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Abstract Starting out with the balance equations for energy-momentum, spin,
particle and entropy density, an approach is considered which represents a frame-
work for special- and general-relativistic continuum thermodynamics. A general
entropy density 4-vector, containing particle, energy-momentum, and spin density
contributions, is introduced. This makes possible, firstly, to test special entropy
density
4-vectors used by other authors with respect to their generality and validity and,
secondly, to determine entropy supply and entropy production. Using this en-
tropy density 4-vector, material-independent equilibrium conditions are discussed.
While in literature, generally thermodynamic equilibrium is determined by intro-
ducing a variety of conditions by hand, the present approach proceeds as follows:
For a comparatively wide class of space–time geometries, the necessary equilib-
rium conditions of vanishing entropy supply and vanishing entropy production
are exploited. Because these necessary equilibrium conditions do not determine
the equilibrium, supplementary conditions are added systematically motivated by
the requirement that also all parts of the necessary conditions have to be fixed in
equilibrium.

Keywords General relativistic thermodynamics, Relativistic entropy,
Relativistic thermodynamical equilibria, Spin in thermodynamics

1 Introduction

The present paper is dealing with equilibrium in an extended version of the so-
called relativistic Theory of Irreversible Processes (rTIP). In its original formula-
tion given by Eckart [1], this theory (or better: framework) is based on relations
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that are generated by a transfer of the non-relativistic field formulation of Irre-
versible Thermodynamics into a Lorentz-covariant form from which its general-
covariant version can be obtained as usual. The primary ingredients of the co-
variant theory are the basic dynamical variables: (symmetric) energy-momentum
tensor T ki, particle flux Nk, and entropy vector Sk, satisfying the balance relations

Nk
·;k = 0, T ki

··;k = 0 (1)

and the dissipation inequality

Sk
·;k ≥ 0. (2)

In literature, there are several ansatzes for the entropy vector: these are mostly
motivated by certain heuristic considerations in equilibrium thermodynamics. The
relations (1) and (2) are interpreted as a near-equilibrium framework presupposing
that the (macroscopic) concept of entropy is valid also for near-equilibrium states.
Theories of this framework diverge not only by different ansatzes for the entropy
vector, but also by different assumptions for the heat flux, for the equilibrium prop-
erties of the kinematical invariants characterizing a fluid, etc. Accordingly, there
exists a variety of formulations of rTIP today (for a review, see [2; 3; 4; 5]). In
these theories, the question concerning the definition of equilibrium states is not
always posed and, if posed, different answers occur. The only condition which is
common to all approaches is that the entropy vector is divergence-free in equilib-
rium. All these considerations are performed on the level of rTIP for the theories
of Special and General Relativity but not for relativistic gravitational theories go-
ing beyond General Relativity or beyond rTIP. Quite complete considerations of
thermodynamic equilibrium in General Relativity can be found in [6; 7], where
beside (1) and (2), Einstein’s equations are taken into account. Vanishing diver-
gence of the entropy vector implies here that the temperature vector is Killing or
conform Killing [7].1 By assuming the Onsager scheme of forces and fluxes, the
Killing-property of the temperature vector is used to distinguish between complete
and frozen equilibria [6].

However, here we are not dealing with definite complete gravitational theories
and specified matter (constitutive) equations. Rather, we are here concerned with
an extension of Eckart’s framework to the case of balance equations which firstly
are valid in Minkowski, Riemann and post-Riemann geometries, which secondly
regard spin as well as production and supply terms in the energy-momentum and
spin balances and which thirdly are not necessarily restricted to near-equilibrium
situations.

Thus for an 1-component material, we start out with the balance equations of
the particle flux 4-vector Nk, the energy-momentum tensor T ik and the spin tensor

1 The considerations made in [7] also show that the use of Einstein’s equations allows to
derive equilibrium conditions which generally are assumed to be ad-hoc. In our context, it is
of particular interest that the often made asumption of a vanishing heat flux is not justified, if
the kinematic fluid invariant “rotation” is unequal to zero. This illustrates that the equilibrium
problem cannot be solved by defining ad-hoc conditions which are only justified by certain
heuristic arguments. Rather, equilibrium conditions should be introduced in accordance with the
fundamentals of the relativistic theory under consideration.
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S··kji

Nk
·;k = 0, T ki

··;k = Gi +Ki, S··kji;k = H[ ji] +L[ ji]
2 (3)

and with the balance of the 4-entropy Sk

Sk
·;k = ϕ +σ , σ ≥ 0. (4)

As usual, the semicolon “;” denotes the covariant derivative, T ik is the energy
momentum-tensor of a material which is not necessarily symmetric with vanishing
covariant derivative, the spin tensor S··kji is skew-symmetric in the lower indices,
and ϕ and σ are the entropy supply and the entropy production, respectively. The
force Ki and the angular momentum L[ ji] are the external sources of the energy
momentum tensor and of the spin tensor.

In the balance equation for the particle flux, we omit production and supply
terms because we do not consider processes by which the particle number is not
conserved, like pair creation. Rather, we want to construct a wide framework for
competing relativistic theories of gravity and only the terms arising on the right-
hand side of the energy-momentum and spin balances model theories which are
different from general relativity theory (see below).

The supply terms Ki and L[ ji] are substitutes for cases in which the energy-
momentum tensor and/or the spin tensor do not include all fields, so that additional
fields come into account by external sources. Of course, in a field theory describ-
ing systems completely by the equations of the fundamental fields, these external
sources do not occur. If one is forced to introduce supply terms, this shows that
the theory is not field-theoretically complete. To complete it, one has to describe
the supply terms by additional fundamental fields in such a way that they can be
absorbed by the other expressions in the balances (3) [8; 9].

The Gi and H[i j] are internal source terms caused by the choice of a special
space–time and by the spin-momentum-energy coupling (SMEC). For instance in
Einstein–Cartan geometry, the Gi and H[i j] are caused by the torsion and depend as
coupling terms on the energy-momemtum and on the spin tensor. We call a theory
for which the Gi and H[i j] vanish identically SMEC-free.

In contrast to Special Relativity Theory (SRT) and Einstein–Cartan Theory
(ECT) [10; 11; 12] based on [13], General Relativity Theory (GRT), makes no
general statements on the structure of spin and spin balances, except for that a
spin tensor as an explicit source of gravity does here not occur. The spin of the
matter source has only an implicit influence on the gravitational field insofar, as the
source term in Einstein’s equations (the symmetric metrical energy-momentum
tensor), differs for different kinds of spinorial matter.

In some cases, where the total set of equations consists of Einstein’s equations
coupled to field equations of phenomenological matter, one can derive from this
set, beside the energy-momentum balance, also a spin balance. For a Weyssenhoff
fluid, particularly follows beside Ki = 0 the SMEC-term H[ik] = T[ik] [14].

The non-negative entropy production σ in (4) represents the strong formula-
tion of the Second Law of thermodynamics in field theories. The inequality

Sk
·;k−ϕ ≥ 0 (5)

2 Square brackets are also used to emphasize that the tensor is antisymmetric, L( ji) = 0, espe-
cially for H ji and L ji.
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is called the dissipation inequality.
The relations (3) and (4) are the relativistic generalization of the balance equa-

tions of non-relativistic continuum thermodynamics. In their special-relativistic
version—with vanishing spin tensor, vanishing supply terms and vanishing SMEC-
terms—they were introduced by Eckart [1] and Kluitenberg [15]. The quantities
appearing in (3) and (4) are tensors with respect to Lorentz transformations, and
the derivatives denoted by the semicolon have to be read as partial derivatives, if
one refers to inertial systems with cartesian coordinates, and as covariant deriva-
tives (with the Christoffel symbols as components of the Levi–Civita connection),
if non-inertial reference systems are considered.

In this paper, we do not assume a special theory of gravitation, but we discuss
the balance equations (3) and (4) for the general case of a curved space–time with
a given, but arbitrary background specifying metric and connection. Attention is
concentrated on the analysis of the dissipation inequality (4) from the point of
view that it has to be satisfied by any ansatz for the entropy vector. The results are
generally valid in SRT and have to be specified by additional conditions, especially
for Gi and H[i j], in the case of non-SMEC-free relativistic gravitational theories.

According to this program, we start out with the balance equations (3) and (4)
which are most general for the following reasons:

1. The balances (3) and (4) are valid in Minkowski space–time as well as in
curved space–times which are characterized by a connection defining a co-
variant derivative (i.e. they are true also in Riemann-, Riemann-Cartan-, and
metric-affine space–times),

2. The balances (3) and (4) imply external inputs (the right-hand sides of (3)
and (4)), the so-called supplies of energy-momentum, spin, and entropy, and
they imply the internal source terms caused by the spin-momentum-energy
couplimg (SMEC) depending on the chosen space–time.

3. Entropy supply and entropy production are distiguished in the entropy bal-
ance. Therefore, in contrast to other approaches, the dissipation inequality
takes the correct form (5) including the supplies.

4. By proving an identity for the entropy density 4-vector, an expression for the
4-entropy can be derived which is different from and more correct than ansatzes
in the literature.

A (material-independent) theory only based on (3) and (4) is necessarily incom-
plete in a multiple manner, namely for the supplies, the missing specification of the
state space describing the material, and due to the yet missing specification of the
considered gravitational theory. In particular, the equilibrium conditions depend
on the gravitational equations, too. For instance, as was shown for GRT [7], most
equilibrium conditions ad-hoc introduced in [6] result from Einstein’s equations.
The advantage of an
approach considered here is, that it represents a comparatively general framework
for possible relativistic continuum thermodynamics.

For solving the system of differential equations (3) and (4) in chosen ge-
ometries, constitutive (matter) equations are needed, because the balances and
field equations are valid for arbitrary, for the present unspecified materials. Here
Nk,T ik,Sk and S··lik are constitutive mappings defined on a large state space (no
after-effects) [16]

z = (gik,T
··l

ik ,n,e,sikΞk,uk, . . .), (6)
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which may contain the geometrical fields, such as the metric gik, the torsion T ··l
ik ,

and the wanted basic fields (n,e,sik,Ξk,uk) (particle number density, energy den-
sity, spin density, spin density vector and another time-like vector field uk which
is arbitrary for the present) and beyond them other fields which depend on the
considered material and which are of no interest here, because we are looking
for material-independent properties. Consequently, a special constitutive equation
will not appear in this paper.

In rTIP, stable thermodynamical equilibria are characterized by the fact, that
the temperature 4-vector is Killing [6; 17], and is (conform) Killing in General
Relativity [6; 7]. But this is only true, if T ik is symmetric and if the space–time is
SMEC-free, properties which are not valid in general and which are not presup-
posed here. Therefore the question arises and will be answered: Are there equi-
librium conditions independently of constitutive properties in the framework of a
general gravitation theory?

The paper is organized as follows: starting out with the 3-1-split of the quan-
tities appearing in (3) and (4), we derive an identity for the entropy 4-vector [18]
in Sect. 3. Using Eckart’s interpretation of the time-like vector uk as 4-velocity of
the material [1] in Sect. 4, we are formulating material-independent equilibrium
conditions in Sect. 6.

2 3-1-Split

The normalized time-like vector field uk included in the state space (6) (signature
of the metric is −2)

ukuk = a2 > 0 −→ ukuk;m = 0 (7)

is for the present arbitrary and can therefore be chosen in different ways. Here, it
is introduced for spitting the quantities into their parts parallel and perpendicular
to uk. This split allows for a special interpretation later on. By introducing the
projector belonging to (7)

hk
l := gk

l −
1
a2 ukul , (8)

we obtain as shown in [19]

Nk =
1
a2 nuk +nk, Sk =

1
a2 suk + sk, (9)

T ik =
1
a4 euiuk +

1
a2 ui pk +

1
a2 qiuk + t ik, (10)

S··lik =
(

1
a2 sik +

1
a4 u[iΞk]

)
ul + s··lik +

1
a2 u[iΞ

·l
k]. (11)

Here the following abreviations are introduced

n := Nkuk, nk := hk
l Nl , (12)

s := Skuk, sk := hk
l Sl , (13)

e := ulumT lm, pk := hk
l umT ml , qk := hk

l umT lm, t ik := hi
lh

k
mT lm (14)
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sik := S··cabha
i hb

kuc, Ξk := 2S··cabucuahb
k , (15)

s··lik := S··cabha
i hb

khl
c, Ξ

·l
k := 2S··cabhl

cuahb
k . (16)

The physical interpretation of the quantities in (12)–(16) remains uncertain, as
long as the the time-like vector field uk is not interpreted. Later on, the quantities
in (15) and (16) are recognized as follows [20]: sik is the spin density, s··lik the
couple stress, Ξk the spin density vector and Ξ l

k is the spin stress. These quantities
are not independent of each other, but they are coupled by the spin axioms [20]
which we will use later. Independently of any interpretation, the 4-entropy satisfies
an identity which is derived in the next section.

3 The entropy identity

In literature, one finds different approaches to a special- and general-relativistic
conception of entropy. Most of them is in common that entropy is described by
a 4-vector, but there are proposed different expressions for it (which generally do
not incorporate spin terms). For instance, in [2] the non-relativistic expression of
the internal energy U for constant temperature and composition is generalized

U = T S−µn (17)

(T = rest temperature, S = entropy, µ = chemical potential) which results by differ-
entiation in classical thermodynamics of discrete systems together with the Gibbs
equation in the Gibbs–Duhem equation. This yields an entropy 4-vector

Sk = µNk +
um

T
T km + p

uk

T
= µNk +

um

T

[
T km + pδ

km
]

(18)

(p = pressure).
Other authors make an ansatz for the entropy vector such that its covariant

divergence becomes a relativistic generalization of the Carnot–Clausius relation,

deS =
δQ
T

. (19)

Here “de” denotes a change caused by an external supply (see e.g. [6]). Accord-
ingly, they assume3

Sk = µNk +
um

T
T km. (20)

The procedure in this paper is quite different: we do not make ansatzes of the
entropy vector Sk, but we start out with an identity which runs as follows:

3 Independently of the special interpretation of the time-like vector field uk,
the following identity for the 4-entropy is valid:

Sk ≡
(

sk−λqk−µnk−Λ
m

Ξ
·k
m

)
+

(
µNk +ξlT kl +ζ

nmS··knm

)
, (21)

3 For the present, a vector Om is introduced which later on is identified to be equal to um/T .
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with the following abbreviations:

λ arbitrary scalar, Λ
k arbitrary tensor field of 1st order, (22)

µ :=
1
n
(s−λe−Λ

m
Ξm), ξl := λul , ζ

nm := 2un
Λ

phm
p . 3 (23)

2 The proof is easy: Starting out with the relations (9)

sk = Sk− s
n

(
Nk−nk

)
, (24)

we obtain from (8), (9)1, (14)1 and (14)3

qk = umT km− 1
a2 euk = umT km− e

n

(
Nk−nk

)
. (25)

From (16)2 follows by use of (8), (9)1 and (15)2

Ξ
·k
m = 2uphq

mS··kpq−
2
a2 uphq

mS··rpqukur

= 2uphq
mS··kpq−

1
n

Ξm

(
Nk−nk

)
. (26)

Summing up the last three equations multiplied with λ and Λ m, we obtain

sk−λqk−Λ
m

Ξ
·k
m = Sk−λumT km−2Λ

muphq
mS··kpq

+
1
n

(−s+λe+Λ
m

Ξm)
(

Nk−nk
)

(27)

which is identical to (21). ut
Consequently, the identity (21) is valid for arbitrary λ and Λ m and for all time-

like vector fields uk.
The ad-hoc chosen entropy vector (20) is in accordance with the identity (21)

by setting

Λ
m := 0, ζ

nm := 0, λ :=
1
T

, sk := λqk + µnk. (28)

But it is not quite clear, if (20) represents the most general ansatz also without
spin, since the identity (21) allows for adding a space-like vector, the first bracket
in (21). To clarify this question and for incorporating spin, we do not start out in
Sect. 5 with a specific ansatz for the entropy vector, but with the identity (21).

In contrast to the expression (20) for the entropy 4-vector, (18) is not in accor-
dance with the identity (21). If the chemical potential µ and the energy-momentum
tensor T km in (18) are the same quantities as in (21), we obtain for the spin-free
case by comparing (18) with (21) the false equation

p
uk

T
f !
= sk−λqk−µnk. (29)

Consequently, µ and T km in (18) are different from those in (21), or (18) is wrong.
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Without any restriction of generality, from (15)2, (16)2, (21) and (23) follows,
that Λ m can be chosen orthogonal to um

Λ
m .= Λ

phm
p . (30)

Later on, this choice makes an interpretation of Λ m more easy.
In the next section, we will identify the time-like uk field, thus resulting in an

interpretation of the quantities (12)–(16).

4 Eckart and Landau–Lifshitz interpretation

Two different interpretations of the uk can be found in literature: the first one is
due to Landau–Lifshitz [4], the second one due to Eckart [1].

Landau–Lifshitz choose uk as an eigenvector of the energy-momentum tensor

umT km =
e
a2 uk. (31)

By (25), this choice results in
qk ≡ 0. (32)

That means, this choice fixes 3 of the 16 free components of the energy-momentum
tensor. Because this tensor represents a constitutive mapping, (31) is introducing
a special constitutive property, a matter equation. Because we are looking for ma-
terial independent statements, we do not accept the Landau–Lifshitz choice (31)
of uk.

Eckart’s choice of uk along (9)1

uk :=
a2

n
Nk, a≡ c, or nk ≡ 0, (33)

is more general than (31): It does not restrict the energy-momentum tensor or
the spin tensor, because Nk is not a part of T ik or S··lik . A second advantage is its
illustrative interpretation: because the particle flux is purely convective and has no
conductive part, uk is according to (33) the material 4-velocity, and we obtain for
the particle number flux according to Eckart

Nk =
1
c2 nuk, (34)

an expression which is widely accepted in relativistic continuum physics.

5 Entropy balance

We now introduce Eckart’s version into the entropy identity (21)

Sk ≡ (sk−λqk−Λ
m

Ξ
·k
m )+(µNk +ξlT kl +ζ

nmS··knm), (35)

and (22) and (23) are still valid.
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In order to determine the entropy vector in accordance with this identity, one
can exploit the entropy balance (4)

Sk
;k = ϕ +σ , (36)

and by differentiating (35) and by use of the balance equations (3), we obtain

Sk
;k = (sk−λqk−Λ

m
Ξ
·k
m );k + µ,kNk +ξl ;kT kl +ζ

nm
;k S··knm

+ξl [Gl +Kl ]+ζ
nm(H[nm] +L[nm]). (37)

To interpret this balance by physics, one has to identify the supply and production
terms ϕ and σ . To this end, we refer to classical thermodynamics which defines
the entropy supply as the energy supply r times the reciprocal rest temperature

ϕ :=
r
T

. (38)

The energy supply itself is caused by the external forces Ki and by the external
moments L[ik]. Consequently, we have by definition

r := uiKi + slmΘ
[lm][ik]L[ik]. (39)

The tensor Θ [lm][ik] which connects the spin to the external moments does not
need to be specified for our purposes. Interesting is that the rest temperature T is
introduced by T = r/ϕ according to (38).

The entropy supply can be read off from (37), and a comparison with (38)
results in

ϕ = ξlKl +ζ
nmL[nm] =

1
T

uiKi +
1
T

slmΘ
[lm][ik]L[ik]. (40)

This enables one to determine λ and Λ m which were arbitrary up to now. From
(23)2 and (23)3 follows

ξi =
ui

T
= λui, (41)

ζ
[ik] =

1
T

slmΘ
[lm][ik] = 2u[ihk]

mΛ
m = uihk

mΛ
m−ukhi

mΛ
m. (42)

Multiplication of (42) with ui and taking (30) into consideration results in

λ =
1
T

, Λ
k =

1
c2

slmui

T
Θ

[lm][ik]. (43)

The vector (41) which is in accordance with the former definition (28)3 is called
the 4-temperature. The vector (43)2 which later on will play a role for formulating
the equilibrium conditions of the spin is called the temperature-spin.

After having determined the supply terms according to (41) and (42), the re-
maining terms on the left-hand side of (37) have to be considered as the entropy
production according to (36)

σ =
(

sk− 1
T

qk−Λ
m

Ξ
·k
m

)
;k

+
1
T

ulGl +
2
T

u[i
Λ

k]H[ik] + µ,kNk

+
(

1
T

ul

)
;kT kl +2(u[n

Λ
m]);kS··knm ≥ 0. (44)
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This expression includes three terms of different characters, a divergence term of
a space-like vector, the SMEC-terms and terms according to the usual flux-force
scheme [21] of the entropy production. The divergence term contains fluxes which
does not contribute to the entropy production. Therefore we define the entropy flux
by

sk :=
1
T

qk +Λ
m

Ξ
·k
m . (45)

Finally taking (45) into account, the entropy production (44) results in

σ =
1
T

ulGl+
2
T

u[i
Λ

k]H[ik]+µ,kNk +
(

1
T

ul

)
;kT kl+2(u[n

Λ
m]);kS··knm ≥ 0. (46)

The entropy follows from (35), (41) and (42)

Sk = µNk +
1
T

ulT kl +2u[n
Λ

m]S··knm. (47)

In contrast to the entropy production, the entropy does not contain SMEC-terms
which are generated by differentiation. For vanishing spin density, (47) coincides
with the ansatz (20). But (47) is a derived relation and not only a guessed ansatz.
Beyond that, it includes the spin, and also the entropy flux density (45) and the en-
tropy production density (46) follow consistently by the same procedure including
the spin.

In [6] the possibility is briefly discussed, if the ansatz (20) for the entropy
can be extended by adding a time-like vector. This possibility is excluded by the
identity (35) which allows to add only a space-like vector, the first bracket in (35).

6 Equilibrium conditions

To obtain equilibrium conditions by this quasi-axiomatic approach to relativistic
continuum thermodynamics in a consistent way, we proceed as follows: We ana-
lyze the conditions induced by vanishing entropy production density and by van-
ishing entropy supply density. Both the quantities are independent of each other
zero in equilibrium, because entropy production and entropy supply are defined
differently: Entropy supply vanishes for isolated sub-systems, whereas entropy
production does not. Taking into account that introducing isolating partitions into
an equilibrium system do not disturb its (local) equilibrium state, the entropy sup-
ply has to be zero in equilibrium. Because the entropy production describes the
irreversible behavior of the system according to the Second Law, it has to be zero
in equilibrium, too.

We call these conditions “necessary”, because without vanishing entropy pro-
duction and supply there is no equilibrium at all (“necessary” is here used as in
mathematical logic: If the necessary condition is not satisfied, the statement for
which the condition is necessary is also not satisfied). Of course, these necessary
conditions do not guarantee equilibrium. Consequently, we need “supplementary”
(additional) conditions for characterizing equilibrium which we formulate here
step-by-step. These supplementary conditions are motivated by the requirement
that quantities occurring in the necessary conditions have to be to specified for
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equilibrium without assuming special classes of materials. If the necessary con-
dition as well as the supplementary conditions are satisfied, they do not enforce
equilibrium, because there may be further supplementary equilibrium conditions
by specifying space–time and material.

We will mark both kinds of equilibrium conditions differently: the necessary
ones by •=, the supplementary ones by .=. For the present, we consider the neces-
sary conditions in the next section.

6.1 Necessary equilibrium conditions

The necessary equilibrium conditions are given by vanishing entropy production
density (46) and vanishing entropy supply density (40)

σ eq
•= 0, ϕeq

•= 0 −→ Sk
;k

eq = 0. (48)

(equilibrium quantities are marked by eq or by eq in the sequel) and vanishing
entropy flux density

sk
eq
•= 0. (49)

The implication in (48) follows from (36).
For the present, we will exploit the entropy supply density (48)2 by starting

out with (40). Because the force Ki is independent of the momentum L[ik], the part
of the necessary equilibrium conditions belonging to the entropy supply splits into
two parts and using (42)and (30), we obtain

ui
eqKi

eq = 0, 2(u[i
Λ

k])eqL[ik]
eq = 0. (50)

From (50) we read off, that for the present neither the external forces nor the
external moments have to be zero in equilibrium. Using the balance equations
(3)2,3, we obtain

ui
eq[T ki

;k −Gi]eq = 0, (u[i
Λ

k])eq[S
·· j
ik ; j−H[ik]]eq = 0. (51)

From (47) follows by (48)3

0 =
(

µNk
)eq

;k
+

(
1
T

ulT kl
)eq

;k
+2

(
u[n

Λ
m]S··knm

)eq

;k
. (52)

The Nk, T kl and S··knm are not independent of each other, because they are coupled
by constitutive equations and by the SMEC-terms. Therefore we cannot state that
each term of the sum (52) vanishes. The equilibrium condition (52) is only one
equation which cannot describe equilibrium completely. Therefore we need sup-
plementary equilibrium conditions beyond (48)and (49). These conditions will be
considered in the next section.



12 W. Muschik, H.-H. v. Borzeszkowski

6.2 Supplementary equilibrium conditions

6.2.1 Supply conditions

According to the necessary condition (50)1, the power of the external forces is
zero in equilibrium. From that one cannot conclude that the external forces vanish
themselves in equilibrium. There exist an easy criterion for testing whether the
external forces vanish in equilibrium: Starting out again with (50)1, we see that in
equilibrium the 4-component of the force is zero in the rest system, marked by R,

RK4
eq = 0. (53)

If now also the 3-components of the force vanish in the rest system

RKα
eq = 0, α = 1,2,3, (54)

we obtain the very special supplementary equilibrium condition

Ki
eq

.= 0 (55)

for the external forces.
According to (43)2, the necessary equilibrium condition (50)2, depends on the

spin density (15)1 and the temperature. There may be non-zero Λ k
eq-fields de-

pending on the external moments in such a way that (50)2 is satisfied, but this
situation is so strange, that we do not take this seriously into consideration. Con-
sequently, we obtain two supplementary equilibrium conditions

Λ
k

eq
.= 0∪L[ik]

eq .= 0, (56)

that means, the external moments have to vanish in equilibrium in systems of
non-vanishing spin. If the external moments do not vanish, the system must be
spin-free in equilibrium. These statements are true except for the exotic situation
that (50)2 is satisfied for non-vanishing Λ k

eq and L[ik]
eq.

6.2.2 Nk-condition

To begin with the supplementary equilibrium conditions, we consider by use of
(3)1, (34) and the abbreviation • :=;k uk(

µNk
)

;k
= µ,k

1
c2 nuk =

1
c2 nµ

•. (57)

Because it is obvious that there are no non-vanishing material time derivatives in
equilibrium except that of the acceleration uk•,4 we demand as a first supplemen-
tary equilibrium condition

� •
.= 0, � 6= uk −→

(
µNk

)
;k

eq = 0. (58)

4 The • is the relativistic analogue to the non-relativistic material time derivative d/dt which
describes the time rates of a rest-observer. Therefore, d/dt is observer-independent and zero in
equilibrium [22; 23].
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Consequently, we obtain by (34)

0 =
(

µNk
)

;k
eq =

(
µ

1
c2 nuk

)eq

;k
=

(
µ

1
c2 n

)•
eq

+ µ
1
c2 nuk

;k
eq (59)

which by (58)1 results in
uk

;k
eq = 0. (60)

Further we obtain by (58)1 and (60)(
1
T

uk
)

;k
=

1
T

uk
;k +

(
1
T

)
• −→

(
uk

T

)
;k

eq
= 0. (61)

Hence, the vanishing first term in (52) is exploited by applying the supplementary
equilibrium condition (58). Now we will consider the next term.

6.2.3 Tkl-condition

Using (25)1, we obtain for the second term in (52)(ul

T
T kl

)
;k

=
(

qk

T
+

1
c2T

euk
)

;k
=

(
qk

T

)
;k

+
( e

c2T

)•
+

e
c2T

uk
;k (62)

which by use of (58)1 and (60) results in(ul

T
T kl

)eq

;k
=

(
qk

T

)eq

;k
=

(
1
T

)eq

,k

qk
eq +

(
1
T

)eq

qk
;k

eq. (63)

The first term of the right-hand side represents the dissipation due to heat conduc-
tion which is zero in equilibrium, a statement which represents an other supple-
mentary equilibrium condition(

1
T

)eq

,k

qk
eq

.= 0 −→ qk
eq = 0. (64)

Because there are equilibria with non-vanishing temperature gradient (e.g. in grav-
itational fields) and because the dissipation due to heat conduction is always not
negative (

1
T

)
,k

qk ≥ 0, (65)

and the heat flux density depends continuously on the temperature gradient, the
conclusion in (64) is the only possible one [24]. But it is also obvious that there
are no heat fluxes in equilibrium. From (64)2 follows

qk
;k

eq = 0,

(
qk

T

)eq

= 0. (66)
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Taking (64)2 into account, (63) results by use of (51)1 in

0 =
(ul

T
T kl

)eq

;k
=

(ul

T

)eq

;k
T kl

eq +
ul

T

eq
Gl

eq. (67)

If we consider the special case that the energy-momentum tensor is symmetric in
equilibrium (what is not the case in general), then (67) results in

T [kl]
eq ≡ 0 −→

(
1
T

u(l

)
;k)

eqT kl
eq =−ul

T

eq
Gl

eq. (68)

In general, we cannot conclude from (68)2, that the temperature 4-vector ul/T is
Killing in equilibrium even for SMEC-free space–times,(

1
T

ul

)
;k

eq +
(

1
T

uk

)
;l

eq ?= 0, (69)

because we do not presuppose a symmetric T kl , as it was assumed in [6]. Presup-
posing (69), no additional equilibrium conditions would follow for the symmetric
T kl , because (68) is satisfied identically for SMEC-free space–times. We now treat
the general case.

After a short calculation, we obtain in non-equilibrium by using (10)

(ul

T

)
;kT kl =

1
T

ul
• 1

c2 pl +
1
T

ul ;ktkl +
(

1
T

)•
1
c2 e+

(
1
T

)
,k

qk. (70)

Taking (8), (14)2, (58)1 and (64)2 into account, (67) results in

0 = ul ;k
eqtkl

eq +ueq
l Gl

eq. (71)

As we can see easily, the following identity is valid

0 = ul ;k
eqtkl

eq +ueq
l Gl

eq = ul ;k
eq

[
tkl

eq +
ueq

p Gp
eq

up;qeqAqp Akl
]
, (72)

for all Akl with
up;q

eqAqp 6= 0, up
•

equq
eqAqp = 0. (73)

We need the second property for later use. Consequently, we can introduce non-
unique modified stress tensors which include the SMEC-term

τ
kl := tkl

eq + Jkl , Jkl :=
ueq

p Gp
eq

up;qeqAqp Akl (74)

and (71) results in
0 = ul ;k

eq
τ

kl , (75)

a result which can be also expressed in another way.
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As usual [6], we introduce the kinematical invariants shear σab, rotation ωab,
accelerationu u•a and expansion Θ satisfying the relations

habub = u•aua = σabub = ωabub = 0, (76)

ua;b = σab +ωab +
1
3

Θhab +
1
c2 u•aub. (77)

By use of (60) and (73)2, (75) results in

ul ;k
eq

τ
kl = [σlk +ωlk]eq

τ
kl = σ

eq
lk τ

(kl) +ω
eq
lk τ

[kl] = 0. (78)

Because the symmetric and the antisymmetric part of the stress tensor are inde-
pendent of each other, we can split (78) into

σ
eq
lk τ

(kl) = 0, ω
eq
lk τ

[kl] = 0. (79)

Because the tensor Akl in (74)2, and consequently also Jkl in (74)1, can be chosen
arbitrarily, the SMEC-term can be distributed freely on the shear or rotation terms:
If Akl is chosen to be symmetric, no part of the SMEC-term appears in the rotation
part and vice-versa.

The equilibrium conditions (79) can be interpreted differently: if we are look-
ing for equilibrium conditions which are the same for all space–times and materi-
als, that means, they are valid for arbitrary τ(kl) and τ [kl], we obtain

σ
eq
lk

.= 0, ω
eq
lk

.= 0 (80)

as supplementary equilibrium conditions.
The second interpretation is as follows: because (79) are derived material-

independently, there may be shear and rotation fields different from zero satisfying
(79) for special chosen space–times and materials. That means, there are special
material- and space–time-dependent equilibria having non-vanishing shear and/or
rotation. By these remarks, the second necessary equilibrium condition (67) is
exploited, and we have now to consider the equilibrium conditions belonging to
the spin.

6.2.4 S··knm-condition

Taking (66)2 and the necessary equilibrium condition (49) into account, we obtain
from (45) and (58)1

Λ
m
eqΞ

·k
m

eq = 0. (81)

Because the spin stress Ξ ·km is not regular

Ξ
·k
m uk = 0, um

Ξ
·k
m = 0, (82)

according to (16)2, and

Ξ
·k
m

equk
•

eq = 0, um•
eqΞ

·k
m

eq = 0, (83)

according to (58)1 and (82), there is the possibility that in equilibrium non-zero
temperature-spins are in the kernel of the spin stress as solution of (81).
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We obtain from (52) by (58)2 and (67) another necessary equilibrium condition(
u[n

Λ
m]S··knm

)eq

;k
= 0. (84)

As derived in [19],

un
Λ

mS··knm =
1
2

Λ
m

(
Ξ
·k
m +

1
c2 Ξmuk

)
(85)

is valid. Consequently, by taking (58)1, (60) and (81) into account, (84) results in

0 =
[
Λ

m
Ξmuk

]eq

;k
= (Λ m

Ξm)•eq (86)

and according to (43)2, we obtain

Λ
k
Ξk =

1
T c2 slmΘ

[lm][ik]uiΞk. (87)

The spin variables (15), that are the spin density snm and the spin vector Ξm, and
the constitutive equations (16), that are the couple stress s··knm and the spin stress
Ξ k

m, are related by the spin axioms [20]

snm =
1
2

ηnmpqup
Ξ

q, (88)

s··knm =
1
2

ηnmpqup
Ξ

qk. (89)

Here η is the Levi-Civita symbol. The spin axioms are caused by the fact that
there are only three spin fields and only nine constitutive spin equations [20].

Inserting (88) into (87) results in

Λ
j
Ξ j =

1
2T c2 η

··pq
lm Θ

[lm][ik]upΞquiΞk, (90)

and by taking (58)1 into account, (86) becomes

0 = η
··pq
lm Θ

[lm][ik]
eq Ξq

eq
Ξk

eq(up
•

equi
eq +up

equi
•

eq). (91)

The case of a non-linear coupling tensor is also included, because

Θ
[lm][ik]
eq

•(Ξp,Ξ
q
p) = 0 (92)

is valid.
Because in (91) the antisymmetric parts of the quadratic forms in (q,k) and

(p, i) do not contribute, we obtain

[η ··pq
lm Θ

[lm][ik]
eq +η

··pk
lm Θ

[lm][iq]
eq +η

··iq
lm Θ

[lm][pk]
eq +η

··ik
lm Θ

[lm][pq]
eq ]

Ξq
eq

Ξk
eq(up

•
equi

eq +up
equi

•
eq) = 0. (93)
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The tensor of 4th order in the square bracket has the following properties: it is
symmetric in (q,k) and in (p, i), and it has an empty kernel according to the cou-
pling property (39). In [19] is proven that the only solutions of (93) are

up
•

eq 6= 0 −→ Ξq
eq = 0 ←→ Λ

q
eq = 0, (94)

or
Ξq

eq 6= 0 −→ up
•

eq = 0. (95)

Thus, we proved the following remarkable statement

If the acceleration does not vanish in equilibrium, the system has to be
spin-free, and if the system is not spin-free, the acceleration has to vanish
in equilibrium.

The equilibrium conditions (94) and (95) have to be comparable with (81) and
(83). This results in

up
•

eq 6= 0 −→ up
•

eq ∈ kerΞ
·p
m eq∩Ξp

eq = 0, (96)
Ξp

eq 6= 0 −→ Ξp
eq ∈ kerΞ

·p
m eq∩up

•
eq = 0. (97)

We obtain from (93) to (97) that equilibrium is possible in the following cases

up
•

eq = 0∩Ξq
eq = 0, (98)

up
•

eq 6= 0∩Ξq
eq = 0∩up

•
eq ∈ kerΞ

·p
m eq, (99)

Ξq
eq 6= 0∩up

•
eq = 0∩Ξp

eq ∈ kerΞ
·p
m eq. (100)

As (99) and (100) show, constitutive properties may prevent equilibrium. Whereas
in equilibrium the acceleration is always in the kernel of the spin stress according
to (83), it depends of the material, if the spin density vector is an element of
the kernel of the spin stress in equilibrium. According to (98), the equilibrium is
material independent only in spin-free materials with zero acceleration. There are
no equilibria with up

•
eq 6= 0 and Ξq

eq 6= 0.

7 Conclusions

After having proved the unrenouncable entropy identity (21), for the present the
most general relativistic expression for the entropy density 4-vector was derived. It
contains three parts belonging to particle current, energy-momentum and spin. Af-
ter that, arguments are given in favor of Eckart’s ansatz of the particle flux density
4-vector being parallel to the 4-velocity of the material under consideration. As a
consequence,
entropy supply and entropy production can be determined as expressions of rela-
tivistic invariant terms given by the balances (3) of energy-momentum and spin.

As a further implication of the entropy identity (21) and Eckart’s ansatz, it can
be shown, that the entropy density 4-vector, ad-hoc introduced in [6], is the correct
one (in case of General Relativity) except the missing spin part, while the entropy
expression given in [2] contradicts the entropy identity (21). The latter follows
from the fact that the expression correctly given in [6] must not be supplemented
by a time-like vector, as it was supposed in [6] and done in [2].
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After the more general considerations, the second part of the paper is devoted
to material-independent equilibria in relativistic thermodynamics. For the present,
equilibrium is defined by necessary equilibrium conditions: According to the sec-
ond law, entropy supply, entropy production and consequently, entropy 4-flux van-
ish in equilibrium. From this demand, four equations [(48)1, (49) and (50)] follow.

The above mentioned four necessary equilibrium conditions are not sufficient
for equilibrium. Consequently, we have to complete these necessary equilibrium
conditions by supplementary ones. These supplementary equilibrium conditions
are

• The vanishing entropy supply results in
1. the power (50)1 generated by the forces has to vanish in equilibrium. Suf-

ficient for vanishing power is the supplementary equilibrium condition
that the forces themselves are zero in equilibrium (55)

ui
eqKi

eq = 0 ←− Ki
eq = 0. (101)

2. if the material is not spin-free, the external moments have to vanish (56).
If they do not, the system has to be spin-free in equilibrium

Λ
k

eq 6= 0 −→ L[ik]
eq = 0, (102)

Λ
k

eq = 0 ←− L[ik]
eq 6= 0. (103)

• Stemming from the entropy production and generated by particle flux density,
3. the material time derivatives have to vanish in equilibrium, except that of

the 4-velocity

�m
•eq := �m;k

equk
eq = 0, �m

eq 6= um. (104)

4. the expansion (60) has to vanish in equilibrium

uk
;k

eq = 0. (105)

• Stemming from the entropy production and generated by the energy-momentum
tensor
5. the heat 4-flux density (64)2 and the entropy 3-flux density (66)2 have to

vanish in equilibrium

qk
eq = 0 −→

(
qk

T

)eq

= 0. (106)

6. independently of material and space time, shear and rotation (80) have to
be zero in equilibrium

σ
eq
lk = 0, ω

eq
lk = 0. (107)

• Stemming from the entropy production and generated by the spin tensor
7. equilibrium is possible in the following cases

up
•

eq = 0∩Ξq
eq = 0, (108)

up
•

eq 6= 0∩Ξq
eq = 0∩up

•
eq ∈ kerΞ

·p
m eq, (109)

Ξq
eq 6= 0∩up

•
eq = 0∩Ξp

eq ∈ kerΞ
·p
m eq. (110)
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8. according to (103), external moments need not be zero in equilibrium

Acknowledgments W. Muschik thanks R. Wulfert for his co-working in Sects. 2 and 3 of a
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