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Abstract We propose a complete, new formalism to compute unambiguously B-
model open and closed amplitudes in local Calabi–Yau geometries, including the
mirrors of toric manifolds. The formalism is based on the recursive solution of
matrix models recently proposed by Eynard and Orantin. The resulting amplitudes
are non-perturbative in both the closed and the open moduli. The formalism can
then be used to study stringy phase transitions in the open/closed moduli space. At
large radius, this formalism may be seen as a mirror formalism to the topological
vertex, but it is also valid in other phases in the moduli space. We develop the
formalism in general and provide an extensive number of checks, including a test
at the orbifold point of Ap fibrations, where the amplitudes compute the ’t Hooft
expansion of vevs of Wilson loops in Chern-Simons theory on lens spaces. We
also use our formalism to predict the disk amplitude for the orbifold C3/Z3.

Contents

1 Introduction

1.1 Motivation

Topological string theory is an important subsector of string theory with various
physical and mathematical applications, which has been extensively investigated
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since it was first formulated. This has led to many different ways of computing
topological string amplitudes, based very often on string dualities. Topological
strings come in two types, the A-model and the B-model, which are related by mir-
ror symmetry. The A-model provides a physical formulation of Gromov–Witten
theory, while the B-model is deeply related to the theory of deformation of com-
plex structures. Both models have an open sector whose boundary conditions are
set by topological D-branes.

The main advantage of the B-model is that its results are exact in the complex
moduli (i.e. they include all α ′ corrections), which makes it possible to study
various aspects of stringy geometry not easily accessible in the A-model. One
can in particular obtain results for the amplitudes far from the large radius limit,
around non-geometric phases such as orbifold or conifold points.

Sphere and disk amplitudes are given by holomophic integrals in the B-model
geometry. In particular, sphere amplitudes are determined by period integrals over
cycles; those were first calculated for the quintic Calabi–Yau threefold in [16]. For
non-compact
Calabi-Yau threefolds, the mirror geometry basically reduces to a Riemann sur-
face, and the disk amplitudes are given by chain integrals directly related to the
Abel-Jacobi map [5, 6]. Note that disk amplitudes ending on the real quintic inside
the quintic threefold have also been calculated [43], using a generalization of the
Abel-Jacobi map [26].

In contrast, B-model amplitudes A(g)
h at genus g and with h holes, on world-

sheets with χ < 1, have an anomalous, non-holomorphic dependence on the com-
plex moduli which is captured by the holomorphic anomaly equations. These were
first formulated in the closed sector in [11], and have been recently extended to
the open sector in various circumstances [13, 23, 44]. The holomorphic anomaly
equations can be solved to determine the amplitudes, up to an a priori unknown
holomorphic section over the moduli space — the so called holomorphic ambi-
guity — which puts severe restrictions on their effectiveness. Modular invariance
of the amplitudes completely governs the non-holomorphic terms in the ampli-
tudes [1, 23, 31, 32, 48] and reduces the problem of fixing the holomorphic ambi-
guity to a finite set of data for a given g and h. Recently, boundary conditions have
been found in the closed sector [31] (the so-called conifold gap condition and reg-
ularity at the orbifold point) which fully fix these data in many local geometries
(like the Seiberg–Witten geometry or local P2) [27, 31]. In the compact case they
allow to calculate closed string amplitudes to high, but finite genus (for example,
g = 51 for the quintic) [32].

For open string amplitudes the situation is worse: appropriate boundary condi-
tions are not known, and the constraints coming from modularity are much weaker.
In fact, it is not known how to supplement the holomorphic anomaly equations
with sufficient conditions in order to fix the open string amplitudes.1

In view of this, it is very important to have an approach to the B-model that
goes beyond the framework of the holomorphic anomaly equations. In the local
case (toric or not), such an approach was proposed in [2], which interpreted the
string field theory of the B-model (the Kodaira–Spencer theory) in terms of a
chiral boson living on a “quantum” Riemann surface. However, the computational

1 This applies also to the case in which it has been argued that there is no open string moduli
[43].
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framework of [2] is only effective in very simple geometries, and in practice it is
not easy to apply it even to backgrounds like local P2.

In [39] it was argued that all closed and open topological string amplitudes on
local geometries (including the mirrors of toric backgrounds) could be computed
by adapting the recursive method of Eynard and Orantin [22] to the Calabi–Yau
case. This method was obtained originally as a solution to the loop equations of
matrix models, giving an explicit form for its open and closed amplitudes in terms
of residue calculus on the spectral curve of the matrix model. The recursion so-
lution obtained in this way can then be defined formally for any algebraic curve
embedded in C2. In [39] it was argued that this more general construction attached
to an arbitrary Riemann surface computes the amplitudes of the chiral boson the-
ory described in [2], and in particular that the formalism of [22] should give the
solution to the B-model for mirrors of toric geometries, providing in this way an
effective computational approach to the Kodaira–Spencer theory in the local case.
Various nontrivial examples were tested in [39] successfully. However, many im-
portant aspects of the B-model, like the phase structure of D-branes, as well as the
framing phenomenon discovered in [5], were not incorporated in the formalism
of [39].

1.2 Summary of the results

In this paper we build on [39] and develop a complete theory of the B-model
for local Calabi-Yau geometries in the presence of toric D-branes. Our formalism
is based on a modification of [22] appropriate for the toric case, and it leads to
a framework where one can compute recursively and unequivocally all the open
and closed B-model amplitudes in closed form, non-perturbatively in the complex
moduli, albeit perturbatively in the string coupling constant. In particular, our for-
malism incorporates in a natural way the more subtle aspects of D-branes (like
framing) which were not available in [39].

Moreover, the proposed formalism is valid at any point in the moduli space.
Basically, once one knows the disk and the annulus amplitudes at a given point,
one can generate recursively all the other open and closed amplitudes unambigu-
ously. Thus this formalism goes beyond known approaches in open topological
string theory, such as the topological vertex, as it allows to study closed and open
amplitudes not only in the large radius phase but also in non-geometric phases
such as conifolds and orbifolds phases.

1.3 Outline

In Sect. 2 we review relevant features of mirror symmetry as well as open and
closed topological string theory. We put a special emphasis on phase transitions
in the open/closed moduli spaces, and on the determination of the corresponding
open and closed mirror maps. Section 3 is the core of the paper, where we pro-
pose our formalism. We also explain how it can be used to compute amplitudes
explicitly at various points in the moduli space. In Sects. 4 and 5 we get our hands
dirty and do various checks of our formalism, for local geometries. In Sect. 6 we
study open and closed amplitudes in a non-geometric phase corresponding to the
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blow-down of local P1×P1. We check our results against expectation values of the
framed unknot in Chern-Simons theory on lens spaces. We also propose a predic-
tion for the disk amplitude of C3/Z3, which corresponds to the orbifold phase in
the moduli space of local P2. Finally, we summarize and propose various avenues
of research in Sect. 7.

2 Toric Calabi-Yau Threefolds with Branes

In this section we introduce basic concepts of mirror symmetry and topological
string theory for non-compact toric Calabi-Yau threefolds with Harvey-Lawson
type special Lagrangians. In particular, we discuss the target space geometry of the
A- and the
B-model as well as their moduli spaces. We also examine period integrals on the
B-model side, which give the flat coordinates as well as the closed genus zero and
disk amplitudes.

2.1 Mirror symmetry and topological strings on toric Calabi-Yau threefolds

2.1.1 A-model geometry.

We consider the A-model topological string on a (non-compact) toric Calabi-Yau
threefold, which can be described as a symplectic quotient
M = Ck+3//G, where G = U(1)k [19]. Alternatively, M may be viewed physi-
cally as the vacuum field configuration for the complex scalars Xi, i = 1, . . . ,k +3
of chiral superfields in a 2d gauged linear, (2,2) supersymmetric σ -model, trans-
forming as Xi → eiQα

i εα Xi, Qα
i ∈Z, α = 1, . . . ,k under the gauge group U(1)k [47].

Without superpotential, M is determined by the D-term constraints

Dα =
k+3

∑
i=1

Qα
i |Xi|2 = rα , α = 1, . . . ,k (2.1)

modulo the action of G = U(1)k. The rα are the Kähler parameters and rα ∈
R+ defines a region in the Kähler cone. For this to be true Qα

i have to fullfill
additional constraints and for M to be smooth, field configurations for which the
dimensionality of the gauge orbits drop have to be excluded.

The Calabi-Yau condition c1(T X) = 0 holds if and only if the chiral U(1)
anomaly is cancelled, that is [47]

k+3

∑
i=1

Qα
i = 0, α = 1, . . . ,k. (2.2)

Note from (2.1) that negative Qi lead to non-compact directions in M, so that all
toric Calabi-Yau manifolds are necessarily non-compact.

View the C’s with coordinates Xk = |Xk|exp(iθk) as S1-fibrations over R+.
Then M can be naturally viewed as a T 3-fibration over a non-compact convex and
linearly bounded subspace B in R3 specified by (2.1), where the T 3 is parame-
terized by the three directions in the θ -space. The condition (2.2) allows an even
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simpler picture, capturing the geometry of M as a R+×T 2 fibration over R3. In
this picture, the toric threefold M is constructed by gluing together C3 patches.
In each patch, with coordinates (z1,z2,z3), we can define, instead of rαi = |zi|2 —
which would lead to the above picture — the three following hamiltonians:

rα = |z1|2−|z2|2, rβ = |z3|2−|z1|2, rR = Im(z1z2z3). (2.3)

The rl parameterize the base R3 and generate flows δrl xk = {rl ,xk}ω , whose orbits
define the fiber. It is easy to see that rα ,rβ generate S1’s and rR, which is only well
defined due to (2.2), generates R+.

The toric graph ΓM describes the degeneration locus of the S1 fibers. In B,
|Xi| ≥ 0, therefore B is bounded by |Xi|= 0. The latter equations define two-planes
in R3 whose normal vectors obey

3+k

∑
i=1

Qα ni = 0. (2.4)

Clearly, the S1 parameterized by θi vanishes at |Xi|= 0; and over the line segments

Li j = {|Xi|= 0}∩{|X j|= 0}, (2.5)

two S1’s shrink to zero. If Li j is a closed line segment in ∂B the open S1 bundle
over it make it a P1 ∈M, while if Li j is half open in ∂B it represents a non-compact
line bundle direction C.

So far we have defined the planes |Xi|= 0 only up to parallel translation. Their
relative location is determined by the Kähler parameters, simply by the condition
that the length of the closed line segments Li j is the area of the corresponding P1.
Condition (2.2) and the T 2 fibration described above makes it possible to project
all Li j into R2 without losing information about the geometry of M. This is how
one constructs the two-dimensional toric graph ΓM associated to M.

2.1.2 B-model mirror geometry.

The mirror geometry W to the above non-compact toric Calabi-Yau threefold M
was constructed by [30], extending [10, 33].

Let w+,w− ∈ C. We further define homogeneous coordinates xi =: eyi ∈ C∗,
i = 1, . . . ,k +3 with the property |xi|= exp(−|Xi|2); they are identified under the
C∗-scaling xi ∼ λxi, i = 1, . . . ,k+3, λ ∈C∗. The mirror geometry W is then given
by

w+w− =
k+3

∑
i=1

xi, (2.6)

subject to the exponentiated D-terms contraints, which become

k+3

∏
i=1

x
Qα

i
i = e−tα

= qα , α = 1, . . . ,k. (2.7)
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Note that these relations are compatible with the λ -scaling because of the Calabi-
Yau condition. The parameters tα = rα + iθ α are the complexifications of the
Kähler parameters rα , using the θ α -angles of the U(1)k group.

After taking the λ -scaling and (2.7) into account the right-hand side of the
defining equation (2.6) can be parameterized by two variables x = exp(u),y =
exp(v) ∈ C∗. In these coordinates the mirror geometry W becomes

w+w− = H(x,y; tα), (2.8)

which is a conic bundle over C∗×C∗, where the conic fiber degenerates to two
lines over the (family of) Riemann surfaces Σ : {H(x,y; tα) = 0} ⊂C∗×C∗.2 The
holomorphic volume form on W is given by

Ω =
dwdxdy

wxy
. (2.9)

As an algebraic curve embedded in C∗×C∗, the Riemann surface Σ has punc-
tures, hence is non-compact. The fact that it is embedded in C∗×C∗ rather than
C2 like the usual specialization of a compact Riemann surface embedded in pro-
jective space to an affine coordinate patch will be crucial for us. Note that the
Riemann surface Σ is most easily visualized by fattening the toric diagram ΓM
associated to the mirror manifold M; the genus g of Σ corresponds to the number
of closed meshes in ΓM , and the number of punctures n is given by the number of
semi-infinite lines in ΓM . It is standard to call the Riemann surface Σ embedded in
C∗×C∗ the mirror curve.

It is important to note that the reparameterization group GΣ of the mirror curve
Σ is

GΣ = SL(2,Z)×
(

0 1
1 0

)
, (2.10)

which is the group of 2×2 integer matrices with determinant±1. This is the group
that preserves the symplectic form ∣∣∣∣dx

x
∧ dy

y

∣∣∣∣ (2.11)

on C∗×C∗. The action of GΣ is given by

(x,y) 7→ (xayb,xcyd),
(

a b
c d

)
∈ GΣ . (2.12)

2 Note that for brevity in the following we will always talk about the Riemann surface Σ ; it
will always be understood that Σ is in fact a family of Riemann surfaces parameterized by the
Kähler parameters tα .
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2.1.3 Open string mirror symmetry.

In this work we are interested in closed and open topological string amplitudes,
hence we must consider branes, which are described in the A-model by special
Lagrangian submanifolds. The Lagrangian submanifolds that we will be inter-
ested in were constructed by [6], as a generalization of Harvey-Lawson special
Lagrangians [29] in C3.

Consider a toric Calabi-Yau threefold M constructed as a symplectic quotient
as above, and denote by

ω =
1
2

3

∑
k=1

d|Xk|2∧dθk (2.13)

the canonical symplectic form. The idea is to determine a non-compact subspace
L ⊂M of three real dimensions by specifying a linear subspace V in the base

k+3

∑
i=1

qα
i |Xi|2 = cα , α = 1, . . . ,r (2.14)

and restricting the θk so that ω|L = 0. One shows that L becomes special La-
grangian with respect to Ω = dz1∧dz2∧dz3 in each patch if and only if

k+3

∑
i=1

qα
i = 0, α = 1, . . . ,r (2.15)

The relevant case for us is r = 2, i.e. V = R+ and L is an S1×S1-bundle over
it. In a given patch, the restriction ω|L = 0 means that

3

∑
i=1

θi(zi) = 0 mod π. (2.16)

For one value of the θ -sum the Lagrangian is generically not smooth at the ori-
gin of R+. It can be made smooth by “doubling,” which is done by allowing for
instance ∑

3
i=1 θi(zi) = 0 and ∑

3
i=1 θi(zi) = π [29]. If V passes through the locus

in the base where one S1 shrinks to zero, L splits into L±, each of which have
topology C×S1, where C is a fibration of the vanishing S1 over R+. L+ (or L−) is
the relevant special Lagrangian. To make the notation simpler we denote L+ by L
henceforth. It has b1(L) = 1 and its complex open modulus is given by the size of
the S1 and the Wilson line of the U(1) gauge field around it. Pictorially, it can be
described as “ending on a leg of the toric diagram ΓM of M,” since the half open
line l defining L must end on a line Li j in ΓM . We refer the reader to the figures in
Sects. 4 and 5 for examples of toric diagrams with branes.

Under mirror symmetry, the brane L introduced above maps to a one complex
dimensional holomorphic submanifold of W , given by

H(x,y) = 0 = w−. (2.17)

That is, it is parameterized by w+, and its moduli space corresponds to the mirror
curve Σ ⊂ C∗×C∗ (w+ = 0 corresponds to the equivalent brane L−).
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2.1.4 Topological open string amplitudes.

Let us now spend a few words on topological open string theory to clarify the
objects that we will consider in this paper.

In the A-model, topological open string amplitudes can be defined by counting
(in an appropriate way) the number of holomorphic maps from a Riemann surface
Σg,h of genus g with h holes, to the Calabi–Yau target, satisfying the condition
that the boundaries map to the brane L. Assuming for simplicity that b1(L) =
1, the topological class of these maps is labeled by genus g, the bulk class β ∈
H2(X ,L) and the winding numbers wi, i = 1, · · · ,h, specifying how many times
the ith boundary wraps around the one-cycle in L. We can thus form the generating
functionals

Fg,w(Q) = ∑
β∈H2(X ,L)

Ng,w,β e−β ·t , (2.18)

where Ng,w,β are open Gromov–Witten invariants counting the maps in the topo-
logical class labeled by g, w = (w1, · · · ,wh), and β . It is also convenient to group
together the different boundary sectors with fixed g,h into a single generating
functional A(g)

h (z1, · · · ,zh) defined as

A(g)
h (z1, · · · ,zh) = ∑

wi∈Z
Fg,w(Q)zw1

1 · · ·zwh
h . (2.19)

Here, the variables zi are not only formal variables. From the point of view of the
underlying physical theory, they are open string parameters which parameterize
the moduli space of the brane.

In the B-model, as discussed earlier the moduli space of the brane is given
by the mirror curve Σ itself. The open string parameter z hence corresponds to a
variable on the mirror curve Σ (take for example the variable x). That is, fixing
what we mean by open string parameter corresponds to fixing a parameterization
of the embedding of the Riemann surface Σ in C∗×C∗; in other words, it corre-
sponds to fixing a projection map Σ → C∗ (the projection onto the x-axis in our
case). Different parameterizations will lead to different amplitudes. Once the open
string parameter x is fixed, the disk amplitude is simply given by

A(0)
1 =

∫
logy

dx
x

, (2.20)

as will be explained in more details in the following sections.
To fully understand open topological strings we need to include the notion

of framing of the branes. The possibility of framing was first discovered in the
context of A-model open string amplitudes in [5]. It is an integer choice f ∈ Z
associated to a brane, which has to be made in order to define the open amplitudes.

Framing has various interpretations. In the A-model, it corresponds to an inte-
gral choice of the circle action with respect to which the localization calculation is
performed [34]. It can also be understood from the point of view of large N duality.
A key idea in the large N approach is to relate open (and closed) string amplitudes
to knot or link invariants in the Chern-Simons theory on a special Lagrangian cy-
cle. As is well known the calculation of the Chern-Simons correlation functions
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requires a choice of the normal bundle of each knot. The framing freedom lies in
a twist of this bundle, again specified by an integer f ∈ Z.

We also want to understand framing from the B-model point of view. Recall
that the moduli space of the brane is given by the mirror curve Σ . As explained
above, fixing the location on the brane on the A-model corresponds to fixing a
parameterization of Σ . It turns out that there is a one-parameter subgroup of the
reparameterization group GΣ of Σ which leaves the location of the brane invariant;
these transformations, which depend on an integer f ∈ Z, correspond precisely to
the B-model description of framing [5]. More precisely, these transformations,
which we will call framing transformations, are given by

(x,y) 7→ (xy f ,y), f ∈ Z. (2.21)

As a result, fixing the location and the framing of the brane on the A-model side
corresponds to fixing the parameterization of the mirror curve on the B-model
side.

2.2 Moduli spaces, periods and flat coordinates

In this section we discuss the global picture of the open/closed moduli space of
the A- and the B-model. We introduce the periods, which give us the open and
closed flat coordinates, as well as the disk amplitude and the closed genus zero
amplitude.

2.2.1 Moving in the moduli space.

Mirror symmetry identifies the stringy Kähler moduli space of M with the complex
structure moduli space of W , which are the A- and B-model closed string moduli
spaces. Recall that generically, the stringy Kähler moduli space of M contains vari-
ous phases corresponding to topologically distinct manifolds. Hence moving in the
A-model closed string moduli space implies various topologically-changing phase
transitions corresponding to flops and blowups of the target space. In fact, since
we are interested in open topological strings, we want to consider the open/closed
string moduli space, which also includes the moduli space associated to the brane.

The B-model provides a natural setting for studying transitions in the open/closed
string moduli space. Usually in mirror symmetry, we identify the A- and B-model
moduli spaces locally by providing a mirror map, for example near large radius
and for outer branes. However, in the following we will propose a B-model for-
malism to compute open/closed amplitudes which can be applied anywhere in the
open/closed string moduli space. Hence, to unleash the analytic power of this new
B-model description one wishes to extend the identification between the moduli
space to cover all regions of the open/closed string moduli space.

In the B-model one simply wants to cover a suitable compactification of the
open/
closed string moduli space with patches in which we can define convergent ex-
pansions of the topological string amplitudes in local flat coordinates. The latter
are given by a choice of A-periods integrals, while the dual B-periods can be
thought of as conjugated momenta. The closed string flat coordinates are given
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by integrals over closed cycles, while the open string flat coordinates are integrals
over chains.

Let us first discuss the closed string flat coordinates. If the genus of the B-
model mirror curve is greater than one, one has non-trivial monodromy of the
closed string periods. By the theory of the solution to differential equations with
regular singular loci (normal crossing divisors), which applies in particular to pe-
riods integrals, the closed string moduli space can be covered by hyper-cylinders
around the divisors with monodromy. The local holomorphic expansion of the
amplitudes has to be invariant under the local monodromy around the correspond-
ing divisor. In particular, this requires different choices of flat coordinates, or A-
periods, in different regions in moduli space. These different choices of periods
are related by symplectic Sp(2g,C) transformations, i.e. by changes of polariza-
tion. Invariance of the physical topological string amplitudes under the full mon-
odromy group requires a non-holomorphic extension of the amplitudes and forces
the closed string parameters to appear in terms of modular forms.

In contrast there is no monodromy action on the open string flat coordinates.
As a consequence, the amplitudes are in general rational functions of the open
string parameters, and no non-holomorphic extension is needed to make the results
modular. That is, there is no holomorphic anomaly equation involving the complex
conjugate of an open string modulus. The situation for the open string moduli is
hence similar to the closed string moduli for genus 0 mirror curves (for example
the mirror of the resolved conifold M = O(−1)⊕O(−1)→ P1), where there is no
non-trivial monodromy. In such cases the holomorphic anomaly equations for the
closed string moduli can be trivialized and the amplitudes are rational functions
of the moduli.

Let us now discuss the main features of the phase transitions3 between patches
in the open/closed string moduli space in order of their complexity. In the easiest
case adjacent patches are related by transitions merely in the open string moduli
space. In the A-model these are referred to as open string phase transitions and
correspond to moving the base of the special lagrangian submanifold over a vertex
in the toric diagram, for example from an outer to an inner brane, see below. In
the B-model they correspond simply to reparameterizations of the mirror curve Σ

by an element in GΣ . More precisely, this type of phase transition is described by
the reparameterization

(x,y) 7→
(

1
x
,

y
x

)
(2.22)

of the mirror curve Σ — we will explain this in the next section. Since the am-
plitudes are rational functions in the open string moduli, there is no non-trival
analytic continuation required and the amplitudes can be readily transformed.

The next type of transitions consists in closed string transitions between differ-
ent large radius regions. In the A-model on non-compact toric Calabi-Yau three-
folds those are all related to flops of P1 (in our examples they occcur only in the
Hirzebruch surface F1). In these cases, the new flat closed string coordinates are

3 Note that the term “phase transitions” is inspired from the classical A-model. In the B-
model, the correlation functions are smoothly differentiable except at complex dimension one
loci, so there are strictly speaking no phase boundaries.
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given linearly in terms of the old ones and in particular the symplectic transfor-
mation in Sp(2g,Z) is trivial, in the sense that it does not exchange the A- and
B-periods. The closed string parameters can be fixed in each large radius patch
by the methods of [5], which are reviewed in the next section. The rather mild
changes in the amplitudes can be described by wall crossing formulas.

The more demanding transitions are the ones between patches which require
a non-trival Sp(2g,C) transformation of the periods. The typical example is the
expansion near a conifold point. Here a B-cycle — in the choice of periods at
large radius — becomes small and will serve as a flat coordinate near the coni-
fold point, while a cycle corresponding to a flat coordinate at infinity acquires
a logarithmic term and will serve as dual momenta. In the A-model picture we
enter a non-geometric phase, in which the α ′-expansion of the σ -model breaks
down. In the B-model we are faced with the problem of analytic continuation and
change of polarization when we transform the amplitudes, which involve modular
transformations.

Another interesting patch is the one of an orbifold divisor, i.e. one with a finite
monodromy around it. This is likewise a region where the original geometric de-
scription breaks down due to a vanishing volume. However here we have a singular
geometric description by a geometric orbifold. For example, for the O(−3)→ P2

geometry, in the limit where the P2 shrinks to zero size we get simply the C3/Z3
orbifold. Enumerative A-model techniques (orbifold Gromov-Witten invariants)
have been developed to calculate closed string invariants on orbifolds, and in these
phases we can still compare the closed B-model results with Gromov-Witten cal-
culations on the A-model side. The behavior of the closed string amplitudes under
this type of transition has been studied in [1]. In this paper, we will start inves-
tigating open amplitudes on orbifolds, which do not have, as far as we know, a
Gromov-Witten interpretation. In particular, we will calculate the disk amplitude
for C3/Z3 in Sect. 6.4.

Let us now describe in more detail the first type of phase transitions, involving
only open string moduli.

2.2.2 Open string phase structure.

Here we introduce classical open string coordinates and discuss the phases of the
open string moduli, which arise when we “move” the Lagrangian submanifold
over a vertex in the toric diagram.

First, note that the open string variables generically get corrected by closed
string instanton effects, when the latter are present and have finite volume; we will
study this in the next section. However, the open string phase structure can already
be understood directly in the large volume limit where the instanton corrections
are suppressed. Hence, we will not bother for now with the instanton corrections;
our analysis carries over readily to the instanton corrected variables.

Recall from Sect. 2.1.1 that closed line segments in the toric diagram ΓM corre-
spond to compact curves, while half-open lines correspond to non-compact curves.
Now, as explained in Sect. 2.1.3, the half open line l defining the Lagrangian sub-
manifold L must end on a line Li j in ΓM . Phase transitions in the open string moduli
space then occur between Lagrangian submanifolds ending on half-open lines and
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Fig. 1 Open string phase structure

Lagrangian submanifolds ending on closed line segments. One refers to the former
as outer branes and to the latter as inner branes.

Only maps which are equivariant with respect to the torus action contribute
to the open string amplitudes. This means that disks must end on a vertex at one
end of the line Li j intersecting l. Let this vertex be the locus where |Xi| = |X j| =
|Xk|= 0. Branes ending on the three lines Li j, Lik and L jk meeting up at this vertex
correspond to three different phases I, II and III in the open string moduli space.
The geometry of the open string phase structure is shown in Fig. 1.

In phase I we can describe l by the equations

|X j|2−|Xi|2 = 0,
|Xk|2−|Xi|2 = cr, r > cr > 0,

(2.23)

where r is the Kähler parameter of the P1 related to Li j and

cr =
∫

S1
H, (2.24)

where dH = ω parameterizes the size of the disk D, hence the radius of the S1 =
∂D.

Recall that on the B-model side, the choice of location (or phase) of the brane
corresponds to a choice of parameterization of the mirror curve Σ defined by
H(x,y) = 0. Generically, we can find the good parameterization of the curve as
follows. We first use the fact from mirror symmetry (see Sect. 2.1.2) that by defi-
nition,

|xi|= exp
(
−|Xi|2

)
, (2.25)

to rewrite the Eqs. (2.23) fixing the location of the brane in terms of the C∗-
variables xi. We then use the C∗-rescaling to fix one of them to 1, and we choose y
to be the C∗-variable which goes to 1 on the brane, and x to be the variable param-
eterizing the location of the brane on the edge (i.e |x| = ecr ). x becomes the open
string parameter introduced earlier. Note that there is an ambiguity in this choice
of parameterization; since y = 1 on the brane, we can reparameterize the variable
x 7→ xy f for any integer f ∈ Z without changing the discussion above. But since
we change the meaning of the open string parameter x, we in fact change the phys-
ical setup and the open amplitudes. This ambiguity precisely corresponds to the
framing of the brane, and the transformation x 7→ xy f is the framing transformation
introduced in (2.21).

For example, in phase I, the good choice of parameterization corresponds to
first scaling xi = 1, and then identifying y := x j = x j/xi and x := xk = xk/xi. Indeed,
the first equation in (2.23) says that y = 1 on the brane, while the second equation
identifies

x = exp
(

cr + i
∫

S1
A
)

, (2.26)
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where we complexified the disk size cr by the Wilson line. x hence agrees in the
large Kähler parameter limit with the open string parameter, which appears in the
superpotential. In fact, the superpotential — or disk amplitude — is given by the
Abel-Jacobi map on H(x,y) = 0, as a curve embedded in C∗×C∗, with respect to
the restriction of the holomorphic volume form Ω to the mirror curve:

A(0)
1 (x) =

∫ x

x∗
logy

dx
x

, (2.27)

i.e. x∂xA(0)
1 = logy(x), with y(x) a suitable branch of the solution of H(x,y) = 0.

This gives the formula for the disk amplitudes presented earlier in (2.20). Note
that we could also parametrize l in this phase by

|Xi|2−|X j|2 = 0,
|Xk|2−|X j|2 = cr, r > cr > 0,

(2.28)

which leads to parameters x′ = xy−1 and y′ = y−1.
In phase II the brane l̂ can be descibed by the equation

|X j|2−|Xk|2 = 0,
|Xi|2−|Xk|2 = cr̂, cr̂ > 0.

(2.29)

We fix the parameterization of the mirror curve by xk = 1, ŷ := x j = x j/xk and
x̂ := xi = xi/xk, so that the open string parameter is x̂ and the superpotential is
(2.27) with hatted variables. The relation to the previous parameters in phase I is
x̂ = x−1 and ŷ = yx−1; this is the origin of the phase transformation proposed in
(2.22). Again, we can also parametrize l̂ by

|Xk|2−|X j|2 = 0,
|Xi|2−|X j|2 = cr̂, cr̂ > 0,

(2.30)

and get ŷ′ = xy−1 and x̂′ = y−1.
Similarly, in phase III we can parameterize l̃ in two different ways, and in-

troduce variables ỹ = x−1 and x̃ = x−1y, or ỹ′ = x and x̃′ = y. In this phase, r̃ is
the Kähler parameter of the P1 related to Lik. Note however that different Lnm can
describe P1’s in the same Kähler class. Standard toric techniques allow to read the
equivalences from the charge vectors Qα .

2.3 The open and closed mirror maps

We discussed in the previous section the phase structure of the open/closed moduli
space. Here we discuss in detail how to find the flat coordinates (or open and
closed mirror maps) in various phases in the moduli space. As an example we
consider O(−3)→ P2, which is the simplest non-compact toric Calabi-Yau with
non-trivial monodromy on the closed string moduli.
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2.3.1 Closed flat coordinates.

The closed string mirror map is given by finding flat coordinates T α , α = 1, . . . ,k
on the complex structure moduli space, which are mapped to the complexified
Kähler parameters. The flat coordinates are generically defined by

T α =
Xα

X0 , (2.31)

where the Xα are the A-periods

Xα =
∫

Aα

Ω (2.32)

of the holomorphic volume form Ω , and (Aα ,Bα) is a symplectic basis of three-
cycles. Special geometry guarantees the existence of a holomorphic function F(Xα)
of degree 2 — the so-called prepotential — such that the B-periods are

Fα =
∂F

∂Xα
=
∫

Bα

Ω . (2.33)

Fixing the flat coordinates involves a choice of basis (Aα ,Bα); it is well known
that the choice of A-periods (and the B-periods, i.e. a polarization) is uniquely
fixed at the point(s) of maximal unipotent monodromy q = 0, which are mirror
dual to the large radius points in the stringy Kähler moduli space. This fixes the
closed mirror map at these large radius points.

To be more precise, in the paramerization of the complex moduli qα = e−tα

de-
termined by the Mori cone — spanned by the charge vectors Qα — these periods
are singled out by their leading behaviour:

X0 = 1+O(q), Xα(q) = log(qα)+O(q). (2.34)

In the non-compact cases there is a further simplification. First, X0 = 1, and

T α = Xα =
1

2πi

∫
Aα

λ . (2.35)

The period F0 is absent and the dual periods are given by

Fα =
∂F

∂T α
=

1
2πi

∫
Bα

λ , (2.36)

where (Aα ,Bα) is now a canonical basis of one-cycles on the mirror curve Σ , and
λ is the meromorphic one form

λ = logy
dx
x

(2.37)

on Σ , which is the local limit of Ω .
In the A-model picture, the flat coordinate T α is the mass associated with a D2

brane wrapping the curve Cα ∈ H2(M,Z). At a large radius point, it is given by
the complexified volume

tα =
∫

Cα

ω + iB. (2.38)
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However, it is well known that it receives closed string worldsheet instanton cor-
rections if the size of Cα is of the order of the string scale; the corrected volume

T α = tα +O(e−tα

), (2.39)

is the flat coordinate, which reduces in the local case to (2.35).

2.3.2 Open flat coordinates.

The open string modulus is given by x = eu, which is a variable on the mirror
curve Σ defined by the equation H(x,y) = 0. In this section we will sometimes
use the variables u and v instead of the C∗-variable x and y, which are defined by
the exponentiation x = eu, y = ev. Hopefully no confusion should occur.

It was argued in [5] that in the A-model, the open string modulus u measures
the tension

∆W = W (x3 =−∞)−W (x3 = ∞) (2.40)

of a domain-wall made from a D4-brane wrapping the disk of classical size u and
extending at a point on the x3-axis, say x3 = 0, over the subspace M2,1 of the four-
dimensional Minkowski space M3,1. In the large radius limit, this can be identified
on the B-model side with the integral

1
2πi

∫
αu

v(u)du =
1

2πi

∫
αu

logy(x)
dx
x

, (2.41)

where αu is a not a closed cycle but rather a chain over which v jumps by 2πi. In
analogy with (2.35), one expects that

U =
1

2πi

∫
αu

λ (2.42)

is the exact formula for the flat open string parameter U , which includes all in-
stanton corrections.

Note that the above indeed depends on a choice of parameterization of the
curve, which defines the location/phase and framing of the brane. In principle,
the chain αu and the integral (2.42) can be obtained for branes in any phases.
However, in practice, it turns out to be easier to start with outer branes, and use
the open moduli phase transitions explained in the previous section, which relate
the coordinates in various phases, to extract the flat open string parameters in
other phases. Finally, note also that it is straightforward to show that both (2.35)
and (2.42) receive only closed string worldsheet instanton corrections.

The open string disk amplitude A(0)
1 can also be written as a chain integral. It

is given by the Abel-Jacobi map

A(0)
1 (q,x) =

∫
βu

λ , (2.43)

where βu is now the chain βu = [u∗,u]. Note that the disk amplitude has an in-
tegrality structure which may be exhibited by passing to the instanton-corrected
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coordinates X = eU , Q = e−T . Then, it can be written in terms of the open BPS
numbers N(0)

n,m ∈ Z as follows:

A(0)
1 (Q,X) = ∑

n∈N,m∈Z
N(0)

n,mLi2(QnXm). (2.44)

2.3.3 Picard-Fuchs equations.

On the Riemann surface it is possible to perform the period integrals (2.35), (2.42)
and (2.43) directly. However, in practice it is simpler to derive Picard-Fuchs equa-
tions for general period integrals, construct a basis of solutions and find linear
combinations of the solutions which reproduce the leading behaviour of the pe-
riod integrals.

When M is a toric threefold, the Picard-Fuchs operators annihilating the closed
periods T α (2.35) can be defined in terms of the charge vectors defining M (see
2.1), as

Lα = ∏
Qα

i >0
∂xi − ∏

Qα
i >0

∂xi . (2.45)

The complex structure variables at the points of maximally unipotent monodromy

qα = e−tα

are related to the xi by

qα = (−1)Qα
0 ∏

i
x

Qα
i

i . (2.46)

Note that there are in general more xi than qα and C∗-scaling symmetries are used
to reduce to the qα variables.

Solutions to (2.45) are easily constructed using the Fröbenius method. Defin-
ing

w0(q,ρ) = ∑
nα

1
∏i Γ [Qα

i (nα +ρα)+1]
((−1)Qα

0 qα)nα

, (2.47)

then

X0 = w0(q,0), T α =
∂

∂ρα
w0(q,ρ)|ρ=0 (2.48)

are solutions. Higher derivatives

X (αi1 ...αin ) =
∂

∂ρ
αi1

. . .
∂

∂ραin
w0(q,ρ)|ρ=0 (2.49)

also obey the recursion imposed by (2.45), i.e. they fullfill (2.45) up to finitely
many terms. However, only finitely many linear combinations of the Xαi1 ...αin are
actual solutions of the Picard-Fuchs system.



Remodeling the B-Model 17

Once the solutions T α to (2.45) are given, the period integrals (2.42) defining
the flat open string parameters can be simply expressed in terms of them:

U = u+
k

∑
α=1

rα
u (tα −T α). (2.50)

Here rα
u ∈ Q, and most of them are zero. Note that only the combinations (tα −

T α) occur, which implies that the open string variables are invariant under the
closed string B-field shift.

Note that one can write down an extended Picard-Fuchs system, such that not
only the closed periods but also the open periods (2.42) and (2.43) are annihilated
by the differential operators [24, 36]. The rα

u are then related to entries in the
charge vectors Qα

i in (2.1). These relations are manifest in the extended Picard-
Fuchs system and give an easy way to determine the rα

u .
Finally, in the following we will always use the following notation. We always

denote the flat, instanton corrected coordinates by uppercase letters, such as T , U
and V , with their exponentiated counterparts Q = e−T , X = eU and Y = eV . The
classical (or uncorrected) variables will always be denoted by lowercase lettes t, u
and v, as well as q = e−t , x = eu and y = ev.

2.3.4 Open phase transitions.

In the example above we have found the open mirror map in a particular param-
eterization corresponding to outer branes with zero framing. We could have done
the same for branes in other phases, but in practice it is easier to simply follow the
mirror map through the reparameterizations between different phases in order to
obtain the mirror in other phases or framing.

Here we simply write down an explicit example of such calculation. Let us
start with a mirror curve H(x̃, ỹ;q) in the parameterization corresponding to outer
branes with zero framing. Following (2.50), we can write the open string mirror
map, in terms of exponentiated coordinates, as

X = x̃e∆u , (2.51)

where

∆u =
k

∑
α=1

rα
u (tα −T α). (2.52)

Suppose that ỹ is not corrected, that is Y = ỹ, or in the notation above ∆v = 0.
Consider now the framing transformation

(x̃, ỹ) 7→ (x,y) = (x̃ỹ f , ỹ) . (2.53)

In this case, both the open and closed mirror maps are left unchanged by the
framing reparameterization.

Let us now consider a reparameterization corresponding to a phase transition
to an inner brane phase:

(x̃, ỹ) 7→ (x̃i, ỹi) =
(

1
x̃
,

ỹ
x̃

)
. (2.54)
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In this case the open mirror maps becomes:

X =
1
x̃

e∆ui = x̃ie−∆u , Y =
ỹ
x̃

e∆vi = ỹie−∆u . (2.55)

The fact that ỹi also gets renormalized in this phase implies that, under a framing
reparameterization

(x̃i, ỹi) 7→ (xi,yi) = (x̃iỹ
f
i , ỹi), (2.56)

the open flat coordinates acquire a non-trivial framing dependence:

X = x̃iỹ
f
i e∆ui+ f ∆vi = xie−( f +1)∆u , (2.57)

Y = ỹie∆vi = yi e−∆u .

2.3.5 Small radius regions.

The more interesting case of phase transitions in the
moduli space between patches which require a non-trivial symplectic transfor-
mation of the closed periods can be dealt with as follows.

On the B-model side, these transitions simply correspond to moving in the
complex structure moduli space beyond the radius of convergence of the large ra-
dius expansion, or more generally from one region of convergence into another.
The flat open and closed coordinates in all regions are linear combinations of the
closed periods (2.35) and chain integrals (2.42), (2.43). The right linear combi-
nations that yield the flat open and closed coordinates in this new region can be
found using the following requirements:

• they should be small enough to be sensible expansion parameters around the
singularity;

• the amplitudes should be monodromy invariant when expanded in terms of the
flat coordinates;

• the linear combinations giving the flat closed coordinates should not involve
the chain integrals.

In simple cases this fixes the flat coordinates completely, up to scaling. This
was the case, for instance, for the flat closed coordinates of the C3/Z3 orbifold
expansion of O(−3)→ P2, which was considered in [1].

A technical difficulty is that one has to find local expansions of the closed
periods and chain integrals at various points in the moduli space. For the closed
periods this can be done by solving the Picard-Fuchs system at the new points to
obtain a basis of solutions everywhere. For the open periods, one uses the follow-
ing observations.

First, notice that (2.50) is a chain integral, while the T α are periods. Hence
there is a linear combination

uB = u+
k

∑
α=1

rα
u tα , (2.58)

which can be written as an elementary function of the global variables (x,qα).
Likewise the analytic continuation of A(0)

1 (q,x) is trivial since it is an elementary
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function in terms of the global variables. Hence, together with the closed string
periods, uB(q,x) and A(0)

1 (q,x) form a basis for the flat coordinates everywhere in
the moduli space.

2.3.6 The O(−3)→ P2 geometry.

As an example, let us now discuss the open and closed mirror maps for the O(−3)→
P2 geometry. Local P2 is defined by the charge

Q = (−3,1,1,1). (2.59)

We start with the closed periods at large radius. Plugging this charge into (2.45)
and changing variables to q =− x2x3x4

x3
1

, we get the Picard-Fuchs differential equa-

tion

D = [θ 2
t +3q(3θt +2)(3θt +1)]θ , (2.60)

where θt = q ∂

∂q = ∂t . This equation should annihilate the closed periods.
Clearly X0 = 1 and

T := X (t) =
∫

A
λ = t−∆t(q), (2.61)

with

∆t(q) =
∞

∑
n=1

(−1)n

n
(3n)!
(n!)3 qn, (2.62)

are solutions. It is easy to check that

FT =
1
6

X (t,t) +
1
6

T +
1
12

(2.63)

is a third solution, which corresponds to the integral FT =
∫

B λ over the B-cycle.
Note that the particular combination of the Picard-Fuchs solutions giving the B-
period is determined by classical topological data of the A-model geometry. The
expression for the flat closed parameter (2.61) can be inverted to

q = Q+6Q2 +9Q3 +56Q4−300Q5 +3942Q6 + · · · , (2.64)

with q = e−t and Q = e−T .
We now consider an outer brane in this geometry. Applying (2.8) and the

discussion in Sect. 2.2.2 we see that the parameterization of the mirror curve
H(x̃, ỹ;q) relevant for the outer brane with zero framing is

H(x̃, ỹ;q) = ỹ2 + ỹ+ ỹx̃+qx̃3 = 0. (2.65)

Fig. 2 Toric base of O(−3)→ P2 with an outer brane and the mirror curve with the open cycle
defining the mirror map
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The derivative of the superpotential is then given by x̃∂x̃A(0)
1 = log(ỹ), with

ỹ =−1+ x̃
2

− 1
2

√
(1+ x̃)2−qx̃3. (2.66)

The special Lagrangian L in the A-model becomes a point on the Riemann surface;
the exact domain-wall tension is then given by the period integral over the cycle
(2.42) depicted in Fig. 2. The integral was performed in [5] and yields

U = ũ− t−T
3

, (2.67)

or

X = x̃e−
1
3 ∆t (q) , (2.68)

which defines the open flat coordinate at large radius. There is no mirror map for
ỹ, that is, Y = ỹ.

Consider now the framing transformation,

(x̃, ỹ) 7→ (x,y) = (x̃ỹ f , ỹ). (2.69)

Following this transformation, we get that the open mirror map for framed outer
branes is still given by:

X = xe−
1
3 ∆t (q), Y = y, (2.70)

and its inversion reads

x = X
(
1−2Q+5Q2−32Q3−286Q4 + · · ·

)
. (2.71)

We now move to inner branes. The phase transition from outer branes to inner
branes consists in the transformation

(x̃, ỹ) 7→ (x̃i, ỹi) =
(

1
x̃
,

ỹ
x̃

)
, (2.72)

which gives the curve

H(x̃i, ỹi;q) = ỹ2
i x̃i + ỹix̃2

i + ỹix̃i +q, (2.73)

parameterizing an inner brane with zero framing. Following the transformation
(2.72), we get that the inner brane mirror map reads

X = x̃ie
1
3 ∆t (q), Y = ỹie

1
3 ∆t (q). (2.74)

In terms of the framed variables (xi,yi), the mirror map becomes

X = xie
1
3 (1+ f )∆t (q), Y = yie

1
3 ∆t (q), (2.75)

which can be inverted to

xi = X

(
1+2 (1+ f ) Q+

(
−1+ f +2 f 2) Q2 +

2
(
30+25 f−3 f 2 +2 f 3

)
Q3

3
+ · · ·

)
.

(2.76)
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3 A New B-Model Formalism

In this section we would like to propose a complete method for solving the open
and closed B-model topological string on a Calabi-Yau threefold W which is the
mirror of a toric Calabi-Yau threefold M. The method builds on and extends the
proposal in [39], and it lies entirely in the B-model. It provides in this way a mirror
formalism to the A-model topological vertex for toric Calabi-Yau threefolds [3].

However, our formalism differs from the topological vertex in one crucial as-
pect. The topological vertex is non-perturbative in gs, the string coupling constant,
but it is a perturbative expansion in Q = e−t/`2

s around the large radius point Q = 0
of the moduli space. In the computation of open amplitudes, the vertex is also
perturbative in the open moduli zi appearing for example in (2.19), and it provides
an expansion around zi = 0. As mentioned earlier, the B-model is perfectly suited
for studying the amplitudes at various points in the open/closed moduli space. In
fact, our formalism provides a recursive method for generating all open and closed
amplitudes at any given point in the moduli space. Basically, once one knows the
disk and the annulus amplitude at this point, one can generate all the other open
and closed amplitudes unambiguously. In particular, not only can we solve topo-
logical string theory at large radius points corresponding to smooth threefolds,
but also at other points in the moduli space such as orbifold and conifold points.
This is in contrast to the topological vertex, which is defined only for smooth toric
Calabi-Yau threefolds.

Our method is recursive in the genus and in the number of holes of the ampli-
tudes, which is reminiscent of the holomorphic anomaly equations of [11]. How-
ever, a crucial point is that in contrast with the holomorphic anomaly equations,
our equations are fully determined, that is, they do not suffer from the holomor-
phic ambiguities appearing genus by genus when one tries to solve the holomor-
phic anomaly equations. Our equations are also entirely different in nature from
the holomorphic anomaly equations, although it was shown in [23] that the former
imply the latter. More precisely, the resulting amplitudes admit a non-holomorphic
extension fixed by modular invariance (as in [1]) which satisfies the holomorphic
anomaly equations of [11] in the local case.

The main ingredient that we will make use of is the fact that when W is mirror
to a toric Calabi-Yau threefold, most of its geometry is captured by a Riemann
surface, which is the mirror curve Σ in the notation of the previous section. We
will construct recursively an infinite set of meromorphic differentials and invari-
ants living on the mirror curve, and show that the meromorphic differentials cor-
respond to open topological string amplitudes, while the invariants give closed
topological string amplitudes. The initial conditions of the recursion are fixed by
simple geometric objects associated to the Riemann surface, which encode the
information of the disk and the annulus amplitudes.

Our method is in fact a generalization of the formalism proposed by Eynard
and
Orantin [22] for solving matrix models. Given a matrix model, one can extract its
spectral curve, which is an affine curve in C2. Eynard and Orantin used the loop
equations of the matrix model to construct recursively an infinite set of meromor-
phic differentials and invariants on the spectral curve, which give, respectively, the
correlation functions and free energies of the matrix model. However, the insight
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of Eynard and Orantin was that one can construct these objects on any affine curve,
whether it is the spectral curve of a matrix model or not. The obvious question is
then: what do these objects compute in general?

As a first guess, one could try to apply directly Eynard and Orantin to the
mirror curve and see what the objects correspond to in topological string theory.
However, this would not be correct, since the mirror curve is embedded in C∗×C∗

rather than C2; this is a crucial difference which must be taken into account. But
after suitably
modifying the formalism such that it applies to curves in C∗×C∗, it turns out that
the objects constructed recursively correspond precisely to the open and closed
amplitudes of topological string theory. As argued in [39] and as we mentioned
in the introduction, this is because the formalism of [22] gives the amplitudes
of the chiral boson theory on a “quantum” Riemann surface constructed in [2],
which should describe as well the B-model on mirrors of toric geometries (once
the formalism is suitably modified).

So let us first start by briefly reviewing the formalism of Eynard and Orantin.

3.1 The formalism of Eynard and Orantin for matrix models

Take an affine plane curve

C : {E (x,y) = 0} ⊂ C2, (3.1)

where E (x,y) is a polynomial in (x,y). Eynard and Orantin construct recursively
an infinite set of invariants Fg of C, g ∈ Z+, which they call genus g free ener-
gies, by analogy with matrix models. The formalism involves taking residues of
meromorphic differentials W (g)

k (p1, . . . , pk) on C, which are called genus g, k hole
correlation functions.

3.1.1 Ingredients.

The recursion process starts with the following ingredients:

• the ramification points qi ∈ C of the projection map C → C onto the x-axis,
i.e., the points qi ∈C such that ∂E

∂y (qi) = 0. Note that near a ramification point
qi there are two points q, q̄ ∈C with the same projection x(q) = x(q̄);

• the meromorphic differential

Φ(p) = y(p)dx(p) (3.2)

on C, which descends from the symplectic form dx∧dy on C2;
• the Bergmann kernel B(p,q) on C, which is the unique meromorphic differ-

ential with a double pole at p = q with no residue and no other pole, and
normalized such that ∮

AI

B(p,q) = 0, (3.3)
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where (AI ,BI) is a canonical basis of cycles for C.4 The Bergmann kernel is
related to the prime form E(p,q) by

B(p,q) = ∂p∂q logE(p,q). (3.4)

We will also need the closely related one-form

dEq(p) =
1
2

∫ q̄

q
B(p,ξ ), (3.5)

which is defined locally near a ramification point qi.

For example, if C has genus 0, its Bergmann kernel is given, in local coordinate
w, by

B(p,q) =
dw(p)dw(q)

(w(p)−w(q))2 . (3.6)

Note that the Bergmann kernel is defined directly on the Riemann surface, and
does not depend on a choice of embedding in C2, i.e. on the choice of parame-
terization of the curve. In contrast, by definition the ramification points qi and the
differential Φ(p) depend on a choice of parameterization of the curve.

Given these ingredients, we can split the recursion process into two steps. First,
we need to generate the meromorphic differentials W (g)

k (p1, . . . , pk), and then the
invariants Fg.

3.1.2 Recursion.

Let W (g)
h (p1, . . . , ph), g,h ∈ Z+, h ≥ 1, be an infinite sequence of meromorphic

differentials on C. We first fix

W (0)
1 (p1) = 0, W (0)

2 (p1, p2) = B(p1, p2), (3.7)

and then generate the remaining differentials recursively by taking residues at the
ramification points as follows:

W (g)
h+1(p, p1 . . . , ph) = ∑

qi

Res
q=qi

dEq(p)
Φ(q)−Φ(q̄)

(
W (g−1)

h+2 (q, q̄, p1, . . . , ph)

+
g

∑
l=0

∑
J⊂H

W (g−l)
|J|+1 (q, pJ)W

(l)
|H|−|J|+1(q̄, pH\J)

)
. (3.8)

Here we denoted H = 1, · · · ,h, and given any subset J = {i1, · · · , i j} ⊂ H we
defined pJ = {pi1 , · · · , pi j}. This recursion relation can be represented graphically
as in Fig. 3.

4 Note that the definition of the Bergmann kernel involves a choice of canonical basis of
cycles; hence the Bergmann kernel is not invariant under modular transformations — we will
come back to that later.
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Now, from these correlation functions we can generate the invariants Fg. Let
φ(p) be an arbitrary anti-derivative of Φ(p) = y(p)dx(p); that is, dφ(p) = Φ(p).
We generate an infinite sequence of numbers Fg, g ∈ Z+, g ≥ 1 by

Fg =
1

2−2g ∑
qi

Res
q=qi

φ(q)W (g)
1 (q). (3.9)

We refer the reader to [22] for the formula for the invariant F0, which will not be
needed in this paper.

3.1.3 Symplectic transformations.

As an affine curve in C2, the reparameterization group GC of C is given by

GC = SL(2,C)×
(

0 1
1 0

)
, (3.10)

that is the group of complex 2× 2 matrices with determinant ±1, acting on the
coordinates (x,y) by

(x,y) 7→ (ax+by,cx+dy),
(

a b
c d

)
∈ GC. (3.11)

This is the group that preserves the symplectic form |dx∧dy| on C2.
It was shown in [22] that the free energies Fg constructed as above are in-

variants of the curve C, in the sense that they are invariant under the action of
GC. However, the correlation functions W (g)

k (p1, . . . , pk) are not invariant under
reparameterizations, since they are differentials.

3.1.4 Interpretation.

The definition of these objects was inspired by matrix models. When C is the spec-
tral curve of a matrix model, the meromorphic differentials
W (g)

k (p1, . . . , pk) and the invariants Fg are respectively the correlation functions
and free energies of the matrix model. To be precise, this is true for all free ener-
gies with g ≥ 1, and all correlation functions with (g,k) 6= (0,1),(0,2). We refer
the reader to [22] for the definition of the genus 0 free energy F0. In the case of
matrix models, the one-hole, genus 0 correlation function W̃ (0)

1 (p) is also known
as the resolvent and depends on both the potential of the model and the spectral
curve,

W̃ (0)
1 (p) =

1
2
(V ′(p)− y(p))dx(p), (3.12)

while the two-hole, genus 0 correlation function W̃ (0)
2 (p1, p2) is given by subtract-

ing the double pole from the Bergmann kernel:

W̃ (0)
2 (p1, p2) = W (0)

2 (p1, p2)−
dp1dp2

(p1− p2)2 = B(p1, p2)−
dp1dp2

(p1− p2)2 . (3.13)

Fig. 3 A graphic representation of the recursion relation (3.8)
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3.2 Our formalism

As noted earlier, when W is mirror to a toric Calabi-Yau threefold, there is a nat-
ural Riemann surface that pops out of the B-model geometry, which is the mirror
curve. It is always given by an algebraic curve in C∗×C∗. Our strategy, extending
the proposal in [39], will be to apply a recursive process analogous to the above
to generate free energies and correlation functions living on the mirror curve. We
will then check extensively that these objects correspond precisely to the open and
closed topological string amplitudes.

We start with an algebraic curve

Σ : {H(x,y) = 0} ∈ C∗×C∗, (3.14)

where H(x,y) is a polynomial in (x,y), which are now C∗-variables. One can think
of them as exponentiated variables (x,y) = (eu,ev), and this is how they appeared
for example in the derivation of mirror symmetry in [30]. The only difference with
Eynard-Orantin’s geometric setup is that our Riemann surfaces are embedded in
C∗×C∗ rather than C2. As such, their reparameterization group is the GΣ of (2.12)
(the group of integral 2×2 matrices with determinant ±1), which acts multiplica-
tively on the C∗-coordinates of Σ , rather than the GC of (3.11). Consequently, we
want to modify the recursive formulae such that the free energies Fg constructed
from our curve Σ are invariant under the action of GΣ given by (2.12). As such,
they will be invariants of the Riemann surface Σ embedded in C∗×C∗.

3.2.1 Ingredients.

The recursion process now starts with the following ingredients:

• The ramification points qi ∈ Σ of the projection map Σ → C∗ onto the x-axis,
i.e., the points qi ∈ Σ such that ∂H

∂y (qi) = 0. Near a ramification point, there
are again two points q, q̄ ∈ Σ with the same projection x(q) = x(q̄).

• The meromorphic differential

Θ(p) = logy(p)
dx(p)
x(p)

(3.15)

on Σ , which descends from the symplectic form

dx
x
∧ dy

y
(3.16)

on C∗×C∗. Note that the one-form Θ(p) controls complex structure defor-
mations for the B-model.

• The Bergmann kernel B(p,q) on Σ , and the one-form dEq(p) defined earlier.

The main difference is in the meromorphic differential Θ(p), which differs
from the previous differential Φ(p) because of the symplectic form on C∗×C∗.
Again, both the ramification points qi and the differential Θ(p) depend on a choice
of parameterization for the curve Σ , while the Bergmann kernel is defined directly
on the Riemann surface.
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3.2.2 Recursion.

As before, the recursion process is given in two steps by (3.8) and (3.9); how-
ever, we replace the differential Φ(p) by the new differential Θ(p), to make the
formalism suitable for algebraic curves in C∗×C∗. Accordingly, in (3.9) φ(p) is
replaced by an arbitrary anti-derivative θ(p) of Θ(p) as defined in (3.15); that is,
dθ(p) = Θ(p).

3.2.3 Symplectic transformations.

As a curve in C∗×C∗, the reparameterization group of Σ is given by the group GΣ

of integral 2×2 matrices with determinant ±1, acting on the coordinates (x,y) by

(x,y) 7→ (xayb,xcyd),
(

a b
c d

)
∈ GΣ . (3.17)

We claim that the Fg’s constructed above are invariant under the action of this
group, hence are invariants of the mirror curve Σ . Computationally speaking, a
direct consequence of this statement is that we can use the GΣ reparameterizations
above to write down the “simplest” embedding of the Riemann surface in C∗×
C∗, and use this embedding to calculate the free energies. We will use this fact
extensively in our computations. Note however again that the correlation functions
are not invariant under GΣ , which will turn out to be crucial.

3.2.4 Interpretation.

Suppose now that Σ is the mirror curve of a toric Calabi-Yau threefold M. Our
first claim is:

1. The free energies Fg constructed above are equal to the A-model closed topo-
logical string amplitudes on the mirror threefold M, after plugging in the
closed mirror map.

Our second claim is a little bit subtler. Recall that fixing the location and fram-
ing of a brane in the A-model corresponds to fixing the GΣ parameterization of
the mirror curve Σ . Hence, the open amplitudes should depend on the parameter-
ization of Σ . We claim:

2. The integrated correlation functions A(g)
k =

∫
W (g)

k (p1, . . . , pk) are equal to the
A-model framed open topological string amplitudes on the mirror threefold
M, after plugging in the closed and open mirror maps.

This statement means that given a parameterization of Σ , one can compute
the correlation functions, integrate them, plug in the mirror maps, and one obtains
precisely the A-model open amplitudes for a brane in the location and framing
corresponding to this particular parameterization.

Note that as for matrix models, these claims are true for closed amplitudes
with g ≥ 1, and open amplitudes with (g,k) 6= (0,1),(0,2). The disk amplitude,
that is (g,k) = (0,1), is given by [5, 6]

A(0)
1 =

∫
Θ =

∫
logy

dx
x

, (3.18)
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while the annulus amplitude, (g,k) = (0,2), is given by removing the double pole
from the Bergmann kernel:

A(0)
2 =

∫ (
B(p1, p2)−

dp1dp2

(p1− p2)2

)
. (3.19)

The one-hole amplitude (3.18) can be interpreted as the one-point function of a
chiral boson living on Σ [2], and the Bergmann kernel (3.19) it just its two-point
function [37], as expected from the identification of the recursive procedure with
the theory of the “quantum” chiral boson on the mirror curve. We will not be
concerned with the genus 0, closed amplitude in this paper.

As a result, we get a complete set of equations, directly in the B-model, that
generate unambiguously all genus (framed) open/closed topological string ampli-
tudes for toric Calabi-Yau threefolds. These equations can be understood as some
sort of gluing procedure in the B-model, with the building blocks corresponding
basically to the disk and the annulus amplitudes. In other words, one only needs
to know the disk and the annulus amplitudes, and every other amplitude can be
computed exactly using the recursion solution.

Let us finally point out that the approach of [39] is a particular case of our
more general formalism in the case that the curve can be written as

y(x) =
a(x)+

√
σ(x)

c(x)
, σ(x) =

2s

∏
i=1

(x− xi). (3.20)

The choice of x, x̄ is as usual a choice of sign in the square root, hence the differ-
ential (3.15) is given by

Θ(x)−Θ(x̄) =
2
x

tanh−1

[√
σ(x)

a(x)

]
dx. (3.21)

Therefore, in this particular parameterization, our formalism could be regarded as
identical to the formalism of [22], albeit for a nonpolynomial curve given by

yEO(x) =
1
x

tanh−1

[√
σ(x)

a(x)

]
. (3.22)

This was the point of view advocated in [37] (see for example Eq. (2.17) of that
paper, where the extra factor of 2 comes from the contribution of x̄). Therefore,
the results of [37] for outer branes with trivial framing are also a consequence of
our formalism. As it will become clear in the following, curves of the form (3.20)
describe only a very small class of D-branes, and the right point of view to work
in general is precisely the one we are developing here. However, and as we will
elaborate later on, the curve (3.20) is still a useful starting point to compute closed
string amplitudes due to symplectic invariance.
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3.3 Computations

Let us now spend some time describing how we will carry out calculations to
provide various checks of our claims. We also present a more algorithmic version
of this formalism that could be applied to compute higher genus/number of holes
amplitudes. It could in principle be implemented in a computer code, which we
hope to do in the near future.

Most of our calculations will focus on open amplitudes; more precisely, on
genus 0, one-hole (disk), two-hole (annulus) and three-hole amplitudes, and genus
1, one-hole amplitudes. Let us explain the general idea behind our computations.

From mirror symmetry, we are given an algebraic curve Σ : {H(x,y) = 0}
in C∗×C∗, with a GΣ group of reparameterizations acting as in (2.12). These
reparameterizations correpond physically to changing the location and framing of
the brane.

3.3.1 Disk amplitude.

To compute the disk amplitude, which is given by

A(0)
1 =

∫
Θ =

∫
logy

dx
x

, (3.23)

all we need to do is to write down y as a function of x; that is, we need to solve
H(x,y) = 0 for y. This can be done, as a power series in x, in any parameterization
of Σ , and after plugging in the mirror map for the open string parameter x in a
given parameterization we obtain the framed disk amplitudes for branes ending
on any leg of the toric diagram of the mirror manifold. This case was studied in
detail in [6, 5].

3.3.2 Annulus amplitude.

To compute the annulus amplitude, we need to compute the Bergmann kernel of
Σ . This is trickier. Our strategy, which extends the analysis performed in [39],
goes as follows.

We first use the GΣ reparameterizations to write down the curve Σ in a simple
form, such as hyperelliptic. This was the case considered in [39]. Generally, this
will correspond physically to a brane ending on an outer leg of the toric diagram,
with zero framing (but it does not have to be so). In such a parameterization, there
exists explicit formulae to write down the Bergmann kernel of the curve, at least
for curves of genus 0 and 1.

For a curve Σ of genus 0, the Bergmann kernel is simply given by

B(x1,x2) =
dy1dy2

(y1− y2)2 , (3.24)

where the yi are defined implicitly in terms of the xi by yi := y(xi), with the func-
tion y(x) determined by solving the curve H(x,y) = 0.

When Σ has genus 1, there is a formula, due to Akemann [7], which expresses
the Bergmann kernel of an hyperelliptic curve of genus 1 in terms of the branch
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points of the projection map Σ → C∗ onto the x-axis. Let λi ∈ C∗, i = 1, . . . ,4 be
the four branch points of the projection map. That is, if qi ∈ Σ , i = 1, . . . ,4 are the
ramification points, then λi := x(qi). Then the Bergmann kernel is given by

B(x1,x2) =
E(k)
K(k)

(λ1−λ3)(λ4−λ2)

4
√

∏
4
i=1(x1λi−1)(x2λi−1)

+
1

4(x1− x2)2

(√
(x1λ1−1)(x1λ2−1)(x2λ3−1)(x2λ4−1)
(x1λ3−1)(x1λ4−1)(x2λ1−1)(x2λ2−1)

+

√
(x2λ1−1)(x2λ2−1)(x1λ3−1)(x1λ4−1)
(x2λ3−1)(x2λ4−1)(x1λ1−1)(x1λ2−1)

+2

)
, (3.25)

where K(k) and E(k) are elliptic functions of the first and second kind with mod-
ulus

k2 =
(λ1−λ2)(λ3−λ4)
(λ1−λ3)(λ2−λ4)

. (3.26)

Note that this expression involves an ordering of the branch points, which corre-
sponds to choosing a canonical basis of cycles for the Riemann surface.

Using these explicit formulae, we can integrate the two-point correlation func-
tion to get the bare genus 0, two-hole amplitudes A(0)

2 (x1,x2) in terms of the open
string parameters x1 and x2. We then plug in the open mirror map for that particular
parameterization to obtain the open amplitude.

However, this was done in a particular parameterization, or embedding, which
exhibited Σ in a simple form, such as hyperelliptic. To obtain the full framed
annulus amplitude for branes in other locations, we need to be able to calculate the
Bergmann kernel for other parameterizations. But we have seen that the Bergmann
kernel is in fact defined directly on the Riemann surface, and does not depend on
the particular embedding of the Riemann surface. Hence we can use our result
above and simply reparameterize it to obtain the Bergmann kernel of the curve in
another parameterization.

For instance, suppose we are given the Bergmann kernel B(x̃1, x̃2) for a curve
H̃(x̃, ỹ) = 0, and that we reparameterize the curve with the framing transformations
(x,y) = (x̃ỹ f , ỹ), f ∈Z introduced earlier. We obtain a new embedding H(x,y) = 0
of the Riemann surface. To obtain its Bergmann kernel, we first compute x̃ =
x̃(x) as a power series in x, and then reparameterize the Bergmann kernel to get
B(x1,x2) = B(x̃1(x1), x̃2(x2)).

In this way, we are able to compute the bare genus 0, two-hole amplitude for
any framing and brane. To obtain the full result we must then plug in the open
mirror map for the open string parameters, in the particular parameterization we
are looking at.

3.3.3 Genus 0, three-hole amplitude.

To compute the genus 0, three-hole amplitude, we use the recursion formula (3.8).
We can also use the simpler formula for the three-point correlation function proved
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by Eynard and Orantin in [22], which reads, for curves embedded in C∗×C∗:

W (0)
3 (x1,x2,x3) = ∑

λi

Res
x=λi

B(x,x1)B(x,x2)B(x,x3)
xy(x)

dxdy(x)
. (3.27)

Using our result for the Bergmann kernel in any parameterization, we can compute
the three-point correlation function also in any parameterization. Note however
that the branch points λi ∈ C∗ depend on the particular parameterization; hence,
when we change parameterization, not only the Bergmann kernel gets reparame-
terized, but the branch points at which we take residues also change.

Let us now spend a few lines on how to find the ramification points qi ∈ Σ and
the two points q and q̄ satisfying x(q) = x(q̄) in the neighborhood of a ramification
point. First, standard geometry says that the ramification points qi are defined to
be the points satisfying

∂H
∂y

(qi) = 0. (3.28)

The x-projection of the ramification points qi defines the branch points λi :=
x(qi) ∈ C∗. The latter can also be found directly as solutions of dx = 0.

We will also be interested in determining the branch points of the “framed”
curve H(x,y), where (x,y) = (x̃ ỹ f , ỹ); that is, the branch points of the projection
on the x-axis of the framed curve. These are determined by

dx = d(x̃ỹ f (x̃)) = ỹ f−1(x̃)( f x̃ỹ′(x̃)+ ỹ(x̃))dx̃ = 0. (3.29)

To find all the branch points λi, one has to solve (3.29) for all the different branches
of ỹ(x̃).

We can employ the above equation also to analyze the theory near the branch
points: given a ramification point qi, and the associated branch point λi = x(qi),
of the projection on the x-axis, we can determine the two points q, q̄ ∈ Σ with the
same x-projection x(q) = x(q̄) near qi. Define

x̃(q) = λi +ζ , x̃(q̄) = λi +S(ζ ), (3.30)

where

S(ζ ) =−ζ + ∑
k≥2

ckζ
k. (3.31)

By definition, we have that

x(q) = (λi +ζ )ỹ(λi +ζ ) f = (λi +S(ζ ))ỹ(λi +S(ζ )) f = x(q̄), (3.32)

which can be used to determine S(ζ ). At the first orders, we get

c2 =− 2(−1+ f 2) ỹ(λi)+ f 2 λi
2 (3 ỹ′′(λi)+ f λi ỹ(3)(λi))

3 f λi ((−1− f ) ỹ(λi)+ f 2 λi
2 ỹ′′(λi))

,

c3 =−(2(−1+ f 2) ỹ(λi)+ f 2 λi
2 (3 ỹ′′(λi)+ f λi ỹ(3)(λi)))

2

9 f 2 λi
2 ((1+ f ) ỹ(λi)− f 2 λi

2 ỹ′′(λi))
2 .

(3.33)
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3.3.4 Genus 1, one-hole amplitude.

To compute the genus 1, one-hole amplitude, we also use the recursion formula
(3.8), with the ramification points and the Bergmann kernel corresponding to the
chosen parameterization. The general formula for W (1)

1 (q) is

W (1)
1 (p) = ∑

qi

Resq=qi

dEq(p)
Θ(q)−Θ(q̄)

B(q, q̄). (3.34)

3.3.5 Higher amplitudes.

Computations at higher g,h can be readily made in this formalism, although they
are more complicated. When the algebraic curve is of genus zero, the computa-
tions are straightforward, but they become more involved as soon as the curve has
higher genus. Some simplifications arise however when the curve is of the form
(3.20) and the differential Θ(x) is of the form (3.21), since in this case one can
adapt the detailed results of [21] to our context (see also [12] for examples of de-
tailed computations). We will refer to this case as the hyperelliptic case, since the
underlying geometry is that of a hyperelliptic curve. Let us briefly review this for-
malism, following [21] closely, in order to sketch how to compute systematically
higher amplitudes. We first write

Θ(x)−Θ(x̄) = 2M(x)
√

σ(x)dx, (3.35)

where σ(x) is defined in (3.20) and M(x) is called the moment function. In the
formalism of [22] applied to conventional matrix models, M(x) is a polynomial.
In our formalism for mirrors of toric geometries, in the parametrization of the
curve given in (3.20), M(x) is given by

M(x) =
1

x
√

σ(x)
tanh−1

[√
σ(x)

a(x)

]
, (3.36)

which is the moment function considered in [39] (again, up to a factor of 2 which
comes from (3.35) and in [39] is reabsorbed in the definition of M(x)). When Θ(x)
is of the form (3.35) we are effectively working on the hyperelliptic curve of genus
s−1,

y2(x) = σ(x), (3.37)

with ramification points at x = xi, i = 1, · · · ,2s. We define the A j cycle of this
curve as the cycle around the cut

(x2 j−1,x2 j), j = 1, · · · ,s−1. (3.38)

There exists a unique set of s−1 polynomials of degree s−2, denoted by L j(x),
such that the differentials

ω j =
1

2πi
L j(x)√

σ(x)
dx (3.39)
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satisfy ∮
A j

ωi = δi j, i, j = 1, · · · ,s−1. (3.40)

The ωis are called normalized holomorphic differentials. The one-form (3.5) can
then be written as [21]

dEx′(x) =
1
2

√
σ(x′)√
σ(x)

(
1

x− x′
−

s−1

∑
j=1

C j(x′)L j(x)

)
dx, (3.41)

where

C j(x′) :=
1

2πi

∮
A j

dx√
σ(x)

1
x− x′

. (3.42)

In this formula, it is assumed that x′ lies outside the contours A j. One has to be
careful when x′ approaches some branch point x j. When x′ lies inside the contour
A j, then one has:

Creg
l (x′)+

δl j√
σ(x′)

=
1

2πi

∮
A j

dx√
σ(x)

1
x− x′

, (3.43)

which is analytic in x′ when x′ approaches x2 j−1 or x2 j. The Bergmann kernel is
then given by:

B(x,x′) = dx′
d

dx′

(
dx

2(x− x′)
+dEx′(x)

)
, (3.44)

and it can be equivalently written as

B(p,q)
dpdq

=
1

2(p−q)2 +
σ(p)

2(p−q)2
√

σ(p)
√

σ(q)

− σ ′(p)
4(p−q)

√
σ(p)

√
σ(q)

+
A(p,q)

4
√

σ(p)
√

σ(q)
, (3.45)

where A(p,q) is a polynomial. In the elliptic case s = 2, there is one single integral
C1(p) to compute, and one can find very explicit expressions in terms of elliptic
integrals:

C1(p) =
2

π(p−x3)(p−x2)
√

(x1−x3)(x2−x4)
[(x2−x3)Π(n4,k)+(p−x2)K(k)] ,

Creg
1 (p) =

2
π(p−x3)(p−x2)

√
(x1−x3)(x2−x4)

[(x3−x2)Π(n1,k)+(p−x3)K(k)] ,

(3.46)

where

k2 =
(x1− x2)(x3− x4)
(x1− x3)(x2− x4)

, n4 =
(x2− x1)(p− x3)
(x3− x1)(p− x2)

, n1 =
(x4− x3)(p− x2)
(x4− x2)(p− x3)

,

(3.47)
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Π(n,k) is the elliptic integral of the third kind,

Π(n,k) =
∫ 1

0

dt

(1−nt2)
√

(1− t2)(1− k2t2)
(3.48)

and K(k) is the standard elliptic integral of the second kind.
With these ingredients one can compute the residues as required in (3.8). It is

easy to see that dEq(p)/y(q), as a function of q, has a pole at q = p but no pole at
the branchpoints. It is then easy to see that all residues appearing in (3.8) will be
linear combinations of the following kernel differentials:

χ
(n)
i (p) = Resq=xi

(
dEq(p)

y(q)
1

(q− xi)n

)
(3.49)

which are explicitly given by

χ
(n)
i (p) =

1
(n−1)!

1√
σ(p)

dn−1

dqn−1

[
1

2M(q)

(
1

p−q
−

s−1

∑
j=1

L j(p)C j(q)

)]
q=xi

.

(3.50)

Notice that in order to compute the kernel differentials, the only nontrivial objects
to compute are dkC j/dqk. For a curve of genus one, they can be evaluated from the
explicit expressions in (3.46). In order to compute the residues involved in (3.8),
one has to take into account that the residues around branchpoints in terms of a
local coordinate as in (3.8) are twice the residues around x = xi in the x plane [21].
One then finds, for example,

W0(p1, p2, p3) = 1
2

2s
∑

i=1
M2(xi)σ ′(xi)χ

(1)
i (p1)χ

(1)
i (p2)χ

(1)
i (p3),

W1(p) = 1
16

2s
∑

i=1
χ

(2)
i (p)+ 1

8

2s
∑

i=1

(
2 A(xi,xi)

σ ′(xi)
− ∑

j 6=i

1
xi−x j

)
χ

(1)
i (p),

(3.51)

where A(p,q) is the polynomial in (3.45).
Therefore, in the hyperelliptic case, when Θ(x)−Θ(x̄) can be written as in

(3.35), the computation of the amplitudes can be done by residue calculus and the
only part of the calculation which is not straighforward is the evaluation of the
integrals (3.42), (3.43). In the elliptic case, they reduce to elliptic functions, as we
saw in (3.46). In the general case one can evaluate the integrals in terms of suitable
generalizations of elliptic functions.

3.4 Moving in the moduli space

In Sect. 2.2 we discussed in some detail phase transitions in the open/closed string
moduli space. We explained why the B-model was perfectly suited for studying
such transitions. We now have a formalism, entirely in the B-model, that gen-
erates unambiguously all open/closed amplitudes for toric Calabi-Yau threefolds.
An obvious application is then to use this formalism to study both open and closed
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phase transitions, which cannot be studied with A-model formalisms such as the
topological vertex.

Recall that the ingredients in our formalism consists in a choice of projection
Σ → C∗ (or equivalently a choice of parameterization of Σ ), a differential Θ(p)
corresponding to the disk amplitude, and the Bergmann kernel B(p,q) of the curve
— which yields the annulus amplitude. Note that once the parameterization is
chosen, the one-form Θ(p) is canonically defined to be

Θ(p) = logy(p)
dx(p)
x(p)

. (3.52)

Hence Θ(p) really only depends on the choice of parameterization.
We have seen that changing the parameterization of the curve Σ corresponds

to changing the location and framing of the branes, that is, moving in the open
moduli space. This is the mildest type of transition that was considered in Sect.
2.2.1. Since the Bergmann kernel is really defined on the Riemann surface, it can
simply be reparameterized, and open phase transitions are rather easy to deal with.
As explained in Sect. 2.2.1, this is because the amplitudes are simply rational
functions of the open string moduli, which we see explicitly in our formalism.

The more interesting types of transitions are thus the transitions between dif-
ferent patches which require non-trivial Sp(2g,C) transformation of the periods.
The only ingredient that is modified by these transitions in the closed string mod-
uli space is the Bergmann kernel, since its definition involves a choice of canonical
basis of cycles, which corresponds to a choice of periods.

Modular properties of the Bergmann kernel have been studied in detail in [22,
23]. Under modular transformations, the Bergmann kernel transforms with a shift
as follows:

B(p,q) 7→ B(p,q)−2πiω(p)(Cτ +D)−1Cω(q), (3.53)

with (
A B
C D

)
∈ Sp(2g,Z), (3.54)

and τ is the period matrix. Here, ω(p) is the holomorphic differentials put in
vector form. In a sense, the Bergmann kernel is an open analog — since it is a
differential in the open string moduli — of the second Eisenstein series E2(τ),
which also transforms with a shift under SL(2,Z) transformations and generates
the ring of quasi-modular forms.

The key point here is that we know how the Bergmann kernel transforms under
phase transitions in the closed string moduli space. Hence not only can we use our
formalism to generate the amplitudes anywhere in the open moduli space, but also
in the full open/closed moduli space. This means that in principle, we can generate
open and closed amplitudes for target spaces such as conifolds or orbifolds. We
will explore this avenue further in Sect. 6.

To end this section, let us be a little more precise. In this paper we will only
consider S-duality transformations for curves of genus 1, which exchange the A-
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and the B-cycles. More precisely, the S-duality transformation acts on the basis of
periods by (

0 −1
1 0

)
∈ SL(2,Z). (3.55)

When the curve has genus 1, we can use Akemann’s expression (3.25) to compute
the Bergmann kernel. This expression depends on the branch points λi, i = 1, . . . ,4,
and the choice of canonical basis (or periods) is encoded in the choice of ordering
of the branch points. In terms of the elliptic modulus k2, the S-duality transforma-
tion is given by

k2 7→ 1− k2. (3.56)

Using the explicit expression for the modulus in terms of the branch points (3.26),
we see that the S-transformation is given by exchanging the two branch points
λ2 and λ4. In other words, an S-duality transformation corresponds to the two
cuts meeting at one point and then splitting again. Therefore, to determine the
shifted Bergmann kernel after an S-duality transformation, we only need to use
Akemann’s expression (3.25) again, but with λ2 and λ4 exchanged. Using this
new Bergmann kernel we can generate all open and closed amplitudes after the
phase transition corresponding to the S-duality transformation.

We will exemplify this procedure in Sect. 6, where we use an S-duality phase
transition to compute open and closed amplitudes at the point in the moduli space
of local P1×P1, where the two P1’s shrink to zero size. Using large N duality, we
can compare the resulting amplitudes with the expectation values of the framed
unknot in Chern-Simons theory on lens spaces, and we find perfect agreement.

4 Genus 0 Examples

In this section we study two toric Calabi-Yau threefolds, C3 and the resolved coni-
fold, for which the mirror curve has genus 0.

4.1 The vertex

Our first example is the simplest toric Calabi-Yau threefold, M = C3. The mirror
curve Σ is P1 with three holes, and can be written algebraically as

H̃(x̃, ỹ) = x̃+ ỹ+1 = 0, (4.1)

with x̃, ỹ ∈ C∗.5
This parameterization corresponds to a brane ending on one of the three outer

legs of the toric diagram, with zero framing (in standard conventions). The open
mirror map, in this parameterization, is given simply by (X ,Y ) = (−x̃,−ỹ).

5 In the following, tilde variables will always denote a curve in zero framing, while plain
variables will denote a framed curve.
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Fig. 4 The framed vertex and its mirror curve

4.1.1 Framing.

The framing transformation is given by

(x̃, ỹ) 7→ (x,y) = (x̃ỹ f , ỹ), (4.2)

where x is the framed bare open string parameter. From the transformation above,
the open mirror map is now given by (X ,Y ) = ((−1) f +1x,−y). Under this repa-
rameterization the mirror curve becomes

H(x,y) = x+ y f +1 + y f = 0, (4.3)

which is a branched cover of C∗. The framed vertex and its mirror curve are shown
in Fig. 4.

4.1.2 Disk amplitude.

The bare framed disk amplitude is given by

A(0)
1 (x) =

∫
logy(x)

dx
x

. (4.4)

Thus, we need to find y = y(x). We can solve (4.3) for y as a power series of x, by
using for example Lagrange inversion, and we get

y(x) = −1+
∞

∑
n=1

(−1)n( f +1) (n f +n−2)!
(n f −1)!

xn

n!

= −1− (−1) f x+ f x2− (−1) f

2
( f +3 f 2)x3 + . . . . (4.5)

Plugging in the map x =−(−1) f X , we thus get

A(0)
1 (X) = −

(
X +

1
4
(1+2 f )X2 +

1
18

(2+9 f +9 f 2)X3

+
1
48

(3+22 f +48 f 2 +32 f 3)X4 + . . .

)
, (4.6)

up to an irrelevant constant of integration. This is precisely the result that is ob-
tained on the A-model using the topological vertex.
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4.1.3 Annulus amplitude.

To compute the annulus amplitude we must compute the Bergmann kernel of the
curve (4.3) in the bare open string parameters x1 and x2.

Let us first work in the zero framing parameterization. Since Σ has genus 0, at
zero framing the Bergmann kernel is simply given by

B(x̃1, x̃2) =
dỹ1dỹ2

(ỹ1− ỹ2)2 , (4.7)

where the ỹi are defined implicitly in terms of the x̃i by ỹi := ỹ(x̃i), with ỹ(x̃)
obtained by solving H̃(x̃, ỹ) = 0, that is ỹ(x̃) =−1− x̃.

But the framing transformation sets y1 = ỹ1, y2 = ỹ2, hence we can reparame-
terize the Bergmann kernel and obtain immediately that

B(x1,x2) =
dy1dy2

(y1− y2)2 , (4.8)

where now the yi are defined implicitly in terms of the xi by yi := y(xi), with the
function y(x) given by (4.5).

The bare two-hole amplitude is given by removing the double pole and inte-
grating:

A(0)
2 (x1,x2) =

∫ (
B(x1,x2)−

dx1dx2

(x1− x2)2

)
= log(−y1(x1)+ y2(x2))− log(−x1 + x2). (4.9)

Using the expansion (4.5) and the open mirror map X1 =−(−1) f x1, X2 =−(−1) f x2,
we obtain

A(0)
2 (X1,X2) =

1
2

f ( f +1)X1X2 +
1
3

f (1+3 f +2 f 2)(X2
1 X2 +X1X2

2 )

+
1
4

f (1+ f )(1+2 f )2X2
1 X2

2

+
1
8

f (2+11 f +18 f 2 + f 3)(X3
1 X2 +X1X3

2 )+ . . . , (4.10)

up to irrelevant constants of integration; this matches again the topological vertex
result.

4.1.4 Three-hole amplitude.

To compute A(0)
3 , the additional ingredients needed are the ramification points of

the projection map Σ → C∗ onto the x-axis for the framed curve (4.3). Solving

∂H
∂y

= 0, (4.11)

we find only one ramification point q1 at y(q1) =− f
f +1 . Denote by λ1 the associ-

ated branchpoint, which is given by the x-projection of q1, that is λ1 = x(q1).
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The amplitude thus becomes

A(0)
3 (x1,x2,x3) =

∫
Res
x=λ1

B(x,x1)B(x,x2)B(x,x3)
xy(x)

dxdx dy
dx

=
∫

Res
y=− f

f +1

x(y)ydydy1(x1)dy2(x2)dy3(x3)
(y−y1(x1))2(y−y2(x2))2(y−y3(x3))2

(
dx
dy

)−1

. (4.12)

Since x =−y f (y+1), we compute easily that(
dx
dy

)−1

=− 1
y f−1( f + y( f +1))

, (4.13)

which has a simple pole at y =− f
f +1 . Taking the residue and integrating, we get

A(0)
3 (x1,x2,x3) = −

∫
f 2( f +1)2

3

∏
i=1

dyi(xi)
( f +( f +1)yi(xi))2

=
f 2

f +1

3

∏
i=1

1
f +( f +1)yi(xi)

. (4.14)

Plugging in the expansion (4.5) and the open mirror map, we finally obtain

A(0)
3 (X1,X2,X3) = −

(
f 2(1+ f )2X1X2X3+ f 2(1+ f )2(1+2 f )(X2

1 X2X3 +perms)

+
1
2

f 2(1+ f )2(2+9 f +9 f 2)(X3
1 X2X3 +perms)

+ f 2(1+3 f +2 f 2)2(X2
1 X2

2 X3 +perms)+ . . .
)
,

which is again in agreement with vertex computations.

4.1.5 The genus one, one hole amplitude.

In the computation of A(1)
1 (X) we need some extra ingredients, besides the ones

that we have already considered. For a curve of genus zero,

dEq(p) =
1
2

dy(p)
[

1
y(p)− y(q)

− 1
y(p)− y(q̄)

]
, (4.15)

where y is a local coordinate. To compute (3.34) in this example, we need q̄ near
the ramification point q1 located at y(q1) = − f

1+ f . Following the general discus-
sion in Sect. 3.3, we write

y(q) =− f
1+ f

+ζ , y(q̄) =− f
1+ f

+S(ζ ). (4.16)

By definition,

x(q) =−y(q) f (y(q)+1) =−y(q̄) f (y(q̄)+1) = x(q̄), (4.17)
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which we can use to solve for S(ζ ), which has the structure presented in (3.31).
Its power series expansion can be easily determined, and the first few terms are

S(ζ ) =−ζ +
2
(
−1+ f 2

)
ζ 2

3 f
−

4
(
−1+ f 2

)2
ζ 3

9 f 2 +O(ζ 4). (4.18)

We now compute (3.34) by using ζ as a local coordinate near the branchpoint. We
need,

B(q, q̄) =
(dζ )2

(ζ −S(ζ ))2 S′(ζ ), (4.19)

as well as

Φ(q)−Φ(q̄) =
(

log
(
− f

1+ f
+ζ

)
− log

(
− f

1+ f
+S(ζ )

))
dx
dζ

dζ .(4.20)

The residue in (3.34) is easily evaluated, and we only need the expansion of S(ζ )
up to third order. One finds,

W (1)
1 (y) =

(1+ f )4y2 +2 f (1+ f )(2+ f + f 2)y+ f 4

24( f (1+ p)+ p)4 dy. (4.21)

After integration and expanding in X , we obtain

A(1)
1 (y) = − X

24
+

(1+2 f )( f 2 + f −1)X2

12

+
(1+3 f )(2+3 f )(−1+2 f +2 f 2)X3

16
+O(X4), (4.22)

which is in perfect agreement with the g = 1 piece of the exact formula in gs (but
perturbative in X) obtained from the topological vertex,

A1(y,gs) =
∞

∑
g=0

A(g)
1 (y)g2g−1

s =
∞

∑
m=0

[m f +m−1]!
m[m]![m f ]!

(−1)m f Xm+1, (4.23)

where [n] denotes the q-number with parameter q = egs .
To end this section, we mention that the framed vertex results can be written

down in a nice way in terms of Hodge integrals, using the Mariño-Vafa formula
[40]. The recursion relations proposed in this paper induce new recursion relations
for the Hodge integrals. In turn, using the well known relation between the framed
vertex geometry and Hurwitz numbers, one can obtain a full recursion solution
for Hurwitz numbers. This is a nice mathematical consequence of the formalism
proposed in this paper, which is studied in [15].
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Fig. 5 The framed vertex in two legs

4.1.6 Framed vertex in two legs.

So far we assumed that all the branes ended on the same leg of the toric diagram
of C3 (the vertex). However, when there is more than one hole, one can consider
the case where there is one brane in one leg of the vertex and another brane in
another leg; this is shown in Fig. 5. Let us now compute the annulus amplitude
for two branes in two different legs. The strategy goes as usual: we start with
the Bergmann kernel for two branes with zero framing in the same leg, and then
reparameterize the Bergmann kernel to obtain two framed branes in different legs.

To do so, we need to find the expansion y1 = y1(x1) for a framed brane in
one leg, which we found already in (4.5), but also y2 = y2(x′2), where x′2 now
corresponds to the open string parameter of a framed brane in a different leg. That
is, we need to be able to relate the curves in the two different legs.

As explained in Sect. 2.2, the phase transformation for moving from one leg
of the toric diagram to another, at zero framing, reads:

(x̃, ỹ) 7→ (x̃′, ỹ′) = (x̃−1, x̃−1ỹ). (4.24)

Now the framing transformation in this new leg reads

(x̃′, ỹ′) 7→ (x′,y′) = (x̃′(ỹ′) f , ỹ′), (4.25)

where x′ and y′ now correspond to framed parameters in the new leg. Combining
these two transformations we get

(x̃, ỹ) 7→ (x′,y′) = (x̃−1− f ỹ f , x̃−1ỹ). (4.26)

Inversely, we have that

(x̃, ỹ) = ((x′)−1(y′) f ,(x′)−1(y′) f +1). (4.27)

Under this reparameterization the curve becomes

x′+(y′) f +(y′) f +1 = 0, (4.28)

which is the same curve as before! Indeed, for the framed vertex, by symmetry
changing the leg does not change the amplitudes.

So we know y′(x′) which is (4.5) as before. However, what we really want in
order to reparameterize the Bergmann kernel is ỹ = ỹ(x′). Using the transformation
above, we know that ỹ = ỹ(x′) = (x′)−1(y′(x′)) f +1. As a power series, we get

ỹ =−(−1) f 1
x′
− (1+ f )+

(−1) f

2
f (1+ f )x′+ . . . . (4.29)

Using these results, we can reparameterize the Bergmann kernel to get the
framed annulus amplitude in two different legs. For the first open string parame-
ter, we reparameterize using ỹ1 = y1 = y1(x1) given by (4.5), and for the second
open string parameter we use (4.29) to get ỹ2 = ỹ2(x′2). The mirror map for the
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Fig. 6 The resolved conifold and its mirror curve

first parameter is X1 =−(−1) f1x1, while for the second parameter from the trans-
formations above we get the mirror map X2 =−x′2. Removing the double pole and
integrating as usual, we get6

A(0)
2 (X1,X2) = −(−1) f2X1X2− f2X1X2

2 −
(−1) f2

2
( f2(1+3 f2))X1X3

2

−1
2
(1+2 f1 f2)X2

1 X2
2 −

(−1) f2

2
f2(2+ f1+3 f2 f1)X2

1 X3
2 + . . . , (4.30)

which again is in agreement with the vertex result.7

4.2 The resolved conifold

Let us now turn to the resolved conifold, or local P1. The mirror curve Σ ⊂ C∗×
C∗ has genus 0, and reads

H(x̃, ỹ;q) = 1+ x̃+ ỹ+qx̃ỹ, (4.31)

with x̃, ỹ ∈ C∗ and q = e−t , with t the complexified Kähler parameter controlling
the size of the P1. This is shown in Fig. 6.

There are two differences with the framed vertex. First, the mirror curve above
has a one-dimensional complex structure moduli space, parameterized by q. Hence,
we could consider phase transitions in the closed moduli space. However, as ex-
plained in Sect. 2.2.1, since the curve has genus 0, the amplitudes are rational
functions of the closed moduli, that is there is no non-trivial monodromy for the
periods. Hence, in this case these transitions are not very interesting.

Another difference is that in contrast with the framed vertex, changing phase
in the open moduli space, that is, moving the brane from one leg to another, yields
different amplitudes. There are basically two types of amplitudes, corresponding
to “outer” branes (ending on an outer leg of the toric diagram) and “inner” branes,
as explained in Sect. 2.2. Since this type of transitions will be studied in detail
for the local P2 example, for the sake of brevity we will not present here the
calculations for the resolved conifold. Let us simply mention that we checked
that both the framed outer and framed inner brane amplitudes at large radius (in
the limit q → 0) reproduce precisely the results obtained through the topological
vertex. The calculations are available upon request.

5 Genus 1 Examples

We now turn to the more interesting cases where the mirror curve has genus 1. We
will study two examples in detail: local P2 and local Fn, n = 0,1,2, where Fn is

6 Note that here we have two framings f1 and f2 corresponding to the two different branes.
7 More precisely, to get the topological vertex result we need to redefine f1 7→ − f1−1, which

is just a redefinition of what we mean by zero framing.
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Fig. 7 An outer brane in local P2 and its mirror

the nth Hirzebruch surface. Note that F0 = P1×P1. For the sake of brevity, we do
not include here all the calculations; but we are happy to provide them with more
detailed explanations to the interested reader.

5.1 Local P2

The local P2 geometry is described by the charge vector (−3,1,1,1). The mirror
curve is an elliptic curve with three holes, and can be written algebraically as:

H(x̃i, ỹi;q) = x̃iỹi + x̃2
i ỹi + x̃iỹ2

i +q, (5.1)

with x̃i, ỹi ∈ C∗ and q = e−t , with t the complexified Kähler parameter of local
P2. As for the resolved conifold, there are two distinct phases in the open moduli
space, corresponding to outer and inner branes. The above parameterization of the
curve corresponds to a brane ending on an inner leg of the toric diagram, with zero
framing (in standard conventions), hence the i subscript. For an outer brane with
zero framing, the curve reads (see Sect. 2.3.6)

H(x̃, ỹ;q) = ỹ2 + ỹ+ ỹx̃+qx̃3 = 0. (5.2)

The outer brane geometry is shown in Fig. 7.
Note that as for the resolved conifold, there are now more than one phases in

the closed moduli space as well. Since the curve has genus 1, the periods now have
non-trivial monodromy, and undergoing phase transitions in the closed moduli
space becomes relevant. For instance, the closed moduli space contains a patch
corresponding to the orbifold C3/Z3, in the limit where the P2 shrinks to zero
size. However, in this section we will focus on the large radius limit q → 0 in
order to compare with the topological vertex results on the A-model side.

The mirror maps for this geometry at large radius were studied in Sect. 2.3.6,
for both framed outer and framed inner branes.

5.1.1 Framed outer amplitudes.

We start by computing the amplitudes for framed outer branes. To compute the
disk amplitude we need y = y(x). We get

y = 1+ x− f x2 +

(
f +3 f 2−2z

)
x3

2
−

(1+4 f )
(

f +2 f 2−3z
)

x4

3
+ . . . .

(5.3)

By definition, the bare disk amplitude is given by

A(0)
1 (x) =

∫
logy(x)

dx
x

, (5.4)
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and after expressing the result in flat open and closed coordinates using (2.71) we
get precisely the topological vertex result for the disk amplitude of a framed brane
in an outer leg.

We now turn to the annulus amplitude. The bare annulus amplitude is given
by:

A(0)
2 (x1,x2) =

(∫
B(x1,x2)

)
− log(−x1 + x2). (5.5)

Hence, we need the Bergmann kernel B(x1,x2) of the framed outer curve. As ex-
plained earlier, this is simply given by reparameterizing the Bergmann kernel of
the unframed outer curve (5.2).

It turns out that the unframed outer curve (5.2) is hyperelliptic. Consequently,
we can use Akemann’s expression (3.25) for the Bergmann kernel in terms of the
branch points of the x̃-projection — here we follow the calculation performed in
[39]. To obtain these branch points, we first solve (5.2) for ỹ as:

ỹ± =
(x̃+1)±

√
(x̃+1)2−4qx̃3

2
. (5.6)

It turns out to be easier to work with the inverted variable s = x̃−1. In this variable,
the branch points of the curve are s1 = 0 and the roots of the cubic equation

s(s+1)2−4q = 0. (5.7)

In terms of

ξ =
(

1+54q+6
√

3
√

q (1+27q)
) 1

3
, (5.8)

they are given by

s2 =−2
3

+
1
3

(
ωξ +

1
ωξ

)
, s3 =−2

3
+

1
3

(
ω
∗
ξ +

1
ω∗ξ

)
, s4 =

(ξ −1)2

3ξ
, (5.9)

where ω = exp(2iπ/3). Plugging in these branch points in Akemann’s formula
(3.25), we obtain the Bergmann kernel for the unframed outer curve, and the an-
nulus amplitude in zero framing, as in [39].

We now want to implement the framing reparameterization. The reparame-
terization x̃ = x̃(x) can be computed using that x̃(x) = xy(x)− f with y(x) given
in (5.3). We finally obtain, after reparameterizing the Bergmann kernel, plugging
in the mirror maps (2.71), and integrating, that the framed annulus amplitude for
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outer branes reads:

A(0)
2 (X1,X2) =

[
f
2

+
f 2

2
−
(
1+2 f +2 f 2) Q+

(
4+7 f +7 f 2) Q2

−
(
35+42 f +42 f 2) Q3 + . . .

]
X1X2

+
[
− f
3
− f 2− 2 f 3

3
+
(
1+4 f +6 f 2 +4 f 3) Q

+
(
−3−15 f −27 f 2−18 f 3) Q2

+
(

24+
308 f

3
+164 f 2+

328 f 3

3

)
Q3 + · · ·

]
(X2

1 X2+X1X2
2 )+ . . . .

(5.10)

This is again precisely the result obtained through the topological vertex.



Remodeling the B-Model 45

The genus 0 three-hole amplitude for framed outer branes can be computed us-
ing the general formula (3.27), after reparameterizing the Bergmann kernel. How-
ever, to implement this formula we need to find the branch points of the framed
curve — note that these are different from the branch points of the unframed curve
found previously. As explained earlier, these branch points are given by the solu-
tions of Eq. (3.29). In this case, (3.29) becomes a cubic equation in x, and the three
branch points can be determined exactly by Cardano’s method. Note that it will
be relevant which branch of (5.6) the branch points belong to; thus we will use the
indices ± accordingly.

The first orders of the q-expansion of the branch points read:8

λ
+
1 =

2+6 f +3 f 2

1+3 f +2 f 2 +
1+3 f +2 f 2

(2+3 f )2 q
−

(2+3 f )2 (3+18 f +37 f 2 +30 f 3 +9 f 4) q(
1+3 f +2 f 2

)3 + . . . ,

λ
−
2 =

1+3 f
−1−2 f

+
(1+3 f )3 (2+3 f ) q

f (1+2 f )3 −
(1+3 f )5 (2+3 f )

(
−1+2 f +6 f 2) q2

f 3 (1+2 f )5 + . . . ,

λ
+
3 =− 1

1+ f
+

(−2−3 f ) q

f (1+ f )3 − (2+3 f ) (1+ f (8+9 f )) q2

f 3 (1+ f )5 + . . . . (5.11)

Taking into account the branches, plugging in the mirror map and integrating,
we obtain the following result in flat coordinates:

A(0)
3 (X1,X2,X3)

=
[(

f 2 (1+ f )2
)

+
(
1+6 f +12 f 2 +12 f 3 +6 f 4) Q−3

(
1+3 f +3 f 2)2

Q2

+4
(
9+36 f +77 f 2 +82 f 3 +41 f 4) Q3 + · · ·

]
X1X2X3 + · · · , (5.12)

which reproduces again the topological vertex result.
Note that we also computed the genus 1, one-hole amplitude, which also

matches with topological vertex calculations.

5.1.2 Framed inner amplitudes.

We can compute the amplitudes for framed inner branes in a way similar to the
calculations above for outer branes. The main subtelty occurs in the reparameter-
ization of the Bergmann kernel.

Since we want to use Akemann’s formula for the Bergmann kernel, we start
again with the curve in hyperelliptic form (5.2), which corresponds to the un-
framed outer brane. We then reparameterize that curve to obtain the Bergmann
kernel corresponding to the curve associated to framed inner branes.

Recall that the transformation which takes the unframed outer curve to the
unframed inner curve is given by (2.72),

(x̃, ỹ) =
(

1
x̃i

,
ỹi

x̃i

)
. (5.13)

8 Note that the branch points are not regular as f → 0, but the final expression of the three-hole
amplitude will be.
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The framing transformation for inner branes is

(x̃i, ỹi) = (xiy
− f
i ,yi). (5.14)

Hence we obtain the combined transformation

(x̃, ỹ) = (x−1
i y f

i ,x−1
i y f +1

i ), (5.15)

which we can use to reparameterize the Bergmann kernel. Note that this is similar
to the calculation for the framed vertex in two legs. More explicitly, we obtain

x̃(xi) = f +
1
xi
−
(

f
2

+
f 2

2

)
xi +

(
f
3

+ f 2 +
2 f 3

3

)
xi

2 + . . . . (5.16)

Using this reparametrization and the mirror map (2.76) for framed inner branes
we obtain the framed inner brane annulus amplitude:

A(0)
2 (X1,X2) =

[
f
2

+
f 2

2
+
(
−1−2 f −2 f 2−2 f 3− f 4) Q

+
(

11+
35 f

2
+

81 f 2

4
+

157 f 3

8
+

93 f 4

8
+

27 f 5

8
+

5 f 6

8

)
Q2−

(
131+201 f

+
467 f 2

2
+

15023 f 3

90
+

781 f 4

180
− 47 f 5

72
+

1429 f 6

18
− 1537 f 7

360
− 221 f 8

180

)
Q3

+ . . .

]
X1X2

+
[(

1−3 f
2

+
f 2

2

)
Q2 +

(
−8+16 f−14 f 2 +6 f 3− f 4) Q3 + . . .

]
1

X1X2
+ . . . .

(5.17)

This reproduces the topological vertex result, including both positive and negative
winding numbers contributions.

Note that we also computed the genus 0, three-hole and the genus 1, one-hole
amplitudes for framed inner amplitudes and obtained a perfect match again.

We also computed the annulus amplitude for one brane in an outer leg and one
brane in an inner leg, paralleling the framed vertex in two legs calculation. We
again obtained perfect agreement.

5.2 Local Fn, n = 0,1,2

We now study the local Fn, n = 0,1,2 geometries, where Fn is the nth Hirzebruch
surface. Note that F0 = P1×P1.

The local Fn geometries are described by the two charge vectors:

Q1 = (−2,1,1,0,0),

Q2 = (n−2,0,−n,1,1). (5.18)
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Fig. 8 An outer brane in local F0 and its mirror

The mirror curves Σn ⊂ C∗×C∗ have genus 1 and four punctures. In the parama-
terization corresponding to a brane placed in an external leg (with zero framing),
they read:

Hn(x̃, ỹ;qt ,qs) = ỹx̃+ ỹ+ ỹ2 +qt x̃2ỹ+qn
t qsx̃n+2 , (5.19)

with x̃, ỹ ∈C∗, qt = e−t and qs = e−s, with t and s the complexified Kähler param-
eters. The local F0 geometry is shown in Fig. 8.

The closed moduli space is now two-dimensional, being spanned by qt and qs.
However, these curves are still hyperelliptic, and we can apply our formalism ex-
actly as we did for the local P2 case. Therefore, we will not do the full calculation
here, but only highlight some interesting aspects.

The large radius expansion for local F0 = P1×P1 has been discussed in detail
in [39], where several open amplitudes (for outer branes with canonical framing)
were computed. Needless to say, we checked that our formalism can be used to
complete the calculations by including framing and inner brane configurations.

Besides the large radius point, our formalism allows to compute topological
strings amplitudes at other points in the closed moduli space of local F0, like the
conifold point and the orbifold point. The latter corresponds to the point where the
P1×P1 shrinks to zero size. This special point will be discussed in great detail in
the next section.

For local F1 and F2, the open and closed mirror maps together with the disk
amplitudes for inner and outer branes were studied, for instance, in [36]. Again,
we showed that our formalism allows to compute framed inner and outer higher
amplitudes in the large radius limit, checking our results with the topological ver-
tex ones.

As an example, the outer annulus amplitude at zero framing for the local F1
geometry reads:

A(0)
2 (X1,X2) =

[
−QsQt −3Q2

t Qs +4Q2
t Q2

s −5QsQ3
t + · · ·

]
X1X2

−
[
−QsQt −2Q2

t Qs +3Q2
t Q2

s −4QsQ3
t + · · ·

](
X1X2

2 +X2
1 X2
)

+
[
QsQt −2Q2

t Qs +4Q2
t Q2

s −3QsQ3
t + · · ·

](
X1X3

2 +X3
1 X2
)

+
[
−QsQt−2Q2

t Qs+
7
2

Q2
t Q2

s −3QsQ3
t + · · ·

]
X2

1 X2
2 + · · · ,

(5.20)

while for the local F2 geometry:

A(0)
2 (X1,X2) =

[
2Q2

t Qs+4Q3
t Qs+ · · ·

]
X1X2−

[
Q2

t Qs+3Q3
t Qs+ · · ·

](
X1X2

2 +X2
1 X2
)

+
[
Q2

t Qs +2Q3
t Qs + · · ·

](
X1X3

2 +X3
1 X2
)

+
[
Q2

t Qs +2QsQ3
t + · · ·

]
X2

1 X2
2 + · · · . (5.21)

Both of these coincide indeed with the topological vertex results.
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There is also another interesting phase in the local F1 moduli space — see for
instance [35]. By definition, F1 is a P1 bundle over P1, where the P1 base is an
exceptional curve. In fact, F1 is isomorphic to P2 blown up in one point, the base
of the fibration corresponding to the blown up exceptional curve. Hence, we can
blow down this exceptional P1, and we should recover P2. In other words, if we
take the open amplitudes for local F1 and move to the phase in the moduli space
where this exceptional P1 goes to zero size, we should recover the open amplitudes
for local P2. Going to this patch in fact corresponds to a mild transformation in
the closed moduli space, since it does not involve a redefinition of the periods.
The phase transition can then be directly implemented on the amplitudes as no
modular transformation is needed.

More specifically, it can be implemented in the local F1 annulus amplitude
(5.20) by first defining Q̃s = QsQt and then taking the limit Qt → 0. We get:

A(0)
2 (X1,X2) =

[
−Q̃s +4Q̃2

s + · · ·
]

X1X2 +
[
Q̃s−3Q̃2

s + · · ·
](

X1X2
2 +X2

1 X2
)

+
[
−Q̃s +4Q̃2

s + · · ·
](

X1X3
2 +X3

1 X2
)

+
[
−Q̃s +

7
2

Q̃2
s + · · ·

]
X2

1 X2
2 + · · · , (5.22)

which indeed coincides with the local P2 annulus amplitude at zero framing, see
(5.10).

6 Orbifold Points

As we already emphasized, one of the main features of our B-model formalism is
that it can be used to study various phases in the open/closed moduli space, not
just large radius points. In particular, there are two special points where we can
use our formalism to generate open and closed amplitudes; the orbifold point of
local P2, which corresponds to the orbifold C3/Z3, and the point in the moduli
space of local P1×P1, where the P1×P1 shrinks to zero size (which we will call
the local P1×P1 orbifold point, although it is not really an orbifold).

In the second example, we can use large N dualities to make a precise test
of our formalism, and of its ability to produce results in all of the Kähler moduli
space (and not only at the large radius limit). Indeed, it was argued in [4] that
topological strings on Ap−1 fibrations over P1 are dual to Chern–Simons theory
on the lens space L(p,1). In particular, the topological string expansion around the
orbifold point of these geometries can be computed by doing perturbation theory
in the Chern–Simons gauge theory. This was checked for closed string amplitudes
in [4], for p = 2. We will extend this duality to the open string sector and make a
detailed comparison of the amplitudes.

In the first example, we would obtain open and closed orbifold amplitudes
of C3/Z3. The closed amplitudes were already studied in [1]; by now some of
the predictions of that paper for closed orbifold Gromov-Witten invariants have
been proved mathematically. For the open amplitudes, to the best of our knowl-
edge open orbifold Gromov-Witten invariants have not been defined mathemati-
cally, hence there is nothing to compare to. However, we proposed in Sect. 2.3.5
a method for determining the flat coordinates at all degeneration points in the
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moduli space which, as we will see, applies to the local P1 ×P1 orbifold point.
Therefore, we will assume that it should work at the C3/Z3 orbifold point as well,
and use it to make predictions for the disk amplitude for C3/Z3.

Let us start by studying the local P1×P1 orbifold point. We first perform the
Chern-Simons calculation, then explain the large N duality, and finally present our
dual B-model calculation.

6.1 Chern–Simons theory and knots in lens spaces

In order to extend the duality of [4] to the open sector, we will need some detailed
computations in Chern–Simons theory. In this subsection we review [4, 37] and
extend them slightly to include Wilson loops.

Lens spaces of the form L(p,1) can be obtained by gluing two solid 2-tori
along their boundaries after performing the SL(2,Z) transformation,

Up =
(

1 0
p 1

)
. (6.1)

This surgery description makes it possible to calculate the partition function of
Chern–Simons theory on these spaces, as well as correlation functions of Wilson
lines along trivial knots, in a simple way. To see this, we first recall some elemen-
tary facts about Chern–Simons theory.

An SL(2,Z) transformation given by the matrix

U (pi,qi) =
(

pi ri
qi si

)
(6.2)

lifts to an operator acting on H (T2), the Hilbert space obtained by canonical
quantization of Chern–Simons theory on the 2-torus. This space is the space of in-
tegrable representations of a WZW model with gauge group G at level k, where G
and k are respectively the Chern–Simons gauge group and the quantized coupling
constant. We will use the following notations: r denotes the rank of G, and d its
dimension. y denotes the dual Coxeter number. The fundamental weights will be
denoted by λi, and the simple roots by αi, with i = 1, · · · ,r. The weight and root
lattices of G are denoted by Λw and Λr, respectively. Finally, we put l = k + y.

Recall that a representation given by a highest weight Λ is integrable if the
weight ρ + Λ is in the fundamental chamber Fl (ρ denotes as usual the Weyl
vector, given by the sum of the fundamental weights). The fundamental chamber
is given by Λw/lΛr modded out by the action of the Weyl group. For example, in
SU(N) a weight p = ∑

r
i=1 piλi is in Fl if

r

∑
i=1

pi < l, and pi > 0, i = 1, · · · ,r. (6.3)

In the following, the basis of integrable representations will be labeled by the
weights in Fl .
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In the case of simply-laced gauge groups, the SL(2,Z) transformation given
by U (p,q) has the following matrix elements in the above basis [28, 42]:

〈α|U (p,q)|β 〉=
[isign(q)]|∆+|

(l|q|)r/2 exp
[
− idπ

12
Φ(U (p,q))

](
VolΛw

VolΛr

) 1
2

· ∑
n∈Λr/qΛr

∑
w∈W

ε(w)exp
{

iπ
lq

(
pα

2−2α(ln+w(β ))+ s(ln+w(β ))2)} . (6.4)

In this equation, |∆+| denotes the number of positive roots of G, and the second
sum is over the Weyl group W of G. Φ(U (p,q)) is the Rademacher function:

Φ

[
p r
q s

]
=

p+ s
q

−12s(p,q), (6.5)

where s(p,q) is the Dedekind sum

s(p,q) =
1
4q

q−1

∑
n=1

cot
(

πn
q

)
cot
(

πnp
q

)
. (6.6)

From the above description it follows that the partition function of the lens
space L(p,1) is given by

Z(L(p,1)) = 〈ρ|Up|ρ〉, (6.7)

where Up is the lift of (6.1) to an operator on H (T2). In order to make contact
with the open sector, we need as well the normalized vacuum expectation value of
a Wilson line along the unknot in L(p,1), in the representation R, which is given
by

WR =
〈ρ|Up|ρ +Λ〉
〈ρ|Up|ρ〉

, (6.8)

where Λ is the highest weight corresponding to R. The numerator can be written
(up to an overall constant that will cancel with the denominator)

∑
n∈Λr/pΛr

∑
w∈W

ε(w)exp
{

iπ
l p

(
ρ

2−2ρ(ln+w(ρ +Λ))+(ln+w(ρ +Λ))2)} . (6.9)

It is a simple exercise in Gaussian integration to check that this quantity can be
written as

∑
n∈Λr/pΛr

∑
w,w′∈W

ε(ww′)
∫ r

∏
i=1

dλi exp
{
− 1

2ĝs
λ

2−`n ·λ +λ · (w(ρ)−w′(ρ+Λ))
}

,

(6.10)

where

ĝs =
2πi
pl

, (6.11)
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and dλ = ∏
r
i=1 dλi and λi are the Dynkin coordinates of λ , understood as an ele-

ment in Λw⊗R. This integral can be further written as∫
dλ exp

{
− 1

2ĝs
λ

2− `n ·λ
}

∏
α>0

(
2sinh

λ ·α
2

)2

trR e−λ , (6.12)

where we have used Weyl’s formula for the character,

trR e−λ = ∑w∈W ε(w)e−λ ·w(ρ+Λ)

∑w∈W ε(w)e−λ ·w(ρ) (6.13)

as well as Weyl’s denominator formula. It follows that

WR =
1

Z(L(p,1))

∫
dλ exp

{
− 1

2ĝs
λ

2−`n ·λ
}

∏
α>0

(
2sinh

λ ·α
2

)2

trR e−λ , (6.14)

where

Z(L(p,1)) =
∫

dλ exp
{
− 1

2ĝs
λ

2− `n ·λ
}

∏
α>0

(
2sinh

λ ·α
2

)2

. (6.15)

This provides matrix integral representations for both the partition function (de-
rived previously in [4, 37]) and the normalized vacuum expectation value of a
Wilson line around the unknot. Both expressions are computed in the background
of an arbitrary flat connection labelled by the vector n. Notice that, when n = 0,
one has that

WR = eĝs/2(κR+`(R)N)dimq R, (6.16)

where dimq R is the U(N) quantum dimension of R with q = eĝs . We can therefore
regard (6.14) for arbitrary n as a generalization of quantum dimensions.

As shown in [4, 37], the partition function above can be written more conve-
niently in terms of a multi–matrix model for p Hermitian matrices. In the case of
L(2,1) (to which we will restrict ourselves), a generic flat connection can be spec-
ified by a breaking U(N)→U(N1)×U(N2), or equivalently by a vector n with N1
+1 entries and
N2 −1 entries. It is then easy to see [4] that the partition function (6.15) is given
by the Hermitian two-matrix model,

Z(N1,N2, ĝs)

=
∫

dM1dM2 exp
{
− 1

2ĝs
TrM2

1−
1

2ĝs
TrM2

2+V (M1)+V (M2)+W (M1,M2)
}

,

(6.17)

where

V (M) = 1
2

∞

∑
k=1

ak
2k
∑

s=0
(−1)s

(2k
s

)
TrMsTrM2k−s,

W (M1,M2) =
∞

∑
k=1

bk
2k
∑

s=0
(−1)s

(2k
s

)
TrMs

1TrM2k−s
2 ,

(6.18)
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and

ak =
B2k

k(2k)!
, bk =

22k−1
k(2k)!

B2k. (6.19)

The vacuum expectation value of the unknot in L(2,1) is similarly given by

WR(N1,N2, ĝs) =
1

Z(N1,N2, ĝs)
〈trReM〉, (6.20)

where, in terms of the eigenvalues m1
i , m2

j of M1, M2, the matrix eM is given by

eM = diag(em1
1 , · · · ,em1

N1 ,−em2
1 , · · · ,−em2

N2 ). (6.21)

The vev in (6.20) is defined by the weight given by the exponent in (6.17), and it
can be easily computed in perturbation theory.

In order to compare the results with the string theory results, we will need to
compute the connected vevs W (c)

k in the k = (k1,k2, · · ·) basis, which are defined
by

log

[
∑
R

WRTrR V

]
= ∑

k

1
zk!

W (c)
k ϒk(V ), (6.22)

where the notations are as in (A.3). Using the matrix model representation we can
easily compute, for example,

W (c)
(1,0,···) = N1−N2+

ĝs

2
(N2

1 −N2
2 )+

ĝ2
s

24
(N1−N2)

(
4N2

1 +4N2
2 +10N1N2−1

)
+ · · · ,

W (c)
(2,0,···) = ĝs(N1 +N2)+

ĝ2
s

2
(
3N2

1 +3N2
2 +4N1N2

)
+

ĝ3
s

6
(
7(N3

1 +N3
2 )+15(N2

1 N2 +N1N2
2 )
)

+
ĝ4

s

24
(
15N4

1 +47N3
1 N2 +{N1 ↔ N2}+63N2

1 N2
2 +3N1N2

)
+ · · · ,

W (c)
(0,1,0,···) = N1 +N2 +2ĝs(N2

1 +N2
2 )+

ĝ2
s

3
(N1 +N2)

(
5N2

1 +5N2
2 −2N1N2 +1

)
+

ĝ3
s

12
(
11N4

1 +18N3
1 N2+6N2

1 N2
2 +5N2

1 +18N1N2+{N1 ↔ N2}
)
. (6.23)

In order to compare with topological string amplitudes it is convenient to reorga-
nize the connected vevs in terms of the ’t Hooft expansion. To do that, we intro-
duce the ’t Hooft variables

Si = ĝsNi, i = 1, · · · , p. (6.24)
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A diagrammatic argument based on fatgraphs says that the connected vevs have
the structure

W (c)
k (Si, ĝs) = ∑

g,hi

ĝ2g−2+|k|+∑i hi
s Fg,k,hiN

h1
1 · · ·Nhp

p

= ∑
g,hi

ĝ2g−2+|k|
s Fg,k,hiS

h1
1 · · ·Shp

p . (6.25)

The explanation for this is simple: in terms of fatgraphs, the connected vev W (c)
k (Ni, ĝs)

is obtained by summing over fatgraphs with a fixed number of holes |k| but with
varying genus g and number of “coloured” holes hi. We can sum over all coloured
holes at fixed genus to obtain the amplitude

W (g)
k (Si) = ∑

hi

Fg,k,hiS
h1
1 · · ·Shp

p . (6.26)

Finally, in order to make contact with the open toplogical string amplitudes we
notice that

∑
k, |k|=h

1
zk

W (g)
k (Si)ϒk(V ) = W (g)

h (z1, · · · ,zh), (6.27)

under the dictionary (A.6).
From the above explicit computations we get the following results:

A(0)
1 (p) = p

{
S1−S2 +

1
2
(S2

1−S2
2)+

1
24

(S1−S2)(4S2
1 +10S1S2 +4S2

2)

+
1

24
(S1−S2)(S3

1 +S3
2 +4(S2

1S2 +S1S2
2))+ · · ·

}
+

1
2

p2
{

S1 +S2 +2(S2
1 +S2

2)+
1
3
(S1 +S2)(5S2

1−2S1S2 +5S2
2)

+
1
12
(
11(S4

1 +S4
2)+18(S3

1S2 +S3
2S1)+6S2

1S2
2
)

+
1

180
(S1 +S2)

(
69S4

1 +126S3
1S2−6S2

1S2
2 +{S1 ↔ S2}

)
+ · · ·

}
+

1
3

p3
{

S1−S2 +
9
2
(S2

1−S2
2)+

1
4
(S1−S2)(30(S2

1 +S2
2)+39S1S2) · · ·

}
,

(6.28)

A(1)
1 (p) = p

{
− 1

24
(S1−S2)−

1
48

(S2
1−S2

2)−
1

576
(S1−S2)

(
4(S2

1+S2
2)+19S1S2

)
+ · · ·

}
+

1
2

p2
{

1
3
(S1 +S2)+

1
12
(
5(S2

1 +S2
2)+18S1S2

)
+

1
180

(S1+S2)
(
55(S2

1+S2
2)+230S1S2

)
+ · · ·

}
+

p3

3

{
21
8

(S1−S2)+ · · ·
}

,

(6.29)
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A(0)
2 (p,q) = pq

{
S1 +S2 +

1
2
(3S2

1 +3S2
2 +4S1S2)+

1
6
(S1 +S2)(7(S2

1 +S2
2)+8S1S2)

+
1
24
(
15(S4

1 +S4
2)+47(S3

1S2 +S3
2S1)+63S2

1S2
2
)
+ · · ·

}
+(p2q+pq2)

{
(S1−S2)+

7
2
(S2

1−S2
2)+

1
12
(
62(S3

1−S3
2)+51(S2

1S2−S1S2
2)
)

+
1
24
(
115(S4

1−S4
2)+201(S3

1S2−S1S3
2)
)
+ · · ·

}
, (6.30)

A(0)
3 (p,q,r)= pqr

{
3(S1−S2)+

17
2

(S2
1−S2

2)+
1
4
(46(S3

1−S3
2)+45(S2

1S2−S2
2S1))+ · · ·

}
.

(6.31)

Finally, as explained in [45], Wilson loop operators in Chern–Simons theory
need a choice of framing in order to be properly defined. The calculations above
correspond to the framing coming naturally from the Gaussian integral in (6.20),
and to change the framing by f units it is enough to multiply WR by

exp{− f ĝsκR/2}. (6.32)

The amplitudes computed above would change correspondingly. We would have,
for example,

A(0)
1 (p) = p

{
S1−S2 +

1
2
(S2

1−S2
2)+

1
24

(S1−S2)
(
4(S2

1 +S2
2)+10S1S2

)
+ · · ·

}
+

p2

2
{

S1 +S2 +(2− f )(S2
1 +S2

2)+2 f S1S2

+
1
3
(S1 +S2)

(
(5−3 f )(S2

1 +S2
2)+2(3 f −1)S1S2

)
+ · · ·

}
, (6.33)

and

A(0)
2 (p,q)= pq

{
(1− f )(S1+S2)+

1
2
(
(3−4 f + f 2)(S2

1+S2
2)+(4−2 f 2)S1S2

)
+ · · ·

}
+ · · · .

(6.34)

6.2 The orbifold point and a large N duality

In [4] it was argued that topological string theory on Xp, the symmetric Ap−1 fi-
bration over P1, is dual to Chern–Simons theory in the lens space L(p,1). This
is a highly nontrivial example of a gauge theory/string theory duality which can
be obtained by a Zp orbifold of the large N duality of Gopakumar and Vafa [25].
Equivalently, it can be understood as a geometric transition between T ∗(S3/Zp)
(which is equivalent to Chern–Simons theory on L(p,1) [46]) and the Xp geome-
try.
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Fig. 9 The geometric transition between T ∗(S3/Z2) with a Lagrangian brane associated to the
unknot, and local P1×P1 with an outer brane

Checking this duality is complicated because the perturbative regime of the
gauge theory, where one can do computations easily, corresponds to string theory
on Xp near the point ti = 0, where the ti are the Kähler parameters. This is a
highly stringy phase — a small radius region — where the α ′ corrections are very
important. It is conventional to refer to this point as an orbifold point (although
the periods are still logarithmic) and we will do so in the following. This type
of problem in testing the duality is well-known in the context of the AdS/CFT
correspondence, where the perturbative regime of N = 4 Yang–Mills corresponds
to a highly curved AdS5 × S5 target. In order to proceed, one has to either do
computations in the strong ’t Hooft coupling regime of Chern–Simons theory, or to
solve topological string theory near the orbifold point. Thanks to mirror symmetry
and the B-model, the second option is easier, and this was the strategy used in [4]
to test the duality in the closed string sector.

How would we extend this story to the open sector? First we recall that, in the
Gopakumar–Vafa duality, a knot K in S3 leading to a Wilson loop operator in
Chern–Simons gauge theory corresponds to a Lagrangian submanifold LK in the
resolved conifold [41]. Moreover, the connected vevs (6.27) become, under this
duality, open string amplitudes with the boundary conditions set by LK . After
orbifolding by Zp, the natural statement (generalizing the results of Ooguri and
Vafa in [41]) is that a knot in L(p,1) corresponds to a Lagrangian submanifold in
Xp. The simplest test of the
Ooguri–Vafa conjecture is the unknot, which corresponds to a toric D-brane in
an outer edge of the resolved conifold (see for example [38] for details). It is then
natural to conjecture that the unknot in L(p,1) is dual to a toric D-brane in an
outer edge of Xp, and that the connected vevs for the corresponding Wilson line
correspond to open string amplitudes for this brane. This should follow from the
geometric transition for Xp proposed in [4], and it is sketched in Fig. 9.

Testing this conjecture is again difficult for the reasons explained above. In or-
der to compare with the perturbative string amplitudes that we computed from the
Chern–Simons matrix model, we need a way to compute open string amplitudes
that makes it possible to go anywhere in the moduli space. But this is precisely
one of the outcomes of the B-model formalism proposed in this paper! We will
now explain how to compute open string amplitudes in the p = 2 case, i.e. lo-
cal P1 ×P1, near the orbifold point, extending in this way the test of the duality
performed in [4] to the open sector. This will verify not only our extension of
the duality for knots in the lens space L(2,1), but also the power of our B-model
formalism.

6.3 Orbifold amplitudes

We now explain how to compute open string amplitudes at the orbifold point in
the local P1×P1 geometry, using the B-model formalism developed in this paper.
We follow the general discussion in Sect. 3.4. Basically, to compute the open
amplitudes at the orbifold point, one only needs to find the disk and the annulus
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amplitudes at this point, and then use our B-model formalism to generate the other
amplitudes recursively. We also need to fix the open and closed mirror maps at the
orbifold point in order to compare with the Chern-Simons results.

Let us start by introducing the geometrical data, as in Sect. 5.2. The two charge
vectors for local P1×P1 are:

Q1 = (−2,1,1,0,0),
Q2 = (−2,0,0,1,1). (6.35)

The mirror curve in the parameterization corresponding to an outer brane with
zero framing is hyperelliptic and reads:

H(x̃, ỹ;qs,qt) = ỹ2 + ỹ(qsx̃2 +1+ x̃)+qt x̃2 , (6.36)

with qs = e−ts and qt = e−tt .
This geometry was studied at large radius in [39]. Solving for ỹ we get:

ỹ± =
(1+ x̃+ x̃2qs)±

√
(1+ x̃+ x̃2qs)2−4qt x̃2

2
(6.37)

from which we can construct the meromorphic differential (3.15). The Bergmann
kernel can then be computed in terms of the branch points of the x̃-projection
using Akemann’s formula (3.25). As in the case of local P2, it is easier to work
with s = x̃−1. In this variable, the branch points are given by:

λ1,2 = −1
2
∓√qt −

1
2

√
(1±2

√
qt)2−4qs,

λ3,4 = −1
2
∓√qt +

1
2

√
(1±2

√
qt)2−4qs. (6.38)

The large radius open flat coordinate for outer branes is given by the integral
U =

∫
αu

λ , where the cycle αu is analogous to the one in Fig. 2. This is evaluated
to

U = ũ− ts−Ts

2
, (6.39)

where Ts is the closed flat coordinate.
We now have to implement the phase transition from large radius to the orb-

ifold point. That is, we need to extract the disk and annulus amplitudes at the
orbifold point from the large radius ones, as explained in Sect. 3.4. The disk trans-
forms trivially, hence we just need to expand it in the appropriate variables at the
orbifold point. However, the Bergmann kernel undergoes a non-trivial modular
transformation.

The phase transition from large radius to orbifold in the local P1×P1 geom-
etry is given by an S-duality transformation of the periods, corresponding to an
exchange of the vanishing cycles.9 This is precisely the case that was studied in

9 In fact, this is not quite right. Going from large radius to the orbifold patch not only ex-
changes the cycles, but also changes the symplectic pairing by an overall factor of 2. Hence,
the transformation is not quite symplectic; this is analogous to the transformation from large
radius to the orbifold of local P2 considered in [1]. As was explained there, this change in the
symplectic pairing can be taken into account by renormalizing the string coupling constant. In
the present case, we get that gs = 2ĝs, where ĝs is the Chern-Simons coupling constant. This is
also the origin of the 1/2 factors in (6.44).
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Sect. 3.4. This transformation can be implemented directly into the Bergmann
kernel by permuting the branch points

(λ1,λ2,λ3,λ4)→ (λ1,λ4,λ3,λ2) (6.40)

in Akemann’s formula (3.25).
All the other orbifold open amplitudes can then be generated by simply using

the new Bergmann kernel (with the new ordering of the cuts) in the recursion.

6.3.1 Orbifold flat coordinates.

We will now introduce the orbifold flat coordinates. Let us start with the closed
ones. The appropriate variables to study the orbifold expansion were introduced
in [4] and read:

q1 = 1− qt

qs
, q2 =

1
√

qs

(
1− qt

qs

) . (6.41)

In order to have q1 and q2 both small at the orbifold point, we have to take the
following double—scaling limit:

qt → qs,
√

qs → ∞,
√

qs

(
1− qt

qs

)
→ ∞, (6.42)

corresponding to a blow up in the (qs,qt)-plane, which was described in detail in
[4].

The flat coordinates s1 and s2, are solutions of the Picard-Fuchs equations with
a convergent local expansion in the variables q1 and q2. The principal structure of
the solutions of the orbifold Picard-Fuchs equations is

ω0 = 1,

s1 = − log(1−q1),
s2 = ∑

m,n
cm,nqm

1 qn
2,

F0
s2

= s2 log(q1)+ ∑
m,n

dm,nqm
1 qn

2 , (6.43)

where the recursions of the cm,n and dm,n follow from the Picard-Fuchs operator.
Note that the expansion coefficients cn,m have the property cm,n mod 2 = 0.

The closed flat coordinates are related to the ’t Hooft parameters of Chern-
Simons theory. The precise relation was found in [4] to be

S1 =
1
2

T1 =
(s1 + s2)

4
, S2 =

1
2

T2 =
(s1− s2)

4
. (6.44)

According to the location of the orbifold divisor at qs → ∞, described above,
q2 picks up a phase under the orbifold monodromy MZ2 around it. Therefore, by
definition (6.44) has the following behavior under orbifold monodromy:

MZ2 : (S1,S2) 7→ (S2,S1). (6.45)
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Notice that the closed string orbifold amplitudes, calculated in [4], are indeed
invariant under the above MZ2 momodromy, as required for an orbifold expansion
(see also [1]).

Using the explicit form for the periods and the relation with the Chern-Simons
variables we find the inverse mirror map for the closed parameters:

q1 = 2(S1 +S2)−2(S1 +S2)2 +
4
3
(S1 +S2)3 + · · · ,

q2 =
S1−S2

S1 +S2
+

1
2
(S1−S2)+

(S2
1S2−S1S2

2)
12(S1 +S2)

+
(S3

2−S3
1)

24
+ · · · . (6.46)

We see from this expansion that, as already mentioned, q2 picks up a phase under
orbifold monodromy. More precisely, we get the behavior:

MZ2 : (q1,q2) 7→ (q1,−q2). (6.47)

Let us now consider the open flat coordinate. Recalling Sect. 2.3.5, the open
flat coordinate should be a linear combination of

uB = ũ− ts
2
, (6.48)

the disk amplitude

A(0)
1 (x̃;qs,qt) =

∫
βu

λ , (6.49)

which according to (2.58) are globally defined integrals, and the closed string
solutions (6.43). In this case, we fix the six coefficients in the definition of the
open flat coordinates by matching the disk amplitude at the orbifold with the result
from Chern-Simons theory.

Defining as usual exponentiated coordinates XB = euB and x̃ = eũ, we get for
the open flat coordinate p := Xorb = euorb :

p := Xorb = XB = x̃
√

qs =
x̃

q1q2
. (6.50)

Expanding the inverse relation

x̃ = Xorbq1q2, (6.51)

we get the open string inverse mirror map

x̃ = Xorb

(
2(S1−S2)− (S1−S2)(S1 +S2)+

1
3
(S1−S2)(S1 +S2)2 + · · ·

)
. (6.52)

Since x̃ is a globally defined variable on the curve, we see from (6.50) and
(6.47) that under orbifold monodromy,

MZ2 : Xorb 7→ −Xorb. (6.53)

This monodromy behavior of the open flat coordinate is crucial to ensure mon-
odromy invariance of the topological string orbifold amplitudes. This mechanism



Remodeling the B-Model 59

is already visible in the first few terms of (6.52); under the orbifold MZ2 mon-
odromy, the minus sign coming from S1 ↔ S2 cancels out with the minus sign
coming from the action (6.53) on Xorb, leaving the mirror map invariant.

Furthermore, one can check that adding other periods si, F0
s2

or the disk am-

plitude A(0)
1 to the definition of the open flat parameter would spoil this invariance

property, so that we can fix the open flat parameter Xorb uniquely, up to a scale.

6.3.2 Results.

We have now all the ingredients required to compute open orbifold amplitudes.
Let’s start with the disk amplitude:

A(0)
1 (p) = p

{
2S1−S2

1 +
S3

1
3
− S4

1
12
−2S2 +

S2
1 S2

2
−

S3
1 S2

4
+S2

2

− S1 S2
2

2
−

S3
2

3
+

S1 S3
2

4
+

S4
2

12
+ · · ·

}
+p2

{
S1−2S2

1 +
5S3

1
3
− 11S4

1
12

+S2 +S2
1 S2−

3S3
1 S2

2
−2S2

2

+ S1 S2
2−

S2
1 S2

2
2

+
5S3

2
3
−

3S1 S3
2

2
− 11S4

2
12

+ · · ·
}

+p3
{

2S1

3
−3S2

1 +5S3
1−

59S4
1

12
− 2S2

3
+

3S2
1 S2

2
−

19S3
1 S2

4
+3S2

2

− 3S1 S2
2

2
−5S3

2 +
19S1 S3

2
4

+
59S4

2
12

· · ·
}

. (6.54)

Comparing (6.54) with the Chern-Simons result (6.28), we see that to match the
two results we have to multiply (6.54) by − 1

2 and send S1 →−S1, S2 →−S2.
With the above identifications we also checked that the higher amplitudes,

such as the annulus, genus 0, three-hole and genus 1, one-hole, reproduce the
Chern-Simons results. We notice that, as required, all the higher amplitudes are
invariant under the MZ2 monodromy.

Framing can also be taken into account; let us see how it goes for the disk
amplitude. Higher amplitudes can be dealt with in a similar fashion. We start by
computing the reparameterization x̃ = x̃(x) corresponding to the symplectic trans-
formation

(x̃, ỹ)→ (x,y) = (x̃ỹ f , ỹ) , (6.55)

which reads:

x̃(x) = x− f x2 +

(
f +3 f 2−2 f qs +2 f qt

)
x3

2
+ . . . . (6.56)

The bare framed disk amplitude is simply given by:

A(0)
1 (x) =

∫
log ỹ(x̃(x))

dx
x

. (6.57)
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We could have computed y = y(x) by solving the framed mirror curve for y, rather
than by reparameterizing ỹ(x̃); the reparameterization (6.56) is however required
to compute the framed Bergmann kernel.

We then have to expand the bare disk amplitude (6.57) in the orbifold variables
(6.41), and express the result in flat coordinates using the inverse mirror maps
(6.46) and (6.52). Doing so, we obtain a perfect matching with the Chern-Simons
result (6.33) once the identification

fcs = 2 f (6.58)

between the Chern-Simons integer fcs and the integer f appearing in the symplec-
tic transformation is taken into account. The matching holds for higher amplitudes
with the above identification.

6.4 The C3/Z3 orbifold

We studied in detail the open amplitudes at the local P1×P1 orbifold point, and
checked our results with Chern-Simons theory using large N duality. Here we will
make a prediction for the disk amplitude at the local P2 orbifold point, which
corresponds to the geometric orbifold C3/Z3.

Basically, we use the same principles formulated in Sect. 2.3.5 to determine
the flat parameters at the orbifold point, up to a scale factor. This is sufficient
to predict the disk amplitude. To go to higher amplitudes, we would also need to
understand the modular transformation of the annulus amplitude. We are presently
working on that and hope to report on it in the near future.

Recall from Sect. 2.3.6 that the chain integral giving the open flat parameter at
large radius of local P2 is given by

U = ũ− t−T
3

, (6.59)

and the invariant combination of integrals is

uB = ũ− t
3
. (6.60)

Since this is globally defined, it provides a basis vector for the flat coordinates
at the orbifold point. In terms of exponentiated coordinates XB = euB , x̃ = eũ and
q = e−t , we get

XB = x̃q
1
3 = (−)

1
3

x̃
3ψ

, (6.61)

where we introduced the variable ψ on the moduli space defined by q = − 1
(3ψ)3 ,

so that the orbifold point is at q → ∞, or ψ → 0.
To determine the open flat coordinate at the orbifold point, we can form combi-

nations of the closed periods, the chain integral uB and the disk amplitude A(0)
1 (x̃,q).

But we find that

Xorb = XB = (−)
1
3

x̃
3ψ

(6.62)
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is the only combination which leads to a monodromy invariant orbifold disk am-
plitude.

Using this open flat parameter, we can write down explicitly the disk amplitude
for C3/Z3. In [1], the closed flat parameter σ at the orbifold point was determined,
using the Picard-Fuchs equations. We refer the reader to [1] for the explicit form of
σ as an expansion in ψ around ψ = 0. Using this result and the open flat parameter
(6.62), we get the following disk amplitude, up to a scale of Xorb:

A(0)
1 =

(
σ1 +

σ4
1

648
−

29σ7
1

3674160
+

6607
71425670400

σ
10
1 + . . .

)
Xorb

+
(
−σ2

1
4
−

σ5
1

1296
+

197σ8
1

58786560
− 5737

142851340800
σ

11
1 + . . .

)
X2

orb

+
(
−1

3
+

σ3
1

9
+

σ6
1

1944
−

σ9
1

544320
. . .

)
X3

orb +O(X4
orb). (6.63)

Notice that under the Z3 orbifold monodromy, given by

ψ 7→ e
2πi
3 ψ, (6.64)

we have that

MZ3 : (Xorb,σ) 7→ (e−
2πi
3 Xorb,e

2πi
3 σ), (6.65)

which leaves the disk amplitude (6.63) invariant, as it should.

7 Conclusion and Future Directions

The formalism proposed in this paper opens the way for various avenues of re-
search. Let us mention a few specific ideas.

• In this paper we proposed a complete B-model formalism to compute open and
closed topological string amplitudes on local Calabi-Yau threefolds. An obvi-
ous question is whether we can extend this formalism to compact Calabi-Yau
threefolds. At first sight this seems like a difficult task, since we relied heavily
on the appearance of the mirror curve in the B-model geometry to implement
the recursive formalism of
Eynard and Orantin. However, there are various approaches that one could pur-
sue. One could try to generalize the geometric formalism to higher-dimensional
manifolds so that it applies directly to compact Calabi-Yau threefolds. Another
idea, perhaps more promising, would be to formulate the recursion relations
entirely in terms of physical objects in B-model topological string theory; in
such a formalism it would not matter whether the target space is compact or
non-compact.

• We checked our formalism for all kinds of geometries, and have a rather clear
understanding of the origin of the recursive solution based on the chiral boson
interpretation of the B-model (see [39]). It was also proved in [23] that once
the Bergmann kernel is promoted to a non-holomorphic, modular object, the
amplitudes that we compute satisfy the usual holomorphic anomaly equations.
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But we do not have a proof that our formalism really is B-model topological
string theory, not even a “physics proof”. It would be very interesting to pro-
duce such a proof, probably along the lines of [39].

• The recursion relations that we used were first found when the curve is the
spectral curve of a matrix model. In the local geometries considered in this pa-
per, there is no known matrix model corresponding to the mirror curves. Nev-
ertheless, the recursion relations compute the topological string amplitudes. It
would be fascinating to try to find a matrix model governing topological string
theory on these local geometries. This could also provide a new approach to-
wards a non-perturbative formulation of topological string theory.

• Our formalism can be used to study phase transitions in the open/closed mod-
uli spaces, and generate open and closed amplitudes at any point in the mod-
uli space, including in non-geometric phases. We used this approach to study
S-duality transformations and the orbifold point in the local P1 × P1 mod-
uli space, and compared our results with Chern-Simons expectation values.
We also proposed a prediction for the disk amplitude of C3/Z3, which cor-
responds to the orbifold point in the local P2 moduli space. However, while
closed orbifold Gromov-Witten invariants are well understood mathematically,
to our knowledge open orbifold Gromov-Witten invariants have not been de-
fined mathematically. Hence, it would be fascinating to extend our analysis
further and obtain a physics prediction for the higher open invariants of C3/Z3.
In order to obtain these results, we would need to understand the Bergmann
kernel at the orbifold point; this is more complicated than the P1×P1 example
studied in this paper since the tranformation from large radius to the orbifold
is now in SL(2,C) — see [1]. We are presently working on that and should
report on it in the near future.

• Notice that the closed and open string amplitudes on Xp provide the ’t Hooft re-
summation at strong coupling of the perturbative amplitudes of Chern–Simons
gauge theory on L(p,1), which is a nontrivial problem for p > 1. Already in
the simple case of Chern–Simons theory on L(2,1), the resummation problem
involves considering a nontrivial moduli space, namely the moduli space of
complex structures for the mirror of Xp, where the orbifold point corresponds
to weak ’t Hooft coupling and the large radius point corresponds to strong ’t
Hooft coupling. It would be interesting to see if the lessons extracted from this
example have consequences for the problem of the ’t Hooft resummation of
N = 4 SYM amplitudes, where a lot of progress has been made recently. At
the very least, the topological example we have solved shows that the analytic
structure of the ’t Hooft moduli space is very complicated, and that a clever
parametrization of this space (by using an analogue of the mirror map) might
simplify considerably the structure of the amplitudes.

A Useful Conventions

In this appendix we recall some useful conventions necessary in order to compare the topological
open string amplitudes (2.19) with the results of the topological vertex. In the formalism of the
topological vertex [3], open string amplitudes are encoded in a generating functional depending
on a U(∞) matrix V ,

F(V ) = log Z(V ), (A.1)
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where

Z(V ) = ∑
R

ZR trR V (A.2)

is written as a sum over partitions R. It is often convenient to write the free energy F(V ) in terms
of connected amplitudes in the basis labeled by vectors with nonnegative entries k = (k1,k2, · · ·).
In this basis,

F(V ) = ∑
k

1
zk!

W (c)
k ϒk(V ), (A.3)

where (see for example [38] for details)

ϒk(V ) =
∞

∏
j=1

(TrV j)k j , zk = ∏
j

k j! jk j . (A.4)

The functional (A.2) is related to the generating functions (2.19) as

F(V ) =
∞

∑
g=0

∞

∑
h=1

g2g−2+h
s A(g)

h (z1, · · · ,zh), (A.5)

after identifying

TrV w1 · · · trV wh ↔ mw(z) = ∑
σ∈Sh

h

∏
i=1

zwi
σ(i), (A.6)

where mw(z) is the monomial symmetric polynomial in the zi and Sh is the symmetric group of
h elements. Under this dictionary we have that

A(g)
h (z1, · · · ,zh) = ∑

k | |k|=h

1
zk!

W (c)
k ϒk(V ), (A.7)

where

|k|= ∑
j

k j. (A.8)
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