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Abstract

General relativity is a thermodynamic theory that is consistent with the holo-
graphic principle. However, the precise manner in which this description emerges
from an underlying theory is unknown. In this study we concentrate on the relation
between Ęuids, gravity and the membrane paradigm as a window onto further elu-
cidating this link. In the membrane paradigm in general relativity, black holes are
viewed holographically, by excising their interior, truncating ĕelds on the surface,
and imbuing the horizon with surface properties including Ęuid viscosity, electrical
resistivity, and thermal dissipation. e close connection between Ęuid and ther-
mal behaviormay also be seen by examining scaling symmetry in the Navier-Stokes
equations, and considering these as perturbations to a system in thermal equilib-
rium, which in this case is general relativity. A better understanding of these con-
nections may be a stepping stone towards a more complete description of gravity in
''non-equilibrium spacetime''.





ere is a theory which states that if ever anyone discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be re-
placed by something even more bizarre and inexplicable. ere is another
theory which states that this has already happened.

Douglas Adams,
e Hitchhiker's Guide to the Galaxy
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1 Introduction

General relativity is an effective but universal thermodynamical theory. We require the
equivalence principle and local Lorentz invariance, and from this, any sufficiently coarse-
grained thermal data on a boundary hypersurface evolves into the full Einstein equations
in the bulk. An energy Ęux 𝑇𝑑𝑆 transverse to the spatial components of the hypersurface
evolves according to the Raychaudhuri-Landau equation, and a tangential momentum
Ęux 𝑃𝑑𝐴 is governed by the Damour-Navier-Stokes equations. e bulk Einstein equa-
tions correspondingly yield thermal and Ęuid behavior when constrained to the bound-
ary, and the location of this boundary is variable; it can be null, spatial or timelike. e
Bekenstein-Hawking entropy 𝑆 = 𝐴/4𝐺ℏ is a thermal equilibrium condition for Ein-
stein gravity, and is the ratio of the horizon Ęuid pressure to the Unruh temperature.
e ratio of shear viscosity to entropy 𝜂/𝑆 = 1/4𝜋 is constant when this equilibrium is
satisĕed. e horizon entropy and Ęuid pressure are also linked, implying a thermody-
namical entropic force.

Chapter 1 covers geometric and background topics, ĕxing conventions and providing
a brief introduction with the aim of increasing accessibility. Chapter 2 introduces holog-
raphy, and beginning from a past null boundary in Rindler space, derives the Einstein
equations in the bulk using a combination of the thermodynamic Clausius principle,
holography, Lorentz invariance, the equivalence principle, and the Raychaudhuri equa-
tion, which partially governs the dynamics of null curves. In chapter 3we project the Ein-
stein equations from the bulk onto a future null horizon and show the 4-dimensional Ein-
stein tensor is equivalent to a combination of the Damour-Navier-Stokes equations and
the Raychaudhuri equation on a hypersurface. By examining the Raychaudhuri equa-
tion, a connection with thermodynamics is seen which is complementary to the deriva-
tion of Einstein's equations in chapter 2. e Ęuid pressure is then used to extend the
thermal approach of chapter 2, replacing the boost Killing vector with an angular Killing
vector, and the energy Ęux with momentum Ęux. Here the Unruh temperature is as-
sumed and the holographic scaling of entropy derived. Chapter 4 extends the connection
between general relativity, the Navier-Stokes equations and thermodynamics to timelike
surfaces which lie in the bulk spacetime. By incorporating the Israel junction condition,
valid for timelike or null surfaces, the relation between the Bekenstein-Hawking entropy,
stress tensor, and dynamical entropy contributions are clariĕed. A Ęuid ansatz for the
scaling of derivative expansions of the stress tensor is presented, which offers an alter-
nate, axiomatic, perspective where Ęuids comprise part of a 2nd order approximation to
what is presumably a general dual ĕeld theory. e action principle membrane approach
offers a similar view, but arising from effective ĕeld theory. A deeper study of the close
relation between Ęuids and gravity is brieĘy introduced through the example of turbu-
lence in the Navier-Stokes equations, which is closely related to the conformal structure
of null surfaces, the evolution of the expansion, shear and momenta, and, if the horizon
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area changes, the promotion of the entropy to an entropy current, which together corre-
spond to the geometric turbulence of gravity. is, along with the enigmatic relation to
entanglement entropy, will be topics for the future.

is thesis was originally inspired by the ''Fast Scramblers'' paper by Y. Sekino and
L. Susskind [12], which itself builds on ''Black holes as mirrors: quantum information
in random subsystems'' by P. Hayden and J. Preskill [11]. e goal of these papers is
to ĕnd the maximum rate that Hawking radiation can release information from black
holes. e bound on information retrieval can be viewed through two complemen-
tary but distinct mechanisms; the idealization of a black hole as a quantum informa-
tion theoretic system, obeying the laws of ordinary quantum mechanics and providing
a retrieval rate boost through the entanglement of subsystems (an external observer, in-
falling information, and outgoing Hawking radiation), or by considering the black hole
and observer as a holographic system, where surface properties of the black hole deter-
mine the rate infalling information is thermalized. e ĕrst approach is closely related
to black hole complementarity [16], postulating that infalling observers see unitarity evo-
lution, and the second to external observers in the membrane paradigm [6] [8]. at
both approaches give compatible answers is indicative of a deep link between them. In
this thesis holographic [2] [3] is taken to mean the scaling of entropy with surface area,
𝑆 = 𝐴/4𝐺ℏ, which differs from the statistical behavior of matter in ordinary (nonrela-
tivistic or special-relativistic) situations, where entropy scales as the volume. Black hole
thermodynamics and the membrane paradigm display holographic scaling explicitly [6]
[8], as does the AdS/CFT correspondence [17], black hole solutions in matrix theory
[18], and loop quantum gravity [19].
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2 Background

is thesis uniĕes the membrane paradigm notation used by different authors by using
Kruskal-Szekeres coordinates, in which Rindler space appears as the near-horizon or in-
ĕnite mass limit. ere are signiĕcant differences in the approaches adapted from source
material, due to a combination of differing aims and the fact that the papers span about
40 years, from the 1970's to 2013. e classical membrane paradigm is due primarily
to Damour and orne. Damour uses a customized coordinate system which is some-
what nonstandard, begins with Eddington-Finkelstein coordinates and is expressed in
terms of the generators to the black hole's null horizon. orne's primary aim with the
membrane paradigm was to develop it into a useful tool for astrophysics, and to this end
he reexpressed Damour's null horizon approach using the 3+1 formalism on a stretched
horizon located a timelike distance outside the null horizon. e 3+1 formalism may
also have been chosen because it is closer to the 3+1 formalism for quantizing the grav-
itational Hamiltonian, favored at the time by Wheeler and others. More recent authors,
including Jacobson and Strominger, have used Rindler space since it applies generally to
null horizons.

e choice of Kruskal-Szekeres coordinates is motivated by their ability to display
the global behavior of Schwarzschild geometry, including the region behind the horizon.
Although the membrane paradigm was originally formulated to explicitly exclude this
region, the picture of having data on a causal or spacelike hypersurface and asking how it
interacts with bulk spacetime is a complementary view to distributing information freely
on both sides, and gives the membrane paradigm a more modern interpretation.

An important point is that the Schwarzschild metric is nonrotating, and in order for
the membrane paradigm to be nontrivial an angular velocity is needed. is potential
conĘict is avoided because the membrane paradigm is derived based on symmetries of
the Einstein tensor and can then be applied to any individual solution. Kruskal-Szekeres
coordinates are well adapted to null horizons and are examined locally. We are then free
to postulate the existence of global Killing vectors to normalize Kruskal-Szekeres (or any
other) coordinates to have an angular velocity.
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2.1 Variables and Indices

𝑥௜ = (𝑢, 𝑣, 𝜃, 𝜙) Spans (0,3) in bulk
𝑥ఓ = Spans (0,2,3) or (1,2,3) on boundary, with 𝑟 or 𝑥଴ = 𝑢 constant
𝑥஺ = Spans spatial slices (2,3)
𝜂௜௝ = Minkowski metric of signature (− + ++)
𝑔௜௝ = Metric
ℎఓఔ = Induced metric on hypersurface
𝛾(𝑥௜) = Geodesic curve
𝜆 = Geodesic parameter. Not always affine.
𝑛 = Parameter for selection between geodesics
𝑛௜ = Normal vector to hypersurfaces
𝑘௜ = Secondary null vector for null hypersurfaces
(𝑘௔𝑛௔ = −𝛼, 𝑛௜ = 𝛼𝑑𝑢, 𝑘௜ = 𝛼𝑑𝑣) = Deĕnition of Null Normals

𝑒௜ఓ =
𝜕𝑥௜
𝜕𝑥ఓTangent vector on hypersurface

𝑢௜(𝜆) = ∇ఒ𝑥௜ Tangent to geodesics
𝜉௜(𝑛) = Deviation vector between geodesics
ℒ௑𝑌 = [𝑋, 𝑌] Lie derivative of Y in X direction
𝐾௜௝ = Extrinsic curvature
𝑅௜
௝௞௟ = Reimann curvature tensor

𝑅௝௟ = 𝑅௔
௝௔௟ = Ricci tensor

𝑅 = Curvature scalar
ଷ𝑅 = Curvature scalar on hypersurface
(𝑡, 𝑟, Ω) = Schwarzschild coordinates
(𝑈, 𝑉, Ω) = Null Kruskal-Szekeres coordinates
(𝑇, 𝑋, Ω) = Minkowski coordinates
(𝑢, 𝑣, Ω) = Null Rindler coordinates
Ω = (𝜃ଶ + sinଶ 𝜃𝜙ଶ)ଵ/ଶ = Solid angle
𝑏 = Schwarzschild radius
𝑟∗ = Schwarzschild tortise coordinate
𝜅 = Gravitational or inertial acceleration
𝜌 = Proper distance from event horizon
𝜏 = Rindler time
𝜏ா = Euclidean time
𝐽 = Charge density
𝐿 = Angular momentum

(2.1)
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2.2 Manifolds

A manifold can be roughly deĕned as a k-dimensional subset𝑀 ⊆ ℝ௡ that locally looks
like ℝ௞ Euclidean space. It has a Hausdorff topology and can be covered by diffeomor-
phism invariant coordinate charts.

To be Hausdorff implies that for two points 𝑎, 𝑏 ⊂ 𝑀 with distinct neighborhoods
𝑃௔ and 𝑃௕, the neighborhoods are separable, so that their intersection is the null set
𝑃௔ ∩ 𝑃௕ = ∅.

A function on𝑀 is smooth, or of class 𝐶௡, if its partial derivatives up to and including
order 𝑛 exist and are continuous.

A diffeomorphism is a bijective function 𝑓 ∶ 𝑀 → 𝑀 with a smooth inverse map.

In General Relativity we are interested in psuedo-Riemannian or Lorentzian mani-
folds, comprised of the pair (𝑀, 𝑔). 1 ese have the additional structure of a Lorentz
metric 𝑔. Space is therefore locally Lorentzian, rather than Euclidean. e metric used
for bulk geometry is𝑔௜௝, and 𝜂௜௝ is ĘatMinkowski space withmetric signature (−+++).

A submanifold is a subset 𝑁 ⊆ 𝑀. It is deĕned by its codimension, which is just
the difference between the dimension of 𝑀 and dimension of 𝑁. A ''codimension one''
submanifold is usually referred to as a hypersurface.

Lowercase Latin indices (𝑖, 𝑗, ...) span (0, 3) in the bulk.

Greek indices (𝜇, 𝜈, ...) are used on submanifolds.

Uppercase Latin letters isolate the spatial slices 𝐼 = (2, 3).
Contracted indices use letters starting from the beginning of each alphabet (𝑎, 𝛼, ...).

e ordinary derivative is denoted by 𝜕௜𝐴௝ and comma notation 𝐴௝
,௜.

e covariant derivative is metric compatible and deĕned so that
∇௜𝐴௝ = 𝐴௝

;௜ ≡ 𝜕௜𝐴௝ + Γ௝௜௔𝐴௔, (2.2)
with connection Γ given by Christoffel symbols

Γ௞௜௝ =
1
2𝑔

௞௔ ൫𝜕௜𝑔௝௔ + 𝜕௝𝑔௜௔ − 𝜕௔𝑔௜௝൯ . (2.3)

e directional covariant derivative on a curve 𝛾௜(𝜆) along a tangent vector 𝑢௜(𝜆) is
𝐷𝐴௜/𝑑𝜆 = ∇௨𝐴௜ = 𝑢௔𝐴௜

;௔. (2.4)
1e process of singularity formation, proven by Penrose and Hawking to occur general relativity

[23] [25], violates the smoothness condition. is indicates that general relativity is not completely self-
consistent. However, we will in general not work in the vicinity of singularities.
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e Riemann curvature tensor, which results from parallel transporting a vector in a
closed curve along directions 𝑢 and 𝑣, is deĕned as

𝑅௜
௔௕௖𝑛௔𝑢௕𝑣௖ = (∇௨∇௩ − ∇௩∇௨ − ∇[௨,௩])𝑛௜ (2.5)

is expression holds for any 𝑢 and 𝑣, so the deviation of 𝑛 in component form is

𝑅௜
௔௕௖𝑛௔ = 𝑛௜;௖௕ − 𝑛௜;௕௖ . (2.6)

2.3 Pushforward, Pullback and Flow

Given points on two manifolds, 𝑝 ∈ 𝑀 and 𝑞 ∈ 𝑁, the vectors on their tangent spaces
𝑋 ∈ 𝑇𝑀 and 𝑌 ∈ 𝑇𝑁, and a smooth bijective function𝜙 ∶ 𝑀 → 𝑁, the vector 𝑌௜ is called
the pushforward of 𝑋௜ by 𝜙. It is a composition from

𝑁 → 𝑀 → 𝑇𝑀 → 𝑇𝑁

and can be denoted
(𝜙∗𝑋)(𝑞) = 𝑑𝜙(𝜙ିଵ(𝑞))𝑋(𝜙ିଵ(𝑞)).

Using coordinate notation, with 𝜙(𝑥௜) = 𝑦௝, the pushforward on a (1, 0) tensor is a
matrix of partial derivatives deĕned by

(𝜙∗𝑋)௝ =
𝑑𝑦௝
𝑑𝑥௜ 𝑋

௜ .

Given a diffeomorphism 𝜙 we can push 𝑋 forward to 𝑌, instead of specifying 𝑌 as a map
from 𝑁 to its cotangent space.

Similarly, given cotangent spaces𝑇∗𝑀 and𝑇∗𝑁 dual to𝑇𝑀 and𝑇𝑁,𝑋௜ is the pullback
of 𝑌௜ by 𝜙.

(𝜙∗𝑌)(𝑝) = 𝑑𝜙ିଵ(𝜙(𝑝))𝑌(𝜙(𝑝))
e action of the pullback on a (0, 1) tensor is

(𝜙∗𝑌)௝ =
𝑑𝑥௜
𝑑𝑦௝𝑌௜ .

e Ęow along an integral curve can be viewed as a series of inĕnitesimal diffeomor-
phisms which pull back a tangent vector along the curve.
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2.4 Hypersurfaces

Most of the machinery of differential geometry was developed for Riemannian mani-
folds with positive deĕnite metric signatures. In these cases tools like the extrinsic cur-
vature, Gauss, Codazzi and Ricci equations can be deĕned uniquely once normal vectors
are selected. However, since Lorentzian manifolds have degenerate submanifolds (i.e.
𝑔௔௕𝑛௔𝑛௕ = 0) this creates a larger equivalence class that makes it impossible to distin-
guish certain quantities in the vicinity of null surfaces. For this reason we consider time-
like and spacelike surfaces separately, and then adapt the results to null surfaces. e
degeneracy of null surfaces, in particular the equivalence of tangent and normal vectors,
is closely related to the emergence of Ęuid and thermal behavior, and also to conformal
invariance.

A hypersurface is a submanifold of codimension one. We deĕne this either by specify-
ing a constraint 𝑓(𝑥௜) = 0, or using an inducedmetric to pull back from a largermanifold
to a submanifold.

is has the general form
ℎఓఔ = 𝑔௜௝𝑒௜ఓ𝑒௝ఔ . (2.7)

Its inverse is (ℎఓఔ)ିଵ ≡ ℎఓఔ, and the notation ℎ ≡ det ℎఓఔ, and 1/ℎ ≡ ℎିଵ. In differ-
ential geometry the induced metric is also referred to as the ĕrst fundamental form. As a
pullback of 𝑔௜௝ by 𝜙 this is symbolically written

ℎఓఔ = (𝜙∗𝑔)ఓఔ =
𝜕𝑥௜
𝜕𝑦ఓ

𝜕𝑥௝
𝜕𝑦ఔ𝑔௜௝ ,

which also gives a parametric form for the tangent vectors 𝑒௜ఓ. Distances on the hyper-
surface are deĕned as

𝑑𝑠ଶ = ℎఓఔ𝑑𝑦ఓ𝑑𝑦ఔ.
Covariant derivatives can also be pulled back to hypersurfaces. We distinguish the di-
mensionality of a covariant derivative by its Latin or Greek indices. For example:

∇ఔ𝐴ఓ = 𝜙∗(∇௕𝐴௔)ఓఔ =
𝜕𝑥௔
𝜕𝑦ఓ

𝜕𝑥௕
𝜕𝑦ఔ𝐴௔;௕.

We can associate hypersurfaces with normal vectors as follows: If 𝑔௜௝ is a Lorentzian
metric and 𝑛௜ is a timelike vector, then 𝑔௔௕𝑛௔𝑛௕ < 0. Tangent vectors orthogonal to 𝑛௜
are spacelike and deĕne an induced metric that is positive deĕnite, which we therefore
call a spacelike hypersurface. If𝑛௜ is spacelike, then ℎఓఔ is a Lorentzianmetric, and deĕnes
a timelike hypersurface.
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For spacelike and timelike hypersurfaces the induced metric is

ℎఓఔ𝑒ఓ௜ 𝑒ఔ௝ = 𝑔௜௝ − 𝑛௜𝑛௝ , (2.8)

where the normal is unique up to sign and may be locally written as

𝑛௜ = ±𝛼d𝑓,

for timelike and spacelike hypersurfaces, respectively. A directed area element on space-
like or timelike hypersurfaces is

𝑑Σ௜ = 𝑛௜𝑑𝐴 = 𝑛௜√ℎ𝑑ଷ𝑦.

For null vectors we deĕne normals as

𝑛௜ = 𝛼d𝑓. (2.9)

If 𝑛௜ is null, then the induced metric is degenerate and deĕnes a null hypersurface.
Since null vectors are orthogonal to themselves, 𝑔௔௕𝑛௔𝑛௕ = 0, they are also tangential
to null hypersurfaces. ese tangents are known as null generators of the horizon, and
are geodesics, as

𝐷𝑛௜
𝑑𝜆 = 𝑛௔∇௔𝑛௜ = 𝜅𝑛௜ .

Here the scalar ĕeld 𝛼 has been introduced speciĕcally so that 𝜆 will not always be affine,
which lets us normalize the surface gravity 𝜅. If 𝛼 is constant then the differential form
𝑛௜ is closed, as 𝑑𝑑𝑓 = 0. As long as we can foliate the null hypersurface (see 3.2.3), for
instance using the constraint 𝑓(𝑥௜) = 𝑢 to specify a family of null surfaces, then 𝜆 can
always be chosen as affine and 𝜅 = 0.

In the null case, an induced metric of the form used for timelike and spacelike hyper-
surfaces is not orthogonal to normal vectors, since ℎ௜௝𝑛௜ = 𝑛௝. To compensate for this
we introduce a second, auxiliary, null vector which we deĕne to have a timelike inner
product with respect to 𝑛௜, as

𝑘௔𝑛௔ = 𝛼 < 0. (2.10)

en, to isolate tangential components we have an induced transverse metric

ℎ஺஻𝑒஺௜ 𝑒஻௝ = 𝑔௜௝ + 𝑘௜𝑛௝ + 𝑛௜𝑘௝ . (2.11)

Note that the trace of this induced metric is ℎ஺஺ = 2. To avoid introducing additional
notation, when the induced metric is degenerate we deĕne the determinant of the spatial
submanifold as ℎ ≡ det ℎ஺஻. Null hypersurfaces are of codimension 2, as seen by the
trace, and are spanned by two null and two spatial vectors. ey have topology ℝ × 𝑆ଶ.
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e inner product of the null vectors is directed in the timelike direction, which lies
on the light cone of the spatial 2-surface. Using 𝑘 and 𝑛 we can construct a psuedo-
orthonormal basis {𝑒ଵ = 𝑘(𝜆), 𝑒ଶ = 𝑛(𝜆), 𝑒ଷ = 𝜃, 𝑒ସ = 𝜙}, which is the minimum
amount of structure necessary. We can parallel transport this basis along 𝑛௜ to cover
the null surface. en, since normal vectors are geodesics on the null surface, we can
parameterize it using coordinates 𝑦ఓ = (𝜆, 𝜃, 𝜙), so that an area element is

𝑑Σ௜ = −𝑛௜√ℎ𝑑𝜆 ∧ 𝑑𝑦ଶ ∧ 𝑑𝑦ଷ.

e spatial part of the null surface is the 2-sphere, as the original metric breaks apart
into null vectors and the angular component 𝑟ଶ𝑑ଶΩ. By the uniformization theorem of
differential geometry, all simply connected Riemannian surfaces are conformally equiv-
alent to either the unit disk (hyperbolic: constant negative curvature), the complex plane
(parabolic: zero curvature), or the Riemann sphere (elliptic: constant positive curvature).
e 2-sphere has constant positive curvature and is conformally equivalent to the Rie-
mann sphere. e holographic entropy, mentioned in the introduction, is proportional
to these components of the metric. e two null vectors form a trace-free submanifold,
which is therefore conformally invariant.

We can also isolate particular transverse components using a projection operator onto
a subspace of the null hypersurface. For instance

Πఓ
ఔ𝑒௜ఓ𝑒ఔ௝ = 𝑔௜௝ + 𝑘௜𝑛௝ . (2.12)

is is parallel to𝑛௝ and 𝑘௜, but orthogonal to𝑛௜ and 𝑘௝. In terms of the transversemetric

Πఓఔ𝑒ఓ௜ 𝑒ఔ௝ = ℎ௜௝ − 𝑛௜𝑘௝ (2.13)

If we apply this projector to a 1-form, for instance the contracted Ricci tensor 𝑅௔௝𝑛௔,
we get two terms, one along the null normal and another proportional to the spatial 2-
surface.

𝑅௔௕𝑛௔Π௕
ఓ = −𝑅௔௕𝑛௔𝑛௕𝑘ఓ + 𝑅௔௕𝑛௔ℎ௕ఓ (2.14)

e ĕrst term on the right hand side contains the null Raychaudhuri equation, and the
second term the Damour-Navier-Stokes equation, but to interpret them we need more
tools. e analogous situation also occurs in the non-null cases.

2.5 Lie Derivatives and Flow

Lie derivatives generalize directional derivatives of vector spaces to manifolds, and rep-
resent the derivative of a vector or tensor space along another vector space. Since Lie
derivatives do not depend on the metric, they are more primitive than the covariant
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derivatives. Killing vectors, the extrinsic curvature, and a host of other useful operations
rely on Lie derivatives. Since the tangent space 𝑇௣𝑀 of each point on a manifold has a
unique vector space associated with it, in order to compare vectors at different points we
need a method of moving both expressions to the same tangent space. is is done by
pulling back one of the tangent spaces along the Ęow of the integral curves of a vector
ĕeld; differentiation then proceeds normally.

Consider vector ĕelds 𝑋 and 𝑌, and a Ęow 𝜙∗ generating integral curves to 𝑌. e
Lie derivative of a vector ĕeld 𝑋 along 𝑌 is

ℒ௒𝑋 = lim
ఒ→଴

𝜙∗
ఒ𝑋௜(𝜙ఒ(𝑥)) − 𝑋௜(𝑥)

𝜆 . (2.15)

e ĕrst term is the pullback of 𝑋 along the Ęow of 𝑌. Fortunately for computational
purposes, we can express Lie derivatives (as their name indicates) of smooth vector ĕelds
using Lie brackets. e Lie derivative of 𝑋 along 𝑌 is equivalently written as

ℒ௒𝑋 = [𝑌, 𝑋]. (2.16)

All of these deĕnitions are directly generalized to tensor ĕelds. Promoting 𝑋 to a tensor
ĕeld 𝑋௜…

௝…

ℒ௒𝑋௜…
௝… ≡

𝐷𝑋௜…
௝…

𝑑𝑡 = 𝑌௔𝜕௔𝑋௜…
௝… + 𝑋௜…

௔…𝜕௝𝑌௔ − 𝑋௔…
௝…𝜕௜𝑌௔ +… (2.17)

Applying this to the metric is quite useful:

ℒ௒𝑔௜௝ = 𝑌௔𝜕௔𝑔௜௝ + ∇௜𝑌௝ + ∇௝𝑌௜ . (2.18)

Time independent metrics admit

ℒ௒𝑔௜௝ = [∇௜𝑌௝ , ∇௝𝑌௜]. (2.19)

is vanishes when the metric is independent of one of its coordinates along the integral
curves of 𝑌. In this case 𝑌 is a Killing vector, and has the conserved quantity 𝐾௔𝑌௔
associated with it.

When one phrases their equations using differential forms there is also an important
relation between Lie derivatives and differential forms called Cartan's identity:

ℒ௑(𝑌௝) = 𝑋௔𝑑𝑌௔௝ + 𝑑(𝑋௔𝑌௔)௝ .

2.6 Extrinsic Curvature and Tensor Deformation

e main geometric object we will be concerned with, in addition to the induced metric,
is the covariant derivative of a normal vector to a hypersurface ∇௝𝑛௜. e shape opera-
tor, called the Weingarten map by Damour, is a directional derivative, projected along a
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tangent.
𝜒(𝑢)௜ఓ = 𝑒௔ఓ∇௔𝑛௜ (2.20)

When the normal is null, the shape operator gives the deviation of the geodesic parameter
from being affine. In this case it is equivalent to the geodesic equation

𝜒(𝑛)௜ఈ = 𝑛ఈ∇ఈ𝑛௜ = 𝜅𝑛௜ .
We can symmetrize the shape operator with respect to the induced metric by project-
ing along a second tangent vector 𝑒௝ఔ. Since 𝑒௜ఓ𝑒௝ఔ = 𝜙∗ we have just used the pullback
operation again. is is called the extrinsic curvature or second fundamental form.

𝐾ఓఔ = 𝑔(𝑛, 𝜒(𝑒௔ఓ)) = ∇௕𝑛௔𝑒௔ఓ𝑒௕ఔ =
1
2ℒ௡ℎఓఔ (2.21)

Extrinsic curvature is the covariant derivative of a normal vector to the brane, projected
to the horizon. is is equivalent to the Lie derivative of the intrinsicmetric in the normal
direction. e total curvature is

𝐾 = 𝐾ఓఔℎఓఔ .

A general technique used in this thesis is expressing the deformation of the extrinsic
curvature in terms of Lie derivatives. Splitting 2.21 into symmetric and antisymmetric
components,

𝐾ఓఔ = 𝐾(ఓఔ) + 𝐾[ఓఔ].
We then deĕne the expansion tensor and torsion tensor of the 2-surface as

Θఓఔ =
1
2ℒ௡ℎ(ఓఔ) (2.22)

and
𝜔ఓఔ =

1
2ℒ௡ℎ[ఓఔ]. (2.23)

e expansion tensor is further split into trace and trace free components, the expansion
scalar and shear tensor, respectively.

𝜃 = ℎఓఔΘఓఔ , (2.24)

and
𝜎ఓఔ = Θఓఔ −

1
2ℎఓఔ𝜃. (2.25)

e expansion tensor above is along the 𝑛 direction. We can also include a transverse
expansion tensor and scalar along the auxiliary null vector 𝑘, which is not proportional
to the extrinsic curvature. ese are

Ξఓఔ =
1
2ℒ௞ℎ(ఓఔ)

𝜃(௞) = ℎఓఔΞఓఔ .
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2.7 Gauss, Codazzi and Ricci Equations

e Gauss, Codazzi, and Ricci (or tidal) equations relate the Riemann tensor to the ex-
trinsic curvature of a hypersurface. For timelike and spacelike hypersurfaces they take
the form

𝑅௔
௕௖ௗℎఓ௔ℎ௕ఔℎ௖ఘℎௗఙ = 𝑅ఓ

ఔఘఙ + 𝐾ఓ
ఘ𝐾ఔఙ − 𝐾ఓ

ఙ𝐾ఔఘ
𝑅௔
௕௖ௗℎఓ௔ℎ௕ఔℎ௖ఘ𝑛ௗ = ∇ఔ𝐾ఓ

ఘ − ∇ఓ𝐾ఔఘ
𝑅௔
௕௖ௗℎఓ௔𝑛௕ℎ௖ఔ𝑛ௗ = ℒ௡𝐾ఓఔ + 𝐾ఓ௔𝐾௔

ఔ (2.26)

By contracting theGauss equation on the ĕrst and third indices of theRiemann tensor
(and then renaming indices), we can write the Ricci tensor on a hypersurface as

ℎ௔ఓℎ௕ఔ𝑅௔௕ + ℎఓ௔𝑛௕ℎ௖ఔ𝑛ௗ𝑅௔
௕௖ௗ = 𝑅ఓఔ + 𝐾𝐾ఓఔ − 𝐾ఓ௔𝐾௔

ఔ .

Note that this actually also contains theRicci equation, governing evolutionnormal to the
surface. Whether the Ricci tensor operates in the bulk or on the boundary is determined
by its indices; 𝑅௕ௗ = 𝑔௖௔𝑅௔

௕௖ௗ and 𝑅ఓఔ = ℎఘఓ𝑅ఓ
ఔఘఙ. e contracted Codazzi equation is

ℎ௔ఓ𝑛௕𝑅௔௕ = ∇ఓ𝐾 − ∇௔𝐾ఓ௔.

e trace of the contracted Gauss equation is interesting for historical reasons. It gives
a relation between the Ricci scalar on a hypersurface and the extrinsic curvature of that
surface; this is a generalization of Gauss's theorema egregium.

𝑅 + 2𝑅௔௕𝑛௔𝑛௕ = ଷ𝑅 + 𝐾ଶ − 𝐾ఓఔ𝐾ఓఔ.

Here ଷ𝑅 = ℎఓఔ𝑅ఓఔ.

In the null case, several of the terms in the Gauss and Codazzi equations coincide,
and we are le with the so-called Gauss-Codazzi equation. e null Ricci equation also
becomes partially degenerate; tidal forces are represented in terms of both the Gauss and
Codazzi equations, and the Ricci scalar projected onto the 2-surface.

ese relations appear in much the same way in both the null and non-null cases;
here I outline the null case. Beginning with equation 2.6 and contracting indices,

𝑅ఓ௖𝑛ఓ = ∇ఓ∇௖𝑛ఓ − ∇௖∇ఓ𝑛ఓ
= ∇ఓ𝐾ఓ

௖ − ∇௖𝐾.

e remaining index can be contracted along either a null direction or a spatial direction
on the 2-surface. ese two options are collectively called the Gauss-Codazzi equations.
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If we again apply the null projector 2.13, the contracted Gauss-Codazzi equations can be
combined as

𝑅ఓఔ𝑛ఓΠఔ
ఘ = (∇ఓ𝐾ఓ

ఔ − ∇ఔ𝐾)𝑛ఔ𝑘ఘ + (∇ఓ𝐾ఓ
ఔ − ∇ఔ𝐾)ℎఔఘ. (2.27)

We will reinterpret the Gauss-Codazzi equations as evolution equations in Rindler
space, using 2.6, starting in sections 3.2 and 4.7.

Although not considered in the classical approach to the membrane paradigm by
Damour or orne et al, the above equations are easily adapted to include the full Ein-
stein tensor with a nonzero cosmological constant. is was likely neglected because
historically, their primary interest was astrophysical black holes, and the cosmological
constant had yet not been measured as positive. In the general case, the Ricci scalar and
cosmological constant contribute to the timelike Gauss and tidal equations, and the null
𝑅ఈఉΠఈ

ఓΠఉ
ఔ projection.

2.8 Israel Junction Condition

e Israel junction condition, applying to both null and non-null hypersurfaces, is a reg-
ularity condition for the existence of smooth Lorentzian manifolds, i.e. no discontin-
uous changes in the metric. is relates the induced metric and extrinsic curvature to
changes in the stress-energy tensor across a hypersurface. For our purposes it is interest-
ing because it contains essentially the same information content as the Gauss-Codazzi
equations, and provides another perspective on their physical interpretation.

Consider the non-gravitational case of electric and magnetic ĕelds across a surface.
e discontinuous components of the 𝐸 and 𝐵 ĕelds can be used to restate Maxwell's
equations. Using the notation

[𝐴] ≡ 𝐴ା − 𝐴ି (2.28)

to represent changes in 𝐴 across a hypersurface, we have

[𝐸௡] = 0, [𝐵ୄ] = 0
[𝐸ୄ] = 4𝜋𝜎𝑛௜ , [𝐵௡] = 4𝜋𝜖௜௝௞𝐽௝𝑛௞ , (2.29)

consistent with charge conservation and 𝜕௔𝐹௜௔ = 4𝜋𝐽௔.
In order to follow the same procedure for gravity we must require that there are no

discontinuous changes in the induced metric or extrinsic curvature across a hypersur-
face,

[ℎఓఔ] = [𝐾ఓఔ] = 0. (2.30)

14



We can, however, violate the junction condition on the extrinsic curvature. When this
happens we compensate by adding a stress-energy tensor tangential to the hypersurface.
Recall that theCodazzi equation 2.27 relates such a tangential Ricci tensor to the extrinsic
curvature. us a discontinuous extrinsic curvature implies a local stress-energy tensor
of the form

8𝜋𝑆ఓఔ = [𝐾ఓఔ] − [𝐾]ℎఓఔ . (2.31)

From here, we can then expand the right-hand side to obtain evolution equations
along the horizon, again consistent with the priorGauss-Codazzi approach, but explicitly
in terms of a thin, discontinuous distribution of matter or energy on the hypersurface.

2.9 e Schwarzschild metric in Kruskal-Szekeres Coordinates

e classic Schwarzschild metric describes the gravitational ĕeld outside a spherically
symmetric star, planet, or black hole, and in four dimensions is

𝑑𝑠ଶ = −𝑓(𝑟)𝑑𝑡ଶ + 𝑑𝑟ଶ
𝑓(𝑟) + 𝑟ଶ𝑑Ωଶ, (2.32)

where 𝑓(𝑟) and the solid angle is Ω are given by

𝑓(𝑟) = 1 − 𝑏
𝑟 , with 𝑏 ≡ 2𝐺𝑀/𝑐ଶ,

𝑑Ωଶ = 𝑑𝜃ଶ + 𝑠𝑖𝑛ଶ𝜃𝑑𝜙ଶ

My reason for not setting 𝑏 ≡ 1 or 𝐺 ≡ 1 is because the dependence (or one can equiv-
alently say deĕnition) of the gravitational constant on ℏ and 𝑐 is interesting to see, and
because the black hole entropy is related to its mass. is solution describes empty space;
it is assumed in the derivation that mass lies within a radial ball centered at the origin,
and provided this ball is small enough all of space is covered except for a single point.
e event horizon lies at radius 𝑟 = 𝑏, and a physical singularity at 𝑟 = 0 is caused by
the Riemann curvature tensor diverging. Here bundles of locally orthonormal frames
cease to exist, the equivalence principle therefore becomes invalid, and timelike and null
curves cannot be extended to this point using an exponential map. e horizon acts as
a ''perfect unidirectional membrane''[70] preventing outĘow of matter and energy, since
here the escape velocity is the speed of light.

To remove the coordinate singularity at the horizon we can reparametrize our coor-
dinate system in terms of null geodeiscs. Null vectors are given by

𝑔௜௝𝑛௜𝑛௝ = 0 = −𝑓(𝑟) ቆ𝜕𝑡𝜕𝜆ቇ
ଶ

+ 𝑓(𝑟)ିଵ ቆ𝜕𝑟𝜕𝜆ቇ
ଶ

.
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Rearranging shows that geodesics satisfy

𝑡 = ±න 𝑑𝑟
𝑓(𝑟) + 𝐶.

We introduce the tortoise coordinate

𝑟∗ = න 𝑑𝑟
𝑓(𝑟) = 𝑟 + 𝑏 ln(𝑟 − 𝑏), (2.33)

and then null coordinates

𝑢∗ = 𝑡 − 𝑟∗
𝑣∗ = 𝑡 + 𝑟∗.

e Schwarzschild metric becomes

𝑑𝑠ଶ = −𝑓(𝑟)𝑑𝑢∗𝑑𝑣∗ + 𝑟ଶ𝑑Ωଶ.

By observation, the𝑢∗ and𝑣∗ are null and form a conformally Ęat subspace (Tr = 0) with
an associated 2-sphere at every point. Kruskal-Szekeres coordinates use the simplifying
choice 𝑈 = −𝑒ି௨∗/ଶ௕ and 𝑉 = 𝑒௩∗/ଶ௕. Making a change of coordinates, the ĕnal form of
the Schwarzschild metric is

𝑑𝑠ଶ = −4𝑏
ଶ

𝑟 𝑒ି௥/௕𝑑𝑈𝑑𝑉 + 𝑟ଶ𝑑Ωଶ. (2.34)

is last change removes the coordinate singularity at the horizon, so we are free to spec-
ify energy Ęux or observer motion. e event horizon corresponds to the null surface
(𝑈 = 0, 𝑉 > 0), and the timelike stretched horizon to a hyperbola at ĕxed radius with
(𝑈 < 0, 𝑉 > 0). e singularity, which we will avoid, is at 𝑈𝑉 = 1. Kruskal-Szekeres
coordinates cover a larger space than the original Schwarzschild metric; this is the ''ana-
lytically extended'' Schwarzschild solution. e physical Schwarzschild geometry, caused
by a collapsing shell of matter, is composed of a combination of the rightmost wedge and
Minkowski space, but in this thesis I will consider the more general space above. Setting
(𝑈 < 0, 𝑉 = 0) gives us another null surface called the ''past event horizon''. Comparing
these regions to their limits in Rindler space is key in connecting the differing approaches
to the membrane paradigm together.

2.10 Rindler Space

Rindler space is the namegiven to the space seen by an accelerated observer inMinkowski
space, and is equivalent to the near-horizon or inĕnite-mass limit of a Schwarzschild
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black hole. To see this, consider the near-horizon expansion of Schwarzschild space.
From

𝑑𝑠ଶ = −𝑓(𝑟)𝑑𝑡ଶ + 𝑑𝑟
𝑓(𝑟) + 𝑟ଶ𝑑Ωଶ

deĕne the proper distance from the horizon

𝜌 = න
௥

௕
ඥ𝑔௥௥(𝑟ᇱ)𝑑𝑟ᇱ, (2.35)

which gives
𝑑𝑠ଶ = −𝜌ଶ𝑑𝜏ଶ + 𝑑𝜌ଶ + 𝑟ଶ𝑑Ωଶ

where the time has been rescaled to 𝜏 ≡ ௧
ଶ௕ . e 𝜏 and 𝜌 coordinates correspond to

constant time slices and radial distance from the origin, respectively. Comparing this
metric with Minkowski space via

𝑇 = 𝜌 sinh 𝜏
𝑋 = 𝜌 cosh 𝜏 (2.36)

an observer at constant 𝜌 lies on a timelike hyperbolic surface 𝑋ଶ(𝜏) = 𝑇ଶ(𝜏) + 1/𝜌ଶ
and has constant acceleration |𝑎| = 𝜌ିଵ.

To better facilitate comparison with Kruskal-Szekeres coordinates, introducing near-
horizon retarded and advanced null coordinates

𝑢 = 𝑇 − 𝑋 = −𝜌𝑒ିఛ
𝑣 = 𝑇 + 𝑋 = 𝜌𝑒ఛ (2.37)

the Rindler metric is
𝑑𝑠ଶ = −𝑑𝑢𝑑𝑣 + 1

4(𝑣 − 𝑢)ଶ𝑑Ωଶ, (2.38)

with 𝑟 = ଵ
ଶ(𝑣 − 𝑢) = 𝜌 cosh(𝜏). e surfaces of constant 𝑢 or 𝑣 are null geodesics, and

have a similar horizon structure to the analytically extended Schwarzschild space. e
coordinate 𝑣 is also called an ''outgoing null coordinate'' because an observer traveling
slower than 𝑐 cannot cross back over the past horizon (𝑢 < 0, 𝑣 = 0). Since the null
generators of the horizons in Rindler space are Killing vectors, the horizon can also be
called a Killing horizon. Rindler space has a bifuricate Killing horizon; the region where
the two Killing horizons coincide on the spatial two-surface at 𝑢 = 𝑣 = 0, with horizons
generated by the boost Killing ĕeld −𝑢𝜕௨ + 𝑣𝜕௩.

We can also make an analytic continuation to Euclidean space, where, dropping the
angular coordinate,

𝑑𝑠ாଶ = 𝜌ଶ𝑑𝜏ாଶ + 𝑑𝜌ଶ
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In order for this to be regular we must specify the period

𝜏ா = 𝜏ா + 2𝜋.

In quantum ĕeld theory one normally deĕnes the temperature of a Euclidean path inte-
gral as

𝜏ா = 𝜏ா + 𝛽, with

𝛽 ≡ 1
𝑘஻𝑇

.

is is equivalent to computing the trace Tr(𝑒ିఉு) for a system with a Hamiltonian 𝐻
associated with the time translation. is implies the temperature of Rindler space is
inversely proportional to proper distance from the horizon

𝑇Unruh =
𝑓ᇱ(𝑏)
4𝜋 = ℏ𝑎

2𝜋 . (2.39)

2.11 Brown-York Stress-Energy Tensor

An important construct in later sections is the Brown-York stress tensor on a hypersur-
face, which is used in deriving the Navier-Stokes equations from a derivative expansion
around equilibrium solutions to Einstein's equations. is is constructed in analogy with
the Hamilton-Jacobi equation; it gives the stress-energy tensor the same geometric de-
pendence on the extrinsic curvature as the Gauss-Codazzi equations and Israel junction
condition give the Ricci tensor. For a nonrelativistic system the action may be written in
canonical form as

𝑆 = න
ఒభ

ఒబ
𝑑𝜆[𝑝𝑑𝑥𝑑𝜆 −

𝑑𝑡
𝑑𝜆ℋ(𝑥, 𝑝, 𝑡)]. (2.40)

e Hamilton-Jacobi equations for the energy and momentum at some 𝜆, given appro-
priate ĕxed boundary conditions, are

𝐻 = −𝜕𝑆𝜕𝑡 , (2.41)

and
𝑝 = 𝜕𝑆

𝜕𝑥 . (2.42)

We will be interested in the energy. If the variation 𝛿𝑡 is instead promoted to a vari-
ation of the codimension-1 metric 𝛿ℎ௜௝, then varying the Hamilton-Jacobi action with
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respect to a variation in the metric leads, aer normalizing by the tensor density √−ℎ,
to a generalized surface stress-energy tensor.

𝑇௜௝ ≡ 2
√−ℎ

𝛿𝑆
𝛿ℎ௜௝ = 2(ℎ௜௝𝐾 − 𝐾௜௝). (2.43)
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3 Past Null Horizons

3.1 Holography

A key insight of black hole thermodynamics is that the entropy, and therefore infor-
mation, of a black hole is proportional to its horizon area. Black holes are the densest
possible objects in a given volume and are therefore ''maximum entropy'' objects. To
demonstrate this in a gedanken experiment, consider increasing the entropy of a region
by adding mass; eventually this will create a black hole, with an entropy proportional to
its area. If yet more mass is added, the black hole grows, and its entropy continues to de-
pend on its horizon, satisfying the bound. 2 e holographic principle [2] [3] postulates
that the maximum entropy of a region of space is always proportional to the surface area
of its boundary.

is is essentially one line:

𝑆 = 𝐴
4𝐺ℏ. (3.1)

e importance of this equation is difficult to overstate. It offers a unifying principle that
restricts the degrees of freedom in theories of quantum gravity, and offers a new perspec-
tive on Planck scale physics. It is also, interestingly, relevant in quantum information and
condensedmatter systems where the entanglement entropy of quantum ĕelds and tensor
networks in quantum information satisfy similar area laws [71] [72] [73]. Other, more
common, examples of the holographic principle include black hole thermodynamics, the
membrane paradigm, string theory [74] and the AdS/CFT correspondence [75], among
others.

3.2 Raychaudhuri Equation

eRaychaudhuri-Landau equation categorizes the evolution of systems of non-intersecting
geodesics, called geodesic congruences. is allows us to see the evolution of a family of
geodesic curves due to their expansion, shear, rotation, and the effect of the stress-energy
tensor. It also occurs as a fundamental lemma in the Penrose-Hawking singularity the-
orems [23], where, through formalizing the idea of a surfaces parameterized by geodesic
congruences, it governs the evolution and collapse of integral curves of geodesics into
''closed trapped surfaces''. e Raychaudhuri equation is intimately related to surface

2If the black hole emits Hawking radiation and evaporates, then as its area decreases the total entropy
of the Hawking radiation plus the black hole will continue to grow. is is because Hawking radiation is a
semiclassical effect and can violate the weak energy condition, which is a constraint on the stress-energy
tensor in general relativity and a requirement for the area law.
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Figure 3.1: An idealized representation of a black hole with horizon described by bits of
information. Credit: J.D. Bekenstein, Information in the Holographic Universe. [35]

behavior in the membrane paradigm and Ęuid/gravity correspondence. As will be seen,
by starting on a past null horizon and considering evolution of a thermodynamic energy
Ęux 𝑑𝑄 which is governed by the Raychaudhuri equation, the Einstein equations may
be derived in full generality. Alternatively, the Einstein equations projected from bulk
space onto a future null horizon yield the Raychaudhuri equation. us, it is a funda-
mentally important process and tool. An inherent feature of the Raychaudhuri equation
is also that it admits a thermal interpretation, with its expansion and shear governing the
''geometric'' dissipation of geodesics.

e Raychaudhuri equation takes subtly different forms for null and non-null (time-
like and spacelike) geodesics. is is because null geodesics are associated with a spatial
2-surface, while timelike and spacelike geodesics have a natural 3+1 description.

Figure 3.2: Credit: E. Poisson, A Relativist's Toolkit: e Mathematics of Black-Hole
Mechanics, p. 36. [29]
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3.2.1 Jacobi Deviation Equation

Consider a collection of non-intersecting timelike geodesics 𝛾(𝜆, 𝑛). Varying 𝜆 moves a
point initially on a geodesic along it, while varying𝑛 selects between geodesics bymoving
along integral curves to a particular geodesic's tangent vector 𝑢௜ = 𝜕𝑥௜/𝜕𝜆. We denote
the deviation vector between geodesics as 𝜉௜(𝑛). For simplicity the tangent vector, and
therefore the geodesics, are taken as timelike. e tangent is orthogonal to the deviation
vector at every point along 𝛾, so that the Ęow of 𝑢 along 𝜉 is zero. In equations, these
conditions are

𝑢௔𝑢௔ = −1 , 𝑢௔𝑢௜;௔ = 0
𝑢௔𝜉௔ = 0 , ℒక𝑢௝ = [𝜉௜ , 𝑢௝] = 0. (3.2)

We can also express the ĕnal condition as

𝑢௔∇௔𝜉௜ = 𝜉௔∇௔𝑢௜ . (3.3)

Before deriving the Raychaudhuri equation, consider how the deviation vector evolves.
Writing 3.3 as a directional derivative

𝐷𝜉௜
𝜕𝑛 = 𝜉௔∇௔𝑢௜ . (3.4)

By requiring that 𝑢௜ and 𝜉௜ be orthogonal we have implicitly restricted to a projection
ℎ௜௔𝜉௔ of the full tangent space. Differentiating again, the relative acceleration between
geodesics is

𝐷ଶ𝜉௞
𝜕𝑛ଶ = ∇௟∇௞(𝑢௝)𝜉௞𝑢௟ + ∇௞(𝑢௟)∇௟(𝑢௞)𝑢௔𝜉௔𝑢௟

+ ∇௞(𝑢௝)𝑢௞∇௟(𝑢௔)𝜉௔𝑢௟ + ∇௞(𝑢௝)∇௟(𝜉௞)𝑢௟ .
Exchanging the order of the covariant derivatives brings out the Riemann tensor, and
enforcing the geodesic equation yields

𝐷ଶ𝜉௜
𝜕𝑛ଶ = −𝑅௜

௝௞௟𝜉௞𝑢௝𝑢௟ . (3.5)

is says that inĕnitesimally separated geodesics, as measured in the tangent space or-
thogonal to 𝑢௜, will accelerate. e deviation equation is a generalization of the accel-
eration of a particle in a Newtonian potential. Two tangent vectors separated by 𝜉 will
have a relative acceleration proportional to 𝑅௜

௝௞௟𝑢௝𝑢௟, while in a Newtonian potential Θ
the relative acceleration of particles separated by 𝜉 is proportional to ∇ఓ∇ఔΘ. is is a
tidal force, depending on the shear.

In general the deformation of a family of geodesics can be described through its ex-
pansion, torsion, and shear, as described in 2.6, of which the tidal force is an example.
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3.2.2 Expansion and Area

e inĕnitesimal change in area of a congruence only depends on its expansion parame-
ter, since this is the only termwith a nonzero trace. By using local Ęatness we can express
3.3 in matrix form, following Hawking and Ellis [25], as

𝜉௜ = 𝐴௜௕𝑥௕,
𝜕𝐴௜௝
𝜕𝑛 = 𝐴௔௝∇௔𝑢௜ .

e derivatives with respect to a parameter 𝑛 can equivalently be written as Lie deriva-
tives along the normal vector 𝑛, in which case the expansion and torsion tensors take the
same form as in section 2.6. In any case, separating the above equation into expansion
and torsion tensors gives the alternate form,

Θ௜௝ = 𝐴ିଵ
௔(௝

𝜕
𝜕𝑛𝐴௜)௔ (3.6)

𝜔௜௝ = −𝐴ିଵ
௔[௝

𝜕
𝜕𝑛𝐴௜]௔ (3.7)

with an expansion scalar

𝜃 = (det 𝐴)ିଵ 𝜕𝜕𝑛 det 𝐴, (3.8)

and the usual expression for the shear,

𝜎௜௝ = Θ௜௝ −
1
2𝐴௜௝𝜃. (3.9)

We can use ℎ௜௝ to pull back 3.8 to a timelike or null surface, in which case we have

𝜃 = 1
√ℎ

𝜕√ℎ
𝜕𝑛 . (3.10)

is prescription also immediately implies the analogous behavior for shear and torsion.
For null surfaces the induced metric spans a subspace with two spatial dimensions and
two associated null vectors, while timelike hypersurfaces span three spatial dimensions.

3.2.3 Frobenius's eorem

Since the deviation vector and expansion tensor are projected orthogonal to the geodesic
tangents 𝑢௜, and the direction of these tangents can change over a family of geodesics, it
is helpful to formalize surfaces for these quantities to act in. One way of doing this is to
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construct Fermi normal coordinates, which are locally equivalent to parallel transporting
gyroscopes. Another is Frobenius's theorem, which relies on integrability to generalize
the idea of integral curves. is allows us to construct hypersurfaces that are orthogonal
to every geodesic in a congruence.

While any one-dimensional system, for example a curvewith tangent𝑢௜ = 𝜕𝑥௜(𝑡)/𝜕𝑡,
is integrable and has an associated set of integral curves 𝑥௜(𝑡), this is not true in general
in higher dimensions. e property we would like to have is the existence of integral
manifolds. Let 𝐷 be a subspace of the tangent space 𝑇௣𝑀 of a point 𝑝 on a manifold 𝑀,
spanned by a smooth basis in the neighborhood of 𝑝. If the tangent space 𝑇௣𝑁 of a sub-
manifold𝑁 ⊆ 𝑀 is equal to𝐷 then𝑁 is an integralmanifold𝐷, and𝐷 is integrable. In the
one-dimensional case 𝐷 is spanned by 𝑢௜, and we have an integral manifold 𝑁 = 𝑥௜(𝑡).

A 𝐷 of two or more dimensions, spanned by smooth vector spaces (𝑉ଵ, ..., 𝑉௞), may
fail to be integrable. As an example, consider 𝐷 spanned by 𝑋 = 𝜕/𝜕𝑥 + 𝑦𝜕/𝜕𝑧 and
𝑌 = 𝜕/𝜕𝑦. At 𝑦 = 0 the tangent plane is (𝑥, 𝑦, 0), so if we integrate 𝐷 here then 𝑁
will produce this as its tangent space, which will not correspond to 𝐷 for any 𝑦 ≠ 0.
Geometrically, the tangent plane of 𝑋 and 𝑌 has a normal in the−𝜕/𝜕𝑧 direction at 𝑦 =
0, but here the second derivatives depend on order of composition. is happens because
the (𝑉ଵ, ..., 𝑉௞) do not form a Lie group under the action of [𝑉௜ , 𝑉௝] ∈ 𝐷. Although 𝐷
is spanned by (𝑉ଵ, ..., 𝑉௞) the bracket [𝑉௜ , 𝑉௝] is not, indicating they can lead to points
outside the tangent space 𝐷. us, integrating 𝐷 to get a submanifold 𝑁 may not result
in 𝑇𝑁 = 𝐷.

e necessary and sufficient condition for 𝐷 to be integrable is that 𝐷 be involute,
meaning [𝑉௜ , 𝑉௝] ∈ 𝐷. Frobenius's theorem states:

A subspace 𝐷 of the tangent space of𝑀 is involute if and only if it is integrable.

e proof of this essentially boils down to the fact that if a local frame for 𝐷 is in-
tegrable then it can be mapped to a locally Ęat coordinate system, where a smooth lo-
cal frame (𝜕/𝜕𝑥ଵ, ..., 𝜕/𝜕𝑥௞) will then commute and vectors constructed from it satisfy
[𝑋௜ , 𝑋௝] ∈ 𝐷. 3 Reversing this logic is also possible. A projection operator 𝑃 ∶ ℝ௡ → ℝ௞

from coordinates 𝑃(𝑥ଵ, ..., 𝑥௡) = (𝑥ଵ, ..., 𝑥௞) has an associated projection operator from
the tangent space of𝑀 to 𝐷

𝑑𝑃 ቆ𝑣௜ 𝜕
𝜕𝑥௜(𝑝)ቇ = 𝑣௝ 𝜕

𝜕𝑥௝(𝑃(𝑝)) , (3.11)

3In physics terminology, as long as the equivalence principle is valid we will have integrability. We will
see later that the equivalence principle is related to the existence of local thermal equilibrium; therefore
local thermal equilibrium is needed for integrability. Further, in singularity formation in general relativity
a smooth basis ceases to exist; therefore neither the equivalence principle or integrability hold at these
points.
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where 𝑖 runs over [1, ..., 𝑛] and 𝑗 = [1, ..., 𝑘]. Using this we can construct a new local
frame in terms of the 𝑥௜, at a point 𝑞 in a neighborhood 𝑈 ∈ 𝑀 of 𝑝 as

𝑉௜(𝑞) = 𝑑𝑃ିଵ ቆ 𝜕
𝜕𝑥௜(𝑃(𝑞))ቇ . (3.12)

e involutivity of 𝜕/𝜕𝑥௜ carries over to the new basis 𝑉௜ via composition

𝑑𝑃 ൫[𝑉௜ , 𝑉௝](𝑞)൯ = ቈ 𝜕
𝜕𝑥௜ ,

𝜕
𝜕𝑥௝ ቉ (𝑃(𝑞)) = 0, (3.13)

so we can integrate 𝐷 in the new basis and obtain 𝑁
e relation between integrability and involutivity has an important ramiĕcation in

general relativity. Since the torsion vanishes in general relativity, the involutivity criterion
is satisĕed and one always has integrability. en with integrability we can construct a
series of hypersurfaces that are the k-dimensional tangent spaces of some series of 𝑁௜
submanifolds of 𝑀. is process is called foliation, and if so chosen the hypersurfaces
can be orthogonal to the normals of 𝐷.

An alternate criterion for integrability is that, for the 1-forms 𝑥௜ associated with a
subspace of the dual tangent space 𝑇∗௣𝑀, we can write the exterior derivative as

(𝑑𝑥)௜௝ = 𝛼௜ ∧ 𝛽௝ , (3.14)

with 𝛼௜ ⊂ 𝑇∗௣𝑀.

3.2.4 Timelike Raychaudhuri equation

e Raychaudhuri equation is the rate of change of the expansion parameter in 3.10. In
applying this to timelike hypersurfaces, covariant derivatives are tangent to the geodesic
𝛾, along 𝑢௜ = 𝑒௜ఓ. Differentiating the le hand side (alternatively, the right side of 3.10
can be resolved using the Lie group identity Tr(ln ℎ௜௝) = ln(det ℎ௜௝), but this is less
efficient)

𝜕ఒ𝜃 = ൣℎ௔௕𝜃௔௕൧;௖ 𝑢
௖

= ℎ௔௕ ൣ𝑢௔;௖௕ − 𝑅௔ௗ௕௖𝑢ௗ൧ 𝑢௖

= ℎ௔௕ ൣ(𝑢௔;௖𝑢௖);௕ − (𝑢௔;௖)(𝑢௖;௕) − 𝑅௔ௗ௕௖𝑢ௗ𝑢௖൧
= ℎ௔௕ ൣ−(𝑢௔;௖)(𝑢௖;௕) − 𝑅௔ௗ௕௖𝑢ௗ𝑢௖൧

= −13𝜃
ଶ − 𝜎௔௕𝜎௔௕ + 𝜔௔௕𝜔௔௕ − 𝑅ௗ௖𝑢ௗ𝑢௖ . (3.15)

25



e second line reverses the order of derivatives to get the Riemann tensor, and the third
rearranges the chain rule. Negative signs indicate that the expansion scalar and the shear
cause contraction, while torsion induces expansion. e torsion is zero due to Frobe-
nius's theorem, and it is also unphysical in general relativity, so we remove it. us

𝜕𝜃
𝜕𝜆 = −13𝜃

ଶ − 𝜎ଶ − 𝑅ௗ௖𝑢ௗ𝑢௖ . (3.16)

3.2.5 Null Raychaudhuri equation

e null Raychaudhuri equation proceeds largely similar to the timelike case, except we
must be careful about the change in induced metric. e congruence of geodesics evolve
in the direction of the orthogonal null vector 𝑛, which is also a null tangential vector and
can be written in terms of integral curves.

Proceeding as before,

𝜕ఒ𝜃 = (ℎ௔௕𝜃௔௕);௖𝑛௖

= −12𝜃
ଶ − 𝜎ଶ − 𝑅ௗ௖𝑛ௗ𝑛௖ . (3.17)

We can generalize this to a non-affine parameterization:

𝜕ఒ𝜃 = 𝜅𝜃 − 𝜃ଶ
2 − 𝜎ଶ − 𝑅ௗ௖𝑛ௗ𝑛௖ . (3.18)

Note that we can rearrange this to write the Ricci tensor in terms of the shear and
expansion. Sincewe can alsowrite the Ricci tensor by using theGauss-Codazzi equations
to project the Riemann tensor onto a hypersurface, this lets us express theGauss-Codazzi
equations in terms of their shear, expansion and torsion. is is a key point in deriving
thermal and Ęuid properties of the horizon.

As an example of the utility of the Raychaudhuri equation, consider a light ray in the
region (𝑈 < 0, 𝑉 > 0) outside a black hole. If directed away from the black hole then its
normal (and tangent) vector 𝑛௜ points in the negative 𝑈 direction and has an expansion

𝑛௜ = 𝜕௜𝑈,
𝜃 = −௎

௕ . (3.19)

e expansion is positive when the light ray is outside the black hole, but becomes neg-
ative when it crosses the event horizon.
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We can elaborate on how the Raychaudhuri equation focuses energy by constraining
the form of the matter stress-energy tensor. e weak energy condition is deĕned by the
property that for a point 𝑝 ∈ 𝑀 the stress-energy tensor at 𝑝 obeys

𝑇௔௕𝑛௔𝑛௕ ≥ 0 (3.20)

for any timelike or null vector 𝑛௜ ∈ 𝑇௣𝑀. Since the net contributions of the expansion
and shear are always negative, the weak energy condition implies that

𝜕𝜃
𝑑𝜆 < 0. (3.21)

ere is also a dominant energy condition. In this case 3.20 holds with the additional
requirement that 𝑇௔௝𝑛௔ be timelike or null. e signiĕcance of this is that any local ob-
server will see a non-negative energy density and a timelike or null energy Ęow vector.
Here the pressure is less than or equal to the energy density, 𝑇଴଴ ≥ |𝑇௜௝|. is condition
holds for all known forms of matter. However, as we will see later, when Einstein's equa-
tions are constrained to a hypersurface, they behave as a Ęuid with a negative energy
density of −1/16𝜋. In this case their acausal behavior is due to integrating a Green's
function with a ĕxed ĕnal boundary condition.

In the next section we will see how the Raychaudhuri equation combined with the
proportionality of entropy to area 𝑆 ∝ 𝐴 leads to the thermal emergence of general rela-
tivity.

3.3 Fromermodynamics to Gravity

Here we derive general relativity from the thermodynamic relation 𝛿𝑄 = 𝑇𝑑𝑆, Lorentz
invariance, the equivalence principle and the scaling of entropy with area. In this way
general relativity emerges as an equation of state. Inherent in this derivation is the idea
that we have implicitly ''coarse grained'' over the underlying degrees of freedom of quan-
tum ĕelds in Rindler space, both through assuming holography and in several approxi-
mations, in order to get the Einstein equations.

e starting point is equilibrium thermodynamics, and our goal is to express 𝑑𝑄 and
𝑇𝑑𝑆 as the necessary functions of the stress-energy tensor and Einstein tensor to recover
the ĕeld equations.

𝑑𝑄 = 𝑓(𝑇௜௝),
𝑇𝑑𝑆 = 𝑓(𝐺௜௝). (3.22)
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e basic idea can be illustrated with classical thermodynamics.

𝑑𝑄 = 𝑇𝑑𝑆
𝛿𝑄 = 𝑑𝐸 + 𝑝𝑑𝑉

𝑑𝑆 = ቆ𝜕𝑆𝜕𝐸ቇ𝑑𝐸 + ቆ𝜕𝑆𝜕𝑉ቇ𝑑𝑉

= ቆ1𝑇ቇ𝑑𝐸 + ቆ𝑝𝑇ቇ𝑑𝑉 (3.23)

So the pressure takes the form 𝑝(𝐸,𝑉) = 𝑇ቀ డௌడ௏ቁ. Given a known scaling of entropy it is
possible to obtain the equation of state to order 𝜖.

Figure 3.3: Energy Ęux across a Rindler horizon.

We will now adapt this to derive the Einstein equations. Let us begin with an accel-
erated observer on a timelike path in Rindler space, using the metric

𝑑𝑠ଶ = −𝑑𝑢𝑑𝑣 + 1
4(𝑣 − 𝑢)ଶ𝑑Ωଶ.

e past horizon at (u<0, v=0) has a tangent 𝑛௜(𝜆) that can be written in terms of an
affine parameter 𝜆 = 𝑢, which is zero at the origin and negative along the past horizon.
An area element on the past horizon is

𝑑Σ௜ = 𝑛௜𝑑𝜆𝑑𝐴. (3.24)

e observer is associated with a boost vector 𝜒ఓ = 𝑒ఓ௜ on a timelike hypersurface with
acceleration 𝜅 = 𝜌ିଵ, located ''sufficiently'' close to the past null horizon to be written in
terms of 𝜆. is involves coarse graining over a distance scale of order 𝜌.

𝜒௜ = −𝜅𝑛௜𝜆 (3.25)
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Energy Ęux across an area element on the horizon is then

𝛿𝑄 = −𝜅න
ு
𝑇௔௕𝑛௔𝑛௕𝜆𝑑𝜆𝑑𝐴. (3.26)

To consider the 𝑇𝑑𝑆 side of the equation we invoke the proportionality of entropy and
area

𝑑𝑆 = 𝜀𝛿𝐴,
where the area element from 3.10 is

𝛿𝐴 = න
ு
𝜃𝑑𝜆𝑑𝐴.

is allows us to use the null Raychaudhuri equation

𝑑𝜃
𝑑𝜆 = −𝜃

ଶ

2 − 𝜎ଶ − 𝑅௔௕𝑛௔𝑛௕.

Initial values of the shear and expansion can be taken as zero at 𝑝, implying

𝜃 = −𝜆𝑅௜௝𝑛௜𝑛௝

and therefore
𝛿𝐴 = −න

ு
𝜆𝑅௜௝𝑛௜𝑛௝𝑑𝜆𝑑𝐴.

In order to make sense of 𝛿𝑄 = 𝑇𝑑𝑆 in this context we identify the temperature as the
Unruh temperature of an accelerating observer in Minkowski space 2.39

𝑇 = ℏ𝜅
2𝜋 .

Note that this temperature is deĕned for an accelerating observer a distance 𝜌 from the
horizon, while the entropy is deĕned on the horizon. It is disturbing that both the boost
Killing vector and the Unruh temperature correspond to timelike observers; our ''coarse
graining'' to shi these to the null surface requires an inĕnite acceleration, causing both
to diverge. Clearly, we should expect additional complications at such high energies, but
we surmise that so long as both variables, one relativistic, the other from quantum ĕeld
theory, have the same dependence on distance from the horizon then this will cancel,
and coarse graining will work. If, for example, we view quantum ĕeld theory as being
an effective ĕeld theory with a short distance cutoff then we eventually require a deeper
reason why these high energy contributions are irrelevant. Using the above Unruh tem-
perature, we have

𝑇௜௝𝑛௜𝑛௝ =
𝜀
2𝜋𝑅௜௝𝑛௜𝑛௝ .
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is correspondingly implies

𝑇௜௝ =
𝜀
2𝜋𝑅௜௝ + 𝐶𝑔௜௝ .

Fixing the constant through the Bianchi constraint ∇௜𝑇௜௝ = 0 gives 𝐶 = −ோ
ଶ + Λ, which

recovers the Einstein equation

𝑅௜௝ + Λ𝑔௜௝ =
2𝜋
ℏ𝜀 𝑇௜௝ . (3.27)

e ℏ is introduced because of the accelerated Minkowski observer. ere is no new in-
formation on the cosmological constant Λ. e 𝜀 is needed to recover Newton's constant
and the correct factors of 𝑐 and 𝜋. By comparison with the standard form of Einstein's
equations, we see that Newton's constant is deĕned as

𝐺 ≡ 𝑐ସ
4ℏ𝜀 (3.28)

where 𝜀 = (4𝑙௣)ିଶ, and 𝑙௣ the Planck length.

Although Jacobson suggested that because general relativity arises as an ''equation
of state'', it is therefore unnecessary to quantize, I think this is slightly incorrect. Gen-
eral relativity arises as an equation of state because it is likely related to an underlying
quantized theory, and we coarse grain over these underlying degrees of freedom, thus
allowing general relativity to emerge as a thermodynamical theory.

For example, the ĕnal expression for the ĕeld equations 3.27 deĕnes Newton's grav-
itational constant as 𝐺 ∝ 1/ℏ. In its most naive interpretation this looks like the ĕrst
term in a perturbative expansion. In quantum electrodynamics the ĕne structure con-
stant is 𝛼 = 𝑒ଶ/ℏ𝑐 ∼ 1/137. In perturbative gravity the corresponding quantity is
𝜀 = 16𝜋𝐺/𝑐ସ ∼ 1/2.4 × 10ସଶ, a vastly weaker interaction scale. is is also seen, from
an action principle perspective, in the approach of Parikh and Wilczek [60] [61].

General relativity arises thermodynamically, but in doing so it picks up a factor of
ℏିଵ, which looks like it is from a perturbative expansion. is seems consistent with ex-
pectations from string theory and canonical quantum gravity. We have here the ''coarse
grained'' result of combining quantum ĕeld theory with thermodynamics and the equiv-
alence principle: General Relativity. e necessary conditions for deriving general rel-
ativity are Lorentz invariance, the equivalence principle, the holographic principle, and
the ability to coarse grain over degrees of freedom to obtain a thermodynamic energy.
us it is logical that theories with these properties have general relativity as a limit and
contain features such as a Ęuid/gravity correspondence and UV/IR connection.
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3.4 ermal Interpretation of the Equivalence Principle

e equivalence principle relates acceleration to gravitation. However, gravity can be
derived from thermodynamics. erefore the equivalence principle must also have a
thermodynamical interpretation.

In its most basic form this relationship is given by the Unruh temperature 𝑇 = 𝜅/2𝜋.
e equivalence principle is the statement that there is always a local frame, which we
can write explicitly using Riemann or Fermi normal coordinates. In this frame we are
able to set the acceleration to zero, up to second order. e correspondence in terms
of temperature is that every local frame is in thermodynamical equilibrium at zero tem-
perature, which is Minkowski space with approximately no acceleration. e Hawking-
Unruh temperature tells us we only need to assume one of these statements; local thermal
equilibrium or the equivalence principle.

Clearly the conditions for thermal equilibrium aremore general than just the gravita-
tional equivalence principle. But the equivalence principle tell us that this ĕnite-temperature,
ĕnite-curvature equilibrium is actually equivalent to a zero-curvature and zero-temperature
equilibrium, a statement not typically found in thermodynamics.

e temperature is related to the curvature; the curvature to the equivalence princi-
ple, and the equivalence principle to special relativity and Newton's law. is has deep
implications for the interpretation of inertial mass, for which I refer to [15].

By using this interpretation of the equivalence principle, general relativity is in ther-
mal equilibrium along geodesic paths. Deviations from equilibrium in thermal systems
typically imply Ęuid behavior, which we will see in general relativity takes the form of
the Damour-Navier-Stokes equations.

4 Future Null Horizons

4.1 e Penrose Process

Now that we have crossed from the past null boundary into the bulk and derived the ĕeld
equations of general relativity, let us intrinsically derive thermal properties of general rel-
ativity. In doing so we see that the laws of black hole thermodynamics, which inherently
includes the holographic principle, and is constructed between bulk spacetime and the
future boundary, are consistent with Jacobson's derivation of general relativity, which re-
lies on the holographic and equivalence principles. To set this up logically it makes sense
to begin with the Penrose process for Kerr black holes, which through its introduction
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of a minimum irreducible black hole mass lays the foundation for the thermodynamics
of Schwarzschild black holes.

e Penrose process is also historically important as one of the ĕrst forays towards
understanding black holes as systems that could exchange energy with the outside world
(Zel'dovich's analysis of superradiant modes is the other beginning). Although not ex-
plicitly thermal, it considers inĕnitesimal changes in the black hole's mass, charge and
spin; ideas which developed into black hole thermodynamics.

Consider a rotating Kerr-Newman black hole and a transient particle. Each have
mass, spin and charge. e particle will be able to extract energy from the black hole if it
splits while in the black hole's ergosphere. One component falls into the black hole, the
other escapes to inĕnity. In this way the Penrose process concerns the global dynamics
of black holes.

e Kerr-Newman metric in Boyer-Lindquist coordinates is

𝑑𝑠ଶ = −𝜌
ଶΔ
Σ 𝑑𝑡ଶ + Σ

𝜌ଶ 𝑠𝑖𝑛
ଶ𝜃(𝑑𝜙 − 𝜔𝑑𝑡)ଶ + 𝜌ଶ

Δ 𝑑𝑟ଶ + 𝜌ଶ𝑑𝜃ଶ (4.1)

with the standard deĕnitions

𝜌ଶ =𝑟ଶ + 𝑎ଶ cosଶ 𝜃
Δ =𝑟ଶ − 2𝑀𝑟 + 𝑎ଶ + 𝐶ଶ

Σ =(𝑟ଶ + 𝑎ଶ)ଶ − 𝑎ଶΔ sinଶ 𝜃

𝜔 ≡ −
𝑔௧థ
𝑔థథ

= 𝑎𝑟
ଶ + 𝑎ଶ − Δ

Σ

𝑎 = 𝐿
𝑀. (4.2)

In this section 𝐺 = 𝑐 = 1 and 𝐶 = 0. e Schwarzschild metric is recovered for
𝑎 = 0. In order to describe energy extraction, we ĕrst need to deĕne energy. e Kerr
metric has Killing vectors 𝐴௜ = 𝜕௧ and 𝐵௝ = 𝜕థ which correspond to a conserved global
energy 𝐸 = −𝐴௔𝑝௔ and angular momentum 𝐿 = 𝐵௔𝑝௔ for a particle of momentum
𝑝௜ = 𝑚𝜕𝑥௜/𝜕𝜆. Kerr black holes have an ergosphere, which is a region outside the event
horizon where the black hole's rotation drags coordinates along with it, so that even at
the speed of light it is impossible to remain stationary. e behavior of Killing vectors
in this region will be key for extracting energy. e outer edge of the ergosphere is the
surface where the norm of the time translation Killing vector vanishes.

𝐴௔𝐴௔ = 0 = 1
𝜌ଶ(Δ − 𝑎ଶ sinଶ(𝜃)) .
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is implies
𝑟sls = 𝑀±ඥ𝑀ଶ − 𝑎ଶ cosଶ(𝜃).

e outer radius is known as the stationary limit surface, and for 𝜃 = 0 coincides with
the outer event horizon, denoted 𝑟ା. Outside 𝑟sls the norm of the timelike Killing vector
is negative, and so the energy of a particle on such a trajectory is positive. Inside 𝑟sls the
norm becomes spacelike, which means 𝐸 can be either positive or negative. Inside the
stationary limit surface particles can have negative energy. However, there is no way for
a negative energy particle to escape the ergosphere. In order to cross the stationary limit
surface it must gain enough energy to make 𝐸 positive.

To exploit this and extract energy from the black hole, consider the change in mass
and angular momentum of a black hole when a particle that has crossed into the ergo-
sphere splits or decays into two particles of energy and angular momentum

𝐸଴ = 𝐸ଵ + 𝐸ଶ
𝐿଴ = 𝐿ଵ + 𝐿ଶ. (4.3)

Assuming the black hole absorbs particle two, denote 𝐸ଶ = 𝛿𝑀௕௛ and 𝐿ଶ = 𝛿𝐿ு. e
most general Killing vector we have is a superposition of the previous two

𝜒௜ = 𝐴௜ + Ω௕௛𝐵௜ ,
and is tangent to null generators of the black hole horizon. Ωு is an angular velocity.
Since 𝐴௜ and 𝑝௜ are both timelike outside of the black hole, but 𝐴௜ can become spacelike
in the ergosphere, we can have 𝐸ଶ = −𝐴௔𝑝௔ < 0. Assuming this is the case, contracting
𝜒௜ with particle two gives

𝑝௔ଶ𝜒௔ = 𝑝௔ଶ(𝐴௜ + Ωு𝐵௜) < 0,
which results in the inequality

𝐿ଶ <
𝐸ଶ
Ωு

.

is is equivalent to

𝛿𝐿ு < 𝛿𝑀௕௛
Ωு

. (4.4)

Since particle two can have negative energy, its angular momentum is negative and re-
duces the black hole's angular momentum and energy. When the black hole stops ro-
tating this process ends and we obtain a Schwarzschild black hole with a minimum irre-
ducible mass that, classically, can never decrease.

e irreducible mass is

𝑀ଶ
௜௥௥ =

𝑀ଶ + √𝑀ସ − 𝐿ଶ
2 ≤ 𝑀ଶ (4.5)
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and combined with 4.4 implies
𝛿𝑀௜௥௥ > 0.

is happens to be expressible in terms of the black hole's surface area. Restoring New-
ton's constant,

𝑀௜௥௥ =
𝐴

16𝜋𝐺ଶ , (4.6)

which implies the Hawking area law or Second law of Black Hole ermodynamics for
Kerr black holes

𝛿𝐴 ≥ 0 for any process. (4.7)

eHawking area law emerges in general as a consequence of the Raychaudhuri equation
applied to null horizons. Basically, as long as an energy condition such as the weak en-
ergy condition 3.21 holds then the null generators of a horizon will have a non-negative
expansion 𝜃 ≥ 0 and the horizon will either grow or remain static.

e horizon area deĕned in terms of the irreducible mass is an extremum for a black
hole of a given mass. e Penrose process was the ĕrst hint of thermal behavior of gen-
eral relativity. Energy is extracted from a rotating black hole by reducing its angular
momentum, and transferring it as energy to an outgoing particle. When the black hole's
angular momentum vanishes its ergosphere disappears, particles of negative energy be-
come impossible, and absorbing any further particles will increase the black hole's mass
and horizon area. In this way a Schwarzschild black hole's surface area is analogous to
the macroscopic entropy of ordinary thermodynamics, and creates the foundation for
black hole thermodynamics.

Indeed, rearranging 4.4, in the limit of a reversible process,

𝛿𝑀௕௛ = Ωு𝛿𝐿ு. (4.8)

is is the ĕrst law of thermodynamics without a 𝑇𝑑𝑆 term.

4.2 Black Holeermodynamics

We can now develop the laws of black hole thermodynamics, as they appear on the
Schwarzschild null future horizon.

e Zeroth law, which will not be proven here, is that in analogy with the zeroth law
of thermodynamics (which states that a system in thermal equilibrium has a constant
temperature), is that the surface gravity of a null horizon is constant. is has been shown
by assuming the horizon is a Killing horizon but without using energy conditions or the
ĕeld equations, in increasing generality, by Carter [44], Racz and Wald [45], and shown
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by Hawking [25] using the ĕeld equations and assuming a stationary spacetime and the
dominant energy condition.

e ĕrst law of thermodynamics is

𝛿𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉, (4.9)

and we would like to ĕnd the corresponding statement for black holes. To do this we
begin with the irreducible black hole mass, horizon location, and Kerr black hole area.
e area is given by

𝐴 = න√−𝑔𝑑𝜃𝑑𝜙 = 4𝜋(𝑟ଶା + 𝑎ଶ).

Varying the horizon radius 𝑟ା = 𝑀 + √𝑀ଶ − 𝑎ଶ − 𝐶ଶ with respect to 𝑀, 𝐶 and 𝑎, and
substituting in the area gives the First law of black hole thermodynamics

𝛿𝑀 = 𝜅𝛿𝐴
8𝜋 + Ω஺

ு𝛿𝐿஺ +Φ𝛿𝐶 − 𝜇𝛿𝐵, (4.10)

where 𝜅 = 2𝜋(𝑟ା − 𝑟ି)/𝐴, the angular velocity on the horizon is Ω௜
ு = 𝑎௜/𝐴, the

Columb potential isΦ = 𝐶/𝑟ା, and 𝜇 is the induced magnetic moment.

A physical process version of the ĕrst law, which is local andmore general, can be seen
by considering an inĘux of mass and angular momentum across the horizon. In this case
the tools involved are similar to the derivation of Einstein's equations from 𝛿𝑄 = 𝑇𝑑𝑆.
For mass and angular momentum Ęux

Work by Bekenstein [1] [4] and Jacobson [10] [39] [40] focus on the 𝑇𝑑𝑆 term while
Damour [6] [7] [9] and orne et al. [52] [53] [54] [55] are mostly concerned with the
second term.

e second terms play the role of−𝑃𝑑𝑉 in 4.9 and are the effect of work done on the
black hole. However, notice that the dimensionality this terms scales with 𝑑𝑉 instead of
𝑑𝐴. In the context of black hole thermodynamics, which is local to the horizon region,
one would expect any spatial dependence to be proportional to the spatial two-surface
since there is not a volume element. is will be elaborated on in future sections.

Now compare the ĕrst terms in 4.9 and 4.10. By observation, if we want the entropy
to correspond to a dimensionless Von Neumann entropy of the form

𝑆VN = −Tr 𝜌 ln(𝜌), (4.11)

where 𝜌 is here a density matrix over unknown quantum states, then we also need to
make 𝑑𝐴 in 4.10 dimensionless. is can be done by dividing the area by units of the
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Planck length squared, 𝑙ଶ௣ = ℏ𝐺/𝑐ଷ, so that

𝑆bh =
𝑘௕𝑐ଷ
4𝜋ℏ𝐺𝐴. (4.12)

is is in essence the primary statement of holography, ĕrst observed in black hole physics
and generalizable to the AdS/CFT correspondence, the entanglement entropy and, by
postulate of the holographic principle [2] [3], to an arbitrary set of quantum ĕelds. e
black hole entropy is an entropy of the equivalence class of possible black hole geome-
tries with the same external parameters but different internal states [1]. In this sense, it
is rather unique in that it associates a temperature with a geometric entropy.

Along with the Hawking area law 4.7, we can now state the laws of black hole ther-
modynamics:

0.e surface gravity 𝜅 is constant on the black hole horizon.

1. 𝛿𝐸 = 𝜅𝛿𝐴
8𝜋 + Ωு𝛿𝐿 + Φ𝛿𝐶 − 𝜇𝛿𝐵

2. 𝛿𝐴 ≥ 0
3. 𝜅 ↛ 0 in a ĕnite number of steps. (4.13)

e third law is linked to the idea of preventing naked singularities, by, for example,
injecting particles with angular momentum into a Kerr black hole until 𝐿/𝑀ଶ = 1, at
which point 𝜅 = 0.

We can express the entropy as the sumof the entropy due to bulkmatter and the black
hole horizon. is is sometimes called the Generalized Second Law

𝑆௧௢௧௔௟ = 𝑆௕௨௟௞ +
𝐴
4𝐺ℏ. (4.14)

Bulk entropy is the ordinary thermodynamical entropy; the black hole surface area is a
new contribution to the entropy.

Black hole thermodynamics provide an interesting consistency check. e holo-
graphic principle, used as a postulate valid on the past horizon in 3.3, enables us to derive
the ĕeld equations of general relativity. Now, considering the ĕeld equations on their
own, we have derived the holographic principle from black hole thermodynamics as an
interaction between bulk matter and a null future horizon. In the next sections we will
more carefully examine properties of the null future horizon.

4.3 Black Holes inermal Equilibrium

Now that we have a set of thermal laws, it is interesting to consider whether there are
situations where a black hole can be in thermal equilibrium. To this end we will consider
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a black hole interacting with a radiation bath; in order to have an equilibrium conĕgura-
tion the box must not be inĕnite. is result has an interesting parallel in the AdS/CFT
correspondence, which, through its negative cosmological constant, effectively provides
an inĕnite barrier analogous to a ''box''.

Consider a black hole of entropy and energy

𝑆௕௛ =
1

16𝜋𝐺𝑇ଶ , 𝐸௕௛ = 18𝜋𝐺𝑇, (4.15)

and radiation obeying the Stefan-Boltzmann law

𝐸௥ = 𝑎𝑉𝑇ସ, 𝑆௥ = න 𝑑𝐸௥
𝑇 = 4

3𝑎𝑉𝑇
ଷ, (4.16)

with 𝑎 > 0. Note the speciĕc heat of the black hole is negative (endothermic) since T
increases as E decreases. In order for a black hole to be in thermal equilibrium with its
surroundings, it needs to be constrained within a ĕnite box. en the Hawking radiation
it emits will change the temperature outside of the black hole, and prevent a feedback loop
of monotonically increasing or decreasing black hole mass.

A black hole in an inĕnite heat bath has two main possibilities for evolution (neglect-
ing unstable equilibrium). It can either absorb radiation if its temperature is lower than
its surroundings, in which case it will gain mass, cool down, and then continue to cool
down as it absorbs more radiation. Or, if the black hole has an initial temperature higher
than the heat bath, it will emit radiation, heat up, and emit higher temperature radiation.
In either case due to the negative speciĕc heat there is a feedback loop. erefore, in or-
der to avoid this and have local stability, we must require that when the black hole emits
radiation it heats up its surroundings more than its own temperature increases. Cor-
respondingly when the black hole absorbs radiation, the environment must cool more
quickly than the black hole. By combining the above temperature and energy expres-
sions with the entropy-mass relation 𝑑𝑆௕௛ = 8𝜋𝑀௕௛𝑑𝑀௕௛, the necessary conditions for
equilibria are that, if the black hole has higher temperature than the radiation we must
have scaling

𝑇௥ ∼ 𝐸ଵ/ସ
௥ , and 𝑑𝑇௥ ∼

1
4𝐸

ିଷ/ସ
௥ 𝑑𝐸௥ =

1
4𝑇௥

𝑑𝐸௥
𝐸௥

, (4.17)

and for initially lower temperature,

𝑇௕௛ ∼ 𝐸ିଵ
௕௛ , and 𝑑𝑇௕௛ ∼ −𝑇௕௛

𝑑𝐸௕௛
𝐸௕௛

. (4.18)
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Figure 4.1: Energy can be extracted from a charged rotating black hole by using it as an electrical
generator. e surface conductivity of the horizon completes the circuit. Proposed by T. Damour.
[7] Image credit: J. Hartle, UCSB Plenetary Lecture, 2000. [51]

4.4 Null Electrodynamics

In this section we adapt Maxwell's equations to a null Rindler horizon. e results are
characteristic of the membrane paradigm and the situation for gravity, but the imple-
mentation is simpler; by looking at a locally Ęat region we temporarily avoid needing
to consider Einstein's equations. Observationally this implies that black holes can effec-
tively carry surface currents and that distant observers can measure a charge density on
a black hole. Black holes have a surface resistivity of 𝑅ு = 4𝜋 = 377Ω, equal to the
permittivity of free space. e event horizon acts to effectively truncate electromagnetic
ĕelds at the black hole's surface, and creates induced surface quantities on the horizon.
rough its linking boundary and surface ĕelds, this approach has some similarity to the
bulk/boundary behavior of AdS/CFT.

Consider Maxwell's equations in Ęat space

𝜕௔𝐹௜௔ = 4𝜋𝐽௜
𝜕௔𝐽௔ = 0, (4.19)

with antisymmetric electromagnetic tensor

𝐹௜௝ = 𝜕௜𝐴௝ − 𝜕௝𝐴௜ . (4.20)

Here we use null Rindler coordinates, on the (𝑢 = 0, 𝑣 > 0) horizon. e electro-
magnetic tensor is deĕned everywhere, even though quantities inside the horizon are
not measurable by external observers in general relativity. In following the membrane
approach, we artiĕcially truncate 𝐹௜௝ on the horizon by introducing a step function Θ,
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equal to 1 on and outside the horizon and 0 inside. Making the replacement

𝐹௜௝ → 𝐹௜௝Θ, (4.21)

and evaluating Maxwell's equations

𝜕௔ ൫𝐹௜௔Θ൯ = 4𝜋(𝐽௜Θ + 𝑗௜ு). (4.22)

e step function dividesMaxwell's equations into bulk and surface quantities; we deĕne
a new surface current on the horizon as

𝑗௜ு = 1
4𝜋𝐹

௜௔𝛿ு,
𝛿ு = 𝛿(−𝑢)𝑛௜ . (4.23)

is is the most basic ''membrane'' result. Black holes are imbued with induced surface
currents as long as electromagnetic ĕelds are effectively truncated on the horizon.

Generators of the horizon, 𝑥௜(𝑣), have normals as in 2.9, parametrized in terms of 𝑢
in Rindler space

𝑛௜ = 𝛼d𝑢. (4.24)
Since the horizon is null, this normal is also tangent, and we can expand in terms of the
horizon basis (𝜕௩, 𝜕஺) as

𝑛௔𝜕௔ =
𝜕
𝜕𝑣 + 𝑑𝑥஺

𝑑𝑣
𝜕
𝜕𝑥஺ . (4.25)

𝑛௜ is Lie-dragged so that for an inĕnitesimal displacement on the horizon 𝑑𝑥௜ = 𝑛௜𝑑𝑣.
e expression for the angular component of 𝑛௜ can be interpreted in a peculiar way; as
the Newtonian surface velocity 𝑣஺ = ௗ௫ಲ

ௗ௩ of the constituent Ęuid composing spacetime
on the horizon. Physically 𝑣஺ = 0 means the black hole is not rotating. To see this
relation more clearly, we could change to angular coordinates and normalize 𝜕஺ as the
axisymmetric Killing vector 𝜕థ. en 𝑣஺ corresponds to a rotational velocity of Ωு on
the horizon.

We can use the surface current to deĕne a current density 𝐾௜ on the horizon:

𝑗௜ு = 1
4𝜋𝐹

௜௔𝑛௔𝛿ு = 𝐾௜𝛿ு, with

𝐾௜ ≡ 1
4𝜋𝐹

௜௔𝑛௔. (4.26)

e above expressions can be combined into an equation of continuity for current density
between the bulk and boundary:

𝜕௔(Θு𝐽௔ + 𝐾௔𝛿ு) = 0. (4.27)
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An external current injected into the horizon will create a surface current density. is
is holographic in that it depends only on Maxwell's equations outside and on the surface
of the black hole, and is also local.

In analogy with electrodynamics, the current density is composed of a charge density
varying in time and space.

𝐾௔𝜕௔ = 𝜎ு + 𝐾஺𝜕஺ (4.28)
= 𝜎ு𝑛௔𝜕௔ + (𝐾஺ − 𝜎ு𝑣஺)𝜕஺. (4.29)

We associate 𝜎ு with a charge density depending on 𝑣 (if we were to instead use a 3+1
split of spacetime, this would be written as time dependence), and𝐾஺ with the angularly-
varying component. en the charge density is found by projecting the current density
along the auxiliary null vector 𝑘௜, deĕned in 2.10. is gives

𝐾௔𝑛௔ =
1
4𝜋𝐹

௔௕𝑛௔𝑘௕

= 𝜎ு𝑛௔𝑘௔. (4.30)

us 𝜎ு is analogous to a charge density 𝜎 = ଵ
ସగ𝐸௔𝑛௔, and results from projecting 𝐹௜௝

onto the horizon.

Ohm's law follows by writing the current density, using 𝜕௩ = 𝑛௔𝜕௔ − 𝑣஺𝜕஺, as

𝐾௔𝜕௔ = 𝜎ு𝑛௔𝜕௔ + (𝐾஺ − 𝜎ு𝑣஺)𝜕஺. (4.31)

In vector notation we have the Lorentz force for a charge 𝑞:

𝑞𝐄 + 𝑞𝐯 × 𝐁ୄ = 4𝜋𝑞(𝐊 − 𝜎ு𝐯), (4.32)

and setting 𝐯 = 0, Ohm's law
𝐄 = 4𝜋𝐊 = 𝜌𝐊, (4.33)

where the resistance 𝜌 = 377Ω.

Ohm's lawgeneralizes to curved space by replacing the partial derivatives inMaxwell's
equations with covariant derivatives. e equation of continuity 4.27 is then identiĕed as
a contracted Bianchi identity connecting the charge and current density with the current
injected normal to the null horizon:

𝜕௩𝜎ு + 𝜕஺𝐾஺ + 𝑛௔𝐽௔ = 0. (4.34)
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4.5 Scalar and Tensor Fields

e basic procedure of restricting the rank-2 electromagnetic tensor to the horizon ex-
tends to other types of ĕelds, such as free scalar or tensor ĕelds. emembrane approach,
as long as ĕelds near the black hole do not signiĕcantly change its mass or become so
strong that they self-interact, are easily incorporated. In this case there are not correla-
tions between the bulk and induced ĕeld on the horizon. is is essentially themethod of
images from electrodynamics, and also occurs in the general action principle approach
of Parikh and Wilzcek [61] [60], which is outlined in the next section. ere is also some
similarity with the ''brick wall'' model of 't Hoo [68], which assumes all wave functions
vanish at a ĕxed distance from the horizon, and the discussion of quantum ĕelds outside
the stretched horizon by orne et al in [8].

For instance, for the scalar ĕeld 𝜑(𝑥௜) one may analogously deĕne an auxiliary ĕeld
𝜑∗(𝑥௜) = 𝜑(𝑥௜)Θு truncated at the horizon by the same causality reasoning applied to
𝐹௜௝ previously. Using 3+1 coordinates for consistency with the typical canonical com-
mutation relations, we can ask how 𝜑 behaves.

e canonical momenta separates into bulk and boundary terms

Π∗(𝑥௜) = 𝜕௧[𝜑(𝑥௜)Θு(𝑟)]
= 𝜑̇(𝑥௜)Θு(𝑟) + 𝜑(𝑥௜)𝛿ு(𝑟). (4.35)

e derivative of the step function is treated by noting that, by virtue of being on the null
horizon (which for simplicity is taken just as 𝑑𝑠ଶ = −𝑑𝑡ଶ + 𝑑𝑟ଶ + 𝑑𝑥஺ଶ = 0),

𝜕௧Θு(𝑟) =
𝜕Θு(𝑟)
𝜕𝑟 ൭1 − ቆ𝜕𝑥

஺

𝜕𝑡 ቇ
ଶ

൱
ଵ/ଶ

,

which for a nonrotating black hole simpliĕes to

𝜕௧Θு(𝑟) = 𝜕௥Θு(𝑟).

is also works on a timelike stretched horizon 5.1 located a ĕnite radius 𝛼ு from the
event horizon. Schwarzschild time is related to the proper time 𝜏 of a ĕducial observer
via the metric element

𝑑𝜏 = √𝑔଴଴𝑑𝑡 = (1 − 2𝑀𝐺/𝑟)ଵ/ଶ 𝑑𝑡.

is gives
𝜕ఛΘு(𝑟) = 𝜕௥Θு(𝑟)𝜕𝑟/𝜕𝜏.
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Applying this to a scalar ĕeld 𝜑∗(𝑟) on the horizon, the momenta separates into a bulk
term and an induced boundary ĕeld on the horizon. In the bulk, with 𝛼ு > 0, 𝜑∗(𝑟)
obeys standard commutation relations

[𝜑∗(𝑥௜), 𝜑∗(𝑥ᇱ௜)] = [Π∗(𝑥௜), Π∗(𝑥ᇱ௜)] = 0, [𝜑∗(𝑥௜), Π∗(𝑥ᇱ௜)] = 𝑖𝛿ଷ(𝑥 − 𝑥ᇱ).

e terms in Π∗(𝑥ூ) with delta functions decouple and do not contribute in the bulk.
On the boundary, all of the commutators for 𝜑∗(𝑥௜) and Π∗(𝑥௜) vanish. However, the
canonical momenta induces a surface term𝜙(𝑥௜), with standard commutation relations.
erefore 𝜑(𝑡, 𝑥஺) can be written in terms of creation an annihilation operators 𝑎(𝑥௜)
and 𝑎ற(𝑥௜) which operate tangent to the surface. Interestingly, using the fact that a tan-
gent vector on the null horizon is also a normal vector, this implies that the creation and
annihilation operators also contribute components orthogonal to the horizon.

While tensor ĕelds are relatively straightforward, the case of spinor ĕelds runs into
difficulty. e Dirac equation can be extended to curved space by replacing partial with
covariant derivatives, but the commutation rules for spinors are deĕned in terms of the
metric, which on null surfaces becomes degenerate. ere are approaches that avoid this
difficulty, such as twistor theory, and its developments in string theory, but they are out
of the scope of this thesis.

4.6 Action Principle

Two authors, M. Parikh and F. Wilczek [60] have developed an action principle formula-
tion of the membrane paradigm. eir approach is to ĕrst begin with a general gravita-
tional action with Dirichlet boundary conditions 𝛿𝜑 = 0 at the spacetime boundaries of
inĕnity and the event horizon. e condition for the action on the stretched horizonℋ𝒮
is then expressed in a manner reminiscent of the method of images in electrodynamics.
Introducing the ĕctitious surface action

𝑆௧௢௧௔௟ = (𝑆௢௨௧ − 𝑆௦௨௥௙) + (𝑆௜௡ − 𝑆௦௨௥௙). (4.36)

e variation of this becomes

𝛿𝑆௢௨௧ + 𝛿𝑆௦௨௥௙ ≡ 0 ⇒ 𝛿𝑆௜௡ − 𝛿𝑆௦௨௥௙ = 0. (4.37)

e results of orne et al are recovered. e existence of an action principle facilitates a
relatively straightforward extension of the membrane approach to any series of ĕelds on
ℋ𝒮, although it does not extend to spinors on the null horizon. It does, however, recover
a similar semiclassical factor of ℏ to leading order in the gravitational ĕeld equations as
[10], due to its appearance in the action.
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4.7 Black Hole Fluid Dynamics

Historically, Damour's treatment of the electrodynamic and Ęuid properties of black
holes synthesized and generalized results of earlier research through the 1960's and 70's.
Carter [46] realized that a black hole in gravitational and electromagnetic ĕelds had an
angular velocity and electric potential that was analogous to an object with ĕnite viscos-
ity and conductivity, while Hawking and Hartle [43] showed that a rotating black hole
would experience a ''tidal'' slowing due to an orbitingmass, and interpreted this as similar
to a ''shallow sea of incompressible viscous Ęuid''. Bekenstein [4] further developed this
as a mechanical analogy, suggesting that vibrational quasinormal modes behaved similar
to a ''soap bubble model''.

ere are three main steps in recovering Ęuid behavior from the Einstein equations.
First, one restricts Einstein's equations to a hypersurface on or just outside the horizon
using either the Gauss-Codazzi equations or the Israel Junction condition. To interpret
the resulting equations, we deĕne a surface angularmomentumcalled theHajicek 1-form.
In spacetimes where an angular Killing vector and global angular momentum exist the
Hajicek 1-form is equivalent to the pullback of the angular momentum to the horizon.
e Gauss and Codazzi equations (the ĕrst two equations in 2.26) can be written using
Lie derivatives, which are then split into trace and trace free expressions for expansion
tensor and torsion tensor, which vanishes. ese are then interpreted in terms of the
pressure, shear and bulk viscosities of the Navier-Stokes equations.

If we start with the Einstein tensor 𝐺௜௝ we can project this onto the horizon (or any
codimension-1 surface) in three main ways; along the (called in shorthand) ''null-null''
direction 𝑛௔𝑛௕, which gives us the Raychaudhuri equation governing energy density and
evolution of the expansion, along a ''null-spatial'' 𝑛௔𝑒௕ఔ , giving evolution of the momen-
tum density (i.e. the Damour-Navier-Stokes equations), and lastly by pulling back along
a ''spatial-spatial'' 𝑒௔ఓ𝑒௕ఔ , which gives the so-called tidal equation governing evolution of
the shear. All the other possible projections are either equivalent to the above options,
or vanish.

e ĕrst projection, the Raychaudhuri equation, is essentially thermodynamic in na-
ture, the second is Ęuid dynamics, and the third is related to, among other things, caus-
ing shear instability leading to turbulence. us there is a close relationship between the
membrane paradigm and black hole thermodynamics. As the membrane paradigm is
the momentum counterpart to black hole thermodynamics, it could equally well have
been called black hole Ęuid dynamics.
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Figure 4.2: e black hole is truncated at or just outside the horizon. e horizon then has
induced surface properties. Credit: T. orne, UCSB Plenetary Lecture, 1999. [50]

4.8 Damour-Navier-Stokes Equations

e existence of emergent Ęuid behavior on the horizon is a principle result of both the
membrane paradigm and Ęuid/gravity correspondence of string theory. ey share an
underlying mechanism, which is symmetries of the Einstein equations along the null-
spatial projection of a hypersurface. It is interesting that this can be interpreted in terms
of Ęuid behavior, which typically arises from having many interacting particles in near
thermal equilibrium, and this is perhaps related towhatmay be a dual equivalent descrip-
tion from general relativity. Here we will connect the Rindler horizon and null Gauss-
Codazzi equations to Ęuid dynamics.

We ĕrst start generally: e total angular momentum of a spacetime can be deĕned
as long as there exists a global rotational Killing vector.

𝜙௔𝜕௔ = 𝜕ఝ. (4.38)

Although this will not exist in general, it is useful for motivating the deĕnition of an
angular momentum on the horizon. We can associate a conserved quantity with this via
Noether's theorem

𝐿 = −1
16𝜋 රஶ

∇ఓ𝜙ఔ𝑑Σఓఔ .
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eangularmomentumcan then be divided into bulk and horizon quantities 𝐽 = 𝐽஻+𝐽ு,
which motivates deĕning a horizon angular momentum as

𝐿ு = −1
8𝜋 ර

ு
𝑘ఈ∇ఉ𝑛ఈ𝜙ఉ𝑑𝐴 ≡ ර𝜋థ𝑑𝐴. (4.39)

e quantity in the integrand is an intrinsic horizon momentum, which we can write in
terms of the Hajicek 1-form Ωఓ. We deĕne as our surface momentum density

𝜋ఓ ≡ − 1
8𝜋𝑘௔∇ఓ𝑛

௔ = − 1
8𝜋Ωఓ. (4.40)

Recall the contracted Gauss-Codazzi equations 2.27. To isolate the components on the
2-surface we can project along the induced metric, so that

𝑅ఈఉ𝑛ఈℎఉ஺ = ℎఉ஺(∇ఈ∇ఉ𝑛ఈ − ∇ఉ∇ఈ𝑛ఈ) (4.41)

Using the Rindler basis (𝜕௩, 𝜕஺) we expand the right hand side in terms of the extrinsic
curvature, and then use 2.22 to include the expansion tensor

∇ఈ𝑛ఈ = 𝜅 + 𝜃 and
∇ఉ𝑛ఈ = 𝐾ఈ

ఉ + (𝑘ఊ∇ఉ𝑛ఊ)𝑛ఈ − 𝑛ఉ𝑘ఊ∇ఊ𝑛ఈ
= Θఈ

ఉ + Ωఉ𝑛ఈ − 𝑛ఉ𝑘ఊ∇ఊ𝑛ఈ. (4.42)

Combining with 4.41

𝑅ఈఉ𝑛ఈℎఉ஺ = ℎఉ஺∇௡Ωఉ + Ω஺(𝜅 + 𝜃) + ℎఉ஺∇ఈΘఈ
ఉ − Θ஺ఈ∇௞𝑛ఈ − ∇஺(𝜅 + 𝜃)

= ℎఉ஺ℒ௡Ωఉ + Ω஺𝜃 + ∇ఈΘఈ
஺ − ∇஺(𝜅 + 𝜃). (4.43)

Here we have used the expansions

ℎఉ஺∇ఈΘఈ
ఉ = ∇ఈΘఈ

஺ + Θఈ
஺(𝑘ఉ∇ఉ𝑛ఈ + Ωఈ) and

ℎఉ஺𝑛ఈ∇ఈΩఉ = ℎఉ஺ℒ௡Ωఉ − Θఈ
஺Ωఈ − 𝜅Ω஺.

Expanding the Lie derivative in 4.43 using 𝑛௔𝜕௔ = 𝜕௩ + 𝑣஺𝜕஺, we have the Damour-
Navier-Stokes equation:

𝜕௩Ω஺ + 𝑣஻∇஻Ω஺ + Ω஻∇஺𝑣஻ + 𝜃Ω஺ = 𝑅ఓఔ𝑛ఓℎఔ஺ + ∇஺(𝜅 + 𝜃) − ∇ఈΘఈ
஺ . (4.44)

is is actually easier to interpret physically, as an evolution equation, if we observe that
the Lie derivative of an area element of the horizon is

ℒ௡(𝑑𝐴) =
1
2ℎ

ఓఔℒ௡(ℎఓఔ)𝑑𝑦ଶ ∧ 𝑑𝑦ଷ = 𝜃𝑑𝐴, (4.45)
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and the Lie derivative of the Hajicek 1-form, which plays the role of momentum density,
modulo a normalization factor of −8𝜋, is

ℒ௡(Ω஺𝑑𝐴) = (ℒ௡Ω஺ + Ω஺𝜃)𝑑𝐴. (4.46)

So that 4.44 becomes

ℒ௡(Ω஺𝑑𝐴) = (∇஺(𝜅 + 𝜃) − ∇ఈΘఈ
஺ − 𝑅ఓఔ𝑛ఓℎఔ஺)𝑑𝐴 (4.47)

Now, by substituting the stress-energy for the Ricci tensor, and replacing the Hajicek 1-
form with the momentum density 4.40, the null Damour-Navier-Stokes equation for a
momentum density on the horizon is

ℒ௡(𝜋஺𝑑𝐴)
𝑑𝐴 = 2∇ఈ𝜎

ఈ
஺

16𝜋 − ∇஺ ቆ
𝜅
8𝜋 + 𝜃

16𝜋ቇ + 𝑇ఓ஺𝑛ఓ. (4.48)

e ĕnal term may be interpreted as a force density 𝐹஺ = 𝑇ఓ஺𝑛ఓ .

e above equation corresponds to a Ęuid with a pressure 𝑝 = ఑
଼గ , shear viscosity

𝜂= ଵ
ଵ଺గ , and bulk viscosity 𝜉=− ଵ

ଵ଺గ . e sign on the pressure is opposite that expected
in the Navier-Stokes equations. is is interpreted through the picture of the membrane
phenomenologically being a ''bubble'' on the horizon. Conversely, the negative sign on
the bulk viscosity indicates that the horizon Ęuid is unstable with respect to expansion.
is occurs because the event horizon is speciĕed by a future boundary condition, and
teleological behavior arises in integrating the Green's function.

Observing that the Bekenstein-Hawking entropy is 1/4 the expression for the shear
viscosity, we have that the ratio of shear viscosity to entropy is

𝜂
𝑠 = 1

4𝜋 . (4.49)

is value is of considerable interest in applications of the Ęuid/gravity correspondence
to condensed matter and high energy applications. It is a universal constant for Ein-
stein gravity, but will have corrections if higher order terms are introduced into general
relativity.

Also interesting is to notice that the tangential surface pressure equivalent to the nor-
mal surface gravity, as the null horizon has by deĕnition 𝑛௔𝑛௕𝑔௔௕ = 0; this is consistent
with the equipartition theorem of statistical mechanics.

4.9 ermodynamics of the Raychaudhuri Equation

Here, we show that we can essentially perform the procedure in 3.3 backwards, projecting
the Ricci tensor along a null hypersurface, and obtaining the Raychaudhuri equation.
en, we interpret the Raychaudhuri equation thermodynamically.
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Beginning again with the Gauss-Codazzi equations 2.27, we contract along a null
direction, and

𝑅ఈఉ𝑛ఈ𝑛ఔ = (∇ఈ𝐾ఈ
ఉ − ∇ఉ𝐾)𝑛ఉ

= 𝑛ఉ∇ఈ𝐾ఈ
ఉ + 𝑛ఈ𝑛ఉ∇ఈΩఉ + (𝜅 + 𝜃)𝑛ఈΩఈ − 𝑛ఈ∇ఈ(𝜅 + 𝜃) (4.50)

= −ΘఈఉΘఈఉ + 𝜅𝜃 − 𝑛ఈ∇ఈ𝜃. (4.51)

Here we simplify this using the geodesic equation, the second equation in 4.42, and
identities 𝐾ఓఈ𝑛ఈ = 0, and Ωఈ𝑛ఈ = 𝜅. en substituting in for the extrinsic curva-
ture ΘఈఉΘఈఉ = 𝜎ଶ + 𝜃ଶ/2, we obtain the null Raychaudhuri equation for non-affine
parameterization

𝑅ఈఉ𝑛௔𝑛௕ = −∇௡𝜃 + 𝜅𝜃 − ቆ𝜎ଶ + 𝜃ଶ
2 ቇ . (4.52)

In order to link the Raychaudhuri equation with thermodynamics we can invoke the
holographic principle to say 𝑑𝐴 = 4𝑑𝑆. However, before doing so, it is helpful to rewrite
the expansion using Lie derivatives, via 4.45. A second Lie derivative of 𝑑𝐴 is

ℒ௡(𝜃𝑑𝐴) = (∇௡𝜃 + 𝜃ଶ)𝑑𝐴. (4.53)

en we can rewrite the Raychaudhuri equation, using the Unruh temperature 2.39 as

(ℒ௡(𝑑𝑆) −
1
𝜅ℒ௡(𝜃𝑑𝑆)) =

𝑄̇
𝑇 . (4.54)

We can then use this to determine the thermal dissipation for a Ęuid area element on the
horizon,

𝑇(ℒ௡(𝑑𝑆) −
1
𝜅ℒ௡(𝜃𝑑𝑆)) = (𝜉𝜃ଶ + 2𝜂𝜎ଶ + 𝐹஺)𝑑𝐴. (4.55)

Truncating the le hand side to ĕrst order, we recover

𝛿𝑄 = 𝑇𝑑𝑆, (4.56)

exactly the relation 3.3 began with. Also, note that, approximating the Lie derivatives as
ordinary derivatives, we can write a solution to the above Raychaudhuri equation (the
tidal, or shear, equation evolves similarly) using a Green's function as

(−𝜕௩ + 𝜅)𝐺(𝑣, 𝑣ᇱ) = 𝛿(𝑣 − 𝑣ᇱ), (4.57)

with the form 𝐺(𝑣, 𝑣ᇱ) = 𝑒఑(௩ି௩ᇲ) for 𝑣 < 𝑣ᇱ and zero otherwise.
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4.10 From Fluids back to Gravity

In the derivation of Einstein's equations 3.3 we take the Killing vector leading to our
energy Ęux to be a boost Killing vector, which we parameterize as being approximately
along a null tangential direction. However, the geometry of the null surface isℝ× 𝑆ଶ. It
should also be possible to derive Einstein's equations from a momentum Ęux due to an
angular Killing vector along the spatial surface. To do this we can consider an additional
contribution which is generically of the form 𝛿𝑊 = −𝑃𝑑𝐴.

Here I ĕrst generalize [10] to include work due to an angularmomentum on the hori-
zon. Instead of using the area and expansion relation 3.10 to incorporate the Raychaud-
huri equation, with its ''null-null'' projection of the Ricci tensor, we use the Damour-
Navier-Stokes equation 4.43, which gives a ''null-spatial'' projection of the Ricci tensor.
For simplicity we take the angular Killing vector to be axisymmetric, so the momenta
Ęux on the le hand side of 𝛿𝐸 = Ωு𝛿𝐽 is

𝛿𝐸 = න𝑇௔௕𝜃஺𝑑Σ௕

= Ωுන𝑇௔௕𝑛௔𝑒௕஺𝑑𝜆𝑑𝐴, (4.58)

where 𝑦௔ = (𝜆, 𝜃஺) parameterizes the null surface. On the right hand side, using 𝐽 =
∫𝜋஺𝑑𝐴, we have

Ωு𝛿𝐽 = Ωு𝛿 ൬න𝜋஺𝑑𝐴൰

= Ωுනℒ௡(𝜋஺𝑑𝐴). (4.59)

Here we write the variation as an inĕnitesimal directional covariant derivative,

𝛿𝐽 = ∇௡𝐽 = ℒ௡𝐽, (4.60)

which is locally equivalent to a Lie derivative. e density 𝜋஺𝑑𝐴 evolves according to the
Damour-Navier-Stokes equation 4.47, which we substitute in and simplify

𝛿𝐽 = ℒ௡(𝜋஺𝑑𝐴)
= (𝑅௔௕𝑛௔𝑒௕஺ + ∇஺(𝜅 + 𝜃) − ∇ఈ𝜃ఈ஺)𝑑𝐴
= (𝑅௔௕𝑛௔𝑒௕஺)𝑑𝐴. (4.61)

e last line follows if we chose a slicing where the the pressure is constant, such as on
the horizon, and if we look at short timescales (or Lie transport along a small 𝑑𝑣 on the
horizon), then we can neglect the bulk viscosity and shear evolution.
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Combining the above expressions,

𝛿𝑊 = Ωுන𝑅௔௕𝑛௔𝑒௕஺𝑑𝜆𝑑𝐴.

Equating this with 4.58

8𝜋𝑇௔௕ = 𝑅௔௕ + ቆ−𝑅2 + Λቇ𝑔௔௕. (4.62)

We can now give 2.13 a thermal interpretation by contracting with a vector 𝑥ఓ.
< (𝐺௔௕ + Λ𝑔௔௕)𝑛௔Π௕

ఓ, 𝑥ఓ > = −𝑅௔௕𝑛௔𝑛௕𝑘ఈ𝑥ఈ + 𝑅௔௕𝑛௔ℎ௕ఈ𝑥ఈ
𝛿𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝐴. (4.63)

e cosmological constant and Ricci scalar both drop out of the right hand side expres-
sion. e 𝑇𝑑𝑆 term can be evolved backwards to recover the Ricci tensor 3.3 [10]. e
same can be done for the −𝑃𝑑𝐴 term, which is new.

is leads to an interesting general procedure. From quantum mechanics one can
construct a many body quantum statistical mechanical system, aer which a thermo-
dynamical limit is taken. en using thermodynamics, general relativity can be derived
exactly. is does, however, again raise the question of how general relativity ĕts inwith-
out taking the thermal limit, a subject which is obviously much explored.

4.11 Entropy fromermodynamics and Fluids

In the above approach, we can more generally write 𝛿𝐸 = 𝛿𝑄 + 𝛿𝑊 = 𝑇𝑑𝑆 − 𝑃𝑑𝐴.
is has the same area dependence as the previously considered entropy term, and we
can follow the same procedure of using the Raychaudhuri equation to evaluate it. Tem-
porarily neglecting the entropy term, integrating the work and taking as the pressure the
Damour surface pressure of the form 𝑃 = 𝜅/8𝜋𝐺,

𝛿𝐸 = −𝑃𝑑𝐴

= − 𝜅
8𝜋𝐺 න𝑅௔௕𝑛௔𝑛௕𝜆𝑑𝜆𝑑𝐴. (4.64)

Equating both sides yields the Einstein equations, but because we have a pressure, with
the correct 8𝜋𝐺 factor, rather than temperature, no factor of ℏ appears.

It is interesting to note that for equilibrium situations the ratio of the Ęuid pressure
to Unruh temperature in the above derivation is the Bekenstein-Hawking entropy.

𝑑𝑆 = 𝑃
𝑇𝑑𝐴 = 𝑑𝐴

4𝐺ℏ. (4.65)
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is is consistent with the requirement of maximum entropy production for equilibria.
is is derived on null surfaces in Rindler space, but the Gauss-Codazzi equations and
Israel Junction condition contain essentially the same information, and admit both null
and timelike descriptions, so it is straightforward to include timelike surfaces. erefore,
the Bekenstein-Hawking entropy/area relation is a thermal equilibrium condition on any
null or timelike surface in Rindler space.

We can express the entropy due to a Ęuid element on the horizon, using the Damour-
Navier-Stokes equations, as

𝑑𝑆 = Ωு
𝑇 𝛿𝐽

= Ωு
𝑇 (𝑅௔௕𝑛௔𝑒௕஺ + ∇஺(𝜅 + 𝜃) − ∇ఈ𝜃ఈ஺)𝑑𝐴. (4.66)

As 𝑇𝑑𝑆 has units of force, we can also interpret the above expression as an entropic
force balance of the form 𝑇𝑑𝑆 = −𝑃𝑑𝐴. By construction this is an entropic force that
leads to classical gravity.

4.12 Slowness Parameter and Reynolds Number

e slowness parameter introduced by Price, Khanna and Hughes [77] has been con-
nected to Ęuids by Jaramillo et al [78]. e slowness parameter is the ratio of the bulk
to shear viscosity, and gives a timescale for changes in linear momentum or energy (de-
pending on normalization) of the Rindler or black hole horizon. is can also be inter-
preted as the ratio of characteristic decay and oscillation timescales.

𝑆 = ቆ∫𝜅𝜃𝑑𝐴∫𝜎ଶ𝑑𝐴ቇ
ଵ/ଶ

. (4.67)

Given deviations from Einstein gravity, the otherwise universal values for the bulk and
shear viscosity can change (modulo evolution of the shear due to the tidal equation and
changing surface gravity), leading to observable changes in this parameter through black
hole or neutron star pair interactions. e physical situation is measurement of the grav-
itational waves emitted when the spin of massive colliding objects is aligned or anti-
aligned, resulting in a kick due to conservation of angular momentum, and then an anti-
kick related to the Ęuid response, inital spin, and trajectories.

As this is related to change in the entropy, due to the dynamical contributions men-
tioned above, it can be expressed in terms of changes in T and P in the previous section.
is is also related to the description of inertial effects due to underlying string or en-
tropic dynamics in [15]. Although this parameter is essentially just a ratio of terms in
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the Damour-Navier-Stokes, is potentially helpful for isolating situations where Ęuid de-
formation in gravity plays a predominant role.

Along with the shear viscosity to entropy ratio 4.49, we also have the Reynolds num-
ber, which characterizes inertial-dominated Ęuid turbulence.

Because we have a precise correspondence between the behavior of Ęuids and gravity,
where we can both restrict to a hypersurface and obtain thermal and Ęuid equations, or
start with Ęuid or thermodynamics and recover the Einstein equations, it is possible to
ask a variety of interesting questions that explore these relations. For instance; given phe-
nomena in the Navier-Stokes equations, what the corresponding behavior on the gravi-
tational side? A prime example of such a phenomenon is turbulence in the Navier-Stokes
equations, and its generalization to intrinsic turbulence in gravity.

In Ęuids, one has the Reynolds number characterizing regimes where turbulence typ-
ically occurs.

𝑅௘ = 𝑣𝐿/𝜈. (4.68)

is is essentially the ratio of inertial to viscous forces, given a particular length scale
of interest. Inertial forces in the Navier-Stokes are on the diagonal in the stress-energy
tensor, and in their relativistic generalization are proportional to the expansion scalar 𝜃.
Viscous forces are symmetric and trace free, i.e. shear forces.

erefore, the gravitational generalization of the Reynolds number is approximately

𝑅௚ =
𝜃
𝜎ଶ , (4.69)

which is similar to the above-mentioned slowness parameter. InRindler space, the growth
in the gravitational Reynolds number mirrors the expansion scalar; close to the horizon
inertial forces dominate, potentially indicating the possibility of ''turbulent'' underlying
dynamics near the horizon. e relation of the above to conformal Ęuids is also a still-
open topic.
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5 Timelike Surfaces

Rather than repeating the Gauss-Codazzi approach discussed on null surfaces, I will use
the Israel junction conditions on a timelike hypersurface to extend the Ęuid and thermal
properties of null horizons to the stretched horizon of the membrane paradigm.

5.1 A Stretched Horizon

e stretched horizon is a timelike hypersurface located just outside the null horizon, at
some proper distance 𝜌 > 0. Like the true horizon, the stretched horizon obviates the
need to consider anything beyond itself. However, because this surface is timelike, it has
the advantage of allowing dynamical evolution, and it naturally truncates short distance
inĕnities, which are generally assumed not exist in a correct theory of quantum gravity.

5.2 Stretched Horizon Dynamics

By using the Israel junction conditions, we can treat the stretched horizon as a thin shell
of matter. It is relatively straightforward to examine dynamics, indeed, most of the heavy
liing is done by the formalism.

Proceeding immediately from the assumption of a distribution of matter with a dis-
continuous extrinsic curvature across the stretched horizon, as in 2.31, we have essen-
tially two options.

8𝜋𝑆ఓఔ = (𝐾ା
ఓఔ − 𝐾ାℎఓఔ) − (𝐾ି

ఓఔ − 𝐾ିℎఓఔ). (5.1)

We can make the physically-correct assumption that there is no surface stress-energy
tensor at the horizon, set the above 𝑆ఓఔ to zero and equate the extrinsic curvature above
and below the horizon, in which case this approach is not particularly useful. Alterna-
tively, we can use the stress-energy tensor to account for energy which has crossed the
horizon. Here we select the surface stress-energy tensor to annul the interior extrinsic
curvature terms. i.e.

8𝜋𝑆ఓఔ ≡ 𝐾ା
ఓఔ − 𝐾ାℎఓఔ . (5.2)

is must also satisfy the Bianchi identity on the stretched horizon

∇ఈ𝑆ఈఓ + [𝑇ఓே] = 0, (5.3)

with 𝑇ఓே the tangent-normal component.
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In the following we denote Σ = 𝑆଴଴ the energy component, and the momentum
density as Π = 𝑆଴஺. Just as with the Gauss-Codazzi equations, the Bianchi constraint
implies energy and momentum conservation equations on the stretched horizon. We
have an energy constraint

∇ఈ𝑆ఓఈ = −𝑇ఓேା , (5.4)

where the right hand side is the energy Ęux from the stretched horizon into the bulk.
Changing indices to the tangential direction

∇ఈ𝑆஺ఈ = −𝑇஺ேା . (5.5)

We can express these two conservation laws as evolution equations for the energy density
andmomentumdensity, in amanner reminiscent of the previously considered null cases.

e energy equation is

ℒ௡(Σ) + 𝜃Σ = − 𝜅
8𝜋𝜃 −

𝜃ଶ
16𝜋 + 𝜎ଶ

8𝜋 + 𝑇ఈఉ𝑛ఈ𝑛ఉ (5.6)

and the momentum equation is

ℎఓ஺ℒ௡(Πఓ) + (𝜎஻஺ +
1
2𝜃ℎ

஻
஺)Π஻ + 𝜃Π஺ = −∇஺(

𝜅
8𝜋 − 𝜃

16𝜋) + ∇஻
𝜎஻஺
8𝜋 + 𝑇ఈఉ𝑛ఈℎఉ஺ . (5.7)

5.3 Scaling Symmetry in the Navier-Stokes Equations

Here we begin with the Navier-Stokes equations in the form

𝜕௧𝑣௜ − 𝜂𝜕ଶ𝑣௜ + 𝜕௜𝑃 + 𝑣௝𝜕௝𝑣௜ = 0. (5.8)

e close connection between Ęuid and thermal behavior may also be seen by exam-
ining the scaling symmetry in the Navier-Stokes, and considering these as perturbations
to a system in thermal equilibrium, which in this case is general relativity.

e Navier-Stokes equations obey a non-relativistic scaling symmetry that may be
expressed in the ansatz:

𝜕௜ → 𝜖𝜕௜ , 𝜕௧ → 𝜖ଶ𝜕௧, 𝑣௜ → 𝜖𝑣௜ , 𝑃 → 𝜖ଶ𝑃 (5.9)

A family of solutions for the pair (𝑣௜ , 𝑃)may be parametrized by 𝜖

𝜕௜𝑣ఢ௜ − 𝜂𝜕ଶ𝑣ఢ௜ + 𝜕௜𝑃ఢ + 𝑣ఢ௝𝜕௝𝑣ఢ௜ = 0. (5.10)
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Figure 5.1: [63]

e limit 𝜖 → 0 is a hydrodynamic limit, and as we are doing a derivative expansion
essentially any ''well-behaved'' theory will then yield Ęuid behavior. For the case of Ein-
stein's equations, which we saw earlier arise as a thermodynamic equation of state, this
can be interpreted as Ęuctuations about thermal equilibrium. It is interesting to consider
that in general a Ęuid in thermal equilibrium is typically composed of a large number
of interacting particles, and as we know that such a description is dual to gravity, this
offers the intriguing possibility that general relativity emerges from an as yet unknown
underlying theory.

5.4 Rindler Fluids

Consider the Einstein equations with the stress-energy tensor expressed in terms of a
Brown-York tensor on a hypersurface

𝐺ఓఔ = 8𝜋𝐺𝑇ఓఔ, (5.11)

with the Brown-York tensor given by

𝑇ఓఔ ≡
1

8𝜋𝐺(𝐾ℎఓఔ − 𝐾ఓఔ). (5.12)

Perturbing the inducedmetric ℎఓఔ, via the Ęuid ansatz, will imply constraints of the form

𝜕ఓ𝑇ఓఔ = 0 (5.13)

on the stress-energy tensor to each order 𝜖 in its expansion.
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e constraint to order 𝒪(𝜖ଶ) is incompressibility of the Navier-Stokes, 𝜕௜𝑣௜ = 0. At
𝒪(𝜖ଷ), we recover the Navier-Stokes equations.

𝜕௧𝑣௜ − 𝜂𝜕ଶ𝑣௜ + 𝜕௜𝑃 + 𝑣௝𝜕௝𝑣௜ = 0. (5.14)

We use the Rindler metric in ingoing coordinates:

𝑑𝑠ଶ = −𝑟𝑑𝑡ଶ + 2𝑑𝑡𝑑𝑟 + 𝑑𝑥௜𝑑𝑥௜ . (5.15)

e induced metric is Ęat, and on the stretched horizon at radius constraint 𝑟 = 𝑟ு.
Following the approach in [63], we applying diffeomorphisms to obtain a general metric
before applying the Ęuid ansatz. To this end, we require the form for a boost between
two non-orthogonal axes:

𝑡 → 𝛾(𝑡 − 𝛽௜𝑥௜

√𝑟ு
) (5.16)

𝑥௜ → 𝑥௜ − 𝛾 𝛽௜

√𝑟ு
𝑡 +

(𝛾 − 1)𝛽௜𝛽௝
𝛽ଶ 𝑥௝ (5.17)

while a translation by 𝑐 is:

𝑟 → 𝑟 − 𝑐 (5.18)

𝑡 → ቆ1 − 𝑐
𝑟ு
ቇ
ିଵ/ଶ

𝑡. (5.19)

Applying these general transformations causes the metric to deform as

𝑑𝑠ଶ = 𝑑𝑡ଶ
1 − 𝑣ଶ/𝑟ு

ቆ𝑣ଶ − 𝑟 − 𝑐
1 − 𝑐/𝑟ு

ቇ + 2𝛾𝑑𝑡𝑑𝑟
ඥ1 − 𝑐/𝑟ு

− 2𝛾𝑣௜𝑑𝑥௜𝑑𝑟
𝑟ுඥ1 − 𝑐/𝑟ு

+ 2𝑣௜𝑑𝑥௜𝑑𝑡
1 − 𝑣ଶ/𝑟ு

ቆ 𝑟 − 𝑐
𝑐 − 𝑟ு

ቇ

+ ቆ𝛿௜௝ −
𝑣௜𝑣௝

𝑟ଶு(1 − 𝑣ଶ/𝑟ு)
ቆ 𝑟 − 𝑟ு
1 − 𝑐/𝑟ு

ቇቇ𝑑𝑥௜𝑑𝑥௝ . (5.20)

e Ęuid pressure is identiĕed as

𝑝 = 1
√𝑐 − 𝑟ு

, (5.21)

and the Ęuid velocity is

𝑢ఓ = 1
√𝑐 − 𝑟ு

(1, 𝑣௜). (5.22)
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Now applying the Ęuid ansatz to the pressure and velocity, we have that

𝑣௜ → 𝑣଴ + 𝜖𝑣௜ = 𝜖𝑣௜ (5.23)

𝑃 → 𝑝଴ + 𝜖ଶ𝑃 = 1
√𝑟ு

+ 1
𝑟ଶ/ଷு

𝜖ଶ𝑃 (5.24)

Leading to the metric

𝑑𝑠ଶ = −𝑟𝑑𝑡ଶ + 2𝑑𝑡𝑑𝑟 + 𝑑𝑥௜𝑑𝑥௜

− 2𝑣௜ ቆ1 −
𝑟
𝑟ு
ቇ𝑑𝑥௜𝑑𝑡 − 2𝑣௜

𝑟ு
𝑑𝑥௜𝑑𝑟

+ ቆ1 − 𝑟
𝑟ு
ቇቆ(𝑣ଶ + 2𝑃)𝑑𝑡ଶ +

𝑣௜𝑣௝
𝑟ு

𝑑𝑥௜𝑑𝑥௝ቇ + ቆ𝑣
ଶ + 2𝑃
𝑟ு

ቇ𝑑𝑡𝑑𝑟

− 𝑂(𝜖ଷ) (5.25)

Inserting this into

𝑇ఓఔ =
1

8𝜋𝐺(𝐾ℎఓఔ − 𝐾ఓఔ), (5.26)

We have that

𝑇ఓఔ𝑑𝑥ఓ𝑑𝑥ఔ =
1
√𝑟ு

ቆ(−𝑣௜𝑑𝑡 + 𝑑𝑥௜)ଶ +
𝑣௜𝑣௝ + 𝑃𝛿 − 2𝑟ு𝜕௜𝑣௝

𝑟ு
𝑑𝑥௜𝑑𝑥௝ቇ

+ 𝑂(𝜖ଷ) (5.27)

Now we can check that to 𝑂(𝜖ଶ) the Bianchi identity gives an incompressibility con-
dition

𝜕ఓ𝑇ఓ଴ = 𝑟ଶ/ଷு 𝜕௜𝑣௜ = 0 (5.28)

and to 𝑂(𝜖ଷ) we recover the Navier-Stokes equations

𝜕ఓ𝑇ఓ௜ = 𝑟ଶ/ଷு (𝜕௧𝑣௜ − 𝜂𝜕ଶ𝑣௜ + 𝜕௜𝑃 + 𝑣௝𝜕௝𝑣௜) = 0. (5.29)

emodern view of themembrane paradigm is perhaps best expressed locally in Rindler
space, where consistency with the Ęuid/gravity correspondence of string theory, and its
applicability to near horizon black holes and cosmological spacetimes such as de Sitter
and anti-de Sitter are apparent.
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5.5 Relativistic Fluids and Entropy Currents

e primary constraints for relativistic Ęuid dynamics are the conservation of the stress-
energy tensor

𝜕ఓ𝑇ఔఓ = 0, (5.30)

and the equation of continuity, expressing conservation of the number of particles,

𝜕ఓ𝑛ఓ = 0. (5.31)

Here 𝑛ఓ = 𝑛𝑢ఓ is the particle Ęux 4-vector, with 𝑛଴ the number density of particles per
volume and 𝑛௜ the 3ௗ particle Ęux vector.

One can transform these constraints into a statement on the entropy of the system
by using the thermodynamic relation 𝑑𝑄 = 𝑇𝑑𝑆; the entropy current then comes by
projecting the stress-energy conservation equation along a 4-vector 𝑢ఓ and using the
equation of continuity. e entropy current will then give us a conserved Ęow of entropy
along a 4-vector. 4

As an example of how this works in practice, consider an ideal relativistic Ęuid with

𝑇ఔఓ = (𝜌 + 𝑃)𝑢ఓ𝑢ఔ + 𝑃𝜂ఔఓ.

Conservation of the stress-energy tensor gives

𝑢ఓ𝜕ఔ((𝜌 + 𝑃)𝑢ఔ) + (𝜌 + 𝑃)𝑢ఔ𝜕ఔ𝑢ఓ + 𝜕ఓ𝑃 = 0.

Projecting this along 𝑢ఓ and using the fact that 𝑢ఓ𝜕ఔ𝑢ఓ = 0,

𝑢ఓ𝜕ఔ𝑇ఔఓ = −𝜕ఔ((𝜌 + 𝑃)𝑢ఔ) + 𝑢ఓ𝜕ఓ𝑃 = 0.

We can incorporate the particle Ęux 𝑛ఔ = 𝑛𝑢ఔ,

𝜕ఔ ቆ
𝜌 + 𝑃
𝑛 𝑛𝑢ఔቇ − 1

𝑛𝜕ఓ(𝑃)𝑛𝑢
ఓ = 0,

and then apply the equation of continuity 𝜕ఔ(𝑛𝑢ఔ) = 0:

𝜕ఔ ቆ
𝜌 + 𝑃
𝑛 ቇ𝑛𝑢ఔ − 1

𝑛𝜕ఓ(𝑃)𝑛𝑢
ఓ = 0

𝑛𝑢ఔ ቈ𝜕ఔ ቆ
𝜌 + 𝑃
𝑛 ቇ − 𝜕ఔ𝑃

𝑛 ቉ = 0.

4If the stress-energy tensor is instead projected perpendicular to 𝑢ఓ , then in this case one obtains the
relativistic generalization of Euler's equation.
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Here ଵ
௡ ≡ ୼vol

# of particles is the molecular volume of the material.We rewrite 𝑑𝑄 = 𝑇𝑑𝑆 as

𝑑 ቆ𝜌 + 𝑃
𝑛 ቇ − 𝑑𝑃

𝑛 = 𝑇𝑑 ൬𝜎𝑛൰ ,

with 𝜎 the entropy per unit proper volume. is implies that the expression in brackets
above is equivalent to 𝑑𝑄, giving

𝑛𝑢ఔ ቈ𝜕ఔ ቆ
𝜌 + 𝑃
𝑛 ቇ − 𝜕ఔ𝑃

𝑛 ቉ = 𝑛𝑢ఔ𝑇𝜕ఔ ൬
𝜎
𝑛൰ = 0.

en rearranging the right-hand side and applying the equation of continuity gives a
conserved entropy current.

𝑢ఔ𝜕ఔ ൬
𝜎
𝑛൰ = 𝑢ఔ ቈ𝜕ఔ(𝜎𝑢ఓ)

1
𝑛ఓ −

𝑛
𝑛ఈ𝑛ఈ

𝜎𝑢ఓ𝜕ఔ(𝑢ఓ)቉

= 𝑢ఔ𝜕ఔ(𝜎𝑢ఓ)
1
𝑛ఓ

= 𝑢ఔ𝜕ఔ(𝜎𝑢ఓ)
1
𝑛ఓ𝛿ఓఔ

= 1
𝑛𝜕ఔ(𝜎𝑢

ఔ)
⇒ 𝜕ఔ(𝜎𝑢ఔ) = 0. (5.32)

Using Einstein's equations we can rewrite conservation of the stress-energy tensor
instead as conservation of the Einstein tensor 𝜕ఓ𝐺ఔ

ఓ = 0. e entropy current in this
case takes on the interesting interpretation of being expressed in terms of the spatial
curvature. Since we are able to link the entropy to Hawking's area theorem 4.7, it follows
that the entropy current is linked to a corresponding geometric area current.

5.6 Entropy as the Noether Charge

Wald's "Black Hole Entropy is Noether charge" [79] is based on the observation that
Noether's theorem links spacetime symmetries with conserved currents. We use this
to link time symmetry with conservation of energy, translation symmetry with conser-
vation of momentum, angular symmetry with conservation of angular momentum, and
so on. Wald makes the observation that since the black hole entropy is proportional to
its surface area, the surface area is related to its mass, the mass related to its energy, and
the energy is a conserved Noether charge, it follows that the entropy can also be derived
as a Noether charge with respect to a spacetime symmetry. Since black holes (and causal
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Figure 6.1: Red curve: e Damour-Navier-Stokes equations and Raychaudhuri equation result
from projecting the Ricci tensor onto the horizon. e Raychaudhuri equation leads to 𝛿𝑄 =
𝑇𝑑𝑆, and the Damour-Navier-Stokes evolves 𝛿𝑊 = Ωு𝛿𝐽 to the Einstein equations.
Yellow curve: 𝛿𝑄 = 𝑇𝑑𝑆, and the Navier-Stokes equations are obtained on timelike hypersurface
using either the Israel junction condition or the Gauss-Codazzi equations. e Navier-Stokes
equations can also be viewed as arising via hydrodynamic scaling.
Blue curve: Starting from𝑑𝑄 = 𝑇𝑑𝑆 on𝑉 = 0 and evolving𝑇𝑑𝑆with theRaychaudhuri equation
yields Einstein's equations in the bulk.

horizons) are in general dynamical, the Noether charge should be too, and this gives an
interesting way of approaching it. When dealing with dynamics, an entropy current is
associated both with changes in the horizon area and the Noether current.

6 Conclusions

eprinciple result of this thesis is likely the generalization of Jacobson's thermal deriva-
tion of general relativity [10] to include a component on the spatial 2-surface. is is ef-
fectively evolving the ĕrst law of black hole thermodynamics backwards in Rindler space
by using the Damour-Navier-Stokes equation to obtain the ĕeld equations. It also pro-
vides a connection to the Bekenstein-Hawking entropy (a similar approach is used in [8]
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), and allows us to interpret (with inspiration from [15]) the horizon Ęuid and pressure
as an entropic gravitational force 𝑇𝑑𝑆 = −𝑃𝑑𝐴.

We observe Ęuid dynamics in general relativity because gravity is thermal, and per-
turbations to systems in thermal equilibrium typically cause Ęuid behavior. is is the
situation with gravity; perturbations on the 2-sphere, orthogonal to the null directions,
obey the Damour-Navier-Stokes equation.

ere is a deep relationship between turbulence on membranes, conformal ĕeld the-
ory, and entanglement entropy. I will explore this in greater detail in the future.
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