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Abstract. The canonical approach is a powerful tool to circumvent sign problem in
LQCD. Although it has its own difficulties it provides opportunity to determine QCD
phase transition line. Using improved Wilson fermions we calculated number density
at nonzero imaginary chemical potential for confinement and deconfinement phases, re-
stored canonical partition functions Zn and did extrapolation into the real chemical po-
tential region. We computed the higher moments of the baryon number including the
kurtosis, and compared our results with information from relativistic heavy ion collision
experiments.

1 Introduction

Many studies have tried to reveal the properties of strongly interacting quark-gluon/hadron matter
from experimental and phenomenological analyses of high-energy heavy-ion collisions [1–4]. It is
expected that these studies will lead to understanding of the phase diagram in the temperature - baryon
density plane, which is also looked for in cosmological research. The first principle calculations,
based on lattice QCD, have a potential to provide reliable fundamental information in this active area
of research. However, to obtain this information, we must first overcome the “sign problem”, which
is described below.

The lattice QCD is a simulation study based on the grand canonical partition function,

ZGC(µ, T,V) =
∫
DU(det∆(µ))N f e−S G . (1)

where µ is the chemical potential. Here det∆ is the fermion determinant satisfying the relation

[det∆(µ)]∗ = det∆(−µ∗). (2)

Consequently, when µ is nonzero and real, det∆ is complex, and when µ is pure imaginary or zero,
det delta is real
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In Monte Carlo simulations, the gluon fields, U, are generated with the probability proportional
to the integrand in Eq. (1), and therefore, if det∆ is complex, the simulations cannot be conducted. If
we separate out the phase factor, i.e. rewrite the integrand as

(
|(det∆)|eiθ

)N f
e−S G (3)

and include only the absolute value into the probability then the observables include the phase and
oscillate. This makes the simulation practically impossible, and is called the “sign problem”.

In order to circumvent this obstacle, many approaches have been pursued, see [5] for recent re-
view. In recent publications [6–9] where higher order cumulants were evaluated for nearly physical
quark masses, mostly Taylor expansion method was employed and simulations were performed at
zero chemical potential. Monte Carlo simulations for pure imaginary µ are free from the complex
measure problem, as can be seen from Eq. (2). The question is how can one extract data for real µ?

The grand canonical partition function is related to the canonical partition function, ZC(n, T,V),
as follows:

ZGC(µ, T,V) = Tr (e−
Ĥ−µN̂

T ) =
∞∑

n=−∞
〈n| e− Ĥ

T |n〉e
µn
T

=

∞∑
n=−∞

ZC(n, T,V)e
µn
T ∼

nmax∑
n=−nmax

Znξ
n , (4)

where ξ = eµ/T is the fugacity, N̂ is an operator of a conserved quantum number such as a baryon
number or electric charge and we introduced abbreviation Zn for ZC(n, T,V). In the real simulations,
we must truncate the fugacity expansion. In this letter, we are mainly concerned with the baryon
number case, and we write the chemical potential µB.

For imaginary µB (µB = iµI and θI = µI/T ), we can calculate Zn by the inverse Fourier transfor-
mation [10] as

Zn =

∫ 2π

0

dθI
2π

e−inθI ZGC(µB = iθIT, T,V). (5)

Note that Zn = 〈n| e−
Ĥ
T |n〉 ≥ 0 does not depend on µB, and therefore one can evaluate the grand

canonical partition function, ZGC , in Eq.(4) for any µB (imaginary or real) once Zn are known.
After the pioneering work of A.Hasenfraz and Toussant [10], many approaches in this direction

were done [11–14].
The formula Eq.(4) is exact, and in [15], it is proved that on the finite lattice, ZGC is expressed as

a finite series of the fugacity expansion
Now we have a route from the imaginary to the real chemical potential regions:

• Step 1: Using Eq. (5), we calculate Zn from ZGC computed at the imaginary µB.

• Step 2: Using these Zn in Eq. (4), we construct ZGC for the real µB.

To search for the phase transition signals one can use the moments λm, which can be also extracted
from results of the heavy ion collision experiments:

λm(µB) =
(
T
∂

∂µB

)m
log ZGC =

(
ξ
∂

∂ξ

)m
log


nmax∑

n=−nmax

Znξ
n

 . (6)

Especially, λ2 (susceptibility), λ3, and λ4, provide useful information on the phase structure. In this
paper we investigate the potential of the canonical ensemble approach to reveal the QCD phases.
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ξ
∂
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)m
log
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Znξ
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Especially, λ2 (susceptibility), λ3, and λ4, provide useful information on the phase structure. In this
paper we investigate the potential of the canonical ensemble approach to reveal the QCD phases.

2 Computation of Zn

We can evaluate the baryon number density nB directly, for any value of the imaginary chemical
potential, using standard lattice QCD algorithms:

nB

T 3 = i
N f N3

t

N3
s ZGC

∫
DUe−S G (det∆(µI))N f Tr

[
∆−1 ∂∆

∂µI/T

]
. (7)

Note that the number density in imaginary chemical potential regions is pure imaginary.
On the other hand, the number density is connected with the canonical partition function, Zn as

nB =
λ1

V
=

T
V
∂

∂µB
ln ZGC(µB, T ) =

i
(aNs)3

2
∑nmax

n=1 Zn n sin(nθI)

Z0 + 2
∑nmax

n=1 Zn cos(nθI)
, (8)

where we used Eq. (4) and relation Zn = Z−n. The direct way to extract the canonical partition
functions Zn from the lattice data for nB is to fit it to Eq. (8) with Zn as fitting parameters. We tried to
do it and realized that the fit goes quite unstable and some Zn’s are negative. The difficulty of fitting
comes from the drastic cancellations in both the numerator and denominator in Eq.(8).

More promising way is to construct the grand canonical partition function from nB. Integrating
number density over imaginary µI , at fixed temperature T , we have

ZGC(θI)
ZGC(0)

= exp
(
V
∫ θI

0
d(iθ̃I) i Im[nB(θ̃I)]

)
= exp

(
−V
∫ θI

0
dx nBI(x)

)
, (9)

where we use the fact that nB is pure imaginary and denote nBI = Im nB. We calculate Zn by inserting
this ZGC into Eq (5). Then one can construct ZGC as ZGC =

∑
Znξ

n at real µB. This procedure provides
a new method to study physics in the real chemical potential region via Monte Carlo simulations of
the pure imaginary chemical potential [16, 17].

There is no Ansatz until this point; therefore, Eq. (9) is exact and theoretically the calculation
for any value of the chemical potential is possible. In practice, however, we must introduce some
assumptions, and consequently, the reliable range of the real chemical potential values is restricted.

One way to evaluate the right hand side in Eq. (9) is to calculate the number density for many
values of µI and complete the numerical integration. In order to obtain a reliable result, we need
hundreds of different µI values, but this is computationally expensive task. In this letter we employ
a simple approach - we fit the numerical data for nB and use the fit function in Eq. (9). Thus the
idea is to fit the number density as a function of µI to Ansatz Eq. (10) and (11) presented below,
compute the partition function for imaginary µB from Eq.(9), then compute Zn using Eq. (5) This
idea is a continuation of another concept Refs. [18–20] - fit the data at imaginary µB and do analytical
continuation to the real axis.

The authors of Ref. [8] have recently reported a thorough analysis. In Refs. [18–20], the authors
pointed out that the number density for the imaginary chemical potential is well approximated by a
Fourier series at T < Tc,

nBI(θI)/T 3 =

kmax∑
k=1

f3k sin(kθI), (10)

and by a polynomial series at T > Tc
1,

nBI(θI)/T 3 =

kmax∑
k=1

a2k−1θ
2k−1
I . (11)

1 At high temperature, there is a Roberge-Weiss phase transition line, on which nBI becomes singular. This fact intruduces
uncertainty for the fitting. We discuss this problem in the Lee-Yang zero study in near future.
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In Refs. [16, 17] we confirmed these conclusions with higher precision. Therefore in the present study
in computation of ZGC(θ)/ZGC(0) we use parameterizations Eqs. (10) and (11). We obtained the best
fits for kmax = 2 with f3 = 0.0871(3) and f6 = −0.00032(27) (χ2/do f = 0.93) at T/Tc = 0.93,
a1 = 1.5570(7), a3 = −0.3300(13) (χ2/do f = 0.67) at T/Tc=1.35 for our data nBI . We also studied
systematic error due to parametrization function - for confinement phase we parametrized the number
density not only with Fourier anzats but also with polynomial and varied kmax.
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Figure 1. The lattice number density fits to different
functions.

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7

n
B
/T

3

µ/T

Lattice 4x16
3
, T/Tc = 0.93

g1(x) = f1 sinh(3x)

g2(x) = f1 sinh(3x) + f2 sinh(6x)

g3(x) = f1 x - f2 x
3
 + f3 x

5

g4(x) = f1 sinh(x) / (1 + f1 cosh(3*x) ) 

g5(x) = f1 sinh(x) / (1 + f2 cosh(3*x) ) 

Figure 2. Analytical extrapolation of number density
fitting functions to real chemical potential region.

To estimate the statistical error, we apply a version of a bootstrap method: Here one bootstrap
sample consists of a set of standard bootstrap samples of the number density created for every value
of µI . On each bootstrap sample we estimate nB with Eq. (10) (T < Tc) or Eq. (11) (T > Tc)
(coefficients f3k or a2k−1 are different on each sample), and calculate Zn according to Eqs. (9) and (5).
Then, using these Zn and Eq. (6) with number of terms restricted to nmax, we calculate observables.

It is important to note that the baryon number density fitted to Eqs. (10) or (11) can be analytically
continued to the real chemical potential values - it was previously studied in Refs. [16, 20]. Here we
also repeat this procedure to illustrate drawback of this approach.

As it is shown at figures 1 and 2 the number density can be fitted to different functions at imaginary
µ but when we extrapolate them to real region they give substantially different results for high enough
µ. There is no strict argument how to choose correct parametrization function so reliable µ range
(where all fitting function predict same results) can be small. As one can see from Fig.2 the systematic
error due to uncertainty in the choice of the fitting function is small for muB/T < 3. But there might
be other suitable fitting functions which introduce even larger systematic error for real mu.

In opposite, the canonical approach provides us with useful information on the range of reliability
at real mu. Because of Zn =< n|e− Ĥ

T |n >, Zn must be positive. If Zn become negative for some n > nmax

it means that our Ansatz used for Zn calculation can not describe physics for these n. In the statistical
analysis as described above we used only positive Zn. It is important to note that in each Bootstrap
sample nmax can be different due to slightly different coefficients in Ansatz.

In the Fig. 3 and 4 one can see Zn/Z0 calculated with different number of terms kmax in Eq. (10)
and (11). First of all, for small n all parametrization functions give same Zn but for higher n they
deviate. For polynomial fits starting from some large n = nmax value the sign of Zn starts to alternate
while the absolute value changes very slowly. We think these fits should be rejected since Zn should
be positive. For fits (10) with even kmax similar thing happens: starting from some nmax there appear
alternation of the sign of Zn. The difference from the polynomial fit is that the sign alternate not at
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Figure 3. Normalized Zn as a function of n obtained for different Ansatz (Eq. (10) and (11)) with different
number of terms - kmax . Temperature T/Tc = 0.93 (Confinement). In the legend number is equal to kmax, ’sin’
denotes Fourier type fits Eq. (10), ’pol’ denotes polynomial fits Eq. (11))

every step in n as seen in Fig. 3 for kmax=10. We thus conclude that the Fourier fits with even kmax

should be also avoided or used for the range of n values below respective nmax.
It is important to note that all polynomial functions give small nmax ≈ 50 despite the fact that

they also give good fit of our data. We see from Figs. 3 and 4 that dfferent number of terms in
Fourier series give rise to different Zn which agree within error bars. The inceasing of number of
kmax increases errors of coefficients in (10) and as a result errors of Zn are also increased. We think
the natural choice for this temperature is kmax = 2. In addition Zn analisys agreeds with known fact
that in the confinement phase baryon density is well described by Hadron Resonance Gas model and
therefore is approximated by sum of sines.

3 Moments of the baryon number density

In Ref. [21], the canonical partition functions, Zn, were extracted from the RHIC experiments data.
With these Zn, we construct moments of the baryon number density for different RHIC energy values
and compare with our results.

In the relativistic heavy-ion collision experiments, λ2/λ1 is expected to be good indicators for
detecting the QCD phase transition [2, 22]. In Fig. 5 we show the ratio λ2/λ1 as calculated by the
integration method described above together with those extracted from the RHIC STAR data.
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Figure 4. Zoomed Fig. 3.

We see from the Fig.5 that at T > Tc our results deviate from RHIC data, while the confinement
phase results can be consistent with the experimental data with exception for

√
sNN=11.5. Estimated

temperature at
√

sNN=11.5 in Ref.[23] is significantly below other energy data.
Note that in Ref. [21] Zn were constructed from the proton multiplicity data, not the baryon mul-

tiplicity. Therefore, the results should be considered as a proxy for the real baryon number moments.
Nevertheless, in the confinement regions we see very good agreement for λ2/λ1 between the lattice
calculation and those estimated from RHIC data. It is important since the fact that for RHIC data
we have only small Zn number, i.e., nmax reliability range for it is much smaller, we estimatre it as
µreliable/T ∼ 1.2 − 2.5 depending on

√
sNN .

4 Concluding Remarks

In this letter, we study an approach for revealing the QCD phase structure using lattice QCD simula-
tions. Prior to this study, it was believed that this was impossible because of the sign problem; only
small density regions could be studied by extrapolating from the data at µB = 0. However, all relevant
information on the QCD phase at finite baryon density is contained in the imaginary chemical poten-
tial regions, 0 ≤ µI/T ≤ π. The question is how to map this information to the real chemical potential.
Eq. (4) provides a possible solution, because Zn can be calculated in the imaginary chemical potential
regions. Since numerical Monte Carlo simulations provide results with finite accuracy, we should find
practical methods which work.
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We parametrize the number density in the imaginary chemical potential with the Ansatz (the
Fourier series in the confinement and polynomial series in the deconfinement) and integrate them
to get the grand partition function. Zn and other observables are then calculated from them.

This method produces Zn up to nmax which is determined by used Ansatz and current statistics.
However, this is not the first principle calculation due to introducing an assumption to the number
density, analyzing nmax behavior we can estimate reliability of this assumption.

On the other hand, better interpolation procedure (cubic spline for example) or numerical inte-
gration rather than any Ansatz release our data from assumptions. This study will be reported in
future.

We studied how errors of calculations made at the imaginary chemical potential propagate into
errors at the real one. We also found range of reliability of our results by imposing the condition that
Zn have to be positive.

We then investigate whether we can estimate λ2/λ1. The results are consistent with the values
estimated from the RHIC experiments as shown in Figs. 5 and ??. This is very encouraging. More
realistic simulations with the physical quark mass and small lattice spacing, may even predict the
temperature of the experimental data.

When we map the information from pure imaginary to real chemical potential by the canonical
method, the reliable regions for baryon density is µreliable/T ∼ 4 − 5 at T/Tc = 0.93 and µreliable/T ∼
2 − 2.5 at T/Tc = 1.35. This limitation comes from the finite numbers of Zn as a consequence of
polynomial (in the deconfinement phase) /Fourier (in the confinement phase) anzats. They can be
increased by increasing statistics.
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