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Abstract

The hierarchy problem constitutes one of the main theoretical motivations for

physics beyond the Standard Model. One well-motivated solution is to assume

that the Higgs arises as a bound state of some new strong dynamics, cutting off its

sensitivity to physics above the compositeness scale. An alternative possibility is

to posit the existence of a warped extra dimension. These two seemingly different

scenarios are in fact linked through the AdS/CFT correspondence. In this thesis

we explore aspects of such models from both the 4D and 5D viewpoints, with

a particular focus on the pseudo-Nambu Goldstone bosons (pNGBs), which are

likely the lightest new states.

In Chapter 1 we review the motivation for physics beyond the Standard Model from

both experimental observations and theoretical considerations. We then provide

a review of models which seek to address the hierarchy problem using warped

extra dimensions or a composite, pNGB Higgs boson in Chapter 2. We discuss

the generic features of these models and their relationship through the AdS/CFT

correspondence, as well as the current bounds provided by experiment.

In Chapter 3 we consider the linear dilaton model, which features a warped metric

and a large interbrane distance. We utilise a Goldberger-Wise type mechanism to

stabilise the extra dimension and investigate the resulting scalar spectrum. We

study the phenomenology of the lightest mode, the radion, in detail and explore

the constraints from LHC searches on the parameter space.

We investigate the consequences of radion/dilaton-Higgs mixing in Chapter 4.

In the context of the Randall-Sundrum model with a bulk Higgs, we show that

both mass and kinetic mixing are generically expected. Furthermore, the radion

phenomenology is significantly modified by moving the Higgs into the bulk. We use

the 5D formalism to motivate the most general 4D effective Lagrangian describing

the Higgs-radion system and investigate the constraints on the parameter space,

as well as future search strategies.

Conformal invariance is incompatible with spontaneous breaking, due to the pres-

ence of a quartic term in the dilaton potential. However a naturally light dilaton

can be obtained via explicit breaking by a marginally relevant operator. In Chap-

ter 5 we construct a gravitational dual of such a model using a soft-wall background.

We consider an analytic bulk potential corresponding to a walking coupling in the

UV and a fast transition to an order-one β-function in the IR. This provides a



iv

realistic example of a naturally light dilaton where a single operator provides both

the explicit breaking and develops a non-zero condensate.

In Chapter 6 we consider the unnatural composite Higgs model, which assumes a

large global symmetry breaking scale f & 10 TeV. This leads to a split spectrum,

with the pseudo-Nambu Goldstone bosons likely the only new states accessible

at colliders. A generic prediction of such models is a colour-triplet partner of

the Higgs, which can be metastable. We study the collider phenomenology of

this colour-triplet scalar and explore the discovery reach of the LHC and future

colliders using prompt, displaced and collider-stable searches.
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Preface

This thesis comprises seven main chapters. Chapters 1 & 2 are an original intro-

duction and literature review. Chapter 3 is based on publication [1], Chapter 4 on

publications [2] and [6], and Chapters 5 & 6 on publications [3] and [4] respectively.

Chapter 7 is the conclusion. The publications were produced in collaboration with

James Barnard (publication [4]), Tony Gherghetta (publications [1, 3, 4]), Anibal

Medina (publications [2, 6]), Tirtha Sankar Ray (publications [2, 6]) and Andrew

Spray (publications [2, 4, 6]).

While much of the original motivation and inspiration for these projects should

be attributed to my collaborators, in particular my supervisor Tony Gherghetta,

all calculations, results, and analyses presented in this thesis are my own work

unless stated otherwise. In Chapter 4, the calculation of the Higgs-radion mixing

in the presence of non-zero backreaction presented in Section 4.3.3 was performed

by Tirtha Sankar Ray and Andrew Spray, and the discussion of composite Higgs

models in Section 4.3.4 is due to Anibal Medina. In Chapter 6, the limits from

R-hadron searches in Section 6.3.1 were computed by James Barnard, while the

discussion regarding non-minimal models in Section 6.2.3 is due to James Barnard

and Andrew Spray.

Finally, the linear dilaton model was also the topic of my MSc thesis. Chapter 3

includes several significant additions and improvements compared to the work

presented in that thesis. The two most important additions are: (i) the calculation

of the radion profile and mass has been extended to all orders in the boundary

mass, which allows the stability of the solution to be addressed; (ii) the constraints

on the parameter space from recent LHC searches have been determined.
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1

Introduction

1.1 The Standard Model

The Standard Model (SM) of particle physics has proven to be one of the great

success stories of physics in the past century. Its development has required a

dedicated theoretical and experimental effort over many decades, culminating with

the discovery of the Higgs boson in 2012 by the ATLAS and CMS collaborations

at the Large Hadron Collider (LHC) [1, 2].

The structure of the Standard Model is largely determined by its SU(3)×SU(2)×
U(1)Y local gauge symmetry. The associated gauge bosons transform under the

adjoint representation of the individual gauge groups, leading to 12 spin-1 degrees

of freedom

g ∼ (8,1,0) W ∼ (1,3,0) B ∼ (1,1,0) . (1.1)

The SU(2)×U(1)Y electroweak (EW) gauge group is spontaneously broken to its

U(1)Q subgroup via the Higgs mechanism. This introduces an additional Higgs

doublet complex scalar field transforming as

H ∼ (1,2,
1

2
) , (1.2)

which acquires a vacuum expectation value (vev) 〈H〉 = 174 GeV. The gauge

fields associated with the broken generators then acquire non-zero masses, with

the additional longitudinal polarisations provided by the three would-be massless

Nambu-Goldstone boson (NGB) degrees of freedom. The unbroken generator is

given by Q = W 3 + B, such that the mass and gauge eigenstates do not coincide

but are related by the transformation

Aµ = sin θWW
3
µ + cos θWBµ , (1.3)

Zµ = cos θWW
3
µ − sin θWBµ , (1.4)
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where θW is the Weinberg angle. We are then left with three massive spin-1 degrees

of freedom, W±µ and Zµ, while the spin-1 photon, Aµ, remains massless. The final

degree of freedom contained in the Higgs doublet corresponds to a physical neutral

scalar: the Higgs boson.

The fermionic content of the SM is divided into the quarks and leptons, distin-

guished by their transformation properties under SU(3). The leptons are SU(3)

singlets and transform under the electroweak gauge group according to

L ≡
(
νL
eL

)
∼ (1,2,−1

2
) , eR ∼ (1,2,−1) , (1.5)

where L (R) denote left- (right-) handed chiral spinors. Their electric charges are

determined by their SU(2) isospin and hypercharge according to Q = τ3 +Y , such

that the electron eL,R has charge -1, while the neutrino νL is uncharged. The SM

contains three copies of this structure, known as generations, with the charged

leptons (electron: e, muon: µ, tau: τ) and the corresponding neutrinos (νe, νµ,

ντ ). The charged leptons acquire masses via Yukawa couplings of the form

Y l
i,j L̄

i
LHe

j
R + h.c , (1.6)

where Y l
i,j is a 3×3 complex matrix. The charged-lepton masses obey the hierarchy

me < mµ < mτ , while the absence of right-handed neutrinos means that the

neutrinos remain massless within the Standard Model.

The quarks are charged under SU(3) and transform according to

QL ≡
(
uL
dL

)
∼ (3,2,

1

6
) ,

uR ∼ (3,1, 23) ,

dR ∼ (3,1,−1
3) .

(1.7)

The up- (uL,R) and down- (dL,R) type quarks then carry electric charges of 2/3

and -1/3 respectively. Similarly to the leptons, the SM contains three generations

of quarks, divided into the up-type (up: u, charm: c, top: t) and down-type (down:

d, strange: s, bottom: b). They also acquire masses through Yukawa couplings to

the Higgs

Y u
i,j Q̄

i
LH̃u

j
R + h.c ,

Y d
i,j Q̄

i
LHd

j
R + h.c , (1.8)

where Y
(u,d)
ij are 3 × 3 complex matrices and H̃ = εH∗ with ε the Levi-Cevita

symbol. They are often separated into the light quarks which satisfy mu < md <

ms and the heavy quarks, mc < mb < mt.



1.2. Going Beyond 3

The SU(3) quantum chromodynamics (QCD) gauge group is distinct from the other

SM gauge groups in that it exhibits confinement. As a result, isolated quarks are

never observed and instead form SU(3) singlet bound states known as hadrons.

These include the proton as the lightest baryon (qqq) and the pions as the light-

est mesons (q̄q). While the SU(3) gauge coupling becomes non-perturbative at

low energies leading to confinement, it is asymptotically free at high scales where

perturbative techniques can be used as in the electroweak sector.

In addition to its gauge symmetries, the SM Lagrangian contains several accidental

global U(1) symmetries. These are baryon number B, under which the quarks have

charge +1/3 and the three lepton numbers Le, Lµ and Lτ , under which the charged

leptons and neutrinos have charge +1.

The SM Lagrangian describes all the known fundamental particles and their inter-

actions in terms of only 19 free parameters, which must be experimentally mea-

sured. These can be parametrised by the three gauge couplings, six quark masses,

three charged lepton masses, three angles and one phase of the Cabbibo-Kobayashi-

Maskawa (CKM) matrix, the Higgs mass, Higgs quartic coupling, and the QCD

vacuum angle. The success of the Standard Model lies in the ability to make re-

markably precise predictions in terms of only these few parameters; predictions

which have time and again been found to be consistent with ever more precise

experimental measurements.

1.2 Going Beyond

Despite the overwhelming success of the Standard Model, there are nevertheless

many reasons why we should continue to both explore theoretically and search

experimentally for what may lie beyond. In fact, we have already observed phe-

nomena in nature which cannot be described within the Standard Model. Further-

more, there are additional theoretical reasons to suggest that the Standard Model

is unlikely to provide the complete picture. In this section we will briefly detail

the main experimental evidence and theoretical motivation for physics beyond the

SM.
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1.2.1 Evidence/Motivation for New Physics

1.2.1.1 Dark Matter

It is well known that the matter described by the Standard Model makes up only

a very small fraction of the total energy density of our universe. The existence of

dark matter is supported by a wealth of astrophysical observations on local to cos-

mological distance scales, including measurements of galactic rotation curves, weak

and strong gravitational lensing, large scale structure and the cosmic microwave

background (CMB). The most recent measurements of the CMB by the Planck

satellite [3] find that the baryonic matter described by the SM makes up only 5%

of the energy density of the universe, while dark matter contributes a further 26%.

The remaining 69% is termed dark energy and is consistent with a cosmological

constant. Despite the extensive astrophysical evidence for dark matter based on

its gravitational interactions, we still know almost nothing about its underlying

particle nature; although there are bounds on its interactions with the SM fields

from direct and indirect detection, as well as model-dependent constraints on its

self-interactions from cluster mergers. There are however numerous beyond the

SM dark matter candidates, with weakly interacting massive particles (WIMPs)

and axions among the most popular.

1.2.1.2 Neutrino Mass

It is now well established that neutrinos are massive particles, albeit with very

small masses, the sum of which are constrained by cosmological measurements to

be less than 0.32 eV [3]. The neutrino mass-squared differences and the angles of

Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixing matrix have now been mea-

sured by various neutrino oscillation experiments using solar, atmospheric and

reactor neutrinos; the CP phases(s) and the mass hierarchy will be probed by

future experiments. Nevertheless, neutrinos remain massless within the Standard

Model and new physics is required to explain their observed properties. While the

straightforward addition of three right-handed neutrinos can account for neutrino

masses, this leads to the question of why the corresponding Yukawa couplings

should be so small compared to the charged fermions. Alternatively, neutrinos

could be Majorana particles, in which case their masses explicitly break the acci-

dental lepton number symmetry of the SM.
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1.2.1.3 Matter-Antimatter Asymmetry

The universe we observe today is dominated by matter rather than anti-matter.

This is generally quantified in terms of the ratio of the baryon to photon number

densities, which is experimentally measured to be ηB/ηγ = 6.1 × 10−10 [3]. As-

suming that the universe existed in a symmetric state at early times, this leads to

the question of how such an asymmetry could be dynamically generated during its

evolution; a process known as baryogenesis. The necessary conditions were deter-

mined by Sakharov in 1967 [4]. In principle the Standard Model contains all of the

necessary ingredients for baryogenesis, however this possibility is not realised in

nature and would require both a larger CKM CP phase and a significantly lighter

Higgs mass. This therefore leaves a role for new physics to play in generating the

baryon asymmetry of the universe.

1.2.1.4 Strong CP Problem

While CPT (charge, parity, time-reversal) invariance is a necessary ingredient for a

Lorentz-invariant quantum field theory, it has been known for a long time that C,

P, and their combination CP (and consequently T) are violated in nature. The CP

violation which has been observed in meson oscillations and decays is governed

by the weak interactions through the CP violating phase in the CKM matrix.

However, there is another potential source of CP violation which arises in the

strongly interacting sector via the term

S ⊃
∫
d4x

θg2
s

32π2
εµνρσF aµνF

a
ρσ , (1.9)

where F aµν is the QCD field strength tensor and εµνρσ is the fully anti-symmetric

Levi-Cevita symbol. This term is a total derivative and does not have any observ-

able consequences if the gauge fields vanish sufficiently fast as x → ∞. However,

there are in fact solutions to the classical equations of motion known as instan-

tons [5] for which the above action is both non-zero and finite. Instanton config-

urations describe non-perturbative effects, but can be important since the QCD

coupling constant becomes large at low energies. In particular, the above term gives

rise to a non-zero electric dipole moment for the neutron, which is experimentally

constrained and leads to the bound |θ| . 10−10 [6]. The strong CP problem is

then the question of why this parameter should be so close to zero in the absence

of any symmetry reason. The most common approach to address this problem is

via the introduction of an additional Peccei-Quinn U(1)PQ symmetry [7, 8], which

leads to a new light scalar particle known as the axion [9–13].
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1.2.1.5 Flavour

The flavour structure of the Standard Model is determined by the Yukawa cou-

plings of the three fermion generations to the Higgs, giving rise to the fermion

masses and CKM quark mixing matrix. While the experimental measurements

to date are well described by this simple structure, there remain unresolved ques-

tions. For example, the large hierarchy of Yukawa couplings in the SM, ranging

from ∼ 10−6 for the electron to ∼ 1 for the top quark, is unexplained and there

is a priori no reason to expect the existence of exactly three fermion generations.

The possibility of naturally generating the fermion mass and mixing hierarchies

will be one source of motivation for the beyond the SM scenarios we will consider.

1.2.1.6 Gauge Coupling Unification

The Standard Model couplings can be evolved to high energy scales through the

use of the renormalisation group equations (RGEs). Assuming only the SM field

content, the three gauge couplings almost intersect at a scale of ∼ 1016 GeV. This

provides a tantalising hint that the SU(3)×SU(2)×U(1)Y gauge group of the SM

may unify into a single gauge group, for example SU(5) [14] or SO(10) [15, 16], at

high energies. These are known as grand unified theories (GUTs). New physics at

such high energy scales is of course well beyond the reach of current experiments,

however the unification of the gauge couplings is only approximate in the SM and

can be improved in certain extensions. This is this case in many supersymmetric

models which, if realised in nature, are naturally expected to lead to new states

around the TeV scale.

1.2.1.7 Hierarchy Problem

The hierarchy problem [17, 18] arises in quantum field theories which contain both

hierarchically separated mass scales and fundamental scalar degrees of freedom.

In short, scalar masses are generically sensitive, and receive quantum corrections

proportional to the highest scale in the theory. In the Standard Model the only

mass scale is the weak scale, which is set by the Higgs vev, v = 246 GeV. However,

if there exist additional states with large masses that cannot be decoupled from the

Higgs, they will provide corrections to the Higgs mass parameter and consequently

its vev. The masses of theW and Z gauge bosons and the Higgs are then generically

expected to take on values of order the high mass scale. This issue was first

considered in the context of grand unified theories [19] but is a potential problem
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in any extension to the SM involving mass scales significantly larger than the weak

scale. A significant concern is that new physics related to quantum gravity, which

is expected to arise around the Planck scale, could suggest the Higgs vev should

naturally be of order MPl = 2.4×1018 GeV. However without a complete quantum

theory of gravity we cannot know for certain.

1.2.1.8 Gravity

Gravity is not part of the Standard Model. General relativity has proven time and

again to describe gravity remarkably well on large distance scales. Nevertheless, the

Einstein-Hilbert action is non-renormalisable and an UV completion is necessary in

order to describe physics on distances of order the Planck scale. A new framework

is therefore required to describe the quantum properties of gravity and allow it to

be treated on the same footing as the other fundamental interactions described by

the SM.

1.2.2 Naturalness

The hierarchy problem will provide the primary motivation for the beyond the

Standard Model scenarios considered in this thesis. It is therefore worthwhile to

explore its origin in more detail. Firstly, it is important to note that the Standard

Model, in the absence of gravity and any other sources of new physics, does not

suffer from a hierarchy problem. Even at a glance this should be immediately

clear since there is only one mass scale in the theory: the Higgs mass parameter†.

The problem arises once we include new physics beyond the SM that cannot be

sufficiently decoupled from the Higgs. This is a generic problem with elementary

scalar fields in quantum field theory and can be understood as due to the fact

that there is no enhanced symmetry in the limit mS → 0; in other words this

is not a technically natural limit as defined by t’Hooft [20]. This is not the case

for fermion and gauge field masses, which are protected by chiral symmetry and

gauge invariance respectively. The result is that quantum corrections to scalar

masses need not be proportional to the mass itself; there can and generically will

be additive contributions proportional to every other mass scale in the theory.

In order to see this in practice, let us consider a simple model containing a scalar

of mass mS with a Yukawa coupling λf to a fermion with mass mf . The one-loop

†In fact there is another dynamically generated mass scale, ΛQCD, but this plays no role in
our discussion. In principle one may also worry about the U(1)Y Landau pole at ∼ 1040 GeV,
however in practice new physics is expected well below this scale.
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S S

f̄

f

Figure 1.1: One-loop correction to the scalar propagator.

fermion contribution to the scalar mass arises from the diagram in Figure 1.1. In

the MS renormalisation scheme this leads to the following β-function for the scalar

mass

µ
d

dµ
m2
S =

λ2
f

4π2
m2
S −

6λ2
f

4π2
m2
f , (1.10)

where µ is the renormalisation scale. As we suspected, the scalar mass receives

corrections which are proportional to the other mass scale in the model: the heavy

fermion mass mf . Integrating the above RGE, and neglecting for simplicity the

scale dependence of λf and mf , leads to†

m2
S(µ) = m2

S(Λ)

(
1−

λ2
f

4π2
log

(
Λ

µ

))
+

6λ2
f

4π2
m2
f log

(
Λ

µ

)
, (1.11)

where mS(Λ) is the value at some high “input” scale, Λ > mf . The problem is

now abundantly clear: obtaining a hierarchy such that m2
S(mS)/m2

f � 1 requires

that mS(Λ) be precisely fine-tuned against the m2
f contribution. A small change

in the high scale value, mS(Λ), leads to a significant deviation in the mass at low

scales due to the steep RG trajectory. In other words, the physics at low-scales is

extremely sensitive to the physics at high scales. This runs contrary to our past

experience where knowledge of physics on small scales is generally not required in

order to describe phenomena on much larger scales. This sensitivity to high scales

explicitly violates what is known as the naturalness principle. Note that while

we have used a simple Yukawa model to elucidate the problem, any field charged

under the SM gauge group will introduce a similar correction by three-loop order

at the latest.

With this knowledge in hand, there are two different methodologies or approaches

that can be taken in order to avoid a naturalness problem as a result of fine tuning

in the Higgs mass parameter. The first is to ensure that any new physics added to

the SM, for example to address any of the issues discussed in the preceding section,

does not introduce a hierarchy problem. This requires that new fields either have

masses not too far above the weak scale or can be sufficiently decoupled from

the Higgs; note that it is the combination of coupling and mass which appears

†Eq. (1.11) is valid for µ ≥ mf . At lower scales f decouples and m2
S(µ < mf ) = m2

S(mf ).
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in Eq. (1.10). However, we should clearly state that this approach ignores the

unknown but potentially problematic contributions from quantum gravity. The

second and perhaps more common approach, which motivates the models discussed

in this thesis, is to add new physics not too far above the weak scale which ensures

that the Higgs mass becomes completely insensitive to physics at higher energy

scales. This provides a strong motivation to search for new physics near the TeV

scale and is one of the main reasons for the belief that new physics could be

discovered at the LHC.

1.2.3 Strong or Weak?

We are interested in models which seek to address the hierarchy problem by en-

suring that the Higgs mass is insensitive to corrections from higher energy scales.

There are in particular two very well studied frameworks in which this can be

achieved. The first is supersymmetry (SUSY) (for a review see e.g. [21]), which

posits the existence of an additional symmetry relating fermions and bosons. The

Poincaré algebra is extended to the super-Poincaré algebra by the inclusion of

additional fermionic generators. The fact that these additional generators anti-

commute allows one to evade the Coleman-Mandula theorem [22], which otherwise

prohibits the non-trivial combination of space-time and internal symmetries. Of

course supersymmetry is clearly not a symmetry of nature; it would predict, for

example, a spin-0 partner of the electron with the same mass, which has not been

observed. If realised in the UV it must therefore be broken at low energies. To

avoid reintroducing the very problems with the Higgs mass we were seeking to

solve, the couplings responsible for this breaking must have positive mass dimen-

sion; this is known as soft breaking. Supersymmetrising the SM field content and

imposing the additional phenomenological requirement of R-parity leads to the

so-called Minimal Supersymmetric Standard Model (MSSM). The MSSM and its

non-minimal extensions are further motivated by features such as improved gauge

coupling unification and a promising dark matter candidate in the form of the

lightest supersymmetric particle, which is rendered stable by R-parity. However,

this all comes at a price, with the necessity of supersymmetry breaking meaning

that the MSSM has 105 additional parameters compared to the SM. Of course

in practice many of these additional parameters are assumed to be related, often

motivated by a specific supersymmetry breaking mechanism.

The MSSM provides a weakly coupled, perturbative† extension to the SM which

†Non-minimal extensions to the MSSM with non-perturbative couplings have been consid-
ered [23].
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addresses the hierarchy problem. The alternative possibility, which shall be the

focus of this thesis, addresses the hierarchy problem via the introduction of a new

strongly interacting sector. In this case the Higgs boson† is assumed to arise as a

bound state of a new strongly interacting sector which confines at some scale Λ & v.

Above this scale, the Higgs can no longer be considered as an elementary particle

and hence its mass cannot be sensitive to physics at higher energies. In order to

obtain the weak scale naturally and without resorting to additional fine tuning,

the compositeness scale should not be much larger than the weak scale. While we

have described models of this type as a strongly coupled solution to the hierarchy

problem, it turns out that they have a dual weakly coupled description in terms

of extra dimensional models. The existence of a weakly coupled description will

prove very useful for calculability, however it also comes with its own limitations

and in practice the two descriptions are complementary in exploring these types of

scenarios. In the next chapter we will provide a brief review of these models from

both the strongly coupled 4-dimensional (4D) and weakly coupled 5-dimensional

(5D) perspectives and discuss how they are related, before exploring various aspects

of this class of models in the subsequent chapters.

Finally, it is worth mentioning that another mechanism for addressing the hierarchy

problem has very recently been proposed [26]. It involves a relaxation mechanism,

which causes the Higgs mass to evolve towards its weak scale value during a period

of inflation in the very early universe. It remains unclear whether a realistic model,

which is consistent with all experimental bounds, can be obtained in this framework

but it is nevertheless another intriguing possibility.

1.2.4 New Physics is Hiding

Despite the very strong experimental evidence and theoretical motivation for physics

beyond the Standard Model, so far it has yet to be seen. There have been a num-

ber of interesting deviations from Standard Model predictions, however as of yet

none of them provide unequivocal evidence of new physics and could be due to

systematic effects, incorrect theoretical predictions or simply be statistical fluctu-

ations. In recent times, the LHC has been progressively increasing its sensitivity

to many well motivated extensions to the SM and is starting to exclude large re-

gions of parameter space. Constraints on new physics scenarios which give rise to

new sources of flavour violation are even more stringent, with bounds on the scale

of certain effective operators exceeding 105 TeV [27]. Nevertheless, while any new

†In the past technicolour models [18, 24, 25], which can be thought of as akin to a scaled-up
version of QCD, were considered as viable strongly coupled models of EWSB, however these were
ruled out by the Higgs discovery.
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physics has so far successfully evaded our efforts to find it, the evidence strongly

suggests that it is there somewhere waiting to be discovered.
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Extra Dimensions and Strong

Sectors

In this chapter we provide a brief introduction and review of models which seek

to address the hierarchy problem in the context of warped extra dimensions or

additional strongly coupled sectors. As we shall discuss, these two seemingly dif-

ferent possibilities are in fact inextricably linked via the AdS/CFT correspondence.

The study of theories at strong coupling is notoriously challenging and traditional

methods developed for QCD rely on effective field theories based on symmetry con-

siderations or numerical techniques such as lattice simulations. Extra dimensional

models provide an additional approach via a (weakly coupled) dual description

which can be extremely valuable by enabling us to calculate certain properties of

the strongly coupled sector.

We begin by reviewing how these models address the hierarchy problem from

the extra-dimensional viewpoint, before providing a brief introduction to the Ad-

S/CFT correspondence. This then leads naturally to a discussion from the dual

4D viewpoint, where we consider a particular class of models in which the Higgs

arises as a pseudo-Nambu Goldstone Boson (pNGB).

2.1 Large Extra Dimensions

The earliest attempts to address the hierarchy problem by introducing additional

dimensions of spacetime considered the possibility of large, flat, compact ex-

tra dimensions [28]. The underlying idea is that the fundamental Planck scale

can be significantly lower (∼TeV) than the observed 4D Planck mass (MPl =

2.4 × 1018 GeV). In these models gravity necessarily propagates in the full 4 + n

dimensions, where n is the number of extra dimensions, while the Standard Model

fields are localised on a four-dimensional manifold such that they experience an

effective 4D Planck mass. Depending on the radius and number of the additional
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compact dimensions, the effective Planck mass can be hierarchically larger than

the fundamental gravitational scale. More precisely we have

M2
Pl = M2+nRn , (2.1)

where M is the fundamental Planck mass in 4 + n dimensions and R is the radius

of the additional compact dimensions.

These models can give potentially striking experimental signatures at the LHC [28–

30], in particular the formation and subsequent decay of TeV scale black holes [31,

32] can yield high multiplicity, energetic final states. As a result, both the AT-

LAS [33, 34] and CMS [35] experiments have been able to disfavour such models

and place significant constraints on the parameter space.

2.2 Warped Extra Dimensions

It was subsequently realised that large extra dimensions were not necessary in order

to generate a large hierarchy of scales and that this could instead be achieved via

a warping of the geometry. This type of scenario was first suggested by Randall

and Sundrum [36]. They considered a single extra dimension compactified on a

line segment or equivalently a Z2 orbifold, which can be obtained by compactifying

on a circle and then identifying the opposing sides (S1/Z2). A four-dimensional

brane is then located at each endpoint of the extra dimension. This set-up is

shown in Figure 2.1. The inclusion of a non-zero 5D cosmological constant, Λ,

then leads to a warping of the fifth dimension. In order to obtain a solution which

satisfies 4D Poincaré invariance, this bulk cosmological constant must be tuned

against localised values on each of the branes. The subsequent geometry is then

five-dimensional Anti-deSitter space (AdS5) with the warped metric

ds2 = gMNdx
MdxN = e−2kyηµνdx

µdxν + dy2 , (2.2)

where y is the extra-dimensional coordinate, the indices M,N = (µ, 5), and ηµν =

diag(−,+,+,+) is the 4D Minkowski metric.

The full 5D action for such a model is written as

S = 2

∫ yc

0
d5x
√−g

(
M3

2
R+ Λ

)
−
∑
i=0,1

∫
d4x
√−γ

(
2M3[K] + λi

)
, (2.3)

where the two branes i = (0, 1) are located at y = (0, yc) and are referred to as

the UV and IR branes respectively for reasons which shall become evident. Here
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UV IR

0 yc

Figure 2.1: The Randall-Sundrum set-up.

R is the Ricci scalar, γ is the induced metric on the branes, and λi are the brane

localised cosmological constants or brane tensions. Finally, [K] denotes the jump in

the extrinsic curvature across the brane and corresponds to the Gibbons-Hawking-

York boundary term [37, 38] required for a well-posed variational problem in the

presence of a spacetime boundary.†

The Einstein equations in the bulk and on the boundaries lead to the constraints

Λ = −6M3k2 , λ(0,1) = ±6M3k . (2.4)

The first equation simply expresses the AdS curvature scale, k, in terms of the

bulk cosmological constant, while the UV boundary condition enforces the tuning

of the 4D cosmological constant. The role of the IR boundary condition will be

discussed in Section 2.2.2.

Finally, it will sometimes be more convenient to instead consider the conformal

coordinate, z = eky/k, such that the metric takes the form

ds2 =

(
1

kz

)2 (
ηµνdx

µdxν + dz2
)
. (2.5)

2.2.1 Solution to the Hierarchy Problem

The effective 4D Planck mass in the Randall-Sundrum (RS) model can be obtained

by integrating out the fifth dimension, leading to

M2
Pl = 2M3

∫ yc

0
dy e−2ky =

M3

k

(
1− e−2kyc

)
. (2.6)

†The action can also be expressed as the integral over the full circle, rather than just the line
segment, with the location of the branes fixed by Dirac delta functions. There is then no need to
explicitly include this term, although the physics is of course unchanged.
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The curvature scale is generally taken to be k . M , such that the perturbative

expansion is under control and we can neglect higher order terms beyond the

Einstein-Hilbert action†. We will be interested in the limit kyc � 1; the effective

4D Planck mass is then of order the fundamental scale M .

A very different situation arises for mass scales localised on the IR brane. Consider

for example a scalar field localised on the IR brane, which we shall denote with

some foresight by H. The brane action is given by

SIR = −
∫
d4x
√−γ

(
γµν∂µH

†∂νH −m2|H|2 + λ|H|4
)
. (2.7)

Inserting the solution for the metric (2.2) and rescaling the field by H → ekycH

such that the kinetic term is canonically normalised we obtain

SIR = −
∫
d4x

(
ηµν∂µH

†∂νH −
(
me−kyc

)2
|H|2 + λ|H|4

)
. (2.8)

Notice that the mass scale on the IR brane has been “warped-down”. This would

not be the case for fields localised on the UV brane and thus the physical mass scale

depends on the position in the extra dimension. More precisely, the momentum

cut-off required to regulate the 5D theory is y-dependent [40]. If we associate

this IR brane localised field with the Higgs, we then see that the Higgs mass is

exponentially suppressed compared to the curvature scale, mH ∼ ke−kyc . If we

wish to address the hierarchy problem and avoid fine tuning of the Higgs mass we

require mH ∼ TeV, which for M 'MPl requires kyc ' 35.

2.2.2 Stabilisation

The warped geometry of the Randall-Sundrum model allows us to generate a hier-

archy of scales, which is determined by the compactification scale or equivalently

the interbrane distance, yc. So far we have assumed that this separation is simply

a free parameter of the model, which in order to generate the Planck-electroweak

hierarchy is required to be O(M−1
Pl ). However, after integrating out the extra

dimension one finds that yc develops an effective potential given by

Veff (yc) = λ0k + λ1ke
−4kyc + Λ

(
1− e−4kyc

)
. (2.9)

It is now evident that the IR boundary condition in Eq. (2.4) enforces that yc

develop a flat potential. This is simply a consequence of the fact that the AdS

†More recently it has been shown that using the NDA estimate for the 5D cutoff, Λcut−off =

241/3πM , leads to the bound k/MPl <
√

3π3/(5
√

5) [39].
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metric is invariant under rescaling of the coordinates x → µx, or in other words

that the isometry group of AdS5 is SO(4,2) or the conformal group in four di-

mensions. However, this flat potential presents a problem, since we now expect a

corresponding massless scalar mode or modulus field related to fluctuations in the

interbrane distance. Such a massless mode leads to modifications of Newtonian

gravity and is excluded [41].

A solution to this problem was suggested by Goldberger and Wise [42, 43] in the

form of a stabilisation mechanism for yc. They proposed the addition of a bulk

scalar field, φ, with 5D mass mφ and brane localised potentials such that the field

develops a non-trivial and y-dependent vacuum expectation value. This leads to

the generation of a potential for the modulus field and stabilises the interbrane

distance. They considered the brane potentials

S(0,1) = −
∫
d4x
√−γ λ(0,1)

(
φ2 − v2

(0,1)

)2
, (2.10)

where v(0,1) are the vacuum expectation values of φ on the UV and IR branes

respectively in the λ(0,1) → ∞ limit. Taking the limit ε ≡ mφ/(4k) � 1 and

kyc � 1, the effective potential is given by

Veff (yc) = εv2
0k + 4ke−4kyc

(
v1 − v0e

−εkyc
)2

. (2.11)

This potential has a minimum at

kyc =
4k2

m2
φ

ln

(
v0

v1

)
. (2.12)

The size of the extra dimension has clearly been stabilised and the required value

of kyc ' 35 can easily be obtained without any fine-tuning of parameters. Fur-

thermore it was shown in Ref [44] that loop effects, while not sufficient to stabilise

the extra dimension, do not spoil the classical mechanism described above.

This potential also removes the troublesome massless mode and fluctuations around

the above minimum have a mass of order mφ ∼ εke−kyc . However, it is worth not-

ing that this set-up does suffer from an implicit fine-tuning as discussed in Ref. [45].

It is a consequence of considering only a small perturbation on the flat (tuned)

yc potential of the unstabilised solution. Without this tuning a light mode is no

longer generically expected in the spectrum; we will discuss how a light mode can

still be obtained in Chapter 5.
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2.2.3 Back-reaction

We have seen that in order to stabilise the extra dimension, we must include an

additional bulk scalar field that develops a non-trivial vacuum expectation value.

The full 5D action can then be expressed as

S = 2

∫ yc

0
d5x
√−g

(
M3

2
R− 1

2
gMN∂Mφ∂Nφ− V (φ)

)
−
∑
i=0,1

∫
d4x
√−γ

(
2M3[K] + Ui(φ)

)
. (2.13)

While neglected in the original Goldberger-Wise model (by taking the ε� 1 limit),

the scalar field will of course induce a back-reaction on the geometry and therefore

cause the metric solution to deviate from AdS5. We are then led to consider the

most general ansatz for the metric satisfying 4D Poincaré invariance:

ds2 = A(y)2ηµνdx
µdxν + dy2 . (2.14)

This leads to the following Einstein equations for the metric and scalar field back-

grounds

φ′′ = −4
A′

A
φ′ + V ′(φ) , (2.15)

A′′

A
=
A′2

A2
− 1

3M3
φ′2 , (2.16)

A′2

A2
=

1

2
φ′2 − 1

6M3
V (φ) . (2.17)

In addition to the UV/IR boundary conditions

A′

A
= ∓ 1

6M3
U(0,1)(φ) , (2.18)

φ′ = ±1

2
U ′(0,1)(φ) . (2.19)

It was shown in Ref. [46] that these equations can be reduced to a simpler system of

coupled first-order differential equations via the introduction of a superpotential,

W .† The superpotential is defined in terms of the bulk scalar potential by

V (φ) =
1

2
W ′(φ)2 − 2

3M3
W (φ)2 . (2.20)

†While this method originates from supergravity, there is no supersymmetry in this context
and the superpotential is simply a theoretical tool used to obtain solutions to the field equations.
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This equation is non-linear in W and it is therefore extremely challenging to solve

for the superpotential for a given bulk potential. However, if we instead choose

to define our model in terms of the superpotential the situation is significantly

improved and the corresponding bulk potential can be immediately determined.

In terms of this superpotential, the remaining bulk field equations simply reduce

to

φ′(y) = W ′(φ) , (2.21)

A′(y)

A(y)
= − 1

3M3
W (φ) . (2.22)

The boundary conditions at the UV/IR branes are also simply given by

W (φ) = ±1

2
U(0,1)(φ) , (2.23)

W ′(φ) = ±1

2
U ′(0,1)(φ) . (2.24)

While this method provides a simple way to solve for the background metric and

scalar field based on a given superpotential, it turns out that the class of mod-

els which arise from analytic superpotentials possess certain undesirable features,

which we shall discuss in Chapter 5.

2.2.4 Including the Standard Model

In the original Randall-Sundrum model the entire Standard Model was localised on

the IR brane. However this has the unfortunate consequence that higher-dimension

operators are only expected to be suppressed by ∼TeV scale [47]. This immediately

leads to problems with proton decay, flavour observables, neutrino masses, and

electroweak precision measurements. Realistic models therefore assume that the

SM fields are allowed to propagate in the bulk [48, 49]. Of course, the Higgs should

still be localised towards the IR, although not necessarily on the IR brane [50], so

that the hierarchy problem is not reintroduced.

The most immediate consequence of allowing the SM to propagate in the bulk is

that for each SM field there will now be a tower of 4D Kaluza-Klein modes, in

addition to a zero mode which will be identified with the usual SM particle. While

these additional states provide an excellent opportunity to probe these models

at the LHC, they still potentially lead to problems with flavour and electroweak

precision constraints as we shall discuss shortly. Here we will briefly demonstrate

how this tower of KK modes arises for bulk fields and summarise the key results
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for scalars [51], fermions [52] and gauge fields [53, 54] living in the bulk. A more

detailed review can be found in Ref. [55].

2.2.4.1 Scalar Fields

The action for a bulk complex scalar field is given by

Sφ = −
∫
d5x
√−g

(
gMN∂Mφ

†∂Nφ+m2
φφ
†φ
)
, (2.25)

which leads to the equation of motion

A2�φ+ ∂5

(
A4∂5φ

)
−m2

φA
4φ = 0 , (2.26)

where � ≡ ηµν∂µ∂ν is the d’Alembert operator. This equation can be solved by

performing a Kaluza-Klein expansion

φ(xµ, y) =

∞∑
n=0

φ(n)(xµ)f
(n)
φ (y) (2.27)

where φ(n)(xµ) satisfy the 4D Klein-Gordon equation �φ(n) = m2
nφ

(n). Substitut-

ing this ansatz into Eq. (2.26) leads to a Sturm-Liouville equation for the eigenfunc-

tions f
(n)
φ (y) which consequently form a complete set and satisfy an orthonormality

relation. In the absence of brane localised terms in the action, the f
(n)
φ (y) also sat-

isfy either Neumann or Dirichlet conditions on the branes, which determine the

eigenvalues, m2
n.

It turns out that there are no massless scalar modes for either Neumann or Dirichlet

boundary conditions. However, adding a boundary mass term on the UV and IR

branes and imposing a tuning relative to the bulk mass parameter†, m2
φ ≡ ak2,

yields a massless zero mode with eigenfunction

f
(n)
φ (y) ∝ ebky . (2.28)

Here we have assumed an AdS metric, while b is the boundary mass in units of k

and has been tuned‡ to satisfy b = 2±
√

4 + a. The boundary mass thus determines

the localisation of the scalar zero mode along the extra dimension. Substituting

this solution into the action (2.25) it becomes clear that this mode is localised

towards the UV (IR) for b < 1 (b > 1).

†In order to ensure the stability of AdS space a ≥ −4 [56].
‡Such a tuning can be enforced by supersymmetry [49].
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In addition to the above zero mode solution, Eq. (2.27) also contains an infinite

tower of massive 4D scalar modes. The solutions for the profiles can be expressed

in terms of Bessel functions, with a mass spectrum given in the kyc � 1 limit by

mn '
(
n+

1

2

√
4 + a− 3

4

)
πke−kyc . (2.29)

2.2.4.2 Gauge Fields

The situation is similar for massless gauge fields in the bulk. For simplicity we

shall present the abelian case, however the generalisation to the non-abelian case

is straightforward. The action is

SA = − 1

4g2
5

∫
d5x
√−g

[
FMNFMN +

2

ξ

(
gµν∂µVν + ξA−2∂5 (AV5)

)2]
, (2.30)

where g5 is the 5D gauge coupling and ξ a gauge-fixing parameter. With the

above choice of gauge fixing term, one obtains decoupled equations of motion for

VM = (Vµ, V5)

∂5

(
A2∂5Vµ

)
= �Vµ −

(
1− 1

ξ

)
ηνρ∂µ∂νVρ , (2.31)

ξ ∂2
5 (AV5) = �V5 . (2.32)

Gauge invariance requires that Vµ and V5 satisfy opposite boundary conditions,

such that imposing Dirichlet boundary conditions for Vµ enforces Neumann con-

ditions for V5 and vice versa. In the case of Neumann boundary conditions for

Vµ on the UV and IR branes, the V5 zero mode then vanishes. Moreover, making

the gauge choice ξ →∞ also removes the massive V5 modes, which are effectively

eaten to give a tower of massive 4D vector modes in addition to a zero mode with

eigenfunction

f
(0)
V (y) =

1√
yc
. (2.33)

Interestingly, this shows that gauge field zero-modes are not localised along the

extra dimension. This has important consequences as we will discuss shortly. The

tower of spin-1 modes have masses

mn '
(
n∓ 1

4

)
πke−kyc , (2.34)

where the ± correspond to the case of Neumann (Dirichlet) boundary conditions

and we have taken the limit kyc � 1.
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It is worth also briefly commenting on the case of gauge fields with 5D mass

terms. Such a massive gauge field could arise due to a Higgs mechanism acting

in the bulk. The main difference in this case is that the zero mode is lifted and

develops a non-zero mass.

2.2.4.3 Fermions

Including fermions in the bulk is somewhat more complicated due to the fact that

we are working in a curved spacetime. In five dimensions γ5 is also part of the

Dirac algebra, such that the irreducible spinor representation of the (universal

cover of the) Lorentz group is now a Dirac spinor, as opposed to a Weyl spinor in

four dimensions. In curved spacetime the Dirac algebra is generalised to

{
ΓM ,ΓN

}
= 2gMN . (2.35)

The standard approach to describe spinor fields in curved spacetime is to move to a

non-coordinate basis and introduce the vielbein eMA , defined by gMN = eMA e
N
B η

AB.

The gamma matrices γA, defined by ΓM = eMA γ
A, then satisfy the usual Dirac

algebra. The Dirac action in 5D is, as expected

SΨ = −
∫
d5x
√−g

(
i

2

(
Ψ̄ΓMDMΨ−DM Ψ̄ΓMΨ

)
+mΨΨ̄Ψ

)
. (2.36)

However the covariant derivative DM = ∂M + ωM now also includes the spin

connection†, which for our metric ansatz (2.2) is simply ωM =
(

1
2A
′(y)γµγ

5, 0
)
.

It is useful to decompose the Dirac spinor into left- and right-handed components

defined by Ψ± = ±γ5Ψ±, in terms of which the equations of motion become

γµ∂µΨ− +A∂5Ψ+ + (c− 2)kAΨ+ = 0 , (2.37)

γµ∂µΨ+ −A∂5Ψ− + (c+ 2)kAΨ− = 0 , (2.38)

where mΨ = ck. Once again we proceed via a KK expansion of the fields Ψ±. For

a massless zero mode the above equations decouple, yielding the solutions

f
(0)
± (y) ∝ e(2∓c)ky . (2.39)

However the left- and right-handed components are still connected by the boundary

conditions, which in fact enforce that one of the above solutions must vanish. This

is a result of compactifying on the orbifold rather than the circle and is essential

†The spin connection is given in terms of the Christoffel symbols ΓRMS , by ωAMB = eARe
S
BΓRMS−

eRB∂Me
A
S .
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in order to generate the chiral Standard Model from 5D Dirac spinors. It is then

immediately obvious that to describe the SM fermions requires two Dirac spinors,

ΨL and ΨR, where the L, R denote the transformation properties of the fields

under the SM gauge groups or equivalently the chirality of the zero modes. Note

that while one of the zero modes is removed by the boundary conditions, the tower

of KK modes remains vector-like with non-zero solutions for both f
(n)
± . The mass

spectrum is given by

mn '
(
n+

1

2
|c± 1

2
| − 1

4

)
πke−kyc , (2.40)

with the upper (lower) sign corresponding to Dirichlet boundary conditions for Ψ+

(Ψ−) and a right- (left-) handed zero mode. Finally, substituting Eq. (2.39) into

the action (2.36), one finds that the left-handed fermion zero mode is localised

towards the UV (IR) brane for c > 1/2 (c < 1/2); similarly for the right-handed

zero mode with the replacement c↔ −c.

2.2.4.4 Gauge couplings

We have seen that each 5D bulk field gives rise to a KK tower of 4D modes,

with a zero mode that we would like to identify with a corresponding Standard

Model field. We can construct a 4D effective theory describing the lowest few KK

modes by substituting the solutions to the equations of motion into the action and

integrating out the extra dimension. This means that the usual SM couplings will

be given by the corresponding 5D parameters multiplied by an overlap integral

involving the 5D eigenvalue functions.

In the case of the gauge couplings, this leads to the following relation between the

4D and 5D gauge couplings

g4 = g5

∫
dy e−3kyf

(0)
V f

(n)
± f

(m)
± =

g5√
yc
δnm . (2.41)

This relation could have potentially resulted in a significant problem once we al-

lowed the fermions to be localised differently along the extra dimension: violation

of gauge coupling universality. However, the fact that the gauge boson zero mode

profile is constant means that the above integral is simply the orthonormality

relation for the fermions, leading to the result on the RHS of Eq. (2.41). The

delocalisation of the gauge boson zero mode along the extra dimension is therefore

essential for the viability of models with fermions in the bulk.
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2.2.4.5 Yukawa couplings

The ability to localise fermions differently along the extra dimension, while still pre-

serving gauge-coupling universality, turns out to be extremely useful for generating

the 4D Yukawa couplings. In fact, it allows one to generate hierarchically different

4D couplings using only O(1) 5D parameters and can therefore provide a mecha-

nism to explain the hierarchy of Yukawa couplings in the Standard Model [49, 57].

The underlying mechanism here is known as partial compositeness and shall be

discussed from the 4D viewpoint in Section 2.3.2.

For simplicity we take the Higgs to be localised on the IR brane, in which case the

overlap integral reduces to evaluating the fermion profiles on the IR brane. In the

case of UV localised fermions (c = cL = −cR > 1/2) the resulting relation between

the 4D and 5D Yukawa couplings is [49]

λ ' λ5k

(
c− 1

2

)
e(1−2c)kyc . (2.42)

The 4D Yukawa coupling is then exponentially suppressed due to the small overlap

between the UV localised fermions and IR localised Higgs. Taking the fermions to

be localised in the IR (cL = −cR < 1/2) on the other hand leads to

λ ' λ5k

(
1

2
− c
)
. (2.43)

In this case the 4D Yukawa couplings can easily be O(1) and for the top quark we

might expect c ' −1/2.

2.2.4.6 RS GIM mechanism

We mentioned at the beginning of this section that one of the main motivations

for moving the Standard Model into the bulk was to suppress dangerous higher-

dimension operators which would be suppressed by only the TeV scale in the brane

localised case. With the fermions localised in the bulk these higher-dimension

operators in the low energy effective theory will still be generated via the exchange

of, for example, KK gauge bosons. This leads to very stringent bounds on the KK

masses from kaon mixing in models which do not feature a warped geometry [58].

In warped models the bound can be significantly reduced due to the fact that the

lowest lying KK modes are localised towards the IR brane, while their profiles

are approximately flat in the UV. Therefore, as was the case for the zero mode
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gauge fields, they couple universally to UV localised (i.e. first and second gener-

ation) fermions. Flavour changing effects (beyond the CKM) are proportional to

the difference in the fermion-KK gauge field coupling between generations and can

therefore be significantly suppressed [49]. We will discuss the remaining experi-

mental bounds in Section 2.2.6.

2.2.5 Fluctuations of the Metric

We have already seen that allowing the Standard Model fields to propagate in

the bulk of the extra dimension leads to a tower of four dimensional KK modes

for each 5D field. We should therefore expect a similar situation for the fields

associated with the fluctuations of the metric. While the precise bulk field content

can vary depending on the model, the following metric degrees of freedom will be

unavoidably present and their couplings are largely fixed by general coordinate

invariance.

We will also include an additional bulk scalar field in this discussion. The reason

being that such a scalar field is required in order to stabilise the extra dimension,

as discussed in Section 2.2.2. This scalar will mix with the gravitational degrees of

freedom and unless the back-reaction of the scalar can be neglected we must con-

sider the complete, coupled system. The results below have also been generalised

to an arbitrary number of additional scalars in Ref. [59].

It is convenient to decompose the fluctuations around the metric (2.2) in terms of

fields which transform under irreducible representations of the 4D Lorentz group.

Focusing initially on massive 4D fields, the unique decomposition is given by

gµν = A(y)2
[
ηµν(1 + 2Ψ) + 2∂µ∂νE + 2∂(µE

T
ν) + hTTµν

]
, (2.44a)

gµ5 = A(y)
[
∂µB +BT

µ

]
, (2.44b)

g55 = 1 + 2Φ , (2.44c)

φ = φ(y) + δφ(x, y) , (2.44d)

where ∂µBT
µ = ∂µETµ = ∂µhTTµν = hTTµµ = 0. With the exception of hTTµν , the

fields defined above all transform under 5D diffeomorphisms (see e.g. Ref [60])

and the physical degrees of freedom must of course correspond to gauge invariant

combinations.

In the case of massless 4D fluctuations, the above decomposition becomes ambigu-

ous and the tensor and vector modes should instead be decomposed in a light-cone
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basis. After gauge fixing, the fluctuations can be expressed as [60]

gµν = A(y)2
[
ηµν(1 + 2Ψ) + hTTµν

]
, (2.45a)

gµ5 = A(y)BT
µ , (2.45b)

g55 = 1 + 2Φ , (2.45c)

φ = φ(y) + δφ(x, y) , (2.45d)

where BT
µ and hTTµν are also spatially transverse, ∂iBT

i = ∂ihTTiν = 0.

With the above decompositions for the massive and massless modes, the Einstein

equations reduce to the following equations of motion for the various fields.

2.2.5.1 Tensor

The tensor equation of motion in both the massive and massless case is given by

A2hTT ′′µν + 4
A′

A
hTT ′µν +�hTTµν = 0 . (2.46)

The boundary condition is hTT ′µν = 0. Hence there is a massless zero mode, to be

identified with the usual graviton, in addition to a KK tower of spin-2 states. For

an AdS metric and in the limit kyc � 1, these have masses given by

mn '
(
n+

1

4

)
πke−kyc , (2.47)

As one would expect for a graviton, these modes couple to other fields through the

energy-momentum tensor, but with couplings suppressed by only ∼TeV [61]. The

graviton zero mode on the other hand is UV localised and couples with gravita-

tional strength.

2.2.5.2 Vector

In the massive case, only the gauge invariant combination BT
µ −AET ′µ enters into

the vector equations of motion

�
(
BT
µ −AET ′µ

)
= 0 , (2.48)(

A3
(
BT
µ −AET ′µ

))′
= 0 . (2.49)

The first equation clearly implies that there are no massive vector modes. For a

massless vector the equation of motion becomes simply (A3BT
µ )′ = 0; however this

mode vanishes due to the boundary conditions at the branes.



2.2. Warped Extra Dimensions 27

2.2.5.3 Scalar

For the massive scalar degrees of freedom the equation of motion is given by

1

A4β2

d

dy

(
A4β2ζ ′n

)
+
m2
n

A2
ζn = 0 , (2.50)

where we have defined the convenient variable β = φ′A/A′ and the gauge invariant

combination ζ = Ψ− δφ/β. There is also an additional constraint equation

Ψ′ − A′

A
Φ +

1

3M3
φ′ δφ = 0 . (2.51)

The boundary conditions are given by

δφ′ − φ′Φ = ±1

2
U ′′(0,1)(φ) δφ , (2.52)

while the normalisation condition is obtained after diagonalising the action and

can be found in Ref. [62].

In the case of massless scalars, Eq. (2.50) is replaced by the system

ζ ′ = 0 ,

ζ = − 1

2A2

d

dy

(
A2

φ′
δφ

)
, (2.53)

and we have used the additional constraint equation Φ = −2Ψ. Notice that in

the massless case there are two dynamical degrees of freedom before imposing the

boundary conditions.

2.2.6 Experimental Constraints

So far we have discussed how warped extra dimensional models can address the

hierarchy problem, while successfully reproducing the Standard Model and pro-

viding a mechanism for generating the fermion mass hierarchy. These models also

predict many new states, in particular the KK excitations of the SM fields, as well

as additional spin-0 and spin-2 modes. This plethora of new states leads to a rich

phenomenology and a wide range of possibilities for probing these models exper-

imentally. However, experiments have yet to see any clear signatures of physics

beyond the SM and instead there are a variety measurements which constrain the

parameter space of these models. These experimental constraints can be broadly

divided into three categories which we shall discuss in turn: electroweak precision

measurements, flavour observables, and direct resonance searches.
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2.2.6.1 Electroweak Precision Constraints

There is a wealth of precision experimental data on the electroweak sector of

the Standard Model, which provides non-trivial constraints on many new physics

scenarios. These include measurements at LEP 1 and SLAC on the Z-pole, W

boson mass measurements, scattering measurements at LEP 2, and low energy

observables from, for example, deep inelastic scattering and atomic parity violating

experiments. It turns out that in many models the effects of new physics on the

precision electroweak measurements occur only via corrections to the electroweak

gauge boson propagators, known as oblique corrections. More precisely, this is

the case in universal models where new physics couples to the SM fermions only

through the SM gauge currents. In warped models this assumption is generally

a good approximation, but is broken by the fermion localisation; this can lead to

non-oblique corrections, such as to the Zb̄LbL coupling. The oblique corrections

can be conveniently described in terms of only four parameters [63, 64] S, T , W

and Y , which are defined in terms of the gauge boson self-energies. Their effects

are equivalently related to the presence of the following higher-dimension operators

in the low-energy effective Lagrangian

OS = H†σiHW i
µνB

µν , (2.54a)

OT = |H†DµH|2 , (2.54b)

OW =
(
DρW

i
µν

)2
, (2.54c)

OY = (∂ρBµν)2 , (2.54d)

where σi are the Pauli matrices. In practice it is often sufficient to consider only the

S and T parameters, as is the case in warped models where the corrections to W

and Y are suppressed by kyc. The relevant bounds obtained from the electroweak

precision data are then given by S = 0.00± 0.08 and T = 0.05± 0.07 [65].

In warped models, there is a tree-level contribution to the oblique parameters

which arises from the exchange of electroweak KK gauge bosons. The dominant

constraint comes from corrections to the T parameter (see Figure 2.2) and leads

to a lower bound on the KK masses of mKK & 13 (7) TeV in the case of a brane

(bulk) Higgs [66]. Additionally, there are one-loop contributions with KK top-

quarks propagating in the loop, which are calculable in the case of a bulk Higgs

but expected to be subdominant. There have been several approaches developed

to alleviate these otherwise very stringent bounds on the KK spectrum. One

possibility is to introduce an extended custodial SU(2)L×SU(2)R×U(1)B−L gauge

symmetry in the bulk, which is explicitly broken to the SM electroweak subgoup on
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Figure 2.2: Tree-level and one-loop contributions to the T parameter from KK
gauge bosons and KK top quarks respectively.

the UV brane [67]. This leads to the improved bound mKK & 3 TeV [66]. Imposing

an additional L↔ R parity can also provide protection against corrections to the

Zb̄LbL coupling [68]. Another approach is to modify the geometry such that it

deviates from AdS in the IR. This is the case in soft-wall models [69–71] where the

bound on the KK masses can be as low as 0.8 TeV [66]. Finally, the bounds can also

be reduced by including brane-localised kinetic terms for the gauge bosons [72, 73].

Such terms are necessarily generated by loop effects in the bulk [74], however

significantly reducing the above bounds requires much larger coefficients than those

generated radiatively.

2.2.6.2 Flavour Constraints

Flavour measurements in both the quark and lepton sectors provide some of the

most stringent constraints on models of warped extra dimensions (for a review see

e.g. [75]) and new physics models in general. In the quark sector the strongest

constraints come from CP violating, ∆F = 2 processes and in particular neutral

Kaon mixing via corrections to the εK parameter. The dominant new physics

contribution is due to the tree-level exchange of KK gluons and while somewhat

ameliorated by the RS GIM mechanism discussed in Section 2.2.4.6, still leads to

strong lower limits on their mass. However, as is the case for many flavour observ-

ables, the precise bounds are quite model dependent. In this case they depend on

the localisation of the Higgs and the values of the 5D Yukawa couplings. Assum-

ing anarchic 5D Yukawa couplings, scans over the parameter space suggest that a

KK gluon mass of 3 TeV requires a fine-tuning at the few percent level [76, 77].

These bounds can be alleviated by imposing flavour symmetries that restrict the

5D Yukawa couplings [78–81], metric deviations in the IR [77, 82], or introducing
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pseudo-axial gluons [83]. Additionally there are strong bounds from the charm

sector, in particular CP violation in D − D̄ mixing [76, 84], while weaker bounds

arise from B mesons, and CP conserving and ∆F = 1 observables. Finally, there

are constraints from contributions to the electric dipole moment of the neutron [85]

that give a similar bound on the KK gluon mass of mKK & 3 TeV, although this

can be evaded by considering spontaneous CP violation [86].

There are also strong constraints arising from the lepton sector, which provide

bounds on the masses of the electroweak KK gauge bosons and KK leptons. The

lepton flavour violating decay µ → eγ leads to the strongest bound mKK &

13 TeV [75, 87, 88], although the precise value is again sensitive to the Higgs

localisation and also the mechanism for neutrino mass generation. Once again the

bounds can be reduced by imposing additional symmetries [89–92] or modifying

the geometry [93]. Other rare decays and µ→ e conversion in nuclei also provide

somewhat weaker bounds.

2.2.6.3 Direct Searches

The most obvious constraint on new physics models comes from direct searches for

the production and decay of new heavy resonances. Currently the most stringent

limits are in most cases from searches by the ATLAS and CMS experiments at the

LHC. At a proton-proton collider, such as the LHC, the production cross sections

for coloured particles are significantly larger than for other particles; the strongest

limits on new resonance masses are therefore generally for coloured states.

In warped models, an obvious candidate to search for at the LHC is therefore

the heavy KK partners of the gluon. Searches at ATLAS [94] and CMS [95] for

KK gluons decaying into top quark pairs constrain the KK gluon mass to be

mgKK > 2.5 TeV. It turns out that there are even stronger limits on the spin-2 KK

modes of the graviton. While uncoloured, these states have an effective coupling to

gluons and hence a relatively large production cross section. Additionally, they can

decay into the experimentally clean dilepton and diphoton final states. Here the

results from ATLAS [96, 97] and CMS [98, 99] place constraints on the graviton

mass of mGKK & 3.1 TeV for k/MPl = 0.1. Finally, the radion or spin-0 mode

associated with modulus stabilisation provides another promising search strategy.

This is especially the case in certain models where it is expected to be the lightest

new state. We will provide a detailed discussion of the experimental bounds on

the radion in Chapter 4.
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2.3 AdS/CFT

So far we have focused our discussion on 5D models in AdS space. Somewhat

surprisingly, these models also have a dual description in terms of a 4D conformal

field theory (CFT). This AdS/CFT correspondence was originally discussed by

Maldacena [100] in the context of string theory. He conjectured that type IIB

string theory on AdS5 × S5 is dual to N = 4 supersymmetric SU(N) Yang Mills

gauge theory in four dimensions.

As a first check, it is clear that the symmetries are the same on both sides of the

correspondence. The isometry of AdS5 is SO(4,2), or the conformal group in four

dimensions (see Appendix A), while the isometry of S5 is SO(6) ∼= SU(4), which is

the R-symmetry group of the supersymmetric gauge theory. One also finds that

the parameters on either side of the correspondence are related according to

R4
AdS

l4s
= 4πg2

YMN , (2.55)

where RAdS = 1/k is the AdS radius, ls is the string length and gYM is the SU(N)

gauge coupling. It is particularly insightful to consider the limit in which quantum

gravitational effects can be neglected and we can calculate quantities on both

sides of the correspondence. We are therefore interested in the limit 1/k � ls,

which using Eq (2.55) corresponds to g2
YMN � 1 or strong coupling in the 4D

gauge theory. Additionally we require that k/M ∼ 1/N < 1 [101] and so we are

considering the gauge theory in the large N limit. Loop effects in the gravitational

theory therefore correspond to subleading effects in the 1/N expansion in the gauge

theory. While the conjecture is that the duality holds in the full (non-perturbative)

string theory, we will restrict ourselves to the weaker form of the correspondence

defined in this limit and also in the absence of supersymmetry. We then end up

with a strong-weak coupling duality between the 4D CFT and the 5D gravity

description in AdS. The 5D gravity description therefore provides us with a very

useful tool for calculating quantities in the gauge theory at strong coupling!

The precise relationship between observables on both sides of the correspondence

was established in Refs. [102, 103]. For each bulk field, φ, in AdS there is an asso-

ciated operator, O, in the CFT. The value of the bulk field on the AdS boundary

at y = −∞ (z = 0) then acts as a source of the operator in the CFT. In other

words, the generating functional of the CFT is given in terms of the gravitational

action according to

Z[φ0] =

∫
DφCFT e−SCFT [φCFT ]−

∫
d4xφ0O =

∫
φ0

Dφ e−Sbulk[φ] . (2.56)
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where SCFT , Sbulk are the actions in the CFT and the bulk of AdS respectively

and φ0 is the boundary value of the bulk field φ. In the limit we are considering,

one can integrate over the on-shell gravitational action in the bulk, subject to

appropriate boundary conditions, to obtain an effective action Seff [φ0]. We then

have a straightforward prescription for computing connected correlation functions

in the CFT

〈O · · ·O〉 =
δnSeff

δφ0 · · · δφ0
. (2.57)

There is also a relation between the mass of the bulk field and the scaling dimension

of the operator in the CFT. This can be verified by computing 2-point correlation

functions, which leads to

∆ = 2 +
√

4 +m2
φ/k

2 , (2.58)

where mφ is the bulk mass of the field φ. Bulk fields with mφ > 0 (−4 ≤ mφ < 0)

then clearly describe irrelevant (relevant) operators in the CFT. A similar pre-

scription between mass and operator dimensions holds for fields of higher spin and

is given in Section 2.3.3.

Finally, it is worth mentioning that the above prescription for the AdS/CFT cor-

respondence is often referred to as standard quantisation. It is also possible to

consider the so-called alternative quantisation whereby the derivative of the bulk

field on the boundary is identified with the source in the CFT† [104]. In this case

the gravitational action is identified with the effective action, or generating func-

tional of 1PI correlation functions, in the CFT. The relation between the operator

dimension and bulk mass is then given by ∆ = 2−
√

4 +m2
φ/k

2. This prescription

therefore describes operators of dimension 1 ≤ [O] ≤ 2.

2.3.1 Slice of AdS/Breaking the CFT

We have so far limited our discussion to general aspects of the AdS/CFT corre-

spondence. In particular, our discussion has involved the full AdS space (−∞ <

y < ∞). In this section we will focus on the application of the correspondence

to Randall-Sundrum type models and on the role of the UV/IR branes and their

interpretation in the context of the dual CFT. The discussion summarised below

was developed in Refs. [105–107].

The presence of the UV and IR branes cuts off part of AdS space and breaks the

corresponding shift symmetry. They are therefore clearly expected to be related

†This corresponds to Neumann boundary conditions for the bulk field as opposed to Dirichlet
boundary conditions in the standard case.
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to the breaking of conformal invariance in the CFT. The remaining questions are

then whether this breaking is explicit or spontaneous and whether the operator

responsible for the breaking relevant or irrelevant.

Let us firstly discuss the role of the UV brane, which corresponds to imposing a

cut-off on the CFT at some scale ΛUV .MPl, and hence to an explicit breaking of

conformal invariance. The inclusion of the UV brane results in the graviton zero

mode becoming normalisable and in the dual description we have a CFT coupled

to 4D gravity. Another important consequence of adding the UV brane is that

source fields on the boundary of AdS become dynamical. Fields living on the

UV brane therefore describe an elementary sector coupled to the CFT via Planck

suppressed operators. Finally, the presence of the UV brane does not modify the

bulk geometry and the CFT clearly remains conformal below the cut-off. The UV

brane therefore corresponds to explicit breaking via an irrelevant operator.

The IR brane, on the other hand, corresponds to a spontaneous breaking of the

CFT. This can be clearly understood by the presence of a massless mode, the

radion, related to fluctuations in the position of the IR brane. This mode is

localised towards the IR and remains in the spectrum even in the absence of the UV

brane. It is identified with the Nambu-Goldstone boson (NGB) of spontaneously

broken scale invariance, known as the dilaton, in the dual CFT. This interpretation

of the IR brane can also be established by computing correlation functions on both

sides of the correspondence. The two-point function of an operator with dimension,

d, in a spontaneously broken CFT is given by

〈O(p)O(−p)〉 =
b0

p4−2∆
+
∑
i

bi
〈Oi〉

p4−2∆+∆i
, (2.59)

where bi are constants, and 〈Oi〉 and ∆i are respectively the vevs and scaling

dimensions of the CFT operators which spontaneously break the conformal in-

variance. The result obtained via the AdS description [105] shows an exponential

suppression in the deviation from conformal invariance (as opposed to the power

law behaviour above), demonstrating that the presence of the IR brane corresponds

to spontaneous breaking of the CFT by an infinite dimensional operator.

Finally, we discussed in Section 2.2.4 that, once the IR brane is introduced, bulk

fields give rise to an infinite KK tower of massive 4D modes. This is completely

consistent with the interpretation of the dual CFT as a confining SU(N) gauge

theory in the large N limit, where the two-point function is known to be [108–110]

〈O(p)O(−p)〉 =

∞∑
n=1

f2
n

p2 +m2
n

, (2.60)
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and fn = 〈0|O|φn〉 ∝
√
N/(4π).

2.3.2 Partial Compositeness

The AdS/CFT correspondence provides us with a dual description of 5D warped

models in terms of a strongly-coupled, spontaneously broken 4D CFT that is

weakly coupled to an additional elementary sector. As a result, we expect that

the physical mass eigenstates will correspond to some admixture of the elementary

fields and bound states of the CFT. This is known as partial compositeness [111]

and in fact has a QCD analogue in the form of photon-ρ meson mixing.

Whether this mixing plays an important role at low-energies will depend on the

dimension of the composite operator to which the elementary field is coupled.

Consider the following Lagrangian describing an elementary fermion, ψL, coupled

to a fermionic operator, OR, in the CFT [112]

L = LCFT + iZΨψ̄Lγ
µ∂µψL +

(
ω

Λ
∆R−5/2
UV

ψ̄LOR + h.c.

)
. (2.61)

For operator dimension ∆R > 5/2, the coupling responsible for the mixing is

irrelevant and can be neglected at low energies. The above Lagrangian then de-

scribes an elementary massless fermion external to the CFT. On the other hand

if 3/2 < ∆R < 5/2, the mixing arises from a relevant coupling and consequently

the massless mode will be a non-trivial admixture of the elementary fermion and

CFT bound states.

In order to see this more clearly we can define the dimensionless running coupling

ξ(µ) = (µ/ΛUV )∆R−5/2 ω(µ)/
√
ZΨ(µ), which satisfies the RG equation

µ
dξ

dµ
=

(
∆R −

5

2

)
ξ + a

N

16π2
ξ3 + . . . . (2.62)

The second term in this expression arises due to wavefunction renormalisation of

ψL by the CFT, where a is a constant. Solving this equation gives

ξ(µ) =

(
µ

ΛUV

)∆R− 5
2

[
1

ξ(ΛUV )2
+

aN

16π2

1

∆R − 5/2

(
1−

(
µ

ΛUV

)2∆R−5
)]− 1

2

.

(2.63)

It is then immediately clear that ξ increases (decreases) towards the IR, µ� ΛUV ,

for ∆R < 5/2 (∆R > 5/2).
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Figure 2.3: The Yukawa coupling generated via elementary-composite mixing
for light, mostly elementary fermions.

We are now in a position to understand the generation of hierarchical Yukawa

couplings in warped models (see Section 2.2.4.5) from the 4D viewpoint. In the

case of light, UV localised fermions (c > 1/2), the Yukawa coupling to the Higgs

is generated via the elementary-composite mixing shown in Figure 2.3. Hence it

should take the form†

λ ∼
√
N

4π
ξL(ΛIR)ξR(ΛIR) . (2.64)

where ΛIR ∼TeV. As was the case for a bulk scalar, the operator dimension in the

CFT is related to the 5D bulk fermion mass according to dL,R = 3/2+ |cL,R±1/2|.
For cL = −cR > 1/2, ξL,R is rapidly decreasing towards the IR and consequently

the Yukawa coupling will be suppressed. Substituting the RS expressions for the

UV and IR scales we then arrive (up to order one factors) at the 5D expression

for the Yukawa coupling in Eq. (2.42). This leads to a relation between the 5D

Yukawa couplings and the number of colours in the dual CFT‡

λ5k ∼
4π√
N
. (2.65)

Finally, the elementary-composite mixing can also be seen from the 5D KK view-

point by making use of the holographic basis [113, 114]. By relating this basis to

the usual KK expansion, one finds that UV localised zero modes correspond to

mostly elementary states, while IR localised zero modes correspond to massless

bound states of the CFT. An exception to this rule is the delocalised gauge field

zero modes. Here the mixing arises from a marginal coupling and the gauge zero

modes are mostly elementary states.

2.3.3 AdS/CFT Dictionary

To complete our discussion of the AdS/CFT correspondence we provide a useful

dictionary which can be used to relate objects on both sides of the correspondence.

†The large N scaling can be understood from the fact that the three-point vertex scales as
(4π)/

√
N [110].

‡The 5D gauge couplings also satisfy a similar relation, g5

√
k ∼ (4π)/

√
N .
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Slice of AdS5 4D CFT + elementary sector

Bulk field, φ(xµ, y) Operator, O
5D bulk mass Operator dimension, ∆O

Scalar 2 +
√

4 +mφ/k

Fermion† 3
2 + |mΨ/k ± 1

2 |
Gauge field 3

Graviton 4

UV localised zero mode Elementary state

IR localised zero mode Massless CFT bound state

KK modes (mn 6= 0) CFT bound states

Gauge symmetry G,
broken to H1 on the IR brane,

broken to H2 on UV brane

Global symmetry G,
spontaneously broken to subgroup H1,

with weakly gauged subgroup H2

2.4 Composite Higgs

So far we have reviewed how models with a warped extra dimension can address the

hierarchy problem via an IR localised Higgs field. This can be understood, via the

AdS/CFT correspondence, as the statement that the Higgs arises as a bound state

of a new strongly interacting sector and is therefore protected from mass scales

above the confinement scale. However, the absence of a plethora of new resonances

at the LHC suggests that if this scenario is realised in nature, the Higgs should

be significantly lighter than the other strong sector resonances. This immediately

brings to mind the example of the pions in QCD, which have masses much smaller

than ΛQCD. The pions are the Nambu-Goldstone bosons of spontaneously broken

chiral symmetry (SU(2)L × SU(2)R → SU(2)V ) and would be massless if not for

the small explicit breaking of the symmetry by the quark masses. It therefore

seems reasonable that the Higgs could arise as a pseudo-Nambu Goldstone boson

of a new strongly interacting sector, where its pNGB nature will protect it from

corrections to its mass of order the confinement scale. This idea was originally

proposed by Georgi and Kaplan [115] and developed in Refs. [116–120]. In this

section we will briefly review some general aspects of composite Higgs models (see

e.g. [121, 122] for a more detailed review).

†The upper (lower) signs correspond to the case of a left- (right-) handed zero mode.
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G

H′ H
EW

Figure 2.4: General symmetry structure for models in which the Higgs arises
as a pNGB.

2.4.1 Higgs as a pNGB

We begin by describing the general symmetry breaking structure and conditions

necessary to realise a composite Higgs model. Consider a strongly interacting

sector with a global symmetry group G, which is spontaneously broken to a sub-

group H at some scale f . The spontaneous breaking will of course result in a set

of nNG = dim(G) − dim(H) Nambu-Goldstone bosons living on the coset space

G/H. Now, suppose we gauge a subgroup H′ of the original global symmetry

by coupling the strong sector to a set of external gauge bosons. This results in

n0 = dim(H′)−dim(H ∩ H′) of the NGBs being “eaten” to give mass to the gauge

fields, with nNG − n0 massless modes remaining in the spectrum. This situation

is shown in Figure 2.4 and describes the general symmetry breaking pattern of a

strongly interacting sector that is weakly gauged by a set of external gauge fields.

Recall that the aim is to be able to identify a subset of the NGBs with a composite

Higgs. This leads to two further conditions on the general structure described

above. Firstly, we require that the coset space G/H should contain an SU(2)

doublet which can be identified with the Higgs doublet. Secondly, we assume that

the SM electroweak gauge group can be embedded within the unbroken global

symmetry, SU(2)×U(1)Y ⊂ H. Notice that this means that electroweak symmetry

remains unbroken by the G → H symmetry breaking. This is already distinct from

the case of QCD (and technicolour) where the vacuum in fact breaks electroweak

symmetry and one can consider the pions as being eaten and giving (a very small)

mass to the W and Z. This distinction is a key feature of composite Higgs models

and allows the electroweak scale, v, to be separated from the G → H symmetry

breaking scale, f , via a mechanism known as vacuum misalignment [115, 123].

The strong sector symmetry breaking we have just described gives rise to a set

of electroweak preserving, equivalent vacuua related by H transformations. Once
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we include the effect of SM gauge interactions, and potentially other couplings to

external fields, the symmetry G is explicitly broken, generating a potential for the

NGBs and breaking the vacuum degeneracy. This explicit breaking is characterised

by the misalignment angle, θ, which describes the misalignment of the vacuum with

respect to the electroweak preserving direction. It is often expressed in terms of

the parameter ξ, defined by

ξ ≡ v2

f2
= sin2〈θ〉 . (2.66)

The limit ξ → 0 (f → ∞) then corresponds to the Standard Model, where the

Higgs remains light but the strong sector decouples. On the other hand, ξ → 1 is

the technicolour limit where there is no separation between the electroweak and

compositeness scales. The interesting case for composite Higgs models is ξ � 1.

However, as we shall discuss in Section 2.4.4, one generically expects ξ ∼ 1 and

this leads to a source of fine tuning in these models.

2.4.2 CCWZ Formalism

The general theory of Nambu-Goldstone bosons arising from non-linearly realised

or spontaneously broken symmetries was developed by Callan, Coleman, Wess

and Zumino (CCWZ) in Refs. [124, 125]. This CCWZ prescription provides a

systematic way to construct effective field theories describing the NGBs, including

their interactions with non-NGB fields. Here we will briefly give some key results;

a more detailed review can be found in Refs. [122, 126].

Consider a compact, connected, semi-simple Lie Group G, with subgroupH. Every

group element g, in some neighbourhood of the identity†, can then be decomposed

as

g = eiuαX
α
eiξiT

i
, (2.67)

where ξi, uα are real parameters. This separation of generators into those (T i)

which generate the subgroup H and those which do not (Xα) is known as the

Cartan decomposition. The generators then satisfy the commutation relations

[
T i, T j

]
= if ijkT

k ≡ T k
(
tiAd

) j

k
, (2.68a)[

T i, Xα
]

= if iαβX
β ≡ Xβ

(
tir
) α

β
, (2.68b)[

Xα, Xβ
]

= ifαβkT
k + ifαβγX

γ , (2.68c)

†For perturbatively describing the NGBs we will only be concerned with local fluctuations and
not the global group structure.
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for some structure constants, f ijk . The result in the second line is obtained using

the Jacobi identity, where tir is the representation rH of H given by AdG = AdH⊕
rH.

Now consider a field Φ(x), which transforms linearly under the group G and is

related to a representative vacuum configuration,
−→
F , by a local G transformation

−→
Φ (x) ≡ g(x)

−→
F . (2.69)

Using the fact that any element of G can be decomposed according to Eq. (2.67),

combined with the fact that the vacuum is by definition invariant under H trans-

formations this expression can be reduced to

−→
Φ (x) = U [π]

−→
F , (2.70)

where we have defined the Goldstone matrix

U [π] ≡ ei
√

2
f
πα(x)Xα

. (2.71)

We see that the Goldstone matrix contains only the fields πα(x) associated with

the broken generators. This is consistent with the expectation from Goldstone’s

theorem which says there should be a massless degree of freedom for each broken

generator. Furthermore, it is clear that the NGBs span the coset space G/H, which

identifies elements of G modulo H.

We are interested in how U [π] transforms under G. This will clearly be non-trivial,

since a general element of G cannot be expressed only in terms of the broken

generators. However, using Eq.(2.67) it can be defined implicitly by

g · U [π] = U [π′] · h[g, π] , (2.72)

where h[g, π] = exp(iu′ · T ), and π′ and u′ are in general non-linear functions of g

and π. This then leads to the transformation

U [π]→ U [π′] = g · U [π] · h−1[g, π] . (2.73)

It is now clear that U [π] transforms non-linearly under G, or alternatively that G is

non-linearly realised. If we consider instead a transformation under the subgroup

H such that

U [π]→ h · U [π] · h−1 , (2.74)



40 Chapter 2. Extra Dimensions and Strong Sectors

one can show using the commutation relations (2.68) and the Baker-Campbell-

Hausdorff relation that the NGBs transform according to

πα → π(H)
α =

(
eiuit

i
r

) β

α
πβ . (2.75)

Hence the NGB fields transform linearly under the unbroken subgroup H in the

representation rH. On the other hand, the transformation of the NGBs along the

broken generators is non-trivial, but for an infinitesimal transformation can be

expanded as

πα → π(G/H)
α = πα +

f√
2
ξα +O

(
ξ π2

)
. (2.76)

This demonstrates the well-known shift symmetry acting on the NGBs.

Finally, we shall briefly discuss how one can construct G invariant effective La-

grangians involving the NGB fields. A consequence of the above shift symmetry

is that any non-trivial invariants must contain derivatives. It turns out that all

the invariant terms† can be obtained using only two objects, dµ and eµ, defined

by decomposing the Maurer-Cartan form‡ in terms of the broken and unbroken

generators

iU [π]−1∂µU [π] = dµ,α[π]Xα + eµ,i[π]T i ≡ dµ + eµ . (2.77)

Unsurprisingly, these objects transform non-linearly under G through representa-

tions of H in a similar way to U [π]:

dµ → h · dµ · h−1 , (2.78)

eµ → h · (eµ − i∂µ) · h−1 , (2.79)

where h = h[g, π]. It should then be clear that constructing G invariant terms is

equivalent to constructing terms that are locally H invariant. Under H transfor-

mations, dµ transforms linearly in the rH representation, while eµ transforms as

a gauge field in the adjoint representation. The latter can therefore be used to

construct a field strength and covariant derivative, which is essential in order to

include non-NGB fields.

The lowest order (two-derivative) effective Lagrangian then contains (at least) the

invariant term

L =
f2

4
Tr [dµdµ] =

1

2
∂µπα∂µπα + . . . . (2.80)

In the case of symmetric cosets, this is equivalent to the term f2

4 Tr
[
∂µU †∂µU

]
.

†If G is anomalous there is also the Wess-Zumino-Witten term [127–129].
‡The formalism can be straightforwardly extended to include gauge fields in the case that G

is gauged by considering U−1(Aµ + i∂µ)U .



2.4. Composite Higgs 41

2.4.3 Minimal Models

We will not review any specific composite Higgs models in detail here, and instead

refer the interested reader to the extensive literature, where models based on many

different cosets have been proposed [130–147]. However, we will briefly mention

a few of the minimal models and highlight some additional features which are

phenomenologically desirable. In Chapter 6 we shall motivate and investigate the

phenomenology of a particular model based on the SU(7)/SU(6)×U(1) coset [148].

As discussed previously, the minimal requirements on the strong sector are that the

unbroken symmetry, H, contains SU(2)×U(1)Y as a subgroup and the coset space

contains an 21/2 multiplet corresponding to the Higgs. However, it is generally

assumed that the unbroken symmetry group is enlarged to contain the custodial

group SO(4) ∼= SU(2)L × SU(2)R, with the Higgs transforming as a 4-plet of

SO(4) or equivalently an SU(2)L × SU(2)R bidoublet. This custodial symmetry is

explicitly broken by the gauging of U(1)Y embedded in SU(2)R and by the Yukawa

couplings. On the other hand, when the Higgs acquires a vev the symmetry is only

broken to the custodial group SO(3) or SU(2)V , under which the three SU(2)L

gauge bosons transform as a triplet. This is then sufficient to protect the W/Z

mass ratio or ρ parameter, which has been precisely measured at LEP. Equivalently,

from the point of view of the effective Lagrangian, the SO(4) custodial symmetry

forbids the dimension-6 operator in Eq. (2.54b) which would otherwise provide

large corrections to the T parameter. The requirement of custodial symmetry

strongly disfavours, for example, the minimal SU(3)→ SU(2)×U(1)Y coset.

The minimal coset that includes this custodial symmetry is SO(5)/SO(4), which

gives rise to four Nambu-Goldstone bosons transforming as a 4-plet of SO(4). The

family of so-called Minimal Composite Higgs Models (MCHMs) [137] are based on

this symmetry breaking pattern. Freedom in the choice of fermion representations

under SO(5) means that the symmetry breaking pattern alone does not specify

a unique model. In the partial compositeness paradigm, the elementary fermions

with SM quantum numbers couple linearly to strong sector operators, which must

necessarily come in representations of SO(5). It turns out for the MCHM coset

that the global symmetry group must be extended by an additional U(1)X in

order for these operator multiplets to have the correct quantum numbers when

decomposed under the electroweak gauge group. This additional U(1)X remains

unbroken and therefore does not affect the symmetry breaking or give rise to any

additional NGBs. The most commonly considered fermion representations for the

SM quarks are the 5 and 10 of SO(5) giving rise to what are known as the MCHM5
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and MCHM10 respectively [149]†. A useful table listing non-minimal cosets that

have been considered in the literature is provided in Ref. [150].

Our discussion of composite Higgs models has so far focused on their global sym-

metry structure, which is sufficient in order to write down an effective Lagrangian

describing the NGBs. However, these low-energy effective Lagrangians must ulti-

mately be replaced by some UV completion. An important additional considera-

tion is then whether the desired symmetry breaking pattern can be achieved in a

realistic UV completion, in particular without the need for the reintroduction of

additional elementary scalars. Such considerations may favour certain symmetry

breaking patterns [151–153].

2.4.4 Higgs Potential

By construction, the symmetry breaking in the strong sector leaves the electroweak

gauge group unbroken and therefore an external, explicit breaking of the symmetry

G is required in order to trigger electroweak symmetry breaking (EWSB). An

immediate source of explicit breaking is provided by the gauging of the SU(2) ×
U(1)Y subgroup by the external gauge bosons. This will generate a potential for the

NGBs, and in particular the Higgs, at loop-level via diagrams of the type shown

in Figure 2.5. Resumming these 1-loop diagrams leads to the usual Coleman-

Weinberg form for the potential [154], which can be expressed schematically as

V (h) ∼
∫

d4q

(2π)4
log

(
1 +

1

4

Π1(q2)

Π0(q2)
sin2 (h/f)

)
. (2.81)

Notice that unlike the textbook case involving elementary fields, here we have

the appearance of momentum-dependent strong sector form factors Π0,1(q2), in

this case related to the gauge field propagator and the vertex respectively. These

form factors depend on the details of the strong sector and cannot be calculated in

perturbation theory. The large q2 dependence of these form factors also determines

the convergence of the above integral. While the form factors cannot be calculated,

use of the operator production expansion, in addition to the assumptions of large

N and vector meson dominance, lead to the Weinberg sum-rules [155], which can

be used to evaluate the potential. Applying this method to, for example, QCD

allows one to calculate the difference between the charged and neutral pion masses

in terms of mρ and ma1 .

†The spinorial 4 representation of SO(5) has also been considered [137], but leads to unac-
ceptably large corrections to the Zb̄LbL coupling.
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Figure 2.5: One-loop contributions of the SM gauge fields to the Higgs poten-
tial.

tL,R

+ tL,RtL,R + . . .

tRtL +

tRtL

tR tL

+ . . .

Figure 2.6: One-loop contributions from the top quark to the Higgs potential.

However, it was shown by Witten in Ref. [156] that for a general vector-like,

confining gauge theory, the radiative potential generated by the gauge fields always

aligns the vacuum such that the gauge symmetry is preserved. An additional source

of explicit breaking is then necessary to induce EWSB. In the original Georgi and

Kaplan paper [115], this was provided by an additional elementary scalar which

mixed with the Higgs. Another possibility is to enlarge the external gauge group

by an additional U(1) such that the entire gauge group cannot be embedded in

H [117]. It is now well known that the SM top quark can also provide an additional

source of explicit breaking proportional to the top Yukawa, which gives another

contribution to the pNGB potential (see Figure 2.6) that can trigger EWSB [137].

This is the mechanism employed in most modern constructions.

For the purposes of this discussion we wish to remain model-independent, while

still discussing the qualitative features of the Higgs potential. It is useful to expand

the Higgs potential in powers of h/f , which we expect to be a good approximation
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due to the constraint v/f � 1 from precision measurements. Combining this with

the fact that the potential is radiatively generated leads to the form

V (h) =
g2
SMm

2
∗

16π2

(
−a|h|2 +

b

2f2
|h|4
)

+ . . . . (2.82)

Here we have assumed that some SM couplings gSM are responsible for generating

the potential, m∗ is the mass of the lightest non-NGB resonance of the strong-sector

and acts as a cut-off scale, and a, b are unknown O(1) coefficients. The various

factors in this expression arise from using naive dimensional analysis (NDA)† [159,

160] and can be simply understood as follows: 1/(16π2) is the one loop factor, each

strongly interacting field comes with a factor 1/f , and there is an overall factor of

m4
∗/g

2
∗.

The ratio of the two scales appearing in Eq. (2.82), g∗ ≡ m∗/f , can be interpreted

as the generic coupling between states in the strong sector and as a result should

satisfy g∗ . 4π [159]. If the underlying strong dynamics is described by a large N

gauge theory, it can also be related to the number of colours as g∗ ∼ (4π)/
√
N ,

consistent with the fact that in the N →∞ limit there is a tower of non-interacting

mesons. Interestingly, the discovery of the Higgs boson and in particular the

measurement of its mass at mh = 125 GeV suggests that this coupling should be

g∗ � 4π, contrary to the expectation in early composite Higgs or technicolour-like

models and distinct from the case of QCD. In other words, while arising from

some strongly coupled sector, the resonances themselves are in fact expected to

be weakly coupled ! This can be seen by expressing v and mh in terms of the

parameters defined in Eq. (2.82) as

v2 =
a

b
f2 , m2

h = 4bv2 g
2
SMg

2
∗

16π2
, (2.83)

where taking g2
SM = Nc y

2
t then requires g∗ ' 2 for b ∼ O(1).

From the above equation we can also identify the main source of fine-tuning in

composite Higgs models that arises from the requirement that v/f � 1. Notice

that to obtain v/f � 1 one could imagine taking b to be large; this is precisely what

happens in Little Higgs models [130, 131], where collective symmetry breaking [161]

suppresses the |h|2 term, while the quartic is generated at tree-level. However, it’s

clear from Eq. (2.83) that this would also have the unwanted effect of raising the

Higgs mass. Naively this could be compensated for by further reducing g∗; however

†More generally NDA requires that the effective Lagrangian take the form L =
m4
∗

g2∗

[
∂
m∗
, g∗π
m∗

, g∗σ
m∗

, g∗Ψ
m

3/2
∗

,
g·Aµ
m∗

, λψ
m3.2
∗

]
for NGBs (π), scalar/vector and fermionic composite res-

onances (σ, Ψ) and external gauge fields and fermions (Aµ, ψ) [157, 158].
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in practice it’s generally not possible to have g∗ < gSM , consistent with treating

the explicit breaking due to the SM fields as a perturbation on the strong sector.

The remaining option is then to require that a � 1, which can generally only be

achieved by fine-tuning between the various contributions to the potential. Current

experimental bounds lead to a fine tuning of order ∆ ∼ 1/ξ . 5− 10% [150, 162].

So far we have assumed that the strong sector satisfies what is known as one-scale-

one-coupling, which is the idea that the strong sector resonances can be described

using only f and g∗. This is commonly generalised to allow the vector and fermion

resonances to be described by separate couplings, gρ and gψ. The reason for this

is straightforward. Firstly, the vector resonances are constrained to be heavy in

order to avoid large corrections to the S parameter. To satisfy this constraint

without introducing additional fine tuning we would like to increase gρ rather than

raising f . On the other hand, in many models the dominant contribution to the

Higgs quartic actually arises from the light fermionic resonances which mix with

the top quark [149, 163], the so-called top partners. In order to obtain the correct

Higgs mass, without additional fine tuning in b, we would therefore like gψ to be

small (i.e. mψ � mρ). This gives rise to the statement that the light Higgs mass

means we should expect the presence of light, coloured, fermionic top-partners at

the LHC [162, 163].

Finally, an interesting alternative which we will not discuss here are twin Higgs

models [138], where a discrete Z2 symmetry allows the top partners to be colour

singlets under the Standard Model SU(3). The twin Higgs mechanism has recently

been combined with the composite Higgs framework [164–166]. These models are

a subset of a more general class of so-called neutral naturalness models.

2.4.5 Gauge-Higgs Unification

We have already seen that 5D warped models have a dual description, via the

AdS/CFT correspondence, in terms of a strongly-coupled 4D CFT in the large N

limit. It is therefore perhaps unsurprising that the composite Higgs models we

have been describing can also be realised in the context of a warped model. These

models go under the name of Gauge-Higgs unification (GHU) [135, 137], where the

Higgs is identified as the fifth component of a bulk gauge field [167, 168]. They

are particularly useful due to the fact that both the meson spectrum and, perhaps

more importantly, the Higgs potential are calculable.

In our discussion of gauge fields in warped extra dimensions in Section 2.2.4.2,

we found that a 5D gauge field gives rise to a tower of massive 4D vector modes,
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UV IR

SU(2)×U(1)Y SO(4)×U(1)X

SO(5)×U(1)X

Figure 2.7: Symmetry structure for a Gauge-Higgs unification model based on
the SO(5)/SO(4) coset.

possibly in addition to a massless vector or scalar mode depending on the boundary

conditions. Previously we considered the case of Neumann boundary conditions for

Aµ on the two branes, which results in a massless 4D vector mode to be identified

with a SM gauge field. Alternatively, taking Neumann boundary conditions for

A5 yields a massless 4D scalar mode, which is crucially localised towards the IR

brane. An interesting possibility is that such a scalar zero mode could in fact play

the role of the Higgs boson.

This motivates considering an enlarged bulk gauge group G, which is broken by

the boundary conditions to the subgroups H′ and H on the UV and IR branes

respectively. There is then a set of massless 4D vector modes, A
a(0)
µ , transforming

under H′ ∩ H and massless 4D scalars, A
â(0)
5 , living on G/H′ ∩ G/H. Moreover, in

terms of the dual CFT description, the IR breaking corresponds to a spontaneous

breaking of the CFT’s global symmetry, while the UV breaking corresponds to

gauging a subgroup of the global symmetry. The 5D situation described above is

then completely analogous to the general framework of composite Higgs models

described in Section 2.4.1, where here the A
â(0)
5 are identified as the NGBs of the

spontaneously broken symmetry.

It is straightforward to apply this framework to specific composite Higgs models,

such as the MCHM as shown in Figure 2.7. In this case the SO(5) × U(1)X bulk

gauge is symmetry broken down to SU(2) × U(1)Y and SO(4) × U(1)X by the

boundary conditions on the UV and IR branes respectively.

We still need to consider how to generate a potential for the NGBs from the 5D

perspective, since a tree-level potential for the Aâ5 modes is forbidden by 5D gauge

invariance. However, a potential can be generated by non-local operators [169,

170], which can be constructed from the gauge invariant Wilson line

TrP exp

[
−i
∫ yc

0
dy ekyAâ5(xµ, y)tâ

]
=TrP exp

[
−i g5

√
k√

2 ke−kyc
A
â(0)
5 (xµ)tâ

]
, (2.84)
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where A5(xµ, y) = g5

√
2k ek(y−yc)A(0)

5 (xµ). The related variable with endpoints

located in the bulk can be made to vanish via a gauge transformation and so the

potential corresponds to a finite-volume effect, generated by bulk loops which con-

nect the two branes. This should not be surprising given that the spontaneous and

explicit breakings occur on separate branes. Furthermore, the potential is neces-

sarily finite since any divergences could not be absorbed by a local counterterm in

5D. It will clearly be a periodic function of A
(0)
5 as expected for a pNGB, where

we can also identify f ∼
√

2 ke−kyc/(g5

√
k). There will be contributions to the

potential from loops of both bulk gauge fields and bulk fermions, however in prac-

tice it is often simpler to compute the one-loop potential by using the standard

Coleman-Weinberg formula and explicitly summing over the KK modes [171].

Finally, another related possibility is to employ dimensional deconstruction [172,

173], effectively discretising the extra dimension and replacing it with a 4D model

containing a number of connected sites. Such multi-site models [174, 175] provide

an effective description of the lowest (few) KK modes, in addition to the pNGBs.

The effective potential can be rendered finite by collective symmetry breaking [161].

2.4.6 Experimental Constraints

Finally, we come to the constraints on composite Higgs models from precision ex-

periments and direct searches. Some of these have already been discussed in the

preceding sections, however we will reiterate them here for completeness. Fur-

thermore, many of the constraints are similar to those discussed in the context

of warped models, which is not particularly surprising given that they are linked

through AdS/CFT. That being said, the additional global symmetry structure nec-

essary in composite Higgs models does lead to qualitatively different phenomenol-

ogy and hence additional experimental constraints. The precise constraints will of

course depend on both the global symmetry structure and the fermion representa-

tions. Since our goal is to provide a model-independent overview, we will restrict

ourselves to a qualitative discussion. A review of quantitative bounds for several

MCHMs can be found in Ref. [122].

2.4.6.1 Electroweak Precision Constraints

As was the case in warped models, the heavy vector and fermion resonances in

composite Higgs models give corrections to the oblique parameters at tree and

one-loop level respectively. This leads to stringent lower bounds on the masses of

these resonances from electroweak precision measurements. In almost all realistic
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models, these bounds are reduced by imposing custodial symmetry, which forbids

tree-level contributions to the T parameter. However, in MCHMs the constraint

from corrections to the S parameter still leads to a bound of mρ & 2 TeV on the

mass of the vector resonances [122]. An additional correction to the oblique pa-

rameters arises from modification of the Higgs couplings to the electroweak gauge

bosons due to the non-linear dynamics [176]. Note that we did not consider such

corrections in the context of warped models, where modifications of the Higgs

couplings are generally taken to be small. The leading contributions are entirely

determined by the symmetry breaking pattern and for SO(5)/SO(4) the correc-

tion to the T parameter provides the dominant constraint, leading to the bound

f & 1.1 TeV. This is then clearly a significant cause of fine-tuning in composite

Higgs models. However, including the contributions from the vector and fermion

resonances can lead to cancellations in the corrections to S and T , potentially

reducing the bound.

There are also important constraints from non-oblique/non-universal effects due

to the partial compositeness of the fermions. Such effects are negligible for the

first two generations, but can be large for the third generation where a high degree

of compositeness is required to generate the large top mass. The most stringent

constraint is due to corrections to the Zb̄LbL coupling; this leads to strong bounds

on the masses of the fermionic resonances, in particular the bottom partners [177]

which give a tree-level contribution. As was the case in warped models, the bounds

can be evaded by expanding the custodial symmetry from SO(4) ' SU(2)L ×
SU(2)R to O(4) via the inclusion of a left-right parity, PLR [68]. Finally, one also

generally expects deviations in the coupling of the Z to top quarks, which may

provide competitive constraints in the future with more precise measurements of

Vtb [178].

2.4.6.2 Flavour Constraints

Flavour bounds provide potentially some of the most stringent constraints on com-

posite Higgs models and the situation is again similar to generic warped models.

Within the partial compositeness framework, the most commonly considered pos-

sibility is for the couplings generating the elementary-composite mixing to be of

the same order in the UV, such that the mass and CKM hierarchies are generated

by the different operator dimensions; this is the so-called anarchic scenario. The

dominant bounds in the quark sector then arise from CP violating processes, in

particular neutral Kaon mixing. In the case of a pNGB Higgs the bound is stronger

than in generic warped models [179] and requires f & 10 TeV. The bounds can be
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reduced by moving away from the anarchic scenario and requiring that the com-

posite sector satisfy additional flavour symmetries [180–183] in order to realise

minimal flavour violation†. However, these models generally come at the expense

of a natural explanation for the quark mass and mixing hierarchy.

If the anarchic scenario is also implemented in the leptonic sector, there are even

more stringent constraints arising from bounds on the electron electric dipole mo-

ment and the decay µ → eγ, which require f & 11, 25 TeV respectively [87, 122,

184]. Once again, these bounds can be reduced by imposing discrete [185–187] or

continuous [188] flavour symmetries.

2.4.6.3 Direct Searches

Composite Higgs models lead to a potentially rich collider phenomenology and both

heavy vector and fermionic resonances, as well as any additional pNGBs, could

potentially be discovered at the LHC. We have previously seen that naturalness

arguments, when combined with the observed Higgs mass, generally suggest that

we should expect the presence of light fermionic partners of the top quark. These

therefore provide an extremely promising way to probe natural composite Higgs

models at the LHC. Depending on the global symmetry group and the fermion

embedding, the top partners can have a variety of quantum numbers under the

SM gauge group. In the case of the MCHM5, one expects two SU(2)L doublets with

hypercharges 1/6 and 7/6, as well as a state with the same quantum numbers as the

right-handed top. The second doublet leads to an exotic charge 5/3 state and more

generally other such exotic states are possible. As a result, both ATLAS [189–194]

and CMS [195–199] have a variety of searches for vector-like quarks, with dedicated

searches for both heavy vector-like top and bottom resonances as well as charge

5/3 states. These lead to lower bounds on the fermionic resonance masses in the

range 700–900 GeV.

Electroweak precision and flavour constraints suggest that we should expect the

vector resonances to be significantly heavier than their fermionic counterparts.

Nevertheless, we can obtain lower bounds on their masses from LHC searches in a

variety of final states. In addition to heavy (or KK) gluons, discussed in the context

of warped models, there are potentially a variety of other resonances depending

on the unbroken symmetry in the strong sector. In MCHMs one expects triplets

and singlets under SU(2)L × SU(2)R , with bounds in the range 1–3 TeV [200,

201]. Finally, the vector resonances’ decay chain could involve intermediate heavy

†Minimal flavour violation (MFV) requires that the U(3)qL×U(3)uR×U(3)dR flavour symmetry
is broken only by the Yukawa matrices.
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fermions given the expected mass separation. In this case the bounds from the

existing searches can be significantly weaker, motivating the need for dedicated

searches [202, 203].
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Linear Dilaton

3.1 Introduction

In the preceding chapter we reviewed how extra dimensional models provide one

possibility for addressing the hierarchy problem. Firstly we discussed the case of

large extra dimensions, where the fundamental scale of gravity can be near the TeV

scale, while the 4D effective Planck mass arises as a consequence of the large extra-

dimensional volume. We then presented a detailed discussion of warped models,

where the warping of the metric causes the cut-off to depend on the location along

the extra dimension. The Higgs is localised towards the IR brane where the cut-off

is exponentially suppressed. In this chapter we shall consider an interesting model

which draws upon features of both of these scenarios. It contains both a relatively

large extra dimension (∼nm) as in ADD models, but has a warped metric with

branes located at the endpoints of the extra dimension as in RS models.

The model we will consider was originally motivated by considering stacks of NS-

5 branes in string theory. In the limit of zero string coupling, where gravity

decouples, the NS-5 branes give rise to Little String Theory; a strongly-coupled

nonlocal theory in six dimensions with no (apparent) Lagrangian description [204,

205]. Through the use of holographic arguments [100, 206] (of which the AdS/CFT

correspondence discussed in Section 2.3 is an example), a seven dimensional dual

gravitational description can be obtained and used to study the phenomenology of

TeV Little String Theory [207]. Compactifying two of the extra dimensions leads

to an effective 5D description known as the linear dilaton model [208]. In this

chapter we investigate some phenomenological aspects of this 5D effective model,

which is known to exhibit a distinctive graviton Kaluza-Klein spectrum, consisting

of a ∼ TeV mass gap followed by a near continuum of KK resonances separated

by only ∼ 30 GeV [208, 209].

Just like in previous solutions to the hierarchy problem involving extra dimen-

sions, the issue of stabilising the extra dimension is important. The purpose of
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this work is to investigate the stabilisation of the 5D linear dilaton model and

study the resulting radion phenomenology. An interesting feature of this model is

that it already comes equipped with a bulk scalar field, the dilaton†, that can be

used to stabilise the extra dimension. By adding boundary potentials, as in the

Goldberger-Wise mechanism, a stabilising potential can be obtained. The usual

simplifying assumption, following from Ref. [42], is to consider infinite boundary

mass terms. However in our analysis we will relax this condition and wherever pos-

sible consider finite, or else finite but large boundary mass terms, similar to the

general analysis considered in Ref [59, 62]. Apart from the usual radion couplings

to the trace of the energy-momentum tensor, this leads to new radion couplings to

SM fields that are confined to the brane. We present the Feynman rules and use

them to study the radion phenomenology in this setup.

We find that, similar to the graviton KK spectrum, the radion mass spectrum

consists of a near continuum of resonances spaced by ∼ 30 GeV together with a

massive radion zero mode. The radion zero-mode and lowest KK mode masses can

be parametrically lighter than the ∼ TeV mass gap by suitably choosing the bound-

ary mass parameters. The radion couples to the trace of the energy-momentum

tensor in the usual way, but in addition there is a new direct coupling between the

dilaton and the SM fields. The typical strength of these couplings is of order (10

TeV)−1, with the dilaton coupling being further suppressed by a factor inversely

proportional to the boundary mass term. The SM fields have larger couplings to

the radion compared to the near-continuum, and therefore the zero mode will be

the first observable mode.

Furthermore, as is well known, the radion can kinetically mix with the Higgs boson

via a Higgs-curvature interaction, but since the typical coupling strength is of order

(10 TeV)−1 the effects on Higgs phenomenology are negligible. On the other hand,

the production and decay of the radion does lead to observable signals at the

LHC. In particular, due to the additional coupling between the radion and gauge

boson kinetic terms, the branching fraction to γγ can be significantly enhanced

and we show that searches in this channel provide the strongest constraints on the

parameter space of the model.

The outline of this chapter is as follows. In Section 3.2 we briefly review the 5D

linear dilaton model of Ref. [208]. In Section 3.3 we identify the radion and solve

for the KK mass spectrum in the limit of large but finite boundary mass terms.

The radion couplings to SM fields are computed in Section 3.4 where the effects of

†Throughout this chapter we use the term dilaton to refer to the 5D bulk field in order to
remain consistent with the original literature [208]. In subsequent chapters we will use dilaton to
refer to the 4D field associated with the spontaneous breaking of scale invariance.
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mixing from a Higgs-curvature interaction are also included. The phenomenology

of the radion is presented in Section 3.5 where the radion decay widths, branching

fractions and production at the LHC are studied. Recent LHC results are then used

to constrain the parameter space of the model. Finally in Section 6 we summarise

our results. Further details of the computations are included in Appendix B,

including the Feynman rules for the radion couplings.

3.2 Linear Dilaton Model

The set-up of the linear dilaton model is similar to the Randall-Sundrum scenario,

with a finite extra dimension, z, compactified on a Z2 orbifold, except that we take

the TeV scale to be the fundamental scale and the 4D Planck mass as the derived

scale. There are two branes, which we refer to as the visible and hidden branes,

located at z = 0 and z = rc respectively. The Standard Model fields are confined

to the z = 0 brane†. We also introduce a 5D bulk scalar field known as the dilaton.

In the Einstein frame we have the following action [208]

Sbulk =

∫
d5x
√−g

[
M3

(
R− 1

3
(∂φ)2

)
− e 2

3
φΛ

]
−
∫
d4x
√
−ĝ e 1

3
φ
(
Lvis(hid) − Uvis(hid)

)
, (3.1)

where φ is the dilaton field and M is the fundamental scale, which is of order the

TeV scale. For later convenience we have also chosen a non-standard normalisation

for φ, which differs from the general scalar-gravity action given in Eq. (2.13). In

the conformal coordinate, z, the background solutions to the field equations are

given by

φ(z) = α|z| , (3.2)

ds2 = e−
2
3
α|z| (ηµνdxµdxν + dz2

)
, (3.3)

where φ(z) denotes the background value of the dilaton field, φ, and |α| < 3M
2
√

7
is

required to ensure the 5D curvature is smaller than the fundamental scale. There

are also the following constraints

Λ = −M3α2, Uvis = −Uhid = 4αM3 , (3.4)

†Allowing the SM gauge fields to propagate in the bulk results in an effective 4D gauge coupling
that is too suppressed [208].
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which include the usual tuning of the 4D cosmological constant and radion effective

potential.

Taking the curvature term in the action (3.1) and integrating over the fifth dimen-

sion yields the effective 4D Planck mass,

M2
Pl = 2

∫ rc

0
dz e−α|z|M3 = −2

M3

α

(
e−αrc − 1

)
. (3.5)

We then clearly require that α < 0 and |αrc| ∼ 70 in order to obtain the required

value for MPl.

In order to allow a straightforward comparison with the RS model, we can perform

the following coordinate transformation dy = e−
1
3
αzdz. In the new coordinate the

metric becomes

ds2 =

(
1 +
|αy|

3

)2

ηµνdx
µdxν + dy2 . (3.6)

We can now see that this model exhibits a power-law warping as opposed to the

exponential warping of the RS model. The size of the extra dimension must there-

fore be substantially larger in this case in order to obtain the necessary hierarchy.

Taking |α| ∼ TeV and enforcing the correct value for MPl allows us to determine

the proper length of the extra dimension, giving yc ∼ 10 nm. This compares with

a proper length of ∼ 0.1 mm in the ADD model (for two extra dimensions) and

∼ 10−31 cm in the RS model.

The linear dilaton model has an interesting spectrum of graviton KK modes. There

is a single massless mode, which has a flat profile in the extra dimension and is

identified with the usual 4D graviton. In addition, there is a KK tower of excited

states, with a mass spectrum given by

m2
n =

α2

4
+

(
nπ

rc

)2

, (3.7)

where n = 1, 2, 3, ... . Of particular interest is the large mass gap between the

massless graviton and the first of the KK modes, which are then closely spaced.

The mass gap is determined by the curvature scale, α, and for a TeV mass gap

we find that rc ∼ (30 GeV)−1 and the KK modes essentially form a continuum of

states. The graviton KK modes are localised near the SM (z = 0) brane, and their

couplings to the Standard Model fields are given in Ref. [208]. They are found to

couple to SM fields with a strength of order (80 TeV)−1 for the lowest mode.
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3.2.1 Stabilisation

In order to truly solve the hierarchy problem the interbrane distance must be sta-

bilised. In the linear dilaton solution of Ref. [208] this can be done by using a

variation of the Goldberger-Wise mechanism. Unlike the Randall-Sundrum sce-

nario, the linear dilaton model naturally includes a bulk scalar field, the dilaton,

that can in fact play the role of the stabilising field once it acquires a vacuum

expectation value on the branes.

We begin by taking boundary potentials of the form

Uvis(hid)(φ) = ±λvis(hid) + µvis(hid)M
3(φ− φvis(hid))

2 , (3.8)

where λvis(hid), µvis(hid) and φvis(hid) are constants. At this point it is useful to

formulate the model in terms of the solution generating method of [46], by consid-

ering the superpotential W (φ) = W0e
φ
3 , where W0 is a constant. The background

field equations include two junction conditions at the boundaries, which can now

be expressed as

W (φ) = ±1

2
e
φ
3Uvis(hid)(φ) , (3.9)

∂W (φ)

∂φ
= ±1

2

∂

∂φ

(
e
φ
3Uvis(hid)(φ)

)
. (3.10)

Using Eq. (3.8), these equations can only be simultaneously satisfied if φ = φvis(hid)

on the boundaries. Thus we see that φ has developed a non-zero vacuum expec-

tation value on the branes as a result of imposing the boundary potentials (3.8)

(setting µvis(hid) = 0 also satisfies the conditions, however this simply reproduces

the unstabilised case). It is worth noting that an additional linear term can be

added to the boundary potential, however this simply shifts the value of the VEV

and the potential can always be rewritten in the form (3.8). The requirement that

φ = φvis(hid) on the boundaries then gives

λvis(hid) = W0 = 2
√
−ΛM3 , (3.11)

where we have used the definition of the bulk potential from the action (3.1). The

condition (3.11) includes the usual tuning of the 4D cosmological constant in (3.4)

necessary to obtain a flat brane solution.

The background solution for the bulk scalar is once again given by

φ(z) = α|z|+ φ̄ , (3.12)
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where here we have included the integration constant, φ̄, which was previously

taken to be zero. Imposing the boundary conditions φ = φvis and φ = φhid on the

z = 0 and z = rc branes respectively, we then find that

φ̄ = φvis , (3.13)

αrc = φhid − φvis . (3.14)

The second expression clearly shows that we have indeed stabilised the brane

separation, rc. In order to achieve the correct hierarchy, we previously required

that |αrc| ∼ 70. This can be achieved without the need for any extreme fine-tuning

of the parameters. In the proper coordinates (3.6) this corresponds to stabilising

the interbrane distance at yc ∼ 1010|α|−1, much larger than in RS models. Finally,

it is important to note that since φvis appears in the exponential dilaton factor

in the boundary action (3.1), we require that φvis = 0 in order to successfully

reproduce the Standard Model. This is the case we shall consider from now on.

3.3 Identification of the Radion

In this section we identify the physical radion and KK modes and calculate the

mass spectrum. It will be convenient to work in the gauge E = B = 0 such that

the scalar perturbations in Eqs. (2.44) reduce to

ds2 = e−
2
3
α|z| [(1 + 2Ψ)ηµνdx

µdxν + (1 + 2Φ)dz2
]
, (3.15)

φ(x, z) = φ(z) + δφ(x, z) . (3.16)

We then obtain the linearised Einstein equations for the perturbations, which

include the following constraint equations

Φ +
3

α
Ψ̇ +

1

3
δφ = 0 , (3.17)

Φ = −2Ψ . (3.18)

where dots denote differentiation with respect to the conformal coordinate z. The

presence of these non-dynamical equations reflects the fact that the gravitational

and dilaton scalar perturbations are coupled and the action must be diagonalised

in order to identify the physical degree of freedom of the system. Using these

constraint equations the dynamical equation can be expressed as[
�+

d2

dz2
− α2

4

](
e−

1
2
αzΦ

)
= 0 . (3.19)
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There are also two junction conditions at the boundaries. The first is obtained by

simply evaluating (3.17) at the boundaries, while the second contains additional

physical information and is given by

δφ = ± 4M3e
1
3
αz

∂2

∂φ2

(
3e

φ
3Uvis(hid)(φ)

) (δφ̇− αΦ
)
, (3.20)

One of the nice features of this model is that the equations of motion for the

perturbations can be solved analytically. While the boundary conditions are non-

trivial, they become considerably simpler in the limit ∂2

∂φ2 (e
φ
3U)→∞, which forces

δφ → 0 on the branes. This is the limit most often considered in the literature,

including the original Goldberger-Wise case. However, this will be insufficient for

our purposes since many of the interesting phenomenological features of this model

arise due to the non-zero coupling of the dilaton field to the SM Lagrangian on

the brane, as shall be seen in Sections 3.4 and 3.5.

We begin by performing a KK decomposition

Φ(xµ, z) =
∞∑
n=0

Φn(z)Qn(xµ) , (3.21)

where Qn(xµ) are the 4D Kaluza-Klein modes which satisfy the Klein-Gordon

equation, and Φn are the profiles in the fifth dimension. The equation of motion

is then simply given by[
d2

dz2
+m2

n −
α2

4

](
e−

1
2
αzΦn

)
= 0 , (3.22)

with the boundary condition

3

2α
Φ̇n − Φn =

2

2α± 9µvis(hid)

(
9

2α
Φ̈n − 3Φ̇n − αΦn

)
. (3.23)

We obtain the following solution for Φn,

Φn(z) = Nne
1
2
αz

[
sin(βnz)−

6βnµvis
4β2

n + α(α− µvis)
cos(βnz)

]
, (3.24)

where we have defined β2
n ≡ m2

n− α2

4 , Nn is an overall normalisation factor, and we

have used the boundary condition at z = 0 to fix one of the constants. The mass

spectrum is then obtained by evaluating the boundary condition at the z = rc

boundary. The complete mass spectrum can be determined analytically by taking

µvis(hid) to be large and solving as an expansion in |α|/µvis(hid). However, an exact

expression can also be obtained for the radion and lowest KK mode in the limit
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|αrc| � 1. We then find that

m2
rad =

α2

4
− α2

16ε2vis

(
3−

√
9 + 4εvis + 4ε2vis

)2

, 0 < εvis <∞ , (3.25)

where εvis(hid) ≡ |α|/µvis(hid) and µvis(hid) > 0 is required to ensure there are no

tachyonic modes. Note that dependence on εhid in (3.25) is suppressed in the

|αrc| � 1 limit. We also solve the boundary condition as an expansion in εvis(hid)

to obtain the complete KK spectrum at first order

m2
rad =

2

9
α2

(
1− 2εvis

9

)
, (3.26)

m2
n =

α2

4
+
n2π2

r2
c

[
1− 4(4n2π2 + 3|αrc|2)

12n2π2|αrc|+ |αrc|3
(εvis + εhid)

]
, (3.27)

where n = 1, 2, 3, ... . Note that in the limit εvis(hid) → 0, corresponding to

µvis(hid) →∞, we obtain the result given in Ref. [62].

We see that this model also gives rise to a rather interesting mass spectrum for

the scalar fluctuations. Both the radion and lowest KK mode have masses of order

the curvature scale, but can be parametrically lighter depending on the values of

εvis(hid). The spacing of the KK modes is then determined by the size of the extra

dimension as we would expect. Once again we have rc ∼ (30 GeV)−1 and the KK

spectrum forms a near continuum of modes above a mass of approximately half

the curvature scale.

The mass spectrum is plotted as a function of ε in Figure 3.1, where the KK

modes have been determined numerically and we have taken εvis = εhid. Note

however that as seen in Eq. (3.25), the lowest mode is dependent only on εvis,

while the second lowest mode depends only on εhid for εhid & 1. We find that the

exact and approximate solutions are well matched when ε is small, justifying our

expansion. Interestingly, we observe that both the radion and lowest KK mode

are highly sensitive to the boundary mass terms and as ε is increased there are

two distinct modes below the near continuum of KK states. In the ε → ∞ limit,

corresponding to the unstabilised case with µvis(hid) = 0, the KK spectrum is

identical to the graviton spectrum (3.7) with a ∼ TeV mass gap. Note that the

constraint equation (3.17) becomes dynamical when considering massless scalar

perturbations and hence we expect two massless modes in this limit, where the

additional mode arises due to the extra bulk scalar field (the dilaton).
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Figure 3.1: The radion and KK mass spectrum as a function of ε, where we
have taken εvis = εhid. The lowest five modes are shown and the dashed lines

denote the approximate solutions.

3.4 Coupling to the Standard Model

In this section we calculate the couplings of the radion and KK modes to the

Standard Model fields. The relevant term in the boundary action is

S =

∫
d4x
√
−ĝ e δφ3 LSM , (3.28)

where LSM is the SM Lagrangian and ĝ is the induced metric on the z = 0 brane.

We clearly see that the radion couples to the SM fields through the induced metric

on the brane and also via the exponential dilaton factor. This dilaton factor

is not present in the usual RS models and gives rise to an additional coupling

between the radion and SM fields. Expanding the above action to first order in

the perturbations, we obtain the following interaction action between the radion

KK modes, Qn, and the SM fields

Sint =
1

2

∑
n

Φn(0)

∫
d4x
√
−ĝ0Qn ĝ

µν
0 Tµν

+
1

3

∑
n

δφn(0)

∫
d4x
√
−ĝ0Qn LSM

∣∣
ĝ=ĝ0

, (3.29)

where ĝ0 is the induced background metric on the brane and Tµν is the SM energy-

momentum tensor. The first term in Eq. (3.29) is the usual coupling of the radion

to the trace of the energy momentum tensor, while the second term arises due

to the presence of the dilaton and produces a direct coupling between the radion
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and SM Lagrangian. This additional coupling can have a significant effect on the

radion phenomenology, as we shall see in Section 3.5.

For convenience we define the following coupling constants

κΦ,n

M
≡ Φn(0)

2
,

κφ,n
M
≡ δφn(0)

3
. (3.30)

The couplings can now be determined by correctly normalising the solutions for

the perturbations obtained in Section 3.3. The couplings for the radion can be

determined analytically in the |αrc| � 1 limit, while the KK couplings can only be

obtained as an expansion in εvis(hid). The exact expression for the radion coupling

is non-trivial and does not provide additional insight, so here we give only the

approximate solutions. The couplings to the energy-momentum tensor are given

by

|κΦ,rad| =
1

6
√

2

√
|α|
M

(
1 +

4

9
εvis

)
, (3.31)

|κΦ,n| =
4nπ√

6|αrc|3/2

√
|α|
M

(1− εvis) , (3.32)

where we have also taken |αrc| � 1, since the expressions simplify significantly

in this limit. We see that the coupling strength is largely determined by the

fundamental scale, M , and also the ratio α/M . Additionally, the couplings for the

KK modes are suppressed by a factor of |αrc|3/2 relative to the radion mode. Hence,

we always expect the single radion mode to be observed first by experiments, even

when the radion mass is close to that of the KK near continuum or when there

are two light modes. It is also interesting to note that the couplings for the KK

modes increase with n, however this remains true only for small n since Eq. (3.31)

is no longer valid when n2 ∼ |αrc|.

Using the constraint equation for the perturbations (3.17) evaluated at the z = 0

brane we can also determine the couplings to the SM Lagrangian, which are given

by

|κφ,rad| =
√

2

27

√
|α|
M
εvis , (3.33)

|κφ,n| =
2nπ√

6|αrc|3/2

√
|α|
M
εvis . (3.34)

We see that unlike κΦ above, these couplings do not include a zeroth order term,

consistent with the fact that δφ→ 0 in the µvis →∞ limit. The couplings to the

SM Lagrangian are therefore suppressed by an additional factor of |α|/µvis, which
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Figure 3.2: The radion couplings as a function of εvis. The upper and lower
curves correspond to κΦ and κφ respectively. The dashed lines denote the ap-

proximate solutions.

must be small in order to justify our expansion. Once again, the couplings of the

KK modes are further suppressed relative to the radion mode.

Figure 3.2 shows the radion couplings as a function of εvis, where the upper and

lower curves correspond to κΦ and κφ respectively. Once again we see that the

approximate and exact solutions are in good agreement when εvis is small. We also

find that κΦ > κφ, even for larger values of εvis where our approximate solution

is no longer valid. Taking M ∼ TeV, |α|/M ∼ 0.5 and εvis = 3, we find that

κΦ,rad ∼ 0.11 and κΦ,rad/M will be of order ∼ (9 TeV)−1. Similarly, κφ,rad ∼ 0.07

and κφ,rad/M will be of order ∼ (14 TeV)−1. Note also that while the overall sign

of the couplings is undetermined by the normalisation condition, the relative sign

is fixed giving κΦ/κφ > 0.

3.4.1 Higgs-curvature interaction

An interesting situation arises for scalar fields, since they can couple non-minimally

to gravity. This allows us to introduce the following additional Higgs-curvature

interaction term to the 4D effective action

Sξ =

∫
d4x
√
−ĝ e δφ3 ξR(ĝ)H†H , (3.35)

where R(ĝ) is the Ricci scalar obtained from the 4D induced metric on the brane.

For an arbitrary scalar field ψ, we could also in principle include the linear coupling

R(ĝ)ψ, however in the case of the Higgs this is forbidden by the gauge symmetry.
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As we shall see, this additional interaction term results in a mixing between the

Higgs and the radion. The analysis given below follows that performed for the RS

model in [210, 211], however here we include the additional effects of the dilaton

field.

After substituting the expression for the 4D Ricci scalar, Eq (3.35) leads to the

following Lagrangian for the interaction

Lξ = −6ξe
δφ
3 (1− Φ)1/2ηµν∂µ∂ν(1− Φ)1/2H†H , (3.36)

where from here onwards we use η to refer to the 4D Minkowski metric with signa-

ture (+,−,−,−). Then expanding the Higgs field around its vacuum expectation

value, H = (h + v)/
√

2, where v ' 246 GeV, we have to quadratic order in the

fields

Lξ = −3ξ

(
1

4
v2Φ�Φ− 1

6
v2δφ�Φ− vh�Φ

)
, (3.37)

where � ≡ ηµν∂µ∂ν is the d’Alembert operator. Finally, inserting the KK expan-

sion for the fields and considering only the radion mode, r, we obtain the following

complete Higgs-radion Lagrangian

L = −1

2
h�h− 1

2
m2
hh

2 − 1

2

[
1 +

6ξκΦv
2

M2
(κΦ − κφ)

]
r�r − 1

2
m2
rr

2 +
6ξκΦv

M
h�r ,

(3.38)

where mh, mr are the Higgs and radion masses respectively in the ξ = 0 limit.

The ξ term then clearly introduces a kinetic mixing between the Higgs and radion

fields. The Lagrangian must therefore be diagonalised to identify the physical

mass eigenstates of the system. We begin by diagonalising the kinetic terms via

the following transformation

h = h′ +
6ξκΦv

ΩM
r′ , r =

r′

Ω
, (3.39)

where

Ω2 = 1 +
6ξκΦv

2

M2

(
(1− 6ξ)κΦ − κφ

)
. (3.40)

This in fact also enables us to place a constraint on the parameter ξ, since Ω2 must

be positive in order to ensure that the radion mass term retains the correct sign

and we avoid encountering a ghost radion field. We therefore require that ξ lies in

the range

1

12κΦ

(
ρ−

√
ρ2 +

4M2

v2

)
≤ ξ ≤ 1

12κΦ

(
ρ+

√
ρ2 +

4M2

v2

)
, (3.41)
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where ρ ≡ κΦ − κφ. Taking κΦ = 0.11, κφ = 0.07 and M = 1 TeV, we find that

this places a limit of −6.1 < ξ < 6.2.

So far, we have successfully diagonalised the kinetic terms in the Lagrangian, how-

ever this now introduces a mixing in the mass matrix, which must be diagonalised

via the rotation

h′ = cos θ hm + sin θ rm ,

r′ = − sin θ hm + cos θ rm ,
(3.42)

where hm, rm are the physical mass eigenstates and the mixing angle is given by

tan 2θ =
12ξκΦvΩ

M

m2
h

m2
r −m2

h

(
Ω2 − 36ξ2κ2

Φv
2

M2

) . (3.43)

We can now express the gauge eigenstates in terms of the mass eigenstates as

h =

(
cos θ − 6ξκΦv

ΩM
sin θ

)
hm +

(
sin θ +

6ξκΦv

ΩM
cos θ

)
rm ,

r = −sin θ

Ω
hm +

cos θ

Ω
rm .

(3.44)

We can also calculate the corresponding mass eigenvalues, which are given by

m2
rm,hm =

1

2Ω2

[
m2
r +m2

h

(
1 +

6ξκ2
Φv

2

M2

)

±
((

m2
r −m2

h

(
1 +

6ξκ2
Φv

2

M2

))2

+
144ξ2κ2

Φv
2m2

rm
2
h

M2

)1/2
 . (3.45)

In the following section we shall only be considering the radion interactions de-

scribed in Eq. (3.29) and will not be concerned with higher-dimension operators,

which are suppressed by higher powers of M . It therefore makes sense to expand

the above results to leading order in 1/M . The mixing angle then becomes

tan 2θ ≈ 12ξκΦv

M

m2
h

m2
r −m2

h

. (3.46)

Now, provided that mr 6≈mh, the mixing angle is small and our results simplify to

h = hm +
6ξκΦv

M

m2
r

m2
r −m2

h

rm ,

r = −6ξκΦv

M

m2
h

m2
r −m2

h

hm + rm .

(3.47)
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This mixing can in principle have an interesting effect on the Higgs phenomenol-

ogy, since a strong mixing would lead to a reduced cross section for the Higgs.

However, Eq. (3.47) shows that the extent of the mixing is largely determined by

the factor κΦv/M and is therefore small, except in the case when mr is very near

to mh, or if we take ξ to be large. While the mixing may not have any significant

effect on the Higgs, it still plays an important role in determining the radion phe-

nomenology, since the same suppression scale determines both the mixing and the

radion couplings.

When mr≈mh, Eq. (3.47) is no longer valid and we must include higher order terms

in the expression for the mixing angle (3.46) or else consider the full expressions

in Eq. (3.44). In this case we find that the mixing becomes large and the two

mass eigenstates are now essentially part Higgs and part radion. The result is two

states with closely spaced masses, both of which interact in a similar way to the

SM Higgs but with a reduced cross section.

We also note that at leading order in 1/M our result does not depend on κφ and the

dilaton does not contribute significantly to the Higgs-radion mixing. Our results

are then equivalent to those for the RS case given in [210, 211]. In this limit, the

mass eigenvalues also simply reduce to mr, mh. The above analysis can also be

performed with the inclusion of the radion KK modes and is given in Appendix B.2.

The mixing effect is sub-dominant compared to the radion only case.

3.4.2 SM-Radion Interactions

As we have shown, the radion couples to the trace of the Standard Model energy-

momentum tensor as well as directly to the SM Lagrangian. We now derive in

detail the radion interactions with the SM fields and present the corresponding

Feynman rules for the interaction terms in Appendix B.3.

Following on from our discussion of the previous section, we consider the case where

there is a mixing between the radion and Higgs fields and express the interactions

in terms of the physical mass eigenstates. In order to simplify the expressions, we

shall use the following general formulae relating the gauge and mass eigenstates,

where the values of the coefficients can be read off from Eq. (3.44):

h = a0hm + a1rm ,

r = b0hm + b1rm .
(3.48)

We shall also restrict ourselves to interactions up to quadratic order in the SM

fields, since these will provide the dominant contributions when considering the
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radion decay modes in the following section. The SM energy-momentum tensor is

then given in the unitary gauge by

Tµµ = −2m2
WW

+
µ W

−µ −m2
ZZµZ

µ + 2m2
hh

2 − ∂µh∂µh

+
∑
f

3i

2

((
DµΨ̄

)
γµΨ− Ψ̄γµDµΨ

)
+ 4mΨΨ̄Ψ . (3.49)

We begin by considering the interactions of the radion with the massive gauge

bosons, which are given by

Lint = −b1κφ
4M

rm

(
2W †µνW

µν + ZµνZ
µν
)

+

(
b1
M

(
κφ
2
− κΦ) +

a1

v

)
rm

(
2m2

WW
†
µW

µ +m2
ZZµZ

µ
)
. (3.50)

We see that as a result of the dilaton coupling to the SM Lagrangian, there is

now a coupling between the radion and the gauge boson kinetic terms, which will

become important at large momenta. As we shall see, this additional coupling is

particularly significant for the massless gauge fields.

We now consider the interactions with the SM fermions which are given by

Lint =
ib1
2M

(κφ − 3κΦ) rm
(
Ψ̄γµDµΨ−

(
DµΨ̄

)
γµΨ

)
+mΨ

(
b1
M

(4κΦ − κφ)− a1

v

)
rmΨ̄Ψ . (3.51)

In the case of on-shell fermions, the above Lagrangian can be significantly simplified

by using the Dirac equation. Furthermore, it was shown in Ref. [212] that the

additional contributions for off-shell fermions cancel in physical processes and the

complete radion-fermion couplings can simply be expressed as

Lint = mΨ

(
b1κΦ

M
− a1

v

)
rmΨ̄Ψ . (3.52)

Of course, the Dirac Lagrangian vanishes after using the equations of motion and

hence our interaction term is independent of κφ.

There are additional considerations when looking at the radion interactions with

the Higgs boson. As a result of the mixing between the radion and the Higgs, the

interactions will now be dependent on the radion potential as well as the Higgs

self-interaction terms. In addition to this, there are interaction terms which arise

from the Higgs-curvature term (3.35). Following the analysis in Section 3.4.1, but

here considering terms which are cubic in the fields, gives the following interaction
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term to leading order in 1/M

Lξint =
6ξκΦa

2
0b1

M
(∂µhm∂

µhm + hm�hm) rm . (3.53)

Now putting this together with the other interaction terms we obtain

Lint =
a2

0b1
M

(
(6ξ − 1)κΦ +

κφ
2

)
rm∂µhm∂

µhm +
6ξκΦa

2
0b1

M
rmhm�hm

+ a2
0m

2
h

(
b1
M

(2κΦ −
κφ
2

)− 3a1

2v

)
rmh

2
m , (3.54)

where the final term arises from the cubic Higgs self-interaction term in the SM

Lagrangian. We have excluded the effects of the radion potential terms, which we

shall assume to be small.

Finally, we consider the interactions with the massless gauge bosons. Here we must

also include the contributions to Tµµ from the trace anomaly, which is reviewed in

Ref. [213]. The interaction with the gluons is given by

Lint = − b1
M

(κφ
4

+ κΦ bQCD
αs
8π

)
rmFaµνFµνa , (3.55)

where bQCD = 11− 2nf/3 with nf = 6. For the gluons it turns out that the direct

coupling of the dilaton and the additional coupling due to the trace anomaly are

of comparable strength, due to the relatively large value of αs and the suppression

of κφ relative to κΦ.

The interaction with the photon is similarly

Lint = − b1
M

(κφ
4

+ κΦ(b2 + bY )
αEM
8π

)
rmFµνF

µν , (3.56)

where b2 = 19/6 and bY = −41/6. However in this case the anomalous contribu-

tions to Tµµ are insignificant due to the much smaller value of αEM . We similarly

ignored the effects of the trace anomaly when considering the W and Z gauge

bosons above.

3.5 Radion Phenomenology and Constraints

3.5.1 Decay Widths

From the interaction terms given above and the Feynman rules given in Ap-

pendix B.3 we calculate the partial decay widths of the radion into WW , ZZ,
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hh, f̄f , γγ, and gg. We have taken our results to leading order in 1/M and used

the expression (3.47) for the Higgs-radion mixing. The decay widths are given by

Γ(r→W+W−) =
m3
r

16πM2

√
1− xW

[
3κ2

φ

4

+κ2
Φ

(
1− xW +

3

4
x2
W

)(
1− 6ξm2

r

m2
r −m2

h

)2

−κφκΦ

(
1 +

1

2
xW

)(
1− 6ξm2

r

m2
r −m2

h

)]
, (3.57)

Γ(r→ZZ) =
1

2
Γ(r→W+W−) , (3.58)

Γ(r→hh) =
m3
r

32πM2

√
1− xh

[
κ2
φ

4
+ κ2

Φ

(
1 + xh +

1

4
x2
h − 12ξ − 6ξxh + 36ξ2

− 36ξm2
h

m2
r −m2

h

− 72ξm4
h

m2
r(m

2
r −m2

h)
+

216ξ2m2
h

m2
r −m2

h

+
324ξ2m4

h

(m2
r −m2

h)2

)
−κφκΦ

(
1 +

1

2
xh − 6ξ − 18ξm2

h

m2
r −m2

h

)]
, (3.59)

Γ(r → f̄f) =
Ncκ

2
Φm

2
fmr

8πM2
(1− xf )3/2

(
1− 6ξm2

r

m2
r −m2

h

)2

, (3.60)

Γ(r → γγ) =
m3
r

64πM2

∣∣∣∣κφ +
αEMκΦ

2π

[
b2 + bY

−
(

1− 6ξm2
r

m2
r −m2

h

)
(2 + 3xW + 3xW (2− xW )f(xW ))

+
8

3

(
1− 6ξm2

r

m2
r −m2

h

)
xt (1 + (1− xt)f(xt))

]∣∣∣∣2 , (3.61)

Γ(r→gg) =
m3
r

8πM2

∣∣∣∣κφ +
αsκΦ

2π

[
bQCD

+

(
1− 6ξm2

r

m2
r −m2

h

)
xt (1 + (1− xt)f(xt))

]∣∣∣∣2 , (3.62)
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where

f(x) =


[
sin−1

(
1√
x

)]2

, x ≥ 1 ,

− 1

4

[
ln

1 +
√

1− x
1−
√

1− x − iπ
]2

, x < 1 ,

(3.63)

and we have defined xi = 4m2
i /m

2
r , (i = W,Z, h, f) and Nc = 3(1) for quarks

(leptons). When calculating the partial decay widths to gg and γγ, we have also

included the one-loop contributions of the top quark and the W boson, which be-

come important when the mixing is strong. We have neglected one-loop corrections

proportional to κφ. Finally, in the limit ξ = 0 and κφ → 0 our results reduce to

those for the RS case given in [214, 215].

3.5.2 Branching Fractions

In this section we use our previous results to look at the branching fractions of

the various radion decay modes. We begin by considering the case where there is

no mixing between the radion and the Higgs (ξ = 0). Figure 3.3 shows the radion

branching fractions as a function of its mass where we have taken εvis = 3 and

M = 4 TeV.

We see that in the low mass range the branching fractions are dominated by the

gg and γγ channels, while in the high mass range gg and WW are the dominant

decay modes, but with significant contributions from several other channels. The

large branching fraction to γγ is of particular interest and is a direct result of the

dilaton coupling to the gauge boson kinetic terms. It also remains significant even

at high radion masses.

If we compare the branching fractions for the linear dilaton model shown here with

those of the RS model [214], we note that the most important difference comes in

the branching fraction to γγ. This is significantly enhanced in the linear dilaton

model, since the dilaton coupling is much stronger than the trace anomaly and

one-loop contributions, which are proportional to αEM . We conclude that the

large branching fraction to photons seen in Figure 3.3 is therefore an important

distinguishing feature of this model.

Next we look at the case where there is a mixing between the radion and Higgs.

We shall take ξ = 1/6, which corresponds to the conformal limit when we also take

mh=0. The radion branching fractions are then shown in Figure 3.4. We observe

that at high mass, the situation is similar to the zero mixing case in Figure 3.3,

except that the hh decay mode is now suppressed as a result of the mixing. In
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Figure 3.3: Branching fractions of rm as a function of its mass with εvis = 3,
M = 4 TeV and ξ = 0. The top and bottom panels are the same but cover a

different range in mass.

the low mass region we observe an interesting drop in the branching fractions to

gg and γγ when the radion mass is near to that of the Higgs. This is the result of

a cancellation in the partial widths (3.61), (3.62) due to the strong mixing in this

region.

3.5.3 Production

In this section we briefly discuss the production of the radion at colliders. At

hadron colliders, such as the LHC, radion production will be dominated by gluon-

gluon fusion. The production cross section for this process at a hadron collider
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Figure 3.4: Branching fractions of rm as a function of its mass with εvis = 3,
M = 4 TeV and ξ = 1/6. The top and bottom panels are the same but cover a

different range in mass.

with centre of mass energy
√
s is given by

σ(pp→r) =

∫ 1

m2
r/s

dx

x
g(x,mr)g

(
m2
r

sx
,mr

)
m2
r

s
σ̂(gg→r) , (3.64)

where g(x,Q) is the gluon parton distribution function (PDF) at momentum frac-

tion x and renormalisation scale Q, and σ̂(gg→r) is the gluon-gluon fusion sub-

process cross section
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Figure 3.5: Gluon-gluon fusion production cross section for the radion at the
LHC with a centre of mass energy of 8 TeV. We have taken εvis = 3 and ξ = 0.

σ̂(gg→r) =
π

64M2

∣∣∣∣κφ +
αs
2π
κΦ (bQCD

+

(
1− 6ξm2

r

m2
r −m2

h

)
xt (1 + (1− xt)f(xt))

) ∣∣∣∣2 . (3.65)

The gluon-gluon fusion production cross section at the LHC for a centre of mass

energy of 8 TeV is shown in Figure 3.5 in the case of zero mixing (ξ = 0) for

several values of the fundamental sale, M . We have used the CTEQ5L [216]

parton distribution functions. It is clear that even for relatively large values of

M the radion production cross section remains significant. This suggests good

prospects for searches at the LHC, as we shall see in the following section.

3.5.4 Constraints on Parameter Space

The ATLAS and CMS experiments at the LHC have now performed a number of

searches for new scalar resonances in a variety of final states, which can be used

to obtain constraints on the radion in this model. Before imposing these limits on

the model parameter space, it is first insightful to compare the expected radion

cross sections to those for the well-studied case of the SM Higgs. In the narrow

width approximation the ratio is simply given by

σ(pp→r→X)

σSM (pp→h→X)
=

Γ(r→gg)

Γ(h→gg)

Br(r→X)

Br(h→X)
, (3.66)
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Figure 3.6: σ/σSM as a function of the radion mass. We have taken εvis = 3,
M = 4 TeV and ξ = 0.

and is plotted as a function of the radion mass for the WW , ZZ and γγ decay

channels in Figure 3.6. Notice that for the γγ final state this ratio is greater than

one for almost all radion masses, due to its large branching ratio to this decay

mode. The γγ channel was famously one of the discovery channels for the Higgs

and we expect it to provide the strongest constraints on the radion.

We use the recent ATLAS and CMS results from Run-I of the LHC at
√
s = 8 TeV,

which place bounds on the cross section×branching ratio for a new scalar resonance

decaying into γγ [217], WW [218, 219], ZZ [220], hh [221] and t̄t [95] final states.

The results are shown in Figure 3.7 where we have presented the constraints in

terms of the parameters of the model, namely the fundamental scale, M , and the

curvature scale, α. We have assumed zero mixing with the Higgs and taken εvis =

3. As expected the strongest constraints arise in the diphoton final state, which

constrain M & 3.5 TeV in the range 0.5 . |α| . 2.6 TeV. The remaining resonance

searches are only able to probe regions of parameter space where the curvature is

greater than M and the 5D theory is not under perturbative control. The dashed

line in Figure 3.7 also shows the bound from the KK graviton resonances using

ADD total cross section searches at the LHC with ∼ 2 fb−1 of integrated luminosity

at
√
s = 7 TeV, as derived in Ref. [209]. These searches are expected to provide a

significantly stronger bound using the latest data at
√
s = 13 TeV.

In deriving the constraints we have focused on the case of zero Higgs-radion mixing

(ξ = 0). Comparing Figures 3.3 & 3.4 we see that the branching ratio to photons

is relatively unaffected by the mixing, except in the case where mr ∼ mh. We

therefore expect similar bounds on the radion in the case of non-zero mixing.
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Figure 3.7: Constraints on the model parameters, α and M , from recent LHC
resonance searches. The shaded region is where M2 < 28

9 α
2 and the gravitational

description can no longer be trusted. The dashed line shows the constraints from
ADD total cross section searches at the LHC taken from Ref. [209]. We have

taken εvis = 3 and ξ = 0.

Additionally, Higgs measurements can in principle constrain the mixing parameter

through modification of the Higgs couplings. However, the bound will be weak

since the mixing is suppressed by M/κΦ & 10 TeV.

3.6 Summary

Motivated by Little String Theory, the 5D linear dilaton model provides a distinc-

tive solution to the hierarchy problem. It is characterised by a graviton KK mass

spectrum which consists of a ∼ TeV scale mass gap, followed by a near contin-

uum of resonances spaced ∼ 30 GeV apart. The scalar sector of the model plays

a crucial role, since it contains a scalar field, the dilaton, which can be used to

stabilise the extra dimension. Just like in the Goldberger-Wise mechanism, the

dilaton acquires a non-zero vacuum expectation value on the branes after impos-

ing appropriate boundary potentials. A large volume is then stabilised with an

interbrane proper distance of yc ∼ 1010|α|−1. The correct hierarchy is achieved

without the need for any extreme fine tuning.

The coupled scalar fluctuations about the metric and dilaton fields were then

considered. We solved the equations of motion for the system and obtained the

wavefunctions and masses of the modes. It was found that the radion and lowest
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KK mode both obtain masses of order the curvature scale, but can be parametri-

cally lighter depending on the boundary mass parameters. The KK modes were

then closely spaced and essentially formed a near continuum of modes of order the

curvature scale and above.

This model introduces a direct coupling in the boundary action between the dilaton

and the Standard Model fields. It was shown that this results in a coupling between

the radion and SM Lagrangian, in addition to the standard coupling to the trace

of the energy-momentum tensor. The strength of these couplings was calculated,

with a typical strength of order (10 TeV)−1, and a suppression in the coupling

to the SM Lagrangian by a factor inversely proportional to the boundary mass

term. Additionally, the couplings of the KK modes were suppressed relative to

the radion, so that we would initially expect to observe only a single mode in

experiments, despite the closely spaced mass spectrum.

We also considered the situation where the Higgs couples non-minimally to gravity

and included an additional Higgs-curvature interaction term, resulting in a kinetic

mixing between the radion and the Higgs. However, we found that at leading order

the dilaton did not contribute to the mixing and our results reduced to those for

the RS case. The mixing then had virtually no effect on the Higgs phenomenology,

except in the case when the difference between the radion and Higgs masses was

small. The contribution of the KK modes to the mixing was also investigated.

However, we found that despite their close mass spacings, the cumulative effect of

the KK modes was still too small to significantly effect the Higgs phenomenology.

The decay widths and branching fractions of the radion were calculated in Sec-

tion 3.5 and found to be substantially different to the RS radion. This was largely

due to the additional coupling between the radion and the gauge boson kinetic

terms. In particular this led to a significantly increased branching fraction to γγ,

which provides an interesting distinguishing feature of this model and a promising

search channel at the LHC.

The production of the radion via gluon-gluon fusion at the LHC was also discussed

and found to be significant even for relatively large values of M . Finally, we

determined the bounds on the parameter space from recent resonance searches at

the LHC. Currently the only relevant constraint is from searches in the γγ final

state, which gives a bound of M & 3.5 − 6.5 TeV for values of |α| in the range

0.5-2.6 TeV when µvis = 1
3 |α|.
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Higgs-Radion Mixing

4.1 Introduction

We previously explored the possibility of Higgs-radion mixing via the presence of a

brane-localised ξR4H
†H term in the context of the linear dilaton model, where it

was found to have a relatively minor effect on the Higgs and radion phenomenology.

However, more generally this mixing can play a very important role, which we now

investigate in detail by returning our focus to the Randall-Sundrum model with

the Standard Model in the bulk. We know that in order to avoid reintroducing

large corrections to the Higgs mass, which from the dual perspective corresponds

to ensuring that the Higgs mass operator remains irrelevant, the Higgs must be

localised towards the IR brane. As a result, the simplest and most commonly

considered possibility is to localise the Higgs on the IR brane. In this case, the

Higgs-radion mixing which arises from a boundary localised coupling to the 4D

Ricci scalar has been well studied [210, 222–224]. We shall explore the alternative

possibility where the Higgs is allowed to propagate in the bulk and show that it

leads to qualitatively distinct phenomenology, which has important experimental

consequences.

The Higgs-radion system is of particular interest, since these may be the two

lightest states arising from a new strongly-interacting sector or its dual warped

description. Of course the Higgs is now known to be relatively light and its mass

has been precisely determined by the LHC experiments: mh = 125.09±0.24 [225].

On the other hand, if the conformal symmetry is broken by a marginally relevant

operator it’s possible for the radion to be parametrically lighter than the generic

KK resonances due to its origin as the pNGB of spontaneously broken scale in-

variance [226–229].

In this chapter we consider a Higgs localised in the bulk of the extra dimension

and study the effect of the coupling to the 5D Ricci scalar, ξR5H
†H. As in

the brane-localised case, such a term leads to kinetic mixing between the radion
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and the Higgs. Additionally the mechanism necessary for stabilising the extra

dimension and giving mass to the radion will cause the background metric to

deviate from AdS5. We show that this leads to an additional source of mass

mixing between the radion and the Higgs. We find that the radion couplings are

also substantially modified in the case of a bulk Higgs, which can have a significant

effect on the radion phenomenology. Most importantly, the bulk geometry (or

equivalently conformal symmetry) enforces that the radion coupling to 4D scalar

kinetic terms vanishes, which strongly suppresses the coupling to massive gauge

bosons.

It is well known that generic warped models now require significant tuning (∼ 1%)

as ever stronger experimental bounds on new resonances increase the required lit-

tle hierarchy between the electroweak and KK scales. However, a possibility that

still remains relatively natural is that the Higgs itself arises as a pNGB of global

symmetry breaking in the new strong sector. Its mass is then protected by a shift

symmetry and it can be naturally lighter than the generic resonances. As we dis-

cussed in Section 2.4.5, explicit realisations of this scenario can be constructed

using a warped framework, known as gauge-Higgs unification. We consider both

possibilities with the aim of remaining relatively model independent. The 5D

warped framework is used as a tool to motivate and calculate the various sources

of Higgs-radion mixing and the couplings between the radion and Standard Model

fields. We then use these results to construct the most general effective 4D La-

grangian describing the Higgs-radion system, which we use to study the LHC

phenomenology.

Using this effective 4D Lagrangian, we then perform a numerical scan over the

relevant parameters and impose the recent constraints from LHC measurements

of the Higgs properties and exotic resonance searches. Matching the lighter mixed

state’s mass and signal strengths to the measured Higgs properties, we are able to

constrain the production cross section and branching ratios of the heavier mixed

state and identify the most promising search channels. Interestingly we find that in

some regions of parameter space, the production of two light mixed states via the

decay of the heavier mixed state can contribute as much as 30% to the total Higgs

production cross section. Furthermore, in the case of negligible mixing, a light

scalar state with a sizeable cross section into diphotons is still permitted by the

LHC constraints used in our analysis, which provides a very interesting motivation

to search in the diphoton channel at larger invariant masses. Since the completion

of this analysis, such a search has been performed by the LHC collaborations and

we discuss how this further constrains the relevant region of parameter space.
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Finally, the ATLAS and CMS experiments have observed an intriguing excess of

diphoton events at an invariant mass of 750 GeV in early Run-II data [97, 99, 230,

231]. We discuss the possibility that this excess could be due to a radion in the

bulk Higgs scenario. We show that for a compositeness scale Λr & 2 TeV and an

extra dimension of size kL . 20 the excess can be explained while simultaneously

satisfying the bounds from
√
s = 8 TeV resonance searches.

This chapter is organised as follows. In Sections 4.2 and 4.3 we introduce the

radion and a simplified model of a bulk Higgs in warped 5D space and compute

the different mixing terms that arise in the presence of the bulk ξR5H
†H term. In

Sections 4.4 and 4.5 we write the 4D effective Lagrangian describing the mixing

between the radion/dilaton and the Higgs and provide the relevant couplings and

branching fractions. Sections 4.6 and 4.7 discuss the LHC constraints and the phe-

nomenology of the heavier mixed state, including future search strategies. Finally,

we discuss the possibility that the radion could be responsible for the observed

excess in diphoton events in Section 4.8. We summarise our results in Section 4.9.

4.2 The Radion

In this chapter we shall take the following convenient parametrisation of the 5D

metric

ds2 = e−2Ã(y)ηµνdx
µdxν − dy2 , (4.1)

where ηµν = diag(+,−,−,−) and e−Ã(y) is a convex function of y, with Ã(y) =

ky corresponding to the Randall-Sundrum solution. As discussed previously, an

appropriate gauge choice allows one to decouple the spin-0 (radion) from the spin-2

(graviton) fluctuations of the metric such that the spin-0 fluctuations are given by,

ds2 = e−2Ã(y) (1− Φ) ηµνdx
µdxν − (1 + 2Φ)dy2 . (4.2)

In the absence of a stabilising mechanism, the radion is massless and it is simple to

check that it consists of a single state with a profile in the extra-dimension given

by

Φ(x, y) = e2Ã(y) 2e−kL√
3MPl

r(x) ≡ e2(Ã(y)−kL) 2

Λr
r(x) , (4.3)

where we have used that M2
Pl ≈M3

5 /k.

The inclusion of an additional bulk scalar field to stabilise the extra dimension leads

to a mixing of the gravity and scalar sectors and generates a mass for the physical

state associated with the radion. This will produce deviations from the pure AdS5
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solution for the geometry; however, provided the back-reaction is not too large,

the deviations tend to be small and the approximate form for the radion profile

Φ(y) ∼ e2ky holds [46]. We will comment in Section 4.3.3 on the consequences of

the back-reaction on the radion-Higgs mixing, which are important once the Higgs

is moved to the bulk of the extra dimension.

4.3 Radion-Higgs Mixing

Light radion/dilaton phenomenology and mixing with an IR-brane localised Higgs

has been studied extensively in the literature [210, 222, 232–234]. It has been

found that recent LHC measurements, in particular of the Higgs mass and signal

strengths, already put significant constraints on the parameter space of these mod-

els [235–237]. In this paper we study the consequences of moving the Higgs into

the bulk of the extra dimension and mixing it with the gravity sector via a bulk

term ξR5H
†H. Such a bulk mixing term was also considered in [50] but in the

context of higher curvature Gauss-Bonnet terms. We motivate an effective 4D low

energy action that describes all the possible mixing terms that one may encounter

between the two light states in the model, the radion and the Higgs. We also derive

the parametric size of these mixing terms. In this context let us briefly survey the

possible localisation of the Higgs, what this implies for the radion-Higgs mixing in

the theory, and the possibility of the Higgs as a pNGB.

4.3.1 The Brane Higgs Scenario

In this case one can simply write the Higgs part of the Lagrangian as follows:

Sbrane =

∫
d4x
√
|γ(r(x))|

[
|DH|2 − V (H) + ξR4H

†H
]
, (4.4)

where γ is the induced metric on the boundary. After the Higgs gets a vev, v, one

can perform a Taylor expansion of the potential,

V (H) =
∑ δnV (H)

δHn

∣∣∣∣
H→v

hn . (4.5)

The mass mixing term that can arise from the n = 1 term in the above equation

vanishes exactly due to the minimisation condition. No mixing of any type arises

from the kinetic term, as ∂µv = 0. This is the reason for the absence of any mass

mixing in brane Higgs models. Only kinetic mixing via the usual term ξR4H
†H

is expected.
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4.3.2 The Bulk Higgs Scenario

Let us now consider a scenario where the Higgs and the SM fields can access the

5D bulk. We use this model as a tool to motivate our effective action in Section 4.4

and therefore we briefly describe the process of EWSB and Higgs mass generation.

Technical details of the calculation that are similar to those of [238] are deferred

to Appendix C. In this case the full Higgs-radion action may be written as

Sbulk =

∫ L

0
d5x
√
g

[(
M3

2
+ ξH†H

)
R5 + |DMH|2 − V (H)

]
−
∑
α=0,1

∫
d4x
√
γ

[(
M3 + 2ξH†H

)
[K] + λα(H)

]
, (4.6)

where V (H) = −6k2M3 + c2k2|H|2 is the 5D bulk potential (c a dimensionless

localisation parameter), λα(H) are the 4D brane potentials, γ is the induced metric,

and [K] denotes the jump in the extrinsic curvature across the brane. Note that

in adding the direct coupling between the Higgs and the scalar curvature in the

bulk, we must also modify the Gibbons-Hawking-York term to ensure the correct

cancellation of boundary terms and a well-posed variational problem. EWSB is

induced on the IR brane by taking

λ1(H) =
1

2

λ̃

k2

(
|H|2 − ṽ2

IRk
3

2

)2

, (4.7)

where λ̃ and ṽIR are dimensionless quantities. On the UV brane, we simply add a

mass term

λ0(H) = mUV |H|2 . (4.8)

To simplify our analysis, we assume that the Higgs back-reaction on the metric is

negligible. This requires that the Higgs vev satisfy

|ξ|v2 �M3, |v′2 − c2k2v2 + 16ξÃ′v v′| � 12Ã′2M3 . (4.9)

The explicit mixing terms of Eq. (4.6) contribute to the effective bulk and brane

masses for the Higgs. It is straightforward to solve for the Higgs vev v(y). Ex-

pressing it in terms of the physical observable vew, we find

v(y) =
√

2(1 + β)k ekye(1+β)k(y−L)vew , (4.10)
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where β2 = 4 + c2 + 20ξ. The explicit relation between vew and the 5D parameters

is

v2
ew ≈

λ̃ṽ2
IR + 16ξ − 2(2 + β)

2(1 + β)λ̃
k̃2 , (4.11)

where k̃ ≡ ke−kL and we have neglected terms suppressed by additional powers

of e−kL. Inserting our expression for v(y) into Eq.(4.9), we find that the back-

reaction is negligible for O(1) values of ξ, β, and c, provided that both k/M < 1

and vew/k̃ < 1.

The Higgs fluctuation h(x, y) = H(y)h(x), with mass mh, has a more complex

form. In the limit that the Higgs mass is small compared to the RS scale k̃, we

find that the profile is approximately proportional to the vev:

H(y) =
√

2(1 + β)k ekye(1+β)k(y−L) +O(m2
h/k̃

2) . (4.12)

Using the IR b.c. one also can determine the mass mh. The resultant equation is

complicated in the general case. However, in our limiting case mh � k̃, one can

obtain an approximate analytical expression for the lightest mode given by

m2
h ≈ 4(1 + β)2λ̃v2

ew . (4.13)

To investigate the mass mixing induced by the bulk Lagrangian Eq. (4.6), we

expand the scalar curvature using the AdS5 metric and the replacement Φ(x, y) =

Φ(y)r(x):

R5 =
(

20Ã′(y)− 8Ã′′(y)
)
− e2ÃΦ(y) ∂2r(x) +

(
−40Φ(y)Ã′(y)2

+ 28Ã′(y)Φ′(y) + 16Φ(y)Ã′′(y)− 4Φ′′(y)
)
r(x) +O

(
r(x)

)2
,

[K] = 4Ã′(y) +O
(
r(x)

)2
. (4.14)

Now using Eq. (4.3) and Ã(y) ∼ ky we find that the expressions reduce to

R5 = 20k2 − e2ÃΦ(y) ∂2r(x) and [K] = 4k . (4.15)

The non-derivative terms linear in the radion vanish. There could be a residual

mass mixing that arises from the product of the constant terms in Eq. (4.15)

with the linear fluctuation in the volume element. However, as discussed below

Eq. (4.9), these constant terms are effective bulk and brane masses for the Higgs,

and are more naturally associated with the mixing from the potentials. Indeed, one

can explicitly redefine the Lagrangian mass parameters to absorb these constant
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terms:

c2 → c2 − 20ξ , ṽ2
IR → ṽ2

IR −
16ξ

λ̃
, mUV → mUV + 8ξk . (4.16)

This will naturally lead to modifications to the definition of β, and the relation

between vew and the Lagrangian parameters. Finally we compute the mass mixing

that might arise from the potential terms in the bulk (a) and on the IR brane (b)

and the kinetic term in the bulk (c),

−
∫
d5x
√
g c2k2|H|2 → 2(β2 − 4)

vew
Λr

k̃2 h(x)r(x) , (4.17a)

−
∫
d4x
√
γ λ1(H) → −8(1 + β)(2 + β)

vew
Λr

k̃2 h(x)r(x) , (4.17b)∫
d5x
√
g g55D5H

†D5H → 6(2 + β)2 vew
Λr

k̃2 h(x)r(x) . (4.17c)

We have neglected the UV potential as the Higgs is localised near the IR brane.†

We find that these contributions cancel exactly and leave us with no mass mixing

between the Higgs and the radion.

The derivative terms in Eq. (4.15) lead to a kinetic mixing, as in the brane Higgs

case. A quantitative difference from the brane scenario is that the size of the

induced mixing is β-dependent. Specifically,∫
d5x
√
g ξ R5H

†H → 2ξ
1 + β

2 + β

vew
Λr

(∂µh(x))(∂µr(x)) . (4.18)

The mixing term also gives contributions to the radion kinetic term. One contri-

bution arises when the linear derivative term combines with the linear term in
√
g.

Another contribution of the same order comes from the terms in R5 quadratic in

the radion. The net result is∫
d5x
√
g ξ R5H

†H → 3ξ
1 + β

3 + β

v2
ew

Λ2
r

(∂µr(x))(∂µr(x)) . (4.19)

4.3.3 Bulk Higgs with Back-reaction

In the above discussion we did not consider the back-reaction of the Higgs and

the radion on the metric. This will modify the bulk profiles of the Higgs, the

Higgs vev and the radion. The Higgs back-reaction can be assumed to be small as

already argued; even if we include its effect, it can at most induce a mass mixing

proportional to the Higgs mass ∼ m2
hvew/Λr. A mass mixing of this order can also

†One can show that the contribution from the UV potential cancels with additional exponen-
tially suppressed terms that have been omitted in Eq. (4.17).
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arise if we include the differences between the Higgs and Higgs vev bulk profiles

v(y) 6= H(y); that is, if we expand the Bessel functions in Eq. (C.17) to include

sub-leading terms in εh.

A larger contribution to the mass mixing may arise due to the back-reaction of

the radion. Let us assume that the stabilising mechanism results in a small per-

turbation in the bulk profile of the fields. We can write the following ansatz for

the perturbed radion profile and the metric

Φ(y) ∼ Nre
2ky(1 + l2f(y)) ,

Ã(y) ∼ ky +
l2

6
e−2uy , (4.20)

where uL = φT /φP ; φT (P ) is the radion vev on the TeV (Planck) brane introduced

to stabilise the bulk; and l2 = φP /
√

2M3. The equation of motion for the radion

field can be solved using the above ansatz as an expansion in u/k = ε ∼ 1/37 [222].

Expanding up to ε2 we obtain

f(y) =
1

3

(
(1− ε)e−2uy + ε2

(
e−2ky − e2k(y−L)

))
. (4.21)

One can then solve for the normalisation factor at this order in the expansion

Nr =
2

Λr

(
1 + e−2uL l

2

6
(−1 + ε+ 2ε2)

)
. (4.22)

Solving for the Higgs vev in the same approximation yields

v(y) = Be(2+β)ky

(
1 +

l2

3

2 + β

β

(
1 +

ε

β
+
ε2

β2

)
e−2εky

)
, (4.23)

where B is given by

B2 = 2kv2
ew(1 + β)e−2(1+β)kL

(
1 +

l2

3β3

(
−(4 + β)β2

+
(β(β + 8) + 4)β

β + 1
ε− β(5β3 + 18β + 14) + 4

(β + 1)2
ε2
))

. (4.24)

Finally we will assume that

h(x, y) = h(x)

(
v(y)

vew
+O(m2

h)

)
. (4.25)
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Thus including the radion back-reaction, the Higgs-radion mixing action at leading

order can now be written as

Sh−r =

∫
d4x

[
−ξ 2(1 + β)

2 + β

vew
Λr

h(x)∂µ∂
µr(x)

+

(
ξ

2(7 + 4β)

2 + β
− 2(1 + β)

β

)
vew
Λr

m2
rh(x)r(x)

]
, (4.26)

where mr is the radion mass given by [222]

m2
r =

8

3
l2(kε)2e−2kL . (4.27)

As expected we find that the mass mixing terms arising from the radion back-

reaction are proportional to the radion mass.

4.3.4 Composite Higgs Models

As discussed in Section 2.4.5, the 5D analogue of the pNGB composite Higgs is the

GHU scenario where the Higgs is identified as the fifth component of a 5D gauge

boson AM = (Aµ, A5) belonging to the coset group G/H. The higher-dimensional

gauge symmetry translates to a 4D shift symmetry of the Higgs. In a slice of AdS5,

the A5 sector of the gauge boson kinetic term in the bulk Lagrangian is

− 1

2

∫
d4x dy e−2ky

[
(∂A5)2 − 2ηµν∂µA5∂5Aν

]
+ . . .

gauge-fixing−−−−−−−−→ − 1

2

∫
d4x dy e+2ky(∂µA

(0)
5 (x))2 + . . . . (4.28)

Notice that the higher-dimensional gauge symmetry prevents a tree-level mass for

A5 both in the bulk and on the brane. Also, the antisymmetric nature of the

field strength tensor prevents a term like |∂yA5(y, x)|2. This immediately implies

that a composite Higgs cannot have mass mixing with the radion even when the

back-reaction is considered. The only possible mixing can be introduced on the

brane after the shift symmetry is explicitly broken by the Yukawa and SM gauge

interactions to develop a potential. The relevant brane term reads,

SCH |h−r =

∫
d4x ξ4R4H

†H . (4.29)

One can estimate the size of ξ4 by recalling that pNGB potentials are generated

at loop level primarily through the top Yukawa which is also responsible for the
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Higgs developing a potential. Naive dimensional analysis suggests that

ξ4 ∼
m2
h

f2
Γ(vew/f) , (4.30)

where f is the compositeness scale given by ke−kL and Γ(vew/f) is a generic

function of vew/f . Thus, we expect the kinetic mixing induced by this term to be

very small.

4.4 Effective Action

So far we have worked with a 5D warped scenario, considering two particular

examples of EWSB, in both of which the Higgs resides in the bulk of the extra di-

mension. In this way we have been able to determine the possible induced mixing

terms between the radion and the Higgs. Though we have determined these mixing

terms for a particular scenario we expect their dependence on physical quantities

to be general. In fact, from the 4D point of view through the AdS/CFT corre-

spondence, we are describing a scenario of a conformal sector that is spontaneously

broken leading to a light pseudo-Nambu-Goldstone boson known as the dilaton.

This light state can mix with the other light state in the theory, the Higgs, via the

conformally covariant generalisation of the gauge covariant derivative [239, 240]:∣∣∣∣ (Dµ −∆
∂µr(x)

r(x)

)
H

∣∣∣∣2 + (1− 6ξ)H†DµH
∂µr(x)

r(x)
, (4.31)

where ∆ is the Higgs conformal weight, Dµ is the gauge covariant derivative and

we have included an additional term as suggested in Ref. [240] in order to account

for the breaking of the special conformal symmetries, which in the 5D picture

corresponds to the case ξ 6= 1/6. This interaction leads to kinetic mixing as

found in the previous section and is always expected to be present. It is also the

only mixing allowed when the CFT is broken spontaneously, as we also saw in

our simplified 5D calculation. An explicit breaking of the conformal symmetry is

signalled by the presence of a non-vanishing dilaton mass and consequently the

possibility of a mass mixing term between the dilaton and the Higgs field. This

is represented in the 5D picture by the deformation of AdS5 space due to back-

reaction effects responsible for the stabilisation of the extra dimension and thus,

for the generation of the radion mass. As we saw, this explicit breaking of the

conformal symmetry leads to mass mixing between the radion and the Higgs in

the 5D picture as described in Eq. (4.26).
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It is then clear that from a purely 4D perspective, we can represent the most general

effective phenomenological Lagrangian describing the light degrees of freedom of a

spontaneously broken conformal sector by,

Leff =
1

2
∂µh(x)∂µh(x)− 1

2
m2
hh(x)2 +

1

2

(
1 + c2

v2
ew

Λ2
r

)
∂µr(x)∂µr(x)

− 1

2
m2
rr(x)2 − c1

vew
Λr

∂µh(x)∂µr(x)− c3
vew
Λr

m2
rh(x)r(x) , (4.32)

where c1, c2 and c3 are O(1) numerical coefficients, and we use the terms ra-

dion/dilaton interchangeably. From this point onwards we focus on this phe-

nomenological Lagrangian to describe the possible mixing scenarios that may arise:

1. The no mass mixing scenario, c3 = 0. From the 5D point of view, this

case corresponds to a pure AdS5 slice where the back-reaction on the ge-

ometry from the radion potential that stabilises the extra dimension can be

neglected. Strictly speaking, it is not compatible to have a massive radion

and no mass mixing unless a tuning of the parameters is involved such that

c3 = 0. From the 4D point of view, this corresponds to no explicit conformal

breaking parameter in the dilaton self interactions and thus to a CFT that

is not badly broken.

2. The generic scenario where c1, c3 6= 0 corresponds from the 5D point of view

to including the leading back-reaction contributions of the radion potential

and from the 4D point of view to explicit conformal breaking terms in the

dilaton potential.

3. The 5D GHU or 4D pNGB composite Higgs scenarios correspond to c1 � 1

and c3 = 0 when explicit sources of conformal breaking are neglected.

Despite the fact that a brane or a bulk Higgs may fall into the same mixing

category, the phenomenology can be very different due to the way in which they

perceive the conformal breaking, as we will see in the next section. For the purposes

of studying the radion-Higgs mixing and its effect on both the Higgs and radion

phenomenology at colliders, we shall consider c1, c2 and c3 as free parameters. We

will see in the next section that the GHU/pNGB composite Higgs scenario reduces

phenomenologically to the case of a brane Higgs with c1 � 1, and has therefore

been covered by previous radion studies [237]. Hence we focus our parameter

scans on covering all possible values of c1, c2 and c3 for a bulk scalar Higgs, which

provides phenomenologically distinct signatures with respect to the brane Higgs

case.
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One can diagonalise the kinetic term in Eq. (4.32) by going to a new basis

h = h′ + c1(vew/Λr)r
′/Z ,

r = r′/Z ,
(4.33)

where Z2 = 1 + (c2 + c2
1)v

2
ew
Λ2
r

. This transformation decouples the kinetic mixing

but introduces additional mass mixing terms. The mass matrix in the basis (r′, h′)

then takes the form

M =

(
m2
r

Z2 + 1
Z2

v2
ew
Λ2
r

(c2
1m

2
h + 2c1c3m

2
r)

1
Z
vew
Λr

(c1m
2
h + c3m

2
r)

1
Z
vew
Λr

(c1m
2
h + c3m

2
r) m2

h

)

≡
(
M11 M12

M12 M22

)
. (4.34)

The mass eigenbasis is obtained by the orthogonal transformation(
r′

h′

)
=

(
Ur,− Ur,+

Uh,− Uh,+

) (
φ−

φ+

)
, (4.35)

where ∆ =
√

(M11 −M22)2 + 4M2
12 and

Ur,− =
M11 −M22 −∆√

(M11 −M22 −∆)2 + 4M2
12

, Ur,+ =
M11 −M22 + ∆√

(M11 −M22 + ∆)2 + 4M2
12

,

Uh,− =
2M12√

(M11 −M22 −∆)2 + 4M2
12

, Uh,+ =
2M12√

(M11 −M22 + ∆)2 + 4M2
12

.

(4.36)

There are correspondingly two eigenstates; a lighter one φ− = Ur,−r′+Uh,−h′ and

a heavier one φ+ = Ur,+r
′ + Uh,+h

′, with masses

m2
φ± =

1

2
(M11 +M22 ±∆) . (4.37)

The gauge basis is related to the mass basis according to

r = r+φ+ + r−φ− ,

h = h+φ+ + h−φ− ,
(4.38)

where we have defined

r± =
Ur,±
Z

,

h± = Uh,± +
c1

Z

vew
Λr

Ur,± . (4.39)
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Note that because of the non-unitary transformation, c2
+ + c2

− 6= 1 for c = h, r.

However, this definition is useful to determine the couplings in the mass basis. In

fact, notice that h+ and r− provide respectively the SM Higgs-like and radion-

like couplings of the heavier and lighter mass eigenstates φ+(x) and φ−(x), and

moreover due to the non-unitary transformation between the different bases, h+ =

0 does not imply that r− = 0 and vice versa.

4.5 Higgs and Radion Couplings, Mixing and Branch-

ing Ratios

4.5.1 Higgs and Radion Couplings

Though we motivated our effective theory by studying a particular 5D scenario,

we ultimately decided to focus on an effective 4D picture wherein we consider two

types of Higgs sector: i) the Higgs is identified with a light scalar doublet charged

under the gauge group SU(2)L × U(1)Y ; or ii) the Higgs field is identified with

a composite pNGB of an enlarged broken global symmetry group that contains

SU(2)L × U(1)Y as a subgroup. In both cases there is an associated conformal

sector that is spontaneously broken at an energy scale f and that in our effective

theory translates into the existence of a possible light state; the dilaton. One may

be worried about possible contributions to the Higgs couplings arising from mix-

ing or loop-effects involving resonances of the conformal sector. However, notice

that in case i) the only symmetry additional to those already found in the SM is

the spontaneously broken conformal symmetry. We expect any possible additional

composite resonances besides the dilaton to have masses of the order mρ ∼ gρf ,

with gρ � 1 the strong coupling in the conformal sector, making their effects on

the Higgs couplings strongly suppressed. In case ii) due to the enlarged global

group in which SM particles are embedded and due to the shift symmetry pro-

tection of the Higgs, there is a relationship between the Higgs mass and light top

fermionic resonances of the form m2
h ∝ m2

tm
2
Q/f

2. Therefore in order to reproduce

a light Higgs mass, one usually finds the existence of light fermionic resonances

that couple strongly to the Higgs, with masses mQ ∼ gψf � gρf . This can have

significant effects, in particular for Higgs couplings to gluons or photons. It has

been shown nonetheless that due to the pseudo-Nambu-Goldstone nature of the

Higgs, the resonant fermionic loop contributions cancel against the modified top

quark Yukawa coupling, and lead to modifications in the coupling to gluons that
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are suppressed by the ratio v2/f2 . 0.01 [241]. Therefore, in the two Higgs scenar-

ios considered, we do not expect sizeable deviations of the Higgs couplings from

their SM values, and thus for simplicity we restrict the couplings to SM values.†

Allowing for the possibility of a bulk Higgs implies that some of the known radion

couplings to SM fields are modified, in particular those involving radion couplings

to the Higgs field itself, as well as to massive gauge bosons. We use the 5D

language as a tool to calculate the couplings and assume a given warp factor,

kL, that solves the hierarchy problem; however our results are general with the

replacement Λr = f . As was shown in Ref. [243], the bulk radion couples at linear

order to SM fields through the bulk stress energy tensor as

Sradion =

∫
d4xdz

√
g

Φ(x, z)

2

[
ΘM
M − 3gzzΘ

zz
]
, (4.40)

where the conformal coordinate z is related to the extra-dimensional coordinate y

as dy = e−Ãdz, and ΘMN is the bulk stress energy tensor which can be written as

ΘMN = − 2√
g

δ(Lbulk
√
g)

δgMN
= −2

δ(Lbulk)
δgMN

+ gMNLbulk . (4.41)

Focusing on the coupling to SM gauge bosons (massive or massless), one can easily

show using Eq. (4.40) that there will always be a non-vanishing coupling arising

from the bulk kinetic terms for the gauge fields

Sradion = −1

4

∫
d4xdyΦ(x, y)FµνF

µν = −
∫
d4x

r(x)

4Λr

1

kL
FµνF

µν , (4.42)

where we used ΘMN = −FMPFNP + 1
4g
MNFPQF

PQ. As was argued in [243], the

fact that this tree level coupling is non-vanishing implies that loop effects merely

renormalise this tree-level operator. Therefore, loop effects are prominent on the

branes where no tree-level coupling is allowed, and are stronger on the IR brane

where the radion is usually closely localised. This provides the main mechanism of

radion production through gluon fusion as is usual in radion scenarios. We refer

the reader to Ref. [243] for the appropriate expressions for the radion-digluon and

†In the case of generic warped extra dimensional scenarios the mass scale of the lowest lying
KK fermions mKK . Λr. A naive estimate of the shift in the Higgs coupling to gluons due to the
KK towers of the SM fermions is as follows,

δΓKKgg
ΓSMgg

∼ 4C2(∇NP )Nf
∑
n

v

m
(n)
KK

∂m
(n)
KK

∂v
∼ O(1)

( v

ke−πkL

)2

,

where C2(∇NP ) is the quadratic Casimir of the KK states and Nf = 6. This translates into a
lower limit on the mass of the lightest KK state that may be as large as 3.2 TeV for a 20% shift
in the decay width, which is the resolution of current experimental data. A detailed calculation
of this is rather model dependent [242].
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radion-diphoton couplings, including the contributions from fermion loops as well

as the QCD and QED trace anomalies respectively.

In addition, via electroweak symmetry breaking, there is in principle a possibly

large additional coupling of the radion to a pair of massive gauge bosons, which

dominates in the case of a brane-localised Higgs. As is well-known, the gauge

bosons acquire their mass through the kinetic term of the Higgs field, which in the

case of a bulk Higgs scalar leads to mass terms for the gauge bosons of the form

Lbulk = DMH†DMH → m2
WW

+
µ W

µ,− +
1

2
m2
ZZµZ

µ . (4.43)

It follows that the contribution to the stress energy tensor is

ΘMN = −2DMHDNH† + gMNDPH†DPH , (4.44)

which implies that ΘM
M = 3DMHDMH

† = 3e2ÃDµHDµH
†, where the last index is

contracted using the 5D Minkowski metric. Now, −3gzzΘ
zz = −3e2ÃDµHDµH

†,

which exactly compensates the contribution from ΘM
M . Thus the linear radion

coupling to the electroweak gauge boson mass terms vanishes in the case of a bulk

Higgs. This result can also be checked by simply expanding the metric in its spin-0

fluctuations in the action

Sbulk =

∫
d4xdy

√
g DMH†DMH

→
∫
d4xdy e−4Ã(y)

√
(1− Φ)4(1 + 2Φ) e2Ã(y)(1− Φ)−1DµH†DµH

=

∫
d4xdy (1 +O(Φ2)) e−2Ã(y)DµH†DµH , (4.45)

where the Greek indices are contracted using the 4D Minkowski metric. Therefore

we also see in this way that the coupling vanishes. Notice that this result is

completely general and holds for the kinetic term of any scalar. We can understand

this result from the 4D point of view as follows. As we just noticed, the vanishing

of this particular coupling is geometrical from the 5D point of view. As a matter

of fact we can take both the UV and IR branes to infinity, and the results would

still hold in pure AdS5-space. In that particular case, it is clear that the conformal

symmetry is exact. If we look at the 4D picture this implies that the 4D-analogue of

the radion, the dilaton field, can only couple derivatively to conformally invariant

operators, in particular to DµΦDµΦ, where Φ is a 4D-scalar field. Therefore from

Lorentz invariance we see that no linear coupling can be written that derivatively

couples the radion to DµΦDµΦ. This has important consequences for the radion

phenomenology when the Higgs is a scalar in the bulk, since then its coupling
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to pairs of massive SM gauge bosons only comes from Eq. (4.40) and is highly

suppressed.

In the case of gauge-Higgs unification scenarios, the Higgs field is identified with

the fifth component A5(x, y) of a gauge field belonging to the coset G/H of an

enlarged gauge group G that is broken down to the subgroup H via boundary

conditions. In that case the equivalent of the scalar kinetic term is given by

Sbulk =

∫
d4xdy

√
g gµνg55Tr[Fµ5Fν5] , (4.46)

Due to the additional metric factor in the kinetic term, there is a non-vanishing

radion coupling proportional to the EWSB induced masses∫
d4xdy e−4Ã(y)

√
(1− Φ)4(1 + 2Φ) e2Ã(y)(1− Φ)−1(1 + 2Φ)−1 Tr[Fµ5F

µ5]

=

∫
d4xdy e−2Ã(y)(1− 2Φ +O(Φ2)) Tr[Fµ5F

µ5] , (4.47)

where the indices are contracted using the Minkowski metric. Thus, in these kinds

of scenarios the radion coupling to massive SM gauge bosons is similar to that

encountered for a Higgs localised on the IR brane.

Another potential difference with respect to the brane Higgs scenario is in the

Yukawa induced SM fermion-radion interactions arising from the term

∆LY = −
∫
d4xdy

√
g Y5

[
Hf̄f + h.c.

]
, (4.48)

where Y5 is the 5D Yukawa coupling. We shall make use of the following normalised

left-handed and right-handed profiles for the fermion zero modes

fL(y) =
e( 1

2
−cL)ky

NL
, fR(y) =

e( 1
2

+cR)ky

NR
, (4.49)

where fL(y) and fR(y) satisfy

∫ L

0
dyf2

L,R(y) = 1 −→ NL,R =

√
e(1∓2cL,R)kL − 1

(1∓ 2cL,R)k
. (4.50)

The upper and lower signs correspond to NL and NR respectively, while cL,R are

the fermion bulk mass parameters defined by ML,R = cL,Rk. Using Eq. (4.10)

for the Higgs vev, we can obtain an expression for the SM fermion masses by

integrating the zero-mode profiles for the fermions and the Higgs vev along the
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extra dimension

mf =

∫ L

0
dy e−Ã(y) fL(y)fR(y)v(y)Y5

=
1

NR

1

NL

√
2(1 + β)k vewe

−(1+β)kL (e(2−cL+cR+β)kL − 1)

(2− cL + cR + β)k
Y5 . (4.51)

The interaction in Eq. (4.48), once expanded in the spin-0 fluctuation of the metric,

takes the form

−
∫
d4xdy e−Ã(y) (−Φ(y))Y5 fL(y) fR(y) v(y) (r(x)f̄0(x)f0(x) + h.c.)

' 2mf

Λr

(2− cL + cR + β)

(4− cL + cR + β)

∫
d4x (r(x)f̄0(x)f0(x) + h.c.) , (4.52)

where in the last line we assume that the fermion and Higgs profiles are IR localised

and satisfy 1−cL+cR+β > 0. So contrary to the gauge-boson case, we notice that

the coupling of the radion to, in particular, the top quark can be non-negligible.

In order to remain model-independent we will henceforth approximate the radion-

fermion coupling by mf/Λr, which is equivalent to the case of a brane localised

Higgs.

Finally we look at the coupling of the radion to two Higgs. For this coupling there

is a kinetic mixing contribution coming from
√
gR5H

†H as well as contributions

from the Higgs kinetic term, bulk Higgs mass
√
gc2k2H†H and important boundary

contributions from the IR-brane potential
√
g4λIR(H). The Higgs kinetic and bulk

mass contributions cancel against some of the IR-brane contributions and after

replacing λ̃ in terms of m2
h and v2

ew using Eq. (4.13), one can write the radion-

diHiggs coupling in the form∫
d4x

1

Λr

(
2m2

h −
c1

2
m2
r

)
r(x)h(x)2 . (4.53)

We have also used the radion equation of motion �r(x) = −m2
rr(x). Given

Eq. (4.53), we do not expect large differences arising in comparison with the brane

localised Higgs counterpart.

To summarise, after studying the radion couplings to SM particles, we expect the

largest modifications in the phenomenology of the bulk scalar Higgs scenario to

arise due to the vanishing of the radion-massive diboson coupling proportional to

the gauge boson mass. We list for completeness in Table 4.1 the most relevant

couplings of the unmixed Higgs and radion states, where τi,(h,r) = 4m2
i /m

2
(h,r),

F1/2 and F1 are the usual integrals over fermion and gauge boson states running

in the loop and bQED = −11/3 and bQCD = 7 are the β-function coefficients.
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h(x) r(x)

ff̄ −mf
v

mf
Λr

WµWµ
2m2

W
v

–

ZµZµ
m2
Z
v

–

WµνWµν – −1
2Λr

1
kL

ZµνZµν – −1
4Λr

1
kL

hh – 1
Λr

(
2m2

h − c1
2 m

2
r

)
γγ

−1
4v (F1(τW,h) −1

4Λr

(
1
kL + [bQED

+4
3F1/2(τt,r)

)
αEM

2π −4
3F1/2(τt,h)

]
αEM

2π

)
gg −1

4v
α3
4πF1/2(τt,h)

−1
4Λr

(
1
kL + [bQCD

−1
2F1/2(τt,r)

]
α3
2π

)
Table 4.1: Phenomenologically relevant couplings of the gauge states h(x) and

r(x) to SM particles.

4.5.2 Mixing and Branching Ratios

Most of the interactions between the radion and SM particles, except those with

massive gauge bosons and to the Higgs itself, have the same structure as those of

the SM Higgs to fermions and gauge bosons. So one can easily obtain most of the

decay rates of the mixed states by inspecting the well-known expressions for the

Higgs decay rates (see for example [244]) and using the replacements: mh → mφ±

and gh → g±, where from Eq. (4.38),

g± =

(
Uh,± +

c1

Z

vew
Λr

Ur,±

)
gh +

1

Z
Ur,± gr , (4.54)

with gh and gr the Higgs and radion couplings to SM particles respectively.

The interactions that have a structure different than those of the Higgs to SM

particles are those of the mixed states to massive gauge bosons and among the

mixed states themselves. In this case, the decay rate of the mixed states into

massive gauge bosons can be written as
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Γφ±WW =
mφ±

32π

√
1− 4

m2
W

m2
φ±

×
[
U2
r,±
Z2

g2
rWW

4
m2
φ±

(
1− 4

m2
W

m2
φ±

+ 6
m4
W

m4
φ±

)

+
Ur,±
Z

(
Uh,± +

c1

Z

vew
Λr

Ur,±

)
3

2
grWW ghWW

(
1− 2

m2
W

m2
φ±

)

+ 2

(
Uh,± +

c1

Z

vew
Λr

Ur,±

)2 g2
hWW

4m4
W

m2
φ±

(
1− 4

m2
W

m2
φ±

+ 12
m4
W

m4
φ±

)]
, (4.55)

where grWW and ghWW are among the couplings listed in Table 4.1, and for decays

into Z pairs one needs to divide Eq. (4.55) by 2, replacemW → mZ , grWW → 2grZZ

and ghWW → 2ghZZ .

Using Eq. (4.53) and assuming that the φ+ state is mostly radion while φ− is

mostly Higgs, as experimental constraints seem to suggest, we can calculate the

decay rate of φ+ to a pair of φ− states,

Γφ+φ−φ− =
m3
φ+

8πΛ2
r

√√√√1− 4
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×
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m2
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]2

. (4.56)

Now that we have all the relevant decay rates, we display in Figures 4.1 and 4.2 the

branching fractions of φ+ as a function of mφ+ for different values of c1 = c2 = c3.

In the case of no-mixing (c1 = c2 = c3 = 0), where φ+ = r, φ− = h and the

results are independent of Λr, the dominant decay channels are tt̄, gg and hh.

As already mentioned, decays to massive dibosons only go through their kinetic

terms as in the γγ channel and tend to be suppressed†. Thus the relevant final

states for searches are multijets, pairs of b-jets and possibly leptons plus missing

energy. Depending on the mass difference between mr and mh, we could also

have fat-jets if the subsequent h→ bb̄ decay is highly boosted. For radion masses

slightly larger than 125 GeV (mr & mh), gg dominates with bb̄ the second most

important decay mode. Here we expect mostly final states involving jets, which

will be difficult to differentiate from the SM QCD background. It is interesting to

note that the diphoton channel can have a branching fraction comparable to the

SM Higgs for this range of masses and furthermore remains relevant out to higher

masses, making it an appealing discovery channel in the small mixing scenario.

†In contrast to the gg channel where the QCD trace anomaly dominates, in the γγ channel
the anomaly contribution is sub-dominant with respect to the conformal 1/kL contribution.
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Figure 4.1: Branching ratios for φ+ as a function of mass with c1 = c2 = c3 = 0,
independent of Λr.

As shown in Figure 4.2, once the mixing increases the branching fractions to WW

and ZZ rapidly become more relevant and at c1 = c2 = c3 = 1 they dominate above

threshold, relegating the other decay branching fractions to be below 10%. For

smaller mixing, c1 = c2 = c3 = 0.1, decays into gg, bb̄ and φ−φ− are still important

in the low, intermediate and high mφ+ regions respectively. In this case we also

observe a sharp drop in the branching fraction to φ−φ− near mφ+ ∼ 750 GeV due

to a cancellation between the various contributions to the partial width. As the

mixing is increased, this cancellation occurs at smaller values ofmφ+ and eventually

moves below the φ−φ− threshold and is not observed at c1 = c2 = c3 = 1.

4.6 Constraints from LHC Searches

Starting with the effective Lagrangian Eq. (4.32), we are now in a position to inves-

tigate the constraints on the allowed parameter space. We consider the case where

the lightest eigenstate, φ−, is identified with the 125 GeV Higgs. Measurements of

the Higgs signal strengths as well as direct searches for the heavier eigenstate, φ+,

can then be used to constrain the allowed parameter space for models which can

be described by Eq. (4.32).

The effective Lagrangian we are considering contains six parameters; the mass

scales mh, mr, Λr, and the O(1) dimensionless parameters c1, c2 and c3. One can

immediately eliminate mh by requiring the mass of the lightest eigenstate to be

125 GeV. In addition, we expect c2 to have a very small effect on the phenomenol-

ogy since the relevant term in the Lagrangian is suppressed by an additional factor
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Figure 4.2: Branching ratios for φ+ as a function of mass for Λr = 3 TeV.
The top and bottom panels are for c1 = c2 = c3 = 0.1 and c1 = c2 = c3 = 1

respectively.

of vew/Λr. Therefore we choose to fix c2 = 1 before scanning over the remaining

4-dimensional parameter space. We perform a random scan with flat priors over

the mass of the radion gauge state, mr, from 160 to 1500 GeV and the kinetic and

mass mixing coefficients, c1 and c3, from -3 to 3, while considering fixed values of

1, 3 and 5 TeV for the scale of the radion couplings, Λr. We also note that there is

a theoretical bound on c1 in order to ensure that we do not encounter a ghost-like

kinetic term for φ+. For example when c3 = 0 and Λr = 1 TeV this gives a bound

of |c1| . 4.

Since we have chosen to identify the lightest eigenstate, φ−, with the 125 GeV

Higgs, we impose the constraints from the measured Higgs signal strengths in the

γγ, ZZ(∗) → 4l, WW (∗) → lνlν, bb̄ and τ τ̄ decay channels. We focus on the
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Channel µX
γγ 0.98± 0.28

V V 0.91± 0.16

bb̄ 0.97± 0.38

τ τ̄ 1.07± 0.71

Table 4.2: Best fit values for the Higgs signal strengths in various decay channels
at 125 GeV [245].

dominant gluon-gluon fusion (ggF) production mode in all channels, with the ex-

ception of bb̄ where the best measurements are obtained by considering production

in association with a W or Z boson (VH). In the case of gluon fusion, the signal

strength is defined in the narrow width approximation by

µggFX =
Γ(φ− → gg)

Γ(hSM → gg)

Br(φ− → X)

Br(hSM → X)
. (4.57)

We use the combined ATLAS, CMS and Tevatron best fit values for the signal

strengths given in Ref. [245], which are shown in Table 4.2, and require that the

signal strength for the φ− state satisfy these bounds at the 1-sigma level.

However, for masses 125 < mφ+ < 160 GeV, one must carefully consider the con-

tribution of both states to the measured signal strength in the WW (∗) channel,

since unlike γγ and ZZ(∗) the final state is not fully reconstructable. Additionally,

interference effects must be taken into account if the two states have a very small

mass separation. We therefore restrict mr > 160 GeV, allowing us to consider the

two states separately in the WW channel.

We must also consider the possibility that, when kinematically allowed, the 125 GeV

state may be produced via the decay φ+ → φ−φ−, which will result in an enhance-

ment in the signal strengths for φ−. In the case of the WW (∗) analysis, such events

will not contribute significantly due to vetoes on additional leptons and jets. On

the other hand, the γγ and ZZ(∗) analyses are quite inclusive and this additional

contribution to the production cross section can be important. In fact, in cer-

tain regions of parameter space this process can become the dominant production

mechanism for φ−. In this case we define the signal strength as

µggFX =

(
Γ(φ− → gg)

Γ(hSM → gg)
+

2σggF (pp→ φ+ → φ−φ−)

σggF (pp→ hSM )

)
Br(φ− → X)

Br(hSM → X)
. (4.58)

In addition to the constraints on the 125 GeV eigenstate, the ATLAS and CMS

Higgs searches can also be used to constrain the heavier eigenstate. We therefore

require that the φ+ state satisfies the exclusion limits from the CMS H →WW →
2l2ν [246] and H → ZZ → 4l [247] searches and the ATLAS high mass H →



4.7. Radion-Higgs Phenomenology for LHC14 97

WW → eνµν search [248]. The Higgs searches in the remaining channels (γγ, bb̄

and τ τ̄ ) currently only provide constraints for masses below ∼ 150 GeV. Finally,

we also impose the additional constraints provided by the CMS semi-leptonic tt̄

resonance search [95] in the 500 GeV to 1 TeV mass range.

There are in principle other searches performed at the LHC which could be adapted

to our particular model, for example the searches for resonant ZZ production in the

dilepton plus dijet channel [249] and resonant WW production in the lepton plus

dijet channel [250]. These searches focus on dibosons produced by KK graviton

decay and thus cannot be directly translated to our model without determining

the signal acceptance via a Monte Carlo simulation of our signal with appropriate

selection cuts. We leave these particular collider studies for subsequent work.

While we do not expect these searches to currently constrain our model, they will

become important at the 14 TeV LHC. The high mass diphoton [251] and dijet

[252] searches may also be able to provide constraints in the future.

4.7 Radion-Higgs Phenomenology for LHC14

We performed a scan of 200,000 points for each value of Λr, imposing the above

experimental constraints on the φ− and φ+ states. We find that the current exper-

imental constraints already rule out a significant fraction of the parameter space,

in particular at low values of Λr and small masses, m+. Figures 4.3, 4.4 & 4.5

show the φ+ mass eigenstate component of the Higgs gauge eigenstate, h+, as a

function of the mass for Λr = 1, 3, 5 TeV respectively. This is a useful variable for

characterising the extent of the mixing between the two states; note that non-zero

h+ leads to Higgs-like couplings for the heavier eigenstate and that h+ can be

greater than one due to the non-unitary transformation resulting from the kinetic

mixing. The red points in Figures 4.3, 4.4 & 4.5 are excluded by measurements of

the 125 GeV Higgs signal strengths, while the black points satisfy these constraints

but are ruled out by direct searches for the heavier state. The green points pass

all of the current experimental bounds.

We see that for Λr = 1 TeV virtually all of the points are ruled out, with the

exception of a few points with very small mixing. In the 250 to 350 GeV range,

this is due to enhanced production of the 125 GeV state via φ+ → φ−φ−, as

discussed previously. The remaining points which satisfy the Higgs signal strength

bounds are excluded by searches for φ+ in the WW and ZZ channels, as well as

the tt̄ channel above 500 GeV. In the Λr = 3 TeV case we find that, as expected,

a significantly larger fraction of the points survive the experimental constraints.
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Figure 4.3: The φ+ component of the Higgs gauge eigenstate as a function of
the mass. The red points are excluded by measurements of the 125 GeV Higgs
signal strengths, while the black points satisfy these constraints but are ruled out
by direct searches for φ+. The green points pass all of the current experimental

bounds. We have set Λr = 1 TeV.

Below 500 GeV the bounds from WW and ZZ searches still rule out most of

the points with large mixing, while between 450 and 900 GeV we find that they

also disfavour negative values of h+. This is the result of constructive interference

between the Higgs and radion couplings to the top quark, which enhances the φ+

gluon fusion cross section for negative h+. For masses above 1 TeV there are no

constraints on φ+ from current searches. Furthermore, notice that only the red

points extend to larger values of h+, which indicates that for large mixing one is

unable to satisfy the Higgs signal strength constraints independently of the φ+

mass. Finally, for Λr = 5 TeV there are once again significantly more allowed

points for masses below 1 TeV, although negative values of h+ are disfavoured by

WW and ZZ searches between 250 and 600 GeV.

Using these results we can also derive bounds on the parameters of our effective

Lagrangian, in particular c1 and c3. For Λr = 1 TeV we find that −0.2 < c3 < 0.04,

while the constraints are somewhat weaker for Λr = 3 TeV, giving −2.1 < c3 <

0.6. These bounds are of course also dependent on the value of mr and can be

significantly stronger, particularly for lower masses. Considering c1 on the other

hand, for Λr = 1 TeV we find −0.2 < c1 < 0.3, while for Λr = 3 TeV c1 is

unconstrained for values of mr > 1 TeV but for masses below 450 GeV we obtain

a bound of −0.7 < c1 < 2.7.

Finally, we investigate the phenomenology of the regions of parameter space which

are allowed by current measurements and discuss the prospects for future searches
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Figure 4.4: As in Figure 4.3 but with Λr = 3 TeV.

Figure 4.5: As in Figure 4.3 but with Λr = 5 TeV.

during the next run of the LHC. We plot in Figure 4.6 the diphoton cross section

due to a φ+ produced via gluon fusion at a centre-of-mass energy of 14 TeV, as a

function of mφ+ . In this and subsequent plots all points satisfy the experimental

constraints discussed in Section 4.6. The black, blue and cyan points correspond

to Λr = 1, 3 and 5 TeV respectively. First of all, notice that the cross section tends

to decrease for larger mφ+ , as expected due to the mass suppression in the gluon

fusion φ+ production. We concentrate first on the analysis of the Λr = 1 TeV

(black) points. As mentioned above, the lack of points in the 250–350 GeV mass

range can be attributed to the contribution of φ+ decays to φ− pair-production.

This constraint becomes suppressed for larger values of Λr, and for larger mφ+
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Figure 4.6: Gluon fusion cross section times branching ratio for φ+ → γγ at√
s = 14 TeV. The black, blue and cyan points are for Λr = 1, 3 and 5 TeV

respectively.

due to the reduction in the φ+ production cross section. Similarly, the second

empty region is related to the tt̄ constraints that kick in at an invariant mass

mtt̄ ≈ 500 GeV and which can again be evaded by increasing Λr.

Another feature that stands out is the relatively large diphoton cross sections

attained for mφ+ ∈ [160, 250] GeV. Recall that the points in this region correspond

to the case of small mixing and therefore the branching ratios of φ+ are dominated

by gg and bb̄. However, any signal in these channels will be buried under the large

QCD background found at the LHC. On the other hand, the clean diphoton signal

remains competitive, even overtaking the well-known SM Higgs diphoton cross

section for the same mass range. This can be clearly understood from the fact

that φ+ has an enhanced coupling to gluons via the trace anomaly, increasing the

production cross section. The diphoton channel is therefore the most promising

search channel in this mass range and even extending up to the tt̄ threshold since,

unlike the SM Higgs, the branching fraction to photons does not drop off at higher

masses due to the conformal contribution to the coupling. This strongly motivates

extending the diphoton searches to invariant masses above mγγ = 150 GeV. Since

the completion of our study, both ATLAS and CMS have extended their diphoton

searches to larger invariant masses [217, 253]. These updated searches impose

additional constraints for mφ+ . 270 GeV, which exclude all of the Λr = 1 TeV

points in this mass range and also start to probe larger values of Λr.

Figure 4.7 shows a similar plot of the cross section for a φ+ produced via gluon

fusion and then decaying to tt̄. While this search channel currently only provides
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Figure 4.7: Gluon fusion cross section times branching ratio for φ+ → tt̄ at√
s = 14 TeV. The black, blue and cyan points are for Λr = 1, 3 and 5 TeV

respectively.

constraints for Λr = 1 TeV, we expect it to become an important channel for masses

mφ+ > 500 GeV with additional integrated luminosity. It provides sensitivity

to scenarios with small mixing, where the branching fraction to tt̄ dominates.

It is particularly sensitive to cases where the mixing parameters in our effective

Lagrangian are negative, since this results in an enhanced coupling to tt̄ due to the

Higgs and radion couplings to the top quark combining constructively. Searches

in the tt̄ channel will also be important in the high mass region, mtt̄ & 1 TeV,

where the decay products are highly boosted and may be collimated into a single

jet. Such boosted topologies are already considered by current searches at high

invariant mass [95], although do not currently provide constraints on our model.

Finally, in Figure 4.8 we show the cross section times branching ratio for φ+ de-

caying to ZZ. Again one can clearly see the regions below 1 TeV, and in particular

below 500 GeV, where searches in this channel are already restricting the allowed

parameter space, even for larger values of Λr = 5 TeV. We also note that there

are a significant number of points with relatively large cross sections, ∼ 0.1 pb,

for mφ+ & 1 TeV. These points correspond to cases where there is a large mixing,

since as discussed in Section 4.5, the radion coupling to massive gauge bosons is

suppressed when the Higgs is placed in the bulk. On the other hand there are

a large number of points with smaller mixing where the cross section is highly

suppressed. This ability to suppress the signal in the ZZ (and WW ) channels

provides a distinct difference from the commonly considered brane Higgs scenar-

ios. Hence, while the ZZ channel has sensitivity across the entire mass range
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Figure 4.8: Gluon fusion cross section times branching ratio for φ+ → ZZ at√
s = 14 TeV. The black, blue and cyan points are for Λr = 1, 3 and 5 TeV

respectively.

considered, other channels will be essential to probe the full parameter space. In

conclusion we note that the various searches are in fact complementary, with the

ZZ/WW channels providing the best sensitivity in cases with large mixing, while

the γγ and tt̄ channels are important to probe cases where the mixing is small.

4.8 An Excess at 750 GeV?

Recently, the ATLAS and CMS collaborations have reported a mild excess in the

diphoton channel around an invariant mass of 750 GeV, with a few fb−1 of data

from collisions at
√
s = 13 TeV [97, 99, 230, 231]. While the observed excess

may turn out to be simply a statistical fluctuation, it is nevertheless interesting

to consider the possibility that new physics could be responsible. Assuming the

excess is due to a hypothetical new particle with a mass of 750 GeV, it currently

remains unclear whether the data favours a large or narrow width resonance; the

ATLAS data prefers a broad resonance with Γ ≈ 45 GeV, while CMS obtains a

better fit with a narrower width. Furthermore, the excess events do not appear to

contain additional energetic particles in the final state, and the absence of a sig-

nificant signal in the previous run of the LHC at
√
s = 8 TeV may favour certain

production modes. This observation has already inspired an enormous number

of theoretical investigations, including in the context of warped models [254–268].

Here we discuss the possibility that the radion could be responsible for the ob-

served excess and show that the bulk Higgs scenario is particularly advantageous
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Final State Observed Bound

tt̄ < 300 fb [95]

WW < 38 fb [218, 219]

ZZ < 12 fb [220]

Zγ < 4.0 fb [270, 271]

γγ < 1.4 fb [217, 253]

hh < 36 fb [221]

jj < 2.5 pb [272, 273]

Table 4.3: Constraints on the radion from 8 TeV resonance searches.

by allowing otherwise stringent bounds from Run-I to be evaded. It will however

prove necessary to slightly generalise our previous framework, by taking the size

of the extra dimension kL to be a free parameter. In the dual 4D picture, this

will correspond to lowering the UV cut-off above which the physics is no longer

conformal, and is consistent with treating the RS framework as a tool to analyse

a 4D CFT. The possibility that the radion is responsible for the diphoton excess

has also subsequently been considered in Refs. [254, 257, 258].

We take the best-fit cross sections for the diphoton excess from the CMS combined

8+13 TeV analysis [231] and extracted from the ATLAS analysis [230] in Ref. [269]:

µATLAS
13 TeV = σ(pp→ S)13 TeV × B(S → γγ) = 10+4

−3 fb , (4.59)

µCMS
13 TeV = σ(pp→ S)13 TeV × B(S → γγ) = 3.7+1.5

−1.3 fb . (4.60)

We also summarise in Table 4.3 the most important constraints from 8 TeV res-

onance searches. The radion couplings to light fermions are suppressed by the

fermion mass and so set no meaningful constraints.

From Table 4.3, we see that the constraints on a putative 750 GeV resonance

decaying to gauge bosons are an order of magnitude stronger than on decays to

tt̄. In contrast, a scalar of that mass with Higgs-like couplings will dominantly

decay to WW and ZZ. This has important consequences for our model since the

radion and the Higgs generically have both mass and kinetic mixing, as shown

in Eq. (4.32). In order to sufficiently suppress the heavier state decay to gauge

bosons, it must be radion-like with any Higgs-like couplings strongly suppressed.

Large mixing between the two states would also modify the properties of the 125

GeV scalar resonance discovered at the LHC. Decays of the heavier state to hh

could also affect the Higgs measurements, however this contribution will turn out

to be negligible in the viable regions of parameter space.
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Figure 4.9: Branching ratios for a 750 GeV radion to various SM final states
in the limit of zero mixing with the SM Higgs.

With the radion couplings to massive gauge bosons suppressed, inspecting Ta-

ble 4.1 reveals that the other potentially large couplings are to gluons, top-quark

pairs, and the lighter Higgs-like state. The decay r → tt̄ is enhanced over r → hh

by colour and spin degrees of freedom, enough that the former typically sets the

dominant limits despite the stronger constraints on hh final states listed in Ta-

ble 4.3. Note from Table 4.1 that all radion couplings scale with Λr in the same

way. Therefore in the zero-mixing limit the branching ratios depend only on

the size of the extra dimension kL. We plot those in Figure 4.9, and see that

B(r → tt̄) ≈ 40B(r → hh).

Our model contains only four free parameters: Λr, kL, c1 and c3. The observed

masses for the Higgs and the diphoton excess fix mr, mh in terms of these parame-

ters, while c2 has a negligible effect as discussed previously. In order to identify the

regions of parameter space which both satisfy the current experimental bounds and

are consistent with the observed diphoton excess we once again perform a scan over

these parameters. We take flat priors in the range −2 ≤ c1, c3 ≤ 2, 5 ≤ kL ≤ 35

and 1 ≤ Λr ≤ 5 TeV, and require that the 750 GeV state satisfy the constraints

from the resonance searches in Table 4.3, while the 125 GeV state must be con-

sistent with the updated measurements of the Higgs signal strengths [274, 275] at

the 2-sigma level. The radion production cross sections are obtained by scaling

the Higgs 8 TeV cross section [276] by the radion effective coupling to gluons and,

for
√
s = 13 TeV, by the parton luminosity ratio:

σ(pp→ r)13 TeV

σ(pp→ r)8 TeV
≈ 4.7 . (4.61)
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The results of the scan are shown in Figure 4.10, where all points satisfy the current

experimental constraints and the green points are also consistent with the observed

diphoton excess. In the top panel we have plotted the 750 GeV component of the

Higgs gauge state, h+, as a function of kL, clearly showing that the current data

already enforces small Higgs-radion mixing. Recall that h+ gives a measure of

the Higgs-like couplings possessed the heavier eigenstate, and that for h+ ≈ 0 the

heavier eigenstate has vanishing Higgs-like couplings. Large mixing is immediately

excluded by measurements of the 125 GeV state; however it turns out that for much

of the parameter space resonance searches in the ZZ and WW final states provide

the stronger constraint. The bound on the mixing is therefore weaker at large kL

and large Λr, where the radion production cross section is reduced. Furthermore,

the points consistent with the diphoton excess (green points) are concentrated at

small kL where the radion branching ratio to photons is enhanced.

In the vew/Λr � 1 limit, h+ is given in terms of the Lagrangian parameters by

h+ = (c1 + c3)
m2
r

m2
r −m2

h

vew
Λr

+O
(

(vew/Λr)
3
)
, (4.62)

and hence the heavier state is strongly radion-like along the line† c1 = −c3, which

we refer to as the alignment case. This is evident in the bottom panel of Figure 4.10

where the allowed points are all located along the diagonal. Notice that there are

no allowed points with c1 ≈ −c3 at large values of c1. This region of parameter

space is excluded by hh resonance searches due to the enhanced radion coupling

to hh (see Table 4.1). Enhancing the coupling to hh also results in a decreased

branching ratio to photons, hence the points satisfying the diphoton excess are

concentrated around small values of c1. These points are also aligned along the

diagonal; the off-diagonal points corresponding to increased mixing generally have

larger values of kL, again suppressing the branching ratio to photons.

It is clear that current experimental constraints impose small Higgs-radion mixing.

Providing an explanation for the diphoton excess additionally restricts us to the

region where |c1| . 0.5 and requires that we be quite close to the alignment

case. Hence we now restrict ourselves to the case c1 = −c3 in order to explore

the (kL, Λr) parameter space in detail. In Figures 4.11 and 4.12 we show the

regions in the kL–Λr plane consistent with the observed diphoton excess, as well

as the constraints from other LHC searches. We have taken two benchmark points

corresponding to c1 = 0 and c1 = 0.5.

†The lighter state is not necessarily strongly Higgs-like for c1 = −c3 due to the non-unitary

transformation. That is instead determined by |r−| =
c1m

2
h+c3m

2
r

m2
h
−m2

r

vew
Λr

+ O((vew/Λr)
3) , where

r− = 0 corresponds to a purely Higgs-like state.
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Figure 4.10: Results of the Λr, kL, c1, c3 parameter scan. All points shown
satisfy the constraints from resonance searches and Higgs measurements, while
the green points are additionally consistent with the diphoton excess. We have
taken the cross section for the diphoton excess to be the weighted average of

Eqs. (4.59) and (4.60), giving 4.9± 1.3 fb.

Focusing on Figure 4.11 (c1 = 0), we see that tt̄ searches give the approximate

bound Λr & 2 TeV, while obtaining a sufficiently large diphoton signal requires

taking smaller values of kL . 20 than those used to obtain the Planck-electroweak

hierarchy in RS-models (kL ∼ 35). This can be understood by noting that to

simultaneously have a 6 fb diphoton signal at 13 TeV while avoiding the constraints

from ditop searches, we must have

B(r → tt̄)

B(r → γγ)
<

300

6
× σ(pp→ r)13 TeV

σ(pp→ r)8 TeV
≈ 235 . (4.63)
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Figure 4.11: The region of parameter space consistent with the observed dipho-
ton excess is shaded in green, while the blue and red regions are excluded by the
8 TeV diphoton and other resonance searches respectively, and the grey region
is excluded by Higgs measurements. Regions below and to the left of the solid,
dashed, dotted and dot-dashed lines are individually excluded by the WW , ZZ,

hh and tt searches listed in Table 4.3. We have taken c1 = c3 = 0.

As can be seen from Figure 4.9, this is not satisfied at kL = 35. Decreasing

the size of the extra dimension increases the coupling to γγ (and gg, increasing

the production cross section) allowing us to satisfy this constraint. In contrast,

attempting to tune the mass and kinetic mixings between the radion and the Higgs

to suppress the decay r → tt̄ while maintaining a sufficiently large production cross

section reintroduces constraints from either the decays to WW or hh, as can be

inferred from Figure 4.10.

Moving away from c1 = 0 leads to an increased branching ratio to hh and this chan-

nel provides the strongest constraint for c1 & 0.35, as can be seen in Figure 4.12.

Satisfying this constraint in addition to the diphoton excess then requires even

smaller values of kL. Also note that while the heavier state is radion-like when

c1 = −c3, the lighter state is not necessarily Higgs-like due to the non-unitary

transformation arising from the kinetic mixing. This leads to bounds from mea-

surements of the Higgs couplings, which exclude the region Λr . 2 TeV.

Let us briefly comment on the theoretical implications of a reduced value for kL.

Models with smaller warping factors have previously been considered in the “Little
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Figure 4.12: Same as Figure 4.11 but with c1 = −c3 = 0.5.

Randall-Sundrum” paradigm for flavour [277]. They are most naturally interpreted

in the 4D context, where the UV scale µUV = µIR e
kL ∼ Λr e

kL is the UV cut-

off above which the physics is no longer conformal. Flavour constraints typically

require µUV > 103 TeV, which is satisfied for all points we show in Figures 4.11

and 4.12. However, from the 5D viewpoint one may be concerned that such models

lead to graviton couplings which are too strong. This can be resolved by simply

projecting out the graviton zero mode with Dirichlet boundary conditions as in

Refs. [277, 278]. Alternatively, one can construct models which still include a 4D

theory of gravity by introducing a scalar curvature term on the UV brane [279]. In

either case the radion phenomenology is largely unchanged due to its IR localisation

and our analysis is therefore insensitive to the details.

Finally, we address future prospects for testing this model. From Figure 4.9, we

see that the dominant decay modes of the radion are tt̄ and gg. While it might

be difficult to observe the dijet final state, the possibility to explore this scenario

with the ditop final state is certainly within the reach of the LHC Run-II. In the

case of non-zero mixing, it is clear that searches involving massive gauge boson

final states will be the main tool in constraining/discovering these kinds of models.

However, in the particular alignment case c1 ≈ −c3 where the heavier eigenstate is

strongly radion-like, an interesting situation may arise in which, due to the linear

c1 dependence of the radion-diHiggs coupling, searches in the diHiggs final state
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become the best way to probe the model for c1 & 0.35. Notice that both the

diboson and the diHiggs searches are more model dependent, whereas the ditop

signature is relatively insensitive to assumptions about the mixing and thus a

particularly promising channel. Additionally, we note that the width of the radion

is quite small, Γ . 1 GeV. If the excess is ultimately due to a broad resonance,

as suggested by the ATLAS data, that would disfavour this model as a possible

explanation. Lastly, we have worked in the 4D effective theory of Eq. (4.32), but

in the full theory we expect additional resonances at masses of a few TeV. If these

are not too heavy, they might also be discoverable.

4.9 Summary

In this chapter we have explored in detail the Higgs-radion system in the Randall-

Sundrum model with the Higgs located in the bulk of the extra dimension. We

considered the effect of a bulk ξR5H
†H term, which leads to kinetic mixing be-

tween the Higgs and the radion. The extra dimension must be stabilised, breaking

the conformal symmetry and generating a mass for the radion. Including the

back-reaction of the stabilising field on the metric then leads to an additional

mass mixing between the radion and the Higgs, which is distinct from the more

commonly considered case of a brane localised Higgs.

Allowing the Higgs to propagate in the bulk of the extra dimension also has a

significant effect on the radion phenomenology. In the case of a brane localised

Higgs or in gauge-Higgs unification models, the radion phenomenology is domi-

nated by its coupling to the electroweak gauge boson mass terms. We have shown

that this coupling vanishes for the case of a bulk Higgs, which can be understood

as a consequence of the conformal symmetry in the bulk. This coupling is then

only reintroduced via the Higgs-radion mixing and is associated with an explicit

breaking of the conformal symmetry. Provided that the mixing is small this allows

the radion to evade many of the bounds from existing experimental searches.

We used the 5D picture to motivate the most general 4D effective Lagrangian

describing the Higgs-radion/dilaton system and performed an extensive scan over

the relevant parameter space. Identifying the lighter, Higgs-like state with the

observed 125 GeV Higgs, we uncovered the regions of parameter space consistent

with all existing experimental constraints. We find that radion masses at least

as light as 160 GeV are allowed and may have remained hidden in the existing

searches. Beyond Λr = 1 TeV, increased mixing between the radion and the

Higgs can also be tolerated by the present data. Furthermore, when kinematically
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accessible, decays of the heavier state into the lighter Higgs-like state can contribute

significantly to its production.

The heaviest mostly radion-like state can be divided into several categories de-

pending on its mass and the extent of the mixing. Below 250 GeV the surviving

region corresponds to an almost pure radion-like state with suppressed couplings

to massive gauge bosons. The γγ channel may be the most sensitive in this region

and potentially remain viable at higher masses. Above 500 GeV, both the tt̄ and

diboson channels will be important at Run-II of the LHC, in cases of small and

large mixing respectively. We find that the diphoton, diboson and tt̄ channels are

complementary and together can be used to explore large regions of the parameter

space.

Finally, we have shown that the recently observed excess in diphoton events at an

invariant mass of 750 GeV in early Run-II data could be explained by the radion

in a bulk Higgs scenario. The suppressed coupling of the radion to electroweak

gauge bosons is crucial in evading the otherwise stringent constraints from Run-I

searches. We find that we can satisfy the observed excess while avoiding all 8 TeV

searches for a compositeness scale Λr & 2 TeV and an extra dimension of size

kL . 20. This relatively small kL is necessary to enhance the radion coupling to

photons. Mixing between the radion and the Higgs is already strongly constrained

by WW/ZZ resonance searches, which require being near the alignment limit

c1 = −c3. The dominant decay mode of the radion is then tt̄, which provides

both the most stringent bounds and the best prospects for probing these kinds of

scenarios in a model-independent way in the immediate future. Lastly, the radion

branching ratio to hh can be enhanced in certain regions of parameter space,

potentially providing an additional channel to probe this scenario.
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Soft Wall Dilaton

5.1 Introduction

In the previous two chapters we have explored the phenomenology of the radion

in two different warped models. As reviewed in Chapter 2, such models also

have a dual description in terms of a 4D conformal field theory via the AdS/CFT

correspondence. In this picture, the radion is dual to the Nambu-Goldstone boson

of the spontaneously broken scale invariance‡; the dilaton.

Under the scale transformation xµ → x′µ = e−ωxµ, the dilaton undergoes a shift

according to σ(x) → σ(x′) + ωf , where ω is a constant parameter and f is the

spontaneous breaking scale. For the purpose of writing the low-energy effective

Lagrangian, it is more convenient to consider the field

χ(x) = feσ(x)/f , (5.1)

which transforms linearly under scale transformations according to χ(x)→ eωχ(x′).

Meanwhile a general operator, O, transforms according to its scaling dimension,

∆, as O(x) → eω∆O(x′). The effective Lagrangian can then be straightforwardly

constructed by using the dilaton as a conformal compensator to obtain invariant

terms of the form (χ/f)4−∆O.

As one would expect for a NGB, the dilaton is protected by its shift symmetry,

which ensures that it remains massless. However, unlike the spontaneous breaking

of an internal (non-spacetime) symmetry, the transformation of χ clearly allows

for the presence of a non-derivative, quartic self-interaction of the dilaton in the

action. This quartic potential leads to a preferred value for 〈χ〉 and is incompati-

ble with the spontaneous symmetry breaking unless the quartic coupling vanishes.

This can occur either by a fine-tuning or due to an additional symmetry, such as

‡The spontaneous breaking of the special conformal transformations does not lead to any
additional NGBs [280, 281] and we use scale and full conformal invariance interchangeably for the
purposes of our discussion.
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supersymmetry. This implies that generically conformal invariance is not sponta-

neously broken and there is no massless dilaton.

A way to avoid requiring special conditions is to introduce a small amount of ex-

plicit breaking of conformal symmetry. In this case the dilaton obtains a mass

but can remain naturally light. The conditions under which this is possible were

considered by Contino, Pomarol and Rattazzi [282]. By assuming that confor-

mal invariance is explicitly broken by a Lagrangian deformation λO, a naturally

light dilaton occurs for a near-marginal operator so that the running coupling λ(µ)

remains close to marginality throughout the renormalisation-group evolution. Sim-

ilar effects were also studied in the four-dimensional effective theory in Ref [233].

Explicit holographic realisations were subsequently given in [226, 283] where the

near-marginal deformation of the CFT corresponds to introducing a nearly mass-

less bulk scalar field. The approximately constant bulk scalar potential preserves

an approximate shift symmetry which leads to a renormalisation-group flow with

a small β-function. However to obtain a dilaton in the low-energy spectrum, these

explicit realisations also assumed the presence of an IR brane (or hard wall) which

corresponds to spontaneously breaking the conformal symmetry by another op-

erator which has an arbitrarily large dimension. Thus by introducing two scalar

operators there is a simple, although idealised way to obtain a light dilaton.

A more realistic framework to study the properties of the dilaton is to consider

a soft-wall background. This corresponds to introducing a single bulk scalar field

with a non-trivial bulk scalar potential. The solutions of the coupled Einstein-

scalar equations of motion can then lead to a scalar profile that grows in the IR,

causing a back-reaction on the metric that deviates from AdS. Thus the “soft wall”

produced by the single scalar field causes the spontaneous breaking of conformal

symmetry with a mass gap in the spectrum. Equivalently, in the holographic

description, there is a single operator O that is responsible for explicitly breaking

the conformal symmetry and generating a condensate 〈O〉. The fluctuations about

the condensate 〈O〉 are then identified with the dilaton.

Nearly-marginal deformations in a soft-wall background can still lead to a naturally

light dilaton and were first considered in Ref. [228]. As long as the holographic

β-function remains small at the condensation scale and then transitions sufficiently

quickly to an order-one constant in the IR, an approximate shift symmetry can be

retained. This translates into requiring a bulk scalar potential that must transform

from an approximately constant potential near the UV brane to an exponential

potential in the IR. If the transition region is sufficiently small then an approximate

shift symmetry can be preserved with a corresponding light dilaton. In Ref. [228]
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an approximate piecewise solution was constructed that exhibited these features

in a soft-wall background and an approximate mass formula for the dilaton was

derived.

In this chapter we present soft-wall solutions that provide a simple description of

the dilaton from the UV to the IR scale. Using the superpotential method we

first derive an analytic solution of the coupled Einstein-scalar equations of motion

with an asymptotically AdS metric and non-trivial scalar profile that grows in the

IR. This solution parametrises the explicit and spontaneous breaking of conformal

symmetry by operators with dimensions in the range 1 < [O] < 4. A light dilaton

is obtained when there is spontaneous breaking of the conformal symmetry and a

hierarchy between the UV and IR scales. This is similar to the result obtained in

Ref. [59] where a general analysis of scalar fluctuations in a soft-wall background

was given. In addition, we show that a light dilaton is obtained in the case of

explicit breaking by an operator of dimension [O] ' 2. However, in both cases this

corresponds to a tuning in the quartic coupling of the dilaton effective potential.

This is a consequence of using an analytic superpotential and presumably the

tuning could be understood from an underlying supersymmetry.

The scalar potential derived from the superpotential is then generalised to allow

for non-analytic terms in the β-function. This allows for a deformed CFT with

a nonzero condensate 〈O〉. We find that a naturally light dilaton only occurs for

nearly-marginal operators. In this case the β-function is approximately constant

in the UV and then transitions rapidly to an approximately order-one constant

in the IR with the corresponding scalar potential respecting an approximate shift

symmetry. This agrees with the results derived in Ref. [228]. Furthermore with our

solution we quantify how fast the rise to confinement must be in order to obtain

a naturally light dilaton. We also find that in our case the β-function has a steep

slope in the transition region precisely when the operator is close to marginality.

The outline for this chapter is as follows. In Section 5.2 we review the soft-wall

background and the holographic interpretation. An analytic superpotential solu-

tion is presented in Section 5.3 where we give the conditions for a discrete spectrum

and calculate the dilaton mass. A light dilaton occurs when conformal invariance

is spontaneously broken and there is a hierarchy between the UV and IR scales.

Alternatively in the case when there is an explicit UV breaking a light dilaton

occurs when the operator dimension is near two. Both cases correspond to tuned

scenarios. In Section 5.4 we consider a generalised analytic bulk scalar poten-

tial. In this case we show that a naturally light dilaton does occur but only for

nearly-marginal operators. We summarise our results in Section 5.5.
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5.2 The Soft-Wall Solution

We begin by considering the general 5D action given in Eq. (2.13) and included

again below for convenience

S = 2

∫ yc

y0

d5x
√−g

(
M3

2
R− 1

2
(∂φ)2 − V (φ)

)
−
∫
UV

d4x
√−γ

(
2M3[K] + U(φ)

)
, (5.2)

where V (φ) is the bulk scalar potential and U(φ) the UV boundary potential.

Throughout this chapter we will be considering the case where a single 4D brane

located at y0 provides a UV cut-off, while yc represents a curvature singularity.

The scalar profile φ = φ(y) will in general be a non-trivial function of the 5th

coordinate and the functions A(y) and φ(y) therefore characterise the soft-wall

background.

As usual, it is convenient to express the Einstein equations as a simple first-order

system in terms of a superpotential, W , defined by [46]

V (φ) =
1

2
W ′2(φ)− 2

3M3
W 2(φ) . (5.3)

The bulk equations of motion and the boundary condition on the UV brane are

then given by Eqs. (2.21, 2.23).

5.2.1 Holographic β-function

In order to investigate the behaviour of a given soft-wall solution and its inter-

pretation in terms of a 4D CFT we shall make use of the holographic β-function

[284–286]. As usual, the AdS/CFT correspondence allows us to relate the warp

factor to the energy scale, µ, in the 4D theory according to

µ = kA(y) ' k e−ky . (5.4)

It is well known in the case of RS models with a Goldberger-Wise field that the

UV value of the bulk scalar can be identified with the UV value of a coupling

responsible for deforming the CFT [106]. The definition of the holographic β-

function, β(φ), then immediately follows:

β(φ) ≡ A∂Aφ = −3M3W
′(φ)

W (φ)
, (5.5)
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where we have used the bulk equations (2.21). The above equation can be solved to

obtain the superpotential in terms of β and so a given model can be equivalently

defined in terms of either the β-function or superpotential. The most common

situation is to consider β-functions possessing a UV fixed point, corresponding to

a bulk potential with an AdS extremum. However, it is still possible to obtain a

wide variety of RG flows and spectra depending on the behaviour of the β-function

in the IR. This has been discussed in detail in [287] in terms of the superpotential

and also recently in [228].

We shall be interested in cases which result in a confining geometry with a discrete

spectrum; this translates into a limit on the asymptotic value of the β-function as

φ→∞, √
3M3 < −β∞ < 2

√
3M3 . (5.6)

The lower bound arises from the requirement that the theory is confining in the IR†.

The upper bound is obtained after imposing boundary conditions in the IR. The

simplest condition is to require that the solution satisfies the Einstein equations at

the dynamically generated boundary [287]. Alternatively AdS/CFT can be used

to restrict to physical singularities with a finite temperature field theory dual [288];

in either case the same restriction on the β-function is obtained. For a given bulk

potential, imposing these IR boundary conditions fixes the integration constant in

the solution for the superpotential (or β-function) in Eq. (5.3).

5.2.2 UV Behaviour

In order to characterise the type of RG flow described by a given β-function it is

useful to consider the behaviour of the solutions near the UV fixed point. Taking

a bulk potential with an AdS extremum, which we assume to be at φ = 0 without

loss of generality, and expanding around this point we have

V (φ) = −6k2M3 +
1

2
m2
φφ

2 +O(φ3) , (5.7)

where k is the AdS curvature scale and mφ is the scalar bulk mass. Solving

Eq. (5.3) the superpotential then takes the form‡

W (φ) = 3kM3 +
1

2
k∆±φ2 + . . . , (5.8)

†The case -β∞ =
√

3 is marginal and depends on the detailed behaviour of the β-function as
φ→∞ [287].
‡In the case ∆+ = ∆− = 2, the ∆−-type superpotential is W (φ) ' 3kM3 + k φ2

(
1 + 1

log φ

)
and φ(A) ' λA−2 log(A) + 〈O〉A−2.
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where the ∆± are given in terms of the bulk mass by ∆± = 2±
√

4 +m2
φ/k

2. For

a given bulk potential there are therefore two possible asymptotic forms for the

superpotential, which shall be referred to as ∆+ and ∆−-type. It was shown in

Ref. [289] that ∆−-type solutions also admit a leading non-perturbative term of

the form φ4/∆− , resulting in a family of ∆−-type solutions parametrised by the

integration constant in Eq. (5.3). Such a term is forbidden for ∆+-type solutions,

which are either isolated or located at an infinite distance in parameter space from

any ∆−-type solution.

From Eq. (2.21) and using the fact that the metric is asymptotically AdS the

solution for the bulk scalar in terms of the warp factor is

φ(A) = λA−∆− +
〈O〉

2∆+ − 4
A−∆+ + . . . . (5.9)

Assuming Dirichlet UV boundary conditions for the bulk scalar, the two leading

terms can then be related to the running coupling and the condensate of the

deforming operator in the CFT [104]. The ∆± are related to the dimension of the

operator according to [O] = ∆+ = 4 − ∆−, leading to the standard AdS/CFT

relation between the operator dimension and bulk mass. Provided that 1 ≤ ∆− ≤
2, one can also consider Neumann or mixed boundary conditions in which case we

have an alternative CFT description where the leading term is now identified with

the condensate and the operator dimension is given by ∆−.

Considering more carefully the two types of superpotential solutions, it is clear that

in the case of ∆+-type solutions the leading term in Eq. (5.9) will be absent and

therefore these solutions correspond to a CFT with purely spontaneous breaking of

the conformal symmetry (assuming Dirichlet boundary conditions). On the other

hand, ∆−-type solutions correspond to a deformed CFT and one finds that the

coefficients of the two terms are in fact related according to

〈O〉 =
4ξ

∆−
λ

∆+
∆− , (5.10)

where the coefficient of the φ4/∆− term in the superpotential is proportional to ξ.

Finally, the above discussion can also be framed in terms of the β-function [228]

leading to ∆±-type solutions of the form

β(φ) = −∆±φ + . . . , (5.11)

where once again the ∆−-type solutions admit a leading non-perturbative term of

the form φ4/∆−−1.
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5.3 An Analytic Superpotential Model

After this brief introduction we next present simple examples that exhibit the

possible properties of the dilaton. We shall initially consider the following simple

model described by the superpotential

W (φ) = 3kM3 cosh

(√
α

3M3
φ

)
, (5.12)

where α is a constant parameter. This superpotential is analytic in φ2 and will

allow us to straightforwardly solve for the metric and scalar backgrounds. As

we shall see, the above choice of superpotential leads to the 5D gravity dual of

a strongly coupled conformal sector where conformal invariance is spontaneously

broken via the condensation of a finite dimensional operator. Also note that by

defining our model in terms of the superpotential we have implicitly fixed the

integration constant in Eq. (5.3).

The bulk potential corresponding to our superpotential is

V (φ) =
3

2
k2M3

[
(α− 4) cosh2

(√
α

3M3
φ

)
− α

]
. (5.13)

Notice that this reduces to the familiar constant potential V = −6k2M3 if we take

α = 4†. Solving the equation of motion (2.21) we obtain the background solution

A(y) = e−kyc
[
2 sinh(kα(yc − y))

] 1
α

,

φ(y) = −
√

3M3

α
log

[
tanh

(
1

2
kα(yc − y)

)]
. (5.14)

This solution has an AdS vacuum as y0 → −∞, which we have chosen to be at

φ = 0 without loss of generality. Notice that the scalar profile is singular in the

IR and there is a naked curvature singularity at y = yc. We therefore have a

dynamically generated boundary or “soft-wall” with spacetime ending at y = yc.

The solutions are plotted in Figure 5.1.

For completeness we also take the following UV boundary potential

U(φ) = ΛUV +mUV k(φ− φ0)2 , (5.15)

†This case corresponds to the model considered in [226]. As we shall discuss, values of α ≥ 4
require the introduction a hard cut-off in the IR. By considering the more general form for the
superpotential (5.12) we are able to construct a true soft-wall model of spontaneous conformal
symmetry breaking.
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Figure 5.1: Background solutions for the warp factor (top) and scalar profile
(bottom) as a function of y. We have set M = 1, k = 1, and yc = 2. The solid,

dashed and dotted curves correspond to α = 1, 2 and 4 respectively.

where ΛUV is the UV brane tension and mUV is the UV boundary mass. However

in most cases we will take the infinite boundary mass limit, which forces φ = φ0

on the brane; the exact form of the potential is then unimportant. Imposing

the boundary conditions (2.23) enforces the usual tuning of the 4D cosmological

constant in addition to fixing the IR scale according to

k(yc − y0) =
2

α
arctanh

(
e−
√

α
3M3 φ0

)
, (5.16)

where we have taken the limit mUV → ∞. It is clear that generating a large
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hierarchy then requires a hierarchically small value of φ0. In the case of purely

spontaneous breaking of the conformal symmetry this small boundary value for φ

will be directly related to the ratio of the condensate and UV cut-off scales.

It is straightforward to evaluate the β-function corresponding to our superpotential

to obtain

β(φ) = −
√

3M3α tanh

(√
α

3M3
φ

)
, (5.17)

or expressed in terms of the background solutions

β(φ(y)) =
A(y)φ′(y)

A′(y)
= −
√

3M3α sech(kα(yc − y)) . (5.18)

The limit on the asymptotic value of the β-function in Eq. (5.6) then leads to the

requirement that

1 < α < 4 . (5.19)

For α ≤ 1 a continuous spectrum is obtained, while for α ≥ 4 it becomes necessary

to introduce a hard cut-off/IR brane in order to satisfy the boundary condition.

In other words, our choice of superpotential no longer satisfies the IR boundary

condition for α ≥ 4. In the dual 4D description, the introduction of an IR brane

corresponds to the spontaneous breaking of the conformal symmetry by an infinite

dimensional operator.

We now want to look at the behaviour near the UV fixed point in order to inter-

pret the soft-wall solution in terms of the dual CFT. Firstly, expanding the bulk

potential (5.13) around φ = 0 gives

V (φ) = −6k2M3 +
1

2
k2α(α− 4)φ2 +O(φ4) . (5.20)

This allows us to evaluate ∆± for our solution according to

∆± = 2±
√

4 +m2
φ/k

2 = 2± |α− 2| . (5.21)

We can also expand (5.17) around φ = 0 to obtain

β(φ) = −αφ + . . . =

{
−∆−φ + . . . , α < 2

−∆+φ + . . . , α ≥ 2
. (5.22)

We therefore have a ∆+-type β-function for α ≥ 2, which (for Dirichlet boundary

conditions) corresponds to a CFT with purely spontaneous conformal symmetry

breaking via the condensation of an operator O (i.e. λ = 0). On the other hand, for

α < 2 our solution is of the ∆−-type and we have a deformed CFT where conformal
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Figure 5.2: Holographic β-function as a function of φ and A in the top and bot-
tom panels respectively. The solid line corresponds to the full β-function (5.17),
while the dashed line shows the leading-order term when expanded around φ = 0.
The dotted line denotes the asymptotic value in the IR. We have set M = 1,

k = 1, α = 2 and yc = 2.

invariance is explicitly broken by the coupling λ. Note that due to the fact that

our superpotential is analytic in φ2 there can be no non-perturbative piece in the

β-function (ξ = 0) and therefore there is no condensate in this case. Depending on

the value of α, our solution therefore describes a CFT either spontaneously broken

or deformed by an operator of dimension 2 ≤ [O] < 4. If we instead consider

the alternative CFT description and assume Neumann boundary conditions for

the scalar then the situation is reversed and we have spontaneous breaking for

1 < α < 2 and a deformed CFT with no condensate for 2 ≤ α ≤ 3, corresponding

to operator dimensions 1 ≤ [O] ≤ 2. The beta function is shown in Figure 5.2.
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5.3.1 Fine-tuning and Spontaneous Breaking

It is well known that a purely spontaneously broken CFT is expected to be tuned.

The issue arises from the fact that unlike non-linearly realised internal symmetries,

a non-derivative quartic coupling for the dilaton is permitted by scale invariance.

Naive dimensional analysis suggests that generically this coupling should be large

(∼ 16π2), however a massless dilaton arising from spontaneous breaking can only

be obtained in the special case where the quartic coupling is zero. In the absence

of some mechanism such as supersymmetry, which can give rise to flat directions

in the dilaton potential, spontaneous breaking therefore requires a tuning of the

quartic coupling.

From the 5D viewpoint, this tuning can be readily identified in RS+GW type

models as the tuning of the IR brane tension [45]; however in soft-wall models

the situation is more subtle and related to the various superpotentials which can

arise for a given bulk potential. Generically we expect a ∆−-type superpotential

that is a non-analytic function of φ. In addition there may be particular values

of the integration constant in Eq. (5.3) which lead to ∆+-type solutions or ∆−-

type solutions with an analytic superpotential (i.e. ξ = 0). Situations where such

solutions not only exist but also satisfy the regularity conditions in the IR are

clearly non-generic and generally arise from carefully constructed bulk potentials.

In addition, by evaluating the on-shell action one can easily demonstrate that such

solutions correspond to a dilaton potential where the quartic term is set to zero as

we shall see in Section 5.3.3.

We note that while our solution should therefore be considered tuned, it never-

theless provides a useful model for a spontaneously broken conformal sector where

the background equations can be solved analytically. In other words our solution

corresponds to a soft-wall version of pure RS, but describes the more realistic case

of spontaneous breaking by a finite-dimensional operator. In Section 5.4 we shall

consider a more general bulk potential to investigate the more generic (un-tuned)

case where we have a non-zero quartic term in the dilaton potential.

5.3.2 Mass Spectrum

Next we determine the mass spectrum for the scalar modes of the solution (5.14).

In the case of massive modes, the metric and bulk scalar perturbations can be

parametrised as in Eqs. (2.44). After performing a Kaluza-Klein (KK) expansion,

the dynamical equation for the scalar sector can be written in terms of the gauge
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invariant variable ζ = Ψ− δφ/β as [62]

1

A4β2

d

dy

[
A4β2ζ ′n

]
+
m2
n

A2
ζn = 0 . (5.23)

Recall that for massless modes, the perturbations should instead be decomposed

in terms of a light-cone basis. After gauge fixing, this yields the decomposition in

Eqs. (2.45) and the coupled equations of motion in Eqs. (2.53).

In both cases we also have the constraint equation

Ψ′ − A′

A
Φ +

1

3M3
φ′ δφ = 0 . (5.24)

The UV boundary condition is given by

δφ′ − φ′Φ =
1

2
U ′′(φ) δφ , (5.25)

while at the dynamical IR boundary we have

A4δφ′ = 0 . (5.26)

There will also be an additional normalisation condition.

5.3.2.1 Massless Dilaton from Spontaneous Breaking

We begin by investigating under which circumstances it is possible to obtain a

massless dilaton from spontaneous breaking of conformal invariance. The solution

to Eqs. (2.53) contains two dynamical scalar degrees of freedom c1,2 and is given

by [60]

ζ1 = c1(x), ζ2 =
A′

A3
c2(x)− 2

(
A′

A3

∫
dy A2

)
(y) c1(x) , (5.27)

where ζ1 = Ψ− δφ/β and ζ2 = δφ/β. We can immediately remove the c2 mode by

imposing the IR boundary condition, leaving just a single 4D massless mode, c1.

In the presence of a finite UV cut-off it is expected that the dilaton will acquire

a mass due to the coupling of the CFT to the dynamical source. This indeed

turns out to be the case and can be easily checked by imposing the UV boundary

condition (5.25) for finite y0. One then finds that the above solution does not

satisfy the boundary conditions, with the usual exception when there is a tuning

between the boundary and bulk masses. On the other hand, as the UV cut-off
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is removed (y0 → −∞) the source decouples and we should expect a massless

dilaton if the conformal symmetry is spontaneously broken. Imposing Dirichlet or

Neumann boundary conditions for δφ requires that the leading (A∆−) or subleading

(A∆+) terms vanish respectively. We then find that the remaining mode, c1, does

indeed satisfy the boundary conditions for α ≥ 2 (Dirichlet) or α < 2 (Neumann)

as expected.

5.3.2.2 Light Dilaton with UV Explicit Breaking

Moving now to the case of a massive dilaton, the gauge freedom allows us to make

the choice Ψ = 0 and express Eq. (5.23) solely in terms of δφ. Using (5.24) the

UV boundary condition can similarly be written in terms of δφ as

δφ′ =
(

1

2
U ′′(φ) +

1

3M3
φ′β
)
δφ . (5.28)

While the equation of motion is non-trivial and can in general only be solved

numerically, an approximate solution for m � mKK can be found by matching

solutions in the UV and IR, where mKK = [
∫
dy/A]−1k. Generalising the proce-

dure used in [228] to allow for general boundary conditions we obtain the following

expression for the dilaton mass, mD

1

m2
D

'
(∫ yc

y0

dy
1

A4β2

∫ yc

y
dy′A2β2

)
+ κ

∫ yc

y0

dy A2β2 , (5.29)

where

κ =
1

A4β2

(
1

2
U ′′(φ) +

1

3M3
φ′β − β′

β

)−1 ∣∣∣∣
y0

, (5.30)

and β′ in (5.30) is the derivative with respect to y. Unfortunately in our case the

first term above can still only be evaluated numerically†. Taking the mUV → ∞
limit, which forces δφ = 0 on the UV boundary, we have κ→ 0 and the expression

reduces to that given in Ref. [228].

We have also solved Eq. (5.23) numerically for the masses and profiles of the dilaton

and the lowest few KK modes using the shooting method. The results are given

in Figure 5.3, where the dashed line shows the approximate solution (5.29) and we

have taken mUV → ∞. Note that the approximate solution is in good agreement

with the full numerical solution in the cases where we have a light dilaton.

†A reasonable approximation can be obtained by noticing that the inner integral gives a con-
stant of order m2

KK for all values of y, except near y = yc. An analytic expression for the dilaton
mass can then be obtained by evaluating the outer integral and keeping only the dominant UV
boundary term.
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Figure 5.3: Masses of the three lightest modes as a function of kyc for α = 3.6
(top panel) and as a function of α for kyc = 4 (bottom panel). The dashed line

shows the approximate solution (5.29). We have set y0 = 0.

Focusing initially on the top panel, where α = 3.6, we find that there exists a very

light mode as the separation between the UV brane and the soft-wall becomes

large. This is not surprising, since for α ≥ 2 we expect to obtain a massless mode

from the spontaneous breaking when the explicit breaking effects of the UV cut-off

are decoupled. In this scenario the dilaton mass is arising solely due to the coupling

of the CFT to the dynamical source and the small dilaton mass is directly related

to the fact that µ0 � mKK , where the UV scale µ0 ≡ kA(y0). A similar effect

for a soft-wall background was also obtained in Ref. [59]. For large hierarchies

it is therefore possible to exponentially suppress the dilaton mass relative to the

confinement/symmetry breaking scale. We emphasise however that the presence
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Figure 5.4: Dilaton mass near α = 2 for ky0 = −2, −10, −50, −200, −1000
(top to bottom). The dashed curves are obtained using Eq. (5.29). We have set

kyc = 1.

of such a light mode is dependent on the fact that we have a ∆+-type solution in

this regime, and as discussed in Section 5.2.1 such scenarios should be considered

tuned. Finally, it is worth noting that this contribution to the dilaton mass does

not appear in hard-wall models of spontaneous breaking, where the dilaton is a

purely composite state. In the standard RS case, the dilaton remains massless even

in the presence of the UV brane due to the fact that the IR brane corresponds

to spontaneous breaking by an infinite dimensional operator and is therefore not

sensitive to the UV cut-off.

Considering now the bottom panel in Figure 5.3, we see that for smaller values of α

(in particular α < 2) there is no longer a light mode in the spectrum. This is again

to be expected, since in this regime we have a ∆−-type solution corresponding to

a deformed CFT. The dilaton therefore acquires a large mass even in the absence

of a UV cut-off. This is shown more clearly in Figure 5.4, where we have plotted

the dilaton mass near α = 2 for various values of y0. As discussed previously, for

α > 2 we obtain a massless mode as y0 → −∞, while for α < 2 the dilaton quickly

becomes massive.

Interestingly it seems possible to obtain a light dilaton from a deformed CFT with

a ∆−-type solution when approaching α = 2 from below, albeit only for large

hierarchies. The existence of this light mode can be understood by looking at the

behaviour of Eq. (5.29) in the limit y0 → −∞. Firstly, the inner integrand in

this expression simply gives a constant of order m2
KK for all values of y (except

near y = yc) and so the behaviour of the mass is largely determined by the outer
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integral. Now, in the UV the metric is approximately AdS and we can rewrite this

as an integral over the warp factor, A. Then using the fact that the β-function

in the UV is well approximated by β(φ) = −∆−φ and substituting in the leading

behaviour φ ∼ A−∆− we obtain ∫
dAA2∆−−5 . (5.31)

For ∆− = 2 this integral clearly becomes divergent as A→∞ (y0 → −∞), giving

rise to a massless dilaton. Near ∆− . 2 the dilaton mass is then described by

mD ∼
√

2−∆−mKK . (5.32)

We therefore find a light dilaton with an operator of dimension 2, in contrast

to the well-studied scenario where a naturally light dilaton is obtained with a

near-marginal operator [226, 227]. However, the presence of this light mode is a

consequence of the particular form of our bulk potential and relies upon the fact

that our solution transitions to a ∆+-type solution at α = 2. The light mode is

therefore a result of the tuning in this model arising from the absence of a non-

perturbative term in the superpotential. For a more general bulk potential, where

the solution remains of the ∆−-type, the leading order behaviour of φ at ∆ = 2

is given by φ ∼ log(A)A−2. This logarithmic behaviour ensures that the above

integral remains finite and there is no light mode.

5.3.3 Effective Potential

Similar to the approach commonly undertaken in hard-wall models [42, 45], it is

useful to construct a 4D effective potential for the dilaton by integrating out the

extra dimension. After using the bulk equations of motion, it is straightforward

to show that the effective potential in the presence of a soft-wall is given by

Veff = A4(y0) [U(φ(y0))− 2W (φ(y0))]− 2

3
lim
y→yc

A4(y)W (φ(y)) . (5.33)

Provided that the superpotential satisfies certain boundary conditions in the IR,

as discussed in Section 5.2.1, the last term in the above expression will be zero and

can be ignored. Once again this will be the case for our solution provided α < 4.

It is worth pointing out that unlike the hard-wall case the warp-factor depends on

the dilaton vacuum expectation value through yc. Therefore, simply minimising

Eq. (5.33) for fixed y0 may lead to unphysical minima which do not satisfy the

boundary equations of motion (2.23). Instead one should minimise the potential
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while keeping the physical UV scale µ0 fixed. Then, parametrising the dilaton by†

χ ≡ e−kyc , the effective potential is given by

Veff (χ)

µ4
0

= ΛUV +mUV k

(
φ0 +

√
3M3

α
log(F (χ))

)2

− 3kM3

(
F (χ) +

1

F (χ)

)
, (5.34)

where

F (χ) =

(
χ

µ0

)α−2 +

√
4 +

(
χ

µ0

)−2α
 . (5.35)

The effective potential is plotted in Figure 5.5. The top panel shows the unsta-

bilised case in the absence of a boundary mass term, while in the bottom panel

we can clearly see the generation of a non-zero minimum for the dilaton once the

bulk scalar obtains a vacuum expectation value on the boundary.

While the general expression (5.34) is complicated, the situation becomes much

simpler as the UV cut-off is removed. Taking the limit µ0 → ∞ and adding

appropriate counterterms to subtract the divergent terms‡ leads to

Veff (χ) =


Λ̄UV + k m̄UV φ̄

2
0

−4k
√

3M3

α φ̄0m̄UV χ
α + 12kM

3

α m̄UV χ
2α , α < 2 ,

Λ̄UV + k m̄UV φ̄
2
0 , α ≥ 2 ,

(5.36)

where we have simultaneously performed the rescaling ΛUV = Λ̄UV µ
−4
0 , φ0 =

φ̄0 µ
−∆−
0 and mUV = m̄UV µ

2(∆−−2)
0 . From the 4D viewpoint this rescaling simply

corresponds to running the couplings up to the scale µ0 and ensures that the IR

scale remains fixed when taking the limit µ0 →∞.

If we consider the alternative CFT description, where the operator dimension is

given by ∆−, then the on-shell action is identified with the 1PI effective action

in the CFT [104]. We can then straightforwardly interpret Eq. (5.36) as it is

directly related to the effective potential in the alternative CFT. This becomes

more evident if we compare Eqs. (5.9)§ and (5.14) to obtain the relation 〈O〉 ∼ χα.

Let us initially focus on α < 2 where we have a ∆−-type solution. If we then take

m̄UV = 0 in Eq. (5.36) we obtain a flat potential, consistent with spontaneous

†One could also choose to parametrise the dilaton by the inverse conformal volume, (kzc)
−1.

However it can be easily shown that the two parametrisations are equivalent up to a simple
rescaling, which depends only on α.
‡The specific counterterms necessary to subtract the divergent terms in Eq. (5.34) are given

by 6kM3 + 3kM
3

α
∆− log(F (χ))2.

§In this case the leading term in Eq. (5.9) is identified with the condensate, 〈O〉.
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Figure 5.5: Effective potential, where the dilaton has been parametrised by
χ = e−kyc . The top panel corresponds to the case mUV = 0, while the bottom
panel has mUV = 5 and φ0 = 0.2. We have set M = k = µ0 = 1, α = 2 and fixed

ΛUV = 6kM3 − kmUV φ
2
0.

breaking by an operator of dimension ∆−. It is worth noting however that in

this case the potential becomes unstable for finite µ0. For non-zero m̄UV , the

boundary conditions are modified and the two χ-dependent terms in Eq. (5.36) can

be identified with turning on a source for a single and double-trace deformation

in the CFT [290]. This results in a non-zero condensate and minimising (5.36) for

α < 2 we obtain

〈χ〉 =

(
1

2

√
α

3M3
φ̄0

) 1
α

. (5.37)
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It can also be shown that this is consistent with the result obtained by directly

solving the boundary conditions by taking the limit y0 →∞ in Eq. (5.16).

We now turn to the case α ≥ 2 where we have a ∆+-type solution. When con-

sidering the alternative CFT description, ∆+-type solutions can only describe the

situation where 〈O〉 = 0 (because the leading term is absent in (5.9)) and so a non-

trivial potential cannot be generated in Eq. (5.36). Since there is no spontaneous

breaking we do not obtain a massless mode with Neumann boundary conditions

when α ≥ 2 as seen in Section 5.3.2. If we move to the standard CFT description

instead, ∆+-type solutions now describe the case of zero source and this means

that Eq. (5.36) can still be interpreted as the effective potential in the CFT. We

then have a flat potential consistent with spontaneous breaking by an operator of

dimension ∆+.

Importantly, in the case of both ∆− and ∆+-type solutions, the only terms which

survive the µ0 →∞ limit in Eq. (5.36) are boundary terms and there is generally

no quartic term in the potential. As mentioned in Section 5.3.1 this is due to the

fact that we have chosen a superpotential which is analytic in φ2. More generally,

the superpotential will include a leading non-analytic term of the form φ4/∆− ,

which directly gives rise to a non-zero quartic term in the effective potential. This

can be easily shown using Eqs. (5.9) and (5.10) and then identifying the dilaton

according to 〈O〉 ∼ χ4−∆− in the case of standard quantisation or 〈O〉 ∼ χ∆− for

the alternative quantisation.

Finally, it is worth highlighting that an accurate expression for the dilaton mass

cannot generally be obtained by simply expanding the effective potential around

the minimum. While this may provide a good approximation to the dilaton mass

in certain regions, for example α > 2, it fails to capture the correct behaviour in

other regions such as near α . 2. In order to obtain the physical dilaton mass one

should of course compute the full effective action, in particular the dilaton kinetic

term.

5.4 An Analytic Potential Model

So far we have been considering a simple model with an analytic superpotential,

which allowed us to straightforwardly solve for the warp factor and bulk scalar

profile. While this model provides a useful description of a conformal sector spon-

taneously broken by a finite dimensional operator, we have seen that it corresponds
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to the special case of a vanishing quartic term in the dilaton potential. In the ab-

sence of some symmetry (e.g. supersymmetry) to enforce this condition, we must

consider such cases tuned and instead look to a more general model.

Simply considering a superpotential which is non-analytic in φ will generally not

lead to a bulk potential with an AdS extremum and so one should instead begin by

choosing a general form for the bulk potential and then solve Eq. (5.3) to obtain

the superpotential. Unfortunately the cases where there exists a known solution

to (5.3) are limited and for most bulk potentials the superpotential can only be

determined numerically. However, such a numerical approach is indeed still useful

and will allow us to determine the background solutions and dilaton mass for more

general bulk potentials.

The simplest extension of our previous superpotential model leads to the following

form for the bulk potential

V (φ) =
3

2
k2M3

[
τ cosh2

(√
α

3M3
φ

)
− (4 + τ)

]
, (5.38)

which is parametrised by the two constant parameters α and τ and reduces to

Eq. (5.13) in the special case τ = α− 4. The above potential will indeed alleviate

the tuning found in our simple model and consequently give rise to a non-zero

quartic term in the dilaton potential. However we have numerically verified there

is no light dilaton in the spectrum except in the regions of parameter space where

we approach the tuned solution.

We will therefore focus instead on a different form for the bulk potential, which as

we shall see can indeed give rise to a naturally light dilaton. We will be interested

in the following potential

V (φ) = V0 e
tanh( γν )

√
α

3M3 φ coshν
[

1

ν

(
γ −

√
α

3M3
φ

)]
, (5.39)

parametrised by the constant parameters α, γ, ν and where

V0 = −6k2M3 sechν
(γ
ν

)
. (5.40)

The coefficient of φ in the exponent has been chosen such that the potential once

again possesses an AdS extremum at φ = 0. Expanding around this point gives

V (φ) = −6k2M3 − α

ν
sech2

(γ
ν

)
k2 φ2 +O(φ3) , (5.41)
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and we again identify

∆± = 2±
√

4− 2α

ν
sech2

(γ
ν

)
. (5.42)

This potential has a couple of interesting features. Firstly, in certain regions of pa-

rameter space (e.g. |ν| � 1) it possess an approximate shift symmetry, φ→ φ+ c,

in the UV. Furthermore, for large φ the potential behaves as a simple exponential

and this shift symmetry is then realised as an overall rescaling. It was pointed

out in Ref. [228] that such a potential may be considered technically natural pro-

vided that the intermediate symmetry breaking region is small. Interestingly they

also demonstrated that such a condition should also be satisfied in order for the

spectrum to contain a light dilaton. We shall see this explicitly for our potential

below.

In order to obtain a solution which satisfies the IR boundary condition, it will be

numerically simpler to solve for the β-function rather than directly solving Eq. (5.3)

for the superpotential. Combining (5.3) with the definition of the β-function (5.5)

yields the following equation

β′β =
(
β2 − 12M3

)( β

3M3
+
V ′

2V

)
, (5.43)

which is an example of Abel’s equation of the second kind. It is clear from the

above equation that it is the quantity V ′/V , rather than the potential itself, which

determines the behaviour of the β-function. Let us then consider more carefully

the following expression

V ′(φ)

V (φ)
=

√
α

3M3

(
tanh

[γ
ν

]
− tanh

[
1

ν

(
γ −

√
α

3M3
φ

)])
. (5.44)

We can now clearly identify the role of the various parameters in our potential.

For ν � 1 the above expression behaves as a step-function, with the location of the

inflection point given by φ =
√

3M3/α γ. The steepness of the step is determined

by α/ν, while for small ν the asymptotic value in the IR is largely determined

by α. There are then three distinct regions for V ′/V : two approximately flat

regions for small and large φ, and an intermediate transition region. We shall find

that the β-function also exhibits a very similar behaviour with the three regions

corresponding to a β-function which is walking in the UV; has an intermediate

region identified with the turning on of a condensate; and then confines in the IR.

Recall that for a β-function which is both confining and satisfies the IR boundary

conditions, there is limit on the asymptotic value in the IR of
√

3M3 < −β∞ <
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Figure 5.6: The β-function as a function of φ. The dashed lines show 3M3

2
V ′

V for
comparison. The black lines correspond to values of ν = 0.8 and γ = 4

√
α, while

the grey lines are for ν = 2 and γ = 2
√
α. We have set α = 3 and M = k = 1.

2
√

3M3. From Eq. (5.43) it is then clear that for solutions which satisfy this

condition the IR value of the β-function is simply given by

− β∞ = lim
φ→∞

3

2
M3V

′(φ)

V (φ)
=

1

2

√
3M3α

(
1 + tanh

(γ
ν

))
. (5.45)

For γ/ν � 1 this leads once again to the requirement that 1 . α . 4.

It is now straightforward to numerically solve Eq. (5.43) by shooting from the

above value in the IR. The β-function is shown for various parameter choices in

Figure 5.6. Notice in particular that for the solid black curve, corresponding to

ν = 0.8, the β-function exhibits the behaviour described above. It is walking in

the UV, corresponding to a nearly marginal deformation, followed by the turning

on of a condensate and a sharp rise to confinement in the IR. This is in contrast to

the β-function for our superpotential model in Figure 5.2 where there is no walking

region and the condensate turns on at φ = 0.

Note also that when γ = 0 the potential simplifies, but in this case values of α

and ν which lead to a near-marginal operator result in a β-function with no clear

transition region and a slow rise to confinement. It will become clear that this

case, similarly to the potential in Eq. (5.38), will not lead to a light dilaton.

Now that we have a solution for the β-function, the background metric and scalar

profile can easily be obtained by numerically integrating Eqs. (5.5) and (2.21). The

solutions are shown in Figure 5.7. Notice that for the case of small ν the scalar
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Figure 5.7: The top and bottom panels show the solutions for the warp factor
and bulk scalar profile respectively. The black lines correspond to values of
ν = 0.8 and γ = 4

√
α, while the grey lines are for ν = 2 and γ = 2

√
α. We have

set α = 3, yc = 4 and M = k = 1.

profile is approximately constant in the UV, consistent with the fact that we have

a nearly marginal operator with the dimension explicitly given by

[O] ' 4− 2α

ν
e−

2γ
ν . (5.46)
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5.4.1 Dilaton Mass

We are now in a position to investigate the behaviour of the dilaton mass for

our potential in Eq. (5.39). It was demonstrated in Ref. [228] that there are two

conditions which should be satisfied in order for the dilaton to be light. Firstly, the

β-function must remain small into the IR region where the condensate is turning

on. This corresponds to the original statement in [282] that a light dilaton occurs

for near-marginal operators. The second condition requires that the rise of the

β-function to confinement is sufficiently fast. From Figure 5.6 it is clear that using

our form for the bulk potential we are able to satisfy both of these conditions and

thus expect to find a light dilaton in the spectrum.

Again solving Eq. (5.23) in the mUV →∞ limit we obtain the masses of the dilaton

and two lightest KK modes, which are shown as a function of ν/α2 in Figure 5.8.

Notice that the behaviour of the dilaton mass is almost independent of the choice

of values for α and γ. This suggests that the ratio ν/α2 determines both the

value of the β-function where the condensate is turning on as well as the gradient

in the transition region. The criterion for obtaining a light dilaton is then simply

ν/α2 . 0.1. We can see from Eq. (5.44) that the gradient of V ′/V in the transition

region is determined by the ratio α/(2ν) and so cases which satisfy our condition

for a light dilaton correspond as expected to a fast transition between the walking

UV and confining IR.

In Figure 5.9 we have also plotted ∆− as a function of ν/α2. This clearly demon-

strates that simply having a near-marginal operator is not on its own a sufficient

condition to obtain a light dilaton. However it can be seen that, for our poten-

tial, cases where the transition to confinement is sufficiently fast will necessarily

correspond to cases where we have a near-marginal operator. We also point out

that although ∆− is clearly dependent on γ, by looking again at Eq. (5.44) we

see in the limit γ/ν � 1 that γ simply corresponds to a shift in φ and so is not

expected to have an effect on the dilaton mass. This highlights the fact that in

order to obtain a light dilaton it is the β-function which must remain small at the

condensate scale, rather than just ∆− � 1.

Finally, we comment briefly on the naturalness of our model. Since we are only able

to solve the equations of motion numerically for the bulk potential in Eq. (5.39),

it is difficult to directly construct the dilaton effective potential as in Section 5.3.3

and verify the existence of a non-zero quartic term for the dilaton. However, a

closer look at our solution suggests that this construction is indeed natural. Firstly,

it is clear from Figure 5.6 that we have a ∆−-type solution in the parameter regions
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Figure 5.8: Masses of the three lightest modes as a function of ν/α2 for fixed
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We have set kyc = 4.
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Figure 5.9: ∆− as a function of ν/α2 for fixed values of α and γ. The different
curves are as in Figure 5.8.

of interest. In fact this is guaranteed once we require that the β-function is walking

in the UV. Secondly, near-marginal operators do not admit an alternative CFT

description and therefore tuned ∆−-type solutions (with ξ = 0 and zero quartic

potential) describe deformed CFTs. These tuned solutions are not expected to

give rise to a light mode except as ∆− → 2 or if one directly imposes a tuning

between the bulk and boundary masses for a finite UV cut-off; an explicit example

of this is seen in Section 5.3. Clearly neither of these situations are relevant for our
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scenario. We therefore conclude that our model does indeed correspond to the case

described in [282] whereby a large quartic coupling in the UV is driven towards

zero at some hierarchically small scale by the running of a near-marginal operator,

leading to spontaneous breaking of conformal symmetry and a light dilaton.

5.5 Summary

In this chapter we have presented two solutions of the Einstein equations that

exhibit the properties of a dilaton in a soft-wall background. The first solution,

obtained using the superpotential method, describes a CFT with conformal sym-

metry broken by a finite-dimensional operator with dimension 1 < [O] < 4. This

represents a more realistic scenario compared to hard-wall models that are dual

to theories with an infinite-dimensional operator. When the symmetry is spon-

taneously broken, a light dilaton appears in the spectrum provided there is a

hierarchy between the UV and IR scales. In the case of explicit breaking a light

dilaton is obtained when the operator dimension is near two. However in both

cases the quartic coupling of the effective dilaton potential is tuned and requires

an additional symmetry, such as supersymmetry, to be naturally realised. This is

not surprising since the solution is based on an analytic superpotential which does

not contain a non-perturbative term.

The second solution generalises the bulk scalar potential obtained from the super-

potential method to allow for non-analytic terms in the β-function. The bulk scalar

potential depends on three parameters that control the form of the β-function from

the UV to the IR scale. Interestingly it is possible to obtain a β-function that re-

mains approximately constant from the UV scale until the condensation scale, at

which point the β-function rises sharply to an approximately constant order-one

value at the IR scale. Our parametrisation relates the slope of this fast rise pre-

cisely to the near-marginality of the operator dimension. In this case we explicitly

find a naturally light dilaton, which agrees with the results obtained in Ref. [228].

Our solution provides a simple example of how to obtain a naturally light dilaton

from nearly-marginal CFT deformations in a soft-wall background. It would be

interesting to study the underlying dual theory that is responsible for the partic-

ular bulk scalar potential. This could then be useful for applying these ideas to

electroweak symmetry and the Higgs sector in the Standard Model.
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Unnatural Composite Higgs

6.1 Introduction

In this chapter we move our focus away from the 5D warped framework and instead

consider a model defined from the 4D perspective, in which the Higgs arises as a

pNGB of a spontaneously broken global symmetry. This general class of models

was reviewed in Chapter 2. Here, motivated by recent LHC results, we focus on a

particular model known as the Unnatural Composite Higgs [148].

The discovery of a light Higgs boson and the conspicuous absence of new states

beyond the Standard Model at Run-I of the LHC suggests that the scale of new

physics may well be beyond that suggested by naturalness arguments. Composite

Higgs models have therefore come under increased scrutiny as lower limits on

resonance masses strain the boundaries imposed by naturalness. This tension is

further exacerbated by precision electroweak and flavour constraints, both of which

prefer a much larger value of the spontaneous global-symmetry breaking scale, f ,

than can be directly probed at the LHC.

A simple solution that can satisfy all of the relevant constraints is to require that

f & 10 TeV. This leads to an unnatural, or split, composite Higgs model in which

the Higgs mass-squared is tuned to the order of 10−4 and the particle spectrum

splits into light pseudo Nambu-Goldstone bosons and heavy composite-sector res-

onances. Despite their unnaturalness, these models can provide improved gauge

coupling unification if the strong sector possesses an unbroken SU(5) symmetry

and f . 500 TeV. An immediate consequence is that the low-energy spectrum al-

ways contains a colour-triplet, pseudo Nambu-Goldstone boson; the colour-triplet

partner of the composite Higgs doublet. In addition discrete symmetries, which

arise from proton stability, furnish these models with a singlet scalar dark mat-

ter candidate, S. In the minimal model, the same discrete symmetries imply

that the colour-triplet scalar, T , decays to quarks and a pair of singlet scalars
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Figure 6.1: A schematic diagram of the possible types of decays as a function of
the colour-triplet scalar mass mT and singlet scalar mass mS . The three shaded
regions from left to right correspond to decays that are collider stable, displaced
and prompt, respectively. The dashed line represents the kinematic limit for the
decay T → tcbcSS and the black solid line represents the limit when mT = 2mS .

via a dimension-six term in the low-energy, effective Lagrangian. Since this high-

dimension term is suppressed by the large symmetry-breaking scale, f & 10 TeV,

the triplet-scalar is often metastable. Long-lived, colour-triplet scalars therefore

provide a unique way to test unnaturalness in composite Higgs models.

Motivated by unnatural composite Higgs models we study the collider limits on

long-lived, colour-triplet scalars and the prospects for detecting them at future

colliders. The colour-triplet will be pair-produced via QCD processes and has the

same quantum numbers as a right-handed scalar bottom quark. If long-lived, a

colour-triplet will hadronise to form an R-hadron and can be detected in various

ways depending on its decay length. The range of decay lengths as a function of

the singlet mass mS and triplet mass mT is shown in Figure 6.1.

First, if the colour-triplet scalar is collider stable (i.e. decaying outside the de-

tector), charged R-hadrons will leave a track in the inner detector and possibly

the muon chamber. R-hadron searches at the LHC can then be used to place

mass limits on the colour-triplet. Current limits from LHC Run-I results forbid a

collider-stable colour-triplet with a mass below about 845 GeV. At Run-II similar

searches will be performed and we show that with 300 fb−1 of integrated luminosity
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triplet masses up to about 1.4 (1.5) TeV can be discovered (excluded) for lifetimes

corresponding to cτ & 10 m. The discovery reach is significantly increased at a

100 TeV proton collider where discovery of a colour-triplet scalar with a mass up

to 2-6 TeV, depending on its lifetime, will be possible, otherwise exclusion limits

ranging from 2-7 TeV can be set. These limits depend only on the mass and width

of the colour-triplet, therefore the results we obtain are quite general and can be

applied to any other model predicting a similar, long-lived particle.

A second possibility is that the colour-triplet scalar decays within the detector

(at radial distances greater than about 4 mm) and produces a displaced vertex

(DV) in the inner detector. The colour-triplet in the minimal model decays into

a top quark, bottom quark and two singlet scalars, so the collider signature is

predominantly jets from the quarks and missing energy from the singlets. This

signal has previously been used to search for long-lived superparticles such as

gluinos and squarks. While current results from displaced searches do not constrain

the colour-triplet mass, these searches will become increasingly important at Run-

II and beyond. With 300 fb−1 at
√
s = 13 TeV we find that colour-triplet masses

up to 1.8 (1.9) TeV can be discovered (excluded) for singlet masses below 450 GeV.

In the future a 100 TeV collider would significantly improve the discovery reach,

up to colour-triplet masses in the range 3-10 TeV depending on the singlet mass.

The final possibility is that the colour-triplet scalar decays promptly, dominantly

producing jets and missing energy. These decays become relevant when the colour-

triplet is heavier than about 4 TeV. For such heavy colour-triplets the production

cross section at LHC energies is quite small and there will be too few events to

detect them, even at the high-luminosity (HL) LHC. Instead, prompt decays could

be searched for at a hypothetical 100 TeV proton collider. Using a similar search

strategy to that used for gluinos, we show that a future collider is potentially able

to exclude colour-triplet masses in the range 4-7 TeV for singlet masses in the

range 100-900 GeV.

Indirect limits on the colour-triplet scalar mass can also be obtained by constrain-

ing modifications to the Higgs couplings. Using the current LHC results we find

that colour-triplet masses are mostly constrained by the Higgs coupling to gluons

to be in the range mT & 100 GeV. This limit will improve at the HL-LHC and

ILC, although the most robust limits are inferior to the bound obtained from re-

quiring that the triplet be heavier than twice the singlet scalar mass. The latter is

constrained by direct detection experiments, with the current LUX bound giving

mS & 150 GeV and hence mT & 300 GeV. Details concerning the limits from

Higgs couplings can be found in our published work [291].
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Previous studies of long-lived particles have primarily focused on supersymmetric

models, motivated by the idea of split supersymmetry [292–295] or simplified toy

models with R-parity violation [296–301]. This work is the first analysis of models

based on the composite Higgs idea. It is a complete framework, incorporating

gauge coupling unification, dark matter and an explanation for the fermion mass

hierarchies, that represents an alternative to split supersymmetric models. Inter-

estingly, unnatural (or split) composite Higgs models lead to similar decay signals

albeit with different properties of the decaying particle and decay products. It will

therefore be interesting to experimentally distinguish between these two ideas at

future colliders.

The outline for the rest of this chapter is as follows. In Section 6.2 we review the

unnatural composite Higgs model and derive the decay width and corresponding

decay length for the colour-triplet scalar. The limits from experimental searches

are presented in Section 6.3. We first discuss direct limits from R-hadron searches

at the LHC and a future 100 TeV collider, followed by limits from displaced-vertex

searches and limits from prompt decays. We summarise our results in Section 6.4.

6.2 The Unnatural Composite Higgs Model

6.2.1 Model Review

We begin by briefly reviewing the unnatural composite Higgs model of Ref. [148].

Motivated by the absence of new physics at the LHC and the strong bounds from

electroweak and flavour observables, this model considers the case where f � v

in order to evade current experimental constraints at the expense of fine tuning in

the Higgs potential. As we reviewed in Chapter 2, the strongest bounds come from

Kaon mixing and lepton flavour violation, which require f & 10 TeV. In principle

the scale f could be arbitrarily large, although at some point the hierarchy problem

ceases to become a viable motivation. However, imposing the additional and well-

motivated requirement of precision gauge coupling unification in fact provides an

upper bound on the symmetry breaking scale.

Gauge coupling unification in composite models can be achieved by satisfying two

criteria [302]: (i) the right-handed top quark should be a fully composite state; (ii)

the entire Standard Model gauge group should be embedded in a simple subgroup

of the global symmetry in the strong sector, e.g. SU(5) ⊂ H ⊂ G. As a result, all

composite states will form complete GUT (SU(5)) multiplets. This is potentially

problematic, since we would then expect additional light, composite fermions to
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fill out the multiplet containing the right-handed top quark. These additional

fermions can be decoupled by including additional elementary fermions to provide

them with Dirac partners, which also ensures cancellation of gauge anomalies.

These elementary states, χ, mix with composite sector operators via terms of the

form

L ⊃ λχOtχ . (6.1)

The mass eigenstates arising from this mixing are known as top companions† and

have masses of order mχ ∼ λχf . The fact that the strong sector preserves the

GUT symmetry means it contributes universally to the running of the gauge cou-

plings, at least up to one-loop in the elementary fields. The running does however

depend significantly on the masses of the top-companions, and requiring precision

unification leads to a bound of f . 100 − 1000 TeV (assuming λχ ∼ 1) and a

unification scale of order 1015 GeV.

A common concern in any GUT is the existence of baryon and lepton number

violating operators, which can lead to proton decay in conflict with experimental

bounds. In composite models the commonly taken approach is to simply assume

that the composite sector respects both baryon and lepton number [303, 304], the

latter also preventing the generation of large neutrino masses. In this framework

the SM fermions do not fill out complete GUT multiplets, which have well-defined

baryon number. Provided the elementary-composite mixing also preserves baryon

and lepton number, the only violation of these symmetries will be due to sphaleron

processes [305] and gravitational effects.

This model also accommodates a pNGB dark matter candidate, which can be

significantly lighter than the other composite sector resonances. The minimal

coset that contains an unbroken SU(5) global symmetry and sufficient NGBs to

accommodate the Higgs doublet and a stabilised SM singlet is SU(7)/SU(6)×U(1).

It contains twelve NGBs, including H̃, which transforms as a complex 5 of SU(5) ⊂
SU(6), and the complex singlet, S. The Goldstone matrix can be expressed as a 7

of SU(7)

w = eiΠ

(
0(6)

1

)
=

1√
|H̃|2 + |S|2


iH̃ sin

(√
|H̃|2+|S|2

f

)
iS sin

(√
|H̃|2+|S|2

f

)
√
|H̃|2 + |S|2 cos

(√
|H̃|2+|S|2

f

)

 . (6.2)

†These are distinct from the top partners commonly consider in composite Higgs models, which
are purely composite sector resonances.
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Figure 6.2: A schematic diagram of the composite particle spectrum in the
“unnatural” composite Higgs model. States on the left are bosons and those on

the right are fermions. Reproduced from Ref. [148].

The symmetry breaking is realised by an adjoint or 48 of SU(7) and the low energy

effective Lagrangian is consequently expressed in terms of the field Σ = ww†. The

SU(5) 5−plet contains the Higgs doublet and an additional colour-triplet partner

to the Higgs. This colour-triplet state is a generic prediction of models with an

unbroken SU(5) symmetry.

As is usual in composite models, a potential for the NGBs is generated via the

elementary-composite mixing and induces EWSB. A tuning of order v2/f2 . 10−4

is required in order to obtain the correct Higgs vev, while the physical Higgs

mass is proportional to mW and requires no additional tuning. The large value

of f & 10 TeV means that this model has a split spectrum, with the pNGBs

significantly lighter than the generic composite sector resonances and likely the only

states accessible at current and future colliders. The colour-triplet scalar therefore

determines the phenomenology of this model relevant for collider searches. The

generic spectrum is shown schematically in Figure 6.2, which has been reproduced

from Ref. [148].

The elementary fermion embeddings under the strong sector symmetry are given in

Table 6.1 and include an additional right-handed neutrino, N c. The elementary-

composite couplings explicitly break the SU(7) symmetry, while the additional

elementary fermions required to fill out the SU(5) multiplets are assumed to ac-

quire GUT scale masses. This is akin to the doublet-triplet splitting problem of

supersymmetric GUTs, although here it instead arises in the fermion sector. The

last two lines of Table 6.1 describe the top companions, which transform under the

Standard Model gauge group as

χ ≡ q̃c ⊕ ẽ⊕ d̃c ⊕ l̃ = (3,2)− 1
6
⊕ (1,1)−1 ⊕ (3,1) 1

3
⊕ (1,2)− 1

2
(6.3)
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SU(7) SU(6) SU(5) U(1)L U(1)B

q(u) 35 20 10 0 1
3

q(d) 35 20 10 0 1
3

uc 35 15 10 0 −1
3

dc 35 15 5 0 −1
3

l(ν) 21 15 5 1 0

l(e) 21 6 5 1 0

N c 21 6 1 -1 0

ec 21 15 10 -1 0

(q̃c, ẽ)
35 15

10 0 1
3

(d̃c, l̃) 5 0 0

Table 6.1: Elementary fermion embeddings. The subscripts on q(u) and q(d)

denote the embeddings responsible for generating the up- and down-type Yukawas
respectively, and similarly in the lepton sector for l(ν) and l(e). Reproduced from

Ref. [148].

Dark matter stability in this model arises as a consequence of the fact that the

strong sector preserves baryon number. This results in an additional unbroken Z3

symmetry known as baryon triality

ZB = 3B − nC mod 3 , (6.4)

where nC is the number of fundamental colour (SU(3)C) indices. All SM fields are

neutral under this symmetry, while the colour-triplet has B(T ) = B(H) = 0 and

nC = 1. The singlet on the other hand can be arranged to have B(S) = 1
3 . Pro-

vided that mT > mS this then ensures that the singlet is stable and a viable dark

matter candidate. The baryon triality symmetry also has significant consequences

for the colour-triplet phenomenology as we will discuss in the following section.

Finally, the dark matter phenomenology is governed by a Higgs portal coupling

and we refer the reader to Ref. [148] for the details.

6.2.2 Colour-Triplet Decay

As mentioned previously, the colour-triplet, T , is charged under baryon triality

(ZB = +2) and hence must decay to the singlet, S, which has ZB = +1. Since the

composite sector additionally preserves baryon and lepton number the minimal

allowed decay is

T → ucdcSS , (6.5)
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Figure 6.3: Leading Feynman diagram for colour-triplet scalar decay.

where uc, dc are SU(2) singlet quarks with ZB = 0. Furthermore, it is clear that

tc, bc will dominate other final states, as the third generation couples most strongly

to the composite sector. We would expect this decay to correspond to a dimension-

6 operator in the low-energy effective Lagrangian after integrating out the heavy

composite resonances. However, no such operator is generated in the model due

to accidental symmetries associated with the necessary fermion representations.

Instead, this decay is generated by the dimension-10 operator

L ⊃ Π3

6Λ4f2
λbcλνλ

∗
τ εi3j3k3 (bc)i3(tc)j3(T †)k3 S2 l†/p l , (6.6)

where Π3 ∼ 1 +O(p2/Λ2) is a form factor, Λ ≈ gρf is the approximate resonance

mass, gρ a strong sector coupling, and the λ’s are spurions for the partial com-

positeness couplings of the SM fermions. This operator exploits the fact that the

lepton doublet has two couplings to the composite sector. It generates the decay

of Eq. (6.5) after closing the leptons into a loop and this turns out to be less

suppressed than the six-body final state.

Eq. (6.6) is only the leading contribution to the T decay. Integrating out the

composite sector will generate additional operators at higher orders. Further con-

tributions to the decay (6.5) necessarily involve additional loops of elementary

particles and are suppressed by λ2/(16π2g2
ρ), where λ denotes the appropriate

elementary-composite spurion couplings. Other decay modes must involve at least

two additional fermions, so are phase-space suppressed by m2
T /(8πΛ2). It is there-

fore a good approximation to neglect alternative operators.

The relevant Feynman diagram is shown in Figure 6.3. Neglecting the lepton mass

the matrix element becomes

iM = − 2i

3Λ4f2
λbcλνλ

∗
τ εi3j3k3 ū(pt)PRu(pb)

∫
d4pl

(2π)4
(−1)Tr

[
/pl
p2
l

/plPL

]
Π3 , (6.7)

where i3, j3, k3 are colour indices, u, ū are spinors and PL,R are projection opera-

tors. The loop integral is cut off by the presence of composite resonances at the

scale Λ. We cannot compute this integral without knowledge of the physics at that
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scale, so we define∫
d4pl

(2π)4
(−1)Tr

[
/pl
p2
l

/plPL

]
Π3 = −2

∫
d4pl

(2π)4
Π3 = −2cT3

Λ4

(4π)2
, (6.8)

where cT3 is an order-one constant. The matrix element now takes a simple form

1

3

∑
|M|2 =

(
cT3

6π2f2

)2

|λbcλνλ∗τ |2 pt · pb . (6.9)

The calculation of the decay width is straightforward, though details regarding the

four-body phase space integral are given in Appendix D.1. We define a dimension-

less function, J , to capture the phase-space suppression from non-zero final state

masses

J(mt,mS) =
72

m6
T

∫
dQ2

1 dQ
2
2Q

2
1

√
I

(
Q2

1

m2
T

,
Q2

2

m2
T

) (
1− m2

t

Q2
1

)2
√

1− 4m2
S

Q2
2

, (6.10)

where the function I(a, b) is defined in Eq. (D.4). The limits on the integrals are

given by Eqs. (D.11) and (D.12). By construction, J(0, 0) = 1. The total width is

Γ =
(cT3 )2

21934π9
|λbcλνλ∗τ |2

m5
T

f4
J(mt,mS) . (6.11)

Finally, making the replacements λbc ∼
√

3gρyb and λν ∼ λτ ∼
√

2gρyτ , where

yb (yτ ) are the bottom (tau) Yukawa couplings, we obtain the approximate expres-

sion for the decay length

cτ = 0.6 mm

(
1

cT3

)2( 8

gρ

)3(3 TeV

mT

)5( f

10 TeV

)4 1

J(mt,mS)
. (6.12)

We see that for typical parameters in the unnatural composite Higgs model the

decay length is of order the millimetre scale. The decay length can be substan-

tially larger by either increasing the scale f , reducing the triplet mass, or having

kinematic suppression mT ≈ 2mS + mt (i.e. J(mt,mS) ≈ 0). This behaviour is

depicted in Figure 6.1 as a function of the colour-triplet and singlet scalar masses.

6.2.3 Colour-Triplets in Other Unnatural Composite Higgs Mod-

els

Any composite Higgs model that unifies via an SU(5) gauge group will contain (at

least) a colour-triplet pseudo Nambu-Goldstone boson like the one discussed here.

Although other unification patterns are possible, precision unification in composite

Higgs models is only known to occur via an SU(5) gauge group, and only when the
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right-handed top quark is fully composite [302]. Unless a qualitatively different

solution for precision unification is found light, colour-triplet scalars can therefore

be considered a generic feature of unnatural composite Higgs models.

Whether the colour-triplet scalar is long-lived or not depends more on the details

of the model. It will necessarily be charged under baryon triality, a symmetry

that must hold at least approximately in order to prevent proton decay. This

has a stabilising effect on the colour-triplet and means that it will preferentially

decay via other exotic states. Furthermore, because the colour-triplet scalar is a

pseudo Nambu-Goldstone boson the only available states are other pseudo Nambu-

Goldstone bosons. In itself this is not enough to guarantee a long-lived state but,

in the minimal model proposed in Ref. [148], including the SM matter content re-

sulted in several additional, accidental symmetries that stabilised the scalar colour-

triplet further. Accidental symmetries like these are increasingly likely to occur in

more complicated models with larger initial symmetry groups so, while it is by no

means certain, long-lived colour-triplet scalars seem likely to be a feature of most

unnatural composite Higgs models exhibiting precision gauge coupling unification.

6.3 Experimental Searches

We next discuss experimental searches for colour-triplet scalars. We present limits

from various direct searches that look for decays over a range of decay lengths from

prompt to collider-stable.

6.3.1 R-hadron Searches

ATLAS and CMS have published comprehensive R-hadron searches, including

searches for charged R-hadrons escaping the detector [306, 307] and searches for

R-hadrons getting stopped by and then decaying within the detector [308, 309].

The former analyses give rise to the strongest bounds so we shall use them to derive

constraints on unnatural composite Higgs models, and also generalise them to esti-

mate the R-hadron discovery and exclusion potentials of future experiments. Since

our results depend only on the mass and width of the colour-triplet scalar they

can be applied to any model predicting a long-lived particle of a similar nature.

The searches are characterised by low backgrounds, between zero and one event

after 20 fb−1 of 8 TeV collisions, and signal efficiencies around 10%. In order to

derive constraints from these searches, we first simulate the pair production of R-

hadrons using the R-hadronisation routines in PYTHIA 8.1 [310–312] and normalise
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the events according to the total production cross sections given in Ref. [313]. We

have been able to exploit the fact that the colour-triplet has the same quantum

numbers as a right-handed sbottom, allowing us to repurpose various tools origi-

nally designed for SUSY. We then discard R-hadrons with kinetic energies below

20 GeV, which according to the ATLAS study in Ref. [308] are likely to be stopped

within the detector.

Since this search is virtually insensitive to the final state of the R-hadron decay

and because the backgrounds are so low, we weight each event by a survival factor

rather than allowing the R-hadrons to decay directly in PYTHIA. Prohibitively large

numbers of events are otherwise needed to investigate the discovery and exclusion

potentials of future experiments. The survival factor, p, for each R-hadron is given

by

p(rdecay > rdetector) = e−βT rdetectorΓ/γ , (6.13)

where βT is the R-hadron’s transverse speed and γ its overall Lorentz factor, both

derived from the mass, energy, and transverse momentum of the R-hadron. Γ

is the colour-triplet width and we assume a value of rdetector = 10 m for the

detector radius throughout this study. Finally, we apply the signal acceptance-

times-efficiency value of 0.084 reported by the ATLAS study in Ref. [306].

For the number of background events we assume that the existing values will

simply scale up with luminosity at future experiments. Taking the value from

Ref. [306] gives 0.27 events per 19.1 fb−1. Similarly, we assume that the signal

acceptance-times-efficiency will remain constant.

The results of this analysis are the discovery and exclusion contours shown in

Figures 6.4 & 6.5. These are presented in the plane of the colour-triplet mass, mT ,

versus its lifetime, cτ . We find that the final LHC dataset will be able to discover

long-lived, colour-triplets with a mass up to around 1.4 TeV, and exclude those

with a mass up to around 1.5 TeV. A 100 TeV collider would increase these values

considerably, to 6 and 7 TeV respectively.

6.3.2 Displaced-Vertex Searches

Traditional heavy stable charged particle or R-hadron searches provide good sen-

sitivity when the colour-triplet scalar is stable or has a long enough lifetime such

that most of the decays occur outside the detector. However for shorter lifetimes
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Figure 6.4: Current status and future prospects for R-hadron searches at the
LHC as functions of colour-triplet scalar mass and lifetime.
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Figure 6.5: Current status and future prospects for R-hadron searches at a
hypothetical

√
s = 100 TeV collider as functions of colour-triplet scalar mass and

lifetime.

these types of searches begin to lose sensitivity† as seen in Figures 6.4 & 6.5. Ded-

icated searches for displaced decays are therefore essential in order to cover the

entire parameter space of the model. There are now a variety of ATLAS [315–319]

and CMS [320–323] searches specifically targeting displaced signals. However,

†ATLAS has now also performed a search for metastable R-hadrons [314] which decay within
the detector at radial distances greater than 45 cm. This search is expected to have lower sen-
sitivity than the displaced-vertex search we consider here, except for a narrow range of lifetimes
approaching the collider stable case.
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Selection criteria

displaced
vertex

≥ 5 tracks satisfying pT > 1 GeV, |d0| > 2 mm

DV position: rDV < 300 mm, |zDV | < 300 mm
and ≥ 4 mm from PV in transverse direction

mDV > 10 GeV (assuming m±π for individual tracks)
material veto

DV+jets ≥ 4 jets (pT > 90 GeV) or ≥ 5 jets (pT > 65 GeV)

or ≥ 6 jets (pT > 55 GeV) and |η| < 2.8

DV+/ET /ET > 180 GeV

Table 6.2: Displaced vertex requirements and final selection criteria for the
ATLAS displaced-vertex search in the DV+jets and DV+/ET channels.

recasting limits from these searches is difficult without access to the complete

detector simulations used by the collaborations. Nevertheless, several recent pa-

pers [296–299, 301] have demonstrated that, with some reasonable assumptions,

good agreement with the full experimental analyses can be achieved. The most

relevant search for our model is the ATLAS displaced-vertex search [319] and we

shall take a similar approach to that of Ref. [299], which also reinterpreted this

search but in the context of supersymmetric models with R-parity violation.

The ATLAS displaced-vertex search targets long-lived particles which decay within

the inner detector, up to radial distances ∼ 30 cm. The search looks for displaced

vertices containing at least five charged particle tracks in addition to the presence

of a high-pT muon or electron, jets, or missing energy (/ET ). All channels are

essentially background free with less than one event expected. We will focus on the

DV+jets and DV+/ET channels as these are expected to give the highest sensitivity

to our colour-triplet decay. The displaced vertex requirements along with the final

selection criteria in each of the channels are detailed in Table 6.2.

In replicating the experimental analysis we must also take into account the ATLAS

tracking and vertex reconstruction procedures in addition to the above selections.

The standard ATLAS tracking algorithms have a low efficiency for reconstructing

tracks with large impact parameters (d0, z0) arising from displaced vertices. There-

fore additional offline retracking is performed with looser requirements on d0 and

z0. In order to account for this we have included an additional |d0|-dependent effi-

ciency factor multiplying the standard prompt efficiencies in the DELPHES 3 [324]

detector simulation.

In simulating the ATLAS vertex reconstruction algorithm we adopt the same pro-

cedure as Ref. [299]. Firstly we consider only tracks with pT > 1 GeV, |d0| > 2 mm

and truth-level origins satisfying 4 < r < 300 mm and |z| < 300 mm. Vertices
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are then reconstructed by firstly combining all track pairs with origins separated

by < 1 mm into a DV. The momentum vectors, ~p, of these tracks must also

satisfy ~d · ~p/|~p| > −20 mm, where the vertex position, ~d, with respect to the pri-

mary vertex (PV) is taken as the average position of its constituent track origins.

Any vertices separated by < 1 mm are then iteratively combined. Lastly vertices

formed at radial distances corresponding to dense regions of the detector according

to Ref. [319] are removed.

Finally, we must also make some additional assumptions about how the long-lived

R-hadrons and their decay products interact with and are reconstructed by the

detector. This is particularly important in the case of the DV+/ET channel in order

to accurately estimate the missing energy. Firstly, we neglect any prompt tracks

from R-hadrons that decay within the detector and which are anyway ignored when

reconstructing displaced vertices. We also neglect the curvature of these R-hadron

trajectories in the magnetic field, which will generally be small due to their large

momenta. The decay products (excluding neutrinos) of R-hadrons decaying within

the calorimeters are assumed to deposit all of their energy, although clearly this

assumption is not expected to be valid for R-hadrons decaying near the outer edge.

We neglect any energy deposits from the R-hadrons themselves which are expected

to be small. R-hadrons decaying within the muon spectrometers are unlikely to be

reconstructed as muons and are therefore assumed to contribute to /ET . Finally,

charged R-hadrons which escape the detector are assumed to be reconstructed as

muons.

Similarly to the previous analysis, signal events were generated using the R-

hadronisation routines in PYTHIA although with additional matrix-element re-

weighting to correctly capture the kinematics of the 4-body decays of the triplet.

The dominant (albeit very small) source of background for this search is due to

low-mDV vertices which are crossed by an unrelated high-pT track. We assume

that the current background expectations scale with increased luminosity while the

systematic uncertainties remain fixed. We also assume a systematic uncertainty of

20% on the signal efficiency. The 5σ discovery reach and 95% CLs exclusion limits

in the (mT , mS) plane are then shown in Figures 6.6, 6.7 and 6.8. Limits were

computed in the ROOSTATS [325] framework using the asymptotic formula for the

profile likelihood [326] and Gaussian constraints for the systematic uncertainties.

We find that with the existing 8 TeV dataset this analysis does not have sufficient

sensitivity to provide constraints on our colour-triplet scalar. This is due to the

fact that for masses where the cross section is sufficiently large, the triplet is in

most cases decaying outside the detector and R-hadron searches provide the only
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Figure 6.6: Projections for the R-hadron and displaced-vertex searches at the
LHC with 300 fb−1 of integrated luminosity at

√
s = 13 TeV as functions of

the scalar mass mS and triplet mass mT . The shaded regions can potentially be
excluded at 95% CLs and the dashed lines denote the 5σ discovery reach. The

grey shaded region is excluded by current R-hadron searches at
√
s = 8 TeV.

constraints. However, displaced searches will become important to probe the full

parameter space in Run-II and beyond. In Figure 6.6 we see that with 300 fb−1 of

integrated luminosity this search can potentially discover our colour-triplet up to

masses of 1.8 TeV and exclude it up to 1.9 TeV. Furthermore this search is clearly

complementary to the R-hadron searches considered in the previous section and the

combination of both searches provides good coverage of the (mT ,mS) plane. For

both searches the upper bound on the colour-triplet mass is cross section limited

and the reach is expected to improve with the increased dataset of the HL-LHC.

Finally, we can also consider larger values of f & 100 TeV, which increases the

lifetime of the colour-triplet. In this case R-hadron searches will provide the only

constraints at the LHC.

In Figures 6.7 & 6.8 we also consider the prospects for this search at a hypothet-

ical
√
s = 100 TeV collider. We have assumed the same experimental cuts as the

current ATLAS analysis, which leads to signal efficiencies of up to ∼ 70% for the

highest colour-triplet masses considered. Of course in practice the cuts are likely

to be more stringent, driven either by trigger considerations or background expec-

tations derived from data. Although note that the signal efficiency can reach 60%

for some of the benchmark models considered in the existing analysis, suggesting
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Figure 6.7: Projections for a hypothetical
√
s = 100 TeV collider with 3000

fb−1 of integrated luminosity as functions of the scalar mass mS and triplet
mass mT . The shaded regions show the 5σ discovery reach (95% CLs exclusion
limit) for the R-hadron/displaced (prompt) searches. The dashed lines include
an additional factor of two reduction in the signal efficiency for DV searches to

account for the impact of more stringent experimental cuts.

that our estimate is not unreasonable. Nevertheless we also show results with the

signal efficiency reduced by a factor of two in order to provide a more conserva-

tive estimate of the discovery reach. Regardless, we find that the reach would be

significantly greater than at the LHC with potential discovery of the scalar triplet

up to masses around 10 TeV.

6.3.3 Prompt Decay Searches

Standard searches for prompt decays of the colour-triplet are not expected to

provide useful constraints at the LHC. This is simply due to the fact that for masses

below about 4 TeV (assuming† f = 10 TeV) most of the colour-triplet decays will

be displaced, while for higher masses the LHC will not produce enough events

even by the end of the planned HL-LHC upgrade. However, future colliders may

be able to probe this region of parameter space where the colour-triplet lifetime is

small enough to lead to prompt decays, displaced by less than about 2 mm.

†For larger values f & 100 TeV, prompt-decay searches will not be constraining even at a
future

√
s = 100 TeV collider and all limits will be from displaced-vertex and R-hadron searches.
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Figure 6.8: Projections for a hypothetical
√
s = 100 TeV collider as described

in Figure 6.7. Here we have taken a larger value of f = 100 TeV.

We therefore investigate the potential limits from a hypothetical 100 TeV proton

collider. Of course many assumptions have to be made about the future perfor-

mance of such a machine and we will use the Snowmass detector [327] implemented

in DELPHES to model the detector performance. We also make use of the Snowmass

background Monte-Carlo event samples [328]. Signal events were again generated

using PYTHIA and we use the same weighted event generation procedure as used for

the background events in order to obtain a sample suitable for studies with high

integrated-luminosity. In our case the events are separated in bins of pT to allow

for straightforward implementation using PYTHIA and 50 000 events are generated

in each bin.

The ATLAS experiment has recently performed a search for gluinos [329] which

considers a similar final state to that which arises from the pair production of our

colour-triplet. We will employ a similar search strategy for our 100 TeV analy-

sis, however extracting the signal for the colour-triplet case is significantly more

challenging due to the reduced cross section and, as we shall see, this leads to a

relatively limited reach even at
√
s = 100 TeV. We will focus on a search using the

purely hadronic final state. Searches in the leptonic channel were also considered

but are expected to be less sensitive for higher triplet masses due to the small

cross sections combined with a lower branching fraction. To begin we make the

following preselection cuts:
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• ≥ 4 jets with pT > 50 GeV, |η| < 2.5,

• ≥ 3 b-tagged,

• leading jet pT > 150 GeV,

• δφ4j
min > 0.5,

• /ET > 400 GeV,

• meff > 2000 GeV,

• No isolated leptons (pT > 20 GeV, |η| < 2.5).

Jets are reconstructed using the anti-kT algorithm [330, 331] with R = 0.5 and

we use the Snowmass loose b-tagging working point with a b-tag efficiency of 70-

75% and a light quark (c-quark) mis-tag rate of 3% (30%). δφ4j
min is defined as

the minimum azimuthal separation between /ET and each of the four leading jets

with pT > 20 GeV and |η| < 4.5. The cut on this variable is designed to reduce

the contribution to /ET from poorly reconstructed jets or neutrinos emitted in the

direction of a jet. Combined with the cut on /ET this is expected to reduce the

QCD background to a negligible amount, although the QCD background has not

been simulated as part of the background sample. Finally, meff is defined as the

scalar sum of /ET and all jets with pT > 50 GeV and |η| < 4.5. We also neglect

events where the triplet decay vertex is displaced by more than 2 mm in the radial

direction since they would likely fail b-tagging track requirements [332, 333].

After these preselection cuts the background still dominates over the signal in the

selected sample by several orders of magnitude. The dominant background for this

search is tt̄+ jets. While we expect our signal to exhibit a higher b-jet multiplicity

and increased /ET compared to the background, the large tt̄ cross section means

that the number of background events can still easily exceed the signal expectation

even in the tails of the background distributions. This can be clearly seen in

Figure 6.9 where we have plotted the signal and background distributions of /ET

and meff after applying the preselection cuts for three benchmark signal points.

Next we optimise the cuts† on the number of b-jets (Nb), /ET and meff in order to

obtain the optimal background rejection as a function of signal efficiency using the

TMVA package [334] in ROOT v5.34. This was performed separately for each signal

point in a scan over the (mT ,mS) plane. However we find that the cuts yielding the

maximum signal significance do not vary significantly over the parameter ranges of

†Additional cuts on the number of jets and leading jet pT were also considered but found not
to provide significant improvement in the background rejection.
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Preselection Final selection

(Nb ≥ 4, /ET > 2.5 TeV,

meff > 10 TeV)

tt̄(∗) + jets 7.2× 105 27

W/Z + jets 9.1× 104 10

tt̄ + W/Z 3.9× 104 3.8

Other 1.1× 104 1.7

Total background 8.6× 105 39

mT = 4000 GeV
mS = 200 GeV

1720 13

mT = 5975 GeV
mS = 835 GeV

378 19

mT = 7020 GeV
mS = 160 GeV

147 22

Table 6.3: Background and signal event yields before and after the final selec-
tion for three benchmark signal points.

interest. We therefore impose the following final cuts when deriving the exclusion

limits: Nb ≥ 4, /ET > 2.5 TeV, meff > 10 TeV. The background and signal yields

for three benchmark points after imposing the preselection and final cuts are shown

in Table 6.3.

We can now compute 95% CLs exclusion curves in the (mT ,mS) plane. The fol-

lowing systematic uncertainties are assumed in computing the limits: background

normalisation (20%), signal efficiency (15%), PDF (5%) and luminosity (2.8%).

We also consider the more optimistic assumption of 10% and 5% systematics for

the background normalisation and signal efficiency respectively†. The final exclu-

sion curves are shown in Figure 6.7. We see that for the lowest singlet masses

we are able to potentially exclude triplet masses in the range 4-7 TeV. This up-

per reach is consistent with previous studies of colour-triplets at
√
s = 100 TeV

colliders in the context of supersymmetric simplified models [335]. However note

that in our scenario there is no region in the (mT ,mS) parameter space where we

are able to achieve a 5σ discovery potential. One might expect this to be attain-

able for lower masses, where the cross section is larger, however the colour-triplet

then becomes long-lived and we must turn instead to displaced searches for the

strongest limits. Once again this search is clearly complementary to the R-hadron

and displaced-vertex searches and all three search strategies will be essential in

†With reduced systematic uncertainties the analysis does benefit from additional signal regions
(e.g. /ET > 1.8 TeV, meff > 6 TeV) targeting the low mass region. In this case we derive our
exclusion limits using the optimal cuts for each (mT ,mS) point.
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Figure 6.9: The /ET (upper) and meff (lower) distributions for the backgrounds
and three benchmark signal points after imposing the preselection cuts.

order to probe the entire (mT ,mS) plane. Although we see from Figure 6.7 that

there remains a narrow region between the prompt and displaced regimes which

may be challenging to explore.

Finally, there are inevitably many assumptions which must be made in estimating

the reach of future colliders. The analysis considered here relies heavily on b-

tagging and this is likely to provide the largest source of uncertainty. We have

chosen to use the loose b-tagging point defined for the Snowmass detector in our

analysis as this assumes a reasonably conservative estimate on the mis-tag rate

of 3%. Improvements in b-tagging at the LHC have demonstrated that this kind
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of performance is reasonable for both highly boosted jets [336] and in high pile-

up environments [333, 337]. We have also neglected the effects of pile-up in our

analysis, however we do not expect this to have a significant effect beyond the

impact on b-tagging. The assumptions made about the systematic uncertainties

also have a significant effect on the final exclusion limit.

6.4 Summary

In the unnatural, or split, composite Higgs model electroweak precision and flavour

constraints are simply eliminated by requiring that f & 10 TeV. This causes a

splitting of the particle spectrum as the pseudo Nambu-Goldstone bosons are much

lighter than the composite-sector resonances. In order to preserve gauge-coupling

unification the model has a composite right-handed top quark and the strong sector

must remain invariant under an SU(5) global symmetry. This means that the low-

energy spectrum generically contains the SU(5) colour-triplet partner of the Higgs

doublet, as well as a singlet scalar that plays the role of dark matter. In the

minimal model, residual symmetries related to proton and dark matter stability

cause the colour-triplet scalar to decay via a dimension-six term in the Lagrangian

and, since f & 10 TeV, it can be metastable. Thus a long-lived colour-triplet scalar

provides a distinctive experimental signal to test for unnaturalness.

R-hadron searches can be used to place limits on the colour-triplet mass and the

current lower limit on a collider-stable (cτ & 10 m) colour-triplet from LHC Run-

I results is around 845 GeV. We have shown that with 300 fb−1 of integrated

luminosity at
√
s = 13 TeV there is potential for a discovery up to a colour-triplet

mass of 1.4 TeV. These limits significantly increase at a 100 TeV collider where,

depending on the lifetime, triplets with masses ranging from 2 to 6 TeV can be

discovered. Note that our limits from R-hadron searches are actually quite general,

depending only on the mass and lifetime of the colour-triplet, and can be applied to

any other model. If the triplet decays in the inner detector (4 mm < rDV < 30 cm)

then displaced-vertex searches can be used to obtain limits. We find that the LHC

can discover colour-triplet masses up to 1.8 TeV for singlet masses below 450 GeV.

At a 100 TeV collider the discovery reach is extended up to colour-triplet masses

in the range 3-10 TeV depending on the singlet mass. There is also the possibility

that the colour-triplet decays promptly when the mass mT & 4 TeV. In this case

the colour-triplet can only be searched for at a future 100 TeV collider, giving a

potential exclusion for triplet masses ranging from 4 to 7 TeV, provided the singlet

mass is less than around 900 GeV.
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Finally, it should be noted that long-lived colour-triplet scalars are a sign of unnat-

uralness in composite Higgs models in much the same way that long-lived gluinos

signal unnaturalness in split supersymmetric models. In both cases the experimen-

tal signals are quite similar because the decays produce jets and missing energy.

Nevertheless there are differences related to the spin of the decaying particle and

the particle(s) carrying the missing energy, as well as the large difference in the

production cross section. Given that current LHC results suggest that the Higgs

potential may be tuned, it would therefore be worthwhile to study how these two

unnatural possibilities could be distinguished at future colliders.
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Conclusion

Despite its many successes, it is clear that the Standard Model cannot provide

the complete description of our universe. In this thesis we have considered several

models of physics beyond the Standard Model which are primarily motivated by

the hierarchy problem. These models share the common hypothesis that the Higgs

boson arises as a composite bound state of some new strong dynamics. The com-

positeness scale then provides a cut-off, beyond which the Higgs mass is insensitive

to physics at higher scales, avoiding the potential for a naturalness problem. It has

been known for some time that many of these models have a dual description in

terms of a warped extra dimension via the AdS/CFT correspondence. The limit

of strong coupling and large N in the 4D conformal gauge theory corresponds to

weak coupling in the 5D gravity description, where the theory is under perturba-

tive control. 5D warped models then provide a simple framework within which to

construct concrete, calculable models, which is often far more difficult from the

4D viewpoint where the physics is non-perturbative. We have taken advantage of

both viewpoints throughout this thesis.

Models with a composite Higgs boson can be further split into two categories. In

the first case the Higgs is a generic bound state of the new strong dynamics; this

is the situation most commonly considered in Randall-Sundrum models. The sec-

ond possibility is that the Higgs arises as a pseudo-Nambu Goldstone Boson of a

spontaneously broken global symmetry in the strong sector. This is the viewpoint

adopted in 4D composite Higgs models and their corresponding 5D gauge-Higgs

unification constructions. These models have the additional benefit of potentially

being able to explain why the Higgs should be lighter than the other composite

sector resonances. We have investigated models which consider both of these pos-

sibilities. In both cases we have focused much of our attention on the pNGBs,

since these are expected to be the lightest composite states and could be the first

new physics to show up in collider searches. In the case where the Higgs itself is a

pNGB, there may be additional pNGBs associated with the spontaneous breaking

of the global symmetries. However, even in models where the Higgs is a generic
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bound state of the strong dynamics and neglecting the possibility of spontaneously

broken global symmetries, an additional pNGB can arise if the dynamics is con-

formal. While there are additional complexities due to the spacetime nature of the

symmetry, there may be a light dilaton associated with spontaneous breaking of

scale/conformal invariance.

In Chapter 3 we considered the 5D linear dilaton model which incorporates aspects

of both ADD and RS models through a large ∼nm scale extra dimension and a

warped metric. This model contains a bulk scalar field, which we showed can be

used to stabilise a large extra dimension via the Goldberger-Wise mechanism. We

then solved the coupled scalar-gravity equations of motion in order to determine

the scalar mass spectrum. We found that the spectrum is characterised by a mass

gap of order the curvature scale followed by a series of closely spaced (∼ 30 GeV)

KK modes, similar to the graviton spectrum. However, depending on the boundary

mass parameters, the radion and lowest KK mode can be parametrically lighter

than the other modes. This model includes a coupling between the bulk scalar and

the Standard Model fields confined to the IR brane. This introduces couplings of

the radion to the SM Lagrangian in addition to the usual coupling to the trace of

the energy-momentum tensor. This additional coupling can significantly modify

the radion phenomenology and in particular leads to an enhanced branching ratio

to photons. The couplings of the KK modes are suppressed relative to the radion

such that we would initially expect to observe a single mode at colliders, despite the

closely spaced mass spectrum. Finally, we determined the bounds on the radion

from recent LHC searches and found that the diphoton channel already provides

strong constraints on this model, leading to a bound on the 5D Planck mass of

M & 3.5−6.5 TeV for values of the curvature scale in the range 0.5 . |α| . 2.6 TeV.

In models with a light radion/dilaton, mixing is generically expected between the

radion and the Higgs. We explored the consequences of this mixing in the context

of the Randall-Sundrum model with the Higgs localised in the bulk of the extra

dimension in Chapter 4. In addition to kinetic mixing which arises via a coupling

of the Higgs to the 5D Ricci scalar, we showed that mass mixing between the

radion and the Higgs is generically expected once the back-reaction of the scalar

field is included. Allowing the Higgs to propagate in the bulk also significantly

modifies the radion phenomenology relative to the more commonly considered

brane-localised case. Importantly, we found that the radion coupling to the gauge

boson mass terms vanishes due to the conformal symmetry. This allows it to evade

the stringent constraints from resonance searches in the WW/ZZ final states.

Motivated by the 5D model, we then constructed the most general 4D effective

Lagrangian between the radion and the Higgs, which are the lightest states in
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the model. We performed a scan over the relevant parameter space, identifying

the lighter eigenstate with the observed 125 GeV state and imposing the bounds

from Higgs measurements and resonance searches. We found that a light radion

could have remained hidden from existing searches and that significant mixing

between the radion and the Higgs is allowed for values of the radion coupling scale

Λr & 3 TeV. For masses below 250 GeV, the heavier state must be strongly radion-

like with suppressed couplings to the massive gauge bosons; future searches in the

γγ channel will be most sensitive to this region. For higher masses the t̄t and

diboson channels will play an important role in probing these models in the cases

of small and large mixing respectively. These complementary search channels will

all play an important role in probing this class of models at Run-II of the LHC. We

also demonstrated that the radion in a bulk Higgs model could be responsible for

the observed diphoton excess at an invariant mass of 750 GeV in early Run-II data.

If the radion-Higgs mixing lies near the alignment limit, an extra dimension of size

kL . 20 and compositeness scale Λr & 2 TeV can explain the observed excess

while also satisfying all existing Run-I constraints. Searches in the tt̄ channel will

provide the best prospects for probing this scenario in the immediate future.

As a spacetime symmetry, conformal invariance differs from the case of spon-

taneously broken internal symmetries in that it admits a non-derivative quartic

coupling for the dilaton. This coupling is incompatible with spontaneous breaking

and a massless dilaton unless it is made to vanish either by fine-tuning or super-

symmetry. However, a light dilaton can still be obtained via explicit breaking

of the conformal symmetry by a marginally relevant operator. In Chapter 5 we

considered such a scenario in the context of a 5D soft-wall model, where a single

scalar operator/bulk field is responsible for the explicit breaking and also develops

a non-zero condensate. We firstly considered a model with an analytic superpoten-

tial and demonstrated that this corresponds to the fine-tuned case of zero quartic

coupling for the dilaton. The bulk scalar potential was then generalised to allow

for non-analytic terms in the β−function, corresponding to a deformed CFT with

non-zero dilaton quartic coupling. We then found that a naturally light dilaton

only occurs for the case of nearly-marginal operators, where the β−function is ap-

proximately constant in the UV and rapidly transitions to an order-one constant in

the IR. Our solution therefore provides a simple example for obtaining a naturally

light dilaton in a soft wall background, without the need for introducing a second

source of spontaneous breaking associated with an IR brane.

Models in which the Higgs arises as a pNGB of a spontaneously broken global

symmetry have been extensively considered in the literature. However, electroweak

precision and flavour constraints, together with the absence of new resonances
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at the LHC, generally prefer large values of the spontaneous symmetry breaking

scale that are in tension with naturalness bounds. This motivates the Unnatural

(or split) composite Higgs model, which assumes a large symmetry breaking scale

f & 10 TeV at the expense of fine-tuning in the Higgs potential. This results in a

split spectrum with the pNGBs the only states potentially accessible at the LHC

or future colliders. The unbroken SU(5) global symmetry means that these models

contain a colour-triplet pNGB partner of the Higgs, which is often metastable. In

Chapter 6 we explored the colour-triplet phenomenology both at the LHC and

a hypothetical
√
s = 100 TeV collider. The dominant colour-triplet decay mode

is to a top and bottom quark and the scalar singlet dark matter candidate. If

long-lived, the colour triplet will hadronise to form an R-hadron, which can be

detected in various ways depending on its decay length. In the collider stable case,

charged R-hadrons can be identified via tracks in the inner detector and possibly

muon chambers, with Run-I LHC results leading to a bound on the triplet mass

of 845 GeV. At
√
s = 13 TeV with 300fb−1 of integrated luminosity the discovery

reach is extended to 1.4 TeV and up to 6 TeV at a future 100 TeV collider. Another

possibility is that the colour-triplet can decay in the inner detector, leading to

a displaced vertex in conjunction with jets or missing transverse energy. With

300fb−1, triplet masses up to 1.8 TeV could be discovered at the LHC for singlet

masses below 450 GeV. Finally, the triplet can decay promptly when it is heavier

than about 4 TeV. While beyond the reach of the LHC, searches for b-jets plus

missing energy at a 100 TeV collider could potentially exclude colour-triplet masses

in the range 4–7 TeV for singlet masses in the range 100–900 GeV.

In this thesis we have explored several scenarios from both the 5D warped extra

dimensional and 4D strongly-coupled viewpoints in which the Higgs arises as a

bound state of some new strong dynamics. Motivated by the hierarchy problem,

these models lead to many interesting phenomenological signatures that can be

explored in a complementary way both at the LHC and through precision elec-

troweak and flavour measurements. In particular, we have shown that the LHC

is already exploring the parameter space of these models and beginning to impose

significant constraints. Finally, we know the Standard Model cannot provide the

complete picture, and although new physics has so far remained well hidden, there

are still many reasons to expect that it could be waiting just around the corner.
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Appendix A

A.1 Conformal Group

The conformal group consists of transformations of the coordinates xµ, which leave

the metric invariant up to a rescaling of the form

g′µν(x′µ) = Ω(xµ)gµν(xµ) . (A.1)

It is isomorphic to SO(d, 2) and for d ≥ 3 includes: the Poincaré transformations

xµ → Λνµxν + aµ , (A.2)

the special conformal transformations

xµ →
xµ + x2bµ

1 + 2bµxµ + b2x2
, (A.3)

and the dilatations

xµ → e−ωxµ , (A.4)

where Λ ∈ O(d− 1, 1) and aµ, bµ, and ω are real parameters. It is therefore a 15

parameter group in four dimensions.

The generators of the conformal group have the representation

Mµν ≡ i (xµ∂ν − xν∂µ) , (A.5a)

Pµ ≡ −i∂µ , (A.5b)

D ≡ −ixµ∂µ , (A.5c)

Kµ ≡ i
(
x2∂µ − 2xµxν∂

ν
)
, (A.5d)

where Mµν are the Lorentz generators, Pµ is the generator of translations, and Kµ

and D generate the special conformal transformations and dilatations respectively.
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The conformal algebra is defined by the commutation relations

[D,Kµ] = −iKµ , (A.6a)

[D,Pµ] = iPµ , (A.6b)

[Kµ, Pν ] = 2i (ηµνD −Mµν) , (A.6c)

[Kρ,Mµν ] = i (ηρµKν − ηρνKµ) , (A.6d)

[Pρ,Mµν ] = i (ηρµPν − ηρνPµ) , (A.6e)

[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ − ηνσMµρ − ηµρMνσ) . (A.6f)
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Appendix B

B.1 Wavefunction Normalisation

In order to calculate the couplings to the Standard Model fields we need to ensure

that the Qn modes are canonically normalised by fixing the normalisation constant

Nn. Since the equations of motion are only linear in the perturbations they do

not contain sufficient information to correctly normalise the modes. It therefore

becomes necessary to diagonalise the action (3.1) to second order in the perturba-

tions. This analysis has been done for the general case in Ref. [62]. Using their

result, we obtain the following free action for the 4D physical modes of the system,

Sfreen = Cn

∫
d4xQn

[
�−m2

n

]
Qn, (B.1)

Cn =
27M3

2α2

∫ rc

0
dz e−αz

[
Φ′2n −

4α

3
Φ′nΦn +

2α2

3
Φ2
n

]
≡ 1

2
. (B.2)

Here we provide the complete normalised wavefunctions for the radion and KK

modes. The wavefunctions take the form of (3.24), where the normalisation con-

stant Nn is given by

Nn =
4
√
βn

3M3/2

[
4β2

nαε+ α3(1 + ε)

]
×[

6βnrc(4β
2
n + α2)(16β4

nε
2 + 4β2

nα
2(9 + 2ε+ 2ε2) + α4(1 + ε)2)

− 8βnα

(
16β4

nε(9 + ε) + 8β2
nα

2ε(1 + ε) + α4(−8− 7ε+ ε2)

)
sin(βnrc)

2

+ 3

(
64β6

nε
2 + 16β4

nα
2(−9− 2ε+ ε2)− 4β2

nα
4(−6 + 4ε+ ε2)

− α6(1 + ε)2

)
sin(2βnrc)

]−1/2

. (B.3)

Here we have defined ε ≡ εvis for simplicity, while βn is defined near (3.24) and

can depend on both εvis and εhid.
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B.2 Higgs-radion KK mixing

We consider the effect of the Higgs mixing with the closely spaced radion KK

modes. The Lagrangian that needs to be diagonalised is now given by

L = −1

2
h�h− 1

2
m2
hh

2 +
∑
n

(
−1

2
Qn�Qn −

1

2
m2
nQ

2
n +

6ξκΦ,nv

M
h�Qn

)
− 3ξv2

M2

∑
m

∑
n

κΦ,m (κΦ,n − κφ,n)Qm�Qn. (B.4)

We see that in addition to the Higgs-KK mixing, the last term also introduces a

kinetic mixing between the KK modes. However, this term is suppressed by an

additional factor of 1/M . We shall therefore work to leading order in 1/M , which

allows us to neglect the mixing between the KK modes and focus instead on the

mixing with the Higgs. The analysis can now proceed as for the single radion case

and we diagonalise the kinetic terms via the transformation

h = h′ +
6ξv

M

∑
n

κΦ,nQn. (B.5)

The Lagrangian now takes the form

L = −1

2
h′�h′ − 1

2

∑
n

Qn�Qn −
1

2
f imijf j , (B.6)

where we have defined the vector

f i =


h′

r

Q1

...

 , (B.7)

and the mass matrix is given by

mij = m2
h



1
6ξκΦ,rv
M

6ξκΦ,1v
M . . .

6ξκΦ,rv
M

m2
r

m2
h

0

6ξκΦ,1v
M

m2
1

m2
h

... 0
. . .


. (B.8)

It is now straightforward to diagonalise the mass matrix numerically. We find that

the mixing with the Higgs remains small and there is one mass eigenstate which



B.3. Feynman Rules 197

is largely composed of the Higgs gauge eigenstate. So despite their relatively close

mass spacing, the cumulative effect of the KK modes is still too small to have

a significant effect on the Higgs phenomenology. There is however an exception

when one of the KK modes has a mass very close to the mass of the Higgs, in

which case the mixing between those two states becomes significant. However the

mixing with the other KK modes reduces this effect compared to the radion only

case discussed previously.

B.3 Feynman Rules

r

Vµ

Vν

P1

k2

k
3

ib1κφ
M

(P2·P3η
µν − P ν2 Pµ3 )

+ 2im2
V

(
b1
M

(κφ
2
− κΦ

)
+
a1

v

)
ηµν (B.9)

r

f

f̄

P1

P2

P
3

imΨ

(
b1κΦ

M
− a1

v

)
(B.10)

r

h

h

P1

P2

P
3

− 2ia2
0b1
M

(κφ
2

+ κΦ(6ξ − 1)
)
P2·P3

− 6iξa2
0b1

M
κΦ (P2·P2 + P3·P3)

+ 2ia2
0m

2
h

(
b1
M

(
2κΦ −

κφ
2

)
− 3a1

2v

)
(B.11)

r

Aµ

Aν

P1

k2

k
3

ib1
M

(
κφ +

αEM
2π

κΦ(b2 + bY )
)

(k2·k3η
µν − kν2kµ3 )

(B.12)

r

gaµ

gbν

P1

k2

k
3

ib1
M

(
κφ +

αsbQCD
2π

κΦ

)
(k2·k3η

µν − kν2kµ3 ) δab (B.13)
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Appendix C

C.1 Higgs VEV and Profiles

We provide details from the derivation of Section 4.3.2. Given the action Eq. (4.6),

with brane potentials in Eqs. (4.7) and (4.8), we wish to find the profiles of the

Higgs vev v(y) and lightest mode h(x, y). We begin by expanding the Higgs field

in the unitary gauge as a bulk vev plus a fluctuation

H(x, y) =
1√
2

(
0

v(y) + h(x, y)

)
, (C.1)

and concentrate for the moment on the background solution. Variation of the

action Eq. (4.6) gives the following bulk equations of motion

v′′ − 4Ã′v′ + 4ξ(2Ã′′ − 5Ã′2)v −
√

2
∂V

∂H†

∣∣∣∣
H= v√

2

= 0, (C.2)

Ã′′ − v′2 + 2ξ(v′2 + v v′′ + Ã′v v′)
3(M3 + ξv2)

= 0, (C.3)

6(M3 + ξv2)Ã′2 − v′2

2
+ V − 8ξÃ′v v′ = 0, (C.4)

where primes denote differentiation with respect to y. We also have the boundary

conditions

Ã′ = ± λα
3(M3 + ξv2)

, v′ = ±

√2
∂λα
∂H†

∣∣∣∣
H= v√

2

− 8ξÃ′v

 , (C.5)

where the upper and lower signs correspond to the UV and IR branes respectively.



200 Appendix C.

We assume that we can neglect the back-reaction of the Higgs. Then we have

Ã(y) = ky and the vev, v(y), is given by

v′′(y)− 4kv′(y)− (c2 + 20ξ)k2v(y) = 0, (C.6)(
v′(y) +

λ̃

2k2
v(y)

(
v2(y)−

(
ṽ2
IR +

16ξ

λ̃

)
k3

)) ∣∣∣∣
IR

= 0, (C.7)

(
v′(y)− (mUV − 8ξk)v(y)

)
|UV = 0. (C.8)

From these expressions we infer the redefinitions noted in Eq. (4.16). The general

solution for the equation of motion in the bulk then takes the usual form

v(y) = A1 e
(2−β)ky +A2 e

(2+β)ky, (C.9)

where β =
√

4 + c2 and A1 and A2 are constants to be determined by the boundary

conditions. We use the UV boundary condition to select the solution growing

towards the IR brane; choosing mUV = (2 + β)k enforces A1 = 0. The other

constant A2 is fixed by the IR boundary condition leading to the solution

v(y) = k3/2e(2+β)k(y−L)

√
λ̃ṽ2

IR − 2(2 + β)

λ̃
. (C.10)

We can relate the constants ṽIR and λ̃ to the electroweak vev vew by considering

the SM gauge boson masses. We must satisfy∫ L

0
dy e−2ky v2(y) = v2

ew. (C.11)

This directly leads to Eqs. (4.10) and (4.11) that we quoted earlier.

We must now check whether this solution does indeed correspond to a small back-

reaction for the Higgs vev. Evaluating the conditions at y = L, where v(y) takes

its maximum value, we obtain

|ξ|v2

M3
= |ξ|

(
k

M

)3 2(1 + β)v2
ew

k̃2
� 1,

|v′2 − c2k2v2 + 16ξÃ′v v′|
12k2M3

=

1

12

(
k

M

)3 (
(2 + β)2 −c2 + 16ξ(2 + β)

) 2(1 + β)v2
ew

k̃2
� 1. (C.12)

These conditions are easily satisfied for O(1) values of ξ, β, c, provided that k/M <

1 and vew < k̃.
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Moving now to the Higgs fluctuation, it satisfies the equations

H′′(y)− 4kH′(y)− c2k2H(y) +m2
he

2kyH(y) = 0, (C.13)(
H′(y) +

[
λ̃v2(L)

k2
− (2 + β)k

]
H(y)

)∣∣∣∣
IR

= 0, (C.14)

(
H′(y)−mUVH(y)

)
|UV = 0, (C.15)

where in the IR boundary condition we have kept only linear terms in H(y). Note

that Eq. (C.13) differs from Eq. (C.6) only through the last term proportional to

the Higgs mass, which is a small correction when mh � k̃. So we expect that the

Higgs and vev profiles are similar. The general solution to the bulk equation of

motion takes the form

H(y) = e2ky

(
J−β

(
ekymh

k

)
Γ(1− β)B1 + Jβ

(
ekymh

k

)
Γ(1 + β)B2

)
, (C.16)

where B1 and B2 are constants whose ratio is fixed by the UV boundary condition

and are completely determined once we normalise the 4D kinetic term of the Higgs

fluctuation. Using the UV boundary condition and that εh = mh/k � 1, we can

expand the arguments of the Bessel functions

J−β(εh) = ε−βh

(
2β

Γ(1− β)
+O(εh)

)
, Jβ(εh) = εβh

(
2−β

Γ(1 + β)
+O(εh)

)
,

(C.17)

and find that
B1

B2
≈ ε2+2β

h g(β), (C.18)

where g(β) is a regular function of β, g(β) ∼ O(1) and we have replaced mUV =

(2 + β)k. Now at large values of y, the two Bessel functions will behave in an

analogous way (neither will be more important than the other in terms of magni-

tude). Thus at large values of y, given the ratio (C.18), we see that the solution

with B2 dominates. At small values of y this is still the case since the first term in

the general solution for H(y) goes as ε2+β
h B2 while the second term goes as εβhB2.

Therefore, in the εh � 1 limit we can neglect the first term in the general solution

for H(y) and write

H(y) ≈ 2−βe(2+β)ky
(mh

k

)β
B2, (C.19)

where we have used that mh � k and also that mh � k̃. Normalising the 4D

kinetic term for the fluctuation according to∫ L

0
dy e−2kyH(y)2 = 1, (C.20)
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determines the final constant B2 and thus we have Eq. (4.12),

H(y) =
√

2(1 + β)k ekye(1+β)k(y−L). (C.21)



203

Appendix D

D.1 Four-Body Phase Space Integral

We present the calculation of the four-body phase space integral that is needed

to obtain the decay width of the colour-triplet scalar. We follow the common

approach for many-body phase space integrals, and rewrite them as several two-

body integrals. Given that the colour-triplet T decays to tcbcSS, where t (b) is the

top (bottom) quark and S is a singlet scalar, let Q1 = pt + pb and Q2 = pS1 + pS2 .

Note that the squared matrix element (6.9) depends only on Q2
1, and is independent

of all other kinematic variables. The four-body phase space integral can be written∫
dΠ4(pT ; pt, pb, pS1 , pS2) =∫

dΠ̃2(pT ;Q1, Q2) dΠ2(Q1; pt, pb) dΠ2(Q2; pS1 , pS2) , (D.1)

where

dΠ2(pa; p1, p2) =
d4p1

(2π)4

d4p2

(2π)4
2πθ(p0

1)δ(p2
1 −m2

1) 2πθ(p0
2)δ(p2

2 −m2
2)

× (2π)4δ(4)(pa − p1 − p2) , (D.2)

dΠ̃2(pa; p1, p2) =
d4p1

(2π)4

d4p2

(2π)4
(2π)4δ(4)(pa − p1 − p2) . (D.3)

We can then trivially perform the integrals over all momenta other than Q1,2. Let

us introduce the triangle function

I(a, b) = 1 + a2 + b2 − 2a− 2b− 2ab . (D.4)

The two-body phase space integral may then be written as

∫
dΠ2(pa; p1, p2) =

1

8π

(
2|~p1|
p0
a

)
COM

=
1

8π

√
I

(
m2

1

m2
a

,
m2

2

m2
a

)
. (D.5)
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The first result is the well-known expression for the two-body phase space in the

centre of mass frame; the second result expresses this in Lorentz-invariant form.

Since the integral is manifestly Lorentz-invariant this result holds in all frames.

In the two specific cases we require this simplifies further. Neglecting the bottom

quark mass we have ∫
dΠ2(Q1; pt, pb) =

1

8π

(
1− m2

t

Q2
1

)
, (D.6)

∫
dΠ2(Q2; pS1 , pS2) =

1

16π

√
1− 4m2

S

Q2
2

. (D.7)

The additional factor of one-half in the latter equation is due to the presence of

identical final states.

Next, we rewrite the integral over Q1 and Q2. It is easy to see that, if p0
1,2 are

constrained positive,

dΠ̃2(pa; p1, p2) =
dm2

1

2π

dm2
2

2π
dΠ2(pa; p1, p2) . (D.8)

This condition applies to Q1,2. Therefore we may write

∫
dΠ̃2(pt;Q1, Q1) =

∫
dQ2

1

2π

dQ2
2

2π

1

8π

√
I

(
Q2

1

m2
T

,
Q2

2

m2
T

)
. (D.9)

Putting all of this together, we have the final result∫
dΠ4(pT ; pt, pb, pS1 , pS2) =

1

212π5

∫
dQ2

1 dQ
2
2

√
I

(
Q2

1

m2
T

,
Q2

2

m2
T

)(
1− m2

t

Q2
1

)√
1− 4m2

S

Q2
2

. (D.10)

Finally we need the bounds of integration. It is straightforward to see that the

absolute bounds on Q2
1 are

m2
t < Q2

1 < (mT − 2mS)2 . (D.11)

The lower bound occurs when the b quark is produced at rest, and the upper bound

when the two S are at rest. For any given Q2
1 there is an upper bound on Q2

2 and

so

4m2
S < Q2

2 <

(
mT −

√
Q2

1

)2

. (D.12)

The lower bound arises from when the two S are at rest, while the upper bound

is obtained when they are back-to-back.
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Figure D.1: Comparison of the event-level efficiencies from our analysis (data
points) and the ATLAS analysis (shaded regions) for the case of a long-lived
gluino decaying to ttχ̃0. From top to bottom the curves correspond to gluino
masses of 1400, 1000 and 600 GeV. The top and bottom panels are for the

DV+jets and DV+/ET channels respectively.

D.2 Displaced-Vertex Search Validation

Given the challenges involved in recasting displaced searches and the various as-

sumptions that must be made, it is important to check the validity of our imple-

mentation against the full experimental analysis. We have therefore also simulated

events for one of the signal processes considered in the ATLAS paper [319]. We

have chosen the case of a long-lived gluino decaying to two top quarks and a 100
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GeV neutralino since this most closely resembles the final-state that is produced

by the decay of our colour-triplet.

In Figure D.1 we compare the event-level efficiencies obtained from our analysis

(data points) with the results reported by ATLAS (shaded regions) for both the

DV+jets and DV+/ET channels. Overall we find that our analysis gives reason-

ably good agreement with the full experimental analysis, especially in the DV+jets

channel. The discrepancies in the DV+/ET channel suggest that our assumptions

regarding the reconstruction of the decay products from displaced R-hadron decays

leads to an underestimate of the missing energy. The difference in signal efficiency

is not expected to have a significant effect on the exclusion limits we derive, es-

pecially at higher center-of-mass energies where the expected missing energy from

our signal can be significantly greater than the experimental cuts.
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