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Abstract We construct a coordinate system for the Kerr solution, based on the
zero angular momentum observers dropped from infinity, which generalizes the
Painlevé–Gullstrand coordinate system for the Schwarzschild solution. The Kerr
metric can then be interpreted as describing space flowing on a (curved) Rieman-
nian 3-manifold. The stationary limit arises as the set of points on this manifold
where the speed of the flow equals the speed of light, and the horizons as the set of
points where the radial speed equals the speed of light. A deeper analysis of what
is meant by the flow of space reveals that the acceleration of free-falling objects is
generally not in the direction of this flow. Finally, we compare the new coordinate
system with the closely related Doran coordinate system.
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0 Introduction

The Painlevé–Gullstrand coordinate system for the Schwarzschild solution [5; 11]
is a particularly simple horizon-penetrating coordinate system, admitting interest-
ing physical interpretations [6; 12]. It was inexplicably overlooked for a long time,
but its importance has increased in recent years due to its relation with analogue
gravity models [1].

In this paper, we construct a generalization of the Painlevé–Gullstrand coor-
dinate system for the Kerr solution [7], based on the zero angular momentum
observers dropped from infinity. This is quite different from the generalization
considered in [6], where the Doran form of the Kerr metric [3] was used.
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The paper is organized as follows. In Sect. 1, we present the new coordinate
system (but relegate the details of its derivation to an appendix so as not to inter-
rupt the flow of the paper). In Sect. 2, we interpret this coordinate system as
describing space flowing on a Riemannian 3-manifold, with the stationary limit
given by the set of points on this manifold where the speed of the flow equals the
speed of light, and the horizons as the set of points where the radial speed equals
the speed of light. In Sect. 3, we address the question of what is meant by the flow
of space. In particular, we show that the acceleration of free-falling objects is gen-
erally not in the direction of this flow. We also show that motions close to the flow
of space can be obtained from a classical conservative system with a magnetic
term. Finally, in Sect. 4, we compare the new coordinate system with the Doran
coordinate system.

We use the Einstein summation convention with Latin indices i, j, . . . running
from 1 to 3. Bold face letters u,v, . . . represent vectors on the space manifold.

1 Coordinate system

As we show in the appendix, the metric for the Kerr solution with mass M > 0 and
angular momentum Ma can be written as

ds2 =−dt2 +
ρ2

Σ
(dr− vdt)2 +ρ

2dθ
2 +Σ sin2

θ (dϕ +δdθ −Ωdt)2,

where the functions

ρ
2 = r2 +a2 cos2

θ and Σ = r2 +a2 +
2Mra2

ρ2 sin2
θ

approach r2 at infinity, the functions

Ω =
2Mra
ρ2Σ

and v =−
√

2Mr(r2 +a2)
ρ2

are the familiar expressions for the angular velocity and radial proper velocity of
a zero angular momentum observer dropped from infinity [2], and

δ = a2 sin(2θ)
+∞∫
r

vΩ

Σ
dr.

Here the coordinates (t,r,θ ,ϕ) are related to the usual Boyer–Lindquist coordi-
nates (t ′,r,θ ,ϕ ′) by a coordinate transformation of the form{

t ′ = t +A(r)
ϕ ′ = ϕ +B(r,θ)

where A and B are analytic functions with singularities at the horizons. The new
coordinate ϕ is introduced so that the new coordinate system penetrates the hori-
zons (when they exist). Notice that for a = 0 the coordinates (t,r,θ ,ϕ) reduce to
the usual Painlevé–Gullstrand coordinates for the Schwarzschild solution.
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2 Interpretation

Following the usual interpretation of the Painlevé–Gullstrand coordinates [6], we
can think of the Kerr solution as the Riemannian 3-manifold with metric

dl2 =
ρ2

Σ
dr2 +ρ

2dθ
2 +Σ sin2

θ (dϕ +δdθ)2

on which space is flowing with velocity

v = v
∂

∂ r
+Ω

∂

∂ϕ
.

As one would expect [4; 8], the space manifold is not flat: for instance, the totally
geodesic submanifold θ = π

2 has Gauss curvature

K =−3Ma2

r5 ,

which is strictly negative for a 6= 0. Notice that K blows up at the singularity
ρ = 0.1

The speed of the flow of space is given by the square root of

〈v,v〉=
ρ2

Σ
v2 +Σ sin2

θ Ω
2 =

2Mr
ρ2 .

Hence space is flowing at the speed of light on the stationary limit, determined by
1− 2Mr

ρ2 = 0. The radial speed, on the other hand, is given by the square root of

ρ2

Σ
v2 = 1− ∆

Σ
,

where ∆ = r2 − 2Mr + a2, and equals the speed of light for ∆ = 0, i.e. at the
horizons (when they exist).

It is easily seen that

ds2 <0 ⇔‖u−v‖< 1,

where

u =
dr
dt

∂

∂ r
+

dθ

dt
∂

∂θ
+

dϕ

dt
∂

∂ϕ

is the velocity of a massive particle with respect to the time coordinate t. There-
fore no observer inside the stationary limit can remain at rest. If |a| < M then no
observer inside the outer horizon can ever come out, and must indeed also cross
the inner horizon; however, he does not necessarily have to wind up in the sin-
gularity ρ = 0. The same is true for |a| = M except that the two horizons now
coincide.

1 It is interesting to note that near the singularity one has arbitrarily large circles of constant
(r,θ), contained inside a region of finite volume (the volume element is simply ρ2 sinθdr ∧
dθ ∧dϕ).
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3 What is the flow of space?

Stationary metrics of the form

ds2 =−dt2 + γi j(dxi− vidt)(dx j − v jdt)

can be interpreted as suggesting that space (defined as the Riemannian 3-manifold
with metric2 dl2 = γi jdxidx j) is flowing with velocity v = vi ∂

∂xi . A simple but
instructive example is Minkowski spacetime in an uniformly rotating frame with
constant angular velocity ω ,

ds2 =−dt2 +dr2 + r2(dϕ +ωdt)2 +dz2,

for which the “true” (inertial) Euclidean 3-space is flowing with velocity

v =−ω
∂

∂ϕ
.

This example shows that the acceleration of free-falling objects is generally not in
the direction of the flow of space. In fact, it is possible to show that if we use the
time coordinate t as the parameter then the geodesic Lagrangian

L =
√

1− γi j(ui− vi)(u j − v j)
(

ui =
dxi

dt

)
leads to the equation of motion

D
dt

(
ui− vi

L

)
+∇

iv j

(
u j − v j

L

)
= 0,

where ∇ is the Levi–Civita connection of the space manifold and D
dt = ui∇i (com-

pare with [6]). If u = 0, this becomes

Dui

dt
+ viv jvk

∇ jvk − v j
∇

iv j = 0,

which can be written as
Du
dt

=−gradφ + 〈gradφ ,v〉v,

where φ = − 1
2‖v‖2. Therefore the acceleration of a particle at rest is primarily

in the direction along which ‖v‖2 grows maximally, not in the direction of v (the
second term in the acceleration only becomes important for ‖v‖ ∼ 1, i.e. near the
stationary limit). For Minkowski spacetime in a rotating frame, for instance, the
centrifugal acceleration felt by a stationary particle is in the radial direction.

Notice by the way that motions which a close to the flow of space (in the sense
that ‖u−v‖� 1) are given by the approximate Lagrangian

L =
1
2

γi j
(
ui− vi)(

u j − v j) =
1
2
‖u‖2 + µ(u)−φ ,

2 This metric corresponds to the local distances measured by the free-falling observers mov-
ing with the flow of space.
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where µ(u) =−〈v,u〉. This Lagrangian defines a conservative system with mag-
netic term on the space manifold. If in particular µ is closed we obtain a conserva-
tive system, which can be interpreted as a Newtonian gravitational field [9]. This
is not the case for the Kerr solution, for which

µ =
ρ2

Σ
vdr +Σ sin2

θ Ω (dϕ +δdθ)

is readily shown not to be closed. In other words, the flow of space is not irrota-
tional in this case.3

4 Relation to the Doran coordinates

This new coordinate system is, of course, closely related to the Doran coordinate
system (t,r,θ ,ϕ ′′), in terms of which the Kerr metric is written [3]

ds2 =−dt2 +
ρ2

r2 +a2

[
dr−v(dt−asin2

θdϕ
′′)

]2
+ρ

2dθ
2+(r2 +a2)sin2

θdϕ
′′2.

As suggested by the notation, only the azimuthal angular coordinate differs in
the two coordinate systems. They are related to the Boyer–Lindquist azimuthal
angular coordinate ϕ ′ by

dϕ
′ = dϕ +αΩdr +δdθ = dϕ

′′+
αa

r2 +a2 dr

where the function α = α(r) is defined in the appendix. The coordinate ϕ ′′ is
simply the initial Boyer–Lindquist coordinate ϕ ′ of the zero angular momentum
observers dropped from infinity, which leads to the interpretation that in the Doran
coordinate system these observers fall radially [6].

Although the Doran coordinate system appears simpler, its interpretation is
not as straightforward, since one must consider a “twist field” in addition to the
velocity field [6]. This extra piece of information is coded in the curvature of the
space manifold in our new coordinate system.

Appendix

Here we show how to write the Kerr metric in the Painlevé–Gullstrand form. In
the usual Boyer–Lindquist coordinates (t ′,r,θ ,ϕ ′), the metric is written [10]

ds2 =−
(

1− 2Mr
ρ2

)
dt ′2+

ρ2

∆
dr2 +ρ

2dθ
2 +Σ sin2

θdϕ
′2− 4Mrasin2

θ

ρ2 dt ′dϕ
′.

3 In this respect it is misleading to compare the flow of space in the Kerr solution to the flow
of water draining from a bathtub. This may seem strange in light of the fact that the zero angular
momentum observers dropped from infinity have zero vorticity, but one must bear in mind that
stationary observers have themselves nonzero vorticity.
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To obtain the Painlevé–Gullstrand coordinates (t,r,θ ,ϕ) we perform the coordi-
nate transformation defined by{

dt ′ = dt +α(r,θ)dr + γ(r,θ)dθ

dϕ ′ = dϕ +β (r,θ)dr +δ (r,θ)dθ
(1)

(where α,β ,γ and δ are functions to be determined), leading to

ds2 = −
(

1− 2Mr
ρ2

)
(dt +αdr + γdθ)2

+
ρ2

∆
dr2 +ρ

2dθ
2 +Σ sin2

θ(dϕ +βdr +δdθ)2

− 4Mrasin2
θ

ρ2 (dt +αdr + γdθ)(dϕ +βdr +δdθ). (2)

Requiring the coefficient of drdϕ to vanish yields

β = Ωα. (3)

This implies that the angular velocity for a zero angular momentum observer
dropped from infinity in the new coordinates is still given by Ω . Assuming that
the radial proper velocity in the new coordinates is also still given by v, we know
that the metric in the new coordinates must be of the form

ds2 = −dt2 + γrr(dr− vdt)2 +2γrθ (dr− vdt)dθ + γθθ dθ
2

+Σ sin2
θ(dϕ −Ωdt)2 +2γθϕ dθ(dϕ −Ωdt). (4)

Equating the coefficients of dt2 in (2) and (4) yields

γrr =
ρ2

Σ
.

From the equality of the coefficients of dtdr we obtain

α =−
√

2Mr(r2 +a2)
∆

. (5)

In particular, α depends only on r. Since αdr + γdθ must be exact, we see that
γ can depend only on θ ; if we take γ to vanish for r = +∞ then we have γ = 0.4
Notice that (5) also determines β through (3). Since βdr+δdθ must be exact, we
obtain

δ =−
+∞∫
r

∂β

∂θ
dr =−

+∞∫
r

α
∂Ω

∂θ
dr =

+∞∫
r

ρ2v
∆

∂Ω

∂θ
dr = a2 sin(2θ)

+∞∫
r

vΩ

Σ
dr,

4 This fixes the time coordinate to coincide with the Doran time coordinate.
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(where again we choose δ to vanish for r = +∞). The condition that the coeffi-
cients of dr2 are the same yields

α
2 =

2Mr(r2 +a2)
∆ 2 ,

in agreement with (5). Equating the coefficients of drdθ leads to

γrθ = 0.

The coefficients of dtdϕ are automatically equal, and for the coefficients of dtdθ

to coincide we must have

γθϕ = Σ sin2
θ δ , (6)

which is exactly the condition for the coefficients of dθdϕ to be equal. Finally,
the equality of the coefficients of dθ 2 implies

γθθ = ρ
2 +Σ sin2

θ δ
2.

This completes the matching of the coefficients of (2) and (4). Since we did not
reach any contradictions (which was by no means trivial, since several conditions
from the matching of the coefficients turned out to be automatically satisfied), the
coordinate transformation (1) does lead to the Painlevé–Gullstrand form of the
metric:

ds2 =−dt2 +
ρ2

Σ
(dr− vdt)2 +ρ

2dθ
2 +Σ sin2

θ (dϕ +δdθ −Ωdt)2.

Notice that although α and β blow up when ∆ vanishes, δ does not, and hence
this coordinate system penetrates the horizons (when they exist).
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