c2r3 [r v]—l— W {F (a) r)—w}

—> d -—> ——>
Here 7; = 7: denotes the velocity of the gyroscope ((2—7; = f— 7:131 r) and w, M

and I the mean angular velocity, mass and moment of inertia of the Earth,
respectively. The last term in (7) takes into account the rotation of the Earth
and its measurement is entirely equivalent to the measurement of the “rota-
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tional effect”. For a gyroscope placed on the Earth the influence of the
Earth’s rotation (in the sense that the component go, is involved) is essen-
tial. If the axis of the gyroscope is perpendicular to the Earth’s axis, th
precession of the gyroscope gives go = 3.5x 109 X (1+ cos2 1p) radians per dae
(here 1p stands for the latitude of the site of observation). Thusy
rpm“ 2 7x 10—9 radians per day 2 0”.5 per year. The maximum angle of ro-,
tation of a gyroscope on a near satellite is (pmx : 7x 10—9 radians per revo-
lution : 8” per year, whereas the influence of the Earth’s rotation does not
exceed 2% of the overall effect. The question- of when such an experiment
could be performed successfully and whether it would be better to perform
it on the Earth’s surface or on a satellite, is not clear to us. From the point
of View of the confirmation of G.R.T. it would be important to know what
result could be obtained for the precession of the gyroscope from the non-
Einsteinian gravitational theories. It is to be expected that with due account
for the rotation of the Earth at least the result of G.R.T. would be different
from the other ones.(5) Then, in that case the gyroscope experiment would
play precisely the same role as the “rotational effect” considered above (i.e.
the influence of the Earth’s rotation upon the orbit of satellites). In any
case, it seems to us that the gyroscope experiment is the most interesting
and important of all those suggested for the purpose of further verification
of G.R.T. '

There are in the literature some other proposals concerning the experi-
mental verification of G.R.T. or of its foundation. For instance, it is pos-
sible to ascertain that the velocity of light is independent of the direction
of the ray relative to the line Earth—Sun, etc. This would be a verification
of the principle of equivalence. There is another, even more interesting,
proposal, viz. the discovery of gravitational waves, in the first place waves
of cosmic origin. The present author is not sufficiently acquainted with the
progress made on this problem. Of course, the discovery of gravitational
waves would be interesting and perhaps would be of real use to astronomy
for studying various phenomena (for instance, the motion of double stars,
explosions of supernovae or creation of radio-galaxies). As to the verification
of G.R.T. it must be borne in mind that the waves on the Earth will
always be weak and, therefore, they can be described within the limits of
linear gravitational theories.

It should be stressed in general that all the experiments and observa-
tions carried out on the Earth are directly connected with the study of only
a weak gravitational field. It seems to us that the probability of any new
things being discovered in this field tends to zero. Nevertheless, attempts
to do this are justified insofar as their “mathematical expectation”, i.e. the

(5) Note added in proof. The calculations by W. I. Pustovoit confirm this sugestion.
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product of the probability and their possible significance (in the case of
their revealing non-agreement with G.R.T.) turns out to be a large quantity.

In conclusion, we should like to make the following observations. Why,
strictly speaking, must we verify a physical theory? Obviously, there are
two reasons: firstly, we must know the limits of applicability of a theory
and, secondly, we must learn the correct way of generalizing it (or, if you
prefer, we should learn what needs to be explained beyond the limit of a
given theory). From this point of view, in all probability, there is nothing
to be expected from further testing of G.R.T. for weak fields. G.R.T. can
already be considered as very well verified at least in that there is every basis
for using Einstein’s gravitational field equations (1) with suflicient confidence
and without any restrictions (naturally, we have in mind only macroeffects).

These equations, of course, might be changed and generalized somehow
without changing the known consequences. But the same situation exists

in other cases. For instance, Maxwell’s equations dFik/bxk = 4—7: j, may be
c

generalized in at least three directions (addition of the term ”Ag, owing to
the rejection of the condition of gauge invariance; introduction of terms
with higher derivatives; transition to non-linear theories). Nevertheless, in
problems not involving quantum effects we use Maxwell’s equations (in
Minkowski space) with full confidence and every right. Just as, let us stress
it once more, there is every right for doing this as regards the Einstein equa-
tions (1). Even if these equations should have to be generalized, in our opi-
nion this could only be as a result of the study of strong fields. There are
two possibilities here. Firstly, strong fields occur in the case of neutron stars.
For a star with a mass of M ~ MO : 2><1033 g the gravitational radius 1s

MM
9 ~ To 2' 105 cm. At the same time, the radius of such a star with a nuclear

c
density ~ 1014 g.cm'3 is r ~ 106 cm. Thus, the gravitational field in the case
of neutron stars (perhaps they would be better called baryon stars) can in-
deed be strong. Such stars are perhaps created during explosions of some
supernovae. It is important to study the dynamics of the creation of neutron
stars and in particular to take into account their rotation (a central-sym-
metric neutron star, after it has already been created, practically cannot
“let one know about itself”; besides stars usually rotate and it is necessary
to study the problem of neutron collapse for rotating stars). The second
trend in the study of strong fields—a trend that is better known and
more wide spread and, probably also more important—is the study of cos-
mological problems. We cannot take them into consideration here. We note
only that the investigations of recent years (in particular very important
investigations by E. M. Lifshitz a.o. [20]) clearly show how many various
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possibilities are involved in the Einsteinian equations when account is taken
of the non-homogeneity and anisotropy of space. Of course, this depends
upon one’s point of View (the same holds for remarks further on about
quantization), but the author does not at present see any basis even in cos-
mology to go beyond the limits of the Einstein equations (1).

As to quantum effects, it can be said that in macroscopic space-time
regions they are negligible and, therefore, (as far as we know) of little im-
portance from the point of view of their observability. What may really
prove exceedingly important is, so to speak, the quantization of geometry—
i.e. transition to new space-time ideas “in the small” (i.e. in the micro-world).
But that already is not G.R.T., even if it proves fruitful to use the ideas and
methods of Einsteinian G.R.T. in building up a new quantum theory of
(microscopic) space-time.
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DISCUSSION
F. J. BELINFANTE:

Regarding the observations of bending of light, I should like to point out
that if one could improve just one order of magnitude, one might be able
to disprove my theory, at least for all practical purposes. The theory has
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a Lagrangian which consists of a free field plus an interaction Lagrangian,
and I just put in enough constants that I can fit all the factors, of course.
Now, nobody would want to have a coefl'icient 9/11, or something like that,

in the free field Lagrangian. But if you exclude that, and if you say only
there are two constants in the interaction, if you say they may have
any crazy value, then you are forced to get a bending of light which has

a value which is not the Einstein value, but which is something like 2”.l.
The experimental figure lies in between these two. Therefore, a slight im—

provement in this would exclude my theory. I mean, I would certainly
not want to propose to adopt any theory which has crazy coefficients in the
free field Lagrangian; and therefore it would, for all practical purposes,
disprove such a theory.

L. INFELD:
You put some constants in your Lagrangian, don’t you?

F. J. BELINFANTE:
My Lagrangian has some four constants to start with. I could have put

in even more, I did not do that. But, there are two constants in the free field
Lagrangian and two constants in the interaction; and if you make the free
field constants have decent values, then either all the other effects are far
from the experimental limits, or you must get something like 2" for the
bending of light.

L. IN'FELD:
I definitely prefer the theory that does not require any constants.

F. J. BELINFANTE:
I know that my theory can be disproved; but I’d like to see an experi-

mental and not a philosophical disproof.

V. L. GINZBURG:
I agree, and I am quite aware of the fact that new experiments with light

deflection are needed.

C. MQJLLER:
May I ask you about this experiment of Blamont? Does it concern the

red shift of light from the Sun?

V. L. GINZBURG:
Yes, it is the strontium line from the Sun.

C. MQLLER:
I thought that there usually was a difficulty—you know, the difference

between the light from the limb of the Sun and the center?
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V. L. GINZB'URG:

Yes, I know this in some detail and with pleasure I will tell you more
about it, though I don’t understand everything here. The old observations
by Miss Adam showed that on the limb there is full agreement with relat-
ivity, and in the center there is no agreement. This seems to me to be quite
reasonable and possible to explain if one takes into account the motions
in the solar atmosphere. In the work of Blamont and Roddier (I have only
read a short note in the Phys. Rev. Letters) they have made some precau-
tions, namely precautions about the calibration, etc. and they found the
right results also in the middle, not in the same agreement as in the limb, but
in disagreement with Miss Adam’s results. But it seems to me that their
work is quite a modern one, and reliable.

A. J. COLEMAN:

I did enjoy Prof. Ginzburg’s talk. But I was disappointed by his treat-
ment of the first effect. It was the treatment of a person who believes in
general relativity, and nothing can convince him otherwise. When I was
a student I read many textbooks, some of them written by distinguished
people present here, and when they came to repeating the results of the ex-
periments, when they come to this effect, they always said: there is no dis-
agreement; it is a complicated effect, but there is no disagreement with
relativity. Of course, after you’ve gone through three or four hundred pages
of a book on as difficult a topic as general relativity, it would be a great dis—
appointment if there was disagreement. Now, if you go, as I have done, and
read all the papers by the astronomers, going back to St. John and Evershed
and Miss Adam; the fact is that there have been many lines among these
observations that gave disagreement. Now in the case of St. John, he be-
lieved in relativity, at a certain moment he was converted; and he said you
could invent currents in the Sun’s atmosphere to make rough agreement
between observation and the theory; and this is roughly what Prof. Ginz-
burg has said. Currents are now more complicated, because you can now
talk about all this bubbling on the surface of the Sun. However, Burns, al-
ready in 1930, Evershed before him, and Miss Adam, to my pure-mathe-
matician’s point of view, found cases of lines from the same multiplet, in
which the corrections to the shift for the lines in the same multiplet differ
from one another by an amount roughly of the order being predicted, or
50% of the amount being predicted. Now you cannot explain that by any
theories of currents, because lines in the same multiplet come from atoms
that are in the same stream, going up or coming down.

Several Questioners:
Why ?
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P. G. BERGMANN:

Atoms of the same element, but why in the same stream?

A. J. COLEMAN:

Because they are being energized at roughly the same energies. Miss
Adam in a study about two years ago, involving 200 lines, came to the con-
clusion that the observed curve for the limb effect, when you go from the
center to the edge, the observed shape of this curve, could not be explained
by any effect proportional to velocity. I’m not an astrophysicist, I can’t inter-
pret that result, but that was debated at the Royal Society—in fact, Prof.
McCrea was present there. It seems to me that there’s a possibility that here,
in this particular result, there is no proof or disproof of relativity—on that
I am an agnostic—but it could be that here we do have an observational
effect which is related to the interaction between the electric and the gravi-
tational fields. This indeed is what Whitehead claimed. Whitehead’s theory,
which has been dismissed here, doesn’t have any arbitrary constant in it,
it does predict all these results that have been reported; but it also predicts
the limb effect in the shift of lines coming from the sun, and it was because
it did predict this that it first aroused my interest. And I do think that this
is a point which still needs to be pursued.

V. L. GINZBURG:

It is rather difficult for me to exclude my own feelings and to say, per-
haps, everything about the situation. You must excuse me. I was very much
interested in the proof of this thing about the red shift, because of all this
work of St. John, Adam, etc. ; and I hoped the satellite experiments will
show us the truth. But, I and perhaps everybody here, was very impressed
by the new Mossbauer technique. It is quite new work, and after this it is
very difficult to argue from the previous state of things. It is very difficult to
question anything here. I must mention that in non-Einsteinian theories of
course we can see the insensitivity of the red shift; because out of ten,
perhaps eight agree in this effect; but only three in another two effects. So it
is a most simple efiect. Another point I wish to mention about all these
astrophysical experiments. We can hope that there is some disagreement
because of the granulation, the line shift due to pressure, and many other
things. These people (Blamout and Roddier), as I understand from their
paper, are quite advanced.

A. J. COLEMAN:
I think that, at the moment there is no known way of reconciling the actual

observational findings with general relativity. I’m not saying it’s a disproof.
We can hope that they will be reconciled but they are not yet reconciled.
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V. L. GINZBURG:

No, I rather disagree,because they (Blamont and Roddier) calculated the
shift due to the pressure and the granulation (it is a complicated thing,
for different lines it is not the same). So I don’t think that here we have
such a thing. All I can do is to give you this reference.





PROPOSED GYROSCOPE EXPERIMENT TO TEST GENERAL
RELATIVITY THEORY*

L. I. SCHIFF

Institute of Theoretical Physics, Department of Physics, Stanford University, California

THERE is a striking difference between the experimental bases of the special
and general theories of relativity. Special relativity has been amply verified
in several aspects: for example, the dynamics of electrons and protons
moving with speeds close to that of light, the time dilation of the decay of
rapidly moving 7t mesons, the classical radiation from fast electrons in mag-
netic fields, and the predictions of relativistic quantum electrodynamics with
respect to bremsstrahlung and more subtle radiative processes. In each of
these categories, so many experiments have been found to yield results in
agreement with theoretical expectation (and none in disagreement) that
there can be no reasonable doubt as to the correctness of special relativity
as a description of natural phenomena within its domain of validity. The
situation is completely different with general relativity. Here, there are thus
far only the three so-called “crucial tests”: the gravitational red shift, the
deflection of starlight passing close to the sun, and the precession of the
perihelia of the orbits of the inner planets, especially Mercury. And of these
the first, which was recently established in terrestrial experiments, [1], [2]
was shown by Einstein [3] to follow directly from the equivalence principle,
already established experimentally by Eotvos,(1) without employing the
formalism of general relativity.

It is not surprising that it is so diflicult to establish the experimental su-
periority of Einstein’s theory of gravitation over that of Newton. Experi-.
mental situations that involve special relativity require particles moving with
speeds close to that of light, and several kinds of such particles are plenti-
fully produced by modern accelerators. The corresponding situation in gen-
eral relativity would call for strong gravitational fields; the significant
parameter is GM/czr, where M is the mass of the gravitating object, r the
distance from its center, G the Newtonian constant of gravitation, and c

* Supported in part by the United States Air Force through the Air Force Ofiice of
Scientific Research.

(1) These experiments are summarized in a posthumous paper of Eotvos [4].
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the speed of light. This parameter is roughly 10—6 at the surface of the sun
and 10—9 at the surface of the earth. Thus available gravitational fields are
very weak, and Newtonian theory provides an excellent approximation.

It is because of this paucity of experimental information that a new ex-
periment was recently proposed [5]. This would consist in moving a torque-
free spherical gyroscope through the gravitational field of the earth, and
observing the precession of its spin axis. According to Newtonian theory,
there is no precession of gravitational origin. However, the Einstein theory
predicts that the angular momentum vector S0 of the gyroscope, measured
by a co-moving observer, would change with time in accordance with the
equations:

ddt = $2 XSO, (1)

Q = (1 /2mc2)F X 17—]— (3GM/2c2r3) (r X v)—|— (GI/c2r3) [(3r/r2) (a) - r')—w]. (2)

Here, m is the mass of the gyroscope, r is its position vector with respect
to the center of the earth, 1: = dr/dt is its velocity vector, F is any nongravi-
tational force that may be applied to the center of mass of the gyroscope,
and M, I, and w are the mass, moment of inertia, and rotational angular
velocity vector of the earth.

Equations (1) and (2) were calculated [5] by means of the dynamical
method of Fock [6] and Papapetrou [7]. The first equation shows that the
magnitude of the spin angular momentum of the gyroscope, and hence the
rate of rotation measured by a co-moving observer, is constant. It also shows
that the direction of the spin axis rotates with the vector angular velocity 52.
The second equation states that there are three parts to £2. The first term
does not involve M, and hence is not a gravitational effect; it is the Thomas
precession [8], first discovered in the special relativistic treatment of atomic
systems. The second term is the geodetic precession caused by motion
through the gravitational field of the earth,whether or not the earth is
rotating [9], [10], [11]. The third term arises from rotation of the earth, and
is analogous to the rotation effect predicted in a different connection by
Lense and Thirring [12].

Measurement of the precession predicted by Eq. (1) and (2) would
provide a new experimental test of general relativity theory. At a conference
on experimental tests held at Stanford University in July 1961,“) the late
Professor H. P. Robertson stated without proof the expression for the geo-
detic precession (second term of Eq. (2)) in an arbitrary spherically sym-
metric metric.(3) Following Robertson, we write the metric for the non-
rotating earth in the most general isotropic form:

‘2’ For a summary of this conference, see Physics Today, November 1961, p. 42.
‘3’ This result is also given without proof in a posthumous paper to be published

shortly in the Journal of the Society for Industrial and Applied Mathematics.
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(1'52 2 [l—20t(GM/c2r)-l—2/3(GM/c2r)2+...]dt2

* (1/02) [1+27(GM/02r)+ ...] (4562+ dy2+d22), (3)
which includes the leading terms of an expansion in powers of the small
parameter GM/c2r. The dimensionless numbers a, ,3, y are expected in general
to be of order unity and are all equal to +1 in the Einstein theory. It should
be noted that there is no loss of generality in assuming the isotropic form,
since if cz’A:2+a'yz—|—a’z2 is expressed in spherical coordinates, the radial and
angular parts can be given different coefficients by means of a transforma-
tion of r.

Now as is fairly well known, the measurable quantities in the three “cru-
cial tests” referred to earlier are, in lowest order, proportional to the follow-
ing combinations of the a, [3, 9) that appear in Eq. (3):“)

gravitational red shift: a; (4a)
deflection of light: a—l—y; (4b)
perihelion precession: 2a(a+y)—/3 (4C)

The number a not only determines the red shift in accordance with Eq. (4a),
but also is responsible for the leading term in the gravitational acceleration
produced by the mass M, and hence for the orbits predicted by Newtonian
theory. Thus a, or more precisely the product aG, must be regarded as very
well determined; with the conventional definition of G, a is equal to +1
with great accuracy. The observational errors associated with the measure-
ment of the deflection of light are roughly 20% [14], so that y is not very well
determined from Eq. (4b). On the other hand, the precession of the peri-
helion of the orbit of the planet Mercury agrees with the prediction of gen-
eral relativity theory within about 20/0 [14], so that the combination 232—,5
is known from Eq. (4c) with this accuracy.

It is therefore of some interest to see how the geodetic precession of a gyro-
scope depends on a, [3, and 9/. To this end, the dynamical calculation of
reference [[5] will be generalized to the metric given in Eq. (3). We shall do
this only for the geodetic term, and quote results only for the isotropic me-
tric and the Pirani boundary condition. The pertinent formula is then Eq.
(24) of reference [5], with the nongravitational acceleration f set equal to
zero and the mass parameter m replaced by GM/cz:

dS/dt = (GM/c2r2)[S(r-v)+2v(r-S)—r(v -S)], (5)

A recalculation of Eq. (5) with the metric of Eq. (3) yields:

45761t = (GM/€2r3)[(2y—0!)S(r - 10+ (7+a)v (r - S)—W(v -S)]- (6)
W For a discussion of the physical basis of (4) see [13].
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Comparison of Eq. (5) and (6) shows that they agree when a and y' are given
the Einstein value +1.

It is necessary to express Eq. (6) in terms of the angular momentum S0
measured by a co-moving observer. The relation between S and S0 involves
a Lorentz transformation that is independent of the metric, and a coordinate
transformation that depends on the form of Eq. (3). Thus the first of these
is the same as the Lorentz transformation given as Eq. (31) of reference [5]:

so = s _ % [vZS—vo; ~S)]. (7)

On the other hand, the coordinate transformation involves the space part
of the metric, and hence 7/:

So = [1+2y(GM/02r)]S, (8)
which reduces to Eq. (25) of reference [5] when 32 = +1. Combination of
Eq. (7) and (8) to first order gives the relation between S and S0:

S0 = [1+2y(GM/c2r) — i172] s+ % m .5). (9)

The time derivative of Eq. (9) is:

dSo/dt = dS/dt—2y(GM/c2r3)S(r-v)—S(v .13) + £130: .5) + ivfi; .5), (10)

where i: = dv/dt. It is sufficient for a first-order calculation to use the New-
tonian approximation for 1'1. For the geodetic term, we again drop the non-
gravitational acceleration f, and note further that the gravitational accelera-
tion must be multiplied by a when the metric of Eq. (3) is used; thus Eq.
(34) of reference [5] is replaced by:

i: = —a(GM/c2r3)r. (11)
Substitution of Eq. (6) and (l 1) into Eq. (10) then gives:

dSo/dt = (a+2y)(GM/2c2r3)[v (r- S)—r(v - S)] . (12)

As in reference [5], the difierence between the differential time intervals
dt in the two coordinate systems may be neglected, as can the difference
between S and S0 on the right side of Eq. (12). Equation (12) is thus equi-
valent to the geodetic term of Eq. (1) and (2), with the number 3 replaced
by a+2y. This is in agreement with Robertson’s conclusion that the geodetic
precession is proportional to a—l—Zy. Our derivation also shows that the ma-
gnitude of S0 remains constant even when the general metric of Eq. (3) is
used. If follows that the gyroscope precession experiment provides a method
for the determination of 7/ that is independent of the deflection of light; it
is also slightly more sensitive, since Eq. (4b) shows that the latter depends
on a+y rather than on a+2y.

The magnitude of the precession angular velocity given in Eq. (2) is roughly
0.4” of arc per year if the gyroscope is at rest in an earth-bound laboratory,
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and carried through the earth’s gravitational field by rotation of the earth.
In this case, the three terms of Eq. (2) are of the same order of magnitude.
If the gyroscope is in a satellite at moderate altitude, the geodetic precession
is about 7” per year, and the precession caused by rotation of the earth is
about 0.1” per year; in this case the gyroscope is in nearly free fall, so that
the Thomas precession is practically zero. Since both of the experimental
gyroscopes now under active consideration are intended for satellite use,
it follows that the first result obtained will be an independent measurement
of y. Ultimately, it is hoped that the experiment will demonstrate for the
first time, through the much smaller third term of Eq. (2), the eflect of the
rotation of a massive object on its gravitational field; this is also a prediction
of the Einstein theory that has no Newtonian counterpart.

The more advanced of the two gyroscopes referred to above is the electric
vacuum gyroscope“) It consists of an electrically conducting sphere that
is constrained and supported by the electric fields between its surface and three
mutually perpendicular pairs ofclose-fitting electrodes. As is well known, such
support by electric fields is dynamically unstable, so feedback loops that
adjust the field strengths in accordance with the sphere—electrode spacing
must be provided. This is accomplished by using alternating voltages in
nearly resonant circuits with external inductances, so that the change in
capacity produced by motion of the sphere with respect to one pair of elec-
trodes automatically changes the voltages in such a way as to restore it to
the desired position. This approach can be extended to a three-phase elec-
trical system, with one phase for each of the perpendicular electrode pairs;
the sphere then becomes an electrically floating neutral. It seems desirable
also for the gyroscope to have a slightly larger moment of inertia about one
axis than the other two, so that it will spin naturally about this axis. Then
the symmetry of the support is preserved if one of the three electrode pairs
is maintained along the spin axis. Readout of the direction of the spin axis
is being accomplished by an optical method that consists in viewing a sinus-
oidal curve etched around the equator of the sphere.

The second gyroscope consists of a superconducting sphere supported
in a static magnetic field!” The sphere acts as a perfect diamagnetic, so
that the support is dynamically stable and no feedback loops are required.
Since low temperature is required in any event in order to maintain super-
conductivity, ambient electric and magnetic fields can be greatly reduced
by using a superconducting shield. The low temperature also decreases ther-
mal distortion since all coeflicients of thermal expansion are the very small.
The readout now being developed makes use of the Mossbauer effect. A small

(5) A. No-rdsieck, private communication.
(0) W. M. Fairbanks, private communication.
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amount of a suitable radioactive material is placed on the sphere, and the
gamma rays from it pass through an absorbing plate that rotates coaxially
and synchronously with the sphere. Any misalignment of the axes of sphere
and plate will result in a periodic change in the relative velocity of the two,
and hence a periodic change in the Mossbauer radiation measured by the
detector placed beyond the plate. Laboratory tests indicate that this method
of reading out the direction of the spin axis of the sphere will have sufficient
accuracy for the precession experiment.

As remarked above, both experiments are planned for satellite use. The
principal reason for this is that the effective acceleration of gravity in a sa-
tellite at moderate altitude (difference between the earth’s gravitational acce-
leration g and the acceleration of the satellite) is extremely small; it arises
from external forces such as light pressure and atmospheric drag, and is
probably of the order of 10—7 g. Thus the constraining forces required (elec—
tric and magnetic in the two gyroscopes described above) are very small,
and extraneous torques that arise from these forces in conjunction with im-
perfection in construction are hopefully small enough so that they do not
obscure the general relativistic precession. A secondary reason for use of
a satellite is that the precession to be observed is much larger than in an
earth-bound laboratory. On the other hand, it is apparent that any experi-
ment is more difficult to accomplish and to monitor in a satellite than on
earth; however, this disadvantage is believed to be outweighed by the factors
just mentioned.

An additional refinement in the satellite experiment is also being given
serious consideration. It was suggested by Pugh [15] and Sherwin [16] that
the satellite be made to follow the gyroscope. This would require that the
position of the gyroscope with respect to the satellite be sensed Without
exerting a force on the gyroscope, and that forces then be applied to the
satellite so that it maintains a fixed position with respect to the gyroscope.
There are three main consequences of such arrangement. First, the non-
gravitational force that must be exerted on the gyroscope is reduced from
10‘7 g times its mass to zero, thus further reducing extraneous torques.
Second, the satellite will follow a true gravitational orbit about the earth,
and observations of it will provide precise information on the figure of the
earth. And third, the forces that must be applied to the satellite in order
that it follow the gyroscope may be interpreted in terms of atmospheric den-
sity. The last two would be useful by-products of the general relativity expe-
riment that are of interest for geodesy and high-altitude meteorology.

Even without the “slaved” satellite described in the last paragraph, it
seems likely that satellite gyroscope drift rates can be reduced to less than
0.1” of arc per year, and that the direction of the spin axis can be read out
with an accuracy considerably better than 0.1”. There would then remain
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the problem of relating the direction of the spin axis of the gyroscope to
some externally established direction, presumably that of a star. This would
require that the satellite also contain a rather good telescope. According to
present plans, it seems possible that a telescope of about one meter aperture
will be in orbit by the end of 1965.
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GENERAL DISCUSSION

J. WEBER:

Measurement of the Riemann Tensor. At the University of Maryland,
we have constructed apparatus for detection of gravitational waves. This
is a device to measure the Fourier transform of the Riemann tensor com-
ponent R0101.

The theory of this method“) is that relative displacements occur in an
elastic body in a curved space. A time dependent curvarture, therefore. in—
teracts with the normal modes of an elastic body. For one-dimensional acou-
stic waves set up in this body in the x’ direction, we may choose coordinates
such that the strain 0 is given by the diflerential equation”)

820 820 30
yfi—Qfi_ 17; =c29R0101:

here y is the elastic modulus, g is the density.
We have employed this equation to set limits on gravitational radiation

using the earth itself as a detector, at the time the earth’s normal modes
were identified by the California Institute of Technology Seismology group.

Our present apparatus employs the normal modes of an aluminium cy-
linder having a mass of about 106 grams, two meters in length and about
one-third of a meter in diameter. The theory of the sensitivity”) has been
given. The ultimate value is determined by the Brownian motion of the nor-
mal modes of the cylinder. To achieve this ultimate sensitivity, two im-
portant requirements must be met. The detector has to be isolated from
the motions of the environment and means must be provided for coupling
out the energy without introduction of too much noise.

I wish to report that these problems have been solved for the present
apparatus, which operates in the vicinity of 1657 cycles per second. Isolation
is accomplished by careful design of the suspension, which rests on acoustic
filters. The suspension is accomplished by milling a slot all around the cir-

(1) A detailed account of the theory is given in the book General Relativity and Gra-
vitational Waves, by J. Weber, Chapter 8, Interscience Publishers, Inc.; New York, Lon-
don 1961.

(2’ This is related to the equation of geodesic deviation deduced many years ago by
Synge and Levi-Civita and employed by Pirani to discuss measurement of the curvature
tensor by use of free particles.

‘3’ Op. cit.
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cumference of the cylinder in the central plane normal to the longitudinal
axis. A steel wire is wrapped around in this slot, with other members to as-
sure stability. The energy is coupled out by securing piezo electric crystals

around the cylinder near the slot. These are coupled to an amplifier of un-
usual design, with high impendance and good noise characteristics. The input

circuit of this amplifier operates at liquid helium temperatures.
If to is the angular frequency, the mean squared relative displacement

of the ends of the cylinder due to Brownian motion is given by

x2 =fl.
"1602

Here m is the mass, k is Boltzmann’s constant, and T is the absolute tempe-
rature. In our case, the root mean square displacement which we can detect
is smaller than 10—14 centimeters if we average over times longer than mi-
nutes.

Up to the present time, gravimeters were the only objects to use for meas-
urement of a time dependent curvature tensor. These can detect a change
in the acceleration due to gravity of roughly one part in 109 over periods
of seconds. These values imply that our apparatus in its present form has
increased the sensitivity of this type of measurement by at least a factor
100,000,000.

My colleagues, Professor David M. Zipoy and Robert L. Forward have
made important contributions to the development of this device. Our re-
searches were supported by the U. S. Natural Science Foundation.

A. PEREs:
I would like to point out that there may be a more efficient method to

detect gravitational radiation. Here you are measuring the spectrum of the
radiation, which is an instantaneous effect (the instantaneous rate of energy
flow). On the other hand, you can have a measurement of momentum flow. It is
possible to make a system move in such away that gravitational radiation is
emitted in a preferred direction, and then this system will recoil like a rocket.
This is a cumulative efiect, and I presume this would be an easier way to detect
the emission of gravitational radiation. 1 have no time to give detailed cal-
culations, but I think it is easier.

J. WEBER:
I have one general comment to make on this. It would be a great mistake

to say that this is the best method or that this will always be the best method.
The only thing we can say is that this does represent an improvement of
108; and I wish you would make detailed calculations on your method and
publish them, and if it gives a better improvement than 108 over existing
methods, then your method is better.
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A. PEREs:
I’ll show you these calculations!“

J. WEBER:

Also, after you have published the calculation, be sure you build one,
because it’s just possible you might run into some major problems. One
other comment I should make. That is, when these sensitivity figures were
published, it was assumed that the apparatus would work right down to the
thermal fluctuations. It turns out that we were rather naive, and it is a kind
of fortuitous combination of accident and luck that this apparatus does
work down to the thermal fluctuations. If we had built the apparatus in some
other part of the spectrum the problem of the isolation and the acoustic
filters could not have been solved, and the sensitivity would have been a good
bit worse than this. So it’s entirely conceivable that the other Russian workers
may have been working in some other part of the spectrum. But this really
does work down to the thermal fluctuations.

V. L. GINZBURG:

May I ask you to write down two figures: the component of the Riemann
tensor for the double star or for anything you have as a radiator of' the
energy; and your sensitivity. So one can tell, perhaps, whether it is possible
to detect something.

J. WEBER:
I don’t carry those in my head, but I do carry them around between the

covers of a book which I published and of which I have a copy here. So when
I bring the book we can go over this in detail.

V. L. GINZBURG:
Yes, but the results. Can you detect something?

J. WEBER:
The results are that for any known double star at known distances we

cannot.

R. P. FEYNMAN:
At what frequencies?

J. WEBER:
At 1600 cycles. You see, if we went to lower frequencies we’d have a bet-

ter chance of detecting something but at lower frequencies the problem of
isolation and filtering are much greater. The 1600 cycle apparatus requires

‘4’ Phys. Rev. 128, 2471 (1962).
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a vacuum chamber ten feet long and seven feet in diameter. To go down two
orders you would have to have a 1000 foot vacuum chamber, seven hundred
feet in diameter, and the National Science Foundation might not allow us

to do it.

Unidentified questioner:
Have you measured any Dyson neutron binaries yet?

J. WEBER:
No, we have not discovered gravitational waves. It would be right to

say we have discovered nothing; it would be wrong to say we have observed
nothing. We have had the apparatus working. We observed it for a period
of an hour; things go along all right, and we do occasionally see bursts. I don’t
believe that these bursts—the recorder suddenly moving off scale in the
stillness of the night——are Dyson’s neutron stars. On the other hand we
don’t know what they are, and we’ll just have to run them down, and we’ll
have to observe for a period of four or five months in a quiet place before
we can say that we have observed nothing, and therefore this means that
the gravitational radiation has certain new limits.

A. SCHILD:
Professor Ginzburg, in his very interesting lecture of this morning, stres-

sed the importance of experiments measuring new effects of general relati-
vity theory, especially of experiments meaning the three classical effects to
second order, i.e., to order (M/r)2 (with c = G = 1). Ginzburg referred to
a paper by Whitrow and Morduch‘5’ which claims that several gravitational
theories (including my generalization of Whitehead’s theory) predict exactly
the same first order eflects as general relativity in the three classical tests,
the gravitational red shift, the bending of light by a star. and the perihelion
rotation of a planetary orbit.

I wish to point out a simple heuristic argument,(6) essentially Einstein’s
original argument, which leads from the first order gravitational red shift
to the conclusion that space-time is curved. This is important because the
gravitational red shift and the equivalence principle are by far the best verified
of the post-Newtonian effects of general relativity. The red shift has been
measured not only directly by the laboratory experiments of the Harwell
and Harvard groups, but also indirectly”) by the accurate experiments of

(5’ G. J. Whitrow and G. E. Morduch, Nature 188, 790 (1960).
(6) A. Schild, Time, The Texas Quarterly, vol. 3, No. 3, p. 42 (Autumn, 1960); Am.

J. Phys. 28, 778 (1960); lectures at International School of Physics “Enrico Fermi”, course
on “Evidence for Gravitational Theoreis”, June 1961 (Pergamon Press, in print); The M0-
m'st, now series, first issue (in print).

‘7) L. L. Schiff, Proc. Nat. Acad. Sci. U. S. 46, 871 (1960).
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E6tv6s and Dicke. If my argument is valid, then these experiments are suffi-
cient to eliminate all flat space-time theories of gravitation, such as those
of Poincare, Birkhofl' and Whitehead.

The first part of the argument is illustrated by Fig. la, and repeats the
simple argument for the red shift given by Ginzburg. In a static gravitational
field, a photon of frequency v and mass or energy hv at level II (gravitational

Level 17: Clock: 3
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V+A v Hagan: v (Q

l ‘d
Gray. field
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hfi=hv+tV v=n/s,17=n/§
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FIG. 1

potential V+AV) falls to the lower level I (gravitational potential V) where
its frequency is 3 and its energy W. The gain in energy must equal the mass
hv multiplied by the difference AV in the gravitational potential. Thus h:
= hv—l—tV and we obtain the gravitational red shift formula (7—0/1;
= AV. It states that light moving up in a gravitational field must change
in frequency from '17 to v and thus become redder.

The second part of the argument is illustrated by Fig. lb. We now con-
sider the light moving up from level I to II, not from the point of view of
a quantum phenomenon but from the dual point of View of a wave pheno-
menon. Let us think of a radio station at level I sending out a continuous
monochromatic radio signal of frequency 7. A receiver, resting at level II,
receives the signal at the lower frequency II. We now have an apparent con-
tradiction. Since the whole set-up is stationary, and since wave crests cannot
originate or disappear between sender and receiver, it seems that a change
in frequency is impossible. The way out of this difficulty is to assume that
time flows at different rates at different levels in a gravitational field. If a clock
resting at level I measures a time interval E for n oscillations of the radio wave
and if a clock resting at level II measures a time interval 3 for n oscillations,
then v = n/s and 17: 11/3. Substituting this into the gravitational red shift
formula above, we obtain the gravitational time dilatation formula (s—E)/§
= AV.

The third part of the argument is illustrated by Fig. 1c. We begin by as-
suming that special relativity is valid and the space-time is Minkowskian

X
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with line-element is2 = —dx2—dy2—dzz—|—dt2, where ds is the element of
proper time measured by a physical clock along its world line. We now con-
sider a heavy, gravitating body M, spherically symmetric, isolated, and ini-
tially at rest the inertial frame x, y, z, t. Then, independently of any assump-
tions about the gravitational field, it follows from the isolation and spherical
symmetry of M that it will be permanently at rest, and that the world line
of any particle resting near the surface of M will be a straight line parallel
to the t-axis. Let our two clocks be at rest at two different levels in the gravi-
tational field of M. Figure 1c shows a space-time diagram of the two clocks.
711? is the world line of the lower clock and AB that of the higher clock: the
two world lines are parallel. 11A is the world line of a light signal used to
compare the readings of the two clocks at the beginning of an experiment,
BB that of a light signal used to compare the clocks at the end of the experi-
ment. Since the gravitational field is static, it follows that the propagation
properties of light from level I to level II are independent of the time when
the light was emitted; they are the same for the light signals EA and BB.
Therefore the lines IA and BB, though not necessarily straight, are parallel.
In flat Minkowski space-time it now follows that ABBA is a parallelogram
and that the two sides 1715:? and AB = s are equal. However, the gravi-
tational time dilatation efi‘ects state precisely that E and s are not equal.
In geometry the absence of parallelism and of parallelograms with the usual
properties is characteristic of a curved space. Therefore the results of this
paragraph provide a strong heuristic argument which leads from the gravi-
tational red shift to the conclusion that space-time is a curved Riemannian
manifold whose line element ds is the element of proper time measured by
a physical clock along its world line.
R. P. FEYNMAN:

Frequencies of atoms can be shifted, for example, by the environment,
in the sense that the electric field can affect the frequency of an atom. And
so it’s conceivable from another point of view, with which I don’t agree,
but which is at least a possibility, that in different regions, different distances
from the earth, the environment is different, and the atomic frequencies are
shifted thereby. So that the source is not at the same frequency as the receiver
but emits at a different frequency; so that when you put the object up in the
air it emits at a different frequency, and when you receive it, it doesn’t check
with the value you got when you were checking then on the ground. And this
is a perfectly legitimate point of view at this level.
R. SACHS:

I think that it’s a very bad analogy, because in the electric case you have
some kinds of clocks that are not affected by the electric field; whereas here
the assertion is that it’s universal over all clocks.
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R. P. FEYNMAN:

I understand, of course, the philosophy of Einstein. It’s perfectly true
that if all the clocks are shifted by the same amount that it’s possible to inter-
pret the other way; but what Dr. Schild is saying is that he doesn’t under-
stand how people can take another point of View, and have two kinds of
spaces, or something. Now it’s perfectly legitimate to have a theory in which
the speeds of different kinds of clocks may not be exactly the same. It’s not
a matter of absolute principle that the two times be the same. And that it
would be true that in most instances it’s the same, or in the first order it’s
the same. So it is possible to have a theory in which the environment affects
the clocks. It’s possible; I don’t like it, I know it’s not the standard philo-
sophy, but it’s easily appreciated that it’s an alternative.

F. J. BELINFANTE:

On the one hand, I agree with Feynman that there is the possibility that
he mentions; in fact, we used this particular thing to get the red shift in that
theory about which I spoke this morning. However, I want to point out
that the argument that a change in potential should give a change in fre-
quency is very much in contradiction to what we, in the electron case, are
used to; where, for instance, if we have an electron accelerated from one
potential to another, while the total energy remains the same, the kinetic
and potential energies change in opposite ways; we say the frequency re-
mains the same, only the wave length changes. A change in the frequency
by a change in potential energy is something contrary to any elementary wave
mechanics I have ever seen.

A. I. JANIs:
It seems to me that Feynman is not really disagreeing with Schild. Schild

said that the only thing he could see as an alternative to the geometry was
something ad hoc; and ad hoc seems to me to mean making a hypothesis
which is not really checkable; and the hypothesis that you wish to make is
that all clocks will be affected by the gravitational field in this way, and you
have no other clock to bring around to see.

R. P. FEYNMAN:

This isn’t a question of the meaning of ad hoc. The point is that you are
talking about somebody else’s theories. There is Birkhoff’s theory and other
theories which are specific theories which tell how something is supposed
to move in different places; and it’s a consequence of those theories that
an object that’s put in that place would move with a different speed, and
make a difierent ringing speed of frequency, and that’s all I said. I was only
trying to explain what the other theories say, how the other theories look
at it. I understand that it’s the truth, that it’s doomed.
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A. SCHILD:

In Whitehead’s theory, the way Whitehead himself did it, he doesn’t
get quite the red shift of general relativity. He gets a slightly different one,
which depends on the mechanism of the clock. And that’s what you would
expect; that different types of clocks would be differently affected by the
gravitational field. Now if you want to get exactly the value given by the equi-
valence principle argument, and let’s assume the experiments come out 1000/0
accurate, and they give just this red shift; then what it amounts to, as far
as I can see, is that you’re saying that there is a length drz, which is Min-
kowskian, which is there just to determine the gravitational potentials; but
then everything you actually measure with clocks or rigid rods measures
something else which is a dsz. And that, I simply say, is artificial. If one wants
to get exactly this thing which comes out of the equivalence principle out
of a flat space-time theory, it seems to me it involves very artificial sorts of
things.

(The following argument occurred to the speaker some days after
the discussion.) I completely agree with Sachs’ remarks and wish to add this:
There is another important difierence between the action of gravitation on
a physical system and the action of all other fields. In the case of gravitation,
the red shift (or the equivalence principle) teaches us that it is the potential
of the field which affects physical systems, including clocks; in the case of
all other fields, it is the field strength which affects a physical system or a clock.

Consider the example illustrated by Fig. 2. In a region where a field is
present (region III), two distributions of the sources of the field (regions
I’ and II’) are imbedded, the source distributions both being in the shape
of inhomogeneous spherical shells and such that in the interior of the shells
(regions I and II) the field vanishes identically; in general the constant po—
tential (or potentials) in region I will differ from that in region II. Assume
now that the field considered is an electromagnetic field in flat Minkowski
space-time (special relativity), the sources in regions I’ and 11’ being suitable
charge and current distributions. Then two identical physical systems, one
inserted in region I and the other in region II, will behave identically. If the
physical systems are two clocks, they will run at the same rate (our whole
set-up is macroscopic; quantum mechanical interference between the two
physical systems is assumed to be negligible). The same argument applies
to all field theories within the framework of special relativity. If the field
considered is gravitational, then the gravitational red shift, the Mossbauer
experiments at Harwell and Harvard, show that clocks I and II run at
different rates.

I believe that the only possible way out of this dilemma, other than
making artificial and ad hoc assumptions, is to give up the flat Minkowski



GENERAL DISCUSSION 87

space-time of special relativity and to assume that space-time is curved, i.e.,
to go a long way in the direction of Einstein’s theory of general relativity.
By artificial and ad hoc assumptions I mean, for example, gravitational
theories with two space-time metrics, the first (usually flat) serving one pur-
pose only, that of making it easy to define and calculate the gravitational
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field, and the second metric having physical content, i.e., being measurable
by means of clocks, rigid rods, etc.

N. ST. KALITZIN:
Expanding Galactic Systems and a New Application of Einstein’s General

Theory of Relativity.* As opposed to the theory of Friedmann, Einstein,
Lemaitre et al. of an expanding or contracting universe with a constant mean
density of matter in it, we propose a theory in which the vague conception
of the “whole universe” is nowhere used. Our theory is based on the hier-
archical structure of the clusters of galaxies. The method we use is the
method of successive approximations. Thus, initially we accept that a multi-
ple galaxy or a group of galaxies is immersed in a space which is Euclidean

* Tfip'aper has been published in the Monthly Notices of the Royal Astronomica
Society, Vol. 122, No 1, 41 (1961).
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at infinity. Then we assume the same for a supercluster of galaxies. Finally,
we accept the same for a metagalaxy. The idea of our model for a hierar-
chical universe is that the density within any unit is so much greater than
the average density on the next larger scale that the unit may be treated as
though it were in an empty space.

The model which we investigate is the following: we consider a spherical
region G in which we have a spherically symmetric distribution of matter.
Inside the region G we assume that the pressure is zero and that the density
depends only on the time, whilst outside the density of matter vanishes and
the field is asymptotic to the Euclidean (or rather Minkowskian) space at
infinity. This model has been considered by Me Vittie, Tolman, Datt, Ein-
stein and Strauss, Bondi.

According to our assumption that the density 9 = s/c2 in the region G
depends only on the time, it follows that in a system of coordinates, which at
each point moves with the matter at this point, we have (after Datt) the
following well-known particular solution of Einstein’s gravitational equa-
tions in G:

£192 = c2dt2—T2(dr2—[—r2a’02—l—r2 sin20dq)2) (1)

where r, 0, (p are “spherical” space coordinates, t—time coordinate, 41:2
is the square or the four-dimensional distance between two neighbouring
points, and T2 is a function of ct alone.

Since T represents the relative measure of the metric distance between
two points in G as a function of the time, then

Warmly <2)
gives the expansion (or the contraction) in the region G.

The Einstein gravitational equations for the region G take, in this case,
the form

2ri+3H2 = 0, (3)
875k

3H2 = 7 s (k—Newton’s constant). (4)

According to our assumption, the density of matter vanishes outside the
region G. Therefore the field outside G must be given by the Schwarzschild
exterior solution.

The boundary conditions of our problem are that at the boundary of
G the field (1) shall go over continuously up to the first derivative into the
Schwarzschild field in its conformally Euclidean representation. This
problem for the line element (1) is solved by Einstein and Strauss (Rev. Mod.
Phys., 1945). This proves that (1), together with (2), (3) and (4), is a correct
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solution of our problem and can represent the physical properties of our
model.

The relation between the expansion quantity H and the average density
s/c2 in the region G given in equation (4) can be compared, at least with
respect to the order of the quantities involved, with the experimental data.

To connect the velocity of expansion H of unit distance with the quantity
c/c2 we note from (2)

V = He. (5)
From (4) and (5) we have

57kgV =1 (6)
Where g = a/c2 is the rest density of matter in G.

We shall apply the expression (6) to multiple galaxies and groups of
galaxies. The linear dimensions of multiple galaxies are of the order of 5-104
parsecs, whilst the distances between neighbouring multiple galaxies are of
the order of 106—5106 parsecs. Since the distances between multiple ga-
laxies are about 50 times greater than their linear dimensions, our model
can certamly by applied to multiple galaxies.

According to Vorontsov—Velyaminov (Astronomical Journal, 1958) the
majority of multiple galaxies exhibit a clearly expressed “repulsion”
among their components. This “repulsion” reveals itself in the following
facts:

1. In general, the tails of galaxies are directed outside the system and
are larger than the filament connections between neighbouring galaxies. The
spiral structure can clearly be seen on the outer side of the system, whilst
it is absent, or considerably fainter, among the galaxies of the system.

2. The destruction of the facade, i.e. the absence of spiral or other
structure, or alternatively the decreased brightness of such structures, on
the side of a galaxy which faces another galaxy of the system is a very wide-
spread phenomenon. On the sides of the galaxies facing each other the
brightness is generally fainter, whereas the gravitational tidal waves should
give rise to a confluence of stars towards these sides and a consequent in-
crease in brightness. The destruction of the facade is a phenomenon which
has nothing to do with the tides, but which emphasises the “repulsion”
between the components of the multiple galaxy. This “repulsion” is
illustrated most clearly by the presence of bright tails.

3. The new data published in recent years for the radial velocities of the
components of multiple galaxies has given direct confirmation that some
multiple galaxies expand. The velocities of recession are of the order of
1000—3000 km/sec.
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According to Ambartsumian, we can estimate the diameter of such a
system to be 5X 104 parsecs. The mean density of matter in this system can
be taken as 10'24 g/cm3.

Substituting these values in (6) we get for the periphery velocity
V: 1150 km/sec.Thus the velocity of recession on the periphery of the
system is 1150 km/sec. The above mentioned velocities of recession of some
multiple galaxies are of the same order. The effect of expansion for the
multiple galaxies, which can be explained on the basis of the general theory
of relativity without additional hypotheses, represents a new application of
Einstein’s theory of gravitation.

According to our theory we can have expansion as well as contraction
of the matter in the region G. After Lifshitz (Journal of Experimental and
Theoretical Physics, 1946) we can assume that the expanding model is stable
and the contracting model unstable. This is in good agreement with the ex-
perimental data according to which, for multiple galaxies, clusters of ga-
laxies and superclusters of galaxies, expansion predominates.

E. SCHUCKING:

I think the problem of clusters of galaxies is a very complicated problem.
Last year there was a symposium at Santa Barbara at which some of these
questions were discussed at length for about a week by a hundred people
or so. And I think that the data indicate that a cluster of galaxies is quite
a complicated object, and these objects differ very much with respect to
mass or with respect to diameter and so on. There is no indication at the
moment of any expansion or the like of these clusters of galaxies. We don’t
know if they expand or contract or they are stable or something else. We
just don’t have the necessary observations. On the theoretical side much
work has been done especially over the last years by Just, and many other
people. And I think the model that you are considering is an extremely
special model, that has already been dealt with in the literature.

D. IVANENKO:

Since we are engaged in discussing various projected experiments in ge-
neral relativity, may I be permitted to draw your attention to some work
being carried on at our Moscow University by Braginski and Ruckman. They
have tried to detect the level of possible screening of gravitation. We have
been trying once more to disprove the experiments of Majorana and others
in this field. But the chief aim was to devise methods which could be ap-
plicable to further experiments. The screening was not discovered up to the
level of 1.3X10—10. Cf. J.E.T.P. 43, _50(1962). The second proposal is akin
to work of Weber about which we were glad to hear today such impressive
developments. Braginski and Ruckman proposed essentially to take not a single
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system of cylinders, excited to radiate gravitationally, but take two groups and
excite them either in phase or antiphase and play on this diflerence; they
hope that there is only a gap of two orders of magnitude beyond present
day possibilities (cf. Theses of the lst Soviet Gravit. Conference; Moscow
University 1961)

Now to some efi‘ects which lie outside conventional Einstein theory.
I will not enter here in any details even of most reasonable modifica—
tions suggested by tetrad formalism used with various supplementary
conditions by Moller, Plebar’tski and my collaborator V. I. Rodicev which
preserve Riemannian curved geometry or of other optimistic generalizations
leading to torsion (which induces among other things after V. Rodicev
and R. Finkelstein, a non—linear supplement in Dirac equation, so impor—
tant for unitary schemes of matter). Indeed the experimental consequences
of such modifications are as yet not fully investigated. But enjoying the
happy occasion of Professor Dirac participation at this Conference may
I ask whether it is reasonable to consider the consequences of his well
known hypothesis of slow secular diminution of gravitational constant
(Here Prof. P. A.M. Dirac remarks that he indeed continues to support
his old hypothesis). Well, than one may be hold enough to draw after
Jordan and Dicke further consequences and we tried with M. U. Saghitov
to connect the probable rate of the Earth expansion with the rate of
increase of the period of diurnal rotation and even with building of gi-
gantic rifts, treated previously by A.V. Peive (Moscow) and Dr. Heezen
(Lamont Observatory, N.Y., U.S.A.). We tried to follow the course of these
rifts in Siberia by means of seismic and gravitational data. (Cf. Vestnik
Mosk. Universit. No 6, 1961. Theses, lst Soviet. Gravit. Conference
Moscow 1961).
B. BERTOTTI:

There are heurestic arguments which support the hypothesis of a varia-
tion of the: gravitational constant k according to the law

k = k0(1+ fl/); (1)
c2

here a is a dimensionless constant of the order of unity and V is the gravi-
tational potential in the region where the interacting bodies are situated.
However, a way to fit the hypothesis in the framework of general relativity
has not yet been suggested.

The possibility of testing Eq. (1) has been discussed by Prof. Finzi at
the University of Rome in a paper submitted for publication to the Physical
Review.

In some distant future it may be possible to test (1) through the obser-
vation of the motion of the two satellites of Mars, Phobos and Deimos.
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The solar gravitational potential varies substantially along the orbit of Mars,
which is strongly eccentric; one must expect therefore, according to (1),
a relatively large variation in the attraction between Mars and its satellites.

A different test of (1), which seems to be within the limits of present day
possibilities, is based on the following argument.

If k varies, the gravitational self-energy .Q of a body also varies; accor-
. . . a

dingly, the total force actlng on the body is not Just—M a—V, but
xi

— M (1+ aflz) gxz. However, this correction to Newton’s force is of impor-
C i

tance only in the case of a very dense star like a White dwarf.
As a consequence of this anomalous force a white dwarf should escape

from a weakly bound cluster moving in the gravitational field of the Ga-
laxy. In fact, no white dwarf has been detected in Coma Berenices and in
the nucleus of Ursa Major; it must be said, however, that the total number
of white dwarfs we would have expected to find in those clusters, according
to a prediction of Sandage and considering the methods of observation em-
ployed, is only three. It may not be impossible to improve the statistics in
the future.

Some white dwarfs have been detected in the slightly more strongly bound
cluster of Hyades; this fact sets an upper limi for the absolute value of a.



THE CHARACTERISTIC INITIAL VALUE PROBLEM FOR
GRAVITATIONAL THEORY

R. K. SACHS

Fort Monmouth, NJ.

1. INTRODUCTION

I am honored to participate in this international inquiry into the nature of
things.

General relativity is the best theory of gravity we have; moreover, it
deals directly with the structure of space-time which, as an a priori given
element, forms the basic background for other fundamental physical theo-
ries. Therefore in the long run general relativity, or some substitute for it,
is an indispensible supplement to these other fundamental theories. Since
1916 we have had a slow, rather painful accumulation of minute technical
improvements which have advanced our understanding of the mathematical
content of this theory and the physics of gravity. I think that the attempt
to continue obtaining such minute improvements constitutes a legitimate
and fascinating part of mathematical physics. If something really exciting
turns up fine; in any case routine improvements will certainly be obtained
and that, for me, is exciting enough. Of course it may happen that all our
rather sophisiticated attempts will be swept into obsolescence by some simple,
wholly new idea or experiment; but it may also be that the only real way to
understand the nature of space, time, and gravitation is to continue a care-
ful and impartial analysis of the present theory.

Why these somewhat negative remarks? Well, I am quite enthusiastic
about some of the results on which I shall here report, notably those of Pen-
rose, of Bondi, Van der Burg, and Metzner, and of Newman and Unti [1],
[2], [3]. There is the danger that you might misinterpret my enthusiasm.
I don’t claim that we are here dealing with a breakthrough, which will lead
to a complete clarification of the main unsolved problems of gravitational
theory. Such a claim would certainly be overoptimistic. In particular, I shall
discuss here the characteristic initial value problem; that is, I shall try to
count and label the difierent possible solutions of the Einstein field equa-
tions by analyzing properties of lightlike elements (lines or hypersurfaces
everywhere tangent to the local lightcone). But suppose we understood light-
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like elements very much better than we do at present. I think we should at
least still need continued analyses of the usual initial value problem, parti-
cularly global analyses of the kind carried through by Arnowitt, Deser,

Misner, and others [4], [5]. Otherwise definitive answers even to our present

questions about the meaning of asymptotic flatness, the behavior of gravi-
tational waves, the nature of energy conservation laws, the role of topology,
and the quantum behavior of gravitational fields should not be anticipated.

There are many reasons why one might want to analyze the characteristic

initial value problem; let me mention two. (i) Mathematically, the theory

of hyperbolic partial differential equations is a somewhat Protean one; but

it does contain one idea which serves to unify many different approaches—

namely, to work with characteristic submanifolds as much as possible [6],
[7]; it seems sensible to apply this idea to the Einstein field equations.
(ii) Physically, we know that weak gravitational waves travel at the local
velocity of light; by working with lightlike elements we can, so to speak,
keep up with the waves rather than having them whizz right past us. One
main result of the analysis is that one can give rather explicit, geometrically
meaningful ways of avoiding constraints when one works with lightlike ele-
ments.

Given a normal-hyperbolic second order partial differential equation in
one unknown A and N independent variables x: we can define a character-
istic hypersurface as an N—1 dimensional manifold f(x“) = 0 across which
discontinuities of otherwise continuous derivatives of A can appear; in the
case of a non-linear equation it makes sense only to talk about the character-
istic hypersurfaces associated with a particular solution A(x"). In the case
of Einstein’s equations Rab = 0 (a,b = 0 ..., 3) essentially the same definition
can be used but of course we must ask about physical discontinuities, which
cannot be wiped out simply by making a coordinate transformation. Then
the characteristic hypersurfaces are precisely the lightlike ones, as was first
discussed in detail by Darmois [8].

Let me now state essentially what we are after, leaving aside a whole host
of details and qualifying statements. We want a correspondence between four
arbitrary functions f(§, aw), g(§, 2,1), h(§, 75,1), j(§, 95,1) of three variables
and the physically different solutions {S} of the field equations:

f,g,h,j<——> S; f’,g',h',j'<——>S'; etc. (1.1)
whereby S can be defined by giving its metric in any coordinate system x“.
The trivial but useful example of a vibrating string may help make this no—
tion of a correspondence clear. Let the amplitude of the string be A and
the velocity of sound be unity; then

———=0. (1.2)
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In the usual initial value problem we give A and A at time t= 0, that is:
x+t x—t

f(E), g(§) <——> 2A =f(x—t)+f(x+t)+f g(§)dE—f g(§)d§ (1-3)
whence .

A(x: 0) =f(x)s AC" :0) = 300‘

We see that f and g first appear as arbitrary functions of some auxiliary
variable 5; after the solution is constructed f and g turn out to be the initial
values. For the characteristic initial value problem we give the amplitude
on the two- characteristic lines x+t=0 and x—t=0:

f(E),g(%) <—-> A =f(x+t)+g(x—t)- (1-4)
Note, incidentally, that we give only one function, rather than two, on each
line; this halving of degrees of freedom sometimes puzzles people in the
corresponding gravitational case. In passing note also that the correspon-
dence (1.4) is not quite one-to-one. If we add a constant to f(é) and sub-
tract the same constant from g(§) we end up with the same solution; more-
over, either (1.3) or (1.4) can be altered in a trivial way by performing a two
dimensional inhomogeneous Lorentz transformation. But all these trans-
formations contain only arbitrary constants, while the data consist of ar-
bitrary functions; thus the arbitrariness is “of measure zero” and causes
no serious difliculties; we shall see that a similar situation holds in the gravi-
tational case, where the data consist of arbitrary functions of three variables
while the correspondence is unique only up to some arbitrary functions of
two variables.

No matter how pedantic it may seem to insist on the distinction between
f(E), f(x+ t), and f(x) in equation (1.3) the corresponding distinction is worth
remembering in the gravitational case. Thus when I say in the following
that f(E,x,-r) and g(§,x,r) are components of the Riemann tensor in a light-
like hypersurface I shall really mean something rather more complicated.
Given f(5,x,r) and g(§,%,r) we are to perform certain integration processes
according to some set pattern. At the end we come out with a solution S
of the field equations. If we then look at a suitable lightlike hypersurface
in S using a suitable coordinate system r, 0, (p, we find that f(r,0,q)) and
g(r,6,¢,v) are actually the relevant components of the Riemann tensor in that
coordinate system.

I shall give some more preliminary definitions and lemmas. By u I shall
always mean a scalar function for which the hypersurfaces u=const are
lightlike; I shall often call u the retarded time. The vector field normal to
the u hypersurfaces is given by ka=u,a; it obey’s

kak” = 0, (1.5)
k,,,,k" = 0 (1.6)
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and will be called the ray vector. Equation (1.5) means that k“ lies within
the hypersurfaces to which it is orthogonal. The lines with tangent k" are
geodesics; they will be called “rays” (the words “generators” and “bicharac—
teristics” are also used in some references). By the “inner geometry”
of a lightlike hypersurface I shall here mean the network of distances within
the hypersurface, as given by a metric tensor g,” (r, ,u=1,2,3) as a function
of any coordinates y‘ within the hypersurface. gm is always degenerate;
in fact, since k“ lies within the hypersurface we can consider it as a vector
k’ of the hypersurface; but, since k“ is also orthogonal to every direction
in the hypersurface (including itself) we must have g,,,k"=0. Thus only
three of the six components of g,,; are algebraically independent.

Please note that knowing the metric g,” in terms of some arbitrary co-
ordinate system within the hypersurface does not by any means determine
all the properties of the hypersurface which a sensible person might call
“inner” properties. For example, if we know the full metric gab of the im-
bedding four—space we can introduce along each ray in the hypersurface
the preferred parameter (affine parameter) distance, defined by the property
that the equation for geodesics takes its usual simple form in terms of such
an affine parameter [9]. But, contrary to what one would expect off hand,
knowledge of g,” alone does not enable one to calculate this preferred para-
meter as a function of an arbitrary coordinate system. For this reason, Pen-
rose has introduced a whole hierarchy of “inner geometries” for a lighthke
hypersurface; here I shall always mean the simplest of these geometries,
as defined above.

2. THE LOCAL CHARACTERISTIC INITIAL VALUE PROBLEM

Let us next consider the results that can be obtained by assuming that
we are working in a sufficiently small, finite region of four dimensional space-
time. Given a normal hyperbolic Riemannian manifold and in it any point P
we can introduce a so-called “Riemannian Normal” (RN) coordinate system
based on P as origin [10]. The RN system x” is defined by the properties:

(i) at P x“ = 0 and gab 2 11,1, = Lorentz metric,
(ii) along every geodesic through P the RN coordinates x”are linear func-

tions of the proper distance (or of an affine parameter in the case of null geo-
desics).

It is well known that such coordinates always exist (in a sufficiently small
neighbourhood of P—this qualification will always be understood during
our treatment of local properties) and are unique up to a rigid homogeneous
Lorentz transformation at P. From this high degree of uniqueness of RN
coordinates it follows directly that the ordinary derivatives of the metric
tensor at P in an RN system are actually the values that certain tensors ——
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the so called normal tensors—take at P in the RN system. Now in any co—
ordinate system the only tensors available are the Riemann tensor and its
symmetrized covariant derivatives. Thus we must have

(a) gab = flab
(b) gab,c : 0

(C) gained = Per (Rabcd) at P (2'1)

(d) gab,cde...fg : Per (Racbd; e...fg)+junk
where Per means some suitable permutation of the indices and the junk con-
sists of terms quadratic or higher in the derivatives of the Riemann tensor“)
It is clear from Eq. (2.1) that if we know the Riemann tensor and all its co—
variant derivatives at P in the RN system then we know the metric through-
out a region surrounding P, provided the metric is an analytic function of
the RN coordinates, as will be assumed for the time being.

Up to now we have not used the field equations in any way. These clearly
now take the form of an infinite set of algebraic restrictions on the various
quantities on the right (or on the left) of Eq. (2.1). For example Rab]? = 0
simply reads Rabat?“ = 0 at P; Raw]? = 0 places some restrictions on Ram;
at P; and so forth. These restrictions induce corresponding restrictions on
the gamed. Using the spinor calculus, which is the appropriate tool here,
Penrose was able to solve these algebraic interrelations. He showed that
certain algebraic combinations of the Rabcd;e...f (or of the gawk”) can
be chosen arbitrarily while the remaining combinations are then determined.

His results can be summarized as follows. We choose a particular pair
of components of the Riemann tensor on the finite light cone emanating
from P—I shall not take the time to tell you precisely which two compo-
nents since that would involve introducing a Cartan normal tetrad system
to go with our RN coordinate system and we’ve had enough notation for the
time being—and assemble them into a single complex function 1/}. 1y is ini-
tially given as a function of three auxiliary variables which, after the solution
is constructed, turn out to be essentially the Riemannian Normal coordina-
tes evaluated on the light cone. Then the entire metric field is determined
throughout some region R. Conversely, a given solution S determines 1p (up
to a homogeneous Lorentz transformation at P) once we have chosen P ac-
cording to some prescription. Thus we have a correspondence of precisely
the kind We Were looking for.

The algebraic manipulations described above are a little strange but the
results of Penrose can only be described as unusually beautiful. The function
1/) can be given quite arbitrarily—no constraints appear. Moreover, 1/) has

(1) Equation (21) can be solved for the derivatives of the Riemann tensor in terms
of the gab,cd__,e; but this fact is not relevant to the present discussion.
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a direct geometrical interpretation and the coordinates in terms of which it
must be expressed likewise have a very direct geometrical interpretation.
In effect the entire problem of interpreting physically the solutions of the
field equations has—locally and in the analytic case—been reduced to the

problem of interpreting and classifying three dimensional spaces on which
there is defined a congruence of rays with their preferred parameters and
a 1;) function. This is still a rather complicated geometric structure, but it is

a far simpler one than that with which we started. Incidentally, the numero-
logy obtained here should be compared with that for the vibrating string
discussed earlier. We note the following differences: (i) the gravitational
field has two degrees of freedom rather than one; (ii) we are, of course,work-
ing in three spatial dimensions rather than one in the gravitational case.

Dautcourt [24] and Penrose also discussed the data that must be set on
a pair of intersecting lightlike hypersurfaces to determine a solution, and a slight-
ly more detailed analysis was given subsequently [11]. In this case one can
proceed in a much more conventional manner. We set up coordinates adapt-
ed to the pair of intersecting lightlike hypersurfaces and then use the Bianchi
identities to show that really only six of the ten field equations must be inte-
grated throughout a four dimensional region. By analyzing these six equa-
tions and also analyzing three of the remaining four on a single hypersurface
(the last equation, the so-called “trivial equation”, follows algebraically
from the remaining ones and we need not analyze it at all) one finds out
what data must be set. A uniqueness theorem can be proved generally and
an existence theorem can be proved in the analytic case.

The results are the following. On each of the hypersurface one must give
the inner conformal metric; that is, one must give gw, up to an arbitrary
unknown factor. Geometrically, this amounts to specifying angles (and thus
ratios of pairs of distances) at all points. As discussed above, gm itself con-
sists only of three algebraically independent functions; the inner conformal
metric thus consists only of two algebraically independent functions, which
is the expected number. As before, the conformal metric must be given as
a function of suitably chosen coordinates. In this case, the essential thing
is that one of the coordinates must be the afline parameter along each ray.

One must give some further functions of two variables on the intersection
I' of the two lightlike hypersurfaces; I' is automatically a spacelike two di-
mensional manifold. One must give its entire inner metric and also its two
mean extrinsic curvatures (the traces of the two second fundamental forms
that F posseses by virtue of being imbedded in a four dimensional space);
finally one must give a certain extrinsic quantity of second differential order
for I'. Then the field is determined by the field equations throughout a four-
dimensional region; conversely, a given field determines the data up to an
arbitrariness of measure zero, and we again have the desired correspon-
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dence. I suspect that the fact that one has to give so much extra information
on F is basically a reflection of the fact that the gravitational field has lon-
gitudinal modes as well as its two transverse ones, but this point is not clear
at present in the local treatments.

There are two more essentially similar ways to solve the characteristic
initial value problem for two intersecting lightlike hypersurfaces. Instead of
the inner conformal metric we can give Penrose’s 1;) function; some additional
data on I' must then be given. An intermediate possibility is to give instead
of 1/) or the conformal metric the “shear” of the rays [12]. (Imagine for the
moment that the rays are realized by a stream of photons which cast a shadow
of some object placed in the ray congruence; the shear is a measure of the
rate at which this shadow is distorted per unit parameter interval along the
rays [13], [14].) The reason one has so much choice is that the 1/) function, the
shear, and the inner conformal metric are all interrelated by simple ordinary
differential equations along each ray separately. I do not know of any deci-
sive reason why one of these three quantities should be preferred to either
of the other two as initial data. In any case, the data consist of arbitrary
functions which are geometrically meaningful, as in the case of the cone.

All these developments assume analyticity of the metric and this assump-
tion is actually undesirable and unrealistic. As a general rule we know that
a treatment which assumes analyticity may or may not be misleading when
it comes to answering the very important question: under what circumstances
does the solution depend in a continuous manner on the initial data. A fa-
mous example was constructed by Hadamard, who showed that the Cauchy
problem for the two dimensional Laplace equation is totally unreasonable:
by making arbitrarily small changes in the initial data we can cause arbi-
trarily large changes in the solution arbitrarily close to the initial line. For
this kind of reason one also cannot argue that a non-analytic problem can
be approximated by an analytic one. A few fragmentary results for the non-
analytic case were obtained by Penrose and myself: in order to obtain from
the 1/) function the entire four-dimensional metric on the initial cone or on
the initial pair of lightlike hypersurfaces one need not assume analyticity.
But the only detailed treatment of the outer problem—«propagating the
initial data away from the initial hypersurface—known to me in the non-
analytic case is for simple linear analogoues of the gravitational equations.

However, three or four years ago Professor Bruhat started to consider
the non-analytic case and her results appear in the L. Witten volume [15]

3. THE GLOBAL CHARACTERISTIC DIRICHLET PROBLEM

Let us now discuss global results, obtained by assuming that the space
is asymptotically flat. There are two important preliminary questions:
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(i) What, precisely, is the definition of an “asymptotically flat” manifold?
(ii) What is the structure of the “asymptotic symmetry group”; that

is, which coordinate transformations preserve the boundary conditions ap-
propriate to an asymptotically flat space?

Since the pioneering work of Fock [16] so much work has been done
on these questions that I cannot here attempt to give even a summary of
the main ideas. I have two opinions: first, I do not think that these two
questions have yet been definitively answered; second, I think they are among
the most interesting and difficult unsolved questions in gravitational theory
at present.

Here I shall report on the particular treatment of these and other ques-
tions given in a series of five papers:

(a) The paper of Bondi, Van der Burg, and Metzner [1];
(b) A generalization of (a) by Sachs [17];
(c) The reprint of Newman and Penrose on the asymptotic behavior

of Riemann tensors [18];
(d) A generalization of (a), (b), and (c) by Newman and Unti [3];
(e) A group theoretical analysis by Sachs [19].
The key paper (a) has just been summarized by Professor Bondi. I shall

therefore concentrate attention on those points in which the subsequent
four papers difier from paper (a).

First, as regards basic assumptions, you will recall that in (a) one assumes
axial and reflection symmetry; that is, one assumes the existence of a hyper-
surface orthogonal Killing vector with everywhere spacelike closed trajec-
tories [20]. This assumption was dropped in the four other papers. It turns
out that no new ideas appear when one drops the assumption of axial sym-
metry. Several much less trivial modifications of the basic assumptions were
given by Newman and Unti. You will also recall that in (a) one assumes the
existence of four scalar fields (u, r, 0, (7)) such that

lim ds2 = —du2—2dudr+r2(d02+sin26d<p2) (3.1)
r—>oo

when these scalars are introduced as coordinates; here u is a retarded time,
r is a corresponding luminosity distance along the rays of u (or preferred
parameter distance; the distinction between these two different kinds of
distance is trivial in the global discussion to be presented here) and Band
90 are quantities constant along each of the rays of u. Now Newman and
Unti start with the assumption that there exists a single scalar function u such
that Penrose’s 1/) function falls off as r—5 along the rays of u. They then con-
struct the remaining three scalar fields for which Eq. (3.1) is satisfied. Thus
the fundamental assumptions are more economical and this conciseness
clarifies their geometric meaning. The assumptions of Newman and Unti
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were motivated by some results in the theory of the Petrov—Pirani classifi-
cation [20], [21] and by the results of paper (c).

Even the assumptions of Newman and Unti are not yet constructive:
given the metric in terms of some arbitrary coordinate system there is no
algorithm for deciding whether a function u meeting their requirements
exists or for calculating u if it exists. A treatment of similar questions which
is purely constructive has been given [12] but the insistence on manifest co-
variance in this sense of working with constructive elements has so far proved
less fruitful than the approach adopted in the five papers here under dis-
cussion.

Another important modification of the basic assumptions has been the
introduction of the “uniform smoothness” assumption. The notion of uniform
smoothness is implicit in the work of Fock and Trautman [16], [22], made
explicit in the Newman—Pentose preprint (c), and systematically exploited
in (d). Let u be a retarded time whose rays have the property that one can
go to the limit r—>oo along each ray; let 6 and (p be any scalars constant
along each ray. Let A be a scalar function of u, r, 6 and (p which is 0(r—M)
as r goes to infinity with u, 6 and (,2) fixed. A(u,r, 6, (p) will be called uniform-
ly and radially smooth if

31-- _M_1 3: (LA %_ _8r — 0(r ), a“: 86 : at}; — 0(r M). (3.2)

The motivation for the definition is the following: suppose A = 0(r—1) is
a solution of D’Alembert’s equation in Minkowski space; let u, r, 6, (p be
the usual retarded time, radius and angles in some Lorentz frame; then A obeys
the Sommerfeld outgoing radiation condition if and only if it is unifom
and radially smooth. Now in papers (a) and (b) one assumes that the entire
metric is analytic in (l/r) in the specialized coordinate systems; in (d) one
merely assumes that 1;) and its first few derivatives are uniformly and radially
smooth. The second assumption is known to follow from the first but not
vice versa. Using this much more realistic second assumption Newman and
Unti were able to reproduce all the essential results of references (a) and
(b) except one. Reference (d) also contains some further generalizations of
a topological nature, which will not be discussed here.

While the basic assumptions of reference (a) have thus been modified,
simplified, and generalized, the basic results have merely been generalized
without essential changes.

The first result is that, to specify a particular solution of the field equations,
one must specify: the inner conformal metric of the hypersurface u = 0,
two functions of three variables; two “news functions” of three variables
on the hypersurface r = 00; and three functions of two variables on the two-
dimensional spacelike surface r = 00, u = 0; the latter are essentially the
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mass aspect and dipole-moment—cum-angular-momentum-aspect in Bondi’s
sense. These results, obtained in (b), show that the numerology for the global
problem is very similar to that for the local problem, as one would expect.
Note that the news functions cannot properly be called characteristic initial
data since they are given on a timelike tube at infinity; thus the most accu-
rate name for the problem is “the global characteristic Dirichlet problem”.
Newman and Unti give Penrose’s 1;) function at u = 0 instead of the inner
conformal metric; this formulation is an essentially equivalent one, as already
mentioned in connection with the local problem. However, at this one point,
the otherwise very powerful assumption of uniform smoothness is inadequate
to prove a uniqueness theorem for the solutions and to obtain the theorem
one must fall back one assuming analyticity in (l/r); I believe that this gap
in the Newman—Unti treatment vis a vis the treatments in (a) and (b) is a
purely technical problem which will be eliminated in future treatments.

The next question of interest is the structure of the asymptotic symmetry
group. As shown in references (a), (b), (d), and (e) the allowed coordinate
transformations form a group isomorphic to the generalized Bondi—Metzner
group. The generalized Bondi—Metzner group (GBM group) is defined by
the equations
0’ = HOLD us; 0, tr) <P’ = Joly-"a #650,919): 14’ = Kflavn, us; GNP) (u+a)

(3.3)
where H and J represent a conformal transformation of the unit sphere into
itself, K is the determinant of the conformal transformation, and a is an
arbitrary twice differentiable function of 0 and (p. The transformations (3.3)
may be visualized as taking place at the hypersurface r = 00. Note that the
group structure is metric-independent.

I quote without proof some theorems obtained in (b), (d), and (e):
(i) The transformations with a= 0 form a subgroup isomorphic to the

homogeneous orthochronous Lorentz group.
(ii) The transformations with a = y6+p7 cos 04—118 sin 0 cos (p—I— p10 sin 0 sin 90

form a subgroup isomorphic to the full orthochronous Lorentz group.
(iii) The transformations for which 6’ = 0 and (p' = (p form an (infinite

dimensional) abelian normal subgroup whose factor group is the homo-
geneous Lorentz group (i).

(iv) The transformations for which both (ii) and (iii) hold form a four-
dimensional abeh'an normal subgroup which I shall call the translation sub-
group; the GBM group contains only this one normal four-dimensional
subgroup, so the four translations are uniquely defined up to homogeneous
Lorentz transformations.

(v) The rest mass operator, built from the four infinitesimal translations
in the usual way, commutes with all the infinitesimal GBM transformations.
The corresponding statement does not hold for the spin operator.
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Why one is dealing with a group larger than the Lorentz group is still
not well understood. However, the structure of the GBM group is actually
quite similar to that of the Lorentz group; in particular the fact that the
four translations are uniquely defined seems to open the possibility of intro-
ducing a well defined energy-momentum for the field. In any case, the most
important point is that the group structure is not dependent on the metric;
one therefore finds it possible to work throughout with concepts and equa-
tions that are covariant under the GBM transformations.

Further results of interest concern the asymptotic behavior of the Rie-
mann tensor. Robinson and Trautman [14] and Newman and Tamburino
[23] have shown that the asymptotic behavior of an algebraically special
vacuum Riemann tensor can be given by

R = 0N/r—l—OIII/r2—l—0D/r3 (3.4)

in the generic case, where 0N, 0III, 0D are parallely displaced along each ray,
are null, type three, and type one degenerate respectively, and where r is
a suitably defined distance along the rays, which are in this case defined by
the Riemann tensor itself. In the linearized theory very similar expressions
are obtained, but the series does not break off after the first three terms except
in the case of the Schwarzschild metric [12]. The field of a radiating quadru-
pole contains five terms in the linearized theory. In papers (b), (c), and (d)
wholly analogous results are obtained for the asymptotic behavior of the
Riemann tensor; the expansions agree in algebraic form with the linearized
equations up through the first five terms.

A further result is that time dependent periodic solutions of the field
equations do not exist within the class of solutions considered in any of the
above five references. One would expect this behavior, since the fields obey
the outgoing radiation condition suggested by Fock [16] in the weakened
form introduced by Trautman [22] and also a Riemann tensor outgoing ra-
diation condition [12].

Finally, one has the following series of results concerning the news func-

tions 8c/8u (which I here assemble into a single complex quantity): (i) at

a fixed point in u, 0, ()9 space the news functions are invariant under GBM

transformations up to a rigid homogeneous Lorentz transformation; (ii)

they determine the loss of mass in accordance with the equation
" 2<fl>= —< 3—C‘ > (3.5)Bu aul

Where M is the mass aspect and carets denote the average over the two-sphere

at infinity; (iii) their first retarded time derivatives are the “amplitudes” (in

a sense that can easily be made precise) of the outgoing asymptotically plane
gravitational waves; and (iv) they can be chosen arbitrarily.
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I think that these properties suflice to identify the news functions as the
transverses degrees of freedom of the gravitational field. With this interpre-
tation one can introduce a superposition principle for gravitational waves.
To superimpose two fields one simply adds the news functions linearly; there
by one generates a non-linear superposition of the two fields throughout
a four-dimensional region. Moreover it is easy to write down for the news
functions commutation relations that are GBM covariant, namely

[c,c'] = 0, [c+,c’] = ih6(Q,.Q’)S(u—u’). (3.7)
Here 6(Q,!2') is the invariant delta function for the two-dimensional unit
sphere and S is the step function. One then obtains a rather primitive and
naive quantization of the radiation modes which has the advantage that it is
intuitively clear. One can also construct from the news functions certain inte-
gral invariants for the gravitational field, for example

7!co 2:; . a 2P[a(6,<p)] 10f. duof 61(l sm 0.70185; (law). (3.8)
These integral invariants generate the GBM transformations with the com-
mutators (37); they are in the classical theory just numbers invariant under
GBM transformations.

4. CONCLUSION

I have discussed the local and global characteristic initial value problems.
To my mind the most important result is that (leaving aside a few qualifi-
cations) one is able to describe gravitational fields in terms of a minimal,
complete geometrically meaningful set of true observables. In the case of the
global results, the news functions, which form half of the data, have direct
intuitive interpretations similar to those one has in Lorentz covariant the-
ories. I think these preliminary results show that the further analysis of the
characteristic initial value problem is a rich and interesting problem for
future investigations, and we may hope that some of the many difficult unsolved
problems will yield to present mathematical techniques and physical ideas.
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1. INTRODUCTION

In this lecture we wish to review recent works on gravitational fields
that admit a congruence of null geodesics without shear.

Most of our present ideas on waves in general relativity are based on
analogies between electromagnetism and gravitation. From the point of View
of physics, among the most important features of electromagnetic waves is
their ability to transport energy and to carry information. Accordingly,
physicists are inclined to consider as gravitational waves those solutions of
Einstein’s equations in vacuo which correspond to a mass changing in time,
or contain an arbitrary, information carrying, function. Unfortunately
these properties are of such a kind that they do not seem to suggest a method
for constructing such solutions. Among electromagnetic waves, there are
particularly simple ones, corresponding to a null electromagnetic tensor.
With null electromagnetic waves there is associated a remarkably simple and
beautiful geometrical structure. Its properties can be stated independently of
the electromagnetic field. Thus, one can single out the class of gravitational
fields that admit a similar structure and look for waves among them. Gravi-
tational fields belonging to this class are nowadays referred to as ‘algebra-
ically special’ or ‘degenerate’. Before we proceed to review these fields, we
wish to describe two typical electromagnetic null fields which have close
analogues among our gravitational waves.

Let us consider the following simple situation in special relativity, in-
volving the scattering of an electromagnetic wave on the surface of a perfectly
conducting paraboloid of revolution [1]. Let x = x1, y = x2, 2 = x3 and

* One of us (I. R.) wishes to aclcnowledge the support of the U. S. Air Force.
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t = x4 be the Cartesian coordinates in flat space-time, g = 1/x2+y2+22, and
l a positive number. Define

1: = t—z—l, x = (x+iy)/l,
0‘ = t—Q, C = (x+iy)/(g—z).

If A(1, 1) is any complex function analytic in x, then the real part of“)

14(7) 907:9 DIX: b] (1)

represents a solution of Maxwell’s equations in empty space. The same can
be said of the field

14(0) C)“: [a C, b] - (2)

Their difference,

Fab = A (T, x) I! [axb]_A (0‘: C) 0', MC: b]9

satisfies on the surface of the paraboloid, o‘ = r, the boundary condition

Fume] = 0,

where n, denotes a vector orthogonal to the paraboloid. Therefore, the field
given by (2) can be interpreted as resulting from reflection, on the conduct-
ing paraboloid, of the wave described by (1). If the incident field is simply
a plane wave, i. e., if A031) is independent of x, the resulting field is regular
throughout the region 0' < r. The empty space field can be continued into
the region a > 7: but this necessarily leads to singularities along the axis of
the paraboloid. Both the incident and the reflected field are null. With each
of them there is associated a congruence of null geodesics without shear.
This is known to be the characteristic property of null electromagnetic fields [2].

The property of a congruence of null geodesics of being shear-free can
be described as follows [3]. Think of the null geodesics as of rays of light.
Consider a small, plane, opaque object and a plane screen, some distance
apart from the object. Suppose that the object and the screen are oriented
so that they are orthogonal to the rays of light in their respective rest frames
and situated so that the shadow cast by the object can be observed on the
screen. The congruence is non-shearing if the shadow, as observed on the
screen, is similar in shape to the object.

If fab is a null solution of Maxwell’s equations and *fab is its dual,

fab”, = 0: *fabflz = 0:

then the null vector field ka, defined up to a scalar multiplier by

fabkb = o, *fabkb = 0
‘1’ Throughout this lecture the following conventions are used: Latin indices range

and sum from 1 to 4. A comma followed by indices denotes ordinary differentiation, 3 se-
micolon covariant difl‘erentiation; square index-brackets denote antisymmetrization over
the indices enclosed.
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may be so normalized that
k,;,,kb = o (3)

and
(ka;b+kb;..)k“”’ = (k“;a)2- (4)

In this lecture we shall use the term ‘ray’ to denote a null geodesic belonging
to a non-shearing congruence. The trajectories of a vector field ka subject
to (3) and (4) are rays.

2. THE LINE-ELEMENT OF DEGENERATE SPACES

From now on we shall confine our attention to empty space-times, i.e.,
to four-dimensional Riemann spaces of signature —2 with vanishing Ricci
tensor.

In the theory of gravitation, the analogue of null electromagnetic fields
is provided by the class of metrics with degenerate Riemann tensors [3].
The curvature tensor of a non-flat, empty space-time is called algebraically
special or degenerate if the equations

k[aRb]cdekckd = 0

can be satisfied by a vector field k, which is null and different from zero.
We shall also refer to a space or metric as degenerate if its Riemann tensor
has this property. Sachs has shown that if such a k, exists, it must be
tangent to a congruence of rays. Conversely, if an empty space-time admits
a null congruence of this kind, its metric is degenerate [4], [5].

One is thus led to consider a four-dimensional, normal hyperbolic Rie-
mann space V4 that admits a null vector field ka satisfying equations (3)
and (4). The curves x"=x”(g) defined by

dx‘ _ a

de
are null geodesics. Let us introduce coordinates in V4 such that x3 coin-
cides with the affine parameter 9 and the null geodesics are coordinate
lines of x3 (i.e. x1=E, x2=n and x4=o‘ are constant along the rays). With
this choice of coordinates, k“=6g and g33=0. It follows from the geodetic
condition, Eq. (3), that -the covariant components, ka=ga3, are independent
of 9. Let us introduce the following vectors,

1, = 9,, + % ck“,
xi = P(E,a_aka)$

x3 = P(’7,a_bka)’

and choose a, b and c so that

1,1(1 = 0, x31“ = o, A = 1,2.
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The metric tensor can then be written in the form

gab = kalb‘i'kbla—i’yxlxzxgs

where y”; is a symmetric, two by two matrix. If one chooses P so that
det 364:1, the non-shearing condition, Eq. (4), reduces to

aha/39 = 0-
By a coordinate transformation one can impose the further restriction

yxl = '_ 621-

If we denote kadx‘ by d2 (not a perfect differential, in general), the line-
element can be written as

r192=—P2[(ds—aaz)2+(dn—bd2)21+2ded2+cd22, (5)
where a, b, c and P are functions of all the coordinates and the components
of k, are independent of Q.

3. SPACES WITH CURLING RAY

The quantity to defined by
1 .“’2 = j ktawika’b

measures the amount of rotation of rays. It vanishes for a hypersurface-
orthogonal congruence of rays.

The field equation
Rabk‘k" = 0

reduces for the metric (5) to
P—lazP/Bg2 = (02. (6)

The case of a) gé 0 has been recently investigated by Newman, Tambu-
rino and Unti [6]. Their paper, based on a very elegant technique developed
by Newman and Penrose [7], containes an interesting class of new exact
solutions in closed f01m. All their metrics are of degenerate type I, have
curling rays and constitute a generalization of the Schwarzschild solution.
Newman, Tamburino and Unti claim that all algebraically special metrics
with waéO are of degenerate type I. This would be a significant result, for
in the linearized gravitational theory type II null solutions can be easily
constructed [8]. By an appropriate choice of coordinates, the components
of the Newman—Tamburino—Unti metrics can be reduced to

—__ 2
P=p—1]/92+a2; azb—O; 02K_M

92+a2

kn =(a7]P_1> _aEP—1: 0: 1);
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Where

P=1+%K(§2+772); K=—l, 0 or I;
m and a ;é 0 are constants.

As all these metrics are stationary, they are not interesting from the
point of view of gravitational radiation theory.

4. SPACES WITH NON-EXPANDING RAYS

The class of known gravitational fields with non-rotating rays is much
larger than that corresponding to solutions with w 35 0. Many of these fields
possess properties characteristic for waves. It should be noted that both
the null electromagnetic fields described at the beginning of this lecture
are connected with non-rotating rays.

If we assume that k, is hypersurface-orthogonal, coordinates in V4 can
be chosen so that ka=o‘,,, and d2 becomes simply do. The two-dimensional
surfaces o‘=const., 9=const. can be interpreted as wavefronts. For 6020
equation (6) leads to

P = Q9+R,
where Q and R are independent of 9. As

kg, = 2P‘18P/8Q
one has to consider two cases depending on whether or not Q vanishes.

Let us first take the case of non-expanding rays,

k0,, = 0, zap/39:0.
Sachs [3] has shown that the Riemann tensor for an empty space-time with
a non-rotating, non-expanding family of rays has the form

Rabcd = IIabcd+QIIIabcd+92Nabcd (7)
where Ham IIIabcd and Nam denote, respectively, tensors of Petrov’s
type II, III and II null, or more special tensors. They are covariantly con-
stant along the rays.

The Einstein field equations have not yet been solved for the general
case of a space endowed with non-expanding rays. However, many parti-
cular solutions with rays of this type have been known since a long time.

Brinkmann as early as in 1923 [9] had found a class of metrics which
were later rediscovered“) and described as plane-fronted gravitational

in fact. [hay were independently Qiscmtxd if: I. Robinson an 1,956, by .l. Hui)"
(C. R. .1: box. Paris 249. 1‘36? {151591. and by A. Pr‘tiS 1]’/:_1,~. RenLe'Ncm 3, 57E -: 1959)}.
The pli_ . . - crinnctan'n with plans gran < ail wax '

. in: the first Linn: by [. Rob
L {111.} in \Viil'jju i'l l3‘551—a'filc El'iiili'if‘f.

were real ma uunmlmishce‘. presented at several serm-
nurs as L? :1



112 I. ROBDISON AND A. TRAUTMAN

waves with parallel rays [10]. They can be characteriZed by the statement

that the corresponding propagation vector k,l is covariantly constant. The

Brinkmann waves are of Petrov’s type II null.

iPlane gravitational waves, discovered by Einstein and Rosen [1 1], dis-

regarded by them on the ground that they possessed singularities, restored

to good standing by Bondi, Pirani and Robinson [12], constitute a subclass

of the Brinkmann metrics.

A more general class of exact solutions has been recently found by seve-

ral authors [13]. The metrics are characterized by the existence of a ‘recur-

rent’ propagation vector:

k,;,, = i Gkakb.

By using the field equations, Rab: 0, their line-element can be brought to

the form
as2 = ~ldC—fdalz+2ded6+ (Ge-211W“!

311
where f(C, a) = u—l—iv is an analytic function of C =€+i17, G .= 8—5 + 3—”

77

and H is a function of 5,17 and 0‘ which may be determined from the equation

2 2
3H +a_£_l_ G2+€E+ua£+lva£=0.

3:52 8772 80 85 an

The Riemann tensor of these spaces is given by

Rabcd = Illabcd—i—Q‘Nabcd:

where the symbols have the same meaning as in Eq. (7).

Kundt [10] exhibited all the space-time metrics with non-expanding rays

which are of type III or II null. They all have plane wave-fronts and can be

characterized by this property.

5.SPACES WITH EXPANDING
HYPERSURFACE-ORTHOGONAL RAYS

In the case of diVerging rays, k‘fla 75 0, one can get

kam = 2/9

by a coordinate transformation of the form g——>g+<p (5,17,o‘). P can then
be written as 12—19, where p is a function of E, 17 and 0‘ only. The field equa-
tions and the remaining freedom of coordinate transformations can be

used to reduce the line-element to [14]

(is2 = ~92p—2 (1152+ d172) +2dgda—l— (—2m9—1—|—K— 2Hg)do‘ 2 , (8)
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where

m = m(o‘), K: Alnp, H=ailnp.
0‘

and p=p(£,i7,o‘) is subject to the condition
a .

4 (5 —3H) m—AK= o. (9)
The curvature tensor is given now by

Rabcd = 9—1Nabcd+Q—2IIIabcd+Q_3Dabcda

Where Dam denotes a tensor of Petrov’s type I degenerate.
For m: 0, Eq. (9) reduces to AE=O 21t the n-dependence ofp is arbi-

trary. Solutions with m: 0 are oftype lll. ll null or flat. Moreover. it‘K is
independent of E and i; it can be reduced to — l, 0. or l by a change or :3 into
a function of (7. In all three cases the Riemann tensor is of type ll null.
Rab“, = Q‘lNabm For K = 1 the wave-fronts a = const., 9 = const. are sphe-
res of radius Q and the corresponding waves resemble the spherical null elec-
tromagnetic waves described at the beginning of this lecture. As usually
waves are muted after the geometry of their wave-fronts. the designation
‘spherical gravitational wavcs' seems appropriate for the nonfiar inetricst-‘Sl
with 122‘: O and K21. Spherical gravitational wares suite-r from \‘illé’l‘w
larities. similar in nature to the line singularity that appears in null spherical
electromagnetic waves, Eq. (2), when one shrinks the paraboloid by letting
I tend to zero.

For m7£0 one can normalize 0' so as to have m = l. The solution is
then completely specified by giving p as a function of E and 17 for a definite
value of 0', say 0. Indeed, the parabolic differential equation (9) enables us then
to calculate p for other values of a. The function p defines a one-parameter
family of two-dimensional surfaces, V2(o'), with the line-element p—2(d§2+d1]2).
If V2(0) is of constant curvature, Zip/80' = 0, the line-element (8) is static and
the Riemann tensor is of type I degenerate and falls off as 1/93. In the
general case, the curvature tensor is of type II and contains the 1/9 term
typical for waves. Choose now for V2(0) a regular, closed surface of variable
curvature, e.g., the surface of an ellipsoid. At least for a finite neighbour-
hood of a: I). Eq. (9) defines a family of regular. closed surfaces Vital. The
corresponding L. with Lil'sL given by (8), 'ms only a point wingularity at the
origin 9 #0. This shows that one can construct a nearly t‘crical grat’ita-
tional wave which. at least for at finite range of :7 is regular e‘tet'ytthere ex—
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cept the origin. A point singularity is usually interpreted as representing
the source of radiation.

The authors are indebted to R. Penrose for the argument of the last

paragraph.
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RADIATION FROM AN ISOLATED SYSTEM

H. BONDI

King’s College, London

IN THIS work by Bondi, van der Burg and Metzner only the axisymmetric
case is discussed, but Sachs has extended these methods to the general case
and finds no.real differences other than the obvious one that there are two
rather than one state of polarization. By an isolated system one under-
stands a material system entirely confined within an always finite closed
surface, the rest of space being empty and tending to flatness at infinity.
One studies only the variations of the gravitational field far from the sys-
tem, and the assumption is later made that only outgoing waves are present.

A coordinate system is chosen, having the following properties:
(i) The azimuth (p is invariantly defined by the axial symmetry.
(ii) Coordinates 11,0 are chosen such that u = const., 0 = const., (p = const.

is the equation of an outgoing light ray.
(iii) The coordinate u is timelike.
(iv) A coordinate r is chosen so that the element of area of the 2-surface

u = const., r = const. is r2 sin 0 d0 do).
The metric can then be reduced to

ds2 = (Vr‘lew— U2r2e27)duZ—|— 2e2fidudr+
—|— 2 Urzezydudfi— r2 (eZVdGZ—l— e47 sin 20d<p2) , (1)

where U,V_,/3,y are four functions of u, r, 0.
By virtue of the Bianchi identities the field equations for empty space

reduce to the four ‘main equations’

R11 = R12 = R22 = R33 = 0

(the coordinates u, r, 0, (p being denoted by 0, l, 2, 3) together with two
‘supplementary conditions’ that the portions of R00 and R02 varying like
r—1 also vanish. The four main equations take the form

fil =§W§ (2)

[WW—“U11 = (ham), (3)
V1 = (IL/3,9412): (4)

(r7001 = (U’Kfl9y51’2)a (5)

115



I 16 H. BONDI

where a suffix denotes ordinary differentiation with respect to the corre-
sponding coordinate, while the symbol (,8,y,1,2) etc. denotes an expression
depending only on (3,7) and their derivatives with respect to (and combina-
tions with) r and 0. What these equations imply is that knowledge of y as
a function of r and 0 for one value of u determines in turn fi,U,V and finally
70, so that 9/ may now be constructed for the next value of u. However, 5
functions of integration are also involved, and the following are defined
here: the parts independent of r in ry (called c(u,6)), in r‘1e2“""""U1 (called
—6N(u,0), and in V (called—2M(u,0)).

Next the outgoing wave condition is imposed in the form, plausible from
consideration of the wave equation, that each of the 4 functions fi,y,U,V is
of the form of a polynomial in negative powers of r, together with a remain-
der decreasing (with its derivatives) more rapidly than the lowest power
of r occurring. It can then be shown that coordinate conditions may be im-
posed which put to zero the two functions of integration not specified above.
Also the otherwise exceedingly complicated supplementary conditions now
take the simple form

Mo = —C(2)+ % (022+302 COt 0—269“ (6)
——3N0 = M2+ 3cc02—l—4cc0 cot 0+ c0c2. (7)

The coordinate system, including the conditions just statedi, still has
a certain amount of freedom. The permissible transformations, however,
are fully described by a single constant v (corresponding to uniform motion
of the coordinate system along the axis of symmetry) together with a single
function a of the coordinate 6 (corresponding to parallel displacement of
the basic system of light rays at infinity).

In order to interpret our various functions we consider the static case,
in which our metric must be equivalent to the Weyl metric. Then all func-
tions are independent of u. The function M(u,0) equals the mass m and is
thus independent of both u and 6, while N(u, 0) is related to the dipole mo-
ment, the coeflicient of r—3 in y is linked to the quadrupole moment etc.

Consider now an axisymmetric system static for u< 0. If 00 = 0 for
u >0 also, then it follows from (6), (7) and the expanded form of (2)—(5)
that nothing will change, while if co(u, 6) is a given function for u 20, then
these equations allow the entire development to be read 011?. Accordingly
all the news there is will be found in c0 which hence is called the news func-
tion. Next define the mass of system m as the mean value of M over the
sphere so that

m(u)=—%ofM(u,6) sin (MB. (8)
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Note than in the static case (the only one for which comparisons exist) m
coincides with the usual definition of mass. Now integrate (6) over the sphere

m0 = — éfcoz sin 0d6 (9)
o

the second term going out owing to the axial regularity conditions on c.
Equation (9) shows that news implies mass loss and vice versa, a most satis-

factory result, displaying the energy content of information. While in the

general case (9) depends to some extent on definition (8), the result (9) is

wholly unambiguous if the system passes from a static state via some changes

to another static state, since in static condition (8) is undoubtedly correct.

The physical components of the Riemann tensor contain points of order

r—l, type N and proportion to c00 of order r—Z, type III and depending c0 and
the usual Schwarzschild type terms of order r—2 etc. Again the dependence

of wave duration on the news function is clear.
In a general situation the vanishing of the news function does not imply

a static field. In Eq. (7) N0 will not vanish if c = 0 unless also M = 0. The
equations for the higher coeflicients are of similar structure, and thus we

have to consider the significance of time-variable solutions with c0 = 0.

One and only one of these solutions is clearly understood. It corresponds

to a Schwarzschild mass moving uniformly along the axis of symmetry of
the system of coordinates. For this solution Mzgéo, giving a sort of Dop-

plershift of the mass aspect M.
Other solutions of this kind await interpretation. The question may be

put in the form: Is there anything to distinguish in the matter the solutions

that at infinity are singled out by c0 = 0? One would like to answer yes,
and then one would perhaps think of forcefree motion (as in dust) or pos-
sibly of the motion of matter with an equation of state not explicitly depend-
ent on the time or its direction (i.e. free of dissipation). On the other hand
the linear approximation does not favour this View. Pressing as the need
for an answer is, an asymptotic method does not lend itself to this purpose.

Since the source emits energy in waves with non—vanishing news function,

one would like to know about the reception of these waves and the absorp-

tion of their energy. Only a rough treatment is possible, which nevertheless
is quite instructive. The simplest receiver would appear to be a freely falling
arrangement of two equal masses separated by a small distance, with a mech-

anism arranged to vary their separation so as to maximise its energy gain.
The effect of the field on the masses is expressed by the appropriate com-

ponent of the Riemann tensor. However, the possible gain of energy from

the field is limited by ‘the re-radiation from the receiver due to the variation
of its quadrupole moment consequent upon the motion of the masses. The
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work is completely analogous to the electromagnetic case, and the result
for the maximum rate of absorption of energy is

E (c—c initial)? .

16 r2
However, a difficulty in interpretation arises from the fact that, owing

to the mass loss of the transmitter, c does not return to its initial value ex-
cept perhaps in a few isolated directions. Thus a receiver that remains switch-
ed on can absorb energy from the change in the Coulomb field, that it-
self is due to the emission in the wave, rather than from the wave itself.
Though this can be avoided by limiting the period of activity of the
receiver, in the strictest interpretation the impossibility of wholly separating
the wavefield from the Coulomb field could be stated as the non-existence
of a proper wave zone.

A large receiver may be considered by supposing a large spherical shell
to surround the empty space which has the radiating system at its centre,
the outgoing wave metric of the previous considerations applying within
the shell, and a Schwarzschild metric outside it. Linking the two metrics
in any way will result in describing the material of the shell, and if the mass
of the Schwarzschild metric is large enough the material of the shell should
everywhere be physically possible. The external metric being static, the
combined mass of shell and transmitter does not vary. Hence all the energy
lost by the transmitter is absorbed by the shell, which is thus a perfectly
matched and tuned receiver.

The two chief remaining problems seem to be the interpretation of the
news-free (i.e. non-radiative) time-variable solutions and the reformulation
of the initial value problem and the coordinate conditions so that the out-
going wave condition is only introduced later in the work, and ‘mixed’
situations can, at least in principle be described.
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DISCUSSION
J. L. SYNGE:

I wonder whether Prof. Bondi would be willing to look at this very in-
teresting work from aslightly different point of View? He writes down a line-
element involving, I think, four functions. Is that right? Now, by qualitative
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limitations on those functions, your line-element will have the correct sig-
nature.

H. BONDI'.
Yes.

J. L. SYNGE:

And no matter what those functions are, within that qualification, we
may say that that line-element represents a universe in which there is a
certain distribution of energy and momentum.

H. BONDI:
Yes.

J. L. SYNGE:

Now, your job is to choose these four functions in such a way that the
energy tensor will vanish outside a certain domain; and inside a certain do-
main Will satisfy the realistic condition that the energy shall be positive—but
you don’t bother about that. Now in the outside domain one could wish for
an algorithm which leads inevitably to certain four functions at any given
point, such that as we pursued that process further and further you would
reduce the energy tensor at that point to anything as small as you wished.
Could you claim that your method does that?

H. BONDI:

I wish I could answer this question fully and directly. But as I haven’t
worked it out, I must give you awoolly answer. And this would be that if I pur-
sue this process down a certain number of steps, if I go along my theory
a certain number of steps, and claim that a certain derivative of the remainder
goes down faster than a certain power of r, then I can work out the energy
tensor up to these steps, and I can find that the energy tensor goes down
faster than a corresponding power of r. I think that I could also show
(though I haven’t shown it) that, if I took the next step, the energy tensor
would go down faster than before by, say, two powers of r.

J. L. SYNGE:
But I’m not talking about that; I’m thinking of fixed r.

H. BONDI:
I think it is true that at a fixed r, provided it is large enough, each suc-

cessive step, as I’ve discussed it, will reduce the mass density there. I’m not
convinced that this is necessarily a convergent process: it might be an asymp-
totic one.
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J. L. SYNGE:
When you say large enough, we might be left with a body of huge extent.

H. BONDI:

Well, it’s not a body, not yet. I’m always discussing a perfectly finite system,
and I look at this system from sufficiently far away. Now, the need to look
at the system from sufliciently far away arises from the fact that if I don’t,
then some of my light rays, when I pursue them, will intersect, and my coor-
dinate system will become singular. And, in fact, the surface where the sys-
tem becomes singular is, presumably, outside the actual body. So if the
surface in some treatment becomes very large it doesn’t necessarily mean that
the body becomes very large. It only means that I must look at it from very
far away. It is an asymptotic treatment, strictly, in the sense of looking at it
from very far away.

J. L. SYNGE:

Looking at something that exists? Perhaps it doesn’t exist.

P. G. BERGMANN:

I would like to come back to a point that was only tangentially mentioned
both by Prof. Bondi and in the discussion. And that is the question of wheth-
er an n-body system held together by purely gravitational forces will radiate
or not. Now, as I understand the situation, it is perfectly safe to argue the
point on theoretical grounds because Weber is a comfortable number of
orders of magnitude away from deciding this question experimentally; and
we will probably all be dead by the time the decision is in. It seems to me
that if one uses the weak field approximation as a point of departure to an
expansion (which is admittedly not known to converge, but at least leads
to meaningful operations at each step), that perhaps those here who have
done appropriate weak field slow and weak field fast approximations might
have some contribution to make. I don’t think that we can decide this ques—
tion today, except by majority vote.

J. STACHEL:

I’d like to return to the question of the mass aspect that Dr. Schiicking
raised. There is, I think, a big difference between the static and the non-static
cases in our understanding of mass. Not only can we give an invariant mean-
ing to the concept in the static case, but I think it’s pretty clear that a small
bundle of observers, represented by a rather small channel in the four space
far away from the source, could measure this mass. You have indicated a
method whereby a bundle of observers who completely surrounded the mass
might possibly be able to measure the mass aspect—or the total mass, al-
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though that is not entirely clear to me. Do you have any wayin mind by which
a small bundle of observers not surrounding the mass could measure the
mass aspect?

H. BONDI:

In the dynamic case, none.

R. P. FEYNMAN:

In reply to the question whether things which interact only gravitation-
ally can radiate, I tried the problem of two masses which come past each
other from infinity at some arbitrary speed. Then we can make an expansion
in powers of the gravitational constant. In the lowest order, which is already
the second, because one has to generate a field which acts on the other, there
is no radiation yet. It is just the beginning of the collision. In the next order,
which is then the third there is a possibility of emission of the wave and this
wave can come, physically speaking, from three kinds of places. It can
come from the matter generated or from the field which is going between
the two, from the energy of the interaction. And all this is included correctly
in each order. And in this order there is definitely a radiation, in the order
where it ought to come out, and there is exactly the same radiation as you’d
calculate by :supposing the motion to be given by some other interaction,
non-gravitational, in any other manner. One gets the same degree of radiations
of the gravitational wave, and so on. And so I’ve convinced myself at least,
and that is all I expected to convince in this matter, that there is no doubt
that there is radiation from a gravitationally interacting system. May I take
the opportunity to ask another question, too; while I have the floor? Your
work is very interesting but involves the assumption of the symmetry with
regard to (p. The physical results that you have don’t seem to involve this
phi symmetry in any physical way; and I wondered whether you had any
difliculty in generalizing it so that things would depend on phi?

H. BONDI:

Sachs had done this in detail; and nothing new, I think I’m right to say,
nothing new emerges, except you have the other polarization as well. Now
to your other point. If I may remark so, when you said you’d only con-
vinced yourself, you certainly 'shifted me by a certain extent, even if only by
an inch or so. It’s a point that interests me very much. You must of course
assume certain equations of state for your bodies. And I think this is some-
thing on which it all depends critically. The simplest situation seems to me
to be the pressure-free gas in which we have just T"V 2 97%)“, every particle
following a geodesic. I would be most surprised if this radiated, but I don’t
know. In the next stage I feel it depends very strictly on the equation of state.
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It seems to me absolutely obvious that if the equation state involves the time
explicitly, as in the case of the time bomb, it will radiate; but I still have
the hope that a purely passive equation of state might exclude radiation.

R. P. FEYNMAN:

I wanted to explain that there’s a question of what is the equation of
state of the bodies I use. I have to admit that this thing was done on a quan-
tum—mechanical level and that the bodies that were used were spin zero par-
ticles, obeying the Klein—Gordon equation, and interacting in the way that
would be predicted from the gravitational equations. Now, it is also possible
to make the analysis and understand what happens by taking the limiting
case that the frequency of the radiation that you’re looking for is low, by
going in that direction. And then you can show that the answer of the radia-
tion is independent, in the low-frequency limit, of the force which generates
the interaction. For instance, they could have been scattered because they
were electrically charged. Giving only the angular momentum in and out
is all you need to get the radiation in the low-frequency region. Spin 1/2
particles gave the same radiation as spin zero particles in the low-frequency
region. A problem with three or four particles was also worked out; for
instance, the disintegration of a spinless particle into three particles. The
radiation from that was calculated; in the limiting case of low frequencies
the formula was again simple and was exactly the formula that you would
get from the momentum vectors of the various particles. It, therefore, appears
to me that in the reasonable situation where you have a thing in a limited
region, no matter how complicated the interaction, in the first order in which
there is radiation, that radiation will be obtained, from the stress tensor
variations and by the usual theory of emission. So that if a body has an equa-
tion of state, if that equation of state is due to internal interactions such as
electromagnetic and so on, in other words if the body is an actual body as
we understand them in physics today, with the machinery in detail inside,
I still think that the whole thing will radiate at low frequency levels. The
high frequency radiation, which has to do with the specific collisions, would
be something like the electromagnetic radiation of a gas, which can be ana-
lyzed in two ways. If we consider motion of the charge, say, you can talk
about the low frequencies due to the grand motion of the average charge.
But on the other hand, the internal motions are radiating electromagnetic
waves. Those are the high frequency end and they’re the analogue of this.
The hot gas will radiate thermal gravitational oscillations on top of the ones
that we’ve been talking about.
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A. KOMAR:

The issue I wish to discuss is where does the special significance of energy
come from, that everyone is so concerned with trying to find an expression
for energy. It comes originally from the Lorentz-covariant theories. For
example, let’s take energy, and not momentum or angular momentum, al-
though much of what I say could be applied to them too. For energy, of
course, in a Lorentz-covariant theory it is typically the expression which
generates the rigid displacement in the time-like direction in the usual Min-
kowski frame. In other words, you can go to polar coordinates, for example,
in Lorentz—covariant theories, or go to a frame which splits up the time, or
use curvilinear coordinates; what really singles out the preferred directions,
or the preferred conservation laws, are the Killing directions determined by
the Minkowski metric. For the energy, momentum and angular momentum
they’re precisely the generators of the coordinate transformations in the
Killing directions. When you go to curvilinear space, one can write down
the generators of coordinate transformations in arbitrary directions but
this does not necessarily mean that they give you physically meaningful or
physically preferred conserved quantities. However, when there happen to
be Killing vectors, for example to take the Schwarzschild solution in the
usual coordinate system, the vector pointing in the time direction of compo-
nents (0, 0, 0, 1) is a Killing vector; and this is a very natural vector to use
for the definition of energy. When this is properly used you find that you
get out as the energy the Schwarzschild mass. The question arises, what
does one do when one does not have Killing vectors, because in general you
do not.

Now, you can take several different approaches. One can say, well, physi-
cally these energy integrals are convertible into surface integrals over a two-
surface which can be taken at infinity, and so that if the space is asympto-
tically Minkowskian the appropriate thing to take is a vector field which
is in some sense asymptotically Killing. And it is a little bit tricky to define
what you mean by asymptotically Killing, but it has been done in a paper
which is coming out shortly; and you find that it is closely related to the
choice that Trautman made in treating the radiation problem of choosing
the surfaces to be asymptotically harmonic. The harmonic condition played
an important role in Trautman’s treatment of the radiative case, and it’s
essentially to select out the Killing direction. There are some qualifications
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about that, you need it also asymptotically minimal, and you can impose
these two conditions simultaneously.

The other approach is that you see that the preferred conserved quan-
tities are obtained by taking generators of coordinate transformations in
some preferred directions, preferred by some differential equations, the Kil-
ling equation when you can find solutions. The question is when you cannot
find solutions of the full Killing equation: is there some set of equations
which you can impose on the descriptor vector fields which will be satisfied
by Killing vectors when there are Killing vectors, but can be satisfied more
generally. Then this would be a preferred set of vector fields to look at in
the general case. And there are such, and they turn out to be orthogonal
trajectories of families of minimal surfaces. If you choose them, you can
show the following result: that the energy you get by using this preferred
set of vector fields is necessarily positive definite, and that furthermore when
the energy is zero the space is flat, and this is a global theorem, the proof
of which goes rather similarly to the proof of the theorem that when the
space is static, it’s globally flat. It’s slightly more complicated, but you get
the same result. A third point of view possibly is that when you don’t have
Killing vector fields it’s not really too legitimate to look for energy, and
that one Should not expect to find gravitational energy meaningfully localized.
This can be related to the Gupta-Feynman approach to general relativity.
For example, you start out with a spin two mass zero theory, and you write
down the Lagrangian and construct the canonical stress tensor. Now make
this the source of the field; now you have to write down a new Lagrangian,
construct the canonical stress tensor from that, make that the source of the
field, and reiterate this procedure ad infinitum. What you end up with is the
Einstein theory. However, having done all this, if you now can localize energy
again, one can legitimately ask: why not start the iteration procedure all
over again on top of this? Somehow the Einstein theory in one fell swoop
performed this infinite iteration, and it probably is not fair to require that
the energy localize uniquely at each point in the gravitational field.

F. J. BELINFANTEZ

I want to make two remarks. The first remark is about energy densities.
Komar has just related these to generators of displacements. Bergmann has
stated that there are displacement operators that naturally have the value
zero. In this connection I also remind you of the use I made at Royaumont
of an energy density tensor in a Schrodinger equation. As we there considered
displacements from one spacelike surface to another which were different
from point to point, we reached there a localization of this energy density
over the surface. On the other hand, Moller and Feynman want to compute
how much of some conserved quantity called “energy” is available for engi-
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neers to use at a given point. Here I want to repeat what somebody said at
Royaumont. There is here no contradiction, but in the two cases we talk
about two different things. This is my point number one.

Point two is related to tetrads. I would not think of introducting them
in a discussion merely of the interaction of gravity with bosons. These Vier-
beine, however, are used anyhow when we discuss the interaction of fer-
mions with gravity. They occur in the covariant derivatives of the spinors
we use. Just as for coordinates it is sometimes handy to pick a particular
choice, for instance, polar coordinates or harmonic coordinates, it is then
also sometimes handy to pick a particular choice of Vierbeine. In his 1952
article DeWitt made some particular choice which he called 1/3}, but this
choice was not invariant under coordinate transformations. Maller’s choice
is at least that, and I could imagine that Moller’s choice of tetrads might at
least be good for that.

P. G. BERGMANN:

You do not need tetrads in the fermion theory, and Moller’s choice is
not invariant under tetrad rotations.

F. J. BELINFANTE:

If you write your fermion field by means of spinors and you do not write
the tetrads explicitly. They are still hiding in the quantities you do write
down or in the interpretation of these quantities. The invariance of Maller’s
conditions under C00 is all we want; we cannot have invariance under L,
if these equations are to fix a tetrad field.

J. S. VLADIMIROV!

Gravitational Annihilation ofElectron-Positrons. By means of the linearized
gravitational field theory“) a computation of the cross-section of electron-
positron pair transmutation into 2-gravitons is performed.

The interaction Hamiltonian for the transversal gravitational field and
spinor particles has the form

I" — 31/} (WH: «11,, . ——_ .4 . (1/4/11 3x” ()x" WW

With the aid of the perturbation theory one can in the 2nd order derive for
the diflerential cross-section:

2 2 2 4 ' 4
(10:7; _ P ' sin4 0 2p , 7 . Ep 5111 6 ‘ d9

4(47T)2 16kg kfi—p2 cos2 6 (kg—p2 cos2 6)2

(1) S. N. Gupta, Proc. Roy. Soc. A65, 161, 608 (1952).
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This expression has a specific factor sin4 0 leading in contrast to electro-
dynamics to a maximum of the flux of gravitons at 0 = rc/2.

2

In the ultrarelativistic case one gets o‘~ (—2) , i.e. in contrast to elec-
mc

trodynamics the gravidynamical cross section is increasing with energy and at
ko ~ 1012 me2 (certainly beyond weak field approximation validity) becomes
comparable with the cross section of the annihilation into photons.

In non-relativistic approximation our result coincides up to a constant
factor with a similar result for the scalar field case investigated first by D. Iva-
nenko and A. Sokolov.(2)

In spite of the practical negligibility of the gravitational transmutations
such processes may be of importance at cosmological scale as stressed also
by J. A. Wheelerfs) Using a consequent theory of Fock—Ivanenko of fermions
in gravitational field, based on tetrads, one gets supplementary diagrams,
which all lead to a cross section, given here for simplicity in ultra-relati—
vistic case:

M216?)
7’ 128 (4;)2 (3sin2 26+23in46) d9.da’

S. DESER:

Conditions for Flatness of an Einstein Space.* The present report is based
on work carried out in collaboration with R. Arnowitt, a fuller account of
which has been submitted to Annals of Physics.

The problem to which we address ourselves is that of finding conditions
which characterize the “vacuum” state in an Einstein space,“” R,” = 0 that
is, what further (physical) conditions on the metric of such a space imply
that it is flat, Rum; = 0. The Newtonian analogue of this problem is, of
course, the classical question of what conditions on the solution of the po-
tential equation Win 2 0 with appropriate boundary conditions, imply
(p = 0. The fact that the Einstein field equations involve time derivatives
and are hyperbolic in nature, means that there will, in general, exist regular
solutions of the source-free equations with asymptotically flat boundary
conditions“) Thus the state of no gravitational excitation must be charac-

* Work supported by the US. Air Force Office of Scientific Sesearch and Office of
Aerospace Research and by the National Science Foundation.

(2) D. Ivanenko, A. Sokolov, Vestnik Moscov Srate Univ., No. 8, 103 (1947). D. Iva-
nenko, Theories Relativ. Gravit. (Royaumont 1959).

(3) J. A. Wheeler, Geometrodynamics (NY. 1962) (Ed. Paris 1962).
(4) Greek indices range over 0, 1, 2, 3 and Latin over 1, 2, 3. We work with the empty-

space field equations except in Theorem V.
(5) As might be expected from this argument, the analogue of the Newtonian theorem

for the full theory is the absence of regular “stationary” solutions (i.e. those with 80g,” = 0).
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terized by the vanishing of appropriate field variables. In this respect, the
situation is similar to Lorentz-covariant field theories, and one expects, in
analogy, that the characterization of the vacuum state can be made entirely
in terms of the initial Cauchy data. The field equations should then preserve
the initial flatness of space-time. [Thus, in source-free electrodynamics, the
vanishing of E and B initially (or alternately, the vanishing of the transverse
modes ET and AT) together with requirement that they vanish asymptotically,
implies that they vanish for all time].

Although we shall be interested primarily in statements which can be
made on a given space-like surface, a number of results have also been found
in terms of certain quantities vanishing for all time. The Maxwell analogue
here is the well-known theorem that if either E or B vanishes throughout space-
time, then so does the other. The distinction between statements involving
only Cauchy data at a given time (that is, only components of the metric
and its first time derivatives) and those involving all times (i.e. depending
effectively on second time derivatives) is exemplified by the theorem of O’Raif-
fertaigh and Synge“) which states that if the four-dimensional curvature
tensor vanishes initially, space is everywhere flat. Since second time deri-
vatives, of course, appear in the Riemann tensor, the specification goes beyond
that of initial data. We might mention here that a slight generalization of the
O’Raiertaigh—Synge theorem is easily established: if a metric is conformally
flat initially, it is flat everywhere, since for empty Einstein spaces the confor-
mal and Riemann tensors are equivalent.

We shall state below, and discuss briefly, the body of theorems that have
been obtained. The proofs can be found in the publication referred to at the
outset. It is convenient to have available the following 3+1 dimensional
notation to discuss the results:

Trij = (—4g)112(ri3'—gijrgqsgpq)-
In the above, 3g“ is the three-dimensional inverse of the covariant spatial
metric gij. (Note that nij is linear in the 30g”). Also, 3Rijkl is the three-
dimensional curvature constructed from gij and 3g“, and all three-dimen-
sional indices are raised and lowered using gij and 3g”.

The orem I. Any regular, asymptotically flat solution of the Einstein
equations for which it” = 0 for all space-time is flat everywhere.

Th e o r e m II. Any regular, asymptotically flat solution of the Einstein
equations for which the three-dimensional curvature tensor, 3Rim vanishes for
all space-time is flat everywherefi”

(3) L. O’Raifi‘ertaigh and J. L. Synge, Proc. Roy. Soc. A 246, 299 (1958).
(7) While the Schwarzschild metric can be cast into a form in which 3Rij = 0 every-

where, it is of course not regular at the origin in such coordinates.
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This pair of theorems (the proof of the first being, incidentally, more
straightforward than that of the second) corresponds to the Maxwell con-
ditions mentioned earlier that the vanishing of either E (or B) for all time

implies that B (or E) vanishes as well. Of course, the vanishing ofnil is partly
a specification of dynamical data (like the vanishing of 8099 for the scalar
field) and partly a statement of coordinate conditions, since the specification
of the time coordinate involves a component of 7:“. Similarly, the vanishing

of the three-curvature tensor also contains coordinate information.

We now turn to the theorems involving only the initial Cauchy data, gil-

and 767 at a given time. Here, we shall sometimes invoke particular coordi-

nate conditions, such as the use of minimal surfaces. The difficult question
of the global existence of such coordinates is not investigated here, though

it is known that they at least exist in a perturbation expansion and that, ri-
gorously, they exist asymptotically for a very wide class of metrics.

Th e o r e m III. Any regular solution containing a minimal surface 7: E
E gun” = 0 which is intrinsically flat (3Rijk, = 0) is flat everywhere.

The proof of this geometrically plausible theorem is not difficult, since
one of the constraint equations reads

1 i‘ _ _ i”
”(3g)3R— 3752—1—75 JTCU — 0, 3R = 3g 13R”

which by the hypotheses, implies that the surface 7: = 0 defines an instant
of time symmetry nil = 0 (as the vanishing of nijrtij implies that of 7:”).
Since the full curvature tensor may be expressed entirely in terms of 3Rijk,
and 7:“ at any instant by means of the field equations, it vanishes at that
instant. Then by the O’Raiflertaigh—Synge theorem, it vanishes for all time.
The above theorem represents a particular example of a more general con-
jecture that an asymptotically flat system with vanishing mass is necessarily
flat. More precisely, the conjecture is that if the asymptotic 1 /r part of the
component of the spatial metric, hT, vanishes where

W E hii_(1/V2)hij,ija hij E gij_6ij

then space is flat“) In a particular frame (defined in theorem IV below)
the result has been established for the case in which the spatial metric is
conformally flat at any time”)

The next theorem we discuss is specifically related to the canonical for-
malism of general relativity”) in which the independent dynamical excita-
tions (or independent Cauchy data) of the gravitational field consist of tw0

(3) For a brief discussion as to why this component correctly measures the mass see
for example, the report by R. Arnowitt in these Proceedings.

(.9) R. Arnowitt, S. Deser and C. W. Misner, Ann. Phys. 11, 116 (1960).
(1°) R. Arnowitt, S. Deser and C. W. Misner, Phys. Rev. 117 1595 (1960).
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pairs of canonical variables formed from the Iu‘elve grgj. 7:”. the definition
being explicitly given in particular coordinate frames. Physically. then. it
is important. for the canonical formalism. to show that the initial vanishing
of these canonical excitations (corresponding to E1 and Al‘ in electrodynnv
mics) rigorously defines the vacuum sraie, i.e, that if the two fundamental
modes are not excited at a given instant, space is always flat. While this re-
sult has been shown earlier from perturbation arguments") it has now been
established in a rigorous way:

Theorem H". The only rc‘gu/ar (133722micollr flu! solution of the
Einstein equations Ii‘hose two pairs of canonical variables vanish initially in the
frame Specified below isflot space. This frame has spatial components closely
related to isotropic coordinates. and minimal surface time specification:

7': = 0 = gij,jmm _% (gjj,imm+gmj,mji)-

The proof is quite short in terms of the orthogonal decomposition used to
define the various components of the field, and uses the four constraint
equations involving the Cauchy data gij and Ttij (but not their time deriva-
tives). It may also be mentioned that general theorems concerning the va—
nishing of the three-momentum of a system arise simply in the canonical
analysis, e.g., if either the two dynamical variables or their conjugate mo-
menta vanish initially the field momentum vanishes always. (An analogous
theorem holds for all Lorentz-covariant field theories, also).

Finally, we prove a generalization of Birkhoff’s theorem which involves
only a single time. Here, we lift the source-free requirement on the field
equations.

T h e o r e m V. A regular asymptotically fiat solution of the field equa-
tions whose initial state on a three-surface is spherically symmetric in the ex-
terior region, defines a four-space which possesses an exterior Schwarzschild
domain at all times.

The proof consists in first showing that initially, g” and 7c“ have the
form appropriate to the spatial part of the exterior Schwarzschild solution.
By the uniqueness theorem on Cauchy data in general relativity,(11) the ex-
terior solution then coincides always with the exterior Schwarzschild one.
More precisely, the exterior Schwarzschild region at all other times is de-
termined as that region bounded by the light cones, leading off the initial
surface’s exterior region. Only in this region, of course, can the solution
be Schwarzschildian. For the sources may, in time, by their own dynamical
motion, penetrate into other regions (previously empty) and there alter the
form of the solution. It can be shown, further, that if the mass vanishes ini-

(11) See, for example, A. Lichnerowicz, Théories Relativistes de la Gravitation, Paris
1955.
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tially, space is flat everywhere, and if there are no sources, the mass must
vanish by regularity conditions, so that in both cases space is flat just as is
shown in the Birkhoff analysis. Note that our derivation only uses initial
information on the metric, in contrast to the standard Birkhoff one. Usually,
it is just assumed that the exterior is spherically symmetric at all times.

A. L. ZELMANOV:

The problem on the gravitational energy and momentum allows an
approach which does not lead to any restrictions of the metrics or of
the choice of the coordinate systems, does not require any modifications
or additions to Einstein’s gravitational theory and is based on a consis-
tent use of the principles of this theory. Under this approach some requi—
rements are imposed on the densities of gravitational energy, momentum
and flow of momentum, namely not only the requirement for purely
spatial covariance, but also that for chronometrical invariance (i.e. inva-
riance under transformations of the temporal coordinate), the complex
describing these quantities being a pseudo—tensor (but not a true tensor).

The physical reason for non—covariance of this complex in respect to
general transformations of coordinates lies in the possibility to make it
vanish at any ponit by means of a suitable choice of the time lines. But
the covariance under the transformations leaving the time lines unaltered
must be \alid. This covariance can be splitted into purely spatial covar—
iance and chronometrical invariance.

A number of known forms of the gravitational energy—momentum
pseudo—tensor was considered, and no one of them was found to satisfy
the requirement for chronometrical invariance. But this last requirement
appears to be no less essential than that for purely spatial covariance.
If, for instance, the energy density would not be chronometrically invar-
iant it would be possible to create or annihilate energy solely by trans-
formations of the time cordinate. Hence, one should have to prefer to
retain the requirement for chronometrical invariance (together with that
for spatial covariance) even if it would be at variance with some other
requirements, usually imposed on the gravitational energy—momentum pseu-
do-tensor.

(See also the rreport “Chronometrical invariants and some applications
of them”, p. 328).



THE QUANTIZATION OF GEOMETRY

B. S. DEWITT

Department of Physics, University of North Carolina, Chapel Hill

RELATIVITY and quantum theory have both demanded a fundamental revision
in our ways of thinking about Nature. Relativity has forced us to revise our
concepts of space and time. Quantum theory has forced us to change our
attitude toward determinism and measurability. Both have led us to rethink,
at a basic level, the problem of what constitutes an observation.

I should like to indicate briefly today some of the new problems to which
one is led in the course of attempting to bring about a fundamental union
of the two theories. The union which is envisaged goes beyond the familiar
superposition of special relativity on a quantum framework and, although
informally referred to as quantum gravidynamics, has implications by no
means limited to gravitation theory.

The problem of what constitutes an observation continues to be a basic
one in the quantum theory of geometry. In order that my subsequent remark
be understood in proper perspective, let us, therefore, first review the ele-
ments of measurement theory in quantum mechanics and its relation to the
Uncertainty Principle.

The very first and most fundamental assumption of quantum theory is
that every isolated dynamical system is describable by a characteristic action
functional S. Nearly everything else follows from this. In order to perform
a measurement on the system it is necessary to couple it to an apparatus.
The weaker the coupling the smaller the disturbance in the system and the
more accurate, according to classical ideas, should be the information gained
concerning the state of the originally undisturbed system. Quantum theory,
however, imposes a limit to this accuracy.

The coupling process corresponds, at the most rudimentary level, to
a transformation of the action of the form

S —> S+ sA, (1)
where A is an observable of the system and s is a small constant. By choos-
ing a to be constant we are neglecting the important effect of S on the appa-
ratus, which actually constitutes the measurement. We do this here only
because We are for the moment focussing our attention on the disturbance

l3l
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which the apparatus itself produces. Let us denote by 633 the retarded change
which the transformation (1) produces in a second observable B. In the
following equation

DAB E limi 53B, (2)
3-)0 8

we have the definition of an important quantity DAB which was originally
introduced by Peierls [1].

If the dynamical equations are invariant under an infinite dimensional
group, for example, the coordinate transformation group in general relativity
then the changes which the transformation (1) induces in the: dynamical,
variables are determined only modulo a group transformation. The quantity
DAB, however, will be well-defined and unique provided A and B are group
invariants.

DAB together with the reciprocal quantity DBA was used by Peierls
[l] to define the Poisson bracket in the form

(A, B)_=_ DAB—DEA. (3)
From the definition (2) we see that DAB and DBA characterize effects of infinite-
simally small disturbances in the system. Because infinitesimal disturbances
are propagated by means of linear equations the superposition principle may
immediately be invoked to prove that Peierls’ Poisson bracket satisfies all
the usual identities. Because these linear equations are necessarily self-adjoint
when the dynamical equations themselves are derivable from a variational
principle, fundamental reciprocity theorems hold, and the identities in ques-
tion include the Poisson-Jacobi identity which is all important in establishing
the group structure of canonical transformations.

Two characteristics of this approach to the quantum theory are especially
noteworthy. Firstly, canonical Hamiltonian methods are seen to be totally
unnecessary. Secondly, through the fundamental connection between the
commutator and the Poisson bracket, namely

[A, B]<—>ih (A, B) - (4)
the quantum theory emerges as basically a theory of infinitesimal dis-
turbances. ,

These disturbances play a fundamental role in the theory of measurement.
Upon bringing the apparatus variables into the picture one can show, by es-
sentially paraphrasing the arguments of the famous Bohr-Rosenfeld paper on
electromagnetic measurements [2], [3] that the disturbances conspire in such
a way as to insure that the uncertainty relation

AA AB>h [(A, B)| (5)
holds for the system observables, with the Poisson bracket given by (3), if
it first holds, in exactly the same form. for the apparatus variables. It then
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follows, firstly, that the Uncertainty Principle, when once inserted into phys-
ics at any point, immediately extends itself by induction to all of physics;
secondly, that the quantum theory is self-consistent as regards its operator
formalism and interpretation; and thirdly, that the definition (4) for the
commutator is essentially unique. The last point is perhaps the most impor-
tant, for it permits the Uncertainty Principle to be turned around and used
to define the commutator even when a canonical formalism is not readily
available.

The detailed use of the definition (3) for the commutator requires the
introduction of the Green’s functions which describe the propagation of
the infinitesimal disturbances. A11 pertinent Green’s functions can be obtained
from the well known Feynman propagator by splitting it into its real, imagi-
nary, advanced, and retarded parts, and recombining these parts in appro-
priate ways. I shall denote the Feynman propagator by G”, the indices
being the same as those which appear on the field variables which I shall
denote by 99‘. For brevity I shall allow the indices i, j, etc. to do double
duty as discrete labels for field components and as continuous labels, or coordi-
nates, over the points of space-time. The Feynman propagator is then to
be understood as a continuous matrix and the summation convention for
dummy indices is extended to include integrations.

The Feynman propagator has the remarkable property that it alone,
of all the Green’s functions of a given operator Fij, follows the rules of
ordinary finite matrix theory. That is to say, it satisfies the identities

Fikj = _6ijs Gikj = —6lja (6)

and, under an arbitrary variation 6F”- in the operator Fij the variational
condition

6G” = GikéFl”. (7)
Furthermore, if Fij is symmetric in its indices, as it is when boson fields are
involved, then G” is likewise symmetric, '

G” = G’". (8)

Other Green’s functions may satisfy one or the other of equations (7) and
(8), but not both. The unique features of the Feynman propagator stem from
the fact that it can be obtained by analytic continuation from the unique
Green’s function which Fij possesses when space-time has positive definite
metric. But the fundamental role which these features play in the formal
manipulations of the theory also suggest that we may be able to, turn the
theory aroUnd and to define the Feynman propagator by means of Eqs (6),
(7), and (8) even when the usual definition, in terms of positive frequencies
propagating into the future and negative frequencies into the past, becomes
inapplicable because of space-time having non-static asymptotic curvatore
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or space-like cross-sections of non-Euclidean and even dynamically changing
topology.

Green’s functions in a curved space-time have a special characteristic
that they do not possess in a flat space-time—namely, multivaluedness. The
onset of multivaluedness occurs in regions where the geodesic lines emanating

from a given point begin to cross one another. General expressions for the

Green’s functions in a given metric are exceedingly diflicult to find. How-

ever, their structure both near the light cone and in asymptotic regions is well
known. The simple Klein—Gordon equation

g"”<.v.,.v—m2¢;0 = 0 (9)
leads to Green’s functions which are representative of the whole class. Near
the light cone the Feynman propagator for this equation has the structure

87:2 6+ i0

which shows the typical 1/6 and logarithmic singularities. a is. the world-
function which has been so thoroughly investigated by Synge. A is essentially
the Van Vleck determinant, built out of the second derivatives of a with
respect to x and x'. v and w are nonsingular biscalars which can be expres-
sed as power series in a, converging in the single-valued region. The multi-
valued region is bounded by the caustic surfaces, i.e., by the envelopes of the
geodesics emanating from x or x’. 0n the caustic surfaces the Van Vleck
determinant becomes infinite. Erickson [4] has ShOWn that the 1/0 and log a
singularities, as well as arbitrarily high derivatives of these light-cone singu-
larities, can be removed in field theoretic calculations by the Feynman—Pauli-
Villars regularization method, just as in the case of flat space-time. The
caustic singularities, however, which occur both on and off the light cone,
remain, and constitute in principle an additional problem the study of which
may uncover novel properties of quantum gravidynamics, although I should
hasten to add, these singularities can have no effect on the renormalization
program, for the divergences which arise in the latter are those which appear
when x=x’ and involve only the single-valued region.

I wish to emphasize the covariance of expressions such as (10) for the
Feynman propagator. The directness with which this covariance can be stated
in the coordinate representation contrasts sharply with the complexity of
its rigorous statement in momentum space and suggests that at least parts
of quantum gravidynamic calculations should be carried out in coordinate
space. This is indeed feasible and, for example, Feynman’s proof of the
covariance of the counter terms needed for renormalization can be obtained
much more directly this way. Computations in coordinate space are still
rather unfamiliar, but little by little, with the aid of identities like (7), which

i A%
G(x,x’) = —l:— +7) log (o'+i0)+w:l (10)
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Mrs. DeWitt has, for example, used in a study of radiation damping, we
are learning not only how to do such calculations but also more about the
Green’s functions themselves.

Equation (1 l), for example, shows the asymptotic behavior ofl the light
cone when m is different from zero:

1 x”
_ ' E -i(m'r+fl/4) I a ‘

G(x,x')~i m A767 1.. \.Un2 l (2T5?3 73/2 .na L7”
, (11)

where

05—112. (12)

In the case of tensor and spinor fields the expressions for the Feynman
propagators are simple generalizations of Eqs. (10) and (11). v, w, and the
an become bitensors or bispinors, while the Van Vleck determinant gets mul-
tiplied by an appropriate bitensor or bispinor of geodetic parallel displace-
ment. This simple occurrence of the parallel displacement function reflects
the fact that the polarization tensor, or spinor, of any field propagates in
a parallel fashion along wave fronts. The polarization may describe an
orientation which the wave front possesses not only with respect to space-
time but also with respect to internal spaces having their own infinite dimen-
sional groups, such as the Yang-Mills group or the gauge group of electro-
dynamics. The dot in Eq. (9) and its generalizations is to be understood
as designating the generalized covariant derivative, based on the affine connec-
tions associated with each invariance group and not merely the coordinate
transformation group.

In the case of the pure gravitational field the pertinent Green’s functions
are those which describe the propagation of infinitesimal disturbances in
a symmetric second rank tensor, the metric tensor. The linearized forms
of these Green’s functions have been used in the weak field approximation
to show in detail that a Bohr—Rosenfeld analysis can be carried out for the
gravitational field [5]. It is found that space-time averages of the Riemann
tensor can be measured with a degree of accuracy well within the domain
of quantum phenomena provided test bodies of sufficient refinement but
violating no fundamental principles are used. Examination of the mutual
interference of such measurements verifies in detail the statistical predictions
of the quantum formalism. The gravitational field, like all other fields, there-
fore must be quantized.

Actually these last assertions have to be qualified in two respects. Firstly,
the masses of the test bodies must be at least 10-5 g, a requirement peculiar
to gravitation theory alone. Therefore, if averages are desired over domains



136 B. S. DEWITT

smaller than those visible to the naked eye, the experimentally knoWn atomic
constitution of matter must be violated in the construction of the test bodies.
Secondly, quite apart from such empirical limitations, a fundamental limi-
tation exists on the size of allowable measurement domains. Below 10'32 cm
it is impossible to interpret the results of measurements in terms of properties
or states characterizing the individual systems under observation. The uncer-
tainty in the energy of the devices needed to make an observation in such
a small region will, in virtue of the uncontrollable gravitational disturbance
which it produces, completely destroy the statistical predictive significance
of the results of the observation. This is true for the measurement of any
field, not only the gravitational field. Therefore 10'32 cm constitutes an abso-
lute limit on the domain of applicability of the classical concept offield strength,
even as modified by the Principle of Complementarity.

The latter restriction may be viewed with some satisfaction, as it suggests
that the fundamental length of gravidynamics may yet play a role as a high
energy cut-OE, a point to which I shall return presently. The restriction
imposed by the actual atomic structure of matter, however, is harder to
evaluate. If it is to be understood as really a fundamental restriction in
Nature, which should be incorporated into physics at a basic level, then
a rather thoroughgoing revision of some of our theoretical ideas is going
to be necessary.

In all of my discussion so far, although several suggestive issues have
been raised, there is nothing startling. In the minutes which remain I should
like to present evidence that things begin to get more lively in quantum
gravidynamics at the level where the truly quantum phenomena associated
with radiative corrections enter the picture.

Let me begin by noting that the general theory of measurement and
the Uncertainty Principle, which I Outlined at the beginning, is incomplete
in two important respects. Firstly, there is the perennial problem of how the
measurement of the apparatus variables is to be described, whether in terms
of a collapsing wave function, a universal branching wave function, or a theory
of hidden variables. This is a problem with strong philosophical over-
tones but which may nonetheless be of significance to physics. Secondly, the
description of the measurement process a la Bohr and Rosenfeld deals Only
with the Correspondence Principle level. To go beyond this level it is ne-
cessary to rewrite the uncertainty relation (5) in the rigorous form

AAAB > I<[A,B])|. (13)
Here the bold face symbols are quantum operators and the quantum mechani—
cal mean value is to be taken. Now the mean value of a product is not ge-
nerally equal to the product of the mean values, and to neglect the difference
is, in field theory, to neglect precisely the radiative corrections.
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These corrections are conveniently described by a hierarchy of correla-
tion functions. Without going into the technical arguments as to why, let
me simply state that these correlation functions may be based on the am-
plitude that the vacuum in the past remains the vacuum in the future when
an external source J,- is coupled linearly to the field (pi. ‘I shall confine my
attention here to boson fields the extension to ferimon fields is straightfor-
ward. One writes the vacuum—to-vacuum amplitude in the form

<09wi01_w> E eiG (.14)

and then introduces the variational derivatives of the exponent G with re-
spect to the source, as follows

Ia99‘ E = <<P‘> (15)
(5 k4

l

Gij'" E —5 —5 ...G. (16)

The functions G” are the correlation functions, the lowest order of which,

namely G”, is the one-particle propagator. They satisfy the hierarchy of
equations

<<Pi<Pj> = (Pi‘Pj—iG'j, (17)
<<Pi<Pj<Pk> : (pimjwk_iq9ii—i¢ii_i¢kGU+ (_i)2Gijk,

which relate mean values of products to products of mean values. The mean
value involved here is the Schwinger average defined by

<A[(P]> E <0,°OiT(A[99])l0,—°O> (18)

<O,oo[0,—oo>

A[(p] is an arbitrary functional of the (13,8 and T denotes the chronological
ordering operation. Incidentally, all of these things can be derived starting
from Peierl's’ definition of the commutator, without ever introducing a Ha-
miltonian.

At this point I am sure someone is about to object that I have violated
group invariance by introducing the external source. It is perfectly true that
the source presents a stumbling block if one Wishes to maintain the formal
elegance of staying in the coordinate representation and working with co-
variant correlation functions which transform linearly under the group. There
are ways of surmounting this obstacle while maintaining manifest covariance.
Let me restrict myself here, however, to the more direct method of invariant
variables. Now what do I mean by that? I mean simply that I impose a
supplementary condition on the field variables at the outset and then perform
only variations which maintain it. This means that I will usually go over



133 B. s. DEWITT

at once to momentum space. If I choose the Lorentz condition in electro-
dynamics then the electromagnetic field will have three components for each
momentum value, except on the mass shell where they degenerate to two
components. In gravidynamics, if I adopt harmonic conditions, I have
six components which degenerate to two on the mass shell. Except on the
mass shell the supplementary condition uniquely determines these compo-
nents. They are, therefore, true invariants and can be coupled directly to an
external source. Furthermore, since radiative corrections are all due to virtual
processes of the mass shell, the group flexibility which remains on the mass
shell is irrelevant.

The continuum over which the indices i, j, etc. range is now that of
momentum space rather than coordinate space. This raises the question of
how the chronological Ordering operation in Eq. (18) is to be defined in
momentum space. The answer is simple. It is to be defined by the function-
al differentiation process with respect to the source, via Eqs. (15), (16)
and (17).

The correlation functions, as well as the functional G, may be regarded
as functionals either of (pi or of J,. The transformation coefficients from
one set of variables to the other are the components of the propagator G‘j.
The propagator describes the linear response of system to source, and the
higher order correlation functions, which are often called many-body propa—
gators, describe all scattering processes, the elements of the S-matrix being
most easily obtained via Eq. (17) and the Lehmann, Symanzik, Zimmermann
reduction formulae [6]. All this is well known. What is not so well known,
however, is that the propagator G‘j is the Feynman propagator of an actual
c—number action functional which I shall call P. The relation of I' to the
propagator is indicated by the following equation

I'JkG’V' 2 —6J, Gi’TJU- = —6"j, (19)
where the comma followed by indices denotes functional differentiation with
respect to the (pi.

Loosely speaking, I' is to the quantum theory what S is to the clas-
sical theory, and its introduction constitutes a complete transition from
conventional quantum machanics to an independent quantum theory of
fields. Its functional derivatives of order three and higher are the full irre-
ducible vertex functions of the theory, whence the choice of the symbol P.
The 1p" as defined in Eq. (15) are the solutions of a set of equations de-
rivable from a variational principle based on P namely

11, = —J,- (20)
which can be shown to be just the Schwinger average of the operator equa-
tions

s,- = _J,.. (21)
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The chief difference between the classical and quantum variational principles
consists in the fact that the quantum (pi, because they satisfy Feynman
boundary conditions, are complex even when the classical (pi are real, and in
the fact that in the coordinate representation I’ leads to nonlocal field equa-
tions even when S leads to local ones.

By manipulating the coupled nonlinear equations satisfied by the cor-
relation functions it is possible to show that F may be expressed in the
form

F = S—2, (22)
Where the functional 2', which we may call the self-energy functional, has
the graphical representation shown in the figure. The lines in the figure re-
present Feynman propagators and the vertices represent full vertex functions.
In this form the quantum theory is seen to be a nonlocal c-number theory
having a form or initial direction which is determined, via the Correspondence
Principle, by a limiting theory based on S. The classical theory may be
regarded as a kind of tangent theory, the relevance of which as a starting
point for the rigorous quantum theory depends on the renormalizability
of the quantum theory and the applicability of perturbation theory, which
assumes that Z is small.

By taking the second functional derivative of Eq. (22) and inverting it
to obtain the Feynman propagator, the functional I' may be computed by
iteration starting from the “bare” propagator and vertex functions of S.

Diagrammatic representation of the self-energy functional.
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Renormalization consists of simply throwing away at any stage the mini-
mum local divergent parts of the self-energy functional necessary to make
it finite, which is equivalent to assuming that corresponding “counter terms”
are already present in S. The net result of this procedure may be summarized
by the equation

F = SR—ZF . (23)
where SR denotes the renormalized or “observed” classical action and 2}
denotes the finite part of the self-energy functional.

The c-number character of this formulation of quantum field theory
makes it immediately possible to consider generalizations of conventional
ideas which would not otherwise suggest themselves. For example, it is custom-
ary to choose a zero point for the field (pi which corresponds to flat empty
space—time and, by regarding this as the vacuum state, to insure that (p‘
vanishes when the source vanishes. This is not necessary, however. An arbi-
trary macroscopic solution of the following equation

I", = 0 (24)
may be taken as the “background field” and regarded as the “vacuum”.
This makes it easy to incorporate closed universes or universes with peculiar
topology into the framework of quantum gravidynamics.

More important perhaps than this, however, are the possibilities which
the existence of F opens up in regard to topology in the small. Let us suppose
that after having computed F in terms of invariant variables we transform
back to coordinate space by reintroducing the coordinate transformation
group and the original dynamical variables of the theory. This we can easily
do since the P—language is a c—number language. Since F is itself an invariant
the field equations (24) for the original variables are covariant equations.
In the case of pure gravitation theory these equations take the form shown
in Eq. (25), where they are seen to have a local part identical with Einstein’s
equations and a nonlocal part, coming from the self-energy functional, which
describes quantum corrections important at high energies and small dis-
tances.

Now it is well known that Einstein’s equations admit of solutions for
which space-like cross sections have non—Euclidean topology, giving under
certain conditions a particle-like or “wormhole” structure to space itself [7].
There are, however, strong reasons for believing that classical wormholes
are immutable—that the topology of 3-space cannot change as long as the
metric tensor satisfies Einstein’s equations and retains its normal signature.
On the other hand, with the equations

E g% (R"'— igWR) — ‘32 =0. (25)
6g,” 2 agiw

the situation is quite different.
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In the first place the metric tensor in the F—language is complex, and hence
the question of signature loses its rigid classical significance. Secondly, since
Eqs (25) are themselves complex above the threshold for real graviton
production, the imaginary part of the metric can play an important role in
the short wavelength limit.

If no wormhole mouths are initially present, of course, none are to be
expected to develop in the course of time, provided no field quanta, repre-
sented by complex ripples on the metric tensor, are present either. The same
should also be true for single mouths. But in the case of two or more col—
liding wormhole mouths it is likely that the real metric which describes them
in the remote past acquires complex components in the course of time, cor-
responding to final gravitons, while the mouths themselves either bounce
inelastically or annihilate one another.

In View of these possibilities it would seem very interesting to attempt
at least a lowest order calculation of the radiative corrections to the clas-
sical field equations, and then to examine the effect which these corrections
have, for example on the Schwarzschild solution for masses smaller than
10—5g, in particular, the likelihood of their eliminating both the pinch-off
of the wormhole throat and the Schwarzschild singularity itself through the
nonlocality of the corrected field equations below 10—32 cm. Unfortunately,
serious questions would have to be raised in regard to the significance of
such a calculation, even assuming all other nonlocality inducing mechanisms

' in Nature may be neglected.
In the first place the perturbation series gives no evidence of being even

semiconvergent. The trouble is that there exists no small dimensionless
coupling constant in the theory of the pure gravitational field, nor in the
theory of the combined Einstein—Maxwell field. When natural units are used
in which Planck’s constant, the’velocity of light, and the gravitation constant
are all set equal to one, no physical constants are left, and all diagrams begin
to diverge equally at 10—32 cm and have roughly equal magnitudes after
renormalization. .

Secondly, there is a rather uncomfortable situation in regard to the diver—
gences. Owing to the special nature of gravitational coupling, whereby bare
vertex functions to all orders have 172 momentum space behavior, while the
bare propagator has 1/1)2 behavior, it is easy to show that to any order
of perturbation theory all the renormalized full vertex functions have
p4loglp2| asymptotic behavior while all the self-energy diagrams diverge exactly
quartically. If the exact vertex functions have the same asymptotic behav-
ior—although, in view of the doubts about convergence, we are not obliged
to believe this—then we are faced with the unpleasant fact that one count.-
er term beyond the classical Einsteinian term is needed to effect the re-
normalization of every diagram. As Feynman has shown, three counter
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terms are needed: a quartically divergent cosmological term to compensate
the zero point vacuum energy; a quadratically divergent Einsteinian term,
which renormalizes the gravitation constant; and a term quadratic in the
Riemann tensor involving two logarithmically divergent constants which
have no counterparts in the classical theory. The latter term corresponds to
an initial classical theory having field equations of the fourth differential
order, and this leads to complications in regard to unitarity.

Of course, one might argue that this counter term precisely cancels a pre-
existing one in S, leaving no term of the unwanted type in the renormalized
action, and indeed such a proposal has some merit. The p4log[p2[ behavior
would then mean that the light-cone singularities of the propagators have
been softened without obvious violation of unitarity, and that although
divergences are not eliminated, quantum gravidynamics does partially live
up to the original hope that it would provide a natural cutoff in momentum
space. It is worth pointing out that, unlike the situation in other field theo-
ries, this would not imply a violation of Lehmann’s theorem to the effect
that the singularities of the full propagator must be as strong as those of the
bare one [8], for one of the assumptions of that theorem, namely, the exist-
ence of an energy-momentum 4-vector which generates infinitesimal dis-
placements of local quantities with respect to the non—intrinsic coordinate
labels, fails to hold in gravidynamics.

There is still one more difficulty accompanying field theories as non-
linear as Einstein’s, which should finally be mentioned, and that is the ques-
tion of which field variables should be regarded as basic when there is no
clearly preferred set. It is obvious, that for example, such a simple func-
tion of the local covariant operator metric as the contravariant metric den-
sity

g‘” -> 9’" E gig” (26)
will have a divergent Schwinger average when expressed in terms of the
complex covariant c—number metric and its associated correlation functions,
and yet it should be just as good as the covariant g," in describing the radia-
tively corrected classical field. It may happen that these divergences are
exactly compensated already in the renormalization program, but if so it
is by no means easy to prove. The vexing thing about the problem is that
completely local field quantities are never measured in actual experiments,
so that the relation between a measured covariant metric and a measured
contravariant density is always a smeared-out nonsingular one, and yet in
the mathematical formulation of the theory we are forced into those ide-
alizations which lead to trouble. A similar problem arises in the Bohr—
Rosenfeld analysis ofboth the electromagnetic and gravitational fields, in regard
to the zero point oscillations of the elastic test bodies and coordinate frame-
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works employed. If the contribution of the field is included in the cal-
culation of these oscillations then the result diverges. It is only by arguing
that the field is not defined over regions smaller than the spacing of the con—
stituent particles which go to make up the test bodies, that one can introduce
a cut-off which allows the field contribution to be neglected. Whether the
actual atomic constitution of matter can be used in a similar fashion to resolve
these difficulties of basic formulation I leave as an open question.
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DISCUSSION
S. MANDELSTAM!

I don’t believe that use of Feynman or Schwinger formalism raises any
more or any fewer difficulties with regard to factor ordering than use of
a direct operator formalism. I think that when one examines what happens
one sees that one gets coincident singularities, which just correspond to the
same ambiguity. Now, I’m not sure the ambiguity exists at all; it may be that
when one comes to renormalization the terms that give the ambiguity in
factor ordering are of zero importance with regard to others. But I think
if that’s the case it will be so in the operator formalism as well. The second
point was that if one does what you did, applying, say, Schwinger for-
malism with supplementary conditions, and if one takes an arbitrary
operator and, tries to work out the closure properties, in other words,
its Eln >< nl, then I don’t believe one would find that it is equal to unity,
all states

unless one includes the unphysical states with the indefinite metric. I think
one would still have to restrict oneself to coordinate independent operators
in order to get the closure property. I’m pretty sure that is the case in
electrodynamics. Then one question about what you said about renormal-
izability. Did you need one separate counter-term for each diagram so that
there would be an infinite number of counter-terms?
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B. S. DEWITT:

No.

S. MANDELSTAM:

So the theory would be renormalizable in perturbation theory.

B. S. DEWITT:

Yes, if you recognize in advance the asymptotic behavior of the renor-

malized propagators.

V. L. GINZBURG:

May I ask you a question about these two figures mentioned: 10’5 and

10—32. If you must have a body like 10—5 cm, that is macroscopical, how can
we say anything about a dimension which is much smaller than this body?

B. S. DEWITT:

Already in the Bohr—Rosenfeld paper they recognized that there were

experimental limitations due to the atomic structure of matter. They ignored
this completely and said that if you do not consider the atomic structure
of matter then there are no fundamental difficulties. If you imagine you
can have a test body arbitrarily small built out of some unknown kind of
matter, then everything is OK. I quite agree with you, but I do not know
how (and I don’t know of anyone who does) to put the experimentally ob-
served atomic constitution of matter fundamentally into physics.

D. IWAN'ENKO:

Since there should be quantum corrections to the principle of equality
of gravitational and inertial mass (as I see in your previous paper about gra-
vitation, you also agree that there are corrections), then if we derive the
fundamental Einstein—Infeld—Hoflman equations of motion should there also
be some corrections?

B. S. DEWITT:
Well, I don’t know whether it really makes very good physical sense to

derive these complex equations and then to treat them in a way that we
have treated the classical Einstein equations in the past, although they are
c-number equations.

L. ROSENFELD:

With regard to this question of the possible limitations due to the atomic
constitution of matter, we are faced here with two different factors. All this
study of measurability of quantities has the logical function of testing whether
the relationship between the symbols of the theory and the classical
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concepts is consistent. Now to define the classical concepts we use meas-
uring apparatus which is macroscopical and in which, therefore (that is the
definition of the word macroscopic), the atomic constitution is neglected.
That is, the possible effects of the atomic constitution of the bodies are
neglected. Then one can carry out the analysis on this assumption.
This can be done in electrodynamics by steps, i.e. successive approximations
in powers of Planck’s constant and the effects arising therefrom; and in
the first step, pure field theory, the situation is very clean, in the sense that at
this stage there is no absolute scale of space and time included in the theory,
because there are only two constants, h and 0. Then the question of the
constitution of the test body does not arise at all, logically speaking. In the
next stage, however, since we introduce masses and charges, we have an
absolute scale fixed, let us say, by the Compton wave length of the electron
But this does not prevent us, logically, from imagining test bodies of
arbitrarily small dimensions, even much smaller than the scale given by
this theory, in order to test the consistency of the interpretation of the
symbols.

But, on the other hand, another argument is suggested by the considera-
tion of the statistical fluctuations around the mean value, the measurement
of which we are investigating. We are concerned, let us say, with the
determination of the mean value of the charge contained in a given space-
time region, which is surrounded by a shell of electrically charged test
bodies; so that we measure the flux of electrical displacement issuing from
this region. The first logical argument shows us that there is no limitation
in the use of the concept of charge to describe the situation. But, at the
same time, the theory tells us that the statistical fluctuations around the
mean value which measurement by this method defines may become, when
the thickness of the shell tends to zero, very large——in fact many times
larger than the mean value.

Then we get the argument which you mentioned, which is of a quite
different nature, that there is no help whatsoever in getting a mean value
when we know that the fluctuations around this mean value are many times
larger than the value in question; then the practical use of such a mean value
for purposes of drawing further consequences is very reduced indeed. It is
not completely useless, in theory; for instance, it remains true that if
we start another measurement immediately after the first, the result of the
second measurement will be exactly the same (I mean, will differ very little
form the first one) irrespective of the largeness of the fluctuations. But this
is a very academic connection. For all practical purposes we are here faced
with a limitation, in effect, in the use of classical concepts the logical origin
of which, however, is quite difierent from the question of consistent use of
he classical concepts in interpreting the theory.
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R. P. FEYNMAN:

I think that the question of the character of the divergences of the

counter-terms of the theory of gravitation is still open. The thing which has

to be distinguished is the orders and numbers of closed rings over which
one has virtual momenta to integrate. If you have no closed rings there is
no divergence, of course, and the first time you have divergences is with
one closed ring. These can be of many orders because there can be any number
of couplings of external lines coming in. But all of them can be summed.
That increase in order doesn’t make any trouble. So for a single ring what
you said is right, that there is a finite number of counter-terms to the La-
grangian, or divergences, of which the last one is proportional to the square
of the curvature and is logarithmically divergent. But, what happens when
there are two closed loops is not clear; I mean I can’t prove what I say is
true, but there is no indication that it’s not. It would be a miracle, it looks
like, if it wasn’t true, I mean if this doesn’t happen that things get worse,
in this sense, that, for instance, a term with three curvature tensors multi-
plied together which was convergent in two rings, may now be divergent,
say logarithmically, but have a higher coefficient of the gravitational con-
stant in front of it. So in the sense in which you think of the gravitational
constant times a small parameter that I’m using as the cut-off length, which
you have to make in a divergent analysis; then what you’re saying is only
that the coefficient of the third order of divergence, say the R3 term, is
a being infinitesimal compared to the last one you just found, which is the
R2 term, as long as you keep yourself within a reasonable distance away
from the center. So I think as far as I can tell at the moment that the gra-
vitational theory is not renormalizable in the usual sense of the term.

B. S. DEWITT:

I would agree, in the usual sense of the term. But mathematically, if
you just forget about the physics and work it mathematically, even your R3
term has a divergent coeflicient, that’s what you’re saying.

R. P. FEYNMAN:

Yes, sir, but I have defined it to have a smaller divergence.

B. S. DEWITT:
A smaller degree of divergence or a smaller coefficient G“?

R. P. FEYNMAN:

A smaller coeflicient in the sense that the gravitational constant and
the other constants involved occur in a higher power; so that the practical
efiect of such terms (if you were actually making a calculation with finite mass
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objects, not 10—5 g particles of 10—32 cm, but 100 BeV particles of size 10—15 cm)
then the situation would be that the size of the counter-term that you’d have
to take from this R3 in its effect would be 10—39 times smaller than the other
counter-terms; that’s the sense. It’s still divergent, but if we keep the num-
bers from blowing up then it’s much smaller than the other ones. This is of
no practical importance for people who want to look at regions of 10—33 cm
but this is different than what you seemed to suggest.

3

B. S. DEWITT:
I think the difference consists in this: it’s perfectly true that if you start

calculating these more complicated diagrams with more than one closed loop,
and use in them the bare propagators, then the divergences get worse and
worse. Now all I’m saying is that if you merely count momentum powers (of
course all kinds of things can happen when you really calculate) and say
that the propagator that you should really use goes something like 1/124;
and that the vertices themselves go like p4, then any diagram you can
write down diverges quartically and no worse.

R. P. FEYNMAN:
Logarithmically is not worse than quartically.

B. S. DEWITT:
But from dimensional argument it would have to be an R2 term. If

you had an R3 term which was logarithmic, then you’d have an R2 term
which was quadratic, an R term which was quartic, and a cosmological
term which was to the sixth.

R. P. FEYN'MAN:
No, you just proved you don’t have a cosmological term to the sixth.

B. S. DEWITT:
I did; or you did?

R. P. FEYN'MAN:
No, you just did before.

B. S. DEWITr:
O. K!
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INTRODUCTION

In this talk I shall review work that has been published over the past
year [1], [2], and relate it to work that is being reported independently at this
conference, work by Bondi and his collaborators [3], R. Sachs [4], and by
Newman and collaborators [5], [6]. I believe that their motivation has been
different from mine, and certainly their techniques have been a good deal
more sophisticated. Having started not knowing about each other’s work, we
should, I believe, be gratified by the considerable agreement of our results.

Bondi, Sachs, and Newman, and their various coworkers, as I understand
it, were interested in the examination of gravitational spherical waves far
from the source, and Trautman [7], and Komar [8] achieved some new results
on the rate of energy radiation. The chief idea, or at least one of the chief
ideas, was the recognition that the Petrov—Pirani method of characterizing
“pure radiation” tends to be useful only for fields possessing rather special-
ized symmetries and other properties, but that almost any mixture of diverse
gravitational fields, and in particular combinations of static and radiative
fields, will be of type I (non-degenerate). Early there emerged the concept of
“asymptotically type null”, but this concept obviously required considerable
elaboration in order to become a manageable tool. I believe that this devel-
opment has now achieved its goals.

All these investigations assume solutions of the field equations that satisfy
certain boundary conditions at infinity. In some sense the solution of the
field equations is to represent an isolated physical system, which does not
distort the geometry of the universe at large distances. The belief that such
solutions do exist, and that they represent physically interesting situations,
has led investigators to claim that general relativity is compatible with Lorentz
covariance, and to reconstruct, or to reformulate Einstein’s theory of grav-
itation so as to make the field’s Lorentz covariance explicit. My own in-
vestigation, partly alone and partly with collaborators, had as its initial purpose

*) This work has been supported by the National Science Foundation, the Air Force
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to analyze the relationship between the invariance group of general relativity
and the Lorentz group. Part of the results has been published by Robinson,
Schiicking, and myself. I also wish to acknowledge contributions, mostly
in the form of very extended discussions, with A. Komar, with J. Ehlers,
and with R. Sachs, and I have had the benefit of receiving preprints and
preliminary drafts of papers by the group about H. Bondi as well as those
mentioned above. Thus I hope that no one will be under the misapprehension
that I report on my work alone. I find it difficult to apportion proper credit
to each individual, but the purpose of this talk is that of a connected review
of work by a number of individuals, not all of which has as yet reached the
stage of journal publication.

INVARIANCE GROUPS

The assumption of asymptotic boundary conditions reduces the normal
invariance group of general relativity, the group of curvilinear transformations ,
to a smaller group. If there exists a coordinate system in which the metric
tensor at large distances approaches the Minkowski metric, then the natural
invariance group is that group of coordinate transformations that preserves
this asymptotic condition. In all investigations I know of it is suflicient that
the coordinate transformation be defined, and a sufficient number of times
continuously differentiable, in a neighborhood of infinity.

Originally, I assumed that the asymptotic condition should apply to any
approach toward infinity along a space-like curve, and that the deviation of
the metric from the Minkowski metric should be 0 (1 /r).The coordinate trans-
formations which preserve this condition are those in which the derivatives
of one set of coordinates with respect to the other differ from a Lorentz trans-
formation matrix by amounts 0 (l/r).

The London group, and those who followed them, recognized from the
beginning that to examine radiation at infinity one has to follow a character-
istic, or null, hypersurface, rather than a space-like direction. No physical
system whose energy is to remain non-negative can radiate waves with non-
diminishing amplitude forever, and thus we must assume that in effect gravi-
tational radiation occurs in pulses; it is also very probable that the mass
of the radiation itself in a wave train of infinite length is sufficiently divergent
to be inconsistent with any asymptotically flat metric, whatever definition
for “asymptotically flat” is adopted. Hence, if we go far enough in a space-
like direction, we are bound to penetrate beyond both incoming and outgoing
radiation, whereas on following a characteristic direction we can stay with
the radiation progressing in that direction, though we shall also lose radiation
going in other directions.

If one follows a pencil of null-directions, one can subject the coordinates
to a number of conditions that reduce the remaining permissible coordinate
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transformations to a group which Sachs has called the GBM group“). I shall
call “my” group the AL group, the initials standing for “asymptotically
Lorentz”. In their structures, the GBM group and the AL group are quite
different, for good reasons. They preserve inequivalent boundary conditions,
and the GBM group is further restricted by very reasonable coordinate con-
ditions. But these groups have two things in common: first, both groups
define topological spaces that are function spaces, with an infinite number
of dimensions; second, in describing a member of the transformation group
we need not refer to properties of an individual metric field.

In this connection, I should like to make some remarks that may facili-
tate discussion of such proposals as Fock’s restriction to harmonic coordi-
nates [9]. In constructing a group, and more particularly an invariance group,
we ordinarily think of transformation groups, though we may consider two
transformation groups that are isomorphic as “the same group”. At any
rate, if we work with a transformation group (rather than with an abstract
group only), we have the heuristic advantage that we can confirm more easily
the various group axioms. In order to construct a transformation group we
must first assemble a set of objects to be mapped—reversibly uniquely—
on itself. Ordinarily we adopt as this set the world points as represented by
their coordinate values, that is, properly speaking, quadruplets of real numbers.
A coordinate transformation is then a rule that assigns to every quadruplet
of real numbers another such quadruplet; we have formed a group of coordi-
nate transformations if each of these assignments or correspondences is re-
versibly unique and if inverse mappings and all products are included. A group
of coordinate transformations thus defined is one whose “descriptors” are
all c-numbers, i.e. in which the transformation equations carry no reference
to field variables.

For some purposes we may wish to consider coordinate transformations
in which the new coordinates of a world point are determined by both its
original coordinate values and by the field. In this case, it is better if we think
of the space of objects to be mapped on itself as the function space of fields.
Given a field (in relativity: a metric field) in a particular coordinate system,
a coordinate transformation will convert this set of functions of the coordi-
nates into a diiferent set of functions, that is to say, physically the same field
but in another mode of description. Provided again that this set of transfor-
mations is reversibly unique and that inverses and products are included,
we have now a group of coordinate transformations whose descriptors may
be q-numbers. The first type of coordinate transformation groups (the c-num-
ber transformations, for short) are isomorphic with some transformation
groups constructed on the second pattern (the q-number transformations),

(1) Generalized Bondi—Metzner group.
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but the second method of construction is much richer, and most of its trans-
formation groups have no counterpart in the c-number groups.

With harmonic coordinates the situation is yet more complicated. The
transformation functions x’(x) must satisfy certain differential equations
with boundary conditions, and the coeflicients of the differential equations
depend on the metric field. A given function x’(x) which leads from one par-
ticular harmonic coordinate system to another, on being applied to yet another
harmonic coordinate system, may yield a coordinate system that is not har-
monic. Hence, we must proceed with great caution; we should have to con-
struct mappings whose rules are such that a given mapping converts every
conceivable harmonic coordinate system (more properly speaking: every
conceivable Riemann—Einstein manifold represented in any conceivable har-
monic coordinate system) reversibly uniquely into another one. I am not
aware of this construction having been achieved by anyone, but I also know
of no proof that such mappings do not exist.

At any rate, both the GBM and AL groups have been constructed so that
they are c-number transformation groups, i.e. the space that is being mapped
on itself is finite—dimensional. The groups themselves, however, both of them,
are infinite-dimensional.

Incidentally, the representation of the invariance group of a theory by the
group of transformations of a field is not irreducible, in that under any coordi-
nate transformation fields can be transformed only into fields that are physi-
cally equivalent. That is to say, in the function space of all fields each set
of equivalent fields forms a subspace that is invariant under the invariance
group of the theory. The mappings of each such invariant subspace on itself
under the invariance group form a representation of that invariance group;
some of these representations may be faithful, others not.

TRANSFORMATION LAWS

Once we have adopted a particular invariance group for our theory, be
it the invariance group of the original general theory of relativity or the group
of curvilinear transformations preserving certain boundary and coordinate
conditions (such as the GBM and AL groups), we are free to replace the
original field variables, the components of the metric field, by new variables
that may, perhaps, conform more closely to our notions of physically intuitive
variables. Our choice is, of course, subject to the requirement that every other-
wise interesting physical situation can be represented in terms of the new
variables (i.e. that the choice of new variables does not exclude some class
of situations), and further that the values of the variables in one coordinate
system (or other mode of description) uniquely determine their values in any
other coordinate system.
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If we are concerned with a set of variables whose transformation law
represents faithfully a lower-dimensional transformation group than our
original invariance group, then there are two possible relationships between
the two groups in question.

(1) There may exist a homomorphism between the two groups. If so,
the newly introduced field variables are sensitive to some aspects of the co-
ordinate transformations belonging to the “permissible” group but not to
others. For instance, if our coordinate systems are asymptotically Lorentzian,
and hence the transformations between them also asymptotically Lorentz
transformations, then the variables may transform in accordance with that
asymptotic character of the transformations, while they are invariant with
respect to transformations of arbitrary characteristics in the interior which
asymptotically approach identity transformations. We shall look into this
possibility more deeply.

(2) Among all the coordinate systems admitted to begin with we might,
by means of additional coordinate conditions, select a smaller number, and
then confine ourselves to those transformations that map this smaller set
on itself. In general this approach will require that the original invariance group
be represented by the mappings of fields on fields, because usually coordinate
conditions are formulated in terms of properties of the fields themselves.
If we can construct mappings (within the original invariance group) each
of which maps the set of permissible fields on itself, then these surely form
a group, a subgroup of the original invariance group. This subgroup in turn
contains a further subgroup, the set of those mappings that leave the permis-
sible fields individually unchanged; this second-order subgroup is invariant
with respect to the first-order subgroup. It may,of course, consist of the iden—
tity mapping as its only element; if it is larger, we form the factor group,
which will then consist of the mappings of the set of permissible fields on
itself, without regard to the mappings of other fields. This factor group will
be a new invariance group.

Suppose we construct a set of variables which have a well-defined trans-
formation law with respect to the new invariance group. In general these vari-
ables need not be defined at all in terms of all coordinate systems admissible un-
der the old invariance group. Consider, for instance, the relationship between
arbitrary curvilinear coordinate systems and those of the AL type. With
respect to the AL group we can construct quantities that are Lorentz—covar-
iant, for instance the (total) linear momentum four vector. Its components
are not even definable with respect to coordinate systems that do not behave
“reasonably” at infinity, even though the metric field be one that admits AL
coordinate systems.

By contrast, if we are concerned with variables that are defined with
respect to all coordinate systems admissible under our original invariance
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group, and if they obey a well—defined transformation law among themselves,
then this transformation law must represent a factor group of the original
invariance group, unless it represents the invariance group faithfully.

It is well known that a transformation law should not represent a subgroup
of the invariance group, whether or not that subgroup is invariant. If it does,
we should be confronted with a situation similar to the one described as
case (2) above: The quantities in question would be defined only for a subset
of all the coordinate systems envisaged originally. Unless these coordinate
systems are characterizable in their own right, that is, unless case (2) applies,
this is an unacceptable state of affairs.

The existence of a factor group will permit us to construct quantities,
functionals of the field variables, that are invariant with respect to transfor-
mations belonging to the invariant subgroup but transform under the factor
group. With the help of the invariant subgroup we divide the set of all per-
missible fields (e.g. solutions of the field equations satisfying specified bound-
ary conditions) up into equivalence classes [10]. These equivalence classes will
be smaller than those obtained from the use of the full invariance group;
that is to say, even the permissible equivalent forms of one particular field
are divided into smaller mutually exclusive but exhaustive classes. We now
introduce any set of variables that are constant in each of the new, small,
equivalence classes but are not all constant as we pass from one such class
to another. These variables may serve as a set of coordinates identifying small
equivalence classes within one original class; they are not observables, as
that term has been defined previously, but their transformation law will pro-
vide a faithful representation of the factor group. Needless to say, the actual
construction of such a set of variables may be a very difficult, and even imprac-
tical, undertaking, unless some heuristic viewpoint outside of formal group
theory is available.

STRUCTURE OF THE GBM AND AL GROUPS

The two groups mentioned previously have been analyzed with consid-
erable care, one by R. Sachs, the other by myself. Neither of these groups is
simple. Both possess invariant subgroups of a kind Sachs has called “super-
translations”. The members of these respective subgroups consist of coordinate
transformations that do not change the directions of the coordinate axes
at infinity (spatial or null infinity, as the case may be) but displace them in
a manner that in general is not independent of the direction in which we go
to infinity. The factor group, in either case, is the homogeneous Lorentz
group.

Both Sachs and I have searched for some invariant subgroup whose factor
group would be the inhomogeneous Lorentz group, but have been able to
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convince ourselves that no such subgroup exists. Though there is no difficulty
in singling out the translations from among the supertranslations, the reverse
is not true: There is no way of constructing an invariant subgroup of super-
translations that excludes the translations. As I have mentioned, Sachs’s
results and mine are not equivalent, because we started out from different
invariance groups. I consider his more far-reaching than mine, first because
he used Bondi’s approach of considering the outgoing null directions, rather
than space-like directions,and thus he can include the consideration of gra-
vitational radiation in his analysis; second, he, again following Bondi and
collaborators as well as others, narrows down the choice of coordinate system
much more than I was able to do, and this is, of course, to be welcomed.
At any rate, We both found that Lorentz-covariant, “gauge-invariant” variables
are necessarily constants of the motion.

From the group-theoretical point of view, then, the invariance group
of General Relativity, even of general relativity with boundary conditions,
appears to be significantly diflerent from that of Lorentz-covariant theories,
and the latter is not simply a projection, or contraction, of the former. This
statement should be accepted with considerable qualifications: It is a verbal-
ization of a fairly involved group-theoretical argument, and it applies spe-
cifically to the GBM and AL invariance groups. It is conceivable that there
are invariance groups, not yet discovered, which are physically germane to
a theory of gravitation and which permit the construction of a truly Lorentz-
covariant theory.

ASYMPTOTICALLY FLAT MANIFOLDS

In the preceding discussion we have assumed that physically interesting
solutions of the field equations admit a set of coordinate systems in which
the metric tensor field approaches the Minkowski—Lorentz values at large dis-
tances as 0(1 /r). This assumption is ordinarily described briefly as the assump-
tion of “asymptotic flatness”, and the manifold is said to be asymptotically
flat. In order to see why it proves so diflicult, or even altogether impossible,
to construct a set of “best” coordinate systems which go over into each other
by Lorentz transformations, we have attempted to analyze this concept of
asymptotic flatness in some detail.

Let us consider a collection of masses which at large distances gives rise
to terms in the metric field that represent a non-vanishing total rest mass.
In an appropriately chosen coordinate system the leading non-Minkowski
parts of the metric field will go 0(1/r), and the curvature tensor components
will go 0(1/r3). How can we exhibit the deviation of this metric field from
flatness? If we attempt to construct any geometric figure (such as a triangle,
a cube, and the like) at large distances from the source by choosing points
and connecting them by geodesics, the angles of these figures, as is well known,
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will deviate from the angles of corresponding figures constructed in a perfectly
flat space. The degree of deviation is generally proportional to the square
of the linear dimensions of that figure, multiplied by some expression propor-
tional to the components of the curvature tensor. Hence, in the absence of
radiation, if we move such a figure out to infinity, scaling it up proportionally
to the distance from the sources of the gravitational field, the deviations will
decrease 0(l/r).

A different method of constructing figures is what I should call the method
of dead-reckoning. Suppose we start our figure at one point, protract from
it geodesic line segments of the length and in relative orientations that would
be appropriate for the construction of the desired figure in flat space, and
continue to arrange geodesic line segments one after the other until we have
marked out all the corners. These corners will generally be reached by more
than one polygonal trajectory; the trajectories will fail to meet at one point,
because of the non-vanishing curvature of the space. How large will be those
gaps? The answer is that the gaps will be proportional to the cube of the
linear dimensions of the figure to be constructed, again multiplied by a factor
proportional to the components of the Riemann—Christoffel (or rather Weyl)
tensor. Hence, if the figure is scaled up again so as to subtend a constant solid
angle as viewed from the region in which the source is located, the gaps will
not tend to zero but to constant values which are of the order of magnitude
of the gravitational radius belonging to the rest mass, i.e. of the order of cm
for a mass of the order of our earth, or of km for a solar mass.

Dynamically, this result could also be stated as follows. Consider two
test particles initially at rest relative to each other, at an initial distance of r1
from each other and r from the source of the field. Let both fall freely for
a length of time t = r2/c. At the end of that time their relative distance will
have changed by an amount of the order rlrzR/r‘”, where R is the gravita-
tional radius of the rest mass of the source.

These results were obtained on the assumption of negligible gravitational
radiation. If there is radiation, and if we go to infinity along an outgoing
light cone, the situation is different, in that deviations from flatness are more
pronounced. If the pulse of radiation is of finite length, there is no sense in
scaling up the dimensions of a figure indefinitely in the direction going through
the pulse. If we merely scale up in those directions which lie within the wave
front, the gap increases 0(r), or if we construct a figure without gaps from
geodesics, angles will deviate from those of the corresponding figure in flat
space by asymptotically constant amounts. Test particles that were at rest
relative to each other before the passage of the wave pulse will be in a state
of relative motion following its passage. Their relative velocity will be pro-
portional to their initial distance from each other, and inversely proportional
to their distance from the source of radiation.
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RADIATION AND AFFINE CONNECTION

Usually we define an affine connection in a Riemannian manifold in terms
of the Christoffel symbols. We call two vectors at different points parallel
to each other along a specified curve if parallel displacement of one along the
curve transforms it into the other. If the curve, or rather curve segment, is
geodesic, the angle between the vector and the curve is constant all along
the curve, etc. Independence of the result of parallel displacement of a vector
from the curve used to connect the two end points with each other is called
integrability of the afline connection, or simply afline flatness. In Riemannian
geometry affine flatness and metric flatness are coincident.

In the presence of radiation we may form a three-dimensional manifold
that consists of the congruence of geodesic null curves on all the outgoing
light cones in the course of time. This three-dimensional manifold, which
Sachs has used to represent the GBM group, may be considered as the (future)
celestial sphere in the course of time. Each null ray of the curve congruence
may be thought of as being represented by its “end point at infinity”. We
may project any curve in the four-dimensional manifold of space-time on
the three-dimensional manifold by moving each of its points outward along
the appropriate null ray. As a result of this projection we obtain an afline
connection on the (non-metric) three-dimensional manifold, which repre-
sents the limit of the Christoffel symbols for large values of r as a fixed func-
tion of the Sachs coordinates u, Q, and 45. This afline connection is non-
integrable, and the three-dimensional manifold is not aflinely flat, whereas
in the absence of gravitational radiation it would be.

However, we can define on the three-dimensional manifold another affine
connection, which is integrable. We do so by means of the invariant subgroup
of the translations within the GBM group. An infinitesimal translation defines
a vector field, and the four translations a quadruped field. Any vector at
one point of the three-dimensional manifold thus defines uniquely, and invar-
iantly, a translation, and with it a whole field of “parallel” vectors. Moreover,
this identification commutes with the operations of vector addition and multi-
plication by a constant. Hence this identification gives rise to an integrable
afline connection.

It is well known that in the presence of two afl'ine connections on the
same manifold the difference is a tensor. Thus under the GBM group there
exists the possibility of defining a tensor field of rank three which is of a lower
order of differentiation than the Riemann—Christoffel tensor. Moreover,
as Sachs has pointed out, the transformations of the GBM group may be
continued uniquely into the interior of the four—dimensional manifold, so

that, for instance, the translations are well defined for finite values of r,
though expressions for them may not be available in closed form. Thus, the
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tensor field in question may be defined not only on the future celestial sphere
but for all values of r > R > 0, where R is some bounding tube outside
of which the metric field is well behaved. This is a remarkable result of the
imposition of appropriate boundary conditions. Clearly, the tensor field
which We have constructed is closely related to Bondi’s “news functions”,
but the details have not yet been worked out.

CONCLUSION

It appears that the systematic investigation of the asymptotic properties
of “asymptotically flat” Riemann—Einstein manifolds leads to results that
are not entirely trivial. Those discussed here roughly fall into two types;
on the one hand the structure of invariance groups appropriate to solutions
of the field equations of physical interest circumscribes their relationship
to other such groups and in particular to the Lorentz group; on the other,
these classes of solutions deviate from the Minkowski universe asymptoti-
cally in a manner that can be described in a mathematically acceptable manner
and which may give rise to covariant fields not defined in more general Rie-
rnannian manifolds.
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D I S C U S S I O N

E. T. NEWMAN:
I would like to point out that in certain situations it might be of great

efficacy to introduce a coordinate system in which the metric does not appear
asymptotically flat, even though the space is asymptotically flat. The prime
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example of this is the Robinson—Trautman metrics, where the metric grows
a linear r term. Now, there are other indications, in some of the Bondi
solutions and Bondi—Sachs solutions, that it might be of more physical in-
terest to introduce a similar type of coordinate system.
P. G. BERGMANN:

I believe that if you handle your affairs right (and of course Whether you
do or not can be decided only be the success of the undertaking) that the
results should be independent of your choice of coordinate system; that is
to say, you are supposedly making use of every covariant structure that is
actually available, either in the form of choice of coordinate system or in
some other fashion and then you can do certain things. The question in this
case is, can you, for instance, introduce an inhomogenous Lorentz-covariant
set of quantities. Ithink whether you can or not should not depend on your
choice of coordinate systems. And this is once more the point that I tried
to make several times. One should be cautious in claiming too much ground
that one has covered. Supposing that I picked up a relatively large invariance
group that could have been easily narrowed; I might have overlooked a pos—
sibility. I think that in the class of solutions that are covered by the Bondi-
Metzner group this is all that’s available. I mean that is my impression, I can-
not swear. I think that this is all that is available, regardless of whether
you choose to describe it by a different kind of coordinate system or not.

H. BONDI:
If I may intervene here, it seems to me that whether or not you get such

an r term as you mentioned depends essentially on whether your framework
is accelerated or not, and this seems to me the crucial distinction. In the
group you have studied, one assumes that there is no such acceleration.

A. LICHN'ERQWICZ:
I will first make an affirmation, and second ask a question. For a mathe-

matician it is very strange to use the word “group” for “group of transfor-
mations” which are not global. Physicists use the term group for sets of trans-
formations—local transformations—which do not constitute group.

P. G. BERGMANN:
These are pseudogroups.

A. LICHNEROWICZ:
Yes, pseudogroups. My question is the following. To define “asymptoti-

cally flat” it is necessary to define precisely the domain at infinity. You have
certainly assumptions on the topology and the complete character of your
manifold. But I don’t know exactly what are your assumptions in these do-
mains.
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P. G. BERGMANN:

Concerning the first point I have nothing to add, I agree. Concerning
the second point, I tried to say that I believe that different people understand
by asymptotic flatness inequivalent things, and that in order to be able to
talk at all one has to be more specific. So I tried to answer your question
when I said l/r along all space-like directions, but not uniformly. Non-uni-
formly, because otherwise I would then include the light cone also, by clo-
sure.

A. LICHNEROWICZ:

I am in agreement on this point, but what is the domain of r?

P. G. BERGMANN:
I think that topologically one means a Minkowski universe minus a world

tube.

A. LICHNEROWICZ:
It is not complete in the sense of geodesics.

P. G. BERGMANN:
Obviously, if you take out a world tube you have nothing complete.

R. K. SACHS:
The general topological assumption is surely the following: you consider

the product of a two-sphere with an infinite half-line, including its boundary
point. This product is the one that is generally assumed for such discussions_

C. W. MISNER:

I think one could also replace the assumption by assuming the tube is
filled with anything one pleases, which is the way it is done in Lichnerowicz’s
book. Then there is a Euclidean topology and one discusses questions which
are independent of the metric inside a central tube.

A. LICHNEROWICZ:

There exist many possibilities, but it is necessary to have some precise
assumption in this domain.

C. W. MISNER:
Since we are only interested in what happens at infinity, you can say many

different things about the interior. Our questions only imply, what can you
say at infinity that is independent of the interior. So one man sets it up with
no interior; another man says, let the interior be arbitrary.

J. L. SYNGE:
I think Professor Bergmann mentioned a two-dimensional integral which

represents the whole mass? What is it?
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P. G. BERGMANN:

The integral that I have in mind can be defined in several different ways;
and I believe that in this particular case that all definitions agree, and lead to the
same result. Namely, an integral over a superpotential, multiplied into a displa-
cement vector field. Now, the arbitrariness that one has is in the definition of
the chosen superpotential. If you try to be completely conventional, you
can use the superpotentials first described by von Freud, 1939, in that famous
Annals of Mathematics paper; or you can use the Landau—Lifshitz superpo-
tential which is even simpler, although closely related to the von Freud expres-
sion. The sticky point is, of course, the vector field into which you dot them
prior to integration; and I believe that in the case of the radiative solutions
one should use one of those vectors fields which are related to each other
by the second afline connection that I mentioned at the end of my paper.
One can define it this way if one wishes: that connection whose components
are zero, not only order 1/r, but more strongly zero, at infinity in any appro-
priately chosen coordinate system of the Bondi—Metzner set.

J. WEBER:
Why asymptotically flat universe Minkowskian boundary conditons are

used at infinity instead of Friedmann type of expanding universe boundary
conditions?

P. G. BERGMANN:

The only answer I can give is that the investigations date back less
than two years, I believe, and that people have simply started with the mathe-
matically simplest situation, or what they hoped was the simplest situation.
I think it’s purely psychological-historical, and if this field should not die
out in the next few years, would you suggest to Landau that it be done?
However, since the chairman preceded me by several months in opening this
field, I wish he would answer.

H. BONDI:

Yes, I think I can answer this; this shall be the last remark in the dis-
cussion. You cannot have a Friedmann type universe of a realistic nature
without having some matter in it. You don’t want to live in an empty
one. Then the question of the response of the matter to the outgoing radia-
tion arises; in other words we've got to prescribe an equation of state for the
matter out there. Of course, in principle this can be done; but you realize that
this is infinitely more complex than the very simple equation of state for
empty space; which is R”: 0. I regret it as much as you do, that we
haven’t yet got to the point of doing the Friedmann universe.





THE MOTION OF AN EXTENDED PARTICLE IN THE
GRAVITATIONAL FIELD

P. A. M. DIRAC

St. John’s College, Cambridge

THE MODEL

With the Einstein theory of gravitation there is a minimum size for a par-
ticle of given mass m, namely the radius 9 = 2m in the Schwarzschild system
of coordinates. The gravitational field can be extended to smaller radii con-
sistent with Einstein’s field equations for empty space, but the region r < 2m
is then physically inaccessible (it would need an infinite time to send in a signal
and get it out again), so it cannot be allowed in a physical theory.

Thus, to get a precise theory of the motion of a particle in the gravitational
field, one cannot take the particle to be a point singularity. One must take
it to have a finite size 9, such that Einstein’s equations for empty space hold
only for r > g and 9 must be 2 2m. It is awkward to work with the caseg = 2m,
because of the singular character of space-time at this radius. We shall here
consider the case of 9 > 2m.

One cannot very well take the particle to be a rigid sphere, because of the
ambiguity in the definition of a sphere in curved space-time. We therefore
assume the surface of the particle to be flxeible, so that the shape and size
can vary. The simplest assumptions will be made that lead to definite equations
of motion for such a particle, with stable equilibrium states.

In choosing these assumptions one can be guided by analogy with the
electromagnetic field. One can get a reasonable theory of a charged particle
of finite size in the electromagnetic field by assuming that the surface of the
particle is a perfect conductor carrying a distribution of electric charge, and
that there is a surface tension which counterbalances the electrostatic repul-
sion [1]. There is then no electromagnetic field inside the particle, and the
electromagnetic potentials are continuous at the surface while their first de-
rivatives are not.

We shall make analogous assumptions for our gravitational particle.
We assume it carries a surface distribution of mass, which adjusts itself so
that there is no gravitational field inside, i.e. space-time is flat inside. We
assume also a surface pressure to counterbalance the mutual attraction of
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the surface distribution of mass. If these are the only forces, one can have
a particle at rest in equilibrium, but it is unstable, in contradistinction to
the electromagnetic case. To bring in stability we need some further force,
and the simplest assumption is to take an additional energy term proportional
to the total volume inside the particle.

An extended particle in the combined gravitational and electromagnetic
fields has been considered by Lees [2]. His model differs from the present
one through having constraints on the size and shape of the particle.

THE ACTION PRINCIPLE

A comprehensive action principle will be set up, giving both the field
equations and the equations of motion of the particle. It will determine
the motion of each element of the surface, so it will give the motion of the
particle as a whole as well as the changes in its size and shape. The total
action is of the form

I = Io+Is+Ir
where [0 is the action for the space outside the particle, IS is the surface action
and II is the action for the space inside.

We take I0 to be the usual action for the Einstein field, namely the integral
of the total curvature density

10:]- gglw{(117wn_FZna)+F;a,v—FZV,CL} d4x

taken over the region outside the particle, where —92 is the determinant of
the g”. We may write it as

10:] (2+ma,.)d4x
where .12 does not involve any second derivatives of the g”. We have then

m“ = 9(g"“F$21—n11w) (1)
90 = ggflv(F$a-PZ»_FZ’F:U)_(ggM’)/VFZ0+ (gglfvxaFZv

= % 9g,w,9gap,a {g9°(g"“g’fi-g"'g“fi)+2g” (g”9g°5—g"“ggfl)}- (2)

We can now transform Io to
Io = ffid‘lx— fmadSa, (3)

where dSa is an element of the surface of the particle. In this form it does
not involve any second derivatives of the gm. We shall assume that IS and
IS likewise involve only the g,” and their first derivatives.

The condition that space-time is flat inside the particle is assumed as
a constraint of the action principle. We require (31 to be zero only for variations
of the g”, that preserve this flatness.
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Let the equation of the surface of the particle be

f(X) = 0-
This equation must not be varied in the variational procedure, because if
it were varied, 61 would not depend linearly on the parameters that specify
the variation of f, on account of the gravitational field being different just
outside the surface and just inside. Thus f(x) is kept fixed all through the
calculation. For convenience we take it to be

x1 = 0, with x1 > 0 outside. (4)
We suppose a continuous system of coordinates inside and outside the

particle, and we use the suflixes a, b, c, to take on the values 0, 2, 3 only.
Then the gab are continuous, and also their tangential derivatives gab,“ but
the derivatives gum need not be continuous. Also the g1” need not be con-
tinuous, and can be varied independently on both sides of the surface. Let

gmgl"#V— #v_
c _g g11 (5)

so that d" = 0 if u or v is one and c” is the reciprocal matrix to gab.
Is is an integral over the surface of the particle,

Is = fnadSa =fn1dx°dx2dx3

with the equation (4) for the surface. We must choose n1 to be a three-
dimensional scalar density with respect to the coordinates x0, x2, x3 of the
surface, and to be invariant under any transformation of coordinates which
does not alter the surface x1 = 0 and the coordinates x0, x2, x3 in it. The basic
quantities that have this invariance property, and can,therefore,enter into 111,
are the gab and their tangential derivatives gab,” and also the quantities 9113b.
The latter have different values just outside the surface and just inside, on
account of the discontinuity in g1], and gum. Either value for 9 3,, has the
necessary invariance property and can enter into n1. To distinguish the two
values, we shall denote the inside one by 9*Ffb1.

We shall now assume

n1 =’ —29c”bP},b+2wC77Z, (6)

where w is a constant and Cm2 is the determinant of the gab. The first term in
(6) is connected with the outside gravitational field, and is needed for a purpose-
that will become clear later. The second term gives the surface pressure.

Finally, we assume the stabilizing term in the action

I, = 21f9d4x

taken over the space inside the particle, A being a constant.
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THE VARIATION OF L,+I,1

We have from (3)

[0+1s = f £d4x+f(n1-—m1)dx°dx2dx3,

the four-dimensional integral being taken over the region x1 > 0 and the
three-dimensional integral over the surface x1 = 0. Hence,

an 3.9 .61,, 1,: —.——— a d4H fiaga (all gr x .
3—9 “"1— m‘) ("ml—ml)

_ + r —— + 7 6
+ f”: agafiJ (gal? ( (3.4.15.1: )Ic] gafi ji—

r: 1__ t+M agap,1}dx°dx2dx3. (7)
r ‘(guru

In the region x1 > 0, 6gafl is arbitrary, so the coeflicient of 6&5 in the first
term of (7) must vanish. This gives Einstein’s equations for empty space,
holding in the region outside the particle.

The 6ga5,1 in the second term of (7) means the value of this field quantity
ust outside the surface, and this value is arbitrary. Hence, its coefficient in
(7) must vanish. In order not to have too many equations of motion coming
from the action principle, we must arrange that this coefficient shall vanish
identically. The first term for n1 in (6) produces the desired effect, since from (1)

m1+29c“"I‘},, = 9g19{1‘ga+ (2C”'—g"')F,i.a)}
l 2 " " 1

= 9g19{3 guvguv,9+ (8M— %1_) (gue,v—’ E grime”

1 V_ 95,11 u._ g ”g1 )— g g“ gnaw

= lecnbgaeJn (8)

which does not involve any derivatives gam.
We are left with

6(I,+I,) = f {yéfiagafidxf’dd (9)
where

afi: _—_+ fi ,. r

9/ agaflJ (gm? Cgurkc

From (2), the first term of y” has the value

8.8 r':('nl—m‘)_ _ ( ("(‘nl—ml) ) (10)

1c

1 a V V a-- 3 9gpv,g{(g“ g Lg" gap)g19+g""g 5g” +

+2:t 9—2gwgfiegl'} (11)
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This expression is written in a form not symmetrical between a and ,6, for
brevity, but it should be understood as symmetrized. The same applies to the
following expression. We have from (8)

3W+29€Lfllbl _ (“'EEJE) _
[c

.agafi

951m (5‘ g°tg1ect'figlagetcwlgmwac'fi)—(9ghcfi¢).c. (12)
Subtracting (12), from (11), we get after some reduction

(c‘mc'fi— ewe”) 9F;
The surface pressure term 2w 1% in It1 gives as its contribution to 9/“

8%2w
agal?

= wcmca”.

So altogether we get for SW”
9/13 = (c"“c’fi—c"”c°”)9f}l, +wcmca". (13)

We see that ‘yafl vanishes when a or ,6 is one, which expresses that the sur-
face part of [0+1s is independent of the g1“. Thus we may write (9) as

6(I0+Is) = f fy””6g,,,,dx°dx2dx3. (14)

THE EQUATIONS OF MOTION
The space inside the particle has to be flat, so the gab at the surface are

not arbitrary. They must specify a three-dimensional surface that can be
embedded in a four—dimensional flat space. Any variation of the g“, inside the
particle and of the g,,, on the surface must be of the kind that comes merely
from a change of the coordinate system. Thus for x1 < 0,

6g [1' = guv,9 £9+guggg|v+gmglw (15)

where 69 is infinitesimal and gives the change in the coordinates.
We now get from (14)

6(10 + Is) =f (yab(gfb’ggg+Zgreéglb)dx0dx2dx3

= _2 f (W’FZ‘be +W7n9)§9dx°dx2dx3.
The * is attached to field quantities at points just inside the surface when
there would otherwise be ambiguity ,through the corresponding field quanti-
ties just outside being different.

The variation of I, gives

a], = ,1f Qg"'(5gfl,d4x
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= Zlfgguv(%guv,ggg+gnggelf d4x

= 21f (9|9£9+9£9,9)d4x = 2/1 f 9* £1dx°dx2dx3.
The integral here is, of course, merely the change of the four—dimensional
volume inside the particle produced by the change 59 in the coordinate system,
with the equation of the surface maintained as x1 = 0.

The 59 can be arbitrary at each point of the surface, so the action prin-
ciple 6(I0+IS+II) = 0 gives

Cy""F:bg+QJ""Ibg22—19*g$ = 0- (16)
There are four equations here. For three of them, those with Q = 0,2

or 3, we may drop the *’s, so that they appear as

Cy“bFabc+@”"ibgac = 0- (17)
These three must hold identically, as they merely express that the action
is invariant under a change in the coordinates x0, x2, x3 in the surface. One
can easily check the identities with the help of Einstein’s field equations just
outside the surface. '

We are left with just one equation, which we have in its most convenient
form if we multiply (16) by g*19; thus,

WwF’fi—lmgm = 0- (18)
We may also write it

Cyab9*F’§,§—AQ7Z2 = 0 (19)
when it is expressed in terms of invariants with respect to coordinate transfor-
mations which do not alter the surface x1 = 0 and the coordinates x0, x2, x3
in it.

Equation (18) or (l9),with Q ”b given by (13), is the equation of motion
for the surface. It is produced, together with the field equations for the outside
space, by the action principle.

THE SPHERICALLY SYMMETRIC SOLUTION

We shall apply the theory to a spherically symmetric particle with its
centre at rest and its radius varying with the time. The field outside the particle
is then just the Schwarzschild solution of the Einstein equations, there being
no possibility of gravitational waves consistent with spherical symmetry.

Let g be the radius of the particle, a function of the time t. In terms of the
Schwarzschild coordinates r, 6, (p, t, we take x1 = 7—9, x2 = 0, x3 = (p,
x0 = I, so that the equation of the surface is x1 = 0. Then for x1 > 0,

l I 2

ds2 = ydtz— -(dx_:9(h)— —r2a'02—r2 sin2 0q2, (20)
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where y = l—2m/r. Thus,
'29 Q 1

g — — __’ g — — _, — _ __00 —7 10 — ‘ $11 —

g22 = —7'2a gss = —r2 sin2 0

with the other components of gm, vanishing.
We find

L32 1/2
9: r2 sin 0, 9% = (y— ?) r2 sin 0,

@2 ‘1 , 1 1oo_ __ 22=___ 33=_
c _(y y) ’ c 7/2, c rzsin26’

with c“ vanishing for (1 7E b. We find further

Filo = §+myr‘2(1—3é27‘2),
132 = —yr, IE3 = —yr sin2 0

With Th, vanishing for a aé b. From (13) we now get, making the approxi-
mation of neglecting {)2 but not 6, and using yo to denote the value of y when

x1 = 0 (namely 'yo =1—— 2%”):

{1/00 = —c°°(c229F%2+ c339PQ3—wcm)
= — sin 6(29rwy31’292),

{2/22 = —c22(c°°QP30+c339F§3—wcm)

= sin 0(éya‘+9‘1-m9‘2wyo"2),
- 9/33 = —c33(c°°QF%fic229F§2—wcm)

Y22

— sin2 0’
with C2/” vanishing for a 75 b.

The metric inside the particle must be chosen so that it describes a flat
space with the same gab as (20) at x1 = 0. The solution is easily seen to be

ds'2 = {n+0—yo‘1)é2}.dt2—(dx1+édt)2—r2d02—r2 sin? Mp? (21)
with r = 9+ 351 as before and now —9 < x1 < 0. The metric (21) gives

92 .
goo=70‘ ,—” glo;—Q, gu=—1,

7’0

gm 2 —r2, g33 = —r2 sin2 0

with the other components of g], vanishing.
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We find for x1 =0, with neglect of éz but not @,

9* =yfi’292 sin 0, g*11 = —1,

F3$=é3 Fé‘2‘=—e, P§%=—esin20.
Substituting these results into (18), we get as the equation of motion for
small é,

(29 —w70‘1’292)'é+2 (éyo‘1+e‘1—me‘2—wy%’2)e—1V%’292 = 0- (22)
It is of the form

A(Q)§+B(9) = 0
with

A(9) = 2y33’2(e"1—m9‘2)— %wy‘%,

3(9) = y51’2(e‘2—me‘3)—we‘1— % 1-
The equilibrium radius 9 = R is given by

B (R) = 0.
We may choose any value for R greater than 2m and any to, and then
choose A to fit this equation.

The equilibrium is stable if

dBAE>O

for g = R. This leads to

4 1 m 1 2 6m 5m2
w— R R2(1 2m)“2 (E T F _‘” (1 2m)3/2

R R

F) >0.

We can satisfy this condition by choosing an to lie between the two quan-
tities

74* *1 ._ m l 2 6m 5m2

_3m‘ R R) v; f‘F + F ’
(1— R) (‘1‘?)

except in the case when the two quantities coincide. This case occurs when

R 1 _E: 7 (3+1/3 ), (24)

which gives a value for R just a little greater than the Schwarzschild radius
2 m.
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CONCLUSION

We may choose any value for R greater than 2m, excluding the value
(24), and then choose a) and Z to fit the conditions. We then have a theory
for the motion of a particle with the radius R. The particle is stable for
small disturbances that preserve its spherical symmetry. Further work would
be needed to check whether it is still stable if the spherical symmetry is dis-
turbed.
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DISCUSSION

A. SCHILD:
Would you wish to put conditions on the particle that make the .mass

surface density always positive?

P. A. M. DIRAc:

I would like to have a Hamiltonian which is positive definite. That would
be the natural way of securing that the motion is always stable and that you
don’t get runaway solutions. I have big doubts as to whether it is possible
to have a positive definite Hamiltonian, because the Newtonian energy is
negative; but one should have the aim of getting a positive definite Hamil-
tonian. If that cannot be satisfied, then I would like to have, at any rate,
a positive definite surface energy.

H. BONDI:

I’ll abuse my position as chairman to ask a question myself. I am rather
worried about the assumption of the vanishing field inside. When one con-
siders any extended body, then clearly the motion of that body will depend
on the equation of state one assumes for the material. We know this in
fact from the effect of the tidal friction of the earth on the motion of the moon.
Now, the type of equation of state one wants should definitely be what in
electrical network theory is called passive, that is to say, that no energy from
other sources of energy is fed in, but that it is a natural response, purely
reactive, or, perhaps, dissipative, as in the case of tidal friction. Now in
electrical theory we know that a purely reactive network, namely a perfectly
conducting shell, will so distribute its charges as to give zero field inside.
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But in gravitation, precisely the opposite is the case. If we assume, for example,
the earth to be a shell, moving in the field of the sun, the earth falling freely;
then, of course, the residual forces on the earth are the tidal forces. And if

this were a shell with particles in it, that could move freely, then these par-
ticles which congregate here would make tides, which would increase the

field inside, and would not abolish it. So, in the natural motion, and, pro-
bably, in any passive situation, we would get something much closer to pa-

ramagnetic behaviour, where we get an increase of the field inside, than to

shielding which corresponds to electrostatics.

P. A. M. DIRAC:
Those remarks of yours would rather suggest that my particle would not

be stable for disturbances which are not spherically symmetrical. I think
that would be the natural interpretation of your remarks.

H. BONDI:

Actual instability would depend on the properties of the material, but
an enhancement of the inhomogeneity of the field would certainly occur.

P. A. M. DIRAC:
But in the way that the theory is at present formulated there has to be no

field inside, no matter what disturbances occur outside.

H. BONDI:
Well, I fear that this is in some sense unphysical.

P. A. M. DIRAC:

Yes. You could get a more physical theory by bringing in an action for
the internal region corresponding to some physical conditions. That would
complicate the theory, but make it more physical.

V. A. FOCK:
I should like to ask the following question. You are considering very

small particles, because they are nearly point particles and their mass m is
very small.

P. A. M. DIRAC:
They need not be very small.

V. A. FOCK:
What kind of particles are these? Are they quantum particles or classical

particles? I cannot imagine particles of such small size that are not quantum
particles. And if so, how are quantum-mechanical considerations to be intro-
duced in your theory?
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P. A. M. DIRAC:

I would like to answer first that these particles do not have to be small.
I have not anywhere made the assumption that they are small. We have
exact equations of motion which would also apply if the particles are very
far from being small. If they are small, I would agree that we ought to bring
in quantum theory; and that brings in very many new problems.

V. A. FOCK:

But in the case that they are not small, they must have a very large
density; so large that perhaps the notion of density is no more applicable
in this case.

P. A. M. DIRAC:

I do not think the density would have to be large. The density could
very well be small also. With large particles you get into the difficulty
that two of them may collide, and then you would need some new equations
of motion to describe that situation.

J. A. WHEELER:

The work here is in line With the old Lorentz model of the electron which,
however, ran into difficulty. And it’s very nice to see that if one goes into
general relativity one has possibilities to construct objects that do not have
that difliculty. In this connection it might be mentioned that there are also
two other kinds of objects that one can construct within the framework of
general relativity, namely geons and topological objects—handles or worm-
holes. In those two cases one has examined the question of stability.
And the questions which you have brought up in such an interesting way
here have also been looked at in those two cases; namely the scattering of
radiation by such objects; and the interaction of such objects With other
fields. However, of course, for all three objects (the problem that you speak
of here, and in the case of the geon and in the case of the wormhole) one
is talking of things that have not the slightest connection with particles of
the real physical world, but speaking rather of models which are of great
interest in understanding the nature and implications of relativity. However,
it is abit puzzling to me to understand why one would introduce a new
physical phenomenon like surface tension here, when already in the framework
of well-established general relativity and electromagnetism one has the tools
at hand with which to construct model objects of considerable interest in
their own right. I raise this issue of this new physical term particularly be-
cause I myself do not understand what governs the law of aggregation of this
substance that causes the surface tension. What decides into how many
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spheres it will collect? What decides — if it wants to break up into pieces —
whether this is allowed or forbidden? This is why it would seem to me sim-
pler not to bring in the surface tension to construct such models.

P. A. M. DIRAC:

You made reference to the difliculties of Lorentz. He could have avoided
these difliculties if he had used an action principle. And the only way that
I have succeeded in avoiding these Lorentz difliculties is by using an action
principle, all the way through. Now, this introduction of the surface tension,
or rather surface pressure, enables one to have particles of any size. They
could be small particles, not much bigger than the Schwarzschild particle,
or they could be very large. I don’t think you could have the small particles
without bringing in something like this surface pressure, or some other
non-Einstein terms. I suppose your geons are extremely large, aren’t they?

J. A. WHEELER:

Comparable in size to the sun or larger if they are to be analyzed
without getting into the important problems of quantizing general relativity.

P. A. M. DIRAC:

Yes. I would agree that this model is rather remote from physical re-
ality, but I wish to say again that we are working in a new field and we make
the simplest assumptions which lead to a physically sensible theory. We
can add on further terms to the action later on if we want them.

B. S. DEWITT:

I should like to make a comment about amatter of principle, and this
is also in answer to Prof. Wheeler. I think the example Prof. Dirac has shown
us is a very excellent example of the intimate relation which exists between
the physical description of the geometry of space-time and the dynamical
behaviour of bodies which occupy space-time. I should like to suggest that
instead of pushing 100% in the direction of examining only empty space, we
should study more, perhaps, the actual description of material objects which
occupy space-time. This, for example, I found very useful in the analysis of
the Bohr—Rosenfeld problem: to really describe the elastic test bodies that
one uses. One learns very interesting new things this way. After all, our
original ideas of distance and Riemannian geometry, are based on our
experience with physical objects like rods and clocks. And, the effort to de-
scribe these objects in manifestly covariant language and to learn how they
behave is worth it, I think.

P. A. M. DIRAC:

I agree completely.
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C. MoLLER:

May I ask if there is in this model a definite relation between the mass,the constant in the Schwarzshild solution outside, and the radius of thisobject.

P. A. M. DIRAC:
No. You can have it independent by suitably choosing the surface pres-sure.

A. LICHNEROWICZ:
En 1946 ou 1947 j’ai fabriqué un modéle de l’e'lectron avec de la ma-tiére a l’intérieur et une densité superficielle correspondante. 11 y a certains

rapports avec ce modele; mais dans mon modéle i1 y a de la matiere fluide
a l’intérieur au lieu du Vide.

P. A. M. DrRAc:
Do you have the gravitational field taken into account?

A. LICHNEROWICZ:
Yes, in the interior. But also a tensor, a repulsive tensor on the surface.

P. A. M. DIRAC:
Do you have an action principle?

A. LICHNEROWICZ:
Yes, it consists of two parts.





PROPAGATEURS ET QUANTIFICATION EN RELATIVITE
GENERALE

A. LICHNEROWICZ
Callége de France

J ’AI procédé, depuis 1958, a l’étude mathématique rigoureuse d’un instrument
qui doit jouer un role fondamental dans la théorie quantique des champs
sur un espace-temps courbe. Il s’agit des propagateurs tensoriels et spinoriels
qui constituent les généralisations naturelles du propagateur scalaire D de
Jordan—Pauli [2], [3].

Sous le nom de fonction de Green (que je n’apprécie pas) un instrument
apparemment semblable a été utilisé indépendamment, pour l’étude de pro—
blémes physiques variés, par Bryce et Cecile DeWitt [4]. 11 me semble que,
dans tous les travaux concernant 1a théorie quantique des champs en rela-
tivité géne’rale, doivent apparal‘tre de maniére plus ou mains consciente plus
ou mains explicite, des propagateurs.

C’est a l’étude de la notion de propagateur et de certaines de ses appli-
cations que je consacrerai cette conférence. Je me limiterai ici aux champs
libres, car ce sont provisoirement les seuls pour lesquels une étude mathema-
tique rigoureuse peut étre développée. Une premiere partie de la conference
sera consacrée a une esquisse de la théorie mathématique des propagateurs,
une seconde a la formation des commutateurs du champ électromagnétique
et du champ gravitationnel varié, une troisieme aux champs spinoriels, 1a
derniere a quelques remarques sur les opérateurs de creation-annihilation.

I.THEORIE MATHEMATIQUE DES PROPAGATEURS

l. Tenseurs—distributions sur une variété riemannienne
a) Soit V,l une variété riemannienne de type hyperbolique normal, orien-

tée, de classe C°°, DP l’espace des p-tenseurs a support compact de classe
\C°°. Un p-tenseur-distribution T est une fonctionnelle line'aire continue, a va-

leurs scolaires, des p-tenseurs ()1 support compact de classe C°°. Si U GDP,
<T, U > est la valeur pour U du tenseur-distribution T. Un tenseur ordinaire
T de'finz't un tenseur-distribution par la formule:

<T, U > = f Tamar,(x)U”1'"°P(xl1}(X)= f (T,UMOC) (1-1)
V'1 VII

ou 17 est l’élément de volume et (T, U)x 1e produit contracté en x e V".

177
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Si V est l’opérateur de dérivation covariante, 6 l’opérateur de codi é-
rentiation sur les (p+1)—tenseurs

6: U3... 9 Water-.. (1—2)
1a de'rive'e covariante VT d’un p-tenseur-distribution T est définie par:

<VT,U> = <T,8U>, UeDP. (1—3)

b) Dans 1a théorie des opérateurs différentiels sur V", les notions de bi-

tenseurs et bitenseurs-distributions sur VnXVn interviennent nécessairement.

Le biscalaire de Dirac 5(x,x’) est défini par:

< 5(x, X'),f(X') > =f(X)
on f est une fonction arbitraire. Plus généralement, on a des bitenseurs de

Dirac D(")(x,x’) de’finis par:

< D”) (x, x’), U(x’) > = U(x) (p = 0,1,...) (1—4)

on U est un p—tenseur arbitraire. Par antisymétrisation de D‘P), on obtient

une bi-forme distribution D”) et par symétrisation, pour p = 2, le bitenseur-

distribution symétrique 13(2). Si dx est l’opérateur de differentiation exté-

rieure en x, 6,: celui de codifférentiation, on établit aisément:

ax,b<v+1>= 4130’) (p = 0, 1, ...,n—1). (1—5)

Si A est un vecteur, nous désignons par (DA 1e tenseur symétrique

VaAfl+VpAm On voit de méme que

6,159) = (Z); D0). (1—6)

flP+1

2. L’opérateur de Klein-Gordon

La the’orie des propagateurs est valable pour tous les systémes hyperboli-
ques au sens de Leray. Je me limiterai ici aux opérateurs de Klein-Gordon

sur les tenseurs (et plus tard sur les spineurs). Dans le cas des tenseurs anti-

symétriques, G. de Rham a introduit 1e laplacien“) A défini par:

AT: (d6+6d)T

qui commute dans ce cas avec d et 6. Le laplacien peut s’écrire explicitement:

(Angry!) = ~V9V9Tapuap +§RalpTalmflmap—I§1Rakg, “1,, Turheomap. (2—1)

J’adopte (2—1) comme de’finition du laplacien d’un tenseur arbitraire.
L’opérateur (A—l—p) 011 y = const. est l’opérateur de Klein-Gordon; A jouit

des propriétés suivantes: il est auto-adjoint, commute avec la contraction,

préserve les symétries ou antisymétries possibles de T. Si T est 51 dérivée co-
variante nulle A(T® U) = T® AU.

(1) NOuS maintenons la denomination de laplacien pour un opérateur qui géne’ralise
ce qu’on appelIe usuellement un dalembertien.
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Si 1e tenseur de Ricci de Vn est a dérivée covariante nulle, on a pour tout
2-tenseur T et vecteur A:

(SAT = AoT, VAA = AVA.
3. Noyaux élémentaires et propagateurs

Dans la suite, nos considerations sont relatives a un domaine ouvert Q
tel que le conoide caractéristique I}, de sommet x’ 6 Q soit régulier dans .0
et définisse trois re’gions: le futur 6+(x’), 1e passe C—(x’) et l’ailleurs. Si K est
un ensemble de 9, le futur C+(K) est l’ensemble des chemins temporels issus
des points 96’ de K dans le futur de x’; 1e passé de K est l’ensemble C‘(K) des
chemins temporels aboutissant aus points x’ de K dans le passé de x’.

Un sensemble K est dit compact vers le futur (resp. 1e passé) si l’intersection
de (f—(K) avec 6+(x) est compacte pour tout x; (E—(K) est aussi compact vers
le futur. Le lemme suivant est essentiel pour les demonstrations: si K est
compact vers le futur et K' compact, C‘(K)/\ C+(K') est compact.

a) En ce qui concerne les solutions ou noyaux e’lémentaires de (A—l—p)
nous avons 1e résultat suivant: il existe a'eux noyaux élémentaires E‘P)i(x, x'),
c’est-a-dire deux bi-p-tenseurs distributions satisfaisant:

(Axwmmi (x, x') = Dm (x, x') (3—1)
et qui, pour chaque x’ c 9 ant leurs supports respectivement darts C+(x’) ou
C‘(x'). Nous avons aussi

(AxI+H)E("’*(x, 36') = D‘”(x, 96')
L’unicite’ des noyaux élémentaires est un cas particulier d’un theoreme gene'-

ral d’unicité:
tout tenseur-distribution T solution de l’e'quation homogéne (A+u)T = 0

et a support compact vers le futur (ou le passé) est nul.
b) J’appelle propagateur tensoriel relatif a (A—l—u) le noyau difference

E0”(x, x’) = E(1’)—(x, x')—E(P)+(x, x’). (3—3)
11 est solution des e’quations homogénes:

(Ax+#)E(")(x, 96’) = 0, (s+#)E“”(x, 36') = 0 (3—4)
et a son support, pour chaque x', dans C+(x’) U (f—(x’), (A—I—u) étant auto-
adjoint, son propagateur est antisyme'trique par rapport au couple (x, x’). Tout
tenseur-distribution T solution de (A+ a) T = 0 peut étre obtenu par composi-
tion de Volterra du propagateur E (1’) et d’un tenseur-distribution U a support
compact dans le passé et le futur.

Le propagateur E‘P) donne explicitement la solution du probleme de
Cauchy pour l’équation (A+p)0 = T ou T est I‘m tenseur ordinaire. Si 0
est l’hypersurface orientée dans l’espace portant les données initiales, on peut
écrire: ,

T°1---“p(x) = f{T11...lp(y)VflzEg_)uap, li-"livcx’ y)—
0'

—E£f.’..aji---‘3’(x, y)viTa;...z;,(y>} dot (3-5)
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011 do' est l’élément d’aire de a, n‘" 16 vecteur unitaire normal orienté vers le
futur et 011 do” = n“'a'o‘, 1e flux qui figure au second membre se définissant
aisément.

c) (A—l—u) opére sur les tenseurs antisymétriques. Par antisymétrisation de
E(P), on obtient 1e propagateur antisymétrique G0” relatif a (A—f—u). Du thé-
oréme d’unicité et des formules (1—5), on déduit:

5,,G<v+1) = d, G00 (p = 0,1..,n—1) (3—6)
(A—l—p) opere aussi sur les 2-tenseurs symétriques. Par symétrisation de Em,
on obtient 1e propagateur syme’trique K. On établit que par contraction en
x par le tenseur métrique: (1—6)

WK... = 2g.,,.,G<°)(x, x'). (3—7)
Si le tenseur de Ricci de V,I est (2 dérive’e covariante nulle, on déduit du théo-

reme d’unicité et des formules (1—6)
6,,K = <2),G<1>. (3—8)

Toutes ces relations sont utiles pour la quantification.

II. CHAMPS TENSORIELS

4. Commutateur pour le champ électromagnétique libre
a) Dans l’espace-temps V4 muni d’une métrique arbitraire donnée, consi-

dérons un champ électromagnétique libre F correspondant a un potentiel—vec—
teur a avec F = da. Dans le cas d’un photon de masse non nulle nous avons
pour a l’équation:

6dr: = 520: (32 = const gé 0) (4—1)

82 étant 75 0; (4—1) entraine 60: = 0 et (4—1) est equivalent au systeme:

(A— 82y: = 0 (4—2)
et

5a = 0 (4—3)
puisque A = dé—l—éd. Supposons que a soit une forme line’aire a valeurs dans
un espace d’opérateurs d’un espace de Hilbert. Nous cherchons a construire
un commutateur [a(x), a(x’)]_ (x, x’e V4), c’est-a—dire une bi-l-forme distribu-
tion a valeurs scalaires qui, pour chaque x’, a son support dans (5+(x')UC”(x’)
est antisymétrique par rapport au couple (x, x') et vérifie le systéme (4—2),
(4—3). La formule:

[11(35): “(x-[IL = g {G(l) (x, x')— —% dxdxl GUD} (4_4)

on G0), (17(0) sont des propagateurs relatifs a (A— 52), nous fournit un commu-
tateur rigoureusement compatible avec (4—2), (4—3) (en vertu des relations
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(3—6)) et qui se réduit en relativité restreinte au commutateur classique. On
en déduit:

[F(x), FM]- = $44,, <1>(x, x').
b) En l’absence de terme de masse (62 = 0) (4—1) est invariante par

transformation de jauge. Une telle transformation permet d’astreindre a
a la condition de Lorentz 6a = 0. Classiquement, l’équation pour le potentiel
a s’écrit:

Aa = 0 (4—5)
qui entraine

’ A60: = 0 (4—6)
et nous adoptons comme commutateur pour le potentiel:

h
[(106) a(x’)]_ = 7 G“’(x, X') (4-7)

011 G”) est relatif a A. 11 en résulte d’aprés (3—6):

[a<x),6xla(x')1_=gamma. (+8)
Le commutateur (4—7) est compatible avec (4—5), mais non avec la

condition de Lorentz; (4—7) entraine pour Fun commutateur rigoureusement
compatible avec les equations de Maxwell usuelles. La situation est strictement
semblable a la situation bien connue qui se présente dans le cas plat et peut
étre de’nouée de la meme facon.

5. Commutateur pour le champ gravitationnel varié
a) Sur un espace-temps V4 de métrique donne’e g satisfaisant aux équations

d’Einstez'n .du vide Rafi = lgafl, considérons une variation arbitraire hag = 6ga3
du tenseur métrique. La variation correspondante du tenseur de Ricci est
donnée par:

2 6Rafi = Ahafi+{(Dk(whit?

011 You a posé:

hag = hw— gm (g“"hz,.) W) = vghrs.
Par variation de l’identité d’Einstein, on a l’identité:

V“ (m3 — % gafig’l"5Rlu) = AkfiQ).
Cela posé, considérons 1e champ décrit par le tenseur [5 astreint aux equations

6Ra‘3 = ”hafi ([1 = COHSt). (5—1)
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La théorie d’un tel champ peut étre développée d’une maniere strictement
parallele a celle du champ électromagnétique, les équations homologues
étant munies des mémes numéros. D’aprés l’identité qui la precede, (5—1)
entraine (p—Z)kfi@) = O. Si 82 = 2(p—Il) 75 0 (presence d’un terme de masse)
(5—1) est équivalent au systeme

(A—ZMQ = 0, (5—2)
M) = 0. (5—3)

La formule

newest = Iii—{Km x')-g<x)g_(x')c<°)(x, x') — i Dx®yc<n<x,x')}
(5-4)

011 K, G“), Gm sont les propagateurs relatifs a (A—Zp), nous fournit un
commutateur rigoureusement compatible avec (5—2) et (5-3) (en vertu des
relations (3—7), (3—8)) et se réduisant, dans le cas 011 g est une métrique
euclidienne, au commutateur obtenu directement par la transformation de
Fourier.

b) En I ’absence de terme de masse (82 = 0), (5—1) (011 y = A) est invariante
par les transformations de jauge gravitationnelles flag—HZ) A, 011 A est un
vecteur arbitraire. Par une telle transformation on peut astreindre h a la
“condition de Lorentz” (5—3). L’équation de champ pour fl est:

(A—ZA) fl = 0 (5—5)
qui entraine

(A—22)k(fl) = 0 (5—6)
et nous avons comme commutateur

I h I I I[h 00,12 (x )1- = —1. {K(x, x )—_g(x)§(x W” (x, x )} (5-7)

01'1 les propagateurs sont associe's a (A—2/l). De (5—7) i1 résulte:

[k(h(X)), k(/_I(X'))]— = 0-
Nous nous trouvons dans une situation identique 2‘1 celle du cas électro-

magnétique en l’absence de terme de masse, situation qui peut étre dénouée de
la méme maniere. Pour assurer la compatibilité du substratum gravitationnel
macroscopique décrit par g avec le champ microscopique If, i1 suffit de supposer
que la valeur moyenne de _h est nulle.

6. Lagrangiens

Les equations de champ adoptées pour le cas électromagnétique et pour
le cas gravitationnel dérivent de lagrangiens que je me borne a indiquer et
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qui permettent l’introduction des éléments usuels des théories de champ.
Pour 1e cas électromagnétique avec terme de masse, (4—1) dérive de:

,9?) = — % (dot, daH— 872 (a, a).

En l’absence de terme de masse, (4—5) dérive de:

£1 = — i (da, da)— é (50m.
Dans le cas gravitationnel varié, posons:

,9 = — ivwfiVyh’°3+V”h’“fi Vah'fiy+ fivrg’vyy
01‘1 Eest le tenseur associé 51 ll. L’équation (5—1) dérive de:

39) = 3+ (1+ 3;) (h’afih’ag— gh'z) .
En l’absence de terme de masse, (5—5) dérive de:

£2 = ,Q—kaka—l—l (h’afiht’w— éh’z).

III. CHAMPS SPINORIELS

7. Notion de spineur en relativité générale
a) Sur un espace-temps de Minkowski rapporté :21 des repéres orthonorme’s

de’signons par ya = (y,,“,,) les matrices de Diradz) qui, avec l’unité e, engen-
drent une algébre de Clifford:

Ways+757a = —2gafie (72" = g‘myg). (7—1)
Soit L(4)1e groupe de Lorentz homogéne complet. A ce groupe correspond

le groupe Spin (4), revétement d’ordre 2 de L(4) et l’homomorphisme—pro-
jection 17 tel que si

A = (A2) = p/l (AeL(4),AeSpin (4))
on ait:

AVa/l‘l = A137», (7-2)
p définit un isomorphisme p’ entre algebres de Lie que l’on peut expliciter de
la maniere suivante: si )1 est un élément de l’algebre de L(4) défini par un
tenseur antisymétrique plafi et si 1 est l’élément correspondant de l’algébre de
Spin (4)

1 = — iuaayayfl- (7‘3)

(2) Aux indices grecs on donnera le nom d’indioes tensoriels, aux indices latins celui
d’indices spinoriels.
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b) L’espace-temps V4 de la relativité générale est supposé rapporté exclu-
sivement aux repéres orthonormés, éléments d’un fibré principal 6074) de groupe
structural L(4). Si A e L(4), sa signature temporelle 94 vaut 21:1 selon 1e signe
de A03 . La variété V4 est supposée munie d’une orientation temporelle p définie
relativement aux repéres ye 6074) par une composante 9y: i1 telle que si
y' = yA, on ait 9,, = nA.

On suppose V4 telle que, de (3074), on puisse déduire par extension un
fibré principal cS(V4) de groupe structural Spin (4) (cc n’est pas toujours 1e
cas). Un point 2 de c5 (V4) est dit un repére spinoriel. Un l-spineur contravariant
1p est une application C—>y)(€) de e5 (V4) dans un espace M de matrices 1X4
telle que:

MIA—1) = 111M) (A = (AZ')ESpin (4))- (7—4)
En composantes, (7—4) peut s’écrire:

1,)" = Afi'ip“. _
Un 1-spineur covariant (p de V4 est une application z—+<p(§) de 6(V4) dans
l’espace M* dual de M telle que:

@(CA‘I) = (MD/1‘1 (11‘1 = (113') e Spin(4))- (7—5)
En composantes, (7—5) s’écrit:

(Pb’ = [134% '

Entre 1e module des l-spineurs contravariants et le module dual des l-spi—
neurs covariants, on a la forme de dualité:

(w) = WP“- (7—6)
Dans le cas oil l’intersection de leurs supports sur V4 est compacte, nous

introduisons l’intégrale

<<rw > = f Gar/0n- (7—7)
V.

La notion de spineur—distribution se définit dem aniére analogue a celle
du tenseur—distribution. J’appelle bispineur de Dirac 1e bi-l-spineur distri-
bution E(*)(x,x’) contravariant en x, covariant en x' defini par:

< Z‘”(x,x’),w(x’) > = Wx), < Z‘”<x,x'),<p(x’) > = ax)-
c) On démontre aisément qu’il existe
10 une application antilinéaire 521, l’adjonction a'e Dirac, du module des

l-spmeurs contravariants sur le module des l-spineurs covariants

fl: V) _’ E = 91743,
011, Q est l’orientation temporelle de V4, f} une matrice fixe convenable et 01‘).
~ désigne 1e passage 5, l’adjointe ordinaire.
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2° une application antilinéaire G (avec 82 = Id.), 1a conjugaison de
charge, du module des l-spineurs contravariants sur lui-méme

8: 1;) —> 81/) = (11/)*
Oil on désigne une matrice fixe convenable et* le passage aux complexes conju
gués.

(1) Par produit tensoriel de la representation triviale et de la representa-
tion de Spin (4) introduites pour de'finir les l-spineurs, on obtient la defini-
tion des spineurs de type (p, q), p fois covariants et (1 fois contravariants.
L’adjonction de Dirac et la conjugaison de charge s’e’tendent de maniere,
naturelle aux spineurs de type quelconque. Aux representations précédentes,
on peut adjoindre 1a representation définie a partir de l’homomorphsime cano-
nique de Spin (4) sur L(4). On obtient ainsi par produit tensoriel des ten-
seurs—spineurs. A l’aide de cette notion on peut interpreter 1a relation (7—2):
elle exprime que les matrices ya = (92(5) définissent un vecteur-spineur y,
vectoriel et spinoriel de type (1,1).

Une connexion spinorielle est une connexion infinitésimale sur le fibré
principal c5(V4). A la connexion riemannienne a) = (coals) de V4 est canoni-
quement associée 1a connexion spinorielle 0' définie par la l-forme:

0' = — 11: mafia/“3J5 (7-8)
a valeurs dans l’algébre de Lie de Spin (4). Le vecteur-spineur 32 est a d‘erivée
covariante nulle dans cette connexion.
8. Champ de Dirac

a) Si 1;) est un l-spineur contravariant, nous posons:

Aw = yayfiVaV/sw = —V9Vew +§ Rw- (84)
oil les derivations covariantes sont évaluées dans la connexion 0' et 01] R est
la courbure riemannienne scalaire de V4. De méme si (p est un 1-spineur cova-
riant:

Asv = VaVzaWfiy“ = ~V9V9<P+fi q- (8-2)
Si l’intersection des supports de q; et 1}) est compacte:

<A<p,1,v> =<tp,A1/)>.
J’appelle noyaux e’le’mentaires de l’opérateur de Klein-Gordon (A—ez)

(e2 = const) les deux bi-l—spineurs distributions satisfaisant:
1

(Ax—22)G(%)* (x, x') =Z(*)(x,x') (8—3)
et qui, pour chaque x’, ont leurs supports respectivement dans le futur ou

l l 1
dans le passé de x’. La difference dz) = G(?)_—G(?)+ est 16 propagateur
spinoriel relatif a (A—ez).
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b) Introduisons sur les 1-spineurs contravariants les opérateurs de Dirac
de premier ordre:

Lw = away—w, L’w = WWW 81/)
et sur les l-spineurs covariants les deux opérateurs

L9» = —(Vaw“+e¢), up: —(Vmfi—s<p).
On a immédiatement:

LL’ = L’L = (A—s2), if; = if: (A—ez).
De plus si l’intersection des supports de (p et «,0 est compacte:

<<;0,L1p> = <Z<p,w>, <<p,L'1,U> = <f/(p,1p>.
Sur la variété V4 de la relativité générale, 1e champ de Dirac (spin 4%) est

décrit par un 1-spineur contravariant 1p astreint a l’équation de champ
L1,) = 0. (8—4)

Son adjoint de Dirac 1? vérifie:

in = 0. (8—5)
La formule

we), «$001+ = $89M, x') (8—6)
01‘1 1e propagateur spinoriel Se) relatif a L est donné par:

s(%)(x, x’) = L;G(%) (x, x') (8—7)
nous fournit un anticommutateur rigoureusement compatible avec (8—4),
(8—5), invariant par conjugaison de charge et se réduisant en relativité
restreinte a l’anticommutateur usuel de la théorie du champ spinoriel libre.

0) Des résultas analogues peuvent étre établis pour la théorie de tout
champ physique libre en relativité générale. J’ai pu former par exemple,
une generalisation de l’anticommutateur de Umezawa pour le champ de
Rarita—Schwinger (spin 3/2) ct j’ai développé dans le méme cadre une
généralisation de la théorie de Pétiau—Duflin—Kemmer [3].

IV. REMARQUES SUR LES OPERATEURS DE
CREATION-ANNIHILATION

9. Le noyau 61
Pour simplifier les notations, je me limite ici au cas d’un champ scalaire

réel astreint a l’équation de Klein—Gordon

(A— 82)u = 0 (9-1)
A l’opérateur (A— 82) supposons qu’on puisse associer un noyau réel G1 (x, x’),
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symétrique, solution de l’e'quation homogene (9—1) et vérifiant pour chaque
hypersurface spatiale o' la relation de composition

G<x, x') = f {01(x, ”were: y>—Gl (x: y) amx, y)}dai (9—2)
011 G est le propagateur relatif a (A— 82). Dans un espace-temps plat, D et
D1 sont liés par (9—2); cette relation, jointe a une condition de norme posi-
tive, peux méme caractériser D1.

Pour construire 01, i1 peut étre commode de procéder de la maniere sui-
vante. Dans un espace hyperbolique (ale dimension impaire n = 5, on peut
déterminer un noyau de la forme UQ'? (notations de Synge et de Guelfand et
de Chilov[l]) symétrique, solution de l’équation homogene et dont le support
est dans l’espace. Ce noyau Glest invariant par isométrie et, sous des conditions
asymptotiques convenables, satisfait (9—2). On passe ensuite par descente
de la dimension 5 a la dimension 4. La théorie mathématique de G1 demande
encore a étre approfondie.

10. Les projecteurs (-9 et 9
D’apres la formule de résolution du probléme de Cauchy, u vérifie:

u(x) = f {u (y) 52G (x, y)—G(x, y) muondoé. (NH)
A u associons 1a solution u1 de (9—1) définie par la relation de composition

u1(x) = f {u(y)aiG1<x,y)—Gl(x, y)aiu(y)}do§. (10—2)
Nous posons:

2G® = G—iGl, 2Ge = G+iG1,
et

2u€B = u—iul, 2ue = u—l—iul.

La formule fondamentale (9—2) entraine les résultats suivants:
1o 6-) et @ sont des projecteurs

(ueB)EB = ue, (ue)e = u9 (10-3)
avec

(1499)9 = (ue)€9 = 0. (10—4)

2° La norme {u, u} peut étre définie par:

{u, u} = f (u(y)aiu1(y)—u1<y)aiu(y>)da; (10—5)
avec

{ue ue} = {ue we} = e {u, u}.
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3° Du commutateur

[1100. mm= tic-xx, xg
i1 résulte:

[146900, “69(q— = [14900, u9(x’)]_ = 0 (10—6)
et

[14%). ue(x31_=—’f—G®(x, x3, [ue(x),u$<x')1=%ee(x,x0. (1M)
Les projecteurs (B et 6) correspondent exactement au partage en parties de
fréquences positives ou negatives du cas plat. Ainsi 1a théorie usuelle des
opérations de creation-annihilation pent étre dériVée de la seule formule (9—2).
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WAVES, NEWTONIAN FIELDS, AND COORDINATE FUNCTIONS“
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ABSTRACT—Three topics are discussed concerning fields in the neighborhood of infinity
in asymptotically flat spaces: 1) the wave-front theorem which shows that the flux of energy
decreases faster than Mr” on any 2‘ = const. surface of an asymptotimlly rectangular coor-
dinate system in an asymptotically flat space; 2) the identification of total energy-momen-
tum Pfl and the coordinate invariant PF/r asymptotic behaviour of specific “Newtonian”
components of the metric; 3) the definition of “gauge scalar” wave amplitudes which de-
scribe graviation radiation escaping to infinity, (or short waves in any weak field region).
In addition there is brief mention of quantum theory and some indications that space-like
surfaces might exist in a quantized geometry.

THE title of this lecture describes three significantly diflerent aspects of the
metric field: Newtonian (Coulomb-like) gravitational fields which are commonly
measured; gravitational waves which have not yet been observed; and co-
ordinate functions Whose measurement is without interest until correlated
with other observations. In the important limiting case of weak fields, there
is a unique natural way to split the metric into wave, Newtonian and coordi-
nate components. We shall be primarily concerned here with situations where
weak fields in some part of space allow this natural decomposition to be
used there. Within strong field regions the decomposition can be performed
in many well defined but arbitrary ways, any of which will then provide a means
of using physical intuition and electromagnetic analogies as a guide in
studying the Einstein equations.

I will discuss three questions from this point of view. The first is the
“wave front theorem” which states that at any fixed time there are no waves
at spatial infinity, only Newtonian fields and (if desired) coordinate waves.
The physical reason why the Einstein equations require this behaviour in
asymptotically flat space is that a wave extending to infinity (amplitude l/r
on a t= const. surface) Would have infinite energy, preventing an asympto-
tically flat behaviour of the Newtonian components. This introduces, then,
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S. Deser and supported in part by the U. S. National Science Foundation and the U. S.
Air Force.
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the second question I shall discuss, namely identifying as total energy and
momentum the coeflicients of the l/r terms in the Newtonian fields beyond
the wave-front. In particular we will see that only in exceptional circumstances
is g00 related to the energy; an asymptotically coordinate independent Newton-
ian field is obtained from the spatial components of the metric which appear
in the standard (Einstein—von Freud, Landau—Lifshitz, Papapetrou—Gupta)
surface integrals for total energy. We pick out four specific “compo-
nents” of the metric whose leading asymptotic behaviour is P”/r. The energy—
momentum P" can be read off from these Newtonian fields under less restric-
tive coordinate conditions than are required for the convergence (i.e.
surface independence in the limit of infinitely large surfaces) of the surface
integrals. The third topic I consider is gravitational radiation, and the main
point is to see that since waves get weak as they escape to infinity, the emit-
ted radiation can be described by amplitudes which are scalars except under
homogeneous Lorentz transformations.

The methods I use to treat each of the topics just mentioned are an out-
growth of the cannonical (Hamiltonian) forms of general relativity developed
by Arnowitt, Deser, and myself [1]. These cannonical forms also serve to
illustrate how separations of the gravitational field into waves, Newtonian
fields, and coordinates can be arranged. A cannonical form means a rewrite
of the Einstein equations which has the form

. 6H . 6H
— 7 — ‘ 1‘1 1’ ——()q ()

These Hamiltonian equations contain no constraint equations, f(p, q) = 0.
Those components of the metric which, by solving the Einstein constraint
equations, can be expressed as functionals of other components and thus
eliminated in obtaining Eqs (1), we call Newtonian fields. The Hamilton
equations also differ from the Einstein equations in having a unique solution
for given initial conditions, and thus admit no effective gauge (coordinate)
transformations. Some specific choice of coordinate functions achieves this.
We regard the resulting coordinate functions as aspects (components) of
the gravitational field, since their values at a given point will depend, via the
coordinate conditions, on the geometry of space-time. The variables which
remain after the Newtonian fields have been eliminated and the coordinates
fixed, we call wave modes of the field, since they appear in the statement of
the dynamics, Eqs (1).

The questions of wave-front, energy, and radiation will be treated using
techniques which were used to obtain a canonical form for general relativity,
however I shall actually make use of this canonical form only in some
concluding remarks about quantization. '
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THE WAVE FRONT
As is well known, the state of the gravitational field on a space-like hyper-

surface is determined by the spatial components of the metric gij (i, j
= l, 2, 3) and the second fundamental form Ki,- of this hypersurface. Once
these data are given, a unique geometry satisfying the Einstein equations is
determined. Thus it must be possible to see waves, or a wave front, by inspect-
ing these quantities. The statement of the wave front theorem then is: In
an asymptotically flat space where

guv—nyv = 0(1/1‘) (2)
holds on each fixed hypersurface x0 = t, an appropriate choice of coordinates
maintaining this asymptotic condition gives also, for each t,

3

£17,]: 2 Oil/r3 ”)53 (3)Kg = 0(1/rE +5).
The conclusion of this theorem cannot be true in every coordinate system
satisfying Eq. (2), as is shown by considering a coordinate transformation.
which reduces asymptotically to 3: = x+r‘1e"". But a true wave of the
asymptotic form r—1 ei(""_‘°’) is clearly excluded by this theorem, which states
that any such behaviour can be eliminated by a coordinate transformation.
Note also that this theorem makes it unreasonable to expect an exact solution
showing a steady state motion for a two-body system. For the only plausible
way to avoid radiative decay of the system is constantly to feed in energy in
the form of radiation, and this steady flux of radiation (in, out, or both) is
precisely what the theorem excludes.

The mathematical proof of the wave-front theorem parallels exactly the
physical arguments. We look for an Einstein constraint equation which will
relate the asymptotic behaviour of a Newtonian component to the energy
in gravitational or other radiation. This is, of course, the T3 equation, or
more precisely the initial value equation“) which reads

3R =K2—Ki‘j 2 TM 2 n”T,,,n" (4)
where n" is the unit normal to the hypersurface. To simplify the presentation
I first assume that coordinates can be introduced which satisfy

g.” = 0, K E K, = 0. (5)
Then the pertinent Einstein equation reads

—V2hii E _hii,jj

= T°°+ § (h.-,,,.)2+ i (hkk,.)2+(Ki,-)2+
1 1+ {; (hm.)2,,-+ 3 (hmihmj), .} ,j +

+ cubic terms (6)
(1) See for instance reference [2] Eq. (225) or reference [3].
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where its, 2 gig-#0,}. This equation we View as a Poisson equation, ——VZQ5
= 4:9, with hi,- on the left viewed as a Newtonian potential, and the right-
hand side as an etiectixe energy density. The central physical idea of the
argument is that any wave train of infinite energy will prevent the boundary

condition h,i = 0(1 /r) from being satisfied. Mathematically, the formula

r=oo

gbo(r)E4—ITc f @(x)d9=f%[fr9(7c)d3§]dr (7)

for the monopole (spherically symmetric) part Q, of a potential resulting
from a source 9 in the Poisson equation shows that (15 = 0(1/r) requires the

indefinite integral fedsx be bounded. Thus the right hand side of Eq. (6) must
0

have a finite integral. For the divergence term { },J- this is clear, since we have

f aj{h_.c)_h__}d3x = f {h,_a_h__}dSJ-. (8)

This surface integral is finite as our asymptotic flatness condition (2) is to

be understood as requiring not only hij, but all its derivatives as well, to be

0(1/r). By this condition, the cubic terms, which are of the form h(()h)2 and

h(K__)2, can at most have a logarithmically divergent integralf r—3 d3x, but
only if some component of Ki}- or him did not vanish faster than l/r at infinity.

But then the leading positive definite, quadratic terms would dominate to

give a linearly divergent integral of the right member of Eq. (6). Thus the

cubic terms have a finite integral, so the remaining quadratic terms,

T00+ % (hij,k)2 + :1; (hkk,i)2+ (Kij)2

must also. Because of the positive definite character of these terms, the con-
clusion (3) of the wave front theorem follows, and also, by the finiteness of

fT°°d3x, a similar l/r—Z“ asymptotic behaviour of any other waves whose
amplitudes enter T00 in a positive definite quadratic form.

To complete the proof we need only eliminate the assumption that
Eqs (5) can be satisfied. This is done by relaxing the coordinate conditions

(5) to
g,” = 0(1/3“), K = 0(1/3‘“). (9)

The existence of coordinates satisfying Eqs (9) is not an assumption; Arno-
witt [4] in another lecture here will discuss how they can be constructed.
Since Eqs (9) are quite moderate demands on the asymptotic behaviour of
certain metric components, one can expect that a simple semi-linear approach
to the coordinate transformation law, such as we have just now applied to
a constraint, Eq. (6), Would show that Eqs (9) can be satisfied. However,
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the K = 0 condition cannot be satisfied in an arbitrary asymptotically flat
space, as has previously been noted [5], and recourse to the Einstein equations
is necessary to show that this difficulty does not occur in physical space-
times.

The constraint equation (4) without coordinate conditions is
—V2hT = T00+ % (hij,k)2+ % (hkk,i)2+ (Ki192—

—[K2+l; (hm,k)2+hi,-,,-h,,,,,.,..]+

+ {—hki,khij+ % hkkhijj +

+ i (hmm)?,- + i (hmihmj),,.},,-+
+cubic terms (10)

where hT is defined by
_ 1
_ W

The conclusions of the wave-front theorem follow in Eq. (10) from a require-
ment that W = 0(l/r), discussed below, and the coordinate conditions (9).
For the divergence terms { },J- in Eq. (10) have a finite integral as before; the
negative terms in [] have a finite integral by Eqs (9); and the indefinite term

hT (hiuj _hij,ij) - (11)

him- hm“ in [] would, unless hm,i = 0(l/r3?+5) always be dominated by the
positive term (hum 2. The finiteness of the integral of the right side of Eq. (10),
then, does not arise by cancellations, so each term separately has a finite in-
tegral as was to be shown. The one point which remains, in establishing the
wave-front theorem, is to show that hT = 0(1/r) is a consequence of hi]-
: 0(1/r). This is the content of Lemma 2 in the next section.

Papapetrou (2’ [6] has obtained results related to the wave-front theorem
given here.(3) He assumes that all matter and strong fields are restricted for
all time to a region r < R thus excluding, he notes, scattering situations. He
then concludes on the basis of a perturbation argument that the metric in
the region r > R becomes time independent as t—>;|;oo, i.e. that any radia-
tion present is restricted to a pulse of effectively finite duration in time or
space. That radiation can exist only in finite energy pulses in asymptotically

(2) Conclusions similar to Papapetrou’s were also obtained by A. Peres and N. R0-
8

sen, ref. [7]. An argument which shows that Kij = 0 (l/ri+e)(as atime average of weak
fields) can be found in ref. [5] Eq. (76) and in ref. [8], p. 367.

(3) The proof given here is a slight improvement over the argument given in ref. [9]
and ref. [10] Eq. (2.7), which assumed coordinate conditions similar to Eq. (5).
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flat spaces is not yet established. The diflicult case is a source region which at

t = 0 begins to emit radiation, and emits at a finite rate ever after; the source
region must then give a more and more negative contribution to the total
energy to compensate for the ever-increasing amount of radiation. The wave
front theorem does not exclude this situation, and Papapetrou’s work is not
relevant since the unbounded radiation would eventually lead to strong fields
at any fixed distance R from the source. (In this connection, the open question

[11] of the positive definite character of the total energy of a gravitational

system is clearly relevant.) The important technical differences between the

methods of proof used here and those used by Papapetrou are (A) by avoiding

the de Donder coordinate condition, we obtain a Poisson equation (10) with-

out recourse to time averaging and (B) in place of a perturbation series
(where one must assume that a linearly divergent integral in one order is not
cancelled by a sum of linearly divergent integrals from all higher orders) we
need only the fact that the “cubic terms” in Eq. (10), ie. the difference between
the full equation (4) and the terms written, has a finite integral. For this any
non-singular behaviour of the metric in any bounded region is allowed, while
the asymptotic behaviour can be studied in as much detail as desired if one has
used, in obtaining Eq. (10), the formula

agii = 5ij—hij+hikhk13g1j'

ENERGY

The quantity hT which played the role of a Newtonian potential in our
proof of the wave-front theorem is perhaps unfamiliar. I want to show
first that it really is familiar, since it appears in all the standard flux integrals
for total energy, and secondly I want to explain why the strength of the
l/r term in hT gives precisely the total energy of the system, while the l/r
term in g00 need not be related to energy. An essential part of this argu-
ment is the fact that W is asymptotically coordinate invariant. This in-
variance is quite surprising since the definition of hT in Eq. (11) involves
non-local and non-covariant operations. Nevertheless, we will see that the
asymptotic form of hT depends only on the asymptotic form of gij, and
:not at all on the choice of asymptotically flat coordinates.

Since the right-hand side of Eq. (10) has a finite integral, it follows
that W" does not merely vanish (as demanded) at infinity, but more speci-
fically has the asymptotic form

hT ~ E/4nr (12)

where E is independent of the space coordinates. This constant E is there-
fore easily represented as a surface integral

E= f—hgdsi. (13)
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Use of Gauss’ theorem and the defining equation (11) gives a formula di-
rectly in terms of the metric

E:f_h,1iid3x=f(gij,ij'_gii,jj)d3x (14)
and Gauss’ theorem used again yields

E = f<gij,j—gfi,i)dsi' (15)

These simple calculations show then that the asymptotic form of hT can
be computed (by Eqs (12) and (15)) from that of gij; the apparent nonlo-
cality of the definition (1 1) has essentially disappeared when we discuss only
the asymptotic form of W. Our first interest in Eq. (15) however is to re—
late it to standard surface integrals for total energy. Following Landau—Lif-
shitz, the Einstein equations can be written in the form

Hfmviafi = Tell": (16)

where H"a '3 is a function of g," with the symmetries of the Riemann tensor,
thus guaranteeing that the effective stress tensor T611‘" is symmetric and con-
served, i.e. Ten”, = 0. Integration yields a surface integral formula, since
antisymmetry allows only a spatial divergence to appear

P“ a f Tena"d3x = f Hoknaflkafix
= f H""““,adSk. (17)

I will discuss later why P“ is the total energy-momentum when the inte-
grals converge; we are now anxious to reproduce Eq. (15). The shortest
formula for H““5 is that of Landau—Lifshitz:

Huavfi : guv gafl_ gills gm (18)

Here g”"=]/—_g g'”, and we will also write 32‘”: g‘”—1;"“). Let us as-
sume“) that all derivatives of the metric fall off faster than l/r beyond the
wave front, then a term y'by" goes faster than 1/r2 and does not contri-
bute to the surface integral (17). Thus this integral may be evaluated keeping
only the terms in HM” linear in 'y‘”, i.e. using

Hua vi? : nuvgafl+ guvnafi_

—11"”9‘“-3'"”nv°~ (19)
This gives the Papapetrou [12] form of the surface integrals. Evidently, since
quadratic terms play no role in the surface integral, many other forms are
also available. In particular, expressing y‘” in terms of h”: gM—n‘” and

‘4) A slightly stronger form of the wave-front theorem than was proven here shows
that it is always possible to achieve d.g__ = 0(1/r1+€) by a coordinate transformation. See
ref. [4].
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discarding the quadratic terms leads to the form (15) for E = P“. The von

Freud surface integral associated with the Einstein pseudo-tensor similarly
reduces to Eq. (15) when terms quadratic in ha, are discarded. The coordinate

independence of these surface integrals is shown [10] as easily as their equality
has been, again with the coordinate conditions (4)0. g..= 0 (l/r1+‘). I will
turn, however, to a more powerful method of approaching these problems,
which focusses on the asymptotic form, E/r, of hT rather than upon surface
integrals involving M.

The definition (1 1) of hT shows that it is constructed from hij with the

aid of the operator V—Zbidj. In spite of the fact that this operator employs
ordinary (non-covariant) derivatives and involves all space, not just asymp—
totic weak field regions, in requiring the solution of a Poisson equation,
it is an ideal tool for the study of asymptotic fields as the following impor-
tant lemmas show [9].

L e mm a 1. Let f be a non-singular function which vanishes at infinity.
Then the equation V2Q5=oidj f _=_ f,H has a unique solution <15 which vanishes
at infinity. Thus the operator V—Zdidj can be applied to functions which
vanish so slowly at infinity that the operator V'2 cannot be applied.

Lemma 2. Iff= 0(l/r"), then V*2()idJ-f= 0(l/r“) for a<3. This
second lemma shows that the behaviour of f in any bounded region has
no influence on the leading asymptotic behaviour of v-zaiaj f. For suppose
f and f agreed asymptotically, i.e. f—f: 0(l/r3), then V—Zdidjf and V—2
0,0,. )7also only differ by 0(1/r3). The non-local aspect of V—2 is therefore harm-
less when we use the operator v—zaiaj to discuss asymptotic fields which
vanish more slowly than l/r3.

Suppose we wished merely to maintain 0(1/r) boundary conditions on
h, and gma. Then (excluding homogeneous Lorentz transformations) in
a coordinate transformation x“ =E”+E", we would require 5“”: 0(1/r).
The change in hi this produces is

hij = hij+Ei,j+Ej,i+hij,ugp+0(1/r2)' (20)

Computing hij,;j—il_,-,-,jj we see that the linear terms 5% cancel, hence, do
not contribute to hT[cf Eq. (11)]. But these are the only 0(l/r) terms in
Eq. (20) arising from the coordinate transformation, for although 5“ =
0(ln r) is possible, we may assume for some frames that hm, vanishes faster
than l/r. Consequently Ive have shown that if hT is computed in such a co-
ordinate system, and hT in any coordinate system preserving 72“,: 0(l/r),
then,

if = hT+ 0(1 /r1+"’). (21)
In particular, the l/r term in hT is coordinate invariant.

A formula like (20) for goo,
'Iioo = hog—250,0+hoo,,.s#+0(1/r2). (22)
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shows that the l/r term in g00 is not coordinate independent. Thus our pre-
ference for thinking of hT as the Newtonian potential. A strong set of con-
ditions under which we can clearly identify the Newtonian potential and the
total mass at the system in its leading m/r term are that Newtonian gravita-
tional theory be valid—both the Poisson equation for <15 and Newton’s law
of motion. For Newton’s law of motion this means a slowly moving particle
in a weak gravitational field, conditions which reduce the geodesic equation
to

2 i3—,”: = éhm—hm. (23)
For the retardationless Poisson equation to be valid, we must be able to
imagine that the sources of the field can be adequately represented by a phe-
nomenological description involving only non-relativistic velocities, v/c <1.
The metric can then be required to satisfy asymptotically

(3g. ./0t<0g. .ldxi. (24)

Under these conditions, the metric will be Schwarzschild in its leading terms,

and one can calculate that ihoo and % hT agree asymptotically. Equation

(23), now without the how term, thus establishes h00 as a Newtonian m/r
potential under these conditions, and therefore hT also. But W, as we have
seen, will continue to yield the same value of m in coordinate systems which
hide the Newtonian conditions. Furthermore, the obviously Lorentz invariant
flux integrals of Eqs (17), (19) give a four-vector whose time component
P0 is, we have now seen, the total mass when velocities and time derivatives
can be neglected. This establishes P“ unambiguously as the total energy-
momentum of the system. The danger of using formulas based on gDo to
obtain the energy of a system not in a center of mass coordinate system was
first pointed out by Moller [13]. (see aso ref. [19]: Conditions under which
this is possible are given by Arnowitt [3], who also shows that it is possible,
for any asymptotically flat metric, to introduce coordinates such that slow
test particles at infinity satisfy Newton’s equation of motion.

In addition to this Newtonian argument identifying the surface integrals
(17) with energy-momentum, there are of course other conclusive arguments
based on the fact that Ten” reduces in flat space to T‘”. The classical ar-
gument notices that fTe,,°"d3x is a constant of motion which is energy-
momentum in all those cases where we know what energy-momentum means
without recourse to a theory of gravity, namely when the dynamic evolution
of the system carries it through an epoch free from gravitational fields. More
precisely, if at any time

I Z Ig..,.12d3x << I Toodsx (25)
[Ha



198 C. W. MISNER

so that gravitational contributions to the energy should be negligible by any
definition, then the constant I Tanya“): is equal to the value of f T°"d3x
at the gravitation-free time. By this method, considering familiar forms
of energy, and processes by which they may be converted into new or unfa-
miliar forms, vis viva evolved into TW. It is, however, a much more difl'icult
method than necessary in a gravitational theory. Here we should take charge,
rather than energy, as our model. At present we do not know whether there
is any non-trivial special relativistic quantum field theory which contains
a current density j" such that fj°d3x exists in a one proton state. This
fact is recognized as irrelevant to the question of whether we can define the
charge of a proton, since the surface integral f FoidSi at infinity suffices
and eliminates quantum effects as well as questions about the structure of
the proton. One should adopt the same viewpoint when faced with a situa-
tion involving intense localized gravitational fields in asymptotically flat space.
Rather than jumping in to a study of the structure and dynamics of the
intense fields, one should pretend the intense fields were hidden in a deep
fog. In the apparent absence of strong fields, then, one could apply Eq.
(16) in linearized form where Ten” =T‘” and identify the surface integrals
(17) with the total energy-momentum of the foggy region. Ignorance of the
details of T”" did not affect the argument, and in fact the equation I 7°”d3x
= f H0’4““, dSk is the first c0ndition one would impose on any phenomenologi-
cal T'” proposed as a description of the foggy region. The contrary assertion,
that one must be sure no strong fields exist in the central regions before
interpreting the surface integrals as indicated by linearized theory, means
that we cannot define the mass of a lead ball because of the possibility that
strong gravitational fields occur at 10‘33 cm in its constituent nucleons.

In a relativistic theory the conserved mass of a Newtonian particle is
replaced by the conserved energy-momentum of a relativistic object. Cor—
respondingly, there is not just one m/r Newtonian field, but four PF/r “New-
tonian” fields. We have seen in some detail how the Newtonian field hT~
~P°/4-r:r enters the standard surface integrals for energy. The other Newton-
ian fields enter the surface integrals for momentum, which can be reduced
to the form

Pi = —2 f (11), — aijrgkwsj = —2fniidsj (25)
when the absence of coordinate waves (nigh ——> 0) allows us to neglect quadra-
tic terms. Here

n“E — (3g)"(K"j—3gi) (27)
are the Dirac [l4] momenta, components of a three-dimensional tensor density
closely related to the second fundamental form Kij. Isolation of coordinate
invariant Newtonian fields from 7:“, whose transformation law is

fiij = flij‘l— (5047— 6ij50,kk)+nij.ufn+0(1/r2) (28)
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again makes use of the “asmyptotically :local” operation V‘Zaia, to project
out the linear coordinate transformation components. These techniques
can be summarized by the decomposition

fl,- =fijTT+fijT+ (f1;j+f3:) (29)
defined for any symmetric metrix field by

fm' = V_2Uik,kj_ % (V_2flm,lm),ij]

1
ijT=— 51‘1" T— _2 Tijf 2( f V f,) (30)

fl“ = V_2(fll,mm_flm,lm)a

ijTT = ij_fijT_(fi,j+fi,i)-

Thus only the “trace of the transverse part” if in 7:” is affected by linear
coordinate transformation terms, and only the “longitudinal part” hi of
hij. Just as the asymptotic form hT~ E/4nr was shown coordinate invariant,
so for the other Newtonian fields, which are the longitudinal parts ni (since
the transverse parts iii" and nijT do not contribute to f n‘dj = f nijd-d" x),
the terms P‘/r can also be shown coordinate invariant. The “transverse traceless”
parts iii" and hiJ-TT are also obviously coordinate invariant in order l/r,
but they represent waves as we shall see in the next section, and therefore
vanish rapidly beyond the wave front.

The P“/r asymptotic behaviour of the Newtonian fields can be used as
a method of computing P“ even in the presence of coordinate waves, i.e.
when rig”: 0(1/r) at constant t. Under these conditions the surface inte-
grals for P" do not generally converge, but undergo bounded oscillations
as the surface tends to infinity. The Lorentz 4-vector character of P" can
also be shown by studying the asymptotic Newtonian fields instead of the
surface integrals.

RADIATION

By gravitational radiation I mean physical gravitational waves escaping
to infinity in the course of time. I will not try to analyse the sources of such
radiation, but I will show how a gravitational disturbance behaves once
it is found in a nearly flat region. The quantity hiTJ-T turns out be a wave
amplitude which is a scalar except under homogeneous Lorentz transforma-
tions. We have already seen that this is true formally, and it is also a simple
calculation to see that the linearized Einstein equations imply that E] hi?
vanishes in source free regions. Thus, the central question is the relevance of
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these formal computations. The Lemmas about the asymptotic character
of V—26ibj do not suffice to define hiTJ-T in an interesting region, since the
wave front theorem tells us that hiTJ-T vanishes asymptotically (i.e. for r—a 00
with t=const.). Consequently we must begin by studying another way to
make the decomposition (30) well defined.

The second way of defining V—zdidj as an effectively local operator is,
curiously, to regard it as the operator k‘zkikj in momentum space; the 10-
cality is achieved by concentrating our attention on only that aspect of the
metric for which this operation is local, namely the short wavelength part.
We begin by restating locality in terms of Fourier transforms. Define hp, by

g,” = 71,1e h,» (31)
and then assume that in a region of linear dimensions L we have

h" < 1. (32)

To ignore the behaviour of a function f(x) E f(x, y, 2) outside this nearly flat
region M < L we multiply it by a function which goes from the value 1 for
Ix] < L to zero for lxl > L, e.g.

f(x) » exp {—g 1x12/L2}f(x). (33)
This modifies its Fourier transform f(k) by smoothing it with a resolution
l/L:

f(k)» f f(k—q) (2/w)"-L3 exp {—gL21q12}d3q. (34)
Thus, precisely equivalent to ignoring the behaviour off(x) or hm, for lxl > L
is ignoring fine structure in its Fourier transform on a scale Ak z L4. This
is, of course, just the basic uncertainty principle of Fourier analysis,
Aksl. Our purpose in Fourier transforming the idea of locality was to
discuss the locality of the operator V—zdibj whose Fourier transform is multi-
plication by k'zkikj. Locality of V—zbibj becomes a question of how k—zkikj
survives a smoothing process like (34). The effect of this smoothing on
k—Zkikj can be described by a factor [1+0 (1/k2L2)], and is negligible if and
only if

kL > 1, (35)
i.e. for short wavelengths. Consequently, the short wavelength part of hiTJ-T
for 1x] <L is independent of the behaviour of hi for [x] >L. Similar state-
ments hold, of course, for all other terms in the decomposition (29) since
they are constructed using only V—20ibj.

Continuing to assume that Eq. (32), and in addition

(0.h..)2<0.5.h.., (36)
hold in a given region, we see immediately that the terms in the curvature
tensor which are non-linear in h”, are, in this region, negligible in compari-
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son to linear terms. (The condition (36) requires, effectively, that h,” not
contain arbitrarily high wave number components of significant amplitude.)
[9] There are now two main questions: First, what can we say about the
behaviour of a field hm which in a limited region (only) satisfies the linearized
Einstein equations? Second, how closely will a solution of the linearized
Einstein equations approximate a solution of the Einstein equations? This
first question we answer by reducing these linearized equations to a more
familiar form. Since the equations are linear, they hold independently for
the various Fourier components of the field. Restricting ourselves to the
short wavelength components satisfying (35), we may then apply to the
spatial components of the equations the operator of Eq. (30) which forms
the “TT part”. There results

DhijTT E —hij,TToo+hij,TTiI = 0, (37)

i.e. the shortwave part of hifiT satisfies, in the given region, the simple
flat-space wave equation. Therefore we know, in terms of propagation along
light cones (coordinate light cones), what the validity of Eq. (37) in a lim-
ited region allows us to conclude about the behaviour of its solution. In
particular, knowledge of hiJ-TT and ahiJ-TT/Bt at one time determines the so-
lution uniquely in a cone based on that hypersurface, or a pulse seen entering
the region on one side can be followed until it leaves the region, or inter—
ference between beams of shortwave hiTJ-T entering the region can be discus—
sed, etc. Other shortwave parts of the locally linearized Einstein equations
can be similarly discussed [9]. They show 71”" = %dhij"/¢)t and that the
Newtonian fields hT and 3‘ have no shortwave components, i.e. the New-
tonian fields are slowly varying throughout the nearly flat region. The short—
wave parts of hi and s are arbitrary, but determine the shortwave parts of ho”.

Because shortwave Newtonian fields are killed by the source-free Einstein
equations, one readily computes [9] that a knowledge of shortwave hij"
is equivalent to a knowledge of the shortwave part of Rmfi.

For the second question above, we will estimate the difference between
a solution of the linearized equations and of the Einstein equations by think-
ing of the quadratic terms as a source in a linear equation satisfied by
the difference of the solutions. For instance, the constraint equation (10)
reads VZhT= (()h)2—l—62hh~k2h2 and, for the shortwave part of hT (where
V‘2 is a local operation) gives hTm h2 or by Eq. (32) then, hT< h. That
is, the shortwave part of hT produced by quadratic terms in the Einstein
equations is negligible in comparison to typical components of hp. The
same is true for the other Newtonian fields az‘. However ha" satisfies
a dynamic equation, Dh5T~02h2 and errors accumulate when the source
is resonant. For wave-number k, assuming a resonant source 62h2m|k2hzleik2
we see from the equation ETT—l—kzh" = lkzhzlel‘k that this source produces
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a contribution hTkt/zz. Thus, the time t or distance [mt over which the
linear solution is accurate is restricted by

h"(kl)<1. (38)
By Eq. (32), then, the number of wavelengths N=kl for which a solution
of the linear equation (37) remains accurate is very large, but because short-
waves are our principle interest (35), the solution need not be usable over
the whole range L of weak fields. The available range of many wavelengths
is, however, sufficient to discuss characteristic wave phenomena such as
group velocity or interference, or to discuss detection by low density ab-
sorbers.

Let us now establish that hij" transforms as a scalar when homogeneous
Lorentz transformations are excluded. The class of coordinate transforma—
tions to be considered is characterized by

E“,.< 1 (39)
when the transformation is written x"=§"+£". In addition to excluding
homogeneous Lorentz transformations, Eq. (39) is also necessary in order
to preserve the coordinate conditions (32) which have been an essential part
of our treatment of weak field regions. By Eqs (39) and (32) we can neglect
quadratic terms h(b£) and (692 in the transformation law which is then

2ij = hij+§i,j+£j,i- (40)
The two sides of this equation are evaluated at the same point, so no trans-
port term appears. (By contrast, Eqs (29) and (28) compare the same coordi-
nate values in each system, and we had to show then that the transport term
was small.) Since derivatives in the two coordinate systems differ negli-
gibly, by 0—,, = (6;+§V,,,)bv we can form the shortwave TT part of each side
of Eq. (40) using the operator v—zaia, appropriate to each coordinate
system and find

U “W:
hijrr' = h..rr (41)

as was to be shown. The shortwave parts of rcij", W, and Tti are similarly
scalars.

The most important application of the preceding results occurs when
the nearly flat region in question is a neighborhood of infinity in an asymp-
totically flat space. Then the linearizing conditions (32) and (36) will be valid
for sufficiently large distances and from a central region which might include
strong fields. The rearrangement of the linearized equations into a wave
equation (37) is valid for short waves, in this case for all k satisfying

kr > 1. (42)
At sufficiently large distances, then, the propagation of arbitrarily long waves
is described by the wave equation (37). Similarly, the “shortwave” part of
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hi," may include waves up to any desired wave length, and it is still, for
sufficiently large r, a scalar against coordinate transformations with 5",,
= 0(l/r). The Riemann tensor computed from hi? is of Petrov type N
(or [4])[15] for purely outgoing waves [9], or more generally whenever the
propagation 4—vectors of all Fourier components of hij" are parallel.

The flux of energy in the form of gravitational waves escaping to infinity
can be the Poynting flux [9]

nravio : 7.clmTT (2kg TT,m_hlm TT,i

= amrli m . (43)

The total energy flux in all forms can be measured by
7,0,“ = —27cij,j. (44)

The equalities here hold only in the sense of a space-time average over the
longest wave lengths and periods which it is desired to include, but this
is no restriction since any absorbing medium in which a wave would damp
out in a fraction of a wave length or period would be perfectly reflecting.

QUANTIZATION
In strong fields, the Newtonian and wave components of the metric no long-

er possess the coordinate invariance which made them natural quantities for
asymptotic or weak field situations. By use of coordinate conditions, however,
various unambiguous definitions can be given for hiJ-TT, etc. This procedure
can be used to put the Einstein equations in the canonical form [1] of Eqs (1).
Although the method of approach is different, the resulting Hamiltonian
formalism appears to be essentially equivalent to that given previously by
Dirac [16].“) It has the advantage, however, of having led to explicit sets of can-
onical variables so that an iteration expansion is needed only to construct the
Hamiltonian, but not for all Poisson brackets. For instance, if nT = 0 = h,
are imposed as coordinate conditions, then hiTJ-T and film become canonically
conjugate variables.

To formulate reasonably a quantum theory on the basis of this canonical
formalism would require that the reduction to canonical form be repeated
with the factor orderings of all operators specified. This has not been done,
however a “cheap quantization” is immediately possible which allows some
calculations to be performed in low orders of perturbation theory without
specifying yet how other problems might be formulated. In this approach one

(5) The most complete discussion of the relationship between these two methods
has been given by J. L. Anderson (to be published); some remarks can be found in
ref. [17]. In. ref. [20] one finds the canonical variables and coordinate conditions
introduced by Arnowitt,Deser and Misner used in a theory emploing Dirac’s general-
ized Hamiltonian formalism.
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adopts the canonical commutation rules for kg" and nil" on a t= const.
surface. This allows a representation (at that one time)

hi," = (279':— f d3k (219—1— {as(k)efj(k)e"‘"‘+h.c.}, (45)

and correspondingly for nu", where the operators a,(k) satisfy

[a.(k). a:(q)1 = a..63(k—q) (46)
and the remaining familiar commutation rules for annihilation and creation
operators. The polarization tensors might be taken as

1 ii 0‘
e*—— ii —1 0 (47)

0 0 0

for k in the z-direction. Baierlein [18] has used this method for a look at the
question of the existence of space-like surface in quantized relativity. One
first notes that a related question can be formulated, namely, is t= const.
a space-like surface in virtue of the coordinate conditions employed in this
quantization! Or more specifically, with gij the functional of gij" and 11‘7"
given by a canonical formalism, and these operators defined by accepting the
standard representation of the commutation rules (46), is vigil-221' a positive
definite operator in Hilbert space for each non-zero c-number vi? Although
the linear terms in giJ have an indefinite structure (47), Baierlein finds that
the form of the quadratic terms suggests a positive definite character. In par-
ticular the classical expression for gij in terms of the canonical variables used
by Baierlein, through quadratic order, is a positive definite matrix for all
values of the canonical variables.
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DISCUSSION

J. L. ANDERSON:
The one thing that bothers me slightly is that these gTT’s are highly non-

local, and while you always seem to work way out at spatial infinity, they
must somehow carry all the information about the “glop” that‘s going on inside.

C. W. MISNER:

If you don’t look at the details of the gTT’s; if you are only interested in
the leading asymptotic order——1/r, say (or beyond the wave front—llrz)
then that behaviour, as long as it’s not falling off faster than 1/r3, is indepen-
dent of the interior, in spite of the non-locality. This is the crucial theorem,
that the operator which forms gTTij out of g, is efiectively a local operator
asymptotically. It’s not quite a local operator but it maps the whole asympto-
tic region into itself. (See Lemma 2 in the published text.)





THE QUANTUM THEORY OF GRAVITATION*

R. P. FEYNMAN
Norman Bridge Laboratory, Pasadena

THE quantum theory of gravitation is studied by seeing what difficulties ariseif one actually tries to solve specific problems in perturbation theory to in-creasing orders of accuracy. We specifically keep all energies involved belowsome upper limit (e.g. 103 GeV), and do not analyze the philosophical con-sequences of a quantized metric, etc. Instead,we begin by writing the classicalLagrangian for a matter field (most calculations were made for spin zeroparticles) in interaction with a gravitational field represented by a metricgm. By writing g,” = éflv—l—h,” and expanding in terms of hm, which we con-sider as the potential of the spin-two gravitational field, we find a Lagrangianinvolving h in second order (which we call the free Lagrangian) plus third,forth etc. orders in h. These latter terms can be considered as interactionterms where three, four, etc. gravitations interact at a point.Because of the invariance of the complete Lagrangian under coordinatetransformations, the free wave equation is singular. and can only be solvedif some gauge condition is chosen, analogous to the choice of the Lorentzgauge condition in electrodynamics. Then diagrams can be made for eachprocess in any order and the results calculated in the usual way.
For any process in the lowest order in which it can occur, all virtual mo-menta are determined—such diagrams we call tree diagrams. They presentno difliculties; results for the gravitational analogou of Compton efl'ect, Brems-strahlung, electron-electron scattering, emission of gravitons by atoms, etc.have all been worked out. The answers are satisl‘aCtoi—ily gauge invariant andindependent of the specific choice of gauge condition.
In next order (e.g. vacuum polarization. radiationless scattering correc-tion, analogue of Lamb effect, etc.) there i we integration over an undefinedmomentum (one “circuit” in the diagram we shall say). Such diagrams presentone problem in that they diverge, and it is a matter of some difliculty to ar-range the cut-ofl process is gauge invariant. There is a much more seriousdifficulty, however. Diagrams with circuits must be related in definite waysto tree diagrams (for example, by unitarity relations). These relations are
* Abstract. The full text of Prof. Feynman’s lecture will appear in Acta PhysicaPolom‘ca.
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not satisfied. This difficulty is not a particular characteristic of the gravi-

tation theory, but exists as well, and in exact analogue, in the Yang—Mills

vector meson theory with zero mass mesons. It arises from the ambiguities

associated with the singular Lagrangian.

It is proposed to resolve the ambiguities in this way: A theorem is de-

veloped, valid for any field theory, by which diagrams with circuits are ex-

pressed entirely in terms of tree diagrams for more complex processes (but

with all particles on the mass shell). We, then, suppose this general theorem

to be equally valid for gravitation, by definition.
For diagrams of one circuit, results are now unitary, independent of the

choice of gauge condition, and unique. The results are equivalent to what

is computed in the usual way, provided one subtracts a certain term, equiva-

lent to a fictitious vector particle going around the circuit involving virtual

gravitons. For the Yang—Mills theory the fictitious particle is scalar, and

the result is also equivalent to the result obtained from the theory with finite
mass (which presents no ambiguities) in the limit that the mass approaches
zero. These results are obtained by formal theoretical reasoning, checked as
far as possible by specific calculations of definite problems.

Diagrams including more than one circuit (i.e. integration over two or

more virtual momenta) have not yet been completely analyzed.



GENERAL DISCUSSION

V. L. GINZBURG
As follows from the papers and discussion on the radiation of gravita-

tional waves, there is no complete unanimity in this field. Therefore, 1 should
like to make some observations according to which it undoubtedly seems
to me that the correct answer is obtained as to the energy emitted already
in linear approximation (in the sense mentioned below). We have in mind
here the well-known expression obtained by Einstein back in 1918 (for de—
tails seem)

(id x
dt “ 45c5 33

. (I)
(Dag = f/i(3x“x5—6apx,2,)dV

Formula (1) is obtained by an expansion with respect to v/c, where v is
the velocity of particles (masses) performing finite motion. In that case it is

11 r . .apparent that —~7, Where r denotes the dimensmns of the system and i.—c
the wave length (A ~ cT, r ~ 721’, where T stands for the characteristic time
of the change in the quadrupole moment (Dafl; in the case of harmonic motion
with frequency w obviously co = 27r/T).

Formula (1) holds (and herein, strictly speaking, consists our assertion)
with an accuracy up to terms of higher order in *v/c and not with an accuracy
to some numerical factor as assumed by some people.

The reason why formula (1) gives rise to doubt is the following. If the
particles move under the influence of gravitational forces (double star, etc.),
then the derivation of formula (1) is not entirely consistent in the sense of
its obtaining within the limits of linear approximation.

Nevertheless, I feel that Einstein’s calculation is consistent and the answer
is perfectly correct (in the sense mentioned above) and here is the reason
for that.

Consider the motion of a nonrelativistic particle in an external magnetic
field H where the equation of motion has the form

dv e—=—v . 2mdt c[Hl ()

(1) L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press
1962 (§ 104).

15" 209
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In this case the correctness of the linear approximation does not give
rise to any doubt (we assume “the particle” to have a sufficiently large radius

. . . . xm
a so that its grav1tat10na1rad1us —2— < a) and the same also refers to for-

c
mula (1). But within the limits of classical mechanics the equation of motion

mg: = F is true Without any regard as to the character of the force F. There-
t

m
fore, if the force F is the Newtonian force ofuniversal gravitation F= — 3 r,

r

the present case does not differ in principle from case (2). From this it is

clear that formula (1) will also be valid for gravitational forces, i.e. for double

stars, planetary systems, etc.
The relativistic corrections to the equations of motion are of the order

of vz/cz, and the contribution of higher multiple terms is also of the same
order of 112 /c2. Therefore, formula (1) is true for Newtonian forces also with
an accuracy up to terms of the order 1/c7. The argumentation given will
probably not convince the followers of opposed views but it might be hoped
that by the time of the next conference the problem of the accuracy of formula
(1) will also have been solved with the help of other methods. Then a con-
sensus of opinions will be reached.

I take this opportunity to observe that the problem of emission of gra-
vitational waves in the case of a charge moving in a magnetic field has re-
cently been solved also in the ultrarelativistic casem. It was found that the
energy losses are proportional to the square of the particle energy, i.e. they
depend on the energy in the same way as do the losses of radiation of electro-

. . . l3 xmz .
magnetic waves. The grav1tat10nal losses are —4———2— tlmes smaller than the

e
losses of radiation of electromagnetic waves (m and e are the mass and charge
of the radiating particle). It is, thus,clear that in the case of electrons, protons
and nuclei the energy losses due to the emission of gravitational waves are
always to be neglected. This result is not a trivial one in the sense that
it is not a universal one for arbitrary fields, but it is connected with the trans-
versality of gravitational waves which are in this respect analogous to electro-
magnetic waves. If the particle moving in a magnetic field emits other particles
(quanta of wave fields), in some cases the dependence on energy turns out
to be more marked than for the radiation of electromagnetic and gravita-
tional waves (i.e. photons and gravitons). What has been said follows from
an analysis by G. F. Zharkov and myself of the emission of various particles
due to the motion of, for instance, protons in a magnetic field (then such
processes occur: p —> n+7c+, p —> p+r:°, p —> n+e++v; here 754"“ are pions).

(2) B. I. Pustovoit and M. E. Herzenstein, J. Eksp. Theor. Phys. 42, 163 (1962).
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C. W. MISNER

Radiation Gauge in General Relativity. In situations where intense gravi-
tational fields are all localized (i.e. ignoring cosmology), the weakness of
the field at spatial infinity suggests that techniques taken from linearized
theory might lead to interesting conclusions concerning solutions of the
Einstein equations. Other work in this direction has made use of harmonic
coordinates to make all the equations appear as wave equations. The work
reported here (done in collaboration with Arnowitt and Deser) uses a different
style of coordinate conditions in which the initial value (or constraint) equa-
tions appear as elliptic equations. Using this approach we discuss (1) total
energy and momentum, “Newtonian” component fields, (2) the coordinate
dependence of the asymptotic fields, (3) the “wave front theorem” which
excludes a steady rate of radiation in asymptotically flat spaces, (4) the possi-
bility of defining the radiation gauge fields from a knowledge of only the
asymptotic (wave zone) metric, (5) coordinate invariant descriptions of the
radiation fields. The novel features of these discussions are: in (1) it is
explained why flux integral formulas for energy do not involve goo although
the weak field geodesic argument suggests (misleadingly) that g00 is a “New-
tonian component” of the metric; the conclusions in (3) describe the be-
haviour of fields as r —> 00, a variant of Papapetrou’s wave front theorem de-
scribing the limit t —> oo; in (4) it is shown how a non-local (Fourier analysis)
method of obtaining coordinate invariant quantities can be applied usefully
without requiring detailed knowledge about strong field regions.

J. WEBER

Quantization of the Coupled Maxwell Einstein Fields. We have studied
the interaction of gravitons and photons in the first approximation. Our
hope was to find some consequences which might be verified experimen-
tally.

Starting with Dirac’s gravitational Hamiltonian we carried out a canon-
ical quantization, choosing coordinates such that problems involving the
constraints were minimal. We have calculated S matrix elements for a number
of processes. The interaction seems to allow processes in which a photon
decays into another photon and a graviton. Energy and momentum can
only be conserved if all three particles propagate in the forward direction.
Closer study shows that the matrix elements for this process do not vanish
anywhere except for the situation where all three particles propagate in the
same direction. The photon cannot,therefore,decay by this process. How-
ever, at extreme energies it turns out that energy need not be exactly con-
served and this leads to the possibility of decay at energies > 1028 elec-
tron volts. The emitted graviton has very low energy.
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Even in lowest order, self energy efi'ects appear. We have to deal with
processes in which virtual photons and gravitons are created and annihila-
ted. It can be shown that in first order such processes contribute nothing,
in consequence of the constraints.

The creation of gravitons by coulomb scattering of photons and by scat-
tering in a magnetostatic field is shown to occur. The cross section is calcu-
lated for the case of a coulomb type scatterer in which the electric or mag-
netic field is uniform and all dimensions of the scatterer are large compared
with a wavelength. The cross section is given by

_ 8n2GUl
04

S

Here S the cross section, G is the constant of gravitation, U is the energy
of the scatterer, c is the speed of light and l is the thickness of the scatterer
in the direction of propagation of the photon.

For a galaxy the cross section is about 1028 square centimeters. For a
laboratory scatterer having a volume of 106 cubic centimeters containing
1015 ergs of electrical energy the cross section is about 10—30 square centi-
meters. The theory of the fluctuations shows that an incident photon power
P is required for detection, such that the power converted into gravitons
is AP where

AP > 2 ]/ kTP/r.

Here k is Boltzmann’s constant, T is the absolute temperature and r is the
averaging time. For a cross section of 10—30 square centimeters and r = 104,
a photon power p > 1040 ergs per second is needed. Laboratory experiments
are therefore not feasible.

This research was done in collaboration with Mr. George Hinds and
was supported in part by the U. S. Natural Science Foundation and in part
by the U.S. Air Force Oflice of Scientific Research.

D. IVAN'ENKO

A compensating treatment of gravitation. As was stressed by Yang and
Mills each conservation law or invariance group induces a corresponding
vector field like introducing avector potential of electromagnetic field by
means of gauge transformation

U = exp ie A(x)

with localized phase depending on coordinates. It may be of great interest
to generalize these considerations applied already to charge iso-spin and
baryonic charge conservation, to other bosonic fields, especially to gravi-
dynamics.
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With this aim in mind we consider localized homogeneous Lorentz
transformations with parameters being non constant but depending on co-
ordinates. Non—homogeneous group is considered by B. Frolov. Now, to
keep invariance one must compensate the derivatives of these parameters
by a coupling with a new field and this compensating field proves to be es-
sentially gravitational field of the Riemann—Einstein general relativity.

In our work with A. M. Brodski and H. A. Sokolik(3) inspired by Saku-
rai’s article”) we preferred to treat transformation properties of the fields
for finite transformations of a local group, which seems to be more correct
as Lie’s theorem is not immediately applicable to local groups. Essentia-
lly equivalent results were obtained independently by Utiyama(5) who used
infinitesimal transformations. Analogous considerations Were established also
in an unpublished work of J. Schwinger and recently by J. Kibble.

This new approach to general relativity is of interest not only by its sim-
plicity but also by the very fact of introduction of a group generalizing the
Lorentz group, which means the existence of some symmetry of the Riemann—
Einstein space which generally speaking is devoid of any symmetry, as was
emphasized by E. Cartan. So let us require covariance of the equation for
particles of arbitrary spin value

(h. )£.<>.+im)'P = 0
where ‘P is transformed by means of an arbitrary represenation S, and the
tetrapods h,(p) are assumed to be functions of the coordinates. Then to
compensate the term 5065—1 = 1,", (0,351,) N3: it is necessary to generalize
a, to a “compensating” (essentially covariant) derivative

v, = 0,—1‘, with 11, = iImAAm, n).
1

I being generators of the group, a — its parameters,N = f exp (teC) dt (indices
0

being omitted!), C —— structural constants of the Lorentz group, A — Ricci’s
coeflicients. For instance, for spinor Dirac field (.81, = 9),.) one gets immedi-
ately the well known coeflicients (Fock—Ivanenko(s)),

P. = i [m] A..(m, 1).
Of course, a tensor purely antisymmetrical term, describing, e.g., torsion can
be added to the compensating derivative. It is interesting to note that the
parallel displacement of spinors which requires in a natural way application

(a) A. M. Brodski, D. Ivanenko, H. A. Sokolik, J. Eksp. Teor. Phys. (1961).
(4) J. Sakurai, Ann. Phys. 11, 4 (1960).
(5) R. Utiyama, Phys. Rev. 101, 1597 (1956).
l“) V. Fock, D. Ivanenko, C. R. Acad. Sci., Paris 188, 1470 (1929). Further development

J. A. Wheeler Geometrodynamics (Academic Press, N.Y., 1962); A. Peres, Sup. Nuovo
Cimenro 24, No 2, p. 389 (1962); E. Schmutzer, Z. f2 Naturforsch. 1962.
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of tetrads, introduces, in the case of a space endowed with torsion, a non-
linear supplement in the Dirac equation, as was shown by V. Rodiéev").
Moreover, this additional term turns out to be of the pseudo-vectorial type
chosen by Heisenberg on various grounds, from all possible non-linear
supplements investigated previously in our work with A. Brodski. All this
seems to represent a step towards the geometrical interpretation of an unified
non-linear theory which appears to be based on such most elementary
entities as spinors and tetrads.

In this connection it is of great interest to analyze also a tetrad
interpretation of the theory of gravitation without torsion,.i.e. remaining
inside Riemann-Einsteinian curved space. This was investigated by V. I.
Rodiéev in Moscow. This work has many common points with beautiful
reports of Prof. Maller and Dr. Plebar’iski at this conference.

We assume that passing over to non—inertial coordinate systems cor-
responds just to local Lorentz ratations of orthogonal tetrads and not to
general coordinate transformations. With this assumption the Lagrangian
(i.e. scalar density expressed by Ricci’s rotation coefficients) as well the
field equations must be covariant in respect to the (a) groups of general
coordinate transformations and (b) groups of Lorentz rotations (both iner-
tial as non-inertial systems of coordinates are permitted).

Riemannian—Christofl‘el connection represents the sum of absolute paral-
lelism connection and Ricci’s rotation coeflicients, which consist of compo—
nents of torsion due to absolute parallelism connection, so it is natural to
propose torsion coeflicients as representing gravitation field strength values.
Excluding now holonomic part of tetrads and in this way presumably the
inertia fields by means of condition Vah"(a) = 0, one gets for scalar den-
sity R = A(£,afi) C(afi,s) (A—Ricci’s coefficients, C—curl of tetrad com-
ponents). Then the field equations

Va{A(a){“.’} = 0(a)"
yield at the right side the expression of the energy—momentum of gravi—
tational field t(a)" = {2A(fi,r£)C(as,‘B)—-;—5(a,‘r) R}h“(‘t). This can be also
obtained by means of Noether theorem applied to parallel displacements
of Lorentz tetrads.

R. P. FEYNMAN:
I don’t understand precisely what came out of this analysis of compen-

sating fields to you. Was it the relativity theory of Einstein exactly, 01' was
there some additional torsion or something?

(7) v. I. Rodiéev, J. Eksp. Teor. Phys. 40, 1469 (1961), Dokl. A.N. (C.R. USSR) 148,3(1963).
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D. IVANENKO:

We introduced a compensating derivative. The compensating derivative
is clearly equal to the covariant derivative but an arbitrary tensor term can
be added there. Of course, this pure tensor term corresponds to torsion.
This is not a simple generalization, since Einsteinian theory can be general-
ized in many directions, but this generalization is quite a natural one. If we
consider gauge transformations, we can split the electromagnetic field into
transverse and longitudinal parts. Somehow analogous to this splitting is
the splitting of the connection into a tensor part and a non—tensor part.

R. P. FEYNMAN:
Where do the g’s come from?

D. IVANENKO:

As you seem to support the general idea of quantization of Yang—Mills
and Sakurai, perhaps you Will not protest that an analogous method can
be applied also to Lorentz transformations.

N. ST. KALITZIN
0n the existence of a non-singular stationary solution of Eddington’s grav-

itational equations which could represent a material body. As is well known,
Einstein’s equations

Rik = 0 (1)
do not have a non-singular solution, which could represent a material body.
The same holds also for the Einstein—Maxwell equations, for Kaluza’s equa-
tions and for Einstein’s last unified field theory.

One obtains Einstein’s equations (1) from the variational principle

afR]/—gd;2= a fgikRik1/——gd!2=0 (2)
as is shown by Eddington in his book “Relativitéitstheorie in mathemati-
scher Behandlung”; one gets other field equations starting from the varia-
tional principle

a fKVnQ = f Pikégik V:§ do (3)
where

K = RmisrRmisr

R'",,,.—Riemannian curvature tensor, Pik—symmetrical tensor whose diver-
gence vanishes.

The field equations
PM = o (4)

which we refer to as Eddington’s gravitational equations, are of fourth or-
der in gik and are much more complicated than Einstein’s equations (1).
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In the general case they even cannot be written out explicitely but in the
case of spherical symmetry they can be treated.

In this case we have for the line element the expression

ds2 = —ele—r2d62— r2 sin2 6 (1792+ e"dt2 (5)
A, v—functions of r only.

The variational principle (3) gives us two equations for determination
of l and v:

—3r2}t’2+3rzv’2+...+ iru'w'zromv' = 0, (6)
r22’2+r2v'2+...+8r3v”’—r4v’}t’”+2r4 v”” = 0. (7)

As can be easily shown these equations have as a solution the Schwarz-
schild solution

4 = e" = 1— 2m
1'

e

(all effects of general relativity hold).
But they surely have also some other solutions. We will investigate if among

these solutions there exist solutions, which are non-singular in the Whole
space.

For this purpose we represent 2 and v in the neighbourhood of the point
r = 0 (center of symmetry) by the series

2. = ao+a1r+a2r2+a3r3+ . . .
1’ = bo+b1r+b272+b373+ .. .

Equations (6) and (7) give us in this case

(8)

ao=a1=a3=a5=...=b1=b3=...=0 (9)

a2, a4, ..., b2, b4—can be diflerent from zero. Relation (9) shows that at the
point r = 0 the solution is smooth (we have not a point like >04). To investi-
gate the solution for great values of r we use the series

1 =p1u+p2u2+pau3+
v = q1u+qzu2+qsu3+

1
u=__

r

Here 170 and q0 are zero because our solution should tend to the Euclidena
value at infinity.

On a sphere of radius r = 9 the solutions (8) and (9) must satisfy the
conditions

11 = 22, v1 = v2, 11’ = 12’
II_ I, ’_ I II__ I

11 — 2, ”1—72: 7’1 —7’2
(10)I
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(1 refers to series (8), 2 to series (9)) which with equations (6) and (7) guar-
antee that Eddington’s equations hold also for r = g.

In the first approximation we interrupt the series on the sphere r = 9
1 . . .up to 92 and to —2— and obtam from the boundary condltions (10) and from

Q
the differential equations pi" = 0 eight algebraic equations for the 7 quan-
tities 121, p2, q1, q2, b0, b2, a2. We show that these algebraic equations are iden-
tically fulfilled by the solutions

9
P1=41=—‘%Qa P2=qz=392;

(11)
=ii, b0=0

l6 92
The series (8) for Z and v can be majorised by the series

‘12— 2

2
a2r2+a§r4+a§r6+ +agr2s+ = a2: a. (12)

l —tz_2r2

The condition of convergence is

and is fulfilled in the region r <9.
The series (9) can be majorised by the series

3 3 2 €19“1-9u+(:gu)—|— — 773 ~ (13)
1 _ _ gu4

which is convergent for r 9 Q.
So we have found solutions of Eddington’s equations which for r <9

and r > 9 are absolutely convergent and on the sphere approximatively
fulfil the boundary conditions (10).

With the help of Einstein’s equations

125.c— gay: = —87zTi" (14)

we calculate the energy momentum tensor Ti" in the case of our field and
with the help of the formula

m = 4nITfir2dr
0

we calculate the whole mass of our particle, resulting from the fields inside
and outside r = Q. We obtain

m = 0,2869 (15)
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This value can be improved by calculating also the mass resulting from
the fact that in this approximation the boundary conditions (10) are not
fulfilled. We get finally 3

m = :9

which mass must have in the Newtonian approximation of the gravitational
potential

1(€11: —§9; ev =1+q1—+-~
r

We thus have obtained an approximate solution of Eddington’s gravi-
tational equations which is everywhere non-singular and which can, accord-
ing to Einstein’s ideas, represent a material body.

With the help of the electronic computing machine in Dubna near Moscow,
together with Burneff and Nedjalkoff, we have calculated the following ap-

‘ . . . . . lprox1mation interrupting the series up to Q4 and —2 on the sphere r = g.
Q

The obtained results are quite near to the above mentioned results.
H. A. BUCHDAHL:

We investigated a corresponding problem for Lagrangian R2 and con-
cluded that in the spherically symmetric case and in the general case there
are no asymptotically fiat solutions other than those of Rik = 0, which, of
course, have a singularity at the origin. I always suspected the same to be
the case here, because the Lagrangian which you have used is the same as
the Lagrangian 4RikRik—R2, which is not very dissimilar from the Lagrangian
R2. I am inclined to think that all quadratic Lagrangians would lead to the
same result. But the only asymptotically flat solutions are those which also
satisfy the equation Ri,c = 0 with a singularity somewhere. I am very sur-
prised by your results.

N. St. KALITZIN:
Your Lagrangian is, nevertheless, quite different from Eddington’s La-

grangian,

R2 as Rack.“
and it is no wonder that your results are different from mine.
C. MoLLER asked about the conservation law for the energy momentum
tensor.

N. St. KALITZIN:
The tensor T," is defined by means of Einstein’s gravitational equations

Rif— % 655R = —8:rT{‘
and the divergence of such a tensor automatically vanishes.
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L. ROSEN'FELD:
In his remarkably clear and complete exposition of the present Views on

the logical structure of the process of field quantization, Professor DeWitt
casually stated that from this point of view the gravitation field “must” be
quantized. This little word “must” prompts me to the following consider-
ations, suggesting that the case for quantization of the gravitation field is
perhaps not as obvious as it is sometimes made out to be.

(1) In view of the universality of the quantum of action, one is tempted
to regard any classical theory as a limiting case of some quantal theory. How-
ever, one must not lose sight of the fact that the formulation of any theory
in its application to given physical situations involves the specification of
the system under consideration and of the external conditions under which
it is investigated: such specifications, which represent the essential link be-
tween the theoretical description and the physical observation, are necessarily
expressed in terms of classical concepts, and therefore enter into the
equations in the form of c-number parameters. From this point of view, the
metrical tensor, at any rate for all practical purposes, appears as such a c-num-
ber specification of conditions of observation, and there is no logical imper-
fection in regarding as fundamental the classical, unquantized, form of the
equations expressing the connexion of the metrical 0r gravitation field with
the other fields.

(2) This simple point has a bearing on the problem mentioned by’DeWitt
as one in need of further discussion, of analysing the process of measurement
of field quantities entirely in terms of quantum theory, i.e., by including
the experimental arrangement in the quantal description. It should be clear
from the preceding remark that the requirement of such a comprehensive
quantal account of the measuring process (which is doubtless possible) is
actually pointless (except inasmuch as it would provide a rather trivial check
of the consistency of quantum theory), since it would only obscure the essen-
tial function of the experimental arrangement in establishing the connexion
between the quantal system and the classical concepts indispensable for its
description. Disregard of this essential feature of quantum theory has led
to futile attempts at circumventing complementarity by arguing that a solution
of the wave equation for the total system including the experimental arran-
gement would yield a uniquely determined account of the whole measuring
process and its result; in such argumentation it is not sufliciently realized
that the equation in question would contain c—number parameters which in
the last resort would refer to just the conditions of observation directly ex-
pressed in the classical description of the experimental arrangement. In the
particular case of the measurement of gravitation quantities, it is unavoidable
to have some classical metrical substratum for the localization of the test-
bodies.
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(3) Another point deserving close consideration concerns the limitations
of validity of the concepts used in the formulation of the theory of gravi-
tation. Thus, the classical limit of validity of the dynamics of the electron,
expressed by the classical electron radius, loses any significance since quantum
effects become essential for the motion of electrons within domains of much
larger dimensions. In quantum electrodynamics and meson theory, an abso-
lute limit to the poSsibilities of localization is strongly suggested (although
its precise nature is still obscure) by the increase of the fluctuations of the
charge and current contained Within an unsharply defined space-time domain
when the thickness of the shell limiting this domain decreases. It would seem
that the critical thickness is of the order of the nuclear length unit (10—13 cm),
which is much larger than the critical length for quantal effects of gravitation
to become appreciable. This again leads to a strong suspicion that quantiza-
tion would be meaningless.

(4) One could still raise the question whether, for wave-lengths much
larger than the critical length just mentioned, gravitational radiation, not-
withstanding the smallness of any quantal effects for such wavelengths, ought
not to be quantized for the sake of consistency with the quantization of the
other fields. In this connexion I should like to state that an analysis of the
limits of measurability of gravitational quantities, such as that carried out by
DeWitt, cannot throw light on this question: all that such an analysis can
tell us is Whether an assumed quantization of the gravitation field is con-
sistent with the quantization of the other fields. Thus, in the case of electro-
magnetism, the analysis shows that the reciprocal limitations of measurability
of field components predicted by the quantized theory arise as a consequence
of the impossibility of controlling the number of photons contained in the
interaction of the test-bodies in the course of the measuring process; if, how-
ever, this interaction were entirely classical, it could be completely compen-
sated, and there would be no limit to the measurability of the field even when
due account is taken of the mechanical uncertam relations to which the
test bodies are subject. I insist on this because the View was expressed in
conversation that, according to the analysis, the electromagnetic field quan-
tization is necessarily entailed by the quantization of the motion of the test
bodies: there is certainly no such logical necessity in either case. As regards
gravitation, there is, as pointed out by DeWitt, an essential difference from
the situation in electromagnetic theory: whereas the latter sets no absolute
scale of space-time dimensions or mass, a quantum theory of gravitation
suggests the existence of a critical mass; the consequences of this circumstance
for the range of validity, or even the internal consistency of any quanti-
zation of gravitation demand closer study.
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F. J. BELINFANTE:

I still feel after Rosenfeld’s remarks that there is almost a “must” for
quantization, certainly if one believes in Einstein’s equation and in the quan-
tization of the matter fields going into the TM, just like it is hard to assume
that in div E = 4919 the E would be a c-number While the 1p—field in 9 is
second-quantized. One similarly cannot equate a q-number T,‘v, of which
the value would depend on the state vector, to a G,” which is a c-number
and, therefore, has an invariable value.

L. ROSENFELD:

But one-could use the expectation value of TM, instead of TM itself.

F. J. BELINFANTE:

This would be most unusual, to equate a c-number to an expectation
value of a q—number, and I think this violates the principles of quantum
theory. Suppose we had a situation which were a superposition of states,
say 40% probability for one state of the matter and 60% probability for a differ-
ent state. Suppose one did a million experiments; then one would expect
a correlation between the measured actual state of the matter and the sur-
rounding gravitational field. That is, one would in 400 000 cases find one
gravitational field and in 600 000 cases a different gravitational field. If, how-
ever, the gravitational field were given by the expectation value, one should
in all 1 000 000 cases find the same gravitational field, obtained by a 40-60
average.

L. ROSENFELD :*

The case you consider here is rather extreme. One seldom would have
fluctuations so large that their gravitational efiects would be measurable.

F. J. BELINFANTEZ

As you want a c-number gravitational field, I can discuss it classically
and by a thought experiment I then can measure the field as accurately as
I want.

L. ROSENFELD:

It is thinkable, however, that Einstein’s equation has the character of
a thermodynamic equation which breaks down and is not valid in case of
extreme fluctuations.

* Discussion continued on terrace, as room was to be emptied for a seminar.
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F. J. BELINFANTE:
This is the reason why I feel that quantization is almost a “must”, as

I would feel very unsatisfied if Einstein’s equation were a thermodynamic
equation, while Maxwell’s equations would be q—number relations, though
We obtain both by varying one single Lagrangian, of which we would prefer
to see all terms treated alike as q-numbers.

L. ROSENFELD:
On the other hand, since we know the validity of the gravitational equa-

tions only for macroscopic systems, it is perhaps not so impossible to look
at them as a kind of thermodynamic equations.



MACH’S PRINCIPLE AS BOUNDARY CONDITION FOR EINSTEIN’S
FIELD EQUATIONS AND AS A CENTRAL PART OF THE “PLAN”

OF GENERAL RELATIVITY*

J. A. WHEELER

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

I. THE SEARCH FOR AN ACCEPTABLE FORMULATION
OF MACH’S PRINCIPLE

Inertia as a Consequence of an Interaction between the Accelerated Test Particle
and all the Rest of the Universe

Acceleration can have no meaning unless there is something with respect
to which the acceleration takes place. The acceleration with respect to abso-
lute space that Newton speaks about has to he understood as acceleration with
respect to the stars and matter in the universe. These two sentences state in
oversimplified form the argument of Mach [1]. From it he Went on to make
conclusions about the origin of inertia. Inertia—«being tied to acceleration—-
must arise from interaction between the object under study and all the other
mass in the universe. Thus Mach’s principle might be stated in this form:
(Formulation 1). The inertial properties of an object are determined by the
distribution of mass-energy throughout all space.

Inertia as the Radiative Component of the Gravitational Force
Mach’s principle, together with Riemann’s idea that the geometry of space

responds to physics and participates in physics, were the two great currents
of thought which Einstein, through his powerful equivalence principle, brought
together into the present day geometrical description of gravitation and
motion. In the course of this work Einstein identified gravitation itself as the
source of the interaction by which—according to Mach—one object aflects
the inertial properties of another. What is important in this connection is
not the familiar 1/r2—proportional static component of the gravitational
force, but the acceleration-proportional radiative component of the interaction

* Report given at the Conference on relativistic theories of gravitation, Warszawa,
Jablonna, Poland, 25—31 July 1962, as adapted for subsequent lectures at the Summer
lecture series in theoreticalphysics. University of Colorado, Boulder, Colorado, 8-17 August
1962.
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(Table I). Einstein discussed this point a little in his book [2] in connection

with the idealized experiment of Thirring. This description of the inertia of
a given particle as arising from the radiative component of its interaction
with all the other masses in the universe has been looked into a little further
by Sciama [3] and Davidson [4]. The inertial term ma is dropped from Newton’s
equation of motion. In its place appears the sum of the radiative interactions

1 Gmkfa 2 3—. (l)
k

This term gives a reasonable order of magnitude account of inertia if the di-

mensions of the universe are of the order of 1010 light years and if the effective
average density of matter is of the order of 10—29g/cm3.(1)

TABLE I

Static and radiative components of electromagnetic and gravitational forces compared

and contrasted. The quantity f is an abbreviation for a dimensionless function of the angles
between the lines of acceleration of source and receptor and the line connecting these two

objects.

Electromagnetism i Gravitation

. . . e1 92 ‘ Gmimz
Static or near part of mteraction —2 .- 2—

r r

. . . e e a l Gm ma 1“
Radiatlve or distant component i —— i210 _#—

‘ e2r car

Inertia is Tied to Geometry and Geometry is Directly Governed by the Distri-
bution of Mass-Energy and Energy Flow

The analysis of Thirring and Einstein brings this “sum for inertia” into
closer connection with the ideas of general relativity. On the one hand the
inertial properties of a test particle are expressed in terms of the metric ten-
sor g”. On the other hand the agencies responsible for changes in this measure
of inertia are characterized not merely by density, but by the entire stress-energy
tensor T”. Thus, Thirring and Einstein write the change

hit, 2 gm‘ gm, (2)

h = QP'hm, (3)
of the metric in a local Lorentz system, due to a change 6T,,,, in the form

h”, — igwh = (BEG/c4) f w—mrfi—x. (4)

This expression remains a good approximate solution of Einstein’s field
equation so long as the geometry of the regions where the mass-energy is

(1’ For a discussion of present information on the density and size of the universe
see for example [5].
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located does not difler substantially from the local Lorentz geometry at the
position of the test particle. Looking at Eq. (4), and recalling that in relativity
theory the inertial properties of a test particle are determined by the metric
one is led in formulate March's principle in the following form (i'TOfi‘llUlLillvfll‘i 2):
Tim geometry Qi‘spzzcetime um! .r/I-sreffbre tilt inertia! properties L'i/ié‘l’ff‘j' infi—
nitesimal has: pa‘rride are determiner? Zr}: h’ze dislz'iiunfon (If cam-gr ant-i margi-
fio'n throng-“sou! a]! spar-e.
Many Objections to Mack’s Principle

That Mach’s principle in anything like this form makes sense has been
questioned on many sides for the following reasons:

(1) Einstein’s field equations
R," — gM = (87rG/c4)Tfl, (5)

are non-linear. It is wrong in principle to try to express the solution g, as a
linear superposition of effects from the T”, in various regions of space.

(2) The quantity l/r in the integrand is not a well defined quantity in an
irregularly curved space.

(3) If in the Friedmann universe one considers the contributions to the
inertia at a definite point in spacetime from more and more remote points,
where the retarded value of the stress-energy tensor is [TMret one is forced
to go back to earlier and earlier moments of time. Ultimately one comes to
a time when the system was in a singular state. What does one do then about
the contribution of [T,iulm to the inertia.

(4) The elementary sum in Eq. (1) for the coefficient of inertia envisages
a radiative interaction between particle and particle. But how can stars at
distances of 109 and 1010 light years respond to the acceleration of a test
particle here and now in such a way as to react back upon this test particle
at this very moment? Is this difliculty not argument enough that this elementary
formulation should be dropped? But when one turns from this picture of two-
way travel of gravitational radiation to the Thirring—Einstein calculation
where only one direction of travel comes into evidence, does one not encounter
an ambiguity in this sense, that one could use advanced interactions just as
well as retarded interactions—or any combination of the two—in obtaining
a solution of the linearized field equations? If the advanced and retarded
expressions for the metric in terms of the distribution of mass—energy difier
from each other—as expected—will not one be forced to conclude that one
expression is wrong? And if one is wrong will it not be likely that both are
wrong?

(5) Will not the l/r—dependence of the supposed inertial interaction make
the inertial properties of a test particle depend upon the expansion and recon-
traction of the universe, and the proximity of nearby masses, in a physically
unreasonable way?

16‘
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(6) How can it make sense to speak of the distribution of mass-energy
(and energy flow) as determining the geometry? One cannot specify where one
mass is, let alone the entire distribution of mass, until one has been given

the geometry. But then what is there to be determined?
(7) Why spoil the beautiful logical structure of relativity theory by mixing

up with it anything so vague and so lacking in mathematical sharpness as

Mach’s principle? Why try to word it in careful 20th century language when

it is an outworn 19th century idea that ought to be dropped at once and for
all time?

Solutions of Einstein’s Equations not Produced but Selected by Mach’s Prin-
ciple

The answer is that Einstein’s equations are not enough. Differential equa-
tions in and by themselves typically do not suffice to define a solution. They
must be supplemented by a boundary condition. Mach’s principle is required
(Formulation 3) as a boundary condition to select allowable solutions of Ein-
stein’s equation from physically inadmissible solutions.* This kind of selection
principle is so familiar in electrostatics (Table II) that it generally goes without
even a name. Only when Poisson’s equation is supplemented by such a boundary
condition does it lead to the (1/r) law of action of a charge. This (1 /r) law of
action furnishes the usual basis for saying that the distribution of electric
charge uniquely determines the distribution of electric potential.

Cases Where the Boundary Condition Cannot be Applied Regarded as Ideali-
zations of Cases Where It Does Apply and Where It Does Make Sense

The boundary condition that the electrostatic potential shall fall off at
large distances is noteworthy for what it does not do as well as for what it
does do. It does not provide a way to calculate the (l /r)—1aw of action. Only
the difierential equation does that—giving in addition many other solutions.
Moreover, one often considers in electrostatics problems where the requirement
of Table II, “The potential must fall off at great distances” cannot be satisfied.
By way of illustration, consider the problem: “Given 9 (x, y, z) = 90 cos kz;

* Note added after completion of this manuscript: This concept of Mach’s principle
as principle for the selection of solutions of Einstein’s equations appears earlier in the
discussion of J. A. Wheeler on pp. 49—51 of La structure et l’évolution de l’Univers,
Bruxelles 1958, and esgecially in a recent article by H. H6nl in E. Briichc, ed., Physi-
kertagung Wien, Physik Verlag, Mosbach/Baden, 1962, where on p. 95 Honl proposes
two theses: (1) das Machsche Prinzip ist als kosmologisches Prinzip ein Auswahlprinzip,
d.h. es gestattet, aus der groBen Zahl moglicher Losungen des kosmologischen Prob-
lems einige wenige auszusondern, die als physikalisch zinvolle Weltmodelle fiberhaupt
in Frage kommen. (2) Das Machsche Prinzip laBt sich nur fiir raumlich geschloBene,
endliche Weltmodelle in widerspruchloser Weise durchfiihren; es ist daher zu vermuten,
daB die Forderung des Mach-Prinzips mit der Forderung eines endlichen Universums
fiberhaupt identisch ist.
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find V(x, y, 2)”! Thus one can choose between accepting the problem and
giving up the generality of the boundary condition; or upholding the boundary
condition at all times and modifying the problem. One can say that the
infinite cosine wave distribution of charge is only a mathematical idealization
of a physical distribution of charge which is nearly cosine character over a
great region, as illustrated, for example, by an expression of the form

9 (x, y, Z) = 90 COS k2 eXP[—(x2+y2+zz)/a2], (6)
Where the Gaussian breadth a is very large. On this choice of interpretation the
boundary condition continues to make sense, and the potential continues to
be determined uniquely by the distribution of charge.

TABLE II
Boundary conditions in electrostatic and in gravitation theory according to Formulation
3 of Mach’s principle: a boundary condition to select allowable solutions of Einstein’s

equations from physically inadmissible solutions.

Electrostatics Gravitation theory

Differential equations ‘ V aV= —4n9 l The four of Einstein’s equations
which have to do with geometry
on a space-like hypersurface.

Source terms Electric charge Density of energy and energy
density flow.

Geometry which
(a) extends to spatial infinity or
(b) is somewehre singular or
(c) is closed up and free of sin-

gularity.

General sol t' 9d311 ion V: f x + ‘

i r

+ Z cnmr"Yr(."')(9,¢) ‘

Principle of selection of Potential must fall Geometry must be of class (c).
physical solution ‘ off at grmt distan— (To admit singularities is to ad-

ces mit points where the equations
are not really satisfied).

Consequence of this principle ‘ Potential is unique- Geometry of spacetime must be
and also another way of 1y determined by uniquely determined by the dis-
formulating this principle the distribution of tribution of energy and energy

charge flow over the original space-like
hypersurface.

Asymptotically Flat Geometry Expressed as Limit of Closed Space
Similarly in general relativity one can find situations which are not compa-

tible with the boundary :condition of Table II—and therefore not compatible
with formulation 3 of Mach’s principle—and which, nevertheless, can be
translated over into situations which are compatible with the boundary condi-
tion. Consider for example a single spherically symmetric concentration of
mass in otherwise empty space. Associated with this mass is the familiar
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Schwarzschild 4-geometry. This geometry is asymptotically flat at infinity.
In this spacetime the inertial properties of an infinitesimal test particle approach
indefinitely closely to the Newtonian expectations at indefinitely great distances
from the mass. Consequently it is unreasonable to think of the central mass
as responsible for these inertial properties. If one accepts this situation, one
cannot uphold Mach’s principle either as Mach originally stated it or as it
is reformulated here, as a boundary condition to select solutions of Einstein’s
field equations:

(1) the inertial properties of test particles —— not being attributable to the
one mass that is present—are, therefore, not assignable to Mach’s “distribu-
tion of mass throughout all space”; and

(2) the Schwarzschild geometry does not describe a closed universe.
Therefore, rule out around a center of mass a space that becomes flat at

infinity. In other words, apply the geometric boundary condition of Table II
to exclude the Schwarzschild geometry. Follow the example of electrostatics,
where for example in Table II an infinite cosine distribution of charge was
ruled out because it was incompatible with the boundary condition for the
electrostatic potential at infinity.

The idealized situation that is pushed out of the back door as physically
unacceptable comes in again at the front door in new clothes both in electro-
statics and in general relativity (Table III). Consider a geometry which is
compatible with the boundary condition—which is closed and free of singu-
larity at some initial time, or more precisely on some initial space—like hypersur—
face. To construct such a geometry, take not a single spherically symmetrical
distribution of mass, but many such mass centers. Let the number of centers
and their spacing be so chosen as to curve up the space into closure“) The

‘2’ For a detailed but approximate treatment of the dynamics of such a lattice uni-
verse, see ref. [9]. For a precise analysis, consider the initial value problem at the moment
of time symmetry or maximum expansion: (”R = (l6nG/c2)g. Here 9 is the density of mass,
equal for example to go inside each center of attraction, and vanishing elsewhere. Solve
this equation by modifying the geometry of a 3-sphere of uniform curvature and radius a,

abide,1 = a2[dx2+ sin2x(d@2+ sin20dq22)],
by a conformal factor 1,0:

dsz = smin.
The initial value equation takes the form

V 21p+ (2710/0991!)5 — (31412990 = 0-
Here the operator V2 is calculated from the metric of the ideal 3—sphere. This equation
is to be solved throughout one lattice zone subject to the conditions (1) that 1/) have the
appropriate symmetry within that zone and (2) that its normal derivative vanish at the
zonal boundary. This is an eigenvalue problem which determines the radius a of the com-
parison sphere. When gravitational radiation is present the metric cannot be represented
in such a simple form. However, there is still typically a factor like 1/) to be found—gove-
rned now not only by the distribution of mass, but also by the distribution of gravitational
radiation.
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dynamics of such a lattice universe before and after the moment of time
symmetry agrees within a few percent or less with the dynamics of the
Friedmann universe—with its filling by a uniform dust (zero pressure!) and
its ideal uniform curvature. The corresponding expansion and recontraction
of the lattice universe shows up not so much through any change in the
geometry interior to the typical Schwarzschild zone, as through a change in
the place of join between one zone and the next. The interface moves
outward from the centers of attraction on each side of it, following the
law of motion of a stone thrown out radially. It reaches a maximum
distance. Then it falls back again towards both mass concentrations simulta-
neously. In this way the motion of these centers towards each other comes
into evidence. The time for the expansion and contraction of the lattice uni-
verse—and of the boundaries of each Schwarzschild zone—is

time for expansion radius of lattice
and recontraction = TE universe at
in length units maximum expansion

radius of one Schwarz— “/2 twice mass at center —‘/-
2 11: schild zone at maximum of zone expressed in (7)

expansion length units 7

This quantity can be made arbitrarily large relative to the time required for
light to cross one Schwarzschild zone by making the radius b of the typical
zone sufficiently large.

Non-Uniform Convergence to Flat Space Limit

The order of the participants is important. Let one participant, A, select (1)
any arbitrary but finite distance from one center of mass and (2) any arbitrary
but finite lenght of time and (3) any arbitrarily small but non-zero departure
from the ideal Schwarzschild geometry which he is willing to tolerate. Then
the other participant, B, can pick an effective radius for the typical Schwarz-
schild zone at the moment of maximum expansion which is so great that the
geometry inside that zone agrees wiht the ideal Schwarzschild geometry (1)
to within the specified limits of accuracy (2) out to the stated distance and (3)
for the stated time. However, if B acts first, and specifies the zone radius at
the moment of maximum expansion, then A can always point to places so
far away that the geometry there totally disagrees with the continuation of
the Schwarzschild geometry of the original zone. A can even point out that
the space is closed and compatible with Mach’s principle. Thus A concludes
that the geometry is asymptotically flat or closed according as he is forced
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to make the first move or allowed to wait until B has fixed on dimensions.
That A’s conclusions depend upon the order of his move can be said in another
way: The convergence to the limit of an infinitely great lattice universe is
non-uniform.

I.

TABLE III

Schwarzschild geometry envisaged as the limit of the geometry of a closed lattice universe
when the size of the typical lattice zone is allowed to go to infinity. This limiting process
is compared in the table with the analogous limiting procedure in electrostatics, Notation:
(l) m*(cm)=(G/02)m(g), mass at center of each lattice cell (2) 4nb3/3, volume of lattice
cell at “instant” (space-like hypersurface) of maximum expansion (3) a, radius of curvature
of a comparison universe of uniform density and uniform curvature, also at the instant
of mirror symmetry between past and future. This radius is determined as follows in terms
of m* and b: The “Schwarzschild cells” are joined together on boundaries which are not
sufliciently far out for the geometry there to be flat. The curvature of the Schwarzschild
goemetry in a local Lorentz frame in a plane perpendicular to the zonal radius is Rm,
=2m‘lb3. Identify this quantity with the curvature in a typical plane in the uniform com-

parison universe, Rma=1/a2. Thus, find a22b3/2m“. Alternatively, write down the 00 com-
ponent of Einstein’s field equations (the principal initial value equation of Yvonne Foures

Bruhat) in the form

(9412+ (rrK)2—rrK2 = 2(8nG/c‘) (energy
density '

Note that the extrinsic curvature tensor Ki, or “second fundamental form” vanishes on
a time-symmetric space-like hypersurface. Note also that the scalar curvature invariant
of a 3-sphere of radius a, expressed in terms of the physical components (carat symbol!)
0f the curvature is (”R = (3)§11+(3)R22+(3)R;3= (i1212+§1818)+(fizlzl‘i'fizfla) + (133131 +
+§32,2)=6/a2. Identify the density ofmass with m/(4azb3/3). Thus, have (6/a2): (16nG/c2)x
X (3m/4nb3) or again the result a2: b3/2m*. The number of lattice cells is approximately
N: (volume of comparison universe)/(volume of ¢>ell):'2n2 a3/(4nb3/3) = (3n/2)5/2 (b/m *)3/2
goes to infinity as size of typical cell goes to infinity).

Example from generalElectrostatic example . _
relat1v1ty

Source (before modification) Infinite periodic charge di- Single spherically symmetric
stribution concentration of mass in

‘ g = 90 cos kz otherwise empty space
Effect of interest Electric potential and Metric of spacetime—and

thence the electric field thence the inertial properties
‘ of every infinitesimal test par-
‘ ticle

Is “effect” so uniquely asso- No~can add to V any No—the asymptotically flat
ciated with “source” in this number of harmonics of Schwarzschild geometry and
idealized case that one can \ form many other empty space geo-
say efiect is “produced” by rnYn(m)(9,q)) metrics solve Einstein’s equa-
source? tions for this source “distri-

‘ bution”.
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Does “effect” satisfy the
boundary condition listed
in Table II?

Modified situation which is
compatible with the bound- l
ary condition
Scale factor associated with
this new source
Is source now well defined?

When specification of “sour-
ce” has been completed, is it ‘
reasonable to think of
“eff ” as well determined
by this specification plus
boundary condition?

Limiting procedure now en-
visaged
For each finite value of the
parameter a or b is the rele-
vant boundary condition sa-
tisfied?
Is boundary condition satis-
fied for infinite value of this i
parameter?

Electrostatic example

No—none of these ex-
pressions for Vfalls 011' as
fast as (1 /r) at great distan-
ces
9 =90 cos kz times

exp (—rz/az)

Range 11 of charge distri-
bution
Yes

Yes—in this event can
prove potential is uniquely ‘
determined by distribution
of electricity.

Range a of charge distri-
bution goes to 00
Yes—V falls ofi” as 1/r
or faster at large r

No—V does not fall off

Example from general
relativity

Schwarzschild geometry as nor-
‘ mally conceived does not de-

scribe a closed universe

‘ Many such masses spaced with
reasonable uniformity through
a closed universe
Efl‘ective radius b of typical

i Schwarzschild zone
No. Must specify What gravi-
tational waves if any are pre-
sent—in other words, must
specify otherwise undertermi-
ned features intrinsic to the
three geometry in which the
masses are imbedded at the
moment of time symmetry!”
Yes—expect other features
intrinsic to this three geometry
are now uniquely determined
by (00) component of Ein-
stein’s equation plus boundary
condition of closure;(‘) Mach‘s
principle satisfied
Effective radius 1; of Schwarz-
schild zone goes to 00
Yes—Schwarzschild zone is
a piece of a closed universe in
which Mach’s principle can be
censidered to apply
No—Schwarzschild geometry
is asymptotically flat

Other Examples
The ideal lattice universe is no more than one of many conceivable examples

to illustrate how one can consider as closed—and compatible in general
terms with Mach’s principle—geometries which ostensibly are asympto-
tically flat. Three more examples may give a slight impression of how wide
is the range of allowable geometries.

‘3’ See for example the “modified Taub universe” discussed in the text as an al-
ternative to thelattice universe as a solution of Einstein’s field equations which also satis-
fies the condition of closure.

‘4’ This uniqueness can be established in the case where the lattice universe contains
no gravitational waves along the lines outlined in footnote.
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Lattice Universe with Gravitational Radiation

In the lattice universe there may be present in addition to the “real” masses
also the effective mass indirectly contributed by gravitational radiation. Then
the inertial properties of test particles are affected by both sources of mass
energy. (4)

Modified Taub Universe

It is not necessary to supply any “real” masses additional to the one orig-
inal mass in order to secure a closed universe. Gravitational waves of suffi—
cient strength will supply the required curvature. This one is seen from the
example of the Taub universe [10]. There, gravitational radiation alone suffices
to curve up the space into closure. In this 4-geometry consider the hypersurface
or 3-geometry defined by the instant of time symmetry or maximum expansion.
Perturb this geometry to the extent necessary to introduce a spherical ball
of matter, at first arbitrarily small, eventually large or denser or both.
Close to this mass the geometry is nearly Schwarzschildean. However,
deviations from that limiting geometry become very great at distances com-
parable to the effective radius of the Taub universe!” In this universe it is
not reasonable to speak of a geometry primarily determined by “real mass”
and perturbed in only a minor way by gravitational radiation. On the contrary,
the gravitational radiation is the primary determiner of the 4-geometry—-and
on the inertial properties of test particles. The one “real mass” produces only
minor perturbations in the geometry except in its own immediate neighbor-
hood.

Unmodified Taub Universe
The fourth example is the Taub universe itself, free of any ”real matter”

at all. This solution of Einstein’s equations for a closed empty space is inter-
preted in the Appendix as a special case of a Tolman radiation filled universe
in which (1) Tolman’s electromagnetic radiation is replaced by gravitational
radiation; (2) this gravitational radiation, instead of being effectively iso-
tropic, is described by a single hyperspherical harmonic; and (3) this harmonic
has the lowest possible order, or greatest possible wave length, compatible
with the dimensions of the model universe.

(2) No investigation has been made of uniqueness when gravitational waves are
present in this universe. However, there is a related problem where the uniqueness of
the 3-geometry—for specified distribution of gravitational radiation—has been established

as a consequence of the closure condition [6], [7], [8].
‘5’ A first order analysis of deviations from Schwarzschild geometry has been given

by T. Regge and J. A. Wheeler, see ref. [11], but no attempt is made there to fit on to the
Taub solution at greater distances.



MACH’S PRINCIPLE AS BOUNDARY CONDITION 233

Does a Relation Between Inertia at One Place and Gravitational Radiation
at Other Places Signify Circular Reasoning?

Regardless of the details of the Taub universe, here is a closed space in
which the inertial properties of every infinitesimal test particle are well deter-
mined. Yet there are no ordinary masses about, no interactions with which
one can attribute the inertia of this test particle. Therefore, if Mach’s prin-
ciple is still to make sense, it is necessary to conclude that the distribution,
not only of mass energy, but also of gravitational radiation, has to be speci-
fied in order completely to determine inertia—or, in the words of general
relativity, completely to determine the geometry of spacetime. But gravita-
tional radiation itself is described as an aspect of geometry and nothing more.
Consequently one seems to be caught in a logical circle in trying to formulate
Mach’s principle. Apparently one has to give the geomerty in advance, not
only in order

(1) to say in any well defined way what one means by the term “distribution
of mass-energy”, but also

(2) to specify what gravitational radiation is present, so that one shall
thereby be enabled

(3) to determine the geometry of spacetime!
Evidently one can never feel happy about a formulation of Mach’s principle
that seems to contain this kind of circular reasoning. Therefore it is essential
to demand a mathematically well defined statement of his principle if Mach’s
ideas are to be considered as having any relevance at all for present relativity
physics.

Not Circular: Specify 3-Geometry, Determine 4-Geometry
Now for this mathematical formulation. It will be found to resolve the

question of circular reasoning in this way, that what is specified is 3-dimen-
sional geometry, and what is thereby determined is 4-dimensiona1 geometry.
At the same time it will help to clarify which features of gravitational radia-
tion are freely disposable (field “coordinate” and its rate of change), and
which features of the geometry are thereby determined (field “momentum”).

II. 3-GEOMETRY AND ITS RATE OF CHANGE AS KEYS TO
THE PLAN OF GENERAL RELATIVITY

What is the "Plan” of General Relativity?
It is known often to help in answering one question to ask another. There—

fore, it is fortunate for the search for a mathematical formulation of Mach’s
principle—a search now physically motivated —— that another issue is currently
under discussion. As Professor J. L. Synge stated it at the Warsaw conference,
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what is the plan of general relativity? What quantities can one freely specify,
and what quantities are thereby determined? What is the inner structure of
the dynamic theory of a geometry governed by Einstein’s field equations?

Plan 1: Initial Data on a Light-Like Hypersurface
One plan of dynamics starts with a light-like hypersurface. In this approach

as applied to the mechanics of a system of particles, one specifies the appro-
priate number of coordinates and momenta at the times when the respective
world lines cross this null hypersurface. This formulation of mechanics has
been investigated by P. A. M. Dirac and V. Fock. The corresponding formu-
lation of geometrodynamics, particularly as relevant to the study of gravi-
tational radiation, has been explored by R. Penrose, H. Bondi, R. Sachs and
other, and has been described in a comprehensive report by Sachs at the
Warsaw conference. However, this approach is not closely connected with
the formulations of dynamics which are most widely used in other branches
of physics. Whatever its relations with Mach’s principle, they cannot be re-
ported here because they have not been investigated.

Plan 2: Coordinates and Momenta—or Intrinsic Geometry and Extrinsic
Curvature—on a Space-Like Hypersurface

{Another plan of dynamics is more familiar. In particle dynamics give
coordinates and momenta at points on the respective world lines which have
a space-like relation each to the other. In electrodynamics give the field “co-
mordinates” and “momentum”—the magnetic field B(x1, x2, x3) and the elec-
tric field E(x1, x2, x3)—everywhere on a space-like hypersurface. In geo-
metrodynamics again give on a space-like hypersurface the field coordinates
and momenta—this time the 3-dimensional geometry intrinsic to this hyper-
surface,

as2 = (3)g,-k(x1, x2, x3) dxi dx", (8)

and the “extrinsic curvature” or so-called “second fundamental form”[12]
telling how this hypersurface is curved—or to be curved—with respect to
the enveloping—or yet to be constructed—4—dimensional geometry. When
the 4-geometry is written in the form

do2 = —dt2 = (4)gafidx“dxfi

= (mg-ii: (x0: x1: x2: x3) dxidxk +

+2Nia’x‘dx0-l— ((3)gikNiNk—N3) (a’xo)2 (9)
with the condition

x0 = x°* (10)



MACH’S PRINCIPLE AS BOUNDARY CONDITION 23 5

specifying the hypersurface in question, then the extrinsic curvature tensor
is given by the expression“)

K... = —(‘/2N0) (5(3)gik/ax°—N..k—Nkli), (11)
in which x0 is understood as being fixed at the value x°*. Here the vertical
stroke is used to denote covariant difierentiation with respect to the 3-geome-
try of the hypersurface, in contradistinction to the semicolon that marks
covariant differentiation with respect to the 4—geometry. In terms of the
extrinsic curvature tensor and its trace, the geometrodynamical momentum
is(7)

nu: = __((3)g)%(K"‘—(3)gi"TrK) (12)

Interpretation of the Four Potentials or Metric Coefiicients N0 and Nk as “Lapse
Function” and “Shift Function”

Some interpretation of the ADaM potentials Na is appropriate. Imagine
two thin ribbons of steel, distinguished from each other by the fact that one
has painted on it the label x°’ = 17.23; the other, x°” = 17.27. It is desired
to construct out of these ribbons a rigid curtain. Paint cross-lines on the
one ribbon at intervals which may gradually increase or gradually decrease
but which never change irregularly or erratically. Label them x’ = 16,
17, 18... Do the same on the second ribbon, taking care that the new pat-
tern of crosslines is not widely diflerent from the old pattern. Weld perpen-
dicular uprights or “Lapses” to the first strip at x’ = 16, 17, 18... As soon
as these uprights have been cut to the right lengths, joined perpendicularly
to the right points on the upper strip, and welded fast, the structure—with
all the curves thus forced into it—will be determinate and rigid. To the waiting
craftsman the architect sends two functions, No(x’) and N’(x’), the “lapse
function” and the “shift function”. The worker tabulates both at x’ = 16,
17, 18... In two further columns he tabulates for the same values of x’ the
product of No and of N’ by the number (x°”—x°’) '= 0.04. The one column
tells him to what heights to cut off the uprights which he has welded to the
strip that is lying down. The other tells him how far one way or the other to
shift upper ends before he welds them to the upper strip. At x’= 18 let the
value of what might loosely be called N’a’x0 be 0.5. This implies that the
corresponding upright is welded at its bottom to the cross line marked x’ =18.

‘6’ See R. Amowitt, S. Deser and C. W. Misner, ref. [13] and earlier papers cited
by them. This group of papers is referred to hereafter as ADaM. See also their chapter in
L. Witten, editor, Gravitation: an introduction to current research, ref. [14]. This book is
referred to hereafter as GIGR. See also references [15], [16] and [17].

‘7) This expression comes from ADaM. Why it is most naturally expressed as a con-
travariant tensor density is intimately connected with the consideration of K. Kodaira
see ref. [18].
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The upper strip is shifted 0.5 coordinate units to the right. Thus the “lapse”
is welded to it at a cross line marked x’ = 17.5. How the “shift” changes
from place to place—and how much the spacing between one coordinate
mark and the next differs between the upper and lower steel sheets—together
determine how much curvature is built into the curtain. Along this line of
reasoning, generalized to three dimensions one sees at once the reason for
the mathematical structure of Eq. (1 1).

Interpretation in Terms of the Length of the Normal and the Difference in Space
Coordinates at Its Two Ends

To state the same interpretations of N0 and M. in other words, return
to expression (9) for the distance between a point (36", x1, x2, x") that lies
on one hypersurface, x0 = const. and another point (x°+dx°,... x3+dx3)
on another hypersurface, x°+dx°. Here the dx’s are thought of as small
but finite quantities. Let dx° be kept fixed (at the value dx° = x°”—x°’ = 0.04,
for example!) but on the hypersurface so selected let one point, then another,
be tried until the invariant separation between it and the fixed point on the
lower surface is extremized. Vary do2 with respect to dx" and set the coeffi-
cient of 6 dx" equal to zero:

2(3>g.kdxi+21v}dx° = o. (13)
Solve for dxi and find

dxi = _(a>gik1vkdxo = —N‘dx°. (14)
The extremal value of the separation comes out—reasonably enough—to
be time-like:

d1 = Nod. (15)
Thus the “lapse function” No represents the proper time separation between

two hypersurfaces—measured normally—per unit of difference in their time
coordinates. The vectorial “shift function” Ni represents the coordinates at
the base of the normal diminished by the coordinates at the summit of the
normal, this difference again being referred to a unit diflerence between the
time coordinates of the two hypersurfaces.

-Lapse and Shift Functions Required in Addition to 3-Geometry to Defined
4-G’eometry

Evidently it is not enough to specify the geometries (”gm intrinsic to a
one parameter family of hypersurfaces in order to have a well defined 4-geo-
metry. One must in addition tell how these hypersurfaces are related to each
other. One must tell how far apart the surfaces are (“lapse function”) and
how they are displaced space-wise one with respect to another (“shift func
tion”).
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Arbitrary Lapse and Shift Functions Plus Arbitrary 3-Geometry Determine
Field “Momentum”; but Arbitrary Field “Momentum” and Arbitrary 3-Geome—
try are Ordinarily Incompatible.

From the field “coordinate” (”gm and its rate of change with respect-
to the parameter x0, plus information about the “lapse” and “shif ” as function
of position one can determine the “extrinsic curvature” Km and the associa-
ted field “momentum” (Eq. (11)). However, the converse is not generally
true. If the field “coordinate” (”gm and the field “momentum” or the extrin-
sic curvature Kn: are both specified arbitrarily, they will ordinarily be incom-
patible. The independent specification of the field coordinate and the field m0-
mentum is the wrong way to define initial value conditions in general relati—
vity.

The Initial Value Equations
The incompatibility of arbitrary intrinsic geometry of field “coordinate”

(”gm with arbitrary extrinsic curvature or field “momentum” nil follows
from four of Einstein’s ten equations. These initial value equations“) have
to do with conditions on the space-like hypersurface:

<3)R+(rrK)2—TrK2 = 2(87tG/c4) (were ) (16)
dens1ty

(K’f—oé‘Te = (821G/c4) (densuy .of flow of ). (17)
energy in i-direction

These initial value equations pose in sharpened form the issue, what is the
plan of general relativity: what quantities

(1) can be freely and independently specified and yet
(2) suffice completely to specify the past and future of the 4-geometry?

Plan 3 : Specify Completely Independently the Field Coordinates on Two Hy-
persurfaces

This question leads in turn directly to the two-surface formulation of
dynamics, where one specifies no momenta, only coordinates (or conversely)
—but coordinates on two hypersurfaces rather than one.“ Moreover, the
field coordinates on the one surface are specified quite independently of those on
the other surface. The complete freedom that one has in this way of specifying
the initial value data would seem to be what one wants when he asks for
a workable statement of the plan of general relativity (Table IV).

‘3’ See references [19]{24] and the chapter by Y. Foures in GICR.
‘9’ The following is based on a paper of R. F. Baierlein, D. H. Sharp and J. A.

Wheeler, ref. [25], which in turn is based on (1) the ref. [26] and (2) an analysis by R- F-
Baierlein which led to the variational principle of Eq. (31).



238 J. A. WHEELER

TABLE IV
The plans of electromagnetism and general relativity as expressed in terms of the two
surface formulation of dynamics. The field “coordinates” are specified on two space-like
hypersurfaces—most simply on two hypersurfaces which have an infinitesimal separation.

The physically significant
field quantities l

The coordinate independent
object which they define ‘

The dynamic equations
which tell how this object
changes from place to pla-
ce

The potentials normally in-
troduced to simplify the
analysis of these equations

Notation used for these po-
tentials when spacetime is
sliced into spacelike hyper-
surfaces

The dynamical problem as
formulated in variational
language for a region of
spacetime bounded by two
space-like hypersurfaces
a and 0'”

Electromagnetism

magnetic field
A 2-form: a honeycomb-

like structure of tubes
of force

Maxwell’s 8 equations

The 4 components of the
electromagnetic poten-
tial, Aa

The magnetic potential A
with components Ak and
the electrostatic or scalar
potential

= _A0

Give A’ on a’ and A” on
a”:in between take any
trial functions A(x°,x1,
xix“) and <p(x°, x1, x2,
x3) calculate action inte-
gral; then vary the four
potentials until the ac-
tion is extremized

Gravition
l

Components of the electro- Components of the Riemann
curvature tensor
The intrinsic structure of the

4-geometry in the neighbor-
hood (corrections to the Eu-
clidean pattern of distances
between one point and ano-
ther in a great table of local
”airline” (geodesic) distan-
ces)

Equations that refer directly
to the curvature compo-
nents

The 10 components of the me-
tric tensor, g,”

6 components of 3-metric (”gm
intrinsic to a slice; the nor-
mal proper time separation-
N° between two hypersur-
faces per unit of difference
in their time coordinates;
and the differences Ni (or
more conveniently, N1, =
mgl) between space co-
ordinates at the two ends
of such a normal, again per
unit of difference in the time
coordinates of the two hy-
persurfaces
Give (s’gik(x1x‘x") (this de-
fines a’) and arbitrarily call
the value of x0 on this sur-
face some number x‘”; simi-
larly, give (3)gilir and x0”.
In between choose any trial
values for the 10 potentials,
compute action; extremize
with respect to choice of the
potentials
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The simpler version of this
variational problem rele-
vant for the formulation
of initial value problem
and Mach’s principle; the
two hypersurfaces have an
infinitesimal separation. ‘
Variational problem well
defined in an open space?
Pay-off from this extremi-‘
zation in a closed space

What equation has auto-
matically been solved by
this extremization?

Situation now in brief

Further pay-off?

Recapitulation of what
information was required
for this prediction

Electromagnetism Gravition

Give A(x1,x2,x3) and aAlat;
have a simpler action prin-
ciple in which 97(x1,x2,x3)‘
is the only function to
be adjusted

No

Value of (p on the space-
like surface from which
one can then calculate
the electric field E—the
“momentum” conjugate
to the already specified
field “coordinate”, B

The initial value equa-
tion div E=47r9 in which
there appeared superfi- ‘
cially to be 3 unknown
functions of position

Have compatible values
for field coordinate and
field momentum on initial
spacelike hypersurface

Now have just the right
amount of consistent ini-
tial value data to predict
the electromagnetic field
everywhere in space and
at all times

‘3 3R+ (TrK)3—TrK2=

(1) Maxwell’s equations
(2) Law of motion of
charges
(3) Specification of diver-
gence-free magnetic field
and its time derivative on a
closed space like hypersur-
face

Give (3’g,k(x1,x2,x’) and
8(3’gik/at; have a simpler ac-
tion principle in which only
the “lapse function” N°(x1,
xfix“) and the “shift func-
tion” Nk(x1,x2,x3) are to be
varied
No

Values of No and Nk from
which one can calculate the
“extrinsic curvature” Km of
the thin sandwich or the“ mo-
mentum” conjugate to the geo-
metrodynamical “coordinate”
or intrinsic geometry (”gm
The initial value equations

167EG A
TTJJ

C
(Kf—ahrmlF

1671G A
T.L J.CI

in which there appeared
ostensibly to be 6 unlmown
functions of position
Have compatible values for
field coordinate and field
momentum on initial space-
like hypersurface

Now have just the right
amount of consistent initial
value data to determine the
geometry ofspacetime in past,
present and future—and hence
the inertial properties of
every infinitesimal test par-
ticle

(1) Einstein’s equatiens
(2) Dynamic law for the fields
or objects responsible for the
stress-energy tensor on the
right side of Einstein’s equa-
tions
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‘ Electromagnetism ‘ Gravition

(4) Specification of posi— (3) Specification of closed

tions and velocities of space-like 3-geometry and

charges at points where its rate of change with respect

their world lines cross to a parameter x°—a para-

this hypersurface meter which otherwise has no
direct physical meaning.
(4) Specification of initial
value data for fields or objects
responsible for Tm,

Is relation between “efl’ect” “Effect”=electromagnetic “Effect”=inertial properties

and“source” well defined? field. of test particle:geometry of

(“Mach’s principle”) Relation well defined only l spacetime. Relation well de-

if “source” is understood fined only if “source” is un-

to imply specification on derstood to imply specifica-

spaoe—like hypersurface tion on space-like hypersur-

of both (1) positions of face of both (1) density and

charges and (2) magnetic flow of mass-energy and (2)

field and its time rate of intrinsic 3-geometry and its
change rate of change with respect

to some parameter x°—this

latter reasonably enough be-

cause how otherwise would
one have a geometry with

respect to specify the distri-
bution and flow of mass?

Meaning of Phrase, “Independently Specifiable Coordinates?
It is necessary to state in what sense one is to understand the phrase,

“are specified quite independently of those on the other surface”. What one
says on this point depends upon the question Whether he is thinking in the

context of classical physics or quantum physics.

“Two-Surface” Formulation of Harmonic Oscillator Problem

By way of illustration consider the simple harmonic oscillator. Give the

coordinate x’ at the time t’ and the coordinate x" at the time t". In this
way fix the end points of a trial history,

XO) = xa(t)- (18)
The classical history in the intervening time interval is to be selected in such
a way as to extremize the action integral

xll' [II

[E = f L(xH (t). dxH (t)/dt. t) dt
x’, t’

= (m/2) f (xi—we) dr. (19)
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The solution is well known—a simple harmonic motion of circular frequen-
cy w:

x’ sin w (t"—t)+x” sin a) (t—t')

Associated with this “classical history” is the action—“Hamilton’s principal
function”—given by the expression

Inclmical = [moo/2 sin 60 (t”—t')] [(x’2+x"2) cos a) (t"—t')—2x'x”]. (21)

x3 (t) = xH classical (t) = (20)

The Quantum Propagator and its Relation to the Classical Action

In quantum mechanics one gives arbitrarily, not the coordinates at two
times, but the state function or probability amplitude 1p(x’,t’) at one time,
t’, and asks for its value 1p(x”t”) at some later time, t' . The function at
the new time can be found by solving the Schroedinger equation numerically
or otherwise. The focus of attention shifts from this equation to its solution
in Feynman’s formulation of quantum mechanics [27H31]. A propagator
gives the desired function in terms of the arbitrarily specified initial function:

+00

1/) (x”, t") = f < x”, t"|x’, t’ > 1/) (x’, t') dx’. (22)
—oo

Feynman writes this propagator as the sum of elementary propagation am-
plitudes,

< x”, t”|x', t' > = N2 exp (iIH/li). (23)
H

Every conceivable history contributes with the same weight; only the phase
difl'ers from one history to another. Destructive interference automatically
cuts down the efi‘ective contribution of the non-classical histories. The sum
reduces in the case of the harmonic oscillator to an expression of the form

< x": tl’lxl, t, > = N1 exp(iIHclassic81/h) (24)

where in the exponent Hamilton’s principal function has the value (21).

Normal Compatible Versus Exceptional Incompatible Specification of “Two
Surface” Data in Classical Problem

In the classical problem a difliculty arises when the time interval (t"—t')
is an integral multiple of a half period. After an even number of half periods
the coordinate must return to its initial value; after an odd number, it
must come to the negative of its initial value. (1) If x” does not agree with
x’ in tqe one case, or with —x' in the other case, the end point data have
been inconsistently specified. (2) Even if they have been consistently given,
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the momentum with which the motion starts off at the one end point—and
with which it returns to the other end point—is completely indeterminate.
In both cases the variational problem is indeterminate.

No Problem of Incompatibility in Quantum Propagator

No such problem of compatibility of the “end point data” or “two sur-

face data” arises in the quantum formulation. When the interval (t”—t’)
is a half period, the propagator reduces to one type of Dirac delta function,

< x", t"|x’, I > = —i6 (x”+x’); (25)

and to another type when the interval is a full period:
< xll, t"lx', tr> = '—6 (xll_xl)- (26)

In other words, the quantum propagator remains well definedfor all specifica-
tions of the two surface data, regardless of any specialities in the classical
problem in one case or another.

The Quantum Problem Always at the Background of Classical Analysis

No one has found any way to escape the conclusion that geometrodyna-

mics, like particle dynamics, has a quantum character. Therefore, the quantum

propagator, not the classical history, is the quantity that must be well defined.
Consequently it will not be considered a source of concern that one can spe-
cify the 3-geometries (”9' and (3)9” intrinsic to two hypersurfaces in such
a way that the action functional for general relativity admits no extremum.
Such cases are the geometrodynamical generalization of the special cases
just encountered for the harmonic oscillator. Only on this understanding
will it be justified to say that the 3-geometry on one hypersurface is specified
quite independently of the 3-geometry on the other hypersurface.

Concentration on the Case of Two Nearby Hypersurfaces

Of greatest simplicity is the case that alone will be considered here in any
detail, where the two hypersurfaces are “close together”. Then the determi-
nation of the momentum from the values of the coordinate on the two sur-
faces is the most immediate. This step carries one halfway through the dynam-
ic problem. Having consistent and singularity free initial value data for
momentum and coordinate at the initial time, one is in a position to com-
plete the solution—to determine without any ambiguity the history of the
system for at least a finite proper time into the past and futurefm) For

(1°) The proof that this can be done in the case of general relativity is given in the
book of A. Lichnerowicz, ref. [22].
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this purpose one uses the standard dynamical equations:
1. Hamilton’s equations for a system of particles,
2. Maxwell’s equations in the electromagnetic case,
3. Einstein’s equations in the case of interest here.

Alternative Ways to Apply the Two-Surface Formulation of Dynamics
Alternative ways of applying the two-surface formulation to particle

mechanics, electrodynamics and general relativity differ from one another
by the apportionment of the analytic load between a variational principle
and differential equations.

Excluded Option 1: Well Separated Hypersurfaces and Exclusive Reliance
Upon the Variational Method

One can avoid any use at all of differential equations in calculating the
history of the system, whether a particle, the electromagnetic field or geo-
metry. Instead one can rely entirely on the idea of extremizing an action
integral extended over the entire interval of time for which one wants to
know the history. For the particle, one specifies x’ at t’ and x” at t”. One
regards as the function to be varied, either x(t) alone, as in the familiar La-
grangian variational principle of Eq. (19), or both x(t) and p(t), independently
as in the Hamiltonian formulation

x”, I"

[p (t) 5:: (t)—H(p (t), x (t), t)] dt = extremum. (27)
x’. 1’

To express electrodynamics in variational language one calls on the familiar
vector and scalar potentials A and (p:

B = curl A, (28)

E = —oA/()t——grad q), (29)
so that half of Maxwell’s equations are automatically satisfied. The other
four follow from extremizing the integral

1= f [0/820(EZ—BZHG-A—em(1/c)d4x. (so)
Specified in advance are
(l) the charge and current densities Q and j (both in charge units] (length

unit)3) throughout the 4—dimensional region bounded by the two hypersurfaces,
(2) B on each of the two surfaces: in such a way that div B vanishes

—this specification being made by giving A on each of the two surfaces
(arbitrary gauge; no effect on the physics from the change A—>A—|—grad Z).

Varied everywhere between the two surfaces to extremize I are (p (quite
independently) and A (subject only to the specification of A’ and A" at t’
and t", respectively).
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Option 1 Continued: The Variational Principle for General Relativity
The appropriate action principle in general relativity (9)—when supple-

mented with source terms—reads
H H

X” 'igij

14 = S Margy/«3x0— No ((3)8)1”L*(g", A ...)+
r", (93;,

+No((3’g)1”[‘3’R-‘3’g'1(Tr “2—; (Trfl)2)]+2N.-niju}d4x- (31)
This variational principle results from adding complete derivatives to the
familiar Lagrange integrand of general relativity, ((4)R—|—L)(—g)‘/2, and trans-
lating the result into the terminology of ADaM. Here L* is BnG/c“ times
the invariant or scalar Lagrangian for whatever fields have energy and pro-
duce gravitational effects, expressed in terms of (1) the covariant components
of that field (the field components Fug in electromagnetism’ for example) and
(2) the elements g” of the matrix reciprocal to gag:

l‘s’gjk—NiNk/Ng (Nl‘INfi)

l (NJ/N3) —(1/N3)
Here mg” is in turn the matrix reciprocal to ‘3’gfl, and

N! E (3)gj"Nk. (33)
In (31) there are 16 functions of space and time to be varied in the region
between the two surfaces in such a way as to extremize the integral. Ten of
these quantities—reasonably enough—are metric coeflicients: the six mg”,
free except for having to reduce to the prescribed values at the two surfaces;
and the lapse and shift functions N0 and Ni (not N‘ l) which are entirely freely
disposable. The remaining six quantities, the momentum components at”,
are also adjustable without any conditions at all. In spirit this adjustment
of the momenta is like that of the particle momentum p(t) in Eq. (27). At
the start the function is free even to the extent that its terminal values are
free. However, extremization forces in that case the condition

5‘ (t) = 3H (1), x, t)/3P (34)
from which the momentum is completely determined in terms of the velo-
city. Similarly here“) (“Palatini philosophy”). Vary (31) with respect to
at”. Set the variation equal to zero for arbitrary on”. Find thus six equations
determining the six 7:” in terms of the Na and (”gm and their derivatives.
These equations are equivalent to Eq. (12) for the momentum in terms of
the extrinsic curvature plus the definition of Eq. (11), for this extrinsic curva—
ture. If one were concerned with translating the variational principle (31)
back into differential equations, instead of using it as a variational principle,

gm = . (32)
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he would: (1) Vary the lapse and shift functions. (2) Set the coefficients of
the four 6Na equal to zero. (3) Find in this way the four initial value equa-
tions (16, 17) that have to do primarily with geometry within the successive
hypersurfaces (4). Obtain the other six more “dynamic” components of
Einstein’s ten field equations by varying the six mg”: and setting the coeffi-
cients of the six 6(3)gi,, equal to zero. But in using (31) in its alternative
function—to replace all differential equations (in the spirit of Rayleigh and
Ritz)—one will (1) substitute into (31) the expressions for the six at” in terms
of the sih (3)817 and the four Na and their derivatives, and (2) use numerical
methods or ten analytical trial functions ((3)gij, Na) containing adjustable
parameters to extremize the action integral I. Unhappily the extremum,
rather than being a minimum or a maximum, is often saddle of higher order,
as one can convince himself even in the simpler problem of a single particle
bound in a harmonic oscillator potential. This kind of variational principle
does not normally lend itself either (1) at the theoretical level to establishing
existence proofs or (2) at the practical level to doing calculations.

Most Favored Option 2: Two Infinitesimally Separated Hypersurfaces; Use
of Variational Principle to Solve 2—Surface Initial Value Problem within the
Sandwich, then Einstein Field Equations to Predict All the Rest of the 4-Geo-
metry; Electrodynamics as an Example

Proofs of the existence of solutions are much more widely known in mani-
folds with positive definite metric [32][33] than in manifolds with indefinite
metric. Moreover the real problem to be treated is the initial value problem.
Once it has been solved one knows from the work of Lichnerowicz [22] that
the solution can be continued by way of Einstein’s ten field equations. There-
fore concentrate on the thin sandwich problem. The essential ideas are most
easily seen in the case of electromagnetism. The magnetic potential has been
specified on both surfaces (A’ and A”) but the separation between them has
been allowed to go to zero. Therefore, the terms in 32 and in j -A are not
adjustable in this limit. The variational principle reduces to the form

I: f [(E2/87z)—gqa]d3x = extremum, (35)
to be extremized with respect to the single unknown potential q). The theory
of this variational problem is well known. Out of the extremization—con-
ducted analytically or by the Rayleihg—Ritz method or in any other way—
comes a potential (p that satisfies the differential equation

qa = ——4ng— (ii/3t) divA. (36)
This potential generates an electric field

E = —3A/8t—grad (p (37)
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that automatically satisfies the initial value equation
div E = 4:19. (38)

One now has at hand E and B which can serve as the consistent starting points
for the dynamic analysis. For this purpose apply the other six equations of
Maxwell and predict the entire past and future of the electromagnetic field.

Concept of Thin Sandwich in Geometrodynamics
Similarly in relativity one seeks to adjust four potentials, the lapse func-

tion N0 and the shift function Ni, so as to generate an extrinsic curvature
tensor Ki,” according to Eq. (11), which will satisfy initial value Eqs (16)
and (17). This done, the initial value problem is solved. To formulate the
appropriate “thin sandwich” variational principle, proceed here as in electro-
dynamics to the limit in which the sandwich is idenfinitely thin. One can
state this idea in two alternative ways!” (1) Give nearly identica1(3)g,5k and
<3)g;,;. Take any arbitrary numbers x°’ and x0” for the labels to be applied
to these two hypersurfaces. In the definition of the extrinsic curvature Kik
(Eq. (11)) there enters the term 8(3)gik/8x°. Adopt for this term the value
((3)g,5,2—(3)gi'k)/( ”—x°’). Apparently the value of Km will depend on (x°”——
—x°’). Actually it will not. All that ever matters in K“, or anywhere else
is the product of ( ”—x°’) by the lapse function No. If a big value is used
for (x°”——x°’), a small value will come out of the variational principle for
No, and conversely. One sees this invariance property of the product also
in another way, that the normally measured interval of proper time between
the two hypersurfaces (Eq. (15)) is No( ”—x°’). Therefore, in this formula-
tion one takes as the quantities to be varied only the products

’70 = N0 (xo"_xo'), (39)

’71: = Nk (xo"_xo') (40)
and never lets the individually arbitrary quantities N0, Nk, xo', x0" show up.
To this conceptually simpler formulation of what is kept fixed during the
variation ((3)g,5k and (”g3") there is an alternative and mathematically sharper
statement. (2) Consider a continuous one-parameter (x0) family of 3-geome-
tries (”git (x0; x1, x2, 36“). Then the initial value problem under considera-
tion is defined by a knowledge of (”gm and 6(3)g,-k/dx° for some one fixed value
of x". The associated variational problem is found by dropping the factor
dx0 in the integrand (fix in Eq. (31).

The “Intrahypersurface Variational Principle” for the Initial Value Problem
of General Relativity

Now that only a three-fold space integration is called for, the next to
the last term in Eq. (31) can be integrated by parts:

2M7FUU —> *a- (Nilj+li)' (41)
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In a non-Euclidean topology more than one coordinate system is generally
required to cover a manifold without singularity. Each is defined in its own
coordinate patch. It might appear that a problem of transitiOn arises in pas-
sing from one patch to another in the integration by parts. The absence of any
such difficulty is guaranteed by the covariant character of the difl'erentiations
in (41). Moreover, the surface integral disappears in the simplest example
of a closed space, a manifold with the topology of the 3—sphere 5“. Thus,
let the integration start in the neighborhood of one point P in 33. Let it
extend out to a boundary with the topology of the 2-sphere S2. As the range
of integration is widened, S2 at first swells more and more. Later it begins
to decrease in size. Eventually, as the integration extends over the whole
3 space, the boundary collapses to nothingness at some point other than
P. No surface integral is left. Also no derivatives of the n” are left in Eq.
(31). Therefore everywhere that these momenta appear, they are easily expres-
sed in terms of the curvature tensor Kij by Eq. (12) and the Kij are then
expressed—via Eq. (ll)—in terms of the quantities that one really thinks
of varying: the lapse and the shift functions. The first substitution leads
by simple algebra to the formula,

I3 =f{t3)R— (Tr K)2—|—Tr Kz—L* (g“, A...)} ((3)g)‘/2 Nod3x, (42)
for the quantity to be extremized. In this “intrahypersurface” (IHS) varia-
tional principle, as in other applications of the Lagrangian method to dyna-
mics, the “kinetic” term (TrK)2—TrK2, appears with a sign opposite to that
of the “potential” term ‘3)R, whereas in the initial value equation (16) for
the energy density these terms appear—reasonably enough—with the same
sign. The second substitution—writing the Ki]- and the gate in terms of the
four functions to be varied, the Na by using Eqs (11) and (32)—is better
left understood than carried out explicitly!

The Also Useful Option 3: Exclusive Reliance on Dififerential Equations to
Analyze the Dynamics of General Relativity

Option 3 for analyzing the “plan” of general relativity, like Option 2,
starts with a specification of “fig“‘ and 0(3lgik/0x0 over the entirety of a closed
space-like hypersurface; in more picturesque language, it presumes a spe-
cification of two “nearby” 3-geometries (3’Q’and (3)9". Here “nearby” is to be
tested after the event by calculating N0 and from it (Eq.(15)) finding if the
proper time separation between the two hypersurfaces is or is not small
compared to the scale of the space-like variations in (39' and (3’9”. In addition
the density of energy—and energy flow—have to be given, just as in Option
2. The difference is only that the four potentials N, are to be found by sol-
ving the four Eqs (16), (l7)—not by directly trying to extremize the action
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integral I3 of Eq. (42). Once the lapse and shift have been found, however,
there is no difference in what one does between Option 3 and Option 2.
(1) Calculate the extrinsic curvature Kik. (2) Calculate the field momentum
7:". (3) Use all ten of Einstein’s equations to predict the 4-geometry in
past and future.

Verification that the Intrasurface Variational Principle and the Initial Value
Equations are Equivalent

On the right hand side of the initial value equations stand the density of
energy and energy flow, a total of four quantities. In contrast, the varia-
tional principle (42) makes reference to all of the covariant components of
the field responsible for this energy. One could, therefore, be concerned whether
the two approaches will give the same result. To check this point, vary the
Na in the variational principle of (42). Set the coefficients of the 6Na
equal to zero. Finally, compare with the initial value equations. The variation
of the field Lagrangian is the most complicated part of this program. Write

6[N,L*(gl'A...)]=L* 5N0+N,(aL*/a<4)g°fi)(3(4)gafl/3N,)5N,,. (43)
Evaluate the derivatives of the components of the reciprocal metric tensor
by using Eq. (32) for that tensor. Express the derivatives of the Lagrange
function in terms of the stress-energy tensor of the field in question, employing
for this purpose the standard formula [34]

T:5=(—g)"2(a/ag°fi) (—g)‘/2L*=<aL*/agafi>— (g) guru. (44)
Here T2; (m-Z) is an abbreviation for (8nG/c4) times the usual stress-energy
tensor Tafi(kgm2/seczm3). Find that all those terms in Eq. (43) go out which
contain an undifferentiated L factor. Those that remain give

2[T’i , 6N0+ TikaNk]. (45)
Here

TIl E(T5‘§,—2N"To’; N’N"T,-’}‘,)/N§=
= T*J' * =(87tG/c4) density of energy as corrected for the ordinarily oblique

coordinate system in use, a scalar with respect to coordi-
nate changes in the hypersurface

and (46)
TI -*2<3)g'""(T5".. —NST:;. )/N..:

T“ ' 2—1"? :(SfiGfi‘cI) densit} of flow of energy, corrected for oblique
coordinate system off surface. a contrm'aI‘iant
vector with respect to coordinate changes in the

hypersurface. (47");
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The rest of the variational analysis is straightforward. One verifies the agree-
ment with the initial value equations in all detail. '

Precisely What Features of the Energy are Specified on the Hypersurface
As the quantities which are specified on the hypersurface in the initial

value equations one evidently thinks most naturally of TI l and Tif", not the
much more coordinate dependent T:3. As regards the variational principle,
it is clear that it can be changed—if only the change reproduces the initial
value equations. Therefore, the Lagrange function, which may be complicated
or unknown or both, can be replaced by an expression which will have the
same variation (45). Thus, one comes to the modified variation principle

I? = f {[‘3’R-(TrK)2+TrK2— 2TIr] No—ZTkK} ((3)g)"’d3x. (48)

Elimination of the Lapse Function
The lapse function No enters only algebraically in the time component

(16) of the initial value equations and in the variational principle (48). To
bring this fact most clearly into evidence, introduce the abbreviation

Vii = (1/2)[1Vi|j+1v:lli—a(3)gij/axo] (49)
and write

r2 = (TrW—Trrz (50)
(“shift anomaly”). Then

Kij =7tj/No- (51)

K” measures the true extrinsic curvature, having to do with changes in space-
like distances per unit of proper time between two hypersurfaces. In contrast,
yij performs a similar function when one does not yet know the lapse fun-
ction, or scale of proper time, so that one has to use a purely nominal time
coordinate x“. The “kinetic” term in the variational principle becomes

(Tr K)2—Tr K2 = yz/N02. (52)

The modified variational principle becomes

1: = f {dam—Hrrwo—yz/No—2T:*Nk}«anthrax. (53)
If there exists an extremum with respect to No, it occurs for

No =[y2/(2T11—<3>R>1"2. (54)
The opposite sign for the root gives nothing physically new. With this reversal
in sign N, also comes out reversed in sign. All that has been changed is the
convention as to the direction in which time is increasing. Reference [25]
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comments about the result (54): “Thus not only is the thickness of the thin
sandwich from (3)9' to (3)?" determined by (991’ and (3)1”, but also its loca-
tion in the enveloping (4)9 is determinate. This is the sense in which we discover
a 3-geometry to be the carrier of information about time in general rela-
tivity”.

The Condensed Intrasurface Variational Principle as Mathematical Formula-
tion of Mach’s Principle

Insert expression (54) for the lapse into Eq. (53) and obtain the “con-
densed intrasurface variational principle” (CIVP), (see footnoteul) p. 252)

laws—1:72: f{[y2(2T:i—<3)R)1"2
+Tik}((3)g)1’2d3x = extremum.

(55)

The analogUe of this intrasurface variational principle in electrodynamics
is

f[(E2/8-rc) —g¢p]d3x = extremum (56)

equivalent with

E = —8A/3t—grad (p (57)

to the single differential equation

q2 = —4rrg—(3/6t)divA (58)

for the single potential (p. In Eq. (55) the given quantities are still the metric
(”gm of the hypersurface, the rate of change of this metric with a parameter
x", the scalar curvature invariant (”R of the geometry, and the density
of energy and energy flow. To be varied to obtain an extremum are now
not four potentials but only three, the components M, of the vectorial shift
function. They enter Eq. (55) (1) as coeflicients of the energy flow and (2)
as determiners—through their covariant derivatives—of the “shift ano-
maly” 7/2. The variational principle CIVP of Eq. (55) expresses in precise
mathematical form the principle of Mach as formulated here (Formulation
4): the specification of a sufi‘iciently regular closed 3-dimensional geometry
at two immediately succeeding instants, and of the density and flow of mass-
energy, is to determine the geometry of spacetime, past, present and future,
and thereby the inertial properties of every infinitesimal test particle. Thus,
from Eq. (55) when it possesses a solution, one obtains the shift Nk. Then
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from Eq. (54) one has immediately the lapse function. From these poten-
tials via (49) and (51) one obtains the extrinsic curvature. Then one has in
hand all the initial value data—and consistent initial value data—which
one needs for the integration of Einstein’s field equations and for obtaining
a uniquely specified 4-geometry (the arbitrariness in the coordinate system
in this spacetime having no relevance to its geometry!)

Condensed Initial Value Equation

Make small variations 6Nk in the shift components in Eq. (55). Set
the coeflicients of these variations equal to zero. In this way arrive at three
coupled second order differential equations for the determination of the
vector field N: (N1, N2, N3). The same equations may be obtained by sol-
ving (16) for N0 (in agreement with (54)) and substituting this result into
(17). The condensed initial value equations read

QT“i—‘3’R)"2[(Nn'j+1‘Gu—‘3’g19—‘3’gn‘3’gm(Nm|n+am—(3’gmn)l /J'
[(‘3’gah‘3’gw—(3’3”‘3’gbd) (Na|b+Nb[a—(3)gab) (Nola-FNaIc—‘wgcafll’i I

_T:i:+ (811:G[64) (i-th covarlant component of) (59)
density of flow of energy

Variational Principle Equivalent to Differential Equations Plus Boundary
Conditions

These equations plus boundary conditions are equivalent to the condensed
intrasurface variational principle (55). The boundary conditions are essential
in geometrodynamics as in electrostatics if one is to obtain a unique relation
between the “source” (density and flow of energy and gravitational radiation
as described by (3)57” and (3)n = 6(3)gij/ox°) and the “efl‘ec ” (the vector
shift N and the 4-geometry and inertial properties of test particles). The boun-
dary conditions in a closed space are obvious: the vector field N found by in-
tegration around the space one way has to join up properly with the vector
field found by integration around the space another way; or more simply,
the vector field (due account being taken of changes from one coordinate
patch to another [8]) (1) must be everywhere regular and (2) must lead to
a regular and single valued extrinsic curvature Kij. If the space is open, the
differential equations are still well defined; but they are not accompanied by
any boundary condition. Moreover, one can no longer expect the variational
integral ordinarily to have a finite and well defined value in the case of an open
space. Therefore, there arises the built-in consequence of Mach’s principle
as formulated here, that the space should be closed and that the geometry
(”9' and “”9”, or (”gm and 6(3)gik/ox°) should be everywhere regular.



252 J. A. WHEELER

III. COMMENTS ON MACI-I’S PRINCIPLE
AND THE INTRASURFACE VARIATIONAL PRINCIPLE

Issues Not Discussed Here: Uniqueness and the Question ofa New Kind ofCharge

It would be an enormous labor to take up one by one all the questions that
are left unanswered here and treat them systematically. Moreover, there is want—
ing one key element in the discussion—a proof that the solution of the variatio-
nal problem in (55) (when there is a solution) is unique.(11)
Efi'ect of Additional Mass on Inertia not Discussed

On the other side of the story there are many homely questions about the
physical content of Mach’s principle that ought to be spelled out and that now
can be spelled out. An example is the question how the inertial properties
of a sun and planet are afl’ected if centered around them at some distance is
constructed a very large spherical shell of mass. Here it is necessary to re-
cognize that in one way the inertial properties are affected and in another
way they are not, according as the clocks in use are within the shell or far outside
it. Again subtleties arise which are better left unmentioned than discussed
inadequately.

(11) The question of uniqueness of the solution of the initial value problem is well
understood in the case of electrodynamics in a closed orientable 3-manifold. Given
everywhere E and B, one only then arrives at unique E when one specifies the jump
Aktp in the potential in travelling the circuit of the k”: independent handle :or “worm-
hole” of the topology, where k runs over the values from k = 1 to k = R1 = R2 = the
second Betti number of the manifold. These numbers determine the charge or flux of
lines of force trapped in the topology. That the numbers Amp have to be fixed follows
most evidently from the occurrence of a surface integral f5¢p(E-dS) in the passage from
the variational principle (35) to the differential equation (36). Does topology make an equally
forceful appearance in the initial value equations of general relativity? Is there a geo-
metrodynamical analogue of electric charge? No argument for the existence ofsuch a charge
follows from the variational principle as discussed in the text (“coordinate representation”).
The surface integral of the quantity niiNi shows up in the integration by parts of Eq.
(41). In the discussion of the text following that equation it is remarked that surface
integral vanishes when the topology is that of a 3-sphere (no handles). However, the
surface integral also vanishes (C. W. Misner) for any closed orientable 3-manifold. The
nature of the 2-surfaces encountered in these integrals is the same in geometrodynamics
as in electromagnetism. Most simply, one such surface is conceived as the point of
contact between two balloon-like expanding fingers that are feeling their way down
into a wormhole from opposite months. The first factor in each integrant ~— E in the
one case, n” in the other case — is the same in this respect, that the quantity in ques-
tion has physical meaning and is a field momentum. The difference comes in the char-
acter of the second factor—the potential jump 34p in electrodynamics, the metric
potential N; in geometrodynamics. Only the gradient of (p has' significance in electro-
magnetism, so that 11) itself can suffer a net change in going around the circuit of
a handle. On the other hand, the quantity N. directly governs the distance between
points on the two nearby hypersurfaces that have specified coordinates. Unlike the
electromagnetic potential (p this quantity must return to its orginal value after the
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Instantaneous or Retarded Efi'ect of Source on Test Particle?
Another question has to do with the speed with which the supposed inertial

effects of sources are propagated to the test particles which they afl‘ect. In the
equation (58) connecting source and efl'ect even in electrodynamics, the effects
of the charge distribution on the potential appear formally to be propagated
instantaneously within the spacelike hypersurface. Yet the whole analysis
goes back to standard Maxwell electrodynamics, in which effects are all pro-
pagated, not instantaneously, but with the speed of light. That there is no in-
consistency between the instantaneous potential of (58) and the retarded
potentials of usual radiation theory is well known [35]. Analogously one finds
also in geometrodynamics a basically elliptic equation describing what appears
formally to be an instantaneous propagation of effects from one place to another
in a spacelike hypersurface. Yet one knows that a disturbance in a source at
one point in spacetime will propagate to another point only with the speed
of light [36]. In geometrodynamics as in electrodynamics the formalism itself
guarantees that there can be no discrepancy between effects calculated in the
two different ways from the same sources. Therefore, in principle there can
be no trouble from the question mentioned earlier: How can Mach’s principle
make sense when it implies that the accelerated test mass acts on all the other
masses in the universe and that they in turn have to act back on this particlefilz)
Of course, one would like here, as in Fermi’s analysis of electrodynamics,
to see more of the inner workings of the machinery by which (1) the propagation
in time and (2) a formally instantaneous propagation necessarily yield the
same solution of Einstein’s field equations!
Do Sources Have to be Followed Back into Past when Model Universe Was in
a Singular State?

That all effects appear formally as propagated instantaneously within
the space-like hypersurface disposes of another question about Mach’s prin-
ciple. Let one evaluate the inertial effects on a given test particle —- that is
to say, the effects on the geometry in a given neighborhood —— caused in the
sense ofMach by more and more remote sources of mass-energy. One appears to
be forced farther and farther back in the past. On this basis one ultimately comes
to regions where the geometry is singular and where it is not possible to follow
back any further the dynamical evolution of the geometry by employing Ein-
stein’s field equations only at the classical level.‘13) No matter! Specify the

circuit of a handle. Therefore, a geometrodynamic analogue to electric charge—ifone is
to come in at all—will have to show up in the conjugate representation of the initial value
problem (not analized here).

(1‘) For more on the equivalence between retarded and other ways of evaluating po-
tentials in electrodynamics, see for example ref. [37].

(1’) This question of singularities is raised and discussed further in an article by the
author in press in the special cosmology issue of The Monist, ref. [38].
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dynamic problem by giving the “sandwic ” type of data on an initial space-
like hypersurface: give “”9, 6‘3‘9/0x0, and the density and flow of energy.
Then the integral that one has to extremize or the triplet of differential equations
that one has to solve make no reference to anything going on back in the past
at a time or place where the geometry—calculated classically—may be sin-
gular.

Model Universe Clean of Constants of Motion

Still another question is this, “what are the true physical constants of the
motion” in general relativity. It is well known that total energy cannot be de-
fined and has no meaning in a closed universe [34]. The question has recent-
ly been raised‘13) whether such a system is not in principle clean of all constants
of motion whatsoever. One can compare a model universe in some respects
with a billiard ball set into motion on a triangular billiard table which has
sides e, n and l. The motion is quasiergodic. Started in one way the billiard
ball will come indefinitely close to repeating the motion it would have had if
It were started in another way. To an observer with only a finite resolving power
the only difference in the two motions might be one of rate or energy. Not
even this difference can manifest itself in the case of a model universe [38].
Nevertheless, there is no more difficulty in defining the dynamics of the billiard
ball (by giving x’, y’ at t’ and x”, y” at t") than there is in defining the dynam-
ics of geometry (by giving “”9’ and (3)9"). In other words, if there are no
constants of the motion they will hardly be missed!

Different Masses on the Two Hypersurfaces
Now for questions on which something more definite can be said. First,

how can it possibly make sense to specify “’9’ and (3)9” arbitrarily? Are there
not all sorts of conditions of compatibility that have to be satisfied? Consider
for example the case of a space that is asymptotically flat. From the rate of
approach to flatness at great distances,

(17s2 ~ (l+2m*/r) drz—l—r2 ((1492—l—sin2 0d<p2) (60)
one can evaluate the mass and energy of the system. If this has to be the same
on both hypersurfaces, how many other constants must there not also be which
have to agree between (3)9" and (3‘9”? To discuss this question more fully,
consider a specific example, the Schwarzschild solution of Einstein’s field
equations,

(102 = —-d1:2 = —(l—2m*/r)dtz—l—(l—2m*/r)‘1(17r2—i—r2(d62—|—sin2 qoz). (61)
Let“) 9' be the hypersurface t: t' = const. On this the asymptotic geometry
follows Eq. (60). Let the second hypersurface (3)9” be described at small
distances by giving t as some reasonable and regular function t” of r, 0 and (1)
going over at large distances into the formula

t" = (8m1*r)1/2 (62)
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with m: = a constant. Taking the difi‘erential of this expression and substi-
tuting into Eq. (58), one finds that the second hypersurface has the asymptotic
geometry

ds2 ~ [1+2 (m*—m1)/r] dr2+r2 (d02+5i112 0d<p2). (63)
The masses not only can be different but — in the example —- must be difl'erent!
One’s first surprise at this result traces back to a semantic obscurity in the
word “flat”;

Meaning 1: The intrinsic 3-geometry is asymptotically flat.
Meaning 2: The intrinsic 3-geometry is asymptotically flat and also the

extrinsic curvature is zero.
Only when “flat” is used in sense 2 do the apparent masses have to agree

between two asymptotically flat geometries. However, the two-surface formu-
lation of relativity focusses on intrinsic 3-geometry, so that “flat” there is
no problem of compatibility between the two 3-geometries in the example.
René Thom [39], [40] has even shown that one can fill in between two 3-geo-
metrics of different topology with a non-singular topology. Whether and when
the geometry laid down on that topology can also be non-singular is a deeper
question!

Question of Effectively Elliptic Character of the Thin Sandwich Problem
Does the CIVP (58)——or the triplet of differential equations to which

it corresponds—have elliptic character. This issue brings to mind the question
whether the equation

d21p/d62+(}.—V0 cos em = o (64)
has eigenvalue character. One might think not, to look at the regions of 0 where
the “oscillation factor” or “effective kinetic energy factor” (fit—V0 cos 0) is
negative. There the solution is curved away from the 0 axis. However, what
counts in the end for the question of nodes and eigenvalues is the region where
this factor is positive and the solution is oscillatory. The equation is eflectively
oscillatory in character (for )1 sufficiently in excess of ——V0). It is dilficult in
the case of (58), (59) to be precise at this stage; but one has the impression
that it is in a comparable sense efi’ectively elliptic. Space in the “thin sandwich
problem” is divided up ordinarily into regions where (2T*TT—(3)R) is posi-
tive—and where, therefore, also the shift anomaly 712 has to be positive—and
regions where the second quantity has to follow the first in changing sign.
At the interface between one such region and another the anomaly 9/2 has
to change sign. This situation reminds one—to use another analogy—of
the theory of buckling of shells, and of conditions at the boundary between
one region of crumpling and another.

As the shift anomaly 912 now comes so centrally into the discussion, a few
words about it are in order. Consider the equation for the eigenvalues of the
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extrinsic curvature tensor Kik—or rather, of the closely related shift tensor

3/“, =N0Kik. Consider the determinant

(711—1) 712 V13

‘ r21 (722—1) 723 = dank—(NZ)1+(Try)/12—/13- (65)
731 732 (7/334) ,

A change in coordinates changes the yi" individually but not the eigenvalues

l and consequently not the coefi'icients of the various powers of A on the right

hand side of Eq. (65). Therefore, consider a system of coordinates such that

at the particular point of interest the shift tensor 7)} is diagonal. Let the ele-

ments dOWn the diagonal—the eigenvalues be denoted by A, B, C. Then

the coefficient of —/l in the expansion of the secular determinant (A—Z)(B—Z)
(C—l) is

(BC+CA+AB) = §[(A+B+C)2—(A2+32+c2)1 = gurwr—Twn
= (1/2) (shift anomaly) = 312/2. (66)

Associated with the point in question consider a three dimensional space with
coordinates A, B, C. Then the shift tensor is represented by a single point in
this space. Moreover, this point is independent of the choice of coordinate
system in the hypersurface. In the space A, B, C construct through the origin

a line with direction cosines (3'5, 3%, 3%). Construct a double cone with
this line as axis with an angle of opening 0 such that

(1, 0, 0) or
c050 = 345 = scalar product of 3*(1, 1, 1) with (0,1,0)or . (67)

(0, 0, 1)

Then any point on a coordinate axis lies on one or other half of the cone.
Every point on a coordinate axis also annuls the shift anomaly, according
to (66). It takes only a few more steps to show that the shift anomaly is

(1) zero for every point on either cone;
(2) positive for every point within either cone; and
(3) negative in the neutral space between cones.

To each of these three cases may be said to correspond a particular character
of the shift tensor yi". What is the detailed value of the shift tensor is only
settled by extremization of the CIVP—or by integration of the initial
value equations with appropriate boundary condition——and is, therefore,
governed by the initial value data all over the hypersurface. However, only

the local value of the quantity (2T*-'- J-——(3)R)—read out of initial value data——
is required to determine the character of the shift tensor. Turn now from com-
ments on the general problem to a particular example.
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Example Where Both Hypersurfaces that Bound the Thin Sandwich Have Ideal
3-Sphere Geometry

Let both hypersurfaces have the geometry of the ideal sphere
x2+y2+zz+w2 = 1;

thus for “’"9’ (give it the name 96"!)
ds2 = a’2 [rzlgcz—l—sin2 X (d02+sin 0q2)] (68)

and for (3)9" (give it the name x°+Ax°!)
ds2 = a”2 [dxz—l— sin2 X 9162+ sin2 0q2)] (69)

where a’ and a” are constants. Or to use another language, consider a one
parameter family of such hypersurfaces, characterized by a parameter x“;

a = a (x0) (70)
and pick some fixed value of x“, thus specifying

a and da /(dx0 (~ (a”—a’)/Ax°). (71)
(As remarked earlier, the value of Ax” will drop out of the results at the end.)
The remaining initial value data comprises the energy flow, which we set equal
to zero, and the energy density, which we assume independent of position:

T**ii = constant (independent of x, 0, (p). (72)
The question now is: What 4-geometry to fill in between the two hypersurfaces
so as to satisfy the thin sandwich equations? The time-like perpendicular
erected to (“’9’ at the point x, 0,(p will have to be assigned a certain length.
Also it will be necessary to tell what point it touches on the hypersurface
(3)9”, or to tell what the starred quantities are in the following formula for
the coordinates of this point:

Z—Z*:9—0*’¢—<P* (73)
On account of the symmetry of the sphere it will be simplest to assume—as
a trial—the same angles for both points, or to take all the starred quantities
equal to zero. Thus the shift function is assumed zero:

N" = x’flAx0 = 0, etc. (three equations). (74)
Now for the shift tensor! It has to do with the fractional increase—between

one hypersurface and the other—in the distance between points with cor-
responding coordinates, say ()5, 0, (p) and (fl—dz, 0+d0, zp—l—dqo). But this
increase for the case we are considering is the same in all directions and at
all places, and is in direct proportion to the fractional increase in the value
of the radius. Thus the eigenvalues of yi" are identical:

(fractional increase in radius)A = B = C = _ a
(change in the highly nominal parameter x”)

= (l/a) (da/dx“). (75)



253 J. A. WHEELER

The point in the space (A, B, C) lies inside one half of the double cone, right
on the axis. The shift anomaly is positive:

72 = (TI W—TI 72 = (6/02) (dd/(1360?, (76)
but independent of position. Likewise the covariant derivative of yi" is zero;
and the N,- vanish. These circumstances guarantee that the condensed initial
value equations (59) are automatically satisfied. It only remains to find the
lapse function N0:

WIN? 2 2T*.LJ._.(3)R (77)

or
(6/a2) (da/No alx")2 = 2T*J-J-——6/a2. (78)

Instead of actually solving for No, it is better to recognize that Nodx" is the
proper time separation—call it dt—between hypersurfaces, the parameters
attached to which are x0 and x°+dx°, and is, therefore, directly the physical
quantity of interest. Thus write

(dd/(1'02 = (a2/3)T*J--L—1. (79)
The dynamics of the model universe are completely determined by (79) as
soon as one puts in the law of change of energy density with expansion:

T*J-J- = (8nG/c4) (Mc2/2n2a3) (80)

for a universe filled with inchoate dust (Friedmann universe); and

T’M-L = const/a4 (81)

for a system filled with isotropic radiation (Tolman universe).

Question of Uniqueness. The Linear Approximation
The purpose here was not to take up old problems anew, but to prepare

the way in a simple example to investigate the uniqueness of the 4-geometry
determined by (3) gik, a ‘3’gij/bx", T“" i and T*J-J-. Suppose the vector shift
function Ni = (95*, 0*, <p*)/Ax° is not assumed to be zero but investigated
in terms of the equations themselves. Will one find oneself with no alternative
except the familiar solution already sketched out? Unfortunately the three
coupled second order equations to be solved are only quasilinear, not linear.
The problem appears difiicult without some deeper mathematical conside-
rations to draw on which do not present themselves immediately. Therefore,
no decisive results can be ofi'ered here. What has been investigated is the case
where the contribution of the shift vector N, to the shift tensor

Vik = % (M|k+Nk|i—a(3)gik/¢)x°) (82)

is so small compared to the “main term” (Eq.(75)) that one is justified in treat-
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ing the condensed initial value Eqs (59) as linear in Ni. These equations then
take the form

(sin x)‘2(5zx*/002+ (sin 6)‘2(02x*/5<P2)+cot o 0x*/00+4x*)—
— (bloat) (090 */5§0+ (Sin 0)‘1(5/(39)(0 * Sin 0)) = 0 (83)

and

sin x(0/5x)(si11 x50 *ldxH- (sin (”40320 *I5¢2)+20 *—
—- (sinx)-3(a/ox)(sin3xox */()6)— (sin 6)—2(0/00) (sin2 00¢ */d<p) = 0, (84)

and
sin2 6 sin x(o/Ox)(sin xoq) *lbx)+sin 0(0/00)(sin 0090 */60) —

—(sin x)—3(o/ax)(sinaxbx*/o(p)—sin 0(a/aoxsin 650 */()¢p) = o. (85)
One can seek for a solution by writing

96*06, 9, 90) = Efimawme, 90- (86)
No thoroughgoing analysis along this line has been completed. However,
Professor C. W. Misner was kind enough to point out at the Warsaw con-
ference that the equations ought in principle to admit of rotations. This point
has been since tested and verified. It obviously makes no diflerence to the geo-
metry of the 3-sphere (3)9" whether one set of hyperspherical polar coordinates
x, 0, (p or a rotated set is used to describe the location of the points. However,
it does make a difference to the coordinate-dependent shift vector Nk. To fill
in between “99’ and “”9” with a thin-sandwich (”Q—compatible with the
intrasurface variational principle or initial value equations—does not in
itself fix the values of these quantities. The time-like normals that reach between
the one hypersurface and the other, which start at (x, 0, (p) on one hyper-
surface, and also end at (x, 0, (p) on the other hypersurface, will end at difi‘er-
ent values of (x, 0, (p) when a rotated coordinate system is used: (jg—95*,
0_0*a (Ia—(Pa!)-

Shifts Produced by the Six Independent Rotations
The calculation of the starred changes in the angles under a typical small

rotation is most easily made by going to cartesian coordinates:

x = asinxsine cosgo,
= a sin sin 0 sin ,y . X 90 (87)

z = a smxcosfl,
w = 0 cos 95.

There are six independent small rotations out of which the most general small
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rotation is constructed by linear combination. Consider as an example a turn
by the small angle 02w in the (z,w) plane.

dx = 0, dy = 0,

dz = a” w, (88)

dw = —0,wz

The resulting change in the polar angle 0 is

d0 = cos" 0 d(tan 0) = cos20 d[(x2+y2)1/2/z] = —cos20(x2—i—y2)1-’2 2‘202ww

= —cot )5 sin 6 0m. (89)

Similarly one finds the changes in all three coordinate angles under all six

independent rotations (Table V).

TABLE V
Changes in polar angles on 3-sphere brought about by the six independent types of ro-

tation

i 3*, ‘ 9“ . 9"
0y, 0 sin «p ‘ cot 0 cos (p
02,, 0 ——cos (p cot 0 sin (p
03,, 0 ‘ 0 ~— 1
0,”, sin 0 cos (p cot )5 cos 0 cos (p —cot )5 sin qzlsin 0
0,,w sin 0 sin (1: i cot 7: cos 0 sin (p cot 7; cos (p/sin 0
gm ‘ cos 0 —cot )5 sin 0 0

It is easy to verify that each line of Table V represents a solution of the
linearized initial value Eqs (83), (84), (85). It is the conjecture that there are
no other independent solutions of these equations which are free of truly geo-

metrical singularity—as distinguished from coordinate singularity‘l4’—-over

the entire 3-sphere.
Even if and when this conjecture can be established, there will remain the

question of uniqueness of the equations for this two sphere problem in their

full non-linear form (59). After that will be the question of uniqueness in more
general situations.

Assessment of Mach’s Principle
Pending the investigation of these apparently diflicult mathematical ques-

tions, it would not appear unreasonable to adopt as a working hypothesis
the position (Formulation 4 of Mach’s principle) that the specification of

(‘4’ In principle all question of what is a coordinate singularity and What is a truly
geometrical singularity can and should be eliminated by the use of two or more coordi-

nate patches (ref. [8],p. 259) to eliminate all singularities in the coordinate systems that
cover the 3-sphere.
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a sufliciently regular closed 3-dimensional geometry at two immediately
succeeding instants, and of the density and flow of mass-energy, is to determine
the geometry of spacetime, past, present and future, and thereby the inertial
properties of every infinitesimal test particle. In this sense it is proposed to view
Mach’s principle as the boundary condition for Einstein’s field equations
and an essential part of the “plan” of general relativity. The condensed intra-
surface variational principe (58) is the most compact mathematical statement
available of this interpretation of Mach’s principle. As conceived here, it
carries with it the tacit requirement that the model universe be closed.
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APPENDIX: THE TAUB UNIVERSE INTERPRETED IN TERMS
OF GRAVITATIONAL RADIATION OF MAXIMAL WAVE LENGTH

The Taub universe [10] is free of any “real matter” at all. Taub derived this
solution of Einstein’s equations,

ab2 = —d12 = yldx2+(y1 sinzx—l—y3 coszx) dy2+2y3 cosx dydz—l—yadzz—yihyadtz,
with

7/1 = cosh t/4 cosh2 (t/2)
ya = l/cosht,

from arguments of group theory having nothing directly to do with the kind
of considerations which are the center of attention in this report. Therefore,
it is of interest to see how one can be headed towards the same solution by
a natural physical line of reasoning.

Replace the dust in the Friedmann universe by electromagnetic radiation
distributed uniformly in space and in direction. One arrives at the Tolman
universe [41]. During its expansion and recontraction the wave length of
every standing wave varies as the radius a of the model universe. In con-
sequence the density of mass-energy varies not as l [(13, as in the Friedmann
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universe, but as l/a4. Replace the electromagnetic radiation by gravitational
radiation of short wave length. There is no longer any “real” density of mass-
energy on the right hand side of Einstein’s equation. However, the fine scale
ripples in the geometry bring about the same type of larger scale curvature
as would be caused by a “real” distribution of mass—energy. Let 6g denote the
local root mean square amplitude of the fluctuations in the metric and let
i = 1/27; = (wave length)/2:z denote their reduced wave length. Then the
effective density of mass-energy associated with the gravitational radiation is

of the order

Ti .L euective ~ (64/875G)(6g/i)2'

To curve a space up into closure with a radius which at the moment of max-
imum expansion has the value a0 requires an energy density given by the
equation

(3)12 = (16nG/c4) fl L,
or

6/a3 ~ 2(6g/fi)2.

Thus the amplitude of the ripples need not be great

6g (at maximum expansion) ~ 31’25t/a0
o

if the wave length is short.
During the expansion and recontraction the energy density, proportional

to (fig/ft)2 necessarily varies as 1 [114. Consequently the amplitude of the rip-
ples varies in accordance with the formula

6g (t)~ const1 it (t)/a2 (t)

N constgla (t)

N 3320M (t)

N (3%) (do/tz (0)-
Here the last expression refers to the case where the perturbation in the other-
wise ideal spherical geometry is described by a hyperspherical harmonic [42]
of order n. It is not reasonable to consider the factor 31/2 in this order of
magnitude formula as a reliable number.

From considering a gravitational wave of very short wave length it is
natural to turn to the opposite limiting case where the order n has the minimum
possible value and the wave length has the maximum possible value which
will fit into the 3-sphere. The corresponding hyperspherical harmonic has
well defined symmetry properties [42]. Possession of these symmetry proper-
ties, and of the critical amplitude required for closure, are the features of the
special gravitational wave that gives the Taub universe.
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The Taub universe is homogeneous but not isotropic: the curvature differs
from one direction to another, but the principal values of the curvature do not
change from place to place.

The curvature provides a more reasonable way of talking about the per-
turbations in the geometry than does the quantity 6g for a well known reason:
neither out of the metric coefl'icients nor out of their first derivatives can one
form coordinate-independent quantities. For the order of magnitude of typical
components of the fluctuation part of the curvature in a local Lorentz frame
one has the estimate

1‘20).-. ~ «fig/12
~ ag/(a/n)2
~ naoa3/(t),

as compared to the typical component of the curvature of the background
geometry,

A

Rbackground N 1/(120)

Thus, the mode of longest wave length and lowest n is the one for which the
perturbations in the geometry—as measured by the differences in the curva-
ture in different directions—are not greatest (as one might have thought from
the expression for 6g) but least. I

At early and late stages this perturbation becomes percentagewise larger
and larger every spacelike 3-geometry ultimately develops infinite curva-
ture, in accordance with what appears to be a general principle“)
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DISCUSSION

P. G. BERGMANN:
I would like to talk, briefly I hope, on the question of whether in

general relativity, specifying the intrinsic geometry on two surfaces
that form a thin sandwich can indeed enable us to determine the geometry



MACH’S PRINCIPLE AS BOUNDARY CONDITION 265

in between, by a scheme like the one sketched out here. That is whether it
is indeed possible to specify the four-dimensional geometry between two
space-like surfaces if on each surface you give the intrinsic geometry. As
far as I am aware there are at present no hard proofs either that it can or can-
not be done, or that it is a unique construction. So, what I want to contri-
bute is one more plausibility argument that occured to me recently and which
I want to present simply in order to give somebody else to test it out and see
whether there is any merit to it. The argument is not a proof, or a counter-
proof, and I do not present it as such. The argument actually occured in an
entirely different connection, which is immaterial here. It runs as follows:
supposing we gave ourselves the gm. on one surface, that is the intrinsic geo-
metry, and the n”, that is to say the extrinsic geometry of that surface. Then
we know that, together with the field equations, the Riemann-Einstein mani-
fold is determined, at least within some reasonable neighborhood of the
surface; that is essentially the formulation of the Cauchy problem that, for
instance, is to be found in Dirac’s papers. Now, of course, these data cannot
be given freely; they must be subject to four constraints at each world point
(the constraints in Dirac’s notation have been called HS and HL). Suppose
now I reduce the number of data that I give myself. First of all, I said that
I cannot give all the data; there are four restrictions. I could, therefore, by
a very shaky and shady argument, say that at every point of the surface I actual-
ly am free to give only the gm, and two out of the six 3;, the other four being
determined by the constraints. And that would still give me the full data.
In fact it would give me more, because it also fixes the four-dimensional
coordinate system; it also tells me how the surface lies Within the four-dimen-
sional manifold. Now, suppose that I subtract from these data two items at
each space point, namely the two um, and assume the worst loss of informa-
tion that I can assume, that is not that I lose information on the coordinate
system, but that I lose information on the intrinsic data. The intrinsic data,
the so-called observables, which in general relativity are constants of the
motion, are four per space point. If I gave myself two data less, the worst
that can happen is that I lose two items; which means that, there must exist
an algorithm, although I don’t know it, which enables me to get half of the full
data from the gm alone. This same algorithm must be applicable, and it
will give me the same information, regardless of which of the two surfaces
I use, for the simple reason that I have no extrinsic way of locating this surface
within the four-dimensional manifold; all I have to go on are the gm. So the
contention then is that you have precisely the situation that Prof. Wheeler
sketched for the harmonic oscillator, if I am mad enough to pick as my sand-
wich half a period. Either the data on the second surface are redundant or
they are inconsistent. Now, let me repeat again that I don’t claim a proof;
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this is a sort of counting argument: you count the number of degrees of free-
dom, you count the number of data, and you subtract. And as we all know,
this a very sloppy way of going about one’s business. But I thought it had
enough suggestive value to present it for further work by anybody who cares to.

H. BOND]:

There is a very great deal to this splendid lecture that I think has parti-
cular value in presenting underlying ideology, if I may say so, rather than the
finished product, which is something most of us like to hide behind. In the
fundamental ideas here, I agree very wholeheartedly with what Prof. Wheeler
has so beautiqy stated, that Mach’s principle is a principle for selecting
solutions. But beyond that point, I begin to differ from him, particularly
in relation to the answer to Synge’s question. Our difference, I think,
is that, to Wheeler, relativity is very much a closed theory, into which
I am only allowed to put simple specified rigid particles; and everything must
then follow, because I’ve only got this to put into theory from the initial
data. I like to think of it as an open theory, into which I put through the
equations of state and the energy tensor, various properties of materials;
and I like to think of equations of state as something very complex and dif-
ficult. I have already referred here frequently to the “time bomb” type equation
of state, something which has built into it that it goes off at some stage; I have
referred to that as what I regard in some ways as a typical example. And
I feel that we must try to isolate the information that becomes available
because of the properties of the equations of state from the initial data; this
seems to me to be our central point of divergence of view. There are two rather
minor ones; one is that I am much keener on the light-cone formulation,
particularly, of course, in connection with the ideology; because this has
enabled us to isolate the news function, which describes this; and on the second
minor point my feeling is, like his, that it is a cosmological condition through
which we get things in; but I like to think, that the expanding universe, through
the limitation on the influence by the expansion, because everything in the
distance recedes into a fog, gives us the best of both worlds between a closed
and an open one.

L. ROSENFELD:

In his illuminating lecture Professor Wheeler has made the position of
Mach’s principle in the mathematical scheme of Einstein’s theory perfectly
clear. This is a very important, and hitherto too neglected, aspect of this prin-
ciple, but it is not the only one. I have the impression that the more physical
role of Mach’s principle, to which Professor Wheeler briefly alluded in his
lecture, is far from exhausted. On the contrary, I think that it forms an impor-

5
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tant part of the general cosmological problem, which is much in need of fur-
ther investigation.

To make clear what I have in mind, I shall only recall the historically
famous Thirring problem, which was taken up again a few years ago by
Pirani. It is well known that the distribution of the far-away masses assumed
by Thirring does not lead to the desired expression for the forces of the cen-
trifugal and Coriolis type exerted by these masses on a body at the centre of the
assumed distribution. Pirani has shown, however, that by modifying the
distribution of the far-away masses it is possible to obtain other expressions
for the forces in question. Although he did not succeed in giving an example
of distribution leading to the right expression for the forces, his work is impor-
tant in suggesting that since the expression for these forces critically depends
on the assumed distribution, the right expression will presumably only result
from distributions that approximate more or less closely the empirical one.

Wheeler’s argument allows us to formulate Thirring’s problem in a way
which is perhaps mathematically more rigorous than is usual. We should try
to find out what assumptions for the metric on Wheeler’s “thin shell” lead
to a general metrical field containing in particular the right expression for
the Coriolis and centrifugal forces, and more generally all similar consequen-
ces of the physical Mach principle.

J. A. WHEELER:
I appreciate very much your comments, and I couldn’t agree more that

there is an enormous amount to be done in spelling out the implications
of a mathematically well defined formultaion of Mach’s principle, such
as I have tried to give here. I tried to refrain here from discussing
actual examples because there are so many beautiful and subtle points that
can not be covered in a limited time. For example, how are the inertial
properties of a particle affected by the presence of a nearby mass? This issue
relates to the work of Thirring. It is such a beautiful point in the sense
that in one way the inertial properties are affected, and in another way
they are not. This apparent paradox comes about through the fact that one
has two time scales, the time scale of the far-away asymptotically flat space
and the local time scale; and so one can say it either way; both are right:
the inertial properties are affected, the inertial properties are not affected.
I tried to stay away from these questions because it is better to discuss
them not at all than to try to say something in too short a time. I cer-
tainly don’t pretend to know all the answers. I couldn’t agree more that
there is much still to be done in analyzing such examples.

A. H. TAU'B commented that in the case when T00 and To, vanish on
a hypersurface there is no unique solution to the field equations.
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J. A. WHEELER:
It is particularly interesting to deal with this case where the stress and

energy vanish everywhere. The geo netry is still determined uniquely by
the specification of the two 3-geornetries that make up the thin sandwich.
An example is provided by Taub’s own beautiful solution of the field
equations. Here the space is closed. The geometry looks very much like
a Fried nann universe with so ne ripples in it. The geometry develops in
time even with no matter present. Moreover, the whole evolution of the
geometry in time is co .npletely determined.

A. H. TAUB:
But there is a variety of solutions of that sort. You’re talking about

only one.

J. A. WHEELER:
I am considering the situation where one gives a definite three-dimensional

closed space geometry and then another geometry which is nearly the same.
This information is enough to determine completely the four-dimensional
geometry—or the entire dynamics.
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1. INTRODUCTION

The question I intend to consider is quite elementary, and I have to excuse
myself for drawing your attention to it. This is the question of the uniqueness
of the mass (or energy-momentum) tensor which occurs in Einstein’s gravita-
tional equations

R"'— igWR = —xT””. (1)
These equations involve the mass tensor itself and not its divergence. In order
that they have a definite meaning, it is absolutely necessary that the energy-
momentum tensor should be defined in a unique way.

Another question arises. Einstein’s equations are sometimes written as

R”'— fi g’”R = —xT“'—fig”. (2)
The question is, whether the difference between (1) and (2) is a real one or
whether it is simply due to the lack of uniqueness of the mass tensor. Equa-
tions (2) are formally obtained from (1) if one makes the substitution

T”» Tw+ fig (3)
Since 1 is the cosmological constant, it may be asked whether this substitution
is connected with cosmological considerations; or whether the local determi-
nation of T’” is always incomplete and only possible apart from a term in
g”, so that Tt” can be replaced by

T'" = T"'+ P—gg”, (4)
C

where p0 is a constant similar in nature to the zero pressure in hydrodynamics.
Finally, the choice of the zero pressure may also be a question of cosmo-

logy.
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2. HISTORICAL REMARK

Long before the creation of relativity theory, about 90 years ago the Rus-
sian scientist Umov introduced the general concept of energy flow and the
English scientist Poynting applied this concept in electromagnetic theory.
But the general concept of energy flow met with strong opposition and even
recently some outstanding physicists declared the energy-momentum tensor
to be a non-physical notion. The question of the uniqueness of the mass
tensor has not been investigated until recently, even for the case of flat
space-time.

3. GENERAL ASSERTION

I shall try to formulate the conditions for the mass tensor of a physical
system that determine it uniquely, apart from an additive term in g’”.

Let the state of a physical system be described by field quantities (p1, ..., (p,l
that satisfy equations of motion (and possibly constraints) linear in the first
derivatives of gas with respect to the coordinates (and to the time). The quan-
tities go, may be scalars, vectors, or tensors.

Then the conditions are
a) T’" depends only on (p5 (and on gay in the case of general coordinates);
b) T"’ is a symmetric tensor;
c) VMTI" = 0 is satisfied as a consequence of the field equations (identically

in 6("05).
ax,

My assertion is:
If conditions a), b), c) are fulfilled by a tensor T"7, then the most general

tensor that satisfies them is
0T"’+bg“” (5)

where a and b are constants.
This assertion is supposed to be generally true, but it has been proved only

for special cases, such as the Maxwell—Lorentz equations and the hydro-
dynamical equations in flat space. My Polish pupil, Dr. Czeslaw Jankiewicz,
has also considered some cases of Riemannian space-time.

4. INFINITESIMAL OPERATORS

In the case of a flat space-time it is advisable to introduce infinitesimal
operators X”, corresponding to an infinitesimal Lorentz transformation,
such that for a vector

5A“ = eawapAfl, coal, = —wa5 (e0 = 1, e1 2 e2 = e3 = —l). (6)
For an arbitrary function f of the field variables we have then

af=%wa,,Xéfi(j), (X“” = —X“-”). (D
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The operators Xa” so defined are antisymmetrical and satisfy definite com-mutation relations.
In the case of an electromagnetic field in vacuum we have

aX10 = 401: Hz: _H3__EZL+E3L,
0E3 6E2 0H3 0H2

. . a a aX'“ = —X'“ = Ei——Ek—+Hi— —Hki. (8)OEk dEi d ()Hi
In the case of a field described by a vector u“ and some scalars we have

a
675'

The vector u“ may or may not satisfy the algebraic condition
eauau“ = c2. (10)

etc.

X“ = ecu” r)
ua

—efiu" (9)

5. EQUATIONS FOR Tl"

Besides the symmetry condition
T’” = T'" (11)

we have two systems of differential equations for the quantities T’" as func-tions of the field quantities. The first system is
X“‘3 U”) = euéaflTfi’fi—eflépnT’V—e,6a,T"”—e,6fl,Tl‘“. (12)

From this it follows in parcticular that

Tom = :r'"0 =§XOMT0°,

T’"" = T“ = EXWXM— 6mk)T°°, (13)
so that all components are expressed in terms of T”.

The second system is obtained by eliminating the derivatives % between
the field equations and the equations a

E 0%T’" =V" s 0995 bx” = 0. (14)

6. FIRST EXAMPLE: MAXWELL EQUATIONS
Introducing the antisymmetric tensor and we may write

{55; : C Y1 i-Ird‘Hi . \T ‘65;
‘2' r (3.1-: -‘ C).\vi

:0.
it . (15)a 11k w an a a m_I_'_:_(1 \ Flu-if _3 \ ‘

dz #1 ex;- .._4 (.eit -

=0.
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Hence, the second set of equations is

()T’i 6T” . 6T“ 0T”
—‘031iu = Avail” —_+08m¢

bEk DE,‘ (3H,c (E,

where /'L’ and u‘ are Lagrange’s factors. From this we find

= 76,-]; (16)

T0“ = %(E2+H2)+b (17)

and applying previous formulae

rm = a[EX H11, I“ = alé 6ik(E2+H2)—EiEk—H,-Hk} -b6,-k. (18)

The terms b in CI"J0 and —b6,-k in T"‘ indicate the degree of arbitrariness in the

energy-momentum tensor.

7. SECOND EXAMPLE. HYDRODYNAMICS OF A PERFECT
FLUID

Putting 1 bu“

(19)

we may write the equations of hydrodynamics in the form

P 510 a
1+— w“=a°fi , 2 — u“ =0. 20( 62) M M (e ) ( )

The second set of equations for T'" will be of the form

or!” P arm? 9 bT’“
a“ + 1 —— u”e — —6, —eau°——— = 0. 21

{a (+c2) flap ”c2 a} ()u” 9

01‘

a 12 ""in a; +...}+us{:_§o.+u}=o (s: 23>. (22>
Since TI” is a tensor depending on a single vector u“ we have

TI“ = Au"u’+Be,l6u, (23)

and, solving the differential equations for A and B,

W = {g (1 + £2) u“u"—M1513] + befits". (24)
C

We have again two constants a and b.
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8. CONCLUDING REMARKS

When the choice of units for the energy is made, then the only indetermi-
nacy in the energy tensor is the constant p0 in the expression (4). This constant
cannot be determined from local considerations. What kind of considerations
are to be used instead? How is the zero point of the pressure to be determined?

In a space that is flat at infinity we may assume that the field variables
tend at infinity to such values that the mass tensor vanishes at infinity.

In a space of more general character the determination of the value of the
additive constant in the energy-momentum tensor becomes a problem of
cosmology, and a hypothesis concerning the form of the Einstein equations
includes that on the form of the mass tensor.

DISCUSSION

F. J. BELINFANTE:

You used certain methods in which you postulated that the tensor depends
only on the field strengths and not on the derivatives. What could you do in
the fermion case, for the Dirac field?

V. A. FOCK:
I have only considered the case where the field variables are scalars, vectors

or tensors, but not spinors.

P. G. BERGMANN:
I should like to ask you in connection with the ambiguity of the tensor

in the cosmological case, whether perhaps the requirement that has often been
expressed, that the energy densities be positive-definite, does not in these cir-
cumstances, similarly as in mechanics, simply mean that the energy is bounded
from below; that is, that it cannot take infinite negative values. If it has
a finite negative value one can always add a constant term of the type that
you have indicated, in the cosmological case.

V. A. FOCK:
I have not thought about this question.
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CONCLUDING REMARKS

P. G. BERGMANN
Syracuse University

BEFORE I comment on a few of our discussion topics at this conference,
I should like to preface my remarks by saying, as I did at Royaumont,
that it is humanly impossible, or at least impossible for me, to do justice
to all the topics that have come up, or to close each of these discussions with
a few words that proclaim the Truth, with a capital T. This warning
is, of course, not meant primarily for the more experienced among us, who
may have had to give such summaries or conclusions, themselves, elsewhere,
and who are, at any rate, aware of the fallibility of all of us, but I want to
make sure that there is no misunderstanding among us on this score.

The second preliminary observation of mine refers to the fortunate cir-
cumstance that we have had several concurrent seminar meetings at this
conference; as a result you cannot charge my incompetence or ignorance
necessarily to my negligence. I may simply plead that with but one body
you cannot attend two simultaneous weddings. So much for my excuses
for my shortcomings.

One more thing before I come to specific technical topics. All of us who
are comfortable with English, be it our native tongue or nOt, owe consid-
erable thanks to those among us who speak principally Polish, French,
Russian, or what-have-you, who have graciously permitted us to conduct
about ninety percent of our conference in that language in Whose reahn most
of the linguistic illiterates are to be found. As the years go by, I expect that
an increasing number of linguistic illiterates will turn up from other regions,
and we shall have to find ways for distributing the conference languages more
evenly. We may even have to learn each others’ languages well enough that
we need not impose on them with our own ignorance. In the meantime,
we should certainly voice our appreciation of their forbearance.

Coming to the technical topics, I should like to comment on four discus-
sion areas, each comprising several of the talks. These are: (1) Conservation
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laws and ponderomotive theory; (2) the present situation as regards exper-
imental and observational tests of general relativity; (3) radiation theory;
and (4) whether and how to quantize the gravitational field. Parenthetically,
I have been told that the fifth, and by far the most important topic, has
been torsion; to discuss torsion would have been personally embarrassing
to me, because I am not too enthusiastic about this topic, no doubt because
of my ignorance. Very fortunately, I understand, this topic has been presented,
and definitively, yesterday afternoon at a seminar that I was unable to
attend, and thus I am saved from having to exhibit in public my own in-
competence in this area.

Let me first try to summarize my understanding of the present views of
energy, and how it is conserved. At the root of this whole complex lie the
theorems by Emmy Noether [l], which state that in a theory whose dynamical
laws are derivable from a variational principle and which incorporates an
“invariance group”, to each invariant transformation there corresponds
a conserved quantity. (In field theory, one might speak more advantageously
of an equation of continuity.) If you consider general relativity as a local
theory, that is to say without regard to boundary conditions at infinity, then
the invariance gr0up is the group of curvilinear transformations. Even in
a finite four-dimensional domain these do not form a Lie group but corre-
spond, topologically, to a function space. Therefore, the number of conserved
quantities (which, incidentally, are the generators of the infinitesimal invar-
iant transformations which belong to the group) is infinite. Our task then
is to fish out, from this ocean of candidates, a few constants of the motion
Which may be identified with, or denoted as, the energy, the linear momentum,
and the angular momentum of the field.

This can be done in several ways. But in order to succeed we need, in
my opinion, to construct a number of fields of displacement vectors, one
for each of the quantities to be conserved. We do not require congruences
of three-dimensional hypersurfaces. (Congruences of hypersurfaces generally
define covariant vector fields, but not vice versa; and a covariant vector field
defines a displacement vector field only if we have available a non-singular
metric tensor field.) Once we have characterized—invariantly or otherwise—-
a contravariant vector field, it defines for us an infinitesimal coordinate
transformation. In special cases there may be particular vector fields that
offer themselves and which appear particularly appropriate for this role,
though in general there is an infinity of such fields. One obvious case in point,
which permits the characterization of a vector field in purely local terms,
is the existance of isometries; the “special” vector field is then the Killing
field. For each Killing field present we can define an associated quantity
that is conserved. Of course, that is not such a tremendous triumph, after
all: In the presence of a Killing field every functional of the metric on a three-
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dimensional hypersurface is conserved. Nevertheless, the generators of
an isometric displacement can be identified, and they might be interpreted
as energy, linear momentum, or angular momentum, depending on the
particular situation.

In this connection Professors Plebafiski and Moller explained what
tetrads can do for you, aside from purely technological considerations: If
you construct a tetrad (or “Vierbein”) formalism in a theory that is equiva-
lent to the conventional theory of relativity, then the choice of a tetrad at
each world point is arbitrary (except for considerations of continuity and
differentiability). Each choice results in a definite expression for energy
and linear momentum; but the number of possibilities of choice is as large
as if we had not introduced tetrads at all. Only, perhaps, the expressions
look more persuasive than without tetrads. You will get something new only
if you introduce a principle that restricts the freed om of choice of the tetrads,
and with it the range of choice for the energy-momentum expressions. The
work by Professor Muller and by others that is now in progress may persuade
us that a particular set of restrictions is to be preferred on physical grounds;
that remains to be seen. In the absence of isometries, asymptotic boundary
conditions, or other “special” situations, such a fixation will constitute a signif-
icant modification of, or addition to, the conventional theory. Professor
Maller, I feel certain, agrees with this analysis. In view of the fact that the
search for an acceptable fixation of tetrads is in its beginnings, I shall not,
as it were, uproot the new plant to see whether its roots are properly growing;
let us rather wait and see.

Suppose we have chosen a particular displacement vector field, and with
it a certain expression for the energy or other generator; then what can one
say about the transformation laws of these quantities? I am thinking in partic-
ular about the class of solutions of the field equations that satisfy asymptotic
boundary conditions at infinity along the retarded light cones. The London
school, R. Sachs, and others“) have shown that for this class of solutions
one can define uniquely a four-parametric set of vector fields which represent
the rigid translations at infinity. As required, these infinitesimal coordinate
transformations all commute with each other. In View of the fact that the
GBM group (R. Sachs(1)) also contains the homogeneous Lorentz transfor-
mations as a factor group with respect to the invariant subgroup of the “super-
translations”, it is possible to state exactly how the “translations” go over
into each other under a Lorentz transformation. In the absence of radiation
(i.e. if the “news function” Bondi“), vanishes) the fixation of the time axis
determines the energy (and the linear momentum) as a constant of the mo—

(1) H. Bondi and collaborators; R. Sachs; E. Newman and collaborators; all in
process of publication.
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tion, so that the transformation law under the whole GBM group (which
may be considered as the invariance group characteristic for this class of
solutions) is exactly what one would expect.

In the presence of a pulse of radiation which is limited in (retarded)
time, there are still two “half-universes”, the time prior to the onset of the
pulse and the time subsequent to the termination of the pulse, in each of which
the energy is constant and transforms as in the previous case. While the
radiation pulse takes place, the total energy changes, and the question arises
whether the “rate of energy radiation” can be given a Lorentzlcovariant
meaning. If we could identify “the same retarded time” for all null direc-
tions uniquely, we should, presumably, be able to fix such a rate of radiation.
But the meaning of the “supertranslations”, which form part of the GBM
group, is precisely that this is impossible, at least in our present state of knowl-
edge. Thus, the rate of energy (or linear momentum) radiation will depend
on the choice of coordinate system and will change under supertranslations
in an involved manner, even though the direction of the time axis may be
kept fixed. I do not believe that there is any serious difierence of opinion
on that score.

Whether the displacement vectors should be combined into a tetrad
field is a question to which I can contribute very little. A tetrad field, at
least as I understand the term, is not a combination of four unrelated vector
field, but of four fields of mutually perpendicular unit vectors. Again, as
Plebafiski has stressed, the merits of such a choice may be discussed on two
levels: either as one of convenience, with no invariant method of selecting
“suitable” tetrads; or, if such a method should be made available, as an
enrichment of the conventional theory. In the latter case we should have to
deal with a new physical theory, and no longer with an issue of techno-
logical convenience.

No discussion of ponderomotive theory, that is to say of the so-called
EIH theory and its subsequent developments, had been planned by the com-
mittee of our Polish hosts, no doubt‘ because they did not wish to impose
on us with what we know is actually close to their hearts. On the whole,
the problems of motion of ponderable bodies entered our discussions only
by way of the back stairs, as it were, of the conservation laws. The major
exception was Professor Dirac’s paper. Though he concerned himself with
the behavior of a particle whose internal structure was itself described by
a least-action principle, the fact is that the over-all motion of his particle
would obey the EIH theory; this is because outside a finite domain the vacuum
field equations of the pure gravitational field are to hold. Thus, the particle
may be described though not fully, as a region in which the pure gravita-
tional equations are not satisfied. On the other hand, the EIH theory has
no bearing on the internal stability of such a region, and it is with questions
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of internal stability that Dirac, concerned himself. His examination of non-
spherical disturbances is continuing; it will be most interesting to see whether
a structure as simple as the one he has postulated suffices to produce a stable
particle-like solution. For the time being, no similarity to real particles is
claimed.

I shall now turn to a sketch of the present status of the second major area,
the experimental evidence bearing on gravitational theory. From all we have
heard, the three so-called classical tests appear now to be in very good
shape. They have been on the agenda of every relativity conference since
the one at Berne in 1955, where they had been discussed by the California
astronomers. Here they were discussed by Professor Ginzburg. Some of
the tests cannot yet be carried out with the accuracy we should like to see,
in particular the bending of light rays. The advance of the Mercury peri-
helion has been confirmed with good accuracy quite some time ago. As
for the gravitational red shift, it is true that the astronomical data leave
much to be desired, if they are to be drawn on for a confirmation of
Einstein’s theory. In View of the Pound—Rebka experiment, which is purely
terrestrial and which yields excellent agreement with the theory, I believe
that the solar red shift data have lost all interest in that respect and have
become part of the exploration of the sun’s atmosphere; as such they will
undoubtedly be pursued until all outstanding questions have been clarified.
Apparently, the accuracy of the Pound—Rebka experiment is capable of
further improvement, and an error of less than 1% may perhaps be achieved.
Every critical analysis has shown, though, that the red shift is not a very
discriminating test of general relativity but is essentially predicted by the
principle of equivalence, regardless of the other details of the theory.

In Einstein’s opinion, the three classical test were not the crucial tests
of the theory, anyway. He felt that the real foundation of the theory consisted
of its invariance properties, i.e. the principle of equivalence, and that the
crucial fact was the equality of gravitational and inertial mass; accordingly
the crucial experiment was that of Eotvos. In this connection we ought to
mention the experiments now being performed by R. Dicke at Princeton,
who hopes to better Eotvos’ accuracy by three orders of magnitude or better;
I believe that he has already gone two orders. Personally I expect that Dicke’s
group will simply confirm the null effect, but whether or not that will be
the outcome, this effort should certainly be followed. Any discrepancy will
be extremely diflicult to explain away. Recently, a variation of the experi-
ment has been proposed, one in which the ponderomotive behaviour of po-
larized particles is to be examined. This is an entirely different type of exper-
iment, not one that tests the principle of equivalence, but of considerable
interest in its own right. I am skeptical about the possible magnitude of
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such an effect of anisotropy, but the proposal should certainly be examined
carefully [2].

Let me briefly mention some new test that are in various stages of devel-
opment. The gyroscope experiments are fairly far along, perhaps enough
so that we may hear some results at our next conference. Finally there are
proposals to observe gravitational waves. Farthest along, to my knowledge,
among these is the instrument by J. Weber, which is peaked in the low kilo-
cycle range. For low frequencies, 10“2 to 10‘3 cycles per second, Weber has
suggested that the normal quadruple modes of the earth might serve as
detectors. If one searches for gravitational waves, one ought to look in several
frequency ranges, inasmuch as we do not know which systems in nature
may turn out to be powerful producers of such waves.

Next I shall come to radiation theory. I think the most beautiful devel-
opment is that begun by the London group about Bondi, which is also being
continued by Sachs and by Newman!” Without engaging in unnecessarily
dubious mathematical procedures, we can now get fairly directly, and quite
intuitively, at the intrinsic degrees of freedom of the gravitational field. As
explained by Sachs here, we can, preliminarily, split these degrees of freedom
in two, the incoming and the outgoing waves. If we give the Cauchy data on
a three-dimensional hypersurface that consist of one outgoing (“future”)
light cone and a continuing half-cylinder that extends into the future, then
the incoming wave data will be found on the conical, and the outgoing
on the cylindrical portion of that hypersurface. Alternatively, one can discard
the incoming modes althogether, by suitable radiation conditions, and re-
strict oneself to the consideration of a cylindrical hypersurface at spatial in-
finity. .

It has often been said that the total number of degrees of freedom of the
gravitational field equals two per three-dimensional point, and that the Cauchy
data must be four functions of three arguments. Bondi’s and Sachs’ “news
function” represents the outgoing modes only. Accordingly, it summarizes
that half of the Cauchy data in the form of one complex, or two real func-
tions of the three arguments, u, 0, and Q5. u stands for the retarded time
(t—r), and 6 and £25 are the two angles that identify null directions leading
to the points of the future celestial sphere. Certainly, the counting game of
degrees of freedom comes out gratifyingly well.

Obviously, there is an intimate connection between radiation theory and
Cauchy data, and some important new work is in the ofling, by R. Penrose.
I cannot report on that work here, because much of it will be communi-
cated in the near future, rather than in the past. And in spite of many attempts
to generalize from the orthochronous to the full Lorentz group I do not
wish to comment on something that is going to happen.

I come now to the last of my four conference topics, the quantization
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program. In view of the great difficulties of this program, I consider it
a very positive thing that so many different approaches are being brought
to bear on the problem. To be sure, the approaches, we hope, will con—
verge to one goal; but the points of departure are quite diverse. I think I
should never have dared to do what Feynman is doing, but I am very happy
that a, shall we say, reasonably competent physicist like him is willing
to try it. As I understand it, his program consists of starting with the tech-
niques that we know are successful in quantum electrodynamics, and of
adding to them only as needed. The approach is a weak—field, or pertur-
bation, approach, which starts from the Minkowski metric, considered to
be c-numbers. At each stage of the approximation “gauge-type” covariance
is required; this requirement has turned out to be a pOWerful instrument
of checking for forgotten diagrams. Much of B. DeWitt’s work also is
concerned with the application of techniques already tested in coventional
quantum field theory.

Most of the other approaches to quantization that have been discussed
here center on the task of constructing “observables”. I should like to
point out one difference in approach which has not been brought out at
this conference, but which I believe is worth recording. If you search for
observables in the unquantized theory as your first step, to be followed
subsequently by the quantization of a theory already formulated entirely in
terms of invariant, or intrinsic, variables, then that means that you pro-
pose to construct a Hilbert space Whose state vectors consist entirely of phys-
ically permissible states, that is to say of states that satisfy all the constraints;
in other words, in such a theory each constraint expression equals zero ab
initio. Your operator algebra is confined to such operators which map the
set of permissible states on itself. All these operators are necessarily con-
stants of the motion, and invariants. Accordingly, in such a formalism the
whole original invariance group of the theory is lost. This is why Dirac has
proposed a somewhat different approach. It consist of quantizing a con-
ventional theory in its Hamiltonian version, such as the one he has worked
out in his papers of 1958 and 1959 [3], [4]. The operators that appear in
this theory are the gm and p’", which Professor J. A. Wheeler also used
in his talk this morning. These operators are not defined on the Hilbert space
which I have just described; they will map a permissible state into one
that violates the constraints, and occasionally vice versa. The Hilbert space
(which consists of the permissible states only) would be a linear subspace
of the linear vector space which contains the non—physical states as well,
and which is needed to give the above “canonical” operators, and their
standard commutation relations, any mathematical substance. Though both
the “big” linear vector space and the Hilbert space are infinite—dimensional,
one can say, in a certain sense, that “almost all” members of the base of
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the “big” vector space lie outside the Hilbert space. In the “big” space we
have the means for giving expression to the invariance group of general
relativity,—this is undoubtedly the principal motivation for introducing it
at all,—in terms of the generators of the curvilinear coordinate transforma-
tions (Dirac’s H, and HL) and their commutator algebra. In the Hilbert
subspace, on which alone a norm is defined and in which all expectation
values must be calculated, this group is lost, because the “observables”,
by definition, are invariant with respect to coordinate transformations. The
work presented by J. Anderson here is to be understood in the spirit of
Dirac’s approach: Within the Hilbert space of permissible states the con-
straints vanish identically, and the consistency requirements on their com-
mutator algebra lose all substance.

Professor Mandelstam’s talk was concerned with a particular technique
for constructing observables. He proposes to identify world points in terms
of intrinsically defined paths leading to them. Though this is a stimulating
way of looking at the problem, I feel that it is too early to predict success
or failure.

I must apologize to Professors V. Fock and J. Wheeler for not comment-
ing on their two talks. As there were only a few minutes between their talks
and the beginning of my remarks, I believe that it is best if I say nothing
that might look very silly on further reflection. I hope that they will not
interpret my silence as a polite form of negative comment, but blame it
entirely on the mechanics of time, which is in fact the only reason for my
omission. At any rate, I had asked the program committee to announce
my comments under the heading of “concluding remarks” rather than of
“summary”, in order to afford me somewhat greater freedom in not attempt-
ing completeness.

As we are about to wind up our Conference, I should like to say a few
Words about its extra-scientific aspects. First of all, I believe that I speak
in the name of all participants from outside Poland, if I express our grati-
tude for having been shown a country that is beautiful by nature and which
has been the seat of a culture that has left its mark over the centuries.
I myself am a native of Europe, though I have spent more than half of
my life in the United States; every time I come to a really beautiful old
European city, it is a new emotional experience, and Warsaw is no excep-
tion; it is a very beautiful city, and so are the surroundings that we were
shown, on some of the excursions. Warsaw is different from many other
cities in that it has become ravaged by war, not in what might legimately be
called military action, but in a wanton and calculated destruction of people
and of cultural values. It would be an insult to earlier epochs of humanity
to call that barbarism. This is bestiality, and it is not a very reassuring expe-
rience to see what can be done; but I believe it is an experience that we
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must go through; and we have to thank our hosts also for having given us
this experience, even if it was not entirely enjoyable. It is, perhaps, a slight
compensation to see what has been rebuilt from the rubble in less than two
decades, though we cannot call back to life the people who perished.

Being Jewish myself I have been deeply touched by the spirit in which
the Polish people have commemorated, with the Ghetto Monument, the
place where so many Jewish people lost their lives, fighting or simply being
slaughtered. I am fully aware that Jews were by no means the only people
who were killed off by genocide; the Polish people were just as much on the
program of destruction as the Jewish people, merely for a later period, and
thus this slaughter did not take place fortunately, to the full extent planned.
Even so there are enough Polish people, and people of many other national-
ities, who, as I said, were the victims, not of legitimate military action but
of calculated murder.

I should like to talk now about some things that are a little easier to
talk about. We shall try, this afternoon or in the months to come, to decide
on the location of the next international meeting, and I should like to say
a few words about that here, because we may receive all kinds of sugges-
tions from various sides. As for the time, I believe that there is an informal
consensus that three years from now will be a good time for another inter-
national gathering of relativists. Two years appears too brief an interval;
it is desirable to have a little time between meetings to do some work,
so that the performance of research may on occasion precede its being re—
ported, instead of the other way around. But at this stage nothing is settled,
and I think that comments will not be useless. As for location, we are
in the happy situation that a number of very acceptable locations have been
suggested by people who have combined their suggestions with commitments
to do the work that goes with preparing and running such conferences. As
a result, instead of having to press someone into acceding to serve as the
host of the next conference, we already have a number of volunteers, and
that situation also presents us with a tough problem. Fortunately, we all
hope, we shall have a number of conferences in the years to come; invitations
that we cannot accept for 1965 may be most welcome at some latter time.

One point that must have received a great deal of attention from our
organizing committee, that is from Professor Infeld and his colleagues at
Warsaw and at Cracow, is the format of a conference. The easiest method
of making up a conference program is to have a number of invited papers,
and then to accept as contributed papers everything that is submitted. The
usual result is then that the whole conference time is taken up with ten-
minute or fifteen-minute papers (there have also been conferences with five-
minute, and even with two-minute papers), and there is no time available
for discussion. In my opinion, the best method for presenting a finished piece
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ofwork, if all you want is to present it, is its publication in print: Your audience
is larger that way, and people who may wish to comment on your work
eventually have a chance to read and digest it first in the privacy of their
studies. The purpose of a conference, or other meeting, is, obviously, to
provide an opportunity for discussion. A great deal of effort has gone, in
preparing for this conference, into limiting the number of contributions
and opening up space for discussion. Incidentally, how to run a discussion
so that it is neither eviscerated by the mechanical application of rules nor
gets out of hand completely is a very delicate task; I know of myself that
I sweated on Thursday afternoon when I served as the chairman of a “gen-
eral discussion”; I am sure DeWitt sweated when his turn came. There
is probably no one right solution to this problem; but it may well be worth
our While to attempt to find out what has worked out well, and what not
as well, so that in preparing conference programs in the future we may
learn from our experiences. I have the feeling—and I certainly do not wish
to presume to speak for anyone but myself in this matter—that this meeting
has been on the whole a step in the right direction, and that whatever
imperfections some of us may have noticed they were heavily outweighed
by the positive results of the experiments initiated here.

I should also like to speak briefly on publication policies. Most of us re-
ceived, several months ago, a communication from Professor André Mercier“)
that certain types of information of special interest to relativists will be dis-
seminated from time to time, perhaps as a newsletter, or as a mimeographed
abstract journal, and that an attempt will be made to have this venture sup-
ported by voluntary contributions, if I remember rightly, of the order of
three dollars. I do not know the extent of the response. At any rate, Pro-
fessor Mercier and his collaborators will continue their efforts to ascertain,
and to fill, the needs of relativists on an international scale.

Very recently several publications have appeared which may not have
received general attention as yet but which are of interest to our group so
let me mention them here I did not hear until last night that the proceed-
ings of the Royaumont conference of 1959 have came out well in advance
of this conference, at least a week, I believe, lest you think that this is mere-
ly an idle rumor, I have seen an actual copy. The publishing organization
is the Centre National de Recherche Scientifique of France, and ordering
information will become available shortly.

Another very recent publication is the collection of articles that has been
known informally as the “Infeld Festschrift”, because it was put together to
honor Professor Infeld at his sixtieth birthday. The work, whose formal

(2) Adress: Professor André Mercier, Institut fur Theoretische Physik der Universitat
Bern, Sidlerstrasse 5, Bern, Switzerland.
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title is “Recent Developments in General Relativity”, has been published
jointly by the Pafistwowe Wydawnictwo Naukowe (PWN—Polish Scientific
Publishers) and by Pergamon Press. Copies and preprints of the individual
contributions have been in circulation for some time, as this volume has
also been in preparation since 1959. And finally, Professor Ivanenko showed
me, also last night, a handsomely put-together translation of selected non-
Russian papers in general relativity into Russian, no doubt a welcome addi-
tion to the literature for those among us who read Russian more fluently
than the original languages of publication.

Over the last couple of years the question has been raised repeatedly,
including by representatives of commercial interests, whether one ought to
organize a new journal devoted primarily to relativity. I believe that on
this issue as many opinions ought to be consulted as possible. Permit me
to express my personal opinion—again I wish to remind you that I do not
presume to speak for anyone else. At this stage at least, I am very hesitant——
I might almost say, I am opposed to the idea—about endorsing a separate
journal in this area. First, the number of journals that we must watch to
keep abreast of our field is enormous as it is, and I doubt that we could
expect that any of these will stop accepting papers in relativity just because
an additional channel of publication is being organized. Second, at least
in the United States we have experienced no major resistance to the accep-
tance of relativity papers by existing well-established journals such as the
Physical Review or the Journal of Mathematical Physics. Needless to say,
papers have been rejected on occasion, but I believe that I am sufficiently
well acquainted with publication policies of these two periodicals to be as-
sured that such rejections have not been based on the grounds that they were
relativity papers. I cannot judge the situation in other countries; nor can
I be certain about the situation confronting authors who Wish to place their
papers in mathematical, rather than physical journals. My third argument
is that if we organize a separate journal for relativity papers, there is consi-
derable danger that this journal will not be read by anyone who is not spe-
cializing in our field, whereas the major physics journals now have five-digit
circulations.

Finally, I am worried about the editorial policies to be adopted by such
a new journal. If the editorial board tends to be overly liberal, the new jour-
nal may be inundated by papers which have been rejected elsewhere, and
this is not necessarily a desirable selection though I should be the last to claim
that all rejected manuscripts are poor pieces of work. If the board, on the
contrary, maintains what is called “high standards”, then the result may
well be that of the odd-hundred relativists in this room and elsewhere every-
body Will hate everybody else. That is why it seems to me that one ought
to organize a new specialized journal only when the community to be served
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has grown to such size that there is no longer enough hating power left to
go around; I doubt that we have achieved that growth yet. As you see,
my doubts refer, at least in part, to our present situation, as I see it, and
I should be quite willing to change it in the light of future developments.
There is also something to be said in favor of the unity of science, and hence
against the erection of lines of demarcation as long as the broadly oriented
physics and mathematics journals are still willing and able to serve our
needs.

Perhaps there is a somewhat different possibility, and that is to organize
a forum for very lengthy articles, semi-monographs as it were, which do
not fit precisely into the pattern of a regular research journal. Such a serial
publication need not tie itself to a regular schedule, in which, for instance,
you must fill a certain minimum number of pages every three or four months
in order to look respectable. In the course of time, as the average amount
of contributed material becomes known, this serial publication may well
be converted into a regular journal. Whatever we finally do, I certainly agree
that we should examine and re-examine, the publication needs of our field
periodically.

I shall close by saying one thing in which I am sure, even without for-
mal consultation or vote, I am speaking for all of us, who have had the priv-
ilege of being guests. The effort that has gone into preparing this conference
and in making it a pleasant experience has been enormous, and it has been
well spent. I am not only thinking of the manner in which the administra-
tive wheels have been greased, ranging from obtaining plane reservations
and hotel rooms to helping with Orbis vouchers, to mention but a few po—
pular topics of conversation, but also of giving all of us opportunities
to meet informally, as well as oflicially, with our colleagues under congenial
circumstances. Only those who have ever had anything to do with organ—
izing a conference can fully appreciate the enormous amount of thought,
and of just plain dirty labor that has gone into this. We should thank, natu—
rally, Professor Infeld, whose has been the over-all conception; but equally
our other colleagues here at Warsaw, who have given liberally of their time
and effort to make this International Conference what it has turned out to
be. Thank you very much.
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Q-NUMBER COORDINATE TRANSFORMATIONS AND THE
ORDERING PROBLEM IN GENERAL RELATIVITY
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Abstract—The coordinate transformation which effects the passage from one set of coor-
dinate conditions to another set will, in general, depend upon the metric and thus, in the
quantum version of the theory will appear as a q—number transformation. To effect such
a transformation without disturbing the fundamental commutation relations it is necessary
to employ the generators of the infinitesimal coordinate transformations generated by
linear combinations of the constraints of the theory. These infinitesimal generator swill,
however, only form a group and thus allow one to construct finite transformations from
them provided that the constraints satisfy commutation relations with the same structure
as the corresponding Poisson bracket relations in the classical version of the theory. Clas-
sically, the Poisson bracket of any two constraints is a linear combination of constraints.
For commutators we must require that the coeflicients of these combinations, if q-num-
bers, must all stand to the left of the constraints if the theory is to be consistent. We have
been able to show that there is no ordering of factors in the quantum mechanical expressions
for the constraints which satisfies this condition. Hence we conclude that quantized versions
of general relativity formulated in different coordinate systems are physically inequivalent
which leads in to the conclusion that the principle of general covariance is incompatible
with the requirements of quantum mechanics.

INTRODUCTION

THE problem of the quantization of theories with generalized gauge groups
such as electrodynamics, the Yang—Mills field or general relativity is com-
plicated by the fact that not all of the basic field variables are dynamically
determined by the field equations. Indeed, one can assign a priori values
to certain combinations of the field variables without regard to the field
equations. Such an assignment serves, in fact, to “fit” the gauge. Thus, in
electrodynamics one makes use of the radiation gauge condition V-A=0
to fix the gauge and in general relativity one makes use of similar conditions
to fix the coordinate system. Those parts of the basic field variables which are
not affected by this fixation of the gauge then describe the dynamics of the
system in that their evolution with time is uniquely determined from their ini-
tial values by the field equations. It would, therefore, seem most natural to con-
sider only these dynamical parts for the field as operators in a quantized
version of the theory and to take, as representatives of physical states of the
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system, vectors of the Hilbert space over which the operators are defined.
This Hilbert space approach to the quantization of gauge invariant theories
has been applied by Bergmann and co-workers [1] to the quantization of the
gravitational field and recently by Schwinger [2] in connection with the Yang—
Mills field.

The other approach to the quantization of gauge invariant fields is due
to Fermi [3]. There, one treats all of the basic field variables as operators
in a linear vector space. Not all elements of this vector space represent physi-
cal states of the system however. Only those elements which, when oper-
ated on by the constraints of the theory, give zero can serve this purpose.
As a consequence it is not possible to construct a norm in the linear vector
space in the usual fashion and this in turn has led to such complications as
the introduction of the indefinite metric by Gupta and Bleuler into the
theory. It is just this complication which makes the Hilbert space method
of quantization appear attractive. There one works directly with observables
operating on a well-defined Hilbert space. In addition, the constraints of
the theory are dealt with prior to the quantization process and, therefore,
do not appear as restrictions on permissible state vectors as they do in the
linear vector space approach to quantization. While the two methods of
quantization should ultimately yield the same observable results it is argued
that the former approach is more physical because it does not introduce
elements into the theory which must later be gotten rid off by one means
or another, e.g. the part of the linear vector space referred to above which
does not represent possible physical states of the system.

In spite of the above-mentioned difliculties there are certain questions
having to do with the gauge invariance of the theory as a whole which seem
to be discussable only in terms of a linear vector space quantization. In fact,
as Dirac has emphasised in his Yeshiva lectures, one must first destroy the
gauge invariance of the theory at the classical level before one can employ
the Hilbert space approach. Since one works only with the dynamical parts
of the field variables in this approach and since these dynamical parts are
gauge invariant to start with, there is no way in which one can discuss gauge
transformations here. This in itself would not be a serious objection if it
were possible to show directly that, starting from two inequivalent gauge
conditions in the classical theory, there existed quantum versions of the two
formulations which yielded equivalent physical results. Such a proof has
been given for the case of electrodynaimcs by Zumino [4] and Bialynicki-
Birula [5] based on a consideration of the generating functional for the
Green’s functions of the theory. However, this method of proof does not
seem to apply to the cases of general relativity or the Yang—Mills theory.

Since this problem of equivalence is central to our Whole discussion it
is perhaps desirable to state it more precisely in the form in which it arises
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in the Hilbert space quantization before we discuss it as it appears in the
linear vector approach. To this end we will assume the existence of two ine-
quivalent gauge conditions both of which fix the gauge completely. These
conditions will each lead to a difl‘erent set of dynamical variables, namely
the remainder of the set of basic field variables not determined by the gauge
conditions, which we will denote by yA and yé. \The yA and y; will, in
general, be functionals of the basic field variables and their conjugate mo-
menta. Since, in addition, each set can be used to give a complete descrip-
tion of the dynamics of the system it is clear that the members of one set
can be expressed as functionals of the other set alone and vice versa, i.e.,
we can write

ya = M (yé) and y; = y}; (n)-
For similar reasons the Poisson bracket between any two members of a set
will be a functional of members of that set alone. Thus,

(in, ym) =f(y)
and

(yia, yiar) = 5'00-
The transition to the quantized theory is then effected by finding an oper-
ator representation for the yA which satisfies

(yA, Jay) = 1'7? f0)
or a representation for the y; which satisfies

(yé, $021711 g(y’)-
In both cases, if any representation exists at all, there will exist many such

representations depending upon how we choose the sequence of factors on
the right hand sides of the commutation relations. The different represen-
tations will in general result in different physical predictions even if we stick
with just one of the sets of dynamical variables. However, this is just a re-
flection of the well-known ambiguities which arise whenever we go from
a classical to a quantum mechanical version of a theory. What is not trivial
is the question, given an operator representation for the yA which: satisfies
the basic commutation relations, does there exist an operator representation
for the y}, which satisfies the commutation relations appropriate to this set
and at the same time yields the same set of physical predictions as does the
representation for the yA.

To anSWer the above question in the affirmative one would have to ShOW
that, starting with the variables y, one could find expressions for the y”s
in terms of the y’s which yield one of the possible sets of commutation rela-
tions for the y’ ’s. One could start with some particular expression for the
y”s obtained by making a choice for the sequence of factors in the classical
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expressions for the y’ ’s in terms of the y’s and compute the commutator

(y’B, y’BI) from the commutation relations for the y’s. The result would be
some functional g of the y’s. To show that §(y) was indeed equal to a pos-
sible g(y’), i.e. a g(y') obtained from the classical expression for g(y’) by choos-
ing an ordering of factors, one Would first have to show that one could
solve the operator equations giving the y’ ’s in terms of the y’s for the y’s
in terms of the y’ ’s and it is not obvious that this can be done in general.
Even if this step could be accomplished it would still be necessary to check

that §(y(y’)) =g(y’) for some sequence of factors in g(y’) and again it is not
obvious that this would be the case in general. It is quite possible that the
two expressions might differ from each other by terms proportional to
powers of h. At best it would appear that one would have to carry out an ex-
plicit proof of equivalence for each pair of gauge conditions. For this reason
we have examined the equivalence problem for different gauges in the linear
vector space method of quantization where it is possible to arrive at some
definite conclusions concerning this problem. In particular we have shown
that dilferent gauges lead to equivalent physical theories in the case of elec-
trodynamics and the Yang—Mills field but not for the case of general relativity.

LINEAR VECTOR SPACE QUANTIZATION

A complete description of the linear vector space quantization of elec-
trodynamics has been given elsewhere [6]. The general procedure is imme-
diately applicable to any theory with a gauge group and hence only the con-
clusions will be stated here since our purpose is to discuss the particular
case of general relativity. In particular we will state a criterion which must
be met by such a theory if all gauges are to be equivalent. To this end then
let us suppose that we have some theory with a gauge described by the basic
canonical variables (pi. Because of the existence of the gauge group these
variables are not all independent of each other but, as is well known [7],
satisfy a number of constraint equations which, in the classical theory, take
the form

X4909 = 0 ' (1)

In what follows we shall refer to the expressions X, as the constraints of the
theory. A knowledge of the canonical variables (pi together with the con-
straint equations and the Hamiltonian form a complete classical descrip-
tion of the theory under consideration. One should emphasize even here
that one may not make use of the constraint equations for substitutional
purposes in dynamical quantities, i.e. solving the constraint for a number
of canonical variables in terms of the others and eliminating these solved
for variables from dynamical quantities containing them by direct substi-
tution, until after all desired Poisson brackets have been computed.
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The quantization of our theory is effected by assuming that the canon-
ical variables are now q—numbers satisfying the standard commutation
relations for canonical variables. We must also bring in the constraint equa-
tions but we cannot simply assume that they are operator equations between
the canonical variables because they would stand in contradiction to the assu-
med commutation relations for these variables. Thus, for example in electro-
dynamics one of the constraint equations is

P4 = 0 (2)
where 1:4 is the momentum density conjugate to the fourth component of the
four-potential A4. It is clear that this cannot be considered as an operator
equation if, at the same time, we require the commutation relation

[A‘(X),p4(X')] = if! 5(x—x')- (3)
What we must do is to maintain the commutation relations and restrict our
attention to those elements of the linear vector space upon which all of the
canonical variables can operate which are eigenvectors of 124 with zero eigen-
value, that is to those elements 9” satisfying

12.1 T = 0. (4)
But it is just this restriction on the elements of the linear vector space which
are todescribe possible states of the electromagnetic field which compli-
cates the problem of constructing a norm for them. Thus, in a coordinate repre-
sentation (Schrodinger representation) where p4 is represented by the ope-
ration of functional differentiation with respect to A4 multiplied by iii, the
constraint equation (4) tells us that the permissible elements are independent
of A4. We could not then for instance construct a norm for these elements
by integrating over all four components of the four-potential since the inte-
gration over A4 would always lead to a divergent result. If we are not con-
cerned with maintaining manifest Lorentz covariance we can construct a per-
fectly acceptable norm by eliminating all integrations with respect to A4.
Similarly, the other constraint equation of electrodynamics

(Pm-H?)T = 0 (5)
where 9 is the charge density, forces one to restrict the integration over only
the transverse components of the vector potential. In the general case then
we will assume that the quantum mechanical analogue of the constraint
equations (1) are

Xa(<Pi)¥’ = 0 (6)
for those elements 9” which are to represent physically realizable states of
our system. If these equations are very complicated, as they are in general
relativity, it may prove to be a diflicult matter to construct a norm in prac-
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tice although in principle at least there do not appear to be any complica-
tions.

We now turn our attention to the gauge invariance properties of the theory,
again making use of the electrodynamical case to illustrate our remarks.
As usually stated, the gauge invariance of electrodynamics is the invariance
in form of the Lagrangian under the transformation of the potentials

A; = Ari—11'”. (7)
If we impose a gauge condition on the potentials such as the radiation gauge
condition or the like it is generally true that there will always exist a des-
criptor A which will effect the transformation from an arbitrary set of po-
tentials to a set which satisfies the prescribed gauge condition. However, 1
will in general depend upon the potentials with which one started. Thus, if
we impose the radiation gauge, 2. will be given in terms of the original
potentials by the expression

,1 = — V—2 V-A.
It is just this dependence of )1 upon the potentials which causes difficulty
in the canonical, and therefore the quantized, version of the theory since the
transformation (7) will not usually be a canonical transformation in the
classical formulation or a unitary transformation in the quantum formu-
lation if 2 itself depends upon the potentials. What we must do is to redefine
a gauge transformation so that it is in fact a canonical or unitary transforma-
tion in the linear vector space and reduces to the form (7) only in the sub-
space of elements which satisfy the constraint equations (4) and (5). To ac-
complish this we make use of the fact that the constraints themselves gener-
ate an infinitesimal transformation which has exactly this property. Thus,
the generator C given by

0: f d3x(ip.+ 1(pr,r+e)) <8)
generates the transformation

17.3.4, = 2,. + f d3xl1A., 1'1p1+ 1A,..2'1(p:,.+e')} (9a)
#231). = f d3x'{1p,., 1'1p1+[p.,2'1 (p;,.+e'>} <9b)

which reduces to
(ifzéAfl—Zm)?’ = 0 (10a)

1776—1)”? = 0 (10b)
for ‘P’s satisfying Eqs (4) and (5). These results generalize immediately to
the case where the constraint equations are of the form (6). The generator
of the infinitesimal transformation is just

c =f d3x la-Xa. (11)
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In ordering the factors in this expression we must make sure that the de-
scriptors always stand to the left of the constraints to insure the transfor-
mation reduce to the classical expression in the subspace of IP’s satisfying
the constraint equations (6).

Since C is the generator of only an infinitesimal transformation we must
check that the commutator of two such generators is again a generator of
the same kind. Otherwise we would not have the group property and could
not integrate to obtain the finite generator which would lead us from one
gauge frame to a finitely different frame. This condition is satisfied pro-
vided that the commutator of two constraints is a linear combination of
the constraints with the additional requirement that in the linear combi-
nation the constraints must all stand to the right of the coefficients. This
condition of course follows immediately from equation (6) since we must
have

(Xa Xfi—Xfi Xe)? = 0 (12)
which will only be the case provided

Xa Xfi—Xfi X, = we; X5 (13)
with the w's standing to the left of all the X’s on the right-hand side of this
equation. However, it is important to see how this condition arises as a neces-
sary condition for the construction of finite q-number gauge transfor-
mations. Making use of these ideas one can go on to show that the theory
as a whole is gauge invariant when operating on elements of the linear vector
space satisfying the constraint equations (6). We will not carry through this
discussion here since our main purpose was to arrive to the conditions (13)
in the context of q-number gauge transformations and to examine their
satisfaction for the various gauge invariant theories.

The conditions (13) are obviously satisfied for the case of electrodynamics
(electromagnetic plus Dirac field) and while not obvious are also satisfied
for the case of the Yang—Mills field. They are not satisfied for the case of
general relativity, however, and we shall discuss this case in the next section.

THE ORDERING PROBLEM FOR GENERAL RELATIVITY

The problem of the satisfaction of the requirements (13) for any gauge
invariant theory reduces essentially to that of finding an ordering of factors
in the expressions for the constraints since classically the Poisson bracket
of two constraints is always a linear combination of constraints [7]. In gener-
al relativity the primary constraint equations are just

P0]! 2 0 (14)

so that there is no ordering problem when we go over to the quantum version
of the theory. The secondary constraints divide into two groups. The first
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group consists of what we have called the longitudinal constraints and are
of the form

(Ks = gab,spab—2(gaspab),b = 0 (15)

where p"b is the momentum density conjugate to the spatial part of the metric
gab. The Poisson bracket of two longitudinal constraints is again a linear
combination of longitudinal constraint and, if we adopt the ordering indi-
cated in Eq. (15) with the p’s standing to the right of the g’s, so is the commu-
tator.(1) Since the coefficients of the linear combination are c-numbers the
requirements (13) are automatically satisfied.

The other group of constraints which we call the Hamiltonian constraints
have the classical form

1 1
QCL : E(gmgsb_7grsgab)prspab+K3R(gab) = 0 (16)

where K is the square root of the determinant of g,,,, and 3R is the curvature
scalar formed from gab and its inverse. The ordering problem arises only
in connection with the first term and for it we must find an ordering which
reproduces, as commutation relations, the classical Poisson bracket relations

(CKLa QC'L) = —C}C,e”5,s(x—x’)+CKle'”5,sr(x—x') (17)
and

(‘XLEKQ = {9CL5(x—x')},s- (18)
There are, of course, an infinity of different possible orderings for these
terms depending upon the positioning of the p’s. However, by making use
of the commutation relations, between the g’s and p’s any ordering can be
transformed to the form

1 1 b a b_ ra s __ rs a rs a +K3R—ih6 0 _ rs rs_h262 0 _K(ggb Zggb)pp ()Kgp ()K

where a and b are numerical constants which depend upon the initial or-
dering chosen. There are a number of possible values of a and b, including
zero, which lead to the reproduction of the relations (17). However, a rather
laborious but straightforward computation shows tgat there are none which
reproduce the relations (18). The consistency conditions (13) therefore cannot
be satisfied for the case of general relativity“)

(1) We adopt this ordering so that CKS will indeed be the generator of an infinitesimal
transformation of coordinates in the X4 = const. surface when applied to a functional of g”.

(2) In a previous paper (I. L. Anderson, Phys. Rev. 114, 1182 (1959)) we also discussed
the ordering problem. There we made the mistake of requiring only that the commutator
of two constraints again be a linear combination of constraints without regard to the position
of the coefficients. We showed that there did exist orderings which satisfied this require-
ment. We are grateful to Prof. Dirac for pointing out the necessity of the stronger con-
ditions (l3).
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The fact that the consistency conditions (13) cannot be satisfied for the case
of general relativity does not mean that we cannot quantize general rela-
tivity. We could introduce a particular set of coordinate and proceed with
a Hilbert space quantization as outlined in the introduction. Alternately
we could impose coordinate conditions into the linear vector space quan-
tization scheme directly. This would have the effect of converting the con-
straint equations into second class constraints in the terminology of Dirac.
Now ordinary bracket expressions would have to be replaced by Dirac bra-
ckets [8]. Since the Dirac bracket of any two second class constraints is auto-
matically zero we would no longer have a problem of ordering factors in the
constraints; any ordering would work.

However, both procedures mentioned above introduce, ab initio, some
particular set of coordinate conditions. If we had introduced some other
set of coordinate conditions we would obtain a different theory whose re-
sults would differ from that obtained with the first set of conditions by quan-
tities proportional to powers of h. This in turn would mean that, at least
in principle, we could distinguish between difl‘erent coordinate systems by
means of experimental observations. But this possibility is in flat contra-
diction to the principle of general covariance whereby the observable results
of general relativity should be independent of the coordinate system em-
ployed. Since this principle is one of the cornerstones of the general theory
we seem to be faced with an apparent contradiction when we attempt to
join together the two disciplines of general relativity and quantum mechanics.
If our conclusions are correct it means that we must examine in detail the
whole mechanism whereby one introduces a coordinate system and the limi-
tations imposed by the uncertainty principle on the setting up of a coordi-
nate system.

We would like to thank Professor Dirac for several very helpful discussions
of the work presented here.
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ELASTICITY IN GENERAL RELATIVITY

C. B. RAYNER

Department of Mathematics, Liverpool University

THE theory of elasticity in General Relativity which I am going to talk about
was formulated initially as a modification of a theory of Professor J. L. Synge
(Math. Zeitschr. 72, 82—87 (1959)). The modification in question consists
of using a Lie derivative where Synge used a covariant derivative. However,
the two theories are logically distinct, and I confine my attention in the time
available to the new theory.

For any vector field E (i = 1, 2, 3, 4) we may take co—moving coordinates
such that E = (O, 0, 0, l), and then the Lie differential operator is defined
as 6/6x4. In particular, for the time-like unit tangent field 1} to the world-
lines of a moving body, we may construct the singular “projection” tensor
31-,- = gij —l— 2,1]. (for which gill] = 0), and then the condition jug”. = 0
is that for the field 1" to be rigid relative to the metric gij. In the classical
theory we may write Hooke’s law in the form Sag = —; eafiytshy69 where Sag,
h;,, are the stress and strain tensors, and eafiya is the tensor of elastic coeffi-
cients, which remains constant in time. The matrix 8,13 (A = ((1,8), B = (926))
must be non-singular. In General Relativity we now write Hooke’s law in
the form Sij =icij“(§kl—§£,). Here, S,,- is the stress—tensor, and gU—gg.
represents the state of strain; the positive semi-definite tensor g9, is such
that

$129,- = 0, éfilj = 0, £3- : éfi- (1)
Evidently, 2“ is rigid with respect to the metric £3. = gay—1,11,. The tensor
CU“ is given algebraically in terms of fundamental elasticity tensor CH“
and g1?!- by the conditions

~o ~0gkrglscijrs = ijkl- (2)

Although cij“ is not thus uniquely defined (because gr?)- is singular), never-
theless the product cijk’(§k,—§,€,) is easily shown to be unique. The tensor
CU“ we postulate to satisfy the relations

Cijkl = Cjikl = Cklij: Cijklll = 0’ fzcijm = 0- (3)
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These relations are interpreted respectively as meaning that Cm, has the
same symmetries as the classical elasticity tensor, that it is “three-dimension-
al”, and that it is “time-independent”. The interior field equations for an
elastic body are thus of the form

G” = —eziz,-+§cu~“(2iz—§2,) (4)
Q = —G,sl'ls, 2.1-2j = — (5)

where G“- is the Einstein tensor and g the proper density; units are such that
the gravitational constant is (81:)‘1. In particular, we say that a body is iso-
tropic if CU“ admits the representation, for some 12, ,u,

Cijkl = v§%§21+fl(§?k§?z+§?z§?k) 1’,i = Mad-j = 0- (6)

To summarize, an elastic body motion in space-time is a world-tube over
the interior of which the tensors g”, 2,, g3, Cm, are defined, which satisfy
(1)—(5). We remark: (a) in co-moving co-ordinates (4) reduces to 9 equations
in 9 unknowns. In fact, for 1': j = 4, we get identity, by the difinition (5)
of g; the unknowns are gij, other than g44 = ~ 1. (b) Contraction of (4)
with A] shows that 1‘ is an eigenvector of GU. (c) It can be shown that shock
waves travel with the same speeds as arise in classical elasticity theory when
the strain is small.



GRAVITATIONSFELDER MIT ISOTROPEM KILLINGVEKTOR

G. DAUTCOU'RT
Institut fiir Reine Mathematik, Berlin

Abstract—The general solution of the vacuum field equations admitting an isotropic
Killing field is given. The method, used first by H. Weyl [l] and later especially by Robin-
son and Trautman [2], consists of simplifying the metric with help of coordinate-trans-
formations, which are only possible, if certain field equations are satisfied. There are two
kinds of solutions. In the first case the Killing vector is a gradient, in which case we get the
well known plane waves (Brinkmann [31). In the other case one obtains algebraically more
general solutions of Petrov-type II, in certain cases of type Ideg. The solutions contain true
singularities on a submanifold.

WIR stellen uns die Aufgabe, alle Losungen der Vakuumfeldgleichungen
RM = 0 zu bestimmen, die (mindestens) einen isotropen Killingvektor be-
sitzen:

Em? + Emu : 0: (1)

5,5” = 0. (2)
Beziehen wir EM auf ein pseudoorthogonales Vierbein (5],, my, t”) so

folgt aus (1), (2) die Darstellung:
5,, = iwt,?,+9(t,,§,—t,§,,)+ konj.-kompl.; (3)

d. h. fiir die betrachtete Strahlenkongruenz 5,, sind von den optischen Para-
metern nur der “Drill” a) und die “Rotation” .Q (sowie C = —.Q) von Null
verschieden.

Zur Integration der Feldgleichungen wahlen wir zunachst ein Koordi-
natensystem mit E” = 63‘. (1) und (2) gehen dann in gm,0 = 0 und g00 = 0
oder

[gm] = 0, gm = 0 (4)
fiber. Man erkennt leicht, daB die drei zweireihigen Unterdeterminanten
langst der Hauptdiagonalen der Matrix (gm) wegen ig"”| 75 0 nicht séimtlich
verschwinden diirfen. Es sei also (innerhalb eines gewissen Bereiches) etwa

g22g23
AB = (1)

lg l g23g33 i 0'
Setzen wir dann

M = (g12g33—g13g23)/lg“l, (5)
A = (g13g22_g12g23)/lgABl

(1) Die Indizes A, B... laufen von 2 bis 3, i, k... von 1 bis 3, u, v von 0 bis 3;
die Signatur wird als ——2 angenommen.
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so gilt
[guy] 2 —]gABI(g°1—flg°2—lg°3)2, (6)

woraus sich die schéirfere Bedingung

lg“! > 0 (7)
ergibt.

Die Bedingungen (4) bleiben insbesondere bei den Transformationen

5:1 =f(x1,xA), (8)

erhalten. Verlangen wir, daB durch diese Transformationen x1 zu einer Null-
koordinate wird (E11 = 0), so muB f(xi) der Gleichung

O"AO‘BgAB = 09

0'2 E Mil—Hi2, (9)
0'3 E Afi1+fi3

geniigen. Aus ihr folgt wegen (7) das System

”f; +f,2 = lfi1+f,3 = 0- (10)
Die Integrabilitéitsbedingung fiir diese Differentialgleichungen lautet

M,3_2-,2+Afl,1‘—‘MA,1 = 0 (11)
und ist als Folge der Feldgleichung

R00 2 _% 0101,3—1,2+M,11—2,1M 2 = o (12)

identisch eitfiillt. Weiter folgt 571" = gl‘f,1+j:3g43 = 0. Wit erhalten damit,
wenn Wir noch durch die Transformation 36’ = x9, 31 = x1, 3": 364(xi) die
zweidimensionale Metrik gAB auf Diagonalform bringen, folgendes Schema
fiir die gm:

‘0 g01 0 0
v = g01 311 gm £13 ‘ (13)

g” 0 g21 —e2‘7 0
“0 €31 0 7329 s“

Die Gestalt (13) der Metrik ist noch gegenijber den Koordinatentrans—
formationen

V

37° =3C°+<P(x‘)
351 = 351051) mit 6292‘ 622‘ = -4__ _ = 143:4 = 24w) (6x92 (6x3)2 Ax 0 ( )

invariant.
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Von den Feldgleichungen Rm, = 0 sind R00 = 0 und RM 2 0 bereits
identisch erfiillt. Die weiteren Gleichungen R01 = 0, R22 + R33 = 0,
R22—R33 = 0, R23 = 0 lauten respektive:

Am+(m,2)2+(m,z)2 = 0 (m 5111.301), (15)
9,2m,2—Q,3m,3 = m’22/2—m’33/2—l—(m,2)2/4—(m,3)2/4E A, (16)

5.2,3m,2—l—!2’2m53 = m,2m,3/2—l—m,23 E B, (17)

2A Q+Am+(m,2)2/2+(m,3)2/2 = 0, (18)

Aus ihnen léiBt sich ablesen, daB es zwei wesentlich verschiedene Arten von
Lésungen gibt, je nachdem, ob (m,z)2—{—(m,3 2: 0 oder von Null verschieden
ist. El, ist nun genau dann ein Gradient, wenn m von x" unabhéingig ist
In diesem Falle sind also, wie bekannt ist,(2) die ebenen Wellen die einzigen
singularitéitsfreien Lésungen der Vakuumfeldg‘leichungen.

Nehmen wir dagegen (innerhalb eines gewissen Gebietes) (m,2)2+(m’3)2 s15 0
an, so folgt aus (16), (17):

9,2 = (Am’2+Bms3)/{(m,2)2+ (m,3)2}, (19)

9,3 = (Bm,z—Am,3)/{(m’2)2+(m’3)2}. (20)

Hierbei sind sowohl die Integrabilitéitsbeding‘ung 9,23: 9,32 als auch die
Feldgleichung R23 = 0 infolge der Beziehung (15) identisch erfiillt.

Da fiir g01 die zweidimensionale Potentialgleichung Ag01 = 0 gilt, lassen
sich “kanonische Koordinaten” [1] einfiihren. In ihnen gilt

gel = x2 (21)
und aus (19), (20) folgt

62:2 _ (1 (x1)— W , (22)

a ist eine willkiirliche Funktion von x1.
Die Feldgleichungen RA1 = 0 reduzieren sich nach einmaliger Integra-

tion auf die Gleichung
93,2—‘123 = (b(x1)-a,1x3)/(x2)5/2- (23)

Hierbei ist b eine zweite willkiirliche Funktion von x1 sowie

42 = —g12/x2, ‘12 = —g13/x2' (24)
Bei den Eichungen

76’ = x°+qo(x‘), if = x,- (25)
(2) Vgl. [2]. Hier stellt man dies wie folgt fest: m = m(x1) kann durch eine Transfor-

mation Tcl=7c1(x1) zum Verschwinden gebracht werden. Dann reduzieren sich die Gleichun-
gen RAB = 0 auf das Verschwinden des mit der Metrik gAB gebildeten zweidimensionalen
Riocitensors, d.h. es gilt gAB = 5143(9). Alle Feldgleichungen bis auf R11 = 0 sind iden-
tisch erffillt.
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geht qA in
i4 = qA‘l‘SvaA (26)

fiber. Wir kénnen somit durch geeignete Wahl von (p erreichen, daB q2 ver-
schwindet. Aus (23) folgt dann

q3 = *72 (b—a,1x3)/(x2)3/2+A(x1,x3). (27)
Die hierin auftretende Funktion A(x1,x3) bringen Wir ebenfalls durch
Umeichung zum Verschwinden.

Die letzte noeh zu befriedigende Feldgleichung R11 = 0 nimmt die Gestalt
einer linearen Differentialgleichung fiir die Gr613e x =g11/x2 an:

0295 62x L 5% = _ (b_“s1x3): 1 1a — a: - (23)(0x92 (6x92 x2 0x2 aw)“ (x2)3/2 3 a
Das Linienelement fiir die zweite Klasse von Lésungen lautet damit

endgiiltig:
a’s2 = 2x2dx°d361+x21 (alx1)2—2x2q3a’x1dx3 —

a(x1)
y;

Es enthéilt die beiden willkfirlichen Funktionen a(x1),b(x1). Die auf der
Untermannigfaltigkeit x2=0 auftretenden Singularitéiten sind nicht durch
K0ordinatentransformationen eliminierbar, da sie auch in der Invarianten

[(dx2)2+ (dx3)2] . (29)

uvgo _RWQGR — 4(x2)3 (30)
vorhanden sind.

Ffir den Riemanntensor zur Metrik (29) gilt

RmaE'f" = CEMEQ (31)
2 —3/2

(96+. Die Lésungen gehéren also zu einem algebraisch spe-a
ziellen Petrov—Typ, und zwar sind sie im allgemeinen vom Typ II, in Spe-
zialffillen vom Typ Iem. Wir bemerken noch, daB fiir die Lésungen (29)
auch der Drill a) beziiglich der Strahlenkongruenz E” verschwindet.

mit C=
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UBER LDSUNGEN DER EINSTEINSCHEN
GRAVITATIONSGLEICHUNGEN, BEI DENEN

DIE DETERMINANTE g AUF NIEDERDIMENSIONIERTEN
MANNIGFALTIGKEITEN VERSCHWINDET

H. J. TREDER

Institut ffir Reine Mathematik der D.A.W., Berlin

IN DEN Diskussionen fiber die Divergenzschwierigkeiten in der Quanten-

feldtheorie ist mehrfach die Vermutung gefiuBert worden, daB in Gebieten

mit extrem starken Feldern die Signatur der Raum—Zeit—Mannigfaltigkeit V4

von der Lorentz-Minkowskischen Signatur verschieden ist. In einem solchen

Weltgebiet, etwa innerhalb eines von einer Hyperfliiche S umschlossenen

t'nders, der die Geschichte des sehr kleinen Kerns eines Elementarteil-

chens darstellt, soll der V4 die negativ—definite Signatur (—1, —1, —1, ——1)

besitzen. Die Feldgleichungen werden in diesem Gebiet elliptisch und alle

Wechselwirkungen geschehen momentan, so daB der Zylinder ein Model]

fiir den sehr kleinen hard core eines Elementarteilchens sein konntefl) Die

zur Hyperfléiche S benachbarten Hyperfléichen S* miissen im Bereich der
Minkowskischen Signatur (—1, —1, —1, +1) zeitartig sein.

Nun ist fiir die metrische Struktur des V4 die Einsteinsche Gravitations-
theorie zustéindig, da der metrische Tensor gm, durch die Einsteinschen Feld-
gleichungen bestimmt wird. Unabhéingig von der erwéihnten Hypothese

iiber die Signatur des V4 im Teilcheninneren kann man fragen, ob die Ein-
steinschen Gleichungen fiberhaupt eine Anderung der Signatur des V4 ge-
statten und wenn ja, welche Eigenschaften fiir einen solchen V4 aus den Ein-
steinschen Gleichungen folgen. Wir wollen uns hier auf die Einsteinschen
Vakuumgleichungen Rm=0 beschré‘mkenf") Da wir — im wesentlichen—
Stetigkeit der gm, voraussetzen miissen, bedeutet eine Signaturéinderung,
daB die Determinante g, die im Bereich der Minkowskischen Signatur kleiner
Null ist, auf der genannten Hyperfléiche S eine Nullstelle haben muB, da
ja. innerhalb des von S umschlossenen Bereichs g>0 sein soll.

(1) Wenn sich der Zylinder auf eine Weltlinie reduziert (s.u.), hat man das Model]
eines punktformigen Teilchens.

(2) Unsere Aufgabe steht so im unmittelbaren Zusammenhang mit dem Teilchenpro-

blem Einsteins: Ob und inwiefem die Elementarteilchen als Eigenlosungen der Gravi-
tationsgleichungen mit Grenzbedingungen zu erhalten sind.
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Es gilt also gs=0 und daher sind auf S einige Komponenten der kontra—
varianten g’” unendlich gross. Sind die kovarianten g”, iiberall reguléir und
hat g an S eine Nullstelle n-ter Ordnung, so hat mindestens eine Kompoa
nente von g’” einen Pol n—ter Ordnung an S. Da nun der Einstein-Ricci-
Tensor R”, bilinear in den kontravarianten g’” ist und linear in ihren ersten
Ableitungen, so enthz'ilt R”, Terme mit dem Faktor g‘z. R,“ ist somit an
der Hyperfléiche g=0 zunéichst nicht erkléirt.

Unter der Voraussetzung, daB die kovarianten g”, fiberall regular und
einmal stetig difl‘erenzierbar sind, ist aber ersichtlich die Tensordichte nM
fiberall erkléirt und reguléir. Dementsprechend haben Einstein und Rosen
[1] [2] [3] vorgeschlagen, die Vakuumfeldgleichungen zu schreiben:

gz-v = 0- (1)

(l) hat ersichtlich auch dann Sinn, wenn g verschwindet. Setzen wir nun
voraus, daB g an S nur mit der endlichen Ordnung n verschwindet (wobei
n eine natfirliche Zahl sein m6ge)<3) und verlangen Wir die Gfiltigkeit von
(1) in einem endh'chen Streifen beiderseits von S, so verschwinden mit n”,
selbst auch séimtliche Ableitungen mit nfl, an S.

Geben Wir etwa der Hyperfléiche S die Gleichung x1=0, so gilt demnach:

2 _ i 2 -— _ 6k 2 : _.(gR”’)"‘=°— (ax1[gR”M])_ _ («wig mile—o — 0' (2)
Andererseits gilt voraussetzungsgeméifi ffir g die Entwicklung

g = a(x2, x3, x0) (x1)"+a(x2, x3, x°)(x1)"+1+ . .. (3)
n n+1

Wil’ konnen somit nach der l’Hopitalschen Regel den Grenzwert
(32" 2R

nm (8%”) = 04L) _ o (4
g2 (2’0“?12 x1=0 _ )

bilden und damit auch an S dem Tensor RM den Wert Null zuschreiben.
Fiir endliche Nullstellen von g sind somit die Einsteinschen Gleichungen
RW=0 mit (l) identisch. I-Iieraus folgt, daB die Nullstellen von g keine ech-
ten Singularititen der Einsteinschen Gleichungen sind.

Wir konnen daher bei unserem Problem einfach die Einsteinschen Va-
kuumgleichungen zu Grunde legen. In der Tat sieht man, daB prinzipiell
zu jeder Losung gm, der Einsteinschen Gleichungen mit Lorentz-Minkowski-
scher Signatur Losungen angebbar sind, die nicht iiberall diese Signatur
besitzen: Wit brauchen hierzu ja nur Koordinatentransformationen auszu—
fiihren, die in dem Sinn irregular sind, daB an S die Jacobische Determinante

x‘——)0

von der Ordnung 721 verschwindet und im Bereich x1<0 (d.h. innerhalb

(3) Eine ausfijhrliche Diskussion enthilt die in den Annalen der Physik erscheinende
Arbeit “Gravitationsfelder mit Nullstellen der Determinante der gm”.
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von S) die Transformation ,,komp1ex Wird, wéihrend sie fiir x1>0 (auBer-
halb von S) fiberall regular und reell sein moge.

Um zu einem wohl definierten Problem zu gelangen, miissen wir also
weitere Forderungen an die Metrik stellen, die nicht alle gleichzeitig durch
eine irreguléire Transformation von beliebigen g”, der Minkowskischen Sig-
natur befriedigt werden konnen. Wir fordern, daB die gm, im ganzen V4
beschréinkt sind und weiter, daB es einen dreidimensionalen Unterraum
gibt, der den gewohnliche Raum V3 darstellt und eine negativ-definite Metrik
gik (i,k= 1,2,3) besitzt, deren Determinante 1gikl nirgends verschwindet.
Unter diesen Voraussetzungen betrachten Wir nun insbesondere einen Raum
mit einem Killing-Vektor 5", der im Bereich der Minkowskischen Signatur
zeitartig sein soll und verlangen, daB der Raum statisch ist und global E” = 6",
gesetzt werden kann. Da die Hyperflachenschar S* im Bereich der Minkowski-
schen Signatur zeitartig sein soll, konnen wir die Hyperfléiche S wiederum
durch die Gleichung x1=0 vorgeben und in der Umgebung von S ein fast-
Gaussches Koordinatensystem einfiihren, in dem die g,” die Form

x‘ \‘7t.‘r3.x‘1‘:u (,x-Y‘y‘ 0 O 0
A .

o“, - 0
*7 “ (J 6%.".

U

haben.
In (5) setzen wir voraus, daB die Matrix der gik negativ definit ist. Fiir

g00 nehmen Wir ganz allgemein die Entwicklung

goo=a(x2ax3) (x1)"+ -- - 71> 1 (6)

an, so daB fiir g die Entwicklung

g = a(x2, x3) (x1)"+ n 2 1 (7)

gilt. Die kontravariante gi" sind, wie die gik selbst fiberall regular und es
gilt ferner

gm 2 gig = 0,

Wahrend g00 fiir x1=0 einen Pol n-ter Ordnung besitzt.
Geometrisch haben wir somit folgende Situation: Die Metrik besitzt

ein globales Killing-Feld, das fiir x1>0 zeitartig ist. An der Hyperflache
S Wird der Killing-Vektor zu einem Null-Vektor und die Signatur an S ist:
(—1, —l, —1, 0). Hat g an S eine Nullstelle von ungerader Ordnung, so ist
der Killing-Vektor fiir x1<0 raumartig. Fiir x1>0 gibt es an jedem Punkt
Vier unabhéingige Nullrichtungen, fiir x1=0 nur cine, die Richtung des
Killing-Vektors.

Geht man nun mit diesem Ansatz in die Einsteinschen Vakuumgleichun-
gen ein und betrachtet diese in der Umgebung von x1=0, indem man alle
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gm. nach steigenden Potenzen von x1 entwickelt, so kann man bereits aus
diesen Voraussetzungen sukzessiv die ersten Koeflizienten der Entwicklung
weitgehend bestimmen. Man findet, daB die Einsteinschen Gleichungen
nur n=2 erlauben; ferner liefern sie Bedingungen fiber den Zusammenhang
der Entwicklungskoeflizienten von g00 mit denen fiir die gik.

Die Losung ist in der Nz'ihe von x1=0 symmetrisch in Bezug auf x1, so daB
folgende Interpretation moglich und physikalisch notwendig ist:

Die Koordinate x1 ist eine Art Radialkoordinate und die Hyperfléiche
x120 ist zu einer Weltlinie, dem Ursprung des réiumlichen Koordinaten-
systems, degeneriert. Es gibt hier kein Teilcheninneres, wir haben Vielmehr
ein Punktteilchen vor uns, dessen Weltlinie dadurch ausgezeichnet ist, daB
auf ihr die Determinante g in der 2. Ordnung verschwindet.

Ein in der Literatur bekanntes Beispiel fiir einen derartigen Losungstyp
ist das Schwarzschildsche Feld in der “Brfickendarstellung” von Einstein
und Rosen“) Diese “Brfickenlosung” ist lokal mit der gewohnlichen
Schwarzschildschen Metrik identisch, besitzt aber eine andere Topologie,
bei der der Bereich x1>0 mit dem Bereich x1<0 identifiziert wird.

Einstein und Rosen haben nun bemerkt, daB eine Interpretation der
”Briicken” — oder allgemeiner der Weltlinien der Pseudosingularitéiten
g=0 — als Teilchen notwendig zur Folge haben muB, daB ffir diese Welt-
linien aus den Feldgleichungen Bewegungsgleichungen herleitbar sein miis—
sen. D.h. es diirfen nicht beliebige Anordnungen von Weltlinien mit g=0
mit den Feldgleichungen Ry, = 0 vertréiglich sein. Da das Programrn der
Herleitung von Bewegungsgleichungen fiir die Pseudosingularitéiten auf
Schwierigkeiten fiihrte, stellten Einstein, Infeld und Hofl‘mann die Teilchen
spéiter durch echte deltaartige Singularititen dar, wobei dann an den Welt-
linien der Teilchen die Vakuumfeldgleichungen nicht erfiillt sind.

Unsere weiteren Rechnungen Wiesen jedoch darauf hin, daB es in der
Tat moglich sein sollte, Bewegungsgleichungen fiir die Pseudosingularitéiten
g=0 zu erhalten. Man kann nfimlich einsehen, daB es keine statischen L6-
sungen von (1) gibt, bei denen zwei Weltlinien mit den oben beschriebenen
Nullstellen von g existieren. Aus der Einstein-Rosen Metrik wissen wir nun,
daB die durch g=0 beschriebenen Teilchen Monopole sind. Somit ist unseres
Ergebnis das physikalisch notwendig zu fordernde und ermutigt nach den
expliziten Bewegungsgleichungen fiir die Pseudosingularitéiten zu suchen.

In der hier entwickelten Vorstellung werden also Massenpole, die sonst
durch deltaartige Singularitéiten wiedergegeben werden, durch die Pseudo-
singularitéiten g=0 dargestellt in Ubereinstimmung mit den Ideen Einsteins,
daB in einer strengen Theorie die Singularitéiten durch extrem starke Gra-
vitationsfelder zu ersetzen sind. In der Tat ist in der Umgebung von Null-

(4) Siehe‘[1] [2] [3]-
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stellen von g (und somit von goo) das Feld extrem nichtgalfleisch. Es sei dar-
auf hingewiesen, daB an den Stellen g=0 die Metrik nicht einmal im In-
finitesimalen durch cine regulate Transformation auf die Minkowskische
Form gebracht werden kann. Die Aussage, das Feld ist an einer Weltlinie
mit g=0 extrem stark, besitzt hier also einen vollstfindig invarianten Sinn.‘5)
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THE TYPE OF SPACE—THE TYPE OF ENERGY—MOMENTUM
TENSOR IN GENERAL THEORY OF RELATIVITY

A. Z. PETROV

Physics Faculty of Kazan State University, Kazan

A PROBLEM which naturally arises in the modern theory of relativity is for-

mulated in the present report. For Einstein’s field equations Rafi— ggafi

= up in the case when the energy-momentum tensor (EMT) describes the
complex of physical phenomena and there are different fields (for instance,
the electromagnetic one), a complete description of matter-energy can be
reached if the following features are known: (1) eigenvalues, (2) eigenvec-
tors, (3) algebraical structure of Tafl. The structure is determined by the
characteristics of the pair of tensors (TU—1g”). Since the metric is not de-
finite, non-simple an deven complex elementary divisors of the pair of tensors,
as well as null and perhaps complex eigenvectors, are in principle possible.
One can show that only three types of EMT can occur: [1111], [211], [31].
Only the cases corresponding to the first type have been studied in the lit-
erature so far (while in the case of the electromagnetic field the second type
appears, for instance, pure radiation).

On the other hand, as has been shown by the author, three and only
three types of gravitational fields exist in the general case if the algebraic
structure of the space—matter tensor (which coincides in a special case with
Weyl’s tensor of conformal curvature) is taken as the basis of such a clas-
sification. The problem consists in the investigation of the logical interrela-
tionship of the two classifications; in particular, it is necessary to clear up
the question of the consistency between different types the two classifica-
tions. This difficult problem, which can be simply formulated and which
is natural from the formal point of View is important physically, since it
determinates the range of applicability of Einstein’s theory.

One may think that this problem has no simple solution; however, its
solution, even for simple cases, would be useful. The problem is illustrated
by some special cases (the perfect fluid, pure electromagnetic radiation).
Some reasons are given to clarify why this problem must play an important
role for the consideration of any problem in general relativity.
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SPINORS AND BISPINORS IN RIEMANNIAN SPACE

E. SCHMUTZER

University of Jena

THE theory of spinors and bispinors in Riemannian space and curvilinear
coordinates, which originated about 30 years ago [l]—[5], has assumed great
importance recently in the theory of elementary particles and unified field
theory [6]—-[12]. The author has been occupied in the last few years with
a fully covariant formulation of these theories and with the relation of one
to the other [13]. We shall present here a condensed outline of the main fea-
tures of this subject from a unified point of view. Greek indices (tensor in-
dices) run from 1 to 4, while capitalized Latin indices (Spinor indices) run
from 1 to 2. The signature of the metric is taken to be (+, —|—, +, —),
and partial derivatives are symbolized by commas.

1. THEORY OF SPINORS

Spinor indices are raised and lowered by means of the metric Spinor
AB BA.7 =_?’

_ B A _ AB“A —‘}’BA‘1 9 a —7 as, (1)
where

VABVCB = VAC = 54C- (2)

Coordinate transformations of tensors may be described by the formulae

ad, 2 Aglaa, aal = Aglaa, (3)
a!

where A3’ = W’ and Spinor transformations which are induced by continu-

ous coordinate transformations by the formulae
(1" = Afi'a", aA, = AfiaA. (4)

In generalization of Harish Chandra’s considerations [14] for Minkowski
space, the metric spintensor “MB which is Hermitean,

6/4118 = “”321 i (5)
is defined by the relation

. i . 1
auBAavéc = gm‘VAc :l: 7 EuugragBAU Etc (6)
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where

em, = V? «W (7)
is the Levi-Civita pseudotensor and g= —[g#,[. All further formulae for
higher a—products may be deduced from (6).

The metric spintensor connects the tensorial basis vectors 11" with the
spinorial basis vectors 1133 according to

This = —o‘z,;Bn" 01' 0‘n = —11.isnx- (8)
So Bergmann’s representation vectors get an obvious geometrical interpre-
tation. The covariant derivative of spinors is defined by means of the spinor
aflinity F5; in the form

“Am = aA,1—F32.03, “Am = 0A,1+F3/148- (9)
For the metric spintensor we postulate

“ME-e = 0; (10)
while for the metric spinor we put

7A3»: = — i‘l/AB (‘Pu real) (11)
so that

7A1»; = yCBF§n+yACF§x_i(P27AB- (12)
Splitting up the spinor affinity according to the formula

1'
11,31 = [ADA] +E’VAD‘PA (13)

gives
VAs 2 [A%,B]—[B%,A]. (14)

Because of 11,;m = 0, it follows that

[ADA] = — —:HBA,211§D— LZVAD [i352] ; (15)
and from this

ne+nfi=w+m raglan“ = 2111 (16)
where P = —;ln(yiéy12). By means of the decomposition

[[41]: Fri—in). (Hz. real“’), (17)

and the abbreviation

{ADA} = _finiaA,znéD (18)

the gravitational spinor aflinity (13) can be written in the form

F2}. = {AD1}+ %i3/AD‘QA’ (19)

l _ .
(1) fl). = —2— 0,1, where 9 is given by ym = 1/}; e:0/2_
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with .91 = s+HA+iFw For {4”,} one finds

{Ana} = %{glx}alB-AGQB.D_%095D69§A,x' (20)

So the connection of the spinor affinity with the Christoffel symbols is
given. From (20) there results the relation

{AAu} = _ i {122} _ i" 0‘95 D6951)“, (21)

from which the reality of
{A} = {A} = 2F) (22)

can be seen once more. Formula (15) now may be written in the form

[AD/1] = {AD1}_17YAD(F,A—ifla)- (23)

Then the covariant derivative takes the form

a‘i = a‘J—I— %i9,1a‘+ {3A1} (13. (24)

In Galilean coordinates in Minkowski space, with the choice 7.43, 03,13,
It," 11,113 = const., we get from (24):

(14;) = a‘,,1+ %i¢p,1a‘. (25)

Cdmparison with the well-known gauge derivative gives the connection with
the electromagnetic potential

hA; = ——cw. (26)
2e

While go; is a tensor, 1",) and IL transform as follows:

,2, =F,AA§,+§(A¢,AIA:2'+Agi,,,,A::3’), <27)
17,, = 1LA11— %.- (A3,),Agfi—Afiw/1'3'). (28)

On the other hand, from the definition of I' we get

,Cv = ,zAiI—i [1n(/1*/1)],zl (A=l/1§"1), (29)

so that one finds, by comparison of (27) and (29),

dAg,Ag'+d/1;I,Aj' = —d[ln(A*/l)]. (30)
By use of the relation

aAwm—aAmw = aA,v,x_aA,x,v+aBPBAm: (31)
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the curvature spintensor PEA,” may be put in the form

PBA»: = FExp—PEvil—P371-1[Ex—Fg 31- (32)

The gravitational curvature spintensor

03A” = {Asa} ,v_ {A37},x+ {03v} {Acn} '_ {Caz} {Acv} (33)

is connected with P3,, by the equation

Pa.” = 03m+§iy£9m (34)
where

From (33) and (34) it follows that

PAM: 1.9,”, 0AA” = 0. (35)

The Riemannian curvature tensor is connected with the gravitational curva—
ture spintensor by

1 a -
0‘3c = :Ranma A-MO'MAB- (36)

and

Rfim = 0A a
. 1 .

1°” UfiNM—l— ;0AM” O‘I‘NA UfiNM. (37)
1
2 llA‘M

Finally, the cyclic relation

[0gm;r]<vor> = 0 (38)

is worth noting.

2. THEORY OF BISPINORS

The metric bispintensors (generalized Dirac matrices) are defined through

7,17. = g[17+ ;— ismflyuylys: (39)

where
1

7’5 = _—_ 8, vyflyuyl' (40)4! z
The definition of 7/5 is chosen in such a way that

(9/92 = 1- (41)
In addition

7571 = —71V5- (42)

All the other formulae of y-algebra can be deduced from (39). The covariant
derivative of the bispinor 1P, which transforms according to
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‘P’ = SY’, (43)
is defined by

Tn- = 5”,. + 11!?- (44)
So for the bispinor affinity the transformation law

I"; = A:.(SJ_",S—1—S,vS—1) (45)
results, while the y, are transformed according to

7} = AZ'SvLl' (46)
Following Bergmann, we choose the covariant definition for the adjoint
bispinor:

9'7 = W5, (47)
where ,6 possesses the following properties:

[3’ =l6’ 5+ :16, [3:1’209

S+fi = fiS‘l, I311+11+I3 = 0, I391” +y”+/3 = 0-
The explicit expression for ,6 is )3 = (2%). Then no Hermiticity postulate
for the 32,) is necessary and all difliculties connected with it vanish.

So the covariant derivative of the adjoint bispinor is given by

it! = fit—@7111“ (49)
For the covariant derivatives of the y” we postulate:

7%: = y/tw—{Il “Jya—l—[Fyyfl] E 0' (50)

(48)

The entity
(15,“, = I‘M—Fw—k [R PM] , (51)

defined from the relation

Thaw—Elm}; = @yvl-{la (52)

is connected with the curvature tensor in the following way

em = :— i New+121, (53)
where

m = — i i [yayg—yfiyal- (54)
The following relation with the electromagnetic field strength FM, exists

fl}. = i trace $71 = — '3 FA”. (65)
4 kc

3. CONNECTION BETWEEN THE THEORIES OF SPINORS
AND BISPINORS

Coincidence of the spinor and the bispinor apparatus can be obtained
in the following way: From (6) and (39) there results the preferred repre-
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sentation (we call it “standard representation”)

7" ——— —i(OB_13 6:3), (56)
A

and from this formula one gets
10=:|: .3’5 (0 —1) (57)A

The bispinor is split up into spinors:
A

1P: x .(TA) (58)

For the transformation matrix S this give
A"S: B (3.,- , (59)

0 114',

while the bispinor aflinity takes the form
_ Pg” 0H o 43,), (6°)

and
_ PABM 0

QA_( 0 “13312)- (61)
Thus the bispinor affinities are expressed through the Christofl‘el symbols
and the metric spintensors with the help of (19) and (20).
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CONSERVATION LAWS AND FLAT-SPACE METRIC
IN GENERAL RELATIVITY

N. ROSEN
Israel Institute of Technology, Haifa

Abstract—The formalism involving two metric tensors, one corresponding to a Rieman-
nian space, the Other to a flat space, is reviewed. It is pointed out that one can define an
energy-momentum density tensor for the true gravitational field, as distinguished from the
inertial field.

IT WAS proposed some time ago [1] [2] to introduce within the framework of
the general theory of relativity, along with the usual metric tensor gm, second
metric tensor 7/”, corresponding to flat space. This can be done without
attributing any special properties to the space-time and leads to improve-
ments in the formalism. It is possible [3] to reinterpret the formalism so that
y”, can be considered as describing the geometry of space-time while gfl
plays the role of a gravitional potential, but one does not have to do this.

If one has the two metric tensors, one can define two kinds of covariant
derivatives, a g—derivative (denoted by a semicolon) based on g,,,., and a y—de-
rivative (denoted by a comma) based on ym. If we denote the Christofl‘el
3—index symbols formed from g”, and y”, by {‘11,} and 11,}, respectively, we
find that

{iv} = Afiv‘i—Ffiw (1)

where A3,, is a tensor and has the same form as {j,} except for the fact
that ordinary partial derivatives have been replaced by y-derivatives. One
also finds that the Riemann—Christofl‘el tensor can be written in the form

Rluva = _Afiv,o+Afia,v+sAttic—AgaAgw (2)

and hence the Ricci tensor in the form

R,” = Rh,” = —A,‘i..,a+Afifl,V—Afigdflv+AEMA§.- (3)
Comparing these expressions with the usual forms, one sees that {#1,} has
been replaced by A11, and ordinary differentiation by y-difl‘erentiation.

One finds that, in general, one can rewrite the equations of general rela-
tivity theory so that {#1,} is replaced by A’1 ordinary derivatives by y—de-m9

rivatives, (—g)% by x = (g/y)i where g and y are determinants of the metric
tensors and, in integrations, dr by (—y)%dr where dr = dxldxzdx3dx4. One
can go from this modified formalism to the usual one by taking 7/”, = 71,1.
where 17” is the metric tensor of special relativity theory.
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For example, the equation of motion of a test-particle, i.e. the equation
of the geodesic, can be written

dzx" dx“ alx‘9 dx“ dxfiF" — A" —— = 0. 4
(is2 + “'3 ds ds + ds ds ( )

The field equations for a given energy-momentum density tensor T’" can
be written, as usual,

6,, 2 RW— gn = —8nT,,,, (5)
where R," is given by Eq. (3). The left-hand member of Eq. (5) can be derived
from a variational principle

6 f E(—y)%dr= fWagieyfi d1, (6)
where

L = xg”’(A§,,A§,—A$5Afi,) . (7)
Since 1: is a scalar, one can derive an energy-momentum density tensor for
the gravitational field, analogous to the Einstein pseudo-tensor. However,
this tensor is not symmetric and therefore does not lead to a conservation
law for angular momentum.

‘To get a symmetric energy-momentum density tensor one can follow
the method of Landau and Lifshitz [4]. Let us first define the tensors

_ _ 1
g,” 2 ”gm, gm! : Zg/w: (8)

and
T!” = zzT’”. (9)

Now we define a tensor 5'” by means of the relation

f”'+?”’ = km, (10)
where

km = —kW = T; (geek—m");- (11)
75

It then follows that
WM"), = 0. (12)

The explicit form of t7" is given by

16a?” = 3"“,pg'2,§+ gzewfigit—tzaflgg'éi

—gafi,,§ué,r2w,agw,fi—xix”. i,
_ Z

+ §"”,a§"5,5+§”'L; (13)
where underlined indices are to be raised or lowered with g!" or E”, after
difl‘erentiation.

While other expressions are possible for the energy-momentum density
of the gravitational field, the tensor t7" appears to be the most satisfactory
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because it contains no derivatives of g,” higher than the first and because
it is symmetric. It should be pointed out that Eq. (12) contains, in general,
a y-divergence, and not an ordinary divergence so that it does not lead directly
to an integral form of conservation law. However, if one goes over to a Gali-
lean coordinate system (Which is always possible in principle) one obtains an
ordinary divergence.

In order to get a completely determined set of variables (except for the
possibility of an arbitrary coordinate transformation) it is necessary to im-
pose four relations between the gm, and y,” in addition to the general re-
quirement that for an insular physical system we should have gm. =91”, at
infinity. It is desirable to take these relations in the form of four covariant
equations. One reasonable possibility is to take

g"’“‘,.. = 0. (14)
This resembles the De Donder, or harmonicity, condition, but since this
is a covariant set of equations it does not fix the coordinate system.

It should be pointed out that the introduction of the flat-space metric
enables one to separate the true gravitational field (i.e. that arising from the
presence of masses) from the inertial field. This can be seen, for example,
in Eq. (1) where, on the right-hand side, Afw describes the true gravitational
field since it is a tensor, while Ff}, describes the inertial field since it can
be made to vanish in an appropriate coordinate system. Similarly, the energy-
momentum density tensor t7" refers to the true gravitational field, while
the efl‘ect of the inertial field appears in the presence of the y-divergence in
Eq. (12).

Moller [5] has shown that if one looks for an energy-momentum density
complex for the gravitational field depending only on the tensor g”, it is
impossible to satisfy all the conditions which it is reasonable to impose in
order that one obtain a localization of energy and momentum. He has been
led, therefore, to introduce tetrads to describe the field. However, it should
be pointed out that the tetrad formalism, among other things, brings in a flat-
space metric in addition to the Riemannian metric. It would appear that
it is enough to introduce the flat-space metric without the additional com-
plexity of the tetrads, if one wants a theory only of the gravitational field,
and not a unified field theory.
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ON LOCALIZABILITY OF GRAVITATIONAL ENERGY

N. V. MITZKE’VIé
Chair of General Physics, Lumumba Peoples’ Friendship University, Moscow

THE localizability problem for gravitational energy-momentum has been
widely discussed since the very beginnings of the general theory of relativity.
This problem is closely related to the material aspect of the gravitational
field—i.e., to the possibility of energy transport by gravitational waves or
gravitons and the possibility of transmutation of gravitons into other known
particles.

The various proposed conserved quantities suffered from several am-
biguities in their transformation properties and from assymmetry between
the “matter” and gravitation parts. Moller has proved that it is insuflicient
to use only the 10 components of the metric g”, for constructing a complex
with satisfactory transformation properties. It is, therefore, clear that the
introduction of a new set of functions (i.e., of a new field!) seems necessary
for obtaining a localized formulation of gravitational energy.

There are in fact various ways to satisfy the requirements of Moller. Besides
Moller’s proposal to introduce 16 components of a tetrad field, i.e. 6 new
functions, the present author has revived the old idea of N. Rosen and used
the bi-metrical formalism. In this case 4 general transforms x’” =f”(x’)
leading to the centre of mass system which put the 2nd metric em, into the
form diag (1, —1, ——1, ——1) form the set of additional functions; there are
only 4 in number, and not 6 as required by Moller.

It is shown that the deduction of the conserved quantities by means of
Noether’s theorem is also possible in the bi-metrical case. One can get either
non-tensorial (but covariant) Noether relations or tensorial ones; the two
are mutually connected in a simple way. Our aim was to obtain the tensorial
continuation of the pseudotensor of Einstein already given by Rosen, but
to use the Noether method.

However, it is necessary either to narrow the class of transformations in
the Noether theorem while still using the tensorial continuation of the Ein-
steinian Lagrangian of the gravitational field

Acov = 1 V ‘5‘ g!” HZ,U35_H£QU35)tu
l
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or, retaining the general transformations, to pass over to a new (and unnatu-

rally complicated) gravitational Lagrangian. We prefer here the first alter-

native.
The restricted transformation class which may be called “the group of

generalized orthogonal linear transforms” (GOLT) is formulated here in

a. covariant way. In the case of GOLT

6*e," = 0,

which means that
6mm = —5x,;;,.

(dotted indices are lowered with use of em; a bar is used for the e-covariant

derivative), and therefore
(”new = 0-

Ihese formulae justify the name of GOLT.

The problem is new to formulate an unambiguous prescription for finding

Dthe e :5. Interpreting the 2nd metric field as an inertia field and trying to

use Mach's principle. one could put em. : ding (l. fl. ~ - I. —l) in the centre

of gravit} system of the entire Universe. “out there is still a lot of ambiguity

in this definition. In this connection we may mention some ideas recently

expressed by I. Gutman which could improve the situation: his “parametri-

zation” group. There is a pecular synthesis of locality and non-locality in

this case: the determination of e”: is strongly non-local.

Several authors have contributed independently to this problem, in par-

ticular Ya. I. Pugachov and I. I. ‘ Gutman. We have discussed here mainly

the method of derivation of this important result.

Finally we stress that the bi—metric formalism by no means goes beyond

the limits of the traditional Einstein field theory only at first sight an absolute
inertia field seem to contradict the conventional treatment.
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A GENERALIZATION OF THE SCHWARZSCHILD METRIC*

E. NEWMAN

University of Pittsburgh

IT HAS been shown [1] [2] that in empty space (i.e., Rafi = 0) the algebraic
equation for the unknown vector 1”, [[I‘Ramwlfllfily = 0 possesses four
solutions such that [”1” = 0. Such a vector is called a principle null vector.
If two or more principle null vectors coincide the Riemann tensor is said
to be algebraically special. A necessary and sufficient [3] [4] condition for
this to occur is that the shear a of l” vanishes the magnitude of a is defined
by GE: —: [1(W)ZW— —; (1”: ”)2“ and I” be tangent to a null geodesic.

One can give a subclassification of algebraically special metrics by stating
certain differential properties of l". The simplest method is to state whether
I” is proportional to a gradient field (hypersurface orthogonal) or not (in
the latter case 1,, is said to be curling) and whether the divergence, 1“”), is
zero or not. The case of Z” being hypersurface orthogonal with non-vanishing
divergence has been completely analyzed by Robinson and Trautman [5]
[6]. The hypersurface orthogonal case with vanishing divergence has been
extensively \tudied by W. Kundt. The remaining case, curling I,” with non-
vanishing divergence will be discussed here. (Solutions with curling I” but
with vanishmg divergence do not exist.) A subset of this class has been
found, all being Petrov type I degenerate. They depend on two arbitrary
parameters and one parameter which takes on the discrete values 1, 0, —1.

Using null coordinates (i.e., three coordinates labeling points on a null
surface and one coordinate labeling the null surfaces) the metric can be put
in the following form:

U, 1, —AU, —BU
1, o, —A, —B

5"" 2 —AU, —A, AZU—RZ, ABU
—BU, —B, ABU, B2U— R2

U = e—e§(mr+2 .2902), 9 = (r+i9°)‘1,

(1)

‘ The work reported here is a joint effort of Dr. L. Tamburino, Mr. T. Unti and the
present speaker.
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0

1+Z(x2+y2)
B = A——9°x

1+2 (x2+y2)'
2

R—2 =QE[1 + Ewan] ,
where m and 9° are the continuous parameters and 8 takes the values 1, 0, —1.

x1 = u labels the null surfaces, x2 = r is the affine parameter along the null
geodesics, and x3 = x and x4 = y are the remaining coordinates on the

null surface. x and y are actually stereographic coordinates on the sphere
u = const., r = 00. (One can look upon them as two angular coordinates.)

The special case 9° = 0, which has been investigated by Robinson and
Trautman, contains the Schwarzschild metric. This is obtained by setting

a = 1. We, therefore, consider the case 9° i O, a = 1 as the simplest gener-

alization of the Schwarzschild metric.
The general solution (Eq. 1) contains a four parameter group of motions.

In the special case of the generalized Schwarzschild metric the time-like Killing

vector is not hypersurface orthogonal, meaning that the metric is station-

ary rather than static. The generators of the space—like motions have the

same commutator algebra as the components of angular momentum. The
paths are however not closed.

If a time coordinate, and polar coordinates are introduced the metric
can be put into the following form (similar to the usual Schwarzschild coor-
dinates),

ds2 = U (dt+ 49° sinzi 0d¢)2— U-ldrz—(d62+ sin2 0drp2)(99)—1,

U = l—e'é(mr+29°2), 9 = (r+ie°)‘1-
It was initially believed that this metric represented the field of a ro-

tating point particle. It now appears as if this is not so; the symmetries
being to high.

Further details including a discussion of the bound orbits will appear in
a paper being prepared for the Journal of Math. Phys“)
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ENERGIE GRAVITATIONELLE ET LOIS DU MOUVEMENT DANS
UNE THEORIE LINEAIRE ET MINKOWSKIENNE DU CHAMP

DE GRAVITATION

M. A. TONNELAT

Faculté des Sciences, Paris

A PARTIR de la Relativité Générale, on peut étudier, aux divers ordres
d’approximation, 1e comportement de la partie non minkowskienne,

hm: = gyv‘_77pv:

du tenseur métrique. On assimile alors hm, 2‘1 une quantité petite devant
l’unité (t a), susceptible d’une description linéaire au premier ordre
dans l’espace minkowskien muni de la métrique 71”,. On obtient ainsi une
version phénoménologique qui suppose, bien entendu, Ia donnée de la
Relativité Générale et en constitue une retranscription locale et appro—
chée.

D’autre part, on peut se proposer 1e but assez difl‘érent d’édifier, dans un
espace strictement minkowskien, une théorie phénoménologique mais, en
principe, rigoureuse du champ de gravitation. La description des forces de
gravitation forme alors 1e pendant d’une électrodynamique. Parmi les recher-
ches de ce type, citons celles de Nordstrom [1], de W. Pauli et de M. Fierz
[2], celles de l’auteur [3], enfin celles de A. Papapetrou [4], de Birkhofl‘ [5],
de Moshinsky [6] et de Belinfante [8].

La plupart de ces théories n’essaient pas de tirer les equations du champ
et la definition d’une impulsion—énergie gravitationelle en utilisant une dé-
duction lagrangienne. Les equations du mouvement résultent alors d’une
loi de force posée a priori. Tel est le grave défaut de la théorie de Birkhoff
qui sacrifie, selon la remarque de H. Weyl [7], la conservation de l’énergie
a la conservation de la masse. Un inconvenient mineur de cette théorie réside
enfin dans l’obligation de choisir une impulsion-énergie matérielle d’un
type trés particulier: l’obtention d’une avance correcte du périhélie des pla-
netes exige en efl‘et une équation d’état (p = ,uc2/2) entre la pression et la
densité de masse du schéma fluide parfait. Sa justification est loin d’étre
décisive.

C’est pour éviter ces diflicultés que nous proposons ici une théorie de type
maxwellien susceptible d’une déduction lagrangienne bien déterminée.

323



324 M. A. TONNELAT

1. CHAMP DE GRAVITATION ET LAGRANGIEN

La métrique g”, est totalement dissociée du potentiel de gravitation 1p”.
Celui-ci est une donnée phénoménologique (analogue au potentiel électro-
magnétique (pp) réprésentée par un tenseur symétrique du second rang. Aprés
variations— mais apres variations seulement —.on peut toujours réduire
g”: a sa valeur minkowskienne 17”,.

Le champ de gravitation est défini (cf. [3]) par

WM 2 VfiWVQ—VVWMQ ' (1)

Les dérivées covariantes s’introduisent du fait que la métrique est quelcon-
que, avant variations. Contrairement au champ électromagnétique rota-
tionnel, 1e champ de gravitation zpme dépend donc des dérivées 01g”.

Introduisons la. densité Iagrangienne

.Q = ]/—g L

en postulant que L est un scalaire, fonction quadratique du champ «pmg

de sa contraction W959 et aussi du champ 6M1]; défini a partir du potentiel
scalaire

1P=gWWM'
NOus poserons ainsi

1 1'9 a 1 M6 F It c I‘L=Zw,gw"' +311)”, 1/) ,a+bw,a,‘0 w+ 35”" w- (2)

2. EQUATIONS DU CHAMP

Les conditions

a f .t = o
imposées pour des variations 61p", nulles a la limite du domaine d’intégra-
tion, se traduisent par les equations d’Euler

6,8 6 an a,e__= 9
6w” bow") aw

qui expriment 1e comportement du champ dans le vide.
En presence de matiére, l’adjonction usuelle du terme

V—_gA 2—

x‘m =x]/~——gM avec M: WM”,

conduit aux equations du champ ‘

A," E D 1/2,; 5(aflr,+a.rfl)—(a+b)(anwmam +
+(a+2b+6)mw E! w = —x%. (3)
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en posant
F” = (3&1l

et en revenant, aprés variations, a la métrique adaptée 11”,.

3. ENERGIE GRAVITATIONELLE

Par définition,‘ l’énergie-impulsion du champ de gravitation est repre-
sentée par le tenseur du second rang toujours symétrique

”/n =_5i=a i_£.z ”’ 6n ‘ wag") ag'"
L’avant dernier terme qui disparait en théorie de Maxwell (1e champ — at
par consequent ,8 — sont indépendants de 69g”) donne ici une contribution
non nulle. On obtient

2 a.-" 72;" = Wua,fiw' fi‘l‘ % Wafimllpafi;

_' T: ”#vWafi,91pafi'e— —;_ aa{Wya(1/)yala+lpaa,v)+

+Sym M,v+ w°"(wa,t,.+ wa,,u)}+termes en (a, b, C) (4)
en revenant, aprés variations, a la métrique 17”,. La divergence de ce tenseur
d’impulsion-énergie se met alors (quels que soient a, b, c) sous la forme trés
simple:

0" E," = —Z[a,8, v]A°fi—lzp,fi0aA°fi . (5)
Aug représente le premier membre — linéaire— des equations du champ.
On a pose, par analogie formelle:

[(1.62 ’11] = i‘ (aaWfiv+afiWav_avl/Jafi) '

En dehors de la présence de matiere (My, 2 0), les equations du champ
dans le vide (Aafi = 0) entrainent

8" ZW=0.
Modulo les équations du champ, la divergence de l’impulsion-énergie gravi-
tationnelle est alors identiquement nulle.

4. MOUVEMENT D’UNE PARTICULE D’EPREUVE

Les equations du mouvement d’une particule d’épreuve soumises au
champ de gravitation 1,0,“, s’obtiendront, comme en électrodynamique, en
imposant a l’énergie totale (énergie matérielle mm, = ,uc2uflu,+ énergie gravi-
tationnelle 2”,) les conditions de conservation

0"(m”,+Z,,,) = 0. (6)
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L’espace minkowskien est muni de la métrique 7],”. Il est commode de de-
finir d’une fagon purement formelle l’expression

aw = ”fly—21w“

qui joue 1e role de “métrique associée”. On posera
d n

f: a#,u"u" = l— lxtpwum" (14" = j )9
s

, _ 0'09 _ aeau .

Ces définitions permettent de simplifier les formes déduites de (6). A partir
de cette condition, on obtient en effet

a) Une équation de continuité

accm‘i’) = 0. (7)
b) Des equations dynamiques

* t 1Q _ _ Q 0'udg'vfl— 2 uuaflaga (8)

en posant

a9: W7, 73.:- van/7.
Le mouvement d’une particule neutre reste donc indépendant de la

masse de cette particule. Enfin les principes de conservation relatifs a la
masse et a l’impulsion-énergie peuvent étre maintenus simultanément. Tel
est le but que s’e’tait proposé H. Weyl [7] apres les critiques adressées a la

théorie de Birkhofl‘. Notons enfin que le scalaire f=l—lx1pfl,u”u” (l—@
czr

pour les champs statiques faibles) intervient comme un indice (nsél) pour
produire une polarisation gravitationnelle du vide (sans étre aucunement
lié comme dans la théorie de M. Moshjnsky 2‘1 l’obtention d’équations élec—
tromagnétiques adéquates).

5. PROLONGEMENTS ET CONCLUSIONS

Le calcul de solutions particuliéres (solution statique a symétrie sphéri-
que) permet d’appliquer la théorie a la détermination des trajectoires des
planétes dans le champ solaire. Les données expérimentales concernant
Mercure conduisent a la prévision d’une avance séculaire correcte (cf. rap-
port de S. Mavridés).

Enfin cette théorie dont le développement reste tout a fait paralléle
a celui de l’électrodynamique permet d’étudier trés simplement les questions
concernant la radiation gravitationnelle. On peut, en particulier, calculer
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1a self réaction de radiation par un procédé tout a fait analogue a ceux que
l’on utilise en électrodynamique.

Pour terminer par des considerations plus personnelles, j’ajouterai que
cette théorie ne poursuit pas 16 but caché de se substituer a la Relativité Gene’-
rale mais d’explorer, de fagon plutot heuristique, quelques domaines tout
spécialement coriaces et complexes dés que l’on adopte les principes d’une
théorie non euclidienne: Etude de solutions pre’sentant des symétries spatia-
les particulieres; quantification du champ; definition d’une énergie gravita-
tionnelle localisable dans une variété ou la notion de vecteur Iibre n’a plus
de sens.

Bien entendu, 1e retour a des principes purement minkowskiens est payé
de quelque rangon: 1e Principe d’Equivalence n’a plus 1e méme sens des que
les actions de gravitation sont dissociées de la métrique; l’interaction lumie-
re-gravitation doit s’expliciter comme toute autre forme d’interaction par
des termes supplémentaires introduits dans le Iagrangien: ainsi les 2e et 3e
tests découlent encore de la. théorie mais d’une facon moins immediate que
dans le cas de la Relativité Générale.

Ainsi l’introduction d’une gravitodynamique, tout en ofl‘rant des avan—
tages considérables et tres suflisants pour la justifier, permet d’apprécier l’ori—
ginalite’ profonde, irremplacable, de la Relativite’ Géne’rale.
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CHRONOMETRICAL INVARIANTS AND SOME
APPLICATIONS OF THEM

A. L. ZELMANOV

Stemberg Astronomical Institute of the Moscow University, Moscow

CHRONOMETRICAL invariants (i.e. three-dimensional tensors and other quan-
tities and differentiation operators, invariant under transformations of the
temporal coordinate) were introduced some time ago by the author. The
requirement for chronometrical invariance is essential because any trans-
formation of the time coordinate alone, as well as purely spatial transforma-
tions express no transition between different systems of reference. The use
of chronometrical invariants is especially expedient in cases when either
a physically privileged system of reference exists (e.g. co-moving system in
cosmology) or the quantities under consideration are not covariant in respect
to general transformations of coordinates (e.g. the gravitational energy-
momentum pseudotensor).

In cosmology the present and other authors use chronometrical invariants
as a formalism for the theory of anisotropic non-homogeneous Universe.

The criterion of chronometrical invariance was applied to a number of
proposed forms of the gravitational energy-momentum pseudo-tensor (by
Einstein, Landau-Lifshitz, Mallet, Mitzkévié, Goldberg). Investigations per-
formed by D. V. Belov, A. G. Malov, I. D. Novikov and R. Th. Polishchuk
have shown that all these forms do not satisfy the requirement for chrono-
metrical invariance.

Chronometrical invariants are also used at considering wave solutions
of Einstein’s equations. A chronometrically invariant criterion for the
existence of gravitational-inertial waves as well as a general covariant cri—
terion for gravitational waves are proposed. Recently V. D. Zakharov
has applied both criteria to a number of exact wave solutions of Einstein’s
equations and found most of them do satisfy such criteria.
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NEGATIVE MASS PARTICLES

YA. P. TERLETSKII

Physical Faculty of Moscow University, Moscow

SOME physical and cosmological consequences of the introduction of nega-
tive mass particles (minus-particles) are considered.

1. It is shown that minus-particles cannot be detected by apparatus of
the conventional type (cloud chamber, photoemulsion, etc.). Some instru-
ments are, however, possible in principle for the detection of minus-particles.
The detecting element of such an instrument must have a negative temper-
ature.

2. It is shown that minus-particles can exist in a thermodynamical equi-
librium state only at negative temperatures. Thus if minus-particles are pres-
ent, the universe cannot be kept in a thermodynamical equilibrium state,
i.e. it represents a system possessing no thermodynamical equilibrium state
at all. Therefore, negative masses are inconsistent with the conventional ther-
modynamics.

3. According to Shirokov’s paper [1] we can prove that an arbitrary
weak gravitational field has negative energy density. So we can suppose
that some kinds of gravitational waves transport negative energy.

Some consequences of gravitational waves carrying negative energy are
considered. It is shown that such gravitational radiation can exist in a ther-
modynamical equilibrium state only at negative temperatures. Thus, an
ordinary substance in weak interaction with gravitational radiation of such
a kind has to be steadily heated.

4. The pecularities of the motion of positive and negative mass particles
in the presence of a gravitational field of a large system possessing either
positive or negative mass are considered. It is shown that the antigravitation
of negative masses does not contradict the equivalence principle of Einstein.
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COSMOLOGICAL CONSIDERATIONS OF THE ABSORBER
THEORY OF RADIATION“

J. E. HOGARTH

Queen’s University, Kingston, Ontario

THIS paper examines the hypotheses that the physically significant solutions
of Maxwell’s equations are those which exhibit perfect time-symmetry, and
that radiation is not an intrinsic property of charge. It concludes that radia-
tion and the electrodynamical arrow-of-time may be dependent upon the
large-scale cosmological properties of the universe.
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RETARDED POTENTIALS AND THE EXPANSION
OF THE UNIVERSE

D. W. SCIAMA

Department of Applied Mathematics and Theoretical Physics, University of Cambridge

As HOGARTH pointed out in the previous lecture, the retarded nature of elec-
trodynamic interactions is probably connected with the expansion of the
universe. In his discussion he uses the Wheeler—Feynman theory, and ar-
rives at the curious result that in the Einstein—de Sitter model (amongst
others) advanced interactions would prevail, that is, charges would radiate
in the sense of time in which the universe is contracting (whereas in the steady
state model (amongst others) retarded interactions are obtained). This result
leads to theoretical difficulties as well as observational ones, for there exist
distributions of sources in the Einstein—de Sitter model which would give
rise to an infinite radiation-density (as a result of the blue shiftm). For this
and other reasons, we have studied Maxwellian electrodynamics in expanding
world-models, and have been able to derive retarded potentials for the steady
state model and, under certain circumstances, for the Einstein—dc Sitter model.

The basic idea is to use the Kirchhoff integral theorem, which facilitates
the formulation of the correct boundary conditions. For the wave equation
C12¢p=9 in Minkowski space (we go over to cosmological space later), Kirch-
hoff’s theorem expresses the value of (p at the point P and the time t in terms
of quantities defined inside and over the closed surface S of a volume V sur-
rounding P. This expression has the form

1 [p] l 6 1 lar ago 1 690P, =— —d — —————————— d,
9‘0( 0 471; r V+ 4n!{[¢]6n(r) ranl:6t:| r|:6n]i S

where
r is the distance from P to a point of S,

\

6— represents differentiation along the inward normal to S, and
n

[ ]represents retarded or advanced values.
A similar expression holds for each component of the electromagnetic vector
potential, or of the electromagnetic field itself, if Cartesian coordinates
are used.

(1) This is proved in a paper which is being submitted for publication.
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The first point we want to stress is that by including the surface integral
we have ensured that the expression for (p is quite general, that is, no bound-
ary conditions have yet been introduced. Moreover, this general field 90
is expressed in two equivalent ways, namely, in terms of retarded quantities
and in terms of advanced quantities. By linear combination we can also
express (p in terms of half-retarded half-advanced quantities. To proceed
further we must study in more detail the significance of the surface integral.
As is well-known, it can be regarded as the contribution to 90 coming from
an effective pole and dipole layer on the surface which represents the com-
bined effects of

(i) the sources outside V,
(ii) any source-free radiation that may be present (called by Dirac (1938)

[I] F... and Foo.
In conventional discussions of the retarded (Liénard—Wiechert) poten—

tials it is assumed that all the sources are confined within a finite volume.
Accordingly we can take V to enclose all the sources, so that they make no
contribution to the surface integral. This integral is then made to vanish
in the retarded formula by adopting Sommerfeld’s radiation conditions,
which assert that in the distant past there was no source-free radiation enter-
ing the volume. On the other hand, the surface integral in the advanced
formula does not in general vanish. In fact, we must have

4n<p=fadv+fadv=fret
V s V

So the advanced surface integral is given by

fadv=fret—fadv.
s VV

We deviate from this conventional discussion in two respects. First of
all we permit the sources to be distributed throughout space-time, as is natu-
ral in a cosmological context. Secondly, we do not assume the Sommer-
feld conditions, which from our point of View beg the question. Rather we
shall try to derive them from the cosmological boundary conditions. These
two deviations require us to consider the behaviour of the surface integrals
as V tends to infinity.

For either of the surface integrals to tend to zero two conditions must
be satisfied:

(i) the contribution from sources outside V should tend to zero as V
tends to infinity (an Olbers-type condition),

(ii) there should be no source-free radiation outside V in the appropriate
half of P’s light cone (a Mach-type condition).

In order to study these conditions we must go over to expanding world-
models. Fortunately Kirchhoff’s theorem still holds in all Robertson-Wal-
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ker models (and therefore in the Einstein—dc Sitter and steady state _models
in particular). The reason is that all these models are conformally flat, while
Maxwell’s equations are conformally invariant. The only difference from
the Minkowskian case is that in non-static models there will be red shift
effects in the retarded formula and blue shift effects in the advanced formula
(choosing the sense of time so that the universe is expanding). These shifts
will play a decisive role in what follows.

We first consider the surface integrals in the Einstein—de Sitter model.
As we mentioned at the outset there exist in this model distributions of
sources whose total advanced fields are infinite. In reaching this result allow-
ance has been made for the possible coherence of the sources. It turns out
that if phase relations between the sources are produced by either retarded
or advanced interactions, the resulting interference effects do not eliminate
the infinity. It follows that in the advanced formulation of Kirchhoff’s theo-
rem there exist distributions of sources for which the Olbers-type condition
is not satisfied. In these cases both I adv and f adv diverge as V tends to

V S
infinity. However, as we shall see, their sum can be finite.

To see this, we examine the retarded formula. As is well-known, the
Olbers-type condition is now satisfied. On the other hand we can say noth-
ing about the Mach-type condition—there may be an arbitrary amount of
source-free radiation present. It is true that because of the red shift the den-
sity of this radiation would diverge at t=0. But since the metric itself is sin-
gular then, the existence of source-free radiation cannot be ruled out. Indeed
in the a—fi—y cosmology, such radiation plays a decisive role. What we can
assert is that this source-free radiation does not cancel out f ret, that is, we

V
cannot have

fret = fadv—fret,
V VS

if we require a finite solution (since fadv is divergent).
V

We conclude that for certain source-distributions the Einstein—dc Sitter
model leads uniquely to retarded potentials plus an arbitrary amount of
source-free radiation. For other distributions the Maxwellian theory leads
to indeterminate boundary conditions. It is just in the former case (of deter-
minate boundary conditions) that the Wheeler—Feynman theory breaks down.
For in effect it starts from the mixed Kirchhoff formula

4fl¢=%(fret+fadv)+ %(fret+fadv)’
V V s S '
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and then assumes that the sum of the surface integrals vanishes in the limit
as V—>oo. However, in the former case f ret is convergent and f adv is di-s svergent, so that their sum cannot vanish. If the actual universe conforms
to the Einstein—de Sitter model, the galaxies constitute such a case if their
brightness decreases no faster than F"; as t—>oo(2). As regards the source-
free radiation, which the Einstein—de Sitter theory leaves arbitrary, optical
and radio astronomical observations indicate that there is little or none of
it in the actual universe.

Finally we consider the steady state model. In the retarded Kirchhofi‘
formula the Olbera—type condition is satisfied as before. But now the Mach-
type condition is also satisfied, since any non-zero amount of source-free
radiation would grow monotonically and without limit along the past light-
cone, in contradiction to the assumption of uniformity in time. We thus obtain
a pure retarded potential. The advanced Kirchhoff formula also behaves
differently from the Einstein—dc Sitter case for, although there is now a uni-
form distribution of sources up the future light-cone, the phase relations
resulting from the retarded potentials prevent fadv from diverging, and

in fact in the limit as V—>oo f adv becomes equal to f ret (since their difi'er-
ence is a constant source-free field, and so must vanish). Accordingly I adv

S
tends to zero, and all the conditions of the Wheeler Feynman theory are
satisfied. We conclude that in the steady mare model Mar-smells tl‘rcoz‘y im-
plies the Wheeler—Feynman theory, and 21150 retarded poremials with no
source-free radiation (in agreement with observation).
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NEUTRINOS AND THE ABSORBER THEORY OF RADIATION

J. V. NARl
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THIS is a short report of the application of the absorber theory of radiation

to the neutrino field. Before considering the neutrinos it is interesting to

look at the case of the electromagnetic fields. This has already been de-
scribed by Hogarth [l]. His analysis will be given here in a somewhat differ-

ent form.
In the conventional electrodynamics only the retarded potentials are

used to describe the fields of charged particles. As Maxwell’s equations are
time symmetric, this preference for retarded solutions only appears to be

arbitrary. In their absorber theory of radiation Wheeler and Feynman start

with the assumption that the intrinsic field of a particle is the time sym-

metric field —i— (Fret—i—Fadv) instead of the usual retarded field F The ob-
ret'

served retarded field is then explained in the following way. The observed
field Fret travels into the future light cone of the particle and sets the partic-
les in the universe (known collectively as the “absorber”) into motion. The

combined advanced field of the particles in the absorber is then shown to

be equal to the field —;(F,et—Fadv) near the source particle. This field sup-

plies the radiative reaction and when added to the intrinsic field of the par-

ticle it gives the total field Fret. Thus the solution is self consistent.
However, owing to the time symmetric nature of the equations the above

argument when applied to a static universe, also leads to other consistent
solutions. For instance, Fadv is also a possible solution. Indeed, any linear
combination of the form AFret + BFadv is also a solution, where A, B are
constants such that A + B = 1. This was realized by Wheeler & Feynman
and a way out of this difliculty was suggested by them in their original paper

[2]. This involved the use of unsymmetrical initial conditions that, on stati-

stical grounds, would favour retarded rather than advanced solutions.

Hogarth has ShOWn that this extra postulate is not in general necessary

in a non-static universe. He considers conformally flat expanding universes
with line element of the form

ds2 = exp [2 C(t)] -{—dr2—r2(d62+ sin2 0d<p2)+dt2}. (1)

Suppose fields are Fourier analysed and only a single monochromatic
component is considered. Taking the total field of a particle to be of the form
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AFM+BFadv we see that AFret interacts with the future absorber and BFadv
with the past absorber. The reactions of these absorbers will be of the form
Af.%(Fret—Fadv) and Bp-éfl‘adv—Fret) respectively where f, p are complex
numbers. For consistency we require

AF...+BF... = gta..+F...)+ (Af—Bp) g (F...— F...)-
Equating coefficients on both sides gives the relations

A = g + gw—Bp), B = g— ;- (Af—Bp)- (2)
Except when f= p = l, the solution is

A.:.IJ_ B; Lf, (3)
2—f—p 2—f—p

When f= p = 1, there is no unique solution; we only have the one equation
A+B= 1. This is the situation encountered by Wheeler & Feynman for
the static universe. In an expanding universe f, p are in general different and
a unique solution exists for A, B.

It is illuminating to look at the above picture in terms of particles instead
of fields. We then have each source emitting photons into past and future.
The interaction with the absorber takes the form of scattering—which in
the electromagnetic case is the classical Thomson scattering.

When looked at in this way it is possible to describe the analogue in the
case of neutrinos, even though not much is known about them as in the
case of photons. All we need to know are the following three properties:
(i) the mode of transmission of neutrinos in curved space time; (ii) the scat-
tering properties and (iii) the refractive index owing to the presence of the
scatterers. All these properties are known in the case of neutrinos.

It is then possible to work out f, p for neutrinos in the various cosmolo-
gical models. It is seen that the form of energy dependence of the cross sec-
tion makes the condition f= l, p 75 l (necessary for purely retarded neu-
trinos) more difficult to satisfy than in the case of photons. For example,
the steady state model, which easily satisfied this condition for photons,
only “just” manages to do so for neutrinos. The Einstein-de Sitter model
satisfies it in neither case. The details of the calculation may be found else-
where [3].

REFERENCES

[l] J. E. HOGARTH, Proc. Roy. Soc. A267, 365 (1962).
[2] J. A. WHEELER and R. P. FEYNMAN, Rev. Mod. Phys. 17, 157 (1945).
[3] J. V. NARLIKAR, Proc. Roy. Soc. A (to be published).



GRAVITATION AS AN INTERACTION BETWEEN
THE SMALL AND THE LARGE

L. H. THOMAS

Watson Lab., Columbia University, New York

IT APPEARS that a Lorentz—invariant theory can be constructed to tend in the

non-relativistic limit to any Newtonian Theory, but that this requires cor-
rection of the terms giving particle—particle interaction [1] or particle-field
interaction by introducing simultaneous many-body interaction terms.

In the case of one dimension of space and time it has been shown that,

if a particle-field interaction not including higher terms is exactly Lorentz-

invariant, it must have the usual local form (Appendix). Some progress has

been made in extending this theorem to the actual three-dimensional case.

When the same assumption is made for general relativity, it seems that

in the one-dimensional case uniform curvature is not possible and that the
curvature must depend on the local distribution of matter. If this proves
true and can be extended to three dimensions, gravitation would appear

as a necessary consequence, when there is space-curvature in the large, of

particle-field interactions having this special form.
A difficulty in carrying out this program is that in general relativity the

neighbour to whom an infinitesimal transformation leads depends on the

state of the universe and it is not usually possible to put all the transformations
in Hamiltonian form simultaneously without introducing new variables not
determined by the state of the universe [2].

APPENDIX

If P(u), Q(u), are canonical variables for radiation oscillator u of a con-
tinous set, and if p, q, are representive particle variables, the functions giving
infinitesimal transformations in canonical form,

U= q+fP:—idu+fclt(p, q, u)(Q—|—iP)du+conj.

H: hCP)+f’7(u)%(P2+ Q2)du+f9€(p, q, u)(Q+iP)du+ conj.

X:x@)+f§(u)%(P2—l—Q2)du+f9C(p, q, u)(Q+iP)du+conj.
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satisfy the Poisson bracket relations

(U.H)=X, (U.X)=i2H, (X.H)=0,
C

only if

m): x02). x'(p)=%h(p); n’(u)= so), §’(u)=cl—2n(u)
and

C” = ”If ei‘"(")“"”‘"”“” %(3193(3)_AI(S)A(S))dS+,;(u),
9C = _,-1f ei(fl(u)A(s)+§(u)B(s))A’(S)ds+i‘u(u)E(u),

~75 = u f ei(1l(u)A(S)+E(u)B(S))B’(s)ds+ifl(u)77(u),

where s is determined by q = x(p)A(s)+i2h(p)B(s)+ C.
c

The constant C and the function ,u(u) can be transformed away, and one
of the functions A(s), B(s) can be removed by redefining .9. What is left reduces
to the usual local interaction referred to one or another space-like line of
reference according to the remaining function.
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I. M. GOLDBERG and R. K. SACHS proved the following interesting theorem:
[1] [2] a space-time which satisfies Einstein’s field equation for the vacuum,

u = 0 (1)
is algebraically degenerate in the sense of the Petrov classification if and
only if it contains a shear-free congruence of null geodesics [3].

Algebraic degeneracy, null geodesic congruences and their shear are
purely conformal properties of space-time: they are properties of a space-
time endowed only with null cones or, equivalently, they are invariant under
a conformal change of the metric g,1-(x) —> 1(x)gij(x) [4]. The vacuum equa-
tion (1) is not a conformal property of space-time. It is thus clear that a con-
form invariant generalization of the Goldberg—Sachs theorem must exist,
where the field equations (1) are replaced by weaker equations. In the follow-
ing we find the weakest possible such field equations.

Consider a field of null directions ki on space-time.
We denote by “gs” the property that the congruence of null curves which

has k, as tangents is geodesic and shear—free. We denote by “Dm” the property
that, throughout space—time, k,- is a double Penrose—Debever direction of
Weyl’s conformal curvature tensor, and similarly, by “D(2)” and “Dm”
that k, is respectively a triple and quadruple Penrose—Debever direction.
We denote by da) the property that k, is a degenerate Penrose—Debever di-
rection, i.e., that it is at least double throughout space-time, and similarly
by “1(2) and “7(3) that k, is respectively at least triple and at least quadruple
(in the last case, stronger degeneracy means that the conformal curvature
tensor is zero).

Let Pm = —R,[,,,,]+% gdbRfl and P;,,C = “Aime. Let V,,, be a field of
self-dual (V23, = —iV,,,,) null bivectors such that Vabk" = 0. We denote by ”fa,”

R

340



DEGENERACY AND SHEAR 341

the property that, throughout space-time, the field equation V“”P,,‘cd V54 = 0
is satisfied, and similarly, by “fm” that cc" = 0, and by “fm” that
Pa—bCVC" = 0. These field equations are clearly progressively stronger, but
all three are weaker than the vacuum equations, i.e.,

RU : 0 =>f(3) =>f(2) =>f(1)-
The following theorems hold:
Theorem I: d(2) =>f(1), 51(3) =>f(2).
Theorem II: D0) =) (gs <—>f(1)), D(2) =.- (gs <——+f(2)), Dm => (gs <—>f(3)).
Theorem III: (gs and fm) =2 “1(1)-
Theorem IV: d(1)=>(f(1, is conform invariant), d(2) => (f(3) is conform

invariant), d3 => (f3 is conform invariant).
Theorem I states that strong degeneracy implies weak field equations,

no other assumption being needed. Theorems II and III constitute the gener-
alization of the Goldberg—Sachs theorem. Theorem II shows that this gener-
alization is best possible in the sense that the field equations are as weak
as possible. Theorem IV shows that the generalized Goldberg—Sachs theorem
is conform invariant. Proofs of the theorems will be published elsewhere.

A more symmetrical generalization of the Goldberg—Sachs theorem may
exist, stating that for each a in the range 1, 2, 3, any two of the three pro-
perties gs“), flu), D0,) imply the third. Here gsm would be expected to be
a stronger form of gs which incorporates additional properties of the shear-
free congruence of null geodesics.

Some time after we had obtained our results [5] W. Kundt and A. Thomp-
son obtained the same results [6] by using the elegant spinor techniques de-
veloped by Penrose.
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THE STEADY STATE UNIVERSE

H. BONDI

King’s College, London

PROFESSOR Bondi put the case for the steady-state theory. He agreed with
most of what Professor Ginzburg had said about the scientific approach
but stressed that a theory could be abandoned, not only because of con-
tradiction with experiment, but also if a more testable theory was proposed.
The chief claim of the steady-state theory was indeed that it was far more
testable than any other cosmological theory. This was due to the fact that
most cosmological tests involved looking at distant objects and that if the
average characteristics of astronomical objects changed with the age of the
universe, then a knowledge of this variation was required before any such
observation could be interpreted. Only on the basis of the steady-state theory,
which denied any such change of average properties, could astronomical
tests be interpreted unambiguously as for or against the theory. This was
its main claim, and it was borne out by the frequency with which observers
argued that of all cosmological theories their observations disproved the
steady-state theory alone. Fortunately, in almost every such case the obser-
vations themselves were later shown to be in doubt. Even in the case of the
very serious criticism put forward by Ryle and his colleagues on the basis
of their radio-astronomical investigations the issue was in doubt, since other
radio-astronomers were at present disputing the interpretation of these re-
sults. The most promising evidence of research seemed to lie in further study
of the properties of such far distant objects where related to the radio-astro-
nomical number counts, optical number counts (now much out of favour),
radio-astronomical diameter measurements, variations of colour with distance
(the excellent agreement of red shifts of over 0-4 from the continuous spec-
trum and spectral lines is in splendid agreement with the steady-state theory),
the richness of clusters and the like. Perhaps of even more interest is the
possibility of investigating whether the age distribution of near galaxies is in
accordance with that demanded by the steady-state theory. Problems con-
cerning the density of matter in intergalactic space and the mechanism of
the formation of new galaxies are also promising fields.
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EFFET INERTIAL DE SPIN EN TRANSLATION

O. COSTA DE BEAUREGARD

Institut Henri Poincare', Paris

I. INTRODUCTION

PLUSIEU'RS auteurs [1] [2] [3] [4] [5] sont arrivés a la conclusion que le tenseur
d’impulsion-énergie d’un milieu materiel doué de spin est asymétrique; 1a
formule

TU—Tfi—[akaijk = 0 (1)
que Tetrode [6] avait déduite de la théorie de l’électron de Dirac, a pu ainsi
étre interprétée et justifiée axiomatiquement; nous raisonnons en métrique
de Minkowski, avec x4 = ict et 1', j, k, I: 1, 2, 3, 4;

.. ch — ..
0”" = — 7 WW (2)

de’signe 1a densité de spin de Dirac et

1" Ch‘ i i - i- 'T1 = — 31;;[6]y-y)—]—zeA 1/1i (3)

1e tenseur d’impulsion-énergie asymétrique de Tetrode;
yij-u {yiyj... Sii #j 75 ...,

0 si deux indices sont égaux;

[6"] = (BL—6" opérateur du courant de Gordon; —e, charge de l’électron en
11. e. m. c. g. 5.; Ai, potentiel éIectromagnétique.

On considere généralement que les effets de l’asymétrie du T'7, s’ils exis-
tent, sont essentiellement du domaine de la microphysique. Il est cepen-
dant legitime de rechercher si, dans des conditions appropriées, i1 n’y aurait
pas sommation des micro-effets, et manifestation de la non-symétrie de Tif
de 1’électron de Dirac. L’idée naturelle est de s’adresser pour cela au ferro
ou au ferrimagnétisme, et nous avons proposé [7] le principe d’une experience-
test. Depuis, nous nous sommes avisé [8] que l’existence de l’effet que nous
avions postulé semble bien étre rigoureusement déductible des principes
généraux de la mécanique quantique, comme nous allons 1’exposer.

Auparavant nous devons faire une importante remarque. Deux tenseurs
d’impulsion-énergie T? et T2“ dont 1a difference est de divergence nulle,
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6,-(TiJ—T2”) = 0, sont dits mathématiquement equivalents en ceci qu’ils
admettent la méme intégrale d’impulsion-énergie

Pi = 9? Tijduj = figs Téjduj (4)

sur un contour ferme' S (duj, quadrivecteur élément de volume sur S). 11 ne
s’ensuit pas que les tenseurs T1“ et T2” seront inconditionnellement physi-
quement equivalents. En effet, si les circonstances sont telles qu’on ait 51 cal-
culer la variation d’impulsion-énergie d’un corps materiel de dimensions
finies entre un état initial S1 et un état final S2 (S1 et S2, hypersurfaces du
genre espace), l’on doit e'galement conside’rer le flux d’z’mpulsion—e’nergie d tra-
vers le contour exte’rz‘eur du corps, c’est a dire, dans l’espace—temps, a tra-
vers la paroi S3 du tube d’univers comprise entre les cloisons S1 et S2 (Fig. 1).

74

FIG. 1

La formule (4) reste bien entendue vraie pour S = Sz—S1+S3(1) mais, la
variation d’impulsion-énergie physique étant calculée sur le contour ouvert
Sz—Sl, les tenseurs T1” et TE ne seront pas en ge’ne’ral e’quivalents du point
de vue physique.

II. DEDUCTION ABREGEE DE L’EFFET EN THEORIE
D E L’ELE CTRON DE DIRAC“)

1. Des deux principes fondamentaux suivants: a) la valeur moyenne
R a l’instant to d’une grandeur d’opérateur R est

E = Hf WR w dxdydz; (5)
t=ro

(1) Le signe “—” apparait si l’on oriente S1 dans le meme sens que S2 relativement
aux lignes de temps.

(2) Théorie non-superquantifiée.
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b) l’opérateur de l’impulsion est (u, 12, w = l, 2, 3)
'hP" = thau+eAu = ‘7[a"]+eA", (6)

il suit nécessairement que le tenseur d’impulsion—énergz'e de l’e’lectron est le
tenseur asyme’trique de Tetrode (3). On le V0it en portant (6) dans (5), en
remplagant 1p+ par @324, dx dy dz par —i du4, l’hyperplan d’inte’gration 2‘1 temps
constant par une hypersurface arbitrajre du genre espace, l’expression de'gé-
nérée y‘all:4 par l’expression complete yjduj, enfin l’indice u 2‘1 3 valeurs par
l’indice i a 4 valeurs.

L’argument de la fin de l’introduction prouve qu’on n’a pas en ge’ne’ral
le droit d’ajouter arbitrairement d ce tenseur un autre tenseur de divergence
nulle.

2. Une caractéristique essentielle de l’expérience que nous proposons
est que les valeurs moyennes dans le corps d’e’preuve du courant de Dirac

J'" = —ieW'w (7)et du courant de Gordon

ki: 1e _ . e2 ._2% NOW x71 AW (8)

sont diffe’rents (x, fréquence propre de l’onde électronique). Il nous suflira
de raisonner ici en termes prérelativistes, les caractéres gras désignant des
vecteurs de l’espace ordinaire.

M représentant la densité de polarisation magnétique de l’électron, on
a la formule de Gordon

j = k+rot M (9)
et par conséquent

fff(k—j)du=—fffrotu=fids; (10)
(du, ds, éléments de volume et de surface au sens ordinaire). Dans les condi-
tions de notre experience, l’intégrale (10) est essentiellement non-nulle dans
l’e’tat final.

Par ailleurs, puisque 1p+1p représente la densité de probabilité de présence
de l’électron, 1e produit scalaire j - ds est nul sur tout le contour du corps

matériel d’épreuve; il s’ensuit que l’intégrale fff jdu calculée é. temps cons-
tant dans le repere propre du corps sera en ge’néral petite. Un cas parmi
d’autres 01‘1 l’on aura rigoureusement

[ff jdu=0 (11)
dans 1e repere propre du corps d’épreuve sera celui de notre experience dé-
crite plus loin (n° IV). Dans cc 0215, l’on aura rigoureusement dans le meme
repére

fffkdu=fids (12)
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3. Comparons les deux intégrales‘3)

Hmfl LHW (13)
S2 2

avec l’expression (3) de T” (tenseur asymétrique de Tetrode).
Placons nous dans un cas statique, 1p(x)=<p(x) exp (i Wt) et adoptons 1a

“representation des vitesses faibles”, y‘=(+1, +1, —1, —l) avec deux
“grandes” (1,01 et W2) et deux “petites” (1,03 et 1p4) composantes du 1/). En inté-
grant a temps constant, l’on voit immédiatement que dons chaque éle'ment
de volume, la “vraie impulsion—e’nergie P; sera presque colinéaire au courant
de Gordon Kim) et la “ ausse” impulsion-e’nergie L; rigoureusement coline’aire
au courant de Dirac ji.

Comme on a vu, a propos des formules (11) et (12), que la valeur moyen-
ne du courant de Dirac coincide avec la vitesse macroscopique du corps
d’épreuve, 1a “fausse” impulsion-énergie Li, me’rite le nom d’impulsion—
e’nergie longitudinale. Il suit de ce qu’on Vient de voir et du commentaire
des formules (11) et (12) que la valeur moyenne P; de I’impulsion—énergie
physique fera, dans les circonstances que nous avons definies, un angle notable
avec la quadrivitesse du corps d’épreuve.

4. Pour confirmer ce point calculons l’impulsion-énergie transversale(3)

n=n—; (W
T; = Hf (Tii—Tluduj = — Hf dkaijkdu; = %fi UijdJ-k (15)

S2 Sc
ou, en langage prérelativiste“) (et l’indice 2 étant néglige’)

T:—fffrotcdu=fic><ds, T4=0; (l6)
les vecteurs d’espace M et a étant, comme il est bien connu, colinéaires dans
le repére propre du courant de Dirac”), la compatibilite’ de la premiere for-
mule (l6) avec (12) est manifeste en vertu du contenu des §§ 2 et 3 ci—dessus.

5. Si, entre l’état initial 1 et l’état final 2, le corps d’épreuve contenant

(3) L’indice 2 précise que nous considerons l’état final du corps d’épreuve; voir 21 cc
sujet le n° IV.

(4) La seconde formule (16) suit d’une integration 5;. temps constant avec 1m 0”" com-
ple‘tement antisyme’z‘rique.

(5) Les deux identités du type Pauli [9]—Kofink [10] (mik) (jk) = (602) (0‘), (Elk) (jk) =
= (w1)(ai), montrent que, dans Ie repére propre du courant de Dirac (qui est du genre
temps), les trois trivecteurs densités de spin, dc polarisation magnétique et de polarisation
électrique sont colinéaires;

(171”) = Wit/2, (wl) = 1171/), (we) = WW:
oi et mif désignent les duals de om et de m“; les parentheses indiquent qu’on néglige les
facteurs physiques.
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le nuage électronique ne recoit aucune impulsion-énergie de l’extérieur, et
si dans l’état initial T1i=0, les equations de son mouvement s’écrivent

g 2 Pi, L15 = Pf, é: Pg—Tzi (17)
ou encore, dans le repere propre initial du corps d’épreuve,

P2=P1=0, L1=0, L2: —T2. (18)
En conclusion, si, entre l’e’tat initial 1 et l’e’tat final 2, la distribution de la

densite' de spin varie dans le corps d’épreuve sans que Iui soit imprime'e une
impulsion-e'nergie extérieure, une vitesse de recul apparaitra en conformité
avec les formules (17), (18) et (16)“) (Fig. 2).

A -,

IfP
imp

s

espace
FIG. 2

Deux remarques avant de changer de sujet:
A. Si l’on représentait la densite’ d’z'mpulsion—énergie par Ie TE syme’trisé,

z'l suivrait de [ti non pas un effet nul comme on I’d toujours admis implicitement
jusqu’z'ci, mais (en vertu des pre'cédents raisonnements) la moitie’ de l’effet qu’on
vient de calculer.

B. D’apres 1a précédente théorie l’impulsion-énergie physique est la
somme d’une impulsion-énergie longitudinale ou orbitale et d’une impul-
sion-énergie transversale sans support cinématique, qu’on peut (en ce sens)
dire potentielle. Ceci décalque le statut maintenant classique de la the’orie
du spin, 01‘1 le moment angulaire physique est la somme d’un moment an-
gulaire orbital et d’un moment angulaire propre sans support cinématique;
en ce sens, 1e spin peut étre dit une entité potentielle.

(6) Pour établir 1a connexion entre cette Section II et l’Introduction, remarquons qu’en
vertu de la consequence ajakaii" = 0 de l’antisymétrie complete de la densité de spin

A Ti = ff] (W—TfiMw = — ffflW—T’WfiSa—Sl sa

“les sources de l’impulsion-e’nergie transversale sont purement superficielles”.
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III. PASSAGE DU MICROSCOPIQUE AU MACROSCOPIQUE

Nous avons jusqu’ici raisonné avec la théorie de l’électron unique non
superquantifié.

En re'alité, trois prises de moyenne successives sont nécessaires pour
décrire 1a situation a l’échelle macroscopique;

1° dans chaque domaine de Weiss i1 y a de nombreux electrons actifs;
2° dans chaque cristal i1 y a de nombreux domaines de Weiss;
3° dans le corps macroscopique i1 y a de nombreux cristaux.

La premiere prise de moyenne ressortit a la théorie superquantifiée; le
probleme est en effet celui de la distribution des électrons actifs sur des états
orthogonaux conformément 21 la statistique de Fermi. Si l’on néglige l’inter-
action entre le champ de Dirac et le champ des photons libres, 1a descrip-
tion 51 utiliser est celle de Heisenberg, avec un vecteur d’état constant; toutes
les précédentes formules subsistent en moyenne.

La 3eme prise de moyenne se fait aisément en substituant a l’idéalisa—
tion du corps continu un pavage de cristaux non jointifs, et en postulant
(ce qui est tres sensiblement vrai) qu’a l’intérieur des “pavés” les lignes de
champ se superposent a celles du corps continu. L’on a done a. comparer

deux inte’grales fff rot o' du et fff rot 60 du diffe’rant par 1e domaine d’inté-
gration (le volume des lacunes) et la valeur en chaque point de [a] (60 est
la moyenne de 0'): ces deux intégrales sont manifestement égales.

La seconde prise de moyenne est la plus delicate. Cependant, si l’on ad-
met que la distribution re'elle a l’intérieur d’un cristal peut étre considérée
comme 1a limite d’une distribution sans discontinuités sur a ct 01‘1 rot a peut
étre définie, alors 1a seconde prise de moyenne se fait, elle aussi, sans in-
cidents.

IV. L’EXPERIENCE PROPOSEE

On utilisera 1e ferro ou 1e ferrimagnétisme, en tant que dus au spin de
l’électron. Dans son état initial 1e corps sera non-aimanté. Dans son état
final il sera aimanté de telle maniere que les intégrales doubles (12) et (16)
ne soient pas nulles. Enfin la procédure d’aimantation sera telle qu’aucune
impulsion ne sera communique'e au corps d’e’preuve.

Prenons comme corps d’épreuve (Fig 3) un petit anneau de ferrite ou
de fer-cobalt, qu’on aimantera a quasi-saturation") par une breve impul-
sron de courant dans un fil dirigé suivant son axe z’z. D’apres l’électroma-

(7) Il est pratiquement impossible de saturer un ferrite dans nos conditions expéri-
mentales, mais on peut réaliser un état d’aimantation on M varie tres peu en fonction de
la distance radiale.
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gnétisme classique, aucune impulsion n’est ainsi transmise au corps d’é-
preuve‘s).

Dans l’état final 2, i1 y aura une impulsion “transversale” T dirigée sui-
vant z’z et valant, d’aprés 1a formule (16),

Z,

Z

FIG. 3

(a, hauteur, b, épaisseur de l’anneau). D’aprés Ies formules (18), 1e corps
d’épreuve acquerra donc, dans le référentiel du laboratoire, une impulsion
“longitudinale” L2 = —T2; 9 désignant sa densité et r son rayon moyen, sa
masse vaut

M = Zarabg; (20)
la vitesse de recul sera donc

7} = —. (21)
gr

Mais, M désignant toujours 1a densité de polarisation magnétique,

F, _ 1’ . ,M. (22)
9 M e

1 ‘ moment cinétique deil’électronfi W m (23)
M - moment magnétique de l’électron ‘ e

(3) Il faut examiner le cas d’un corps d’épreuve en ferrite, qui peut porter une charge
e’lectrique Q. I_e champ électrique —aA/8t créé par le courant est, come A, paralléle
a 2’2. Mais l’impulsion totale créée par une impulsion de courant, —QAA est nulle. Donc,
méme dans ces conditions défavorables, aucun “artifact” n’est a craindre.
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est une constante universelle valant 5,7 -10*8 u.e.m.c.g.s.; M/g est l’inten-
site’ d’aimantation spe’cifique, qui peut valoir 70 pour un hon ferrite ou 210
pour un bon alliage Fe—Co. Avec un rayon r= 0,1 cm, on trouve ainsi
72:3,9- 10‘5 cu 1,17- 10‘4 cm/sec.

On doublera l’efiet en alternant le sens des impulsions de courant, et
on l’amplifiera par resonance mécanique. Une détection interférométrique
des déplacements sera suffisante pour trancher de l’existence ou de 13. non
existence de l’efiet. L’expérience est actuellement montée suivant ce schéma
par Ch. Goillot.
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GENERAL RELATIVITY AND ELEMENTARY PARTICLES*

D. FINKELSTEIN

Belfer Graduate School of Science, Yeshiva University

I PRESENT here some attempts to bring general relativity into closer grip with
the elementary particle problem, drawing heavily on published or to-be-
published work with Misner, and with Jauch, Schiminovich and Speiser.

Examine any table of the elementary particles with their properties tabu-
lated in columns next to them, and it becomes clear that the first problem
of any theory of matter is to explain the column headings, such as mass,
spin, baryon number, isospin. Only later need it concern itself with the nu-
merical table entries. But where are the theoretical constructs in the general
theory of relativity to correspond to these semi-empirical constructs of mi-
crophysics? A geometrical theory, even a quantized one, seems very defi-
cient in raw materials.

CHARGE AND ISOSPIN
While the metric structure makes possible the formulation of mass and

spin, and particle numbers might conceivably have a topological origin,
where in a Lorentzian manifold are charge and isospin? We propose to look
to a more flexible process of quantization for those quantities that are
not already to be found in geometry. We should explain what we mean
by this:

Let us call a theory rigid if it is determined essentially uniquely, like the
integers, or the Euclidean solid geometry; flexible otherwise, if essential ele-
ments are unspecified, like group theory or Riemannian geometry. (Rigid
=categorical, in another parlance.) The histories of the development of a flex-
ible geometry within mathematics and of its subsequent utilization in phys-
ics are instructive because in both cases the process begins merely with
a transition from one rigid theory to another. The questioning of the Fifth
Postulate of Euclid by Bolyai, Gauss, and Lobatchewsky led in each case
to an alternative geometry that was non-Euclidean but still rigid; only later
did Riemann change the problem from a decision between various rigid theor-
ies to the formulation of a flexible theory that as it happens admits them
all as degenerate cases. Likewise the flat Minkowskian world-geometry,

* Supported by the National Science Foundation
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an important first step on the route from Euclidean solid geometry to the
Einstein field equations is itself still a rigid theory, contained within the
flexible world-geometry of Einstein as a degenerate case.

Implicit in any physical theory is a calculus of propositions or assertions,

delimiting the collection of physically meaningful propositions and the log-

ical relations between them. It is well known that the propositional calculi
of classical mechanics and quantum mechanics are quite different, one cor-

responding to the calculus of sets in a phase space, the other to the calculus

of projections in a Hilbert space. The key difference between these calculi

is the distributive law of the propositional calculus; indeed it is possible to

formulate them so that a certain weakening of the distributive law is the sole
difference and can be regarded as the essential step in quantization. How-
ever the propositional calculus of conventional quantum mechanics is as
rigid as that of classical mechanics, that is, the Hilbert space is uniquely
defined. Recently another kind of quantum mechanics was put forward
using quaternion Hilbert space but the associated propositional calculus
is still rigid.

Is it possible that we are in an arrested stage of a development from the
rigid “Aristotelian” world-logic to a flexible one, analogous to the develop-
ment from the rigid Euclidean world-geometry to the flexible Einsteinian
one? What sort of effects would variations in the world-logic cause, as varia-
tions in the world-geometry cause gravity?

A simple example of a flexible propositional calculus or flexible quanti-
zation has been set up. It turned out to be more natural to work in a qua-
ternion quantum mechanics than a complex, for much the same reason that
a non-trivial Riemannian geometry is not possible in one dimension. A new
fundamental field C”,,, (analogous to the afline connection 115) is re-
quired for this deveIOpment (m=l,2,3). With the simplest choice for the
action of this new field, it is found to contain a Maxwell electromagnetic
field A”: 0‘3 rigorously and an additional charged massive vector field
B” = C"1+iC”2.

It is most surprising to find this asymmetry between the massless A”
and the massive B” arising naturally. This asymmetry happens because in
addition to 0‘," analogous to the affine connection, the logical structure

of the theory requires a field 1}," analogous to the metric tensor. The field
77", takes the place of the usual i/h in Schrédinger’s equation much as g,”

replaces the flat metric in the geodesic equation. A” and B” are essentially

components of C"m, H77". and in," respectively.
While this example of a flexible world-logic is of interest in itself for phe—

nomenological applications, our purpose here is to explore the possibilities

it opens for the space theory of matter. It makes it possible to describe charge
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and isospin within a framework that can still be regarded as nothing but quan-
tized geometry—only now both the quantization and the geometry contributedynamical elements.

PARTICLE NUMBERS

We come no“ to the problem of the conserved particle numbers, e.g., bar-
yon nu other and the lepton number (s). These are remarkable because unlike
charge they do not seem to belong to a natural gauge group, yet they have
very strict conservation laws.

Ex‘idently these quantities are invariant under a large group of transfor-
mations. We are therefore tr5ing to find counterparts for these quantities
in the homotopy {murmurs ot' the theory: l‘unctionals of aclassical history Which
are invariant under any deformation (homotopy) “hatsoever ol‘the histor) . Such
quantities are bound to correSpond to a Strictly conserved quantitgv in the quan~
tum theory of the field but. for all the contentional field theories hutgrarity
th re are no such homotopy invariants except numerical constants because
an} histor; CD can be deformed into (I) E 0 (and therefore into any other
65"} via the intermediates VP. 0 3'21? 1. This is not so for grmit}: £1v 0
is not an acceptable histor} I Let us call u (maximal) class oil—manifolds
“till Lorentzian metrics that run he deforme into one anorher [subject
possibly to boundary conditions) a (mu-id) (lass u. A homotopy inVarittnt
then defines. and is defined by, a function of a class. The collection ll‘ of
all classes may thus be an object ol‘iznportance for quantum general relativ-
ity. A quantutit-mechanical integral mer all histories decomposes into
a diserete sum mer ll' according to

nuv :Enpn
weWw

of which the perturbation theory based on the flat space catches only one
term turf“, in the notation to follow]. The enumeration of all the .‘Iv‘j‘ultig—
{ralli- rrr‘riul classes it}, has already been carried out. and led to a single
"topological conserx'ation tau" or homotopy invariant. an integer .l/ ("num-
ber of .ll-geons"). In that case WC found a natural group structure (infinite
c_\clicl for H}. corresponding to addition of t]. which could be interpreted
as juxtaposition of" particle systems. Accordingly we termed the generator
u'.. of ”'h an :U-geon. Now we consider the possibility of topologically non-
trivial worlds to find further topological consenation laws (and also because
as yet we have only integer spins). For any two classes of worlds u, '0 we define
a class

w = u—l—v
called their sum by choosing representatives for u and 2) that coincide with
(say) the flat space of Minkowski. outside disjoint world-tubes U and V res-
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pectively. Then w is the class of the world that contains both U and V and
coincides with the Minkowski space outside them.

With this definition of —|— , W is a semi-group. The class of the Minkowski

space-time is the identity and will be written 0. There is a maximal sub-group
ll], of II". ll'0 contains all worlds that possess imerses (_negative:). or equi—

Valenily, it appears, all topologically trivial worlds. IT], is infinite cyclic.

Its generator, prcx‘iousl) called M—geon. will be designated by 1.

As candidates for particle numbers we take the additive integer-valued

functions on W. We can call a class w a unit if there is such a function that
assumes the value 1 on w. Do units exist?

The handle or “wormhole” is not a unit. This is the class W2 with topo-
logy S2><Sl><R1 and metric als2 = dIfZ—a’u2 where (it2 is the usual metric on
R1, and alu2 is a positive-definite metric on S2 X SI. To see that w2 is not a unit,
we use the relation

wz‘l‘ W1 = W1+ W1+ W1 - (1)

Here w1 = P3><R1 (P" is the real projective n—space) and a metric ds2
= dtz—a'u2 is used, dz?2 and alu2 being positive-definite on R1 and P. For
any additive functional N(w), the relation (1) implies that

N(w2) = 2N(w1), \

which must be even, hence N(w2) 7E 1. Maybe I and w1 are units!

In addition to the metric of w, the topology Ss1 ><R1 could have been

given the metrics w2+mw0, m = 1, 2, The metrics on the handle that

do not fall into this sequence can all be found in a second sequence of the
form wg—l—mwo. In these second-sequence worlds a future-directed vector is

continuously carried into a past-directed vector when continuously trans-

ported “through the handle”.

5 P 1 N %

For a classical mechanical system to admit a canonical quantization
which permits it to have spin g like the rigid rotator, it is necessary and

sufficient that the orbits of a 271: rotation in the classical configuration space

not be shrinkable to a point. The natural generalization of this criterion to
field theory has been indicated elsewhere and it was shown that the worlds
of the form

ml—l—nwz—l—n’wg, m = 0, 3131, j; 2, ...; n, n' = 0, 1,

fail to satisfy it. This is an extension of the usual result on the absence of
spin g, which applies to the special case m = n = n’ = 0, the 0 world,
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and appears to dispose of all worlds of the form M3l without topological
torsion. As a next step we have considered worlds of the form

ml+nwl+n'wi+pw2+p’w;, n, n’, p, p', = 0, 1, ...,
where w; is another world with topology P3 XR1 not expressible in the form
w1+nw0. These worlds possess torsion but are still orientable. We have found
that the criterion for spin % is not satisfied. Since this is not the most general
world, being orientable, the question of the existence of spin % in this
framework is still open.
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I. INTRODUCTION

This report is based on work done in collaboration with S. Deser and C. W.
Misner. A detailed account of the material will be published in three papers

currently in preparation. The subject matter is concerned with the derivation

of the so-called “wave-front” theorem, the existence of a Newtonian limit

for asymptotically flat systems, and the correct definition of energy and

momentum of a gravitational system. With respect to the latter question,

relativists generally fall into two classes: those who feel that this is a difficult

and as yet unsolved problem, and those who offer expressions for energy and

momentum (indeed, several new ones have been suggested at this conference).

Part of the purpose of this report is to give some of the reasons why the ca-

nonical formalism’s definitions are indeed the valid ones, and to give some

general tests for the validity of any definition. The work to be described is
an extension and generalization of previous analyses [1]“). Most of the re-
sults were already obtained in these papers, but use was made there of the

canonical coordinate conditions. While these frames probably exist for a rea-

sonably wide class of metrics, their domain of validity has not been vigor-

ously established. The present discussion, while stimulated by the canonical
formalism, does not in any way depend upon it.

We begin with a description of the class of metrics to be considered. We
assume that asymptotically, i.e. at spatial infinity, space is flat. (Cartesian
coordinates in a Lorentz frame will be employed there.) More precisely,

* Work supported by the United States Air Force, Office of Aerospace Research

and Office of Scientific Research, and by the National Science Foundation.
** Now at Department of Physics, Northeastern University, Boston, Massachusetts.

(1) See also report by C. W. Misner in the Proceedings of this conference.
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we require that the metric and its derivatives approach their flat values no
1slower than orderm —:
r

hm E gm—nuv~0 (r_fl“): hmye~0 (r—fi‘), h/IMGNO (’Pfl’)’ (1)fl. 2 1.
We further assume that hm,(x) possesses an asymptotic series in descending
powers of r:

h,, = E A~:_ a, 2 1, AMI") ~ 0(1) (2)
an

n=0 r

and that it is valid to integrate and differentiate this series. In Eq. (2), the
or,l need not be integers and logarithms are allowed in A“) (except in A“)
if (10 = 1, so that Eq. (1) is not violated). These conditions must, of course,
hold in any of the frames to be considered, a requirement which puts restric-
tions on the class of coordinate transformation functions allowed. Writing
the general transformation as a?” = x"+17“(x), one may separate out the
Lorentz transformation part according to

77“(X) = afx”+a"+f"(x) (3)
where afi,‘ is a Lorentz matrix, a" is a constant, and the remainder, E”(x),
are the “gauge transformation” functions. With the boundary conditions

imposed, it is possible to show that 5’", must go asymptotically as 0(i).
r

Characteristic examples of E” (in the asymptotic region) are
. . 1l elk x!‘ erkr /:

E”: x, lnr, 7 fl 5 77- (4)r r r‘/=
. 1The first two structures are of 0(1), the third is a “coordinate wave” of 0(-—),

r
while the last is in between these two extremes“) The general type of term
considered in Eq. (4) can be characterized by the expression

as”: L” m~0(1) (5a)
1'

(2) Latin indices run from 1 to 3 and Greek from 0 to 3. The Lorentz metric 17," has
the form 77,... = diag (—1, +1, +1, +1). Repeated indices are summed whether or not one
is covariant and the other contravariant. We use units such that l6nyc‘4=l = c where y
is the Newtonian constant. A comma denotes ordinary differentiation.

(3) Note that the Lorentz transformations plus structures like the first example in
Eq. (4) form the Bondi-Metzner group (though it should be stressed that we are here exam-
ining the metric in the spatial asymptotic direction, not along the light cone). Thus the
coordinate transformation group being considered is much larger than the B—M group.
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where the “amplitude function” flab) obeys

fi b) -f(a b)
rlia ’ fab)” N r1_b 'f(ab),i ~ (5b)

Thus, the first example in Eq. (4) is of the type a = 0 and the last a = i,

The boundary conditions on 8", then require that a, b g c. We also have

that a, b g 1. This upper limit is needed so that higher derivatives do not

1 . .
violate the —boundary condltions. We now assume that the most general

r

form for E" and for the asymptotic series for h”, of Eq. (2) is a sum of terms
of the type given in Eq. (5):

f(n)s» = 2‘ re , fl") swam). (6)
H

The class of metrics being allowed is quite general and an arbitrary asymp-
totic behaviour of the type given in Eq. (1) can be simulated by a series for
h”, of the type given in Eq. (6).

II. WAVE FRONT THEOREM

The key result needed to establish the other theorems in the asymptotic

domain is the so—called “wave front theorem”. By this is meant the theorem

that the modes of the field representing radiation (and carrying the radiated
\ 3

energy) must fall off faster than 0(i), (more precisely as 0(r_?_5)) beyond
r

some closed two-surface (the “front of the wave”). On physical grounds,
one can easily see why this should occur. As one goes into the asymptotic

domain, the field amplitudes become weaker, and the situation should be

governed, to first approximation, by linearized theory, where the energy
density is quadratic in the field. A radiation situation then, with the fields

r
arises in other field theories. There one imposes a “wave front” condition
upon the solutions of the field equations on physical grounds, as one does
not wish to consider systems with infinite energy. Such a condition, though,
is not a direct consequence of the field equations there, and generally is not
needed in the usual discussions of radiation questions. In general relativity,
however, the wave front arises in a more natural fashion. Here energy is
the source of the gravitational field, and by the principle of equivalence, gravi-
tational energy is also a source. Thus, in the component of the metric repre-

gomg to 1nfin1ty as 0(—) would possess Infinite energy. A srm11ar s1tuat10n
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m

senting the Newtonian potential, (pm-IL, a situation where m—>oo violates
r

the -1— boundary conditions. We expect, therefore, that our boundary condi-r .
tions should yield the gravitational wave front naturally (and, indeed, again
by the principle of equivalence, imply it also for all other fields).

Let us now sketch briefly how the above physical argument works ma-
thematically. According to the canonical formalism, the fourth constraint
equation, G00 = 0, determines the part of the metric that contains, asymp-
totically, the Newtonian potential. As we shall see, this equation does, in
fact, enforce the wave front condition. Introducing the notation“)

7n,- EC—4g)1/*(F%—gzjf9nn3gm”), (7)
W E agijfl'ij,

this constraint equation reads

(3g)3R+§n2—m,-nii= 0. (8)
To analyse Eq. (8) further, we make the orthogonal decomposition (so use-
ful in the canonical formalism description) into transverse and longitudinal
parts:

hij = hijTT+hijT+hi,j+hj,is

hijTE % [hT5U_V_2(h,Tij)] «
(921)

Similarly, one has for n”:
nij = nijTT+nijT+niyj+nip (9b)

In Eq. (9), the functions hiJ-TT and hi]T are divergenceless (hijfTJ- = 0
= hij,TJ-) while hu is longitudinal. The first transverse quantity, hiJ-TT,
has vanishing trace (hi-iTT = 0) while hiiT = hT is in general non-zero.
The operator V‘2 is the inverse laplacian with vanishing boundary condi-
tions. The basic properties of the decomposition are: (1) it is unique for
any hij which vanishes asymptotically as 0(1/r5), e > 0 (i.e., the different
orthogonal parts, hi," W, and t are uniquely expressible as linear func-
tionals of hij); and (2) each orthogonal part asymptotically depends only

. 1on the corresponding asymptotic part of hi down to 0(1/r3) (1.e. the? part

(4) The metric 3g"J' is the three—dimensional inverse of gij. Similarly 3R is the three-
dimensional scalar curvature formed from gij and agif, and 3g is the determinant of g3].
All three dimension indices are raised and lowered by gij and 3gil'.
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1
of hT is determined from the — part of hi, etc.). In terms of these variables,

r
one may re-express Eq. (8) as

—V2hT = [—i (hij,m)2+(fiij)2] + aiDi

_ %{nz+(hij’j)2+ izhijyjhmm,i}+C (10)

In Eq. (10), the term labeled C represents the cubic and higher non-linearities
(which approach zero a priori, as 0(1 [r3) according to Eq. (1)). The remaining
terms on the right hand side (r.h.s.) are the quadratic structures. (One of
these, 5.0,, can be arranged into a divergence.) A priori, Eq. (1) says that
these structures approach zero as 0(1/r2). The one linear structure, V2hT,
has been isolated on the 1. h. 5. Now since h” asymptotically approaches
zero no slower than 0(1/r), the same must be true of the orthogonal com-
ponent W. The requirement then is that V—2 (r.h.s.) ~ 0(1/r). This is in
general true only if the r. h. s. ~ 0(1 /r3+s), s > 0, or is in the form of a diver-
gence of a vector which goes as 0(1/r2). We see then that only the 0,1). term
a priori satisfies this requirement.

(Since C N 0(1/r3) one expects that V*2C Nln_r for its leading term
r

(violating the boundary condition on W) while the first and third terms,

being quadratic, could conceivably contribute structures of 0(1) to W.)

Thus, conditions more restrictive than Eq. (1) must actually hold on some
components of the metric so that the boundary conditions on hT are not
violated. The derivation is simplified by noting it is always possible to find
a frame such that the third term (the brace) vanishes as 0(1]r3+5), e > 0. The
contribution of this term to hT then satisfies the boundary conditions. Under
these circumstances, the first term can go no worse than 0(1/r3) (so that
any possible 0(1/r3) part in C is canceled). Since the bracket is a sum of squares
one has at least that

hm," ~ 0(1/3), 77:” ~ 00/33. (11)
However, if one then reexamines term C in light of the more restrictive con-

dition (11) (rather than merely Eq. (1)), One finds“) that actually C goes

(5) The proof consists simply in noting that all cubic and higher terms each contain
precisely two first derivatives of the metric (either hi”, or m,- z him) times a number of
hij’s. Thus, by (11), C goes faster than 0(1/r3).
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at least as 0(1/r4). Hence the bracket term must preserve thel boundary

condition on hT by itself, leading to the basic result“) r

hm, ~ 0(1/r3‘ +e), Téi~ 0(1/ri +"), e, e' > o. (12)
The non-trivial part of the derivation is to show that a frame can always

be found in which the brace term of Eq. (10) goes faster than 0(1/r3) (so that
one is left to deal with only the positive definite bracket expression). One
may in fact show that a frame always exists where

7: ~ 0(1/r2), hw ~ 0(1/r2) (13)
which is more than enough to establish the theorem. Equation (1 3) is derived by
starting in an arbitrary frame and finding appropriate coordinate transfor-
mations to the asymptotically better behaved frames. Since the relation TE = 0
is the minimal surface condition, it is interesting to note that this condition
can always be achieved asymptotically to a very high accuracy (one may even
find frames where Tr~ 0(1/r4)). In fact, almost any coordinate condition
allowing Cartesian coordinates at spatial infinity can be shown to be achiev-
able asymptotically for the arbitrary metrics of our class.

In previous analyses [1], it has been established quite generally that nu"
and hiJ-TT are the modes which carry all the information describing the ra-
diation in the wave zone. Thus, these quantities, which propagate according
to ordinary wave equations in the wave zone, give one the radiation pattern,
determine the energy being propagated, etc., for an arbitrary radiation sit-
uation. Within the wave zone, these modes are characteristically of 0(1/r).
On account of Eq. (12), however, one has that past the wave front, these

radiation modes must fall off as least as 0(1/ri2”) in the frame of Eq. (13).
However, it is easy to see that this “cutoff” condition on the “TT” modes
is left invariant when one transforms out this frame to some arbitrary (asymp-
totically Cartesian) one. Thus, the physical arguments given at the beginning
of this section can be verified in detail.

III. NEWTONIAN LIMIT

As was mentioned at the beginning of Sec. II, the wave front theorem
is aconsequence of requiring that our system possesses finite energy. In fact,

(6) In the above derivation, a separate argument must actually be given to account
for the a priori possibility that the sum of squares in Eq. (10) may behave as ~ eikr/r",
2 < n < 3, or as Pl(0)/r", l>0; either Of these forms yields a contribution to hT ~ l/r
and would seem to require no cancellation from the l/r3 parts of C. However, for a sum
of squares, it is easy to show that a “wavy” term is necessarily accompanied by a “static”
one of the some 0(r'"); and also that if there are any Pl/r3 terms at all, there is one with
Po/r3. Therefore, since such “dangerous” terms must necessarily occur in the sum of squa-
res if it is at all to go as l/r", the argument in the text goes through as before.
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the first term (the bracket) on the r.h.s. of Eq. (10) is essentially the linearized
theory’s expression for energy density, and thus condition (12) just guaran-
tees the finiteness of the energy in the wave zone (where linearized theory
is a good approximation). According to the canonical formulation of the
full theory [2] the total energy, E, can be obtained from the coefficient of

the asymptotici part of hT according to
r

If ~1. (14)
47w

Thus, the full theory’s energy is given by the integral of the entire r.h.s. of
Eq. (10) and may be shown to be a constant of motion. That this definition
of energy is a valid one can be seen from a number of arguments [1]. We
discuss one here which is a consequence of the previous analysis.

Let us consider a test particle at spatial infinity moving slowly with re-
spect to some Lorentz frame there. In Newtonian physics, the particle’s force
law reads

(12xi _ ym_ i~___ 15
dt2 (p, r2 ( )

where (p is the Newtonian potential. In general relativity, the geodesic equation
for this situation reduces to

dzxi ._ g _.p1are 00 (16)
where

11:, g — g hooi+ [h0.,o+hoi(ho,,,o — gram ...1. (17)
Now for our class of asymptotically flat metrics, one may show that it is
always possible to find a frame such that

how N 0(1/1‘2”), (190,0 ~ 0(l/r1+5’), (e, 8’ > 0)
(18)

hm ~ 0(1/r2).
The derivation of Eq. (18) is a direct consequence of the wave front theorem.
In such a frame, the general relativistic force law (16) takes on a form (and
order) identical to the Newtonian one (through order l/rz) with potential
99: fihoo. What has been established is the physically desirable result that:
there always exists a “correspondence principle” limit to Newtonian physics
in the asymptotic domain when the metric approaches 7]”, as 0(1 /r) in some
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frame”). Now, according to the equivalence principle, all the inertial mass
of the interior gravitating system should manifest itself as gravitational
mass attracting the test body at infinity. Thus, if in the frame of Eq. (18)
we write

1 E(p, = —2- hm ~ — 772 (19)
the parameter E should correctly be the energy of the interior system, i.e. one

. 1may read off the energy from the coeflicmnt of the—part of hog. However,
r

in frame (18), it is possible to show that the metric is asymptotically Schwarz-
schildian, and hence obeys the relation h00~ % hT. From Eq. (14), then,
one has”)

ghOONLhTNL': NE 20
4 l6rtr r ( )

where E is now the canonical theory’s definition of energy, obtained from
the asymptotic part of IF. Thus, the canonical theory’s definition correctly
agrees with the physical definition in terms of the asymptotic validity of
the Newtonian force law. It is, of course, possible to make coordinate trans-

. . . 1 .formatlons Wth modify the—part of hoo. Under these Circumstances one

can no longer use this term to calculate the energy of the system. However,
any such transformations will also introduce non-Newtonian terms into the
geodesic equation’s force law. Thus, the energy can be correctly determined
from the asymptotic part of hm, only in the class of frames in which the system
looks Newtonian asymptotically, and one may always recognize, from the
geodesic equation, when this is the case.

IV. LORENTZ TRANSFORMATION PROPERTIES OF ENERGY
AND MOMENTUM

The discussion of Sec. III allows one to formulate a criterion for energy
of the gravitational system which identifies it uniquely in a fixed asymptotic
Lorentz frame: we require that an expression for energy agree with the coe-

. 1 1 . . ,, . .fielent of the ——part of3 km in a “Newtonian frame (i.e. one obeying con-r

(7) It should perhaps be emphasized that in the usual discussion of correspondence
to the Newtonian limit, the result (18) is implicitly assumed by restricting oneself to
(asymptotically) Schwarzschildian systems. The point of the present discussion has been
to show that, indeed, a satisfactorily wide class of physical systems have an asymptotic
“correspondence” limit.
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dition (17)), and be numerically invariant under any transformation to ano-
ther frame related to a Newtonian one by a coordinate transformation such
that 17"), —> 0 asymptotically (and, of course, maintaining our boundary con-
ditions, etc.). That the canonical formalism’s definition obeys the first half
of the criterion was discussed in Sec. III. The invariance of the coefficient

of the—1— part of hT (for coordinate transformations that leave the Lorentz
r

frame at infinity unchanged) can also be established. The simplest way of
proving this is to start in a Newtonian frame and explicitly make an arbitrary
transformation (of the required type) out of it. One finds, in fact, that hT
is preserved numerically to 0(1/r2—5), s > 0.

Once an expression for the energy has been obtained, the basic principles
of Lorentz-covariant physics lead, as for other systems, to a criterion which
uniquely determines the momentum, P‘, of the gravitational field. Thus,
one requires that Pi be defined in such a way that the four quantities E, Pi
transform as a Lorentz four-vector under any transformation that is asymp-
totically Lorentz (and, of course, maintains our boundary conditions, etc.).
According to the canonical formalism [l] [2] the momentum of the gravi-

. . 1 . .
tatlonal field can be obtamed from the — part of 71‘ in the orthogonal decom-

r

position (9b), according to

. 1 1 . 1 3):i .nHw ___5PL+__ —5r P1. 21
4m12[ 2(r2 ’)] ()

As was the case with E, the coefficient Pi can be shown to be numerically
invariant under coordinate transformations that have 17"”, —> O asymptotically.
More generally, it can be shown explicitly that E and PE do indeed transform
as a Lorentz four-vector under any transformation which is asymptotically
a Lorentz transformation. (Again, the derivation of these theorems is most
easily achieved by starting in a Newtonian frame and transforming out to
an arbitrary frame.) These results show that the E and Pi of the canonical
formalism correctly and uniquely represent the energy and momentum of
the gravitational field.
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A FOUR-DIMENSIONAL SYMMETRICAL
CANONICAL FORMALISM IN FIELD THEORY

N. V. MITZKléVIc

Chair of Physics, Lumumba People’s Friendship University,
Moscow

THE standard formulation of Hamiltonian theory possesses a strong asym-
metry with respect to time and space coordinates in formal contradiction
to the spirit of the General Relativity. It is shown in this report that a four-
symmetrical extension of the canonical Hamiltonian formalismfrom ordinary
mechanics into field theory is possible. The single mechanical parameter
(time t) has to be split into 4 independent parameters (coordinates x”) and
canonical velocities must be split in an analogous way. On the other hand,
instead of the 3N coordinates of classical mechanics, field theory conteins
all components of the field potentials on the same footing.

We have therefore a new contravariant index for our “canonical mo-
mentum” (no Connection to the conventional energy-momentum!)

HBa = 668 ’

adBfi

index B running through all wave functions.
Then the canonical energy-momentum quasi-tensor density is written in

the form

f; = HBaflB,fi—£6§.

Using Stokes’ theorem one can obtain the following expression for a varia-
tion of the energy-momentum integral:

(SP5 = f[fl3556HBa_HBa #36913] dSa;

from this follow the four-symmetrical Hamiltonian equations:

APfi
: _ HBafi .

AGPB = and ,A113? y M Ad];
Here variational derivatives for a functional on a hypersurface are intro-
duced. These derivatives differ from the conventional ones only in an addi-
tional index (here a).
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In this formalism it is easy to formulate the Poisson brackets

bF(52YB;HB“) ={FP}—~1A 6F AaPL_ 6F Zip,
0x" ’ ’ 4 MB A113“ onBa A521,;

The factor % has to be mentioned as reflecting the number of canonical
parameters (coordinates of space-time); in classical mechanics a single para-
meter t leads to the usual factor unity.

It is worth mentioning that not only the energy-momentum integral but
also the generalized spin integral [1] is of importance for Poisson brackets
leading to the transformation coefficients of the canonical coordinates (com-
ponents of the field potentials):

{5713, S3} = dcagg.

The Hamilton—Jacobi equations can also be formulated in the present for-
malism.

It is also possible to introduce canonical transformation which may sim-
plify computational processes in some cases.
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ON A CHARACTERIZATION OF NON-DEGENERATE STATICVACUUM FIELDS BY MEANS OF TEST PARTICLE MOTION

M. TRUMPER

Universitt'z't Freiburg, Freiburg

THERE are two definitions of static fields in Einstein’s theory:
A normal hyperbolic Riemannian 4-space is called static
1. if it admits a one parametric group of isometric motions whose

trajectories are time-like and hypersurface-orthogonal, or
2. if there exists a cloud of test particles moving rigidly and irrotationally.

and ii‘ the acceleration Vector is l‘cz'mi-propagated along the world lines [1]. it
should he noted that these test particles need 11M. travel along geodesics.
because there ma} be non-granitaiional forces between them.

In principle, methods of experimental verification of static fields are
given by both definitions. In the first case a suitable chosen observer can
measure the metric form at various times making use of clocks and rigid
rods. Thus, the first definition is a geometrical one. In the second case, the
static field is verified by the observation of relative velocities in a cloud of
test particles; in this sense the second definition is a kinematical one.

Here we want to treat the following problem: What conditions on the
kinematical properties of test particles are necessary in order to ensure that
a vacuum field (special Einstein space) is static?

The answer is given by the following theorem:
Theorem: A cloud of test particles moving shearfree and irrotationally

in a non-degenerate vacuum field must be rigid; the field itself must be static.
In other words: if, for a cloud of test particles moving shearfree and

irrotationally with four-velocity u”, the expansion scalar 6 E 11".“ does not
equal zero, then the field must be type D. We remark that a vacuum field
admitting a timelike vector field with vanishing shear and rotation is al-
ways type I or, in the case of degeneracy, type D.

The theorem is proved in the following wayzm
A. We consider a non-degenerate special Einstein space admitting a time-

like vector field ua (uau“= —1) whose trajectories form a rigid irrotational
congruence of curves. Then it follows from the Bianchi identities that the

(1) The detailed calculations of the proof are given in [2].
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acceleration vector 12,5 muc is fermipropagated along u“. Therefore, the

field must be static.
B. Now we assume u, to be a timelike vector field the trajectories of

which are shearfree and irrotational. The special Einstein space is assumed

nondegenerate. In View of A, we assume the expansion scalar 0 to be

different from (zero. Then from the Bianchi identities we conclude that ua is

tangent to the trajectories of a conformal motion, i.e. there exists a vector

field E, collinear with u,, obeying the equations

Eazb‘i—Ebm_ % 5cm gab = 0.

C. We consider a special Einstein space (degenerate or not) admitting
a one-parametric group of conformal motions, whose trajectories are hyper-

surface orthogonal. Using the Einstein conditions, we can show that the

space-time must be flat, if the motion is not an isometric one. Now, com—
bining the results of A, B, and C we obtain the proof of our theorem.

The theorem shows that the existence of a cloud of test particles with
a particular kind of motion imposes rather stringent conditions on its kine-
matical behaviour and on the vacuum field in which it is moving. A result

similar to this was obtained by C. B. Rayner [3]. He proved, in particular,

that a rigid body in a vacuum field cannot alter its angular velocity.
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THE LIGHT CONE AT INFINITY

R. PENROSE

King’s College, London

.‘\hsiract—From the point of View of (21: cor-formal sirucrurc or“ SpaiC‘C—EIIHC, "points LJlay" can '3:- treutcd on 1E1: sum:- basis as 23mm points. Minkwnki 3p...
2:: a highly symmetricat com‘ormai manifold by 1);; addition of a . -
'ahsolut: con-2". Owing in l... mos. 1.".‘1’0 rest—ni-

‘le of Elli» ‘
‘ be used to

"y: behavimrr of [11C fields on
‘. General i\' can '0;- tr' red from

‘ r‘rriginaiiy equal
1 fiat-r . -. .1:l\UI‘EE‘.dLn‘ll.

QUESTIONS concerning radiation, or asymptotic flatness of space-time, in-
volve statements about events in the “neighbourhood of infinity”. It would
appear, therefore, that some deeper understanding of the mathematical
nature of this “infinity” might be of great conceptual value to physics. I wish
to describe here an idea which seems to have been partially suggested by
a number of people, and to me particularly by E. Schiicking. The essential
construction can apparently be traced back to Mobius [1].“’

The idea is that if space-time is considered from the point of View of its
conformal structure only, points at infinity can be treated on the same basis
as finite points. It should be recalled that the concepts of angle, of the light
cone at any event and a null geodesic, are conformally invariant and there-
fore pertinent to the conformal geometry of space-time. The concepts of
infinitesimal distance and of space-like or time-like geodesics are not.

I shall be concerned here primarily with Minkowski space and its com-
pletion to a compact conformal manifold. The construction is analogous
to the completion of a Euclidean plane to a projective plane by the addi-
tion of a “line at infinity”, or alternatively, to its completion to an inver-
sive plane by the addition of a “point at infinity”. Some considerations ap-
plicable to curved space-time will be given at the end.

“" Another article of much greater immediate relevance has receniiy been brougit
to my attention. This is: Hans Rudberg, T e compacti‘t‘rcation of a Lorentz space and
some remarks. on the foundation of the theory of conformal relativity; dissertation (1957:.
University of Uppsala; Physics Abstracts No 30 Val. 61 4,1958). In it, the geometry or"
Ihc conl'ormaily completed Minkowski Space is discussed in some considerable detail.
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Let x" be the position vector of a general event in Minkowski space-
time relative to a given origin 0. Then the transformation to new Minkow-

skian coordinates 5?" given by
A x" it"
x," = —’ x” = A A _’ (1)

xax“ xax“

is conformal (“imet‘sion with respect to 0"). Observe that the whole null

cone of 0 is transformed to infinity in the 5"" system and that infinity in the

x" system becomes the null cone of the origin E) of the 3"“ system. (“Space-

like" or "time-like” infinity become (7 itself but "null" infinity becomes spread
out over the null cone of 6.) Thus, from the conformal point of view “in-
finity” must be a null cone. The two systems x“, 52" related by (1) may be

regarded as two coordinate systems, each of which covers part of a conform-

ally flat and compact manifold (7%. Together they do not cover quite the

whole of 9% since the points at infinity on the null cone of 0 are excluded
in both coordinate systems, but these points can easily be covered by choos-
ing a third coordinate system which is related to x"—a‘"(aaa“>0) in the

same way that 3c” is related to x” in (1).
The geometry of 97a is then briefly as follows. 9% contains 004 points and

005 null (straight) lines. The 002 null lines through each point generate the
null cone of that point. These null cones are all closed, the null lines being
topologically circles. Each cone has just one vertex. 97E admits a transitive
0015 group of motions, so that all its points are on the same footing. Thus
all these null cones are also on the same footing. If any one of these cones
is chosen, it may be regarded as an absolute cone (cone at infinity) for a Min-
kowski metric structure consistent with the given conformal structure. The
metrical concepts can all be defined in relation to this absolute cone. Thus,
“parallel” null lines are null lines which meet the same generator of the ab-
solute cone. If they meet at the same point of the absolute cone, they are
not only “parallel” but they lie in the same “null hyperplane”. Thus, a “null
hyperplane” is simply a null cone whose vertex lies on the absolute cone
(other than at its vertex). Cm also contains 009 space-like circles and 009 time-
like circles—a time-like circle being, in general, the world-line of a uni-
formly accelerating particle (together with the other branch of the “hyper-
bola”). A space-like or time-like “straight line” is simply a space-like or
time-like circle which passes through the vertex of the absolute cone. (Note
the characteristic fact that on the other hand “null straight lines” will not
pass through the vertex of the absolute cone, if “finite”.) A limiting case
of a space-like or time-like circle is a pair of intersecting null lines.

To picture 97E consider first the two-dimensional case. Imagine the whole
of two-dimensional Minkowski space-time to be mapped continuously onto
the interior of a square, with the null lines parallel to the sides (see Fig. l).
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Then infinity is represented by the sides of the square and to complete the
picture, opposite sides must be identified preserving sense. The resultant
compact manifold is topologically a torus. Next, consider the three-dimen-

FIG. 1. FIG. 2.

sional case (two space and one time dimension). This time we map the space-
time continuously onto the interior of a region bounded by two portions
of cones joined base to base (see Fig. 2). Each generator of the top cone is
to be identified with the opposite generator of the bottom cone, preserving
future sense. It follows that both the top vertex and the bottom vertex must
be identified with the whole of the “equator”—which must therefore be
considered as a point. The resultant compact manifold is non-orientable
and has the topology of a three-dimensional analogue of Klein’s bottle. The
four-dimensional case is very similar, except that in this case the manifold
turns out to be orientable again and has the topology S1><S3.

Note the fact that the removal of any null cone from 9% leaves a (simply-)
connected set of points. This is most easily seen if the cone is chosen to be
the absolute cone. Thus the three regions “past”, “future”, “elsewhere”
into which a null cone divides normal Minkowski space are connected to
each other in 9%. There is, thus, no invariant distinction between a space-
like or a time-like separation for two general points in 97K.

The possibility of applying these ideas to physics rests on the fact that
any zero rest-mass free field can be regarded (with a suitable interpretation)
as being conformally invariant. Thus, under the conformal transformation

guy = 12g”: (2)
A being a function of position, the source-free Maxwell equations, in parti-
cular, are preserved if we put
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For the case of a source-free spin-two field we have a tensor Km,” with the
symmetries and trace-free conditions of an empty-space Riemann tensor
(or Weyl tensor) satisfying

Kit-[9m] = 0- (3)
This is preserved under the conformal transformation (2) if we put

Km, = 1 Km, (4)
so that the field must be regarded as a suitable kind of density. The case
of general spin is most easily treated in the two-component spinor formalism.
For any spin 3 > 0 we can describe the field by a. symmetric spinor Gum};
with 2.9 indices satisfying

0A,-.Emam = 0. (5)
Then, (5) is preserved under the conformal transformation (2) (accompanied

by 3,,” = 10],“) provided
643...}; = it‘s—1&3...E.

Spin-zero, of course, requires special consideration.
Using this conformal invariance it is possible to give a meaning to the

concept of a zero rest-mass field defined over the whole of Cm. The condi-
tion that the field be finite on the absolute cone is a simple statement of an
asymptotic condition that is reasonable to impose on the field. Also, it is

known that initial data for such a field can be given on any null conez—one

complex number per point of the cone [2]. Hence, we can use the absolute
cone on which to specify initial data. This initial data then simply measures
the strength of the radiation field.

If interactions are to be present, we will not expect the incoming field

to match the outgoing field. Therefore, the identification of the past infinity
with the future infinity that was done to define the manifold 9% seems inad-
visable in this case. If the identification is not carried out, we have two ab-
solute cones which bound the Minkowski space, one in the past and one in
the future. The comparison between the data on the past cone with that on
the future cone determines a kind of S—matrix theory.

In general relativity, the Weyl tensor Cum in empty space satisfies the
spin-two zero rest-mass free field equations (3), so we may set

KIWQO' = Cym-
However, under transformation (2) we have

Erma = #0met!

which by comparison with (4) gives

”cm. = 112m. (6)
so that the Weyl tensor transforms differently from a zero rest—mass spin-
two field under conformal transformation. (This is perhaps not surprising,
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since Ricci tensor, i.e. “source” for the Weyl field, may be introduced by
a conformal transformation). Thus, we must choose for our expression re-
presenting the gravitational field, not exactly the Weyl tensor, but the Kma
which equals the Weyl tensor in the original metric space and which trans-
forms according to (4) under conformal transformation. A reasonable
asymptotic condition on the field—a condition of asymptotic flatness—can
then be stated as the fact that Km, must be finite (and suitably regular)
on the absolute cone(s). The gravitational field is a (self-)interacting field,
so it seems unreasonable to carry out an identification of the infinite past
with the infinite future in general relativity—we have two cones, one in the
past and one in the future. The strength of the incoming, or outgoing, radia-
tion field is then measured by the initial data for Km, on the past, or fu-
ture, absolute cone.

From (6) it follows that the Weyl tensor vanishes on the absolute cones.
This is very fortunate since it implies that the conformal structure of infini-
ty is the same in such asym’ptotically flat curved spaces as in Minkowski
spaceéwith the one important difference that the (double) vertex of each
absolute cone becomes singular and so is best removed. The absolute cones
are then perhaps better thought of as cylinders (Ssl). The possibility
of an S—matrix theory for gravitation suggests itself.
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ON THE BEHAVIOUR OF THE SCALE-FACTOR IN AN ANISOTROPIC
NON-HOMOGENEOUS UNIVERSE

A. L. ZELMANOV

Sternberg Astronomical Institute of the Moscow University, Moscow

THE chronometrical invariants and a semi-reciprocal method were used in
the relativistic theory of anisotropic non-homogeneous universe. A possi-
bility was shown for new (in comparison with homogeneous isotropic uni-
verse) types of temporal behaviour of the co-moving space and in particular
for new behaviour types of the so-called scale-factor.

In particular the possibility of a combination of volume expansion of
the co-moving space in one region with volume contraction in another one
was found which means that the expansion of Metagalaxy is possibly
of a local character although the non-stationarity being probably universal.

It is also proved that the scale-factor can pass through a regular mini—
mum instead of a singularity, which means that a contraction of the Meta-
galaxy could lead to its expansion without any passage through a high den-
sity state. In this way the well-known time-scale difliculties of the theory
could be eliminated.

In order to get a regular minimum of the scale-factor the presence fac-
tors of anisotropy, namely the absolute rotation or pressure gradient are
required. A tendency of anisotropy factors of some to decrease with the
expansion of the Metagalaxy could lead to observational inappreciability
of such factors.
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EXTRACTS FROM THE PLAY PRESENTED AT THE
CONCLUDING DINNER

Chairman: B. S. DEWITT

B.S. DEWITT: Our first speaker is Professor Alfred Schild of the Billie
Sol Estes Peoples Friendship University of Texas. Prof. Schild, who is unfor-
tunately unable to speak the official language of the conference, feels that
it would be more friendly to deliver his address in English. We are fortunate
to have with us this evening an English speaking scholar, Professor Doctor
Engelbert Schiicking, also of the Billie Sol Estes Peoples Friendship University
of Texas. Professor Schficking will translate Professor Schild’s paper into
the official language of the conference, American.
A. SCHILD: Mach’s principle states: space is necessarily flat in the absence
of physicists.
B. S. DEWITT: Translation, please:
E. SCHiiCKING: I translate: “Mach’s principle states: the ideas of a physicist
are completely determined by the literature he has read. At this conference
I gave a beautiful example that this formulation is wrong. I produced an
exact solution which showed that ideas can also be communicated orally.
This solution will be published in the forthcoming 1960 volume of the memoirs
of the Belgian Academy of Sciences. Since Mach’s principle has to be true,
we have to reformulate it slightly. It reads now, using the principle of equiva-
lence and of general covariance, though not completely including Huygen’s
principle: all publications in the Physical Review are on an equal footing.
A convincing example for the validity of this refined version has been pub-
lished by Bergmann, Robinson and Schiicking in the Physical Review—and
by the Science News Service. Bergmann and coworkers found the famous
gap in the Schwarzschild literature. They showed through several and inde-
pendent lines of reasoning that curved space is not necessarily flat. This
result that so far had never been proven rigorously showed how right Mach
was to die before the advent of Mach’s principle.” (Turning to Schild) Was
that the correct translation?
A. SCHILD: Exactly.
I. ROBINSON: Excuse me, please!
B. S. DEWITT: Excuse me!
I. ROBINSON (with a fixed smile and a more audibly Russian accent than usual):
Excuse me, please. We are very happy, yes. It is a great pleasure to hear the
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friendly work of Professor Schild. Here in our country, yes, we are very inter-
ested in these problems. Many distinguished scientists work on them. These
are my students. The others are just babies in relativity. I have the papers
here. Excuse me, please. With your permission I translate my question into
American, perhaps. I wish to say how happy I am to hear these problems
so well formulated in terms of torsion.
R. P. FEYNMAN: It ain’t that simple. You got to look at things physically,
see! You got these particles, and they attract each other, see. They bounce
photons off each other, they get closer, and they go round each other, see!
It’s a kind of screwing motion (illustrative gestures). The situation gets real
complicated. You got to try to think of it physically. You can’t describe
all this by just one word: TOISION.
B. S. DEWITT: Are there any questions?
(All rise and speak simultaneously).
B. S. DEWITT: Since there are no further questions I call on Mme. Tonnere-
Lichnerowicz to deliver the concluding report on this session.
R. P. FEYNMAN: Infeld relativité Infeld gravitation Infeld con-
ference Infeld Infeld.
(Ed. note: Professor Feynman’s talk delivered in the classic tongue of Racine,
Moliére, Corneille, and J. L. Synge so affected the French-speaking members
of the conference that the text recorded for posterity seems to be incomplete
in several respects. See above).
B. S. DEWITT: A further comment on the conference will be provided by
Professor Arnold Komar of the New York Theological Seminary.
A. KOMAR:

THE BALLAD OF THE ULTIMATE SECTARIAN

Jim Johnson was a student of physics
Gravitation was his specialty
To every Conference he would come
and this is what he’d say:

“Oh you may be a colleague of John Wheeler,
Ivanenko you may think fine,
You may have studied with Bergmann or Fock,
But you’re no colleague of mine”

Jim Johnson hung up a shingle,
“Albert Einstein School” it did read
And to every student who knocked at his door
He would propound this creed:

“Oh you may be a colleague of Muller,
Lichnerowicz you may think fine,
You may agree with Infeld or Synge,
But you’re no colleague of mine!”
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Jim Johnson died and went to heaven, ‘
Einstein welcomed him with outstretched hands,
But Jim Johnson refused to collaborate
And firmly announced his stand;

“Oh you may be a colleague of Christcfl'el,
Emmy Noether you may think fine,
You may have studied with Riemann or Weyl,
But you’re no colleague of mine!”
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