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The MAIKo time projection chamber (TPC) enables us to project three-dimensional tracks of charged
particles onto two planes perpendicular and parallel to the beam axis, and to acquire these projections
as two images. It is, therefore, necessary to analyze these two-dimensional images to reconstruct the
original three-dimensional tracks of the charged particles. These images are often analyzed with the
Hough transformation. This method requires a complex algorithm and a large computing power.
In the present work, we developed a new method to analyze track images obtained by the MAIKo
TPC using neural networks which are widely employed for the image recognition. This new method
successfully makes the analysis faster and more accurate than the previous method.
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1. Introduction

Fig. 1. Schematic view of the
MAIKo TPC.

Time projection chambers (TPCs) are widely used to de-
tect tracks of charged particles. We developed a TPC using
a micro pixel chamber (µ-PIC) [1] named MAIKo (µ-PIC
based active target for inverse kinematics.) [2] for experi-
ments with unstable nuclei. Figure 1 shows a schematic view
of the MAIKo TPC. When charged particles pass through the
MAIKo TPC filled with the detection gas, electrons and ions
are generated along the particle tracks. These electrons are
drifted downward by an electric field and gas-amplified on
the surface of the µ-PIC. The anode and cathode electrodes of
the µ-PIC are segmented into 256 strips, respectively, which
are arranged orthogonally. These strips are aligned at 400-
µm intervals. Anode strips are parallel to x-axis and cathode
strips are parallel to z-axis as shown in Fig. 1. Electric sig-
nals induced by the multiplied electrons and ions are read out
through the anode and cathode strips to determine the x and
z position of the particle tracks. The vertical position of the
tracks along the y-axis is determined from the drift time of the
electrons. Thus, the three-dimensional tracks are reconstructed from x-, y-, and z-coordinates.

Incident nuclei are scattered by target particles in the gas of the TPC as shown in Fig. 1, i.e.
the gas plays a role of the target gas. In forward scatterings where the momentum transfer is small,
scattered particles escape from the sensitive volume of the TPC, but low-energy recoil particles stop
inside. Since reaction points are inside the sensitive volume of the TPC, it is possible to detect even
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low-energy particles over a large solid angle. H2 or He gas is widely used as a target gas but operation
of TPC with pure H2 or He gas is prone to discharge. Usually, quenching gas with a high tolerance
for electric discharges like CO2 or iso-butane is mixed with a target gas for stable operation of the
TPC although the quenching gas causes background events. Recently, the elastic and inelastic alpha
scattering on 10C at forward center-of-mass angles were measured with the MAIKo TPC at Research
Center for Nuclear Physics (RCNP), Osaka University. In this experiment, He (96 %) was used as the
target gas, and CO2 (4 %) was used as the quenching gas.

The tracks of charged particles in each event were projected onto the z-y and y-z planes that are
perpendicular to the anode and cathode strips, and were recorded as the anode and cathode images.
Figures 2 and 3 are examples of the acquired images. These black-and-white images with 1024× 256
pixels present the hit pattern of the 256 strips on the anode and cathode recorded at every 10 ns for
the duration of 10 ns × 1024 = 10.24 µs. Figure 2 shows a 10C + α event in which the incident 10C
beam was scattered at the small angle from the beam axis and the α particle was recoiled at the large
angle. On the other hand, Figure 3 shows a background event due to a heavy nucleus in the quenching
gas (C or O). The incident 10C beam should be scattered from a heavy nucleus because the scattering
angle was large. If the incident 10C had been scattered with 4He, it would not have been scattered at
such a large angle.

For the 10C+α events, the energy and emission angle of the recoil α particle must be determined
to obtain the spectroscopic information such as the excitation energy of 10C and the scattering angle
in the center-of-mass system. The energy of the recoil α particle is determined from the length of
the track in the detection gas consisting of the target gas and the quenching gas, while the emission
angle is determined from the opening angle between the incident particle and the recoil α particle.
The anode and cathode images were analyzed with the following two steps; selecting true 10C + α
events, and determining the length and the emission angle of α particle from the anode and cathode
images. However, the method using the Hough transformation required a lot of efforts to do these
two analyses. Therefore, we have developed a new method using neural networks which are widely
employed for the image recognition. The neural networks were also employed for the analysis of TPC
data in recent years [3].

Fig. 2. Typical anode and cathode images
recorded in a 10C + α event.

Fig. 3. Same as Fig. 2 but recorded in a back-
ground event.

2. Previous method using the Hough transformation

Previously, the Hough transformation had been employed in order to select the 10C + α events
and to determine tracks. The Hough transformation is one of methods to find lines in an image. A
hit pixel at (xi, yi) in the image is transformed into a curved line in the (θ, r) parameter space (Hough
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space) according to Eq. (1).
r = xi cos θ + yi sin θ. (1)

A point at (θ j, r j) in the Hough space corresponds to a straight line in the original image as given by
Eq. (2).

y = − x
tan θ j

+
r j

sin θ j
. (2)

When the pixels in the anode or cathode image lie on a straight line, their transformed curves intersect
at one point at (θ j, r j) in the Hough space. Thus, the intersecting point in the Hough space gives the
particle track according to Eq. (2).

It is possible to select the 10C+α events by utilizing information about the straight lines extracted
from the anode and cathode images such as the number, position, angle and length. Once the 10C + α
events are selected, the energy and angle of the recoil α particle are determined from the images
to calculate the excitation energy and the scattering angle in the center-of-mass system. However,
the previous method with the Hough transformation requires a complicated algorithm with many
adjustable parameters, and the optimization of these parameters needs a large computing power. It
takes about 24 hours to optimize the parameters using 100 CPUs in the computing system at RCNP,
and about one second to process the anode and cathode images from one event using one CPU after
the parameter optimization. The accuracy of the event selection was rated 89 % using 3,000 events,
which were tagged with human eyes.

3. New method using neural networks

The previous method has problems of requiring a complex algorithm and a large computing
power. We developed a new method using neural networks. Using neural networks, it might be pos-
sible to recognize images considering many features of tracks without any complicated algorithms.
Once a neural network trained, the neural network is expected to recognize images faster and more
accurate than the previous method.

We used convolutional neural networks (CNNs) that are useful for image recognition [4,5]. Since
the analysis consists of the event selection and the track determination, we used two networks. Figures
4 and 5 show the networks for the event selection and the track determination, respectively. Neural
networks generally consist of the input layer, the output layer, and the hidden layers. Because the
anode and cathode images have different features, the networks have two branches. We inputted a pair
of images from the MAIKo TPC to the neural networks. The network for the event selection has 16
layers and the network for the track determination has 21 layers. “MaxPooling2D”, “Conv2D”, “FC”,
and “Dropout” in Figs. 4 and 5 mean the maxpooling layer, convolutional layer, fully connected layer,
and dropout layer respectively. The maxpooling layers reduce the size of feature maps by taking the
maximum value. The convolutional layers emphasize the features of the input maps through filters.
The fully connected layers process the features from the previous layer and pass them to the next
layer. The dropout layers block some of the signal from the previous layer to the next layer to avoid
overfitting. See Ref. [6, 7] for details about the function of each layer. The structures of the networks
in Figs. 4 and 5, i.e. the number and the types of the layers were optimized to achieve the highest
accuracy in the analysis.

In the event selection, the neural network determined a probability that the pair of images were
taken in the 10C+α event. If the probability was larger than 50 %, the event was regarded as the 10C+α
scattering. This network was trained and evaluated with the images from 3,000 events of the 10C + α
events and background events tagged by human eyes, which were the same images as those used in
the previous method. The 2,700 events were used for the training, and the other 300 events were for
the evaluation. In the track determination, the network outputted the coordinates of two endpoints of a
track of a recoil α particle in a 10C+α event. This network was trained and evaluated with the images
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Fig. 4. Schematic structure of the neural
network for the event selection. The details
are explained in the text. Fig. 5. Schematic structure of the neural

network for the track determination. The de-
tails are explained in the text.

from 4,566 events of the 10C + α events. The coordinates of the track end points in these events had
been determined by the previous method before the new analysis with the neural network. The 3,012
events were used for the training, and the other 1,554 events were for the evaluation. We used Intel
Core i7, Nvidia GeForce GTX 1080Ti, Ubuntu 18.04 LTS, and TensorFlow [8] + Keras [9] in the
present analysis.

4. Result

Fig. 6. Comparison of the track endpoints determined by the
previous method and the neural network.

The neural network for the event
selection was trained 200 times for
the 2,700 events until the accuracy of
the neural network fully converged. It
took about 26 minutes for the training
and about one second to process for
the 300 events. The accuracy of the
event selection by the neural network
was 96 %, while the accuracy by the
previous method was 89 %. The neu-
ral network is able to select events
faster and more accurate than the pre-
vious method.

The neural network for the track
determination was trained 500 times
for the 3,012 events. It took about 270
minutes for the training and about two seconds to process the 1,554 events. The track endpoints in
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a typical event determined by the neural network are compared with those by the previous method
in Fig. 6. The circles and triangles show the scattering and the stopping points determined by the
previous method, while the squares and rhombuses show those determined by the neural network.
The differences in the coordinates of the track endpoints determined by the previous method and the
neural network are about four mm in the standard deviation for the 1,554 events. The processing time
for the neural network to find the track endpoints was much shorter than the previous method.

5. Conclusion

We developed a new method with neural networks to analyze the track images acquired by the
MAIKo TPC. It was found that this new method made the event selection and the track determination
faster and more accurate than the previous method with the Hough transformation.
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