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A new class of exact solutions of Einstein’s modified field equations in inhomo-
geneous space-time for bulk viscous fluid distribution with electromagnetic field is ob-
tained in the context of normal gauge for Lyra’s manifold. We have obtained solutions
by considering the time dependent displacement field. The source of magnetic field is
due to an electric current produced along the z-axis. Only F12 is a non-vanishing com-
ponent of the electromagnetic field tensor. The coefficient of bulk viscosity is assumed
to be a power function of the mass density. It has been found that the displacement
vector behaves like the cosmological constant in the normal gauge treatment and the
solutions are consistent with the recent observations of Type Ia supernovae. Physical
and geometric aspects of the models are also discussed in the presence of magnetic
field.
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1. INTRODUCTION AND MOTIVATION

The inhomogeneous cosmological models play a significant role in understand-
ing some essential features of the universe, such as the formation of galaxies during
the early stages of evolution and process of homogenization. The early attempts at
the construction of such models have been done by Tolman [1] and Bondi [2] who
considered spherically symmetric models. Inhomogeneous plane-symmetric models
were considered by Taub [3] and later by Tomimura [4], Szekeres [5], Collins and
Szafron [6], Szafron and Collins [7]. Senovilla [8] obtained a new class of exact so-
lutions of Einstein’s equations without big bang singularity, representing a cylindri-
cally symmetric, inhomogeneous cosmological model filled with perfect fluid which
is smooth and regular everywhere satisfying energy and causality conditions. Later,
Ruiz and Senovilla [9], Dadhich et al. [10], Patel et al. [11], Singh et al. [12] and
Pradhan et al. [13] have investigated inhomogeneous cosmological models in vari-
ous contexts.

The occurrence of magnetic fields on a galactic scale is a well-established fact
today, and its importance for a variety of astrophysical phenomena is generally ac-
knowledged as pointed out by Zeldovich et al. [14]. Also Harrison [15] suggests
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that magnetic field could have a cosmological origin. As a natural consequences, we
should include magnetic fields in the energy-momentum tensor of the early universe.
The choice of anisotropic cosmological models in Einstein system of field equations
leads to the cosmological models more general than Robertson-Walker model [16].
The presence of primordial magnetic field in the early stages of the evolution of the
universe is discussed by many authors [17]. Strong magnetic field can be created due
to adiabatic compression in clusters of galaxies. A large-scale magnetic field gives
rise to anisotropies in the universe. The anisotropic pressure created by the magnetic
fields dominates the evolution of the shear anisotropy and decays slowly as compared
to the case when the pressure is held isotropic [18]. Such fields can be generated at
the end of an inflationary epoch [19]. Anisotropic magnetic field models have signif-
icant contribution in the evolution of galaxies and stellar objects. Bali and Ali [20]
obtained a magnetized cylindrically symmetric universe with an electrically neutral
perfect fluid as the source of matter. Chakrabarty et al. [21], Pradhan and Ram [22]
and Pradhan et al. [23] have investigated magnetized cosmological models in various
contexts.

A realistic treatment of the problem requires the consideration of material dis-
tribution other than the perfect fluid. It is well known that in an earlier stage of the
universe when the radiation in the form of photons as well as neutrinos decoupled
from matter, it behaved like a viscous fluid. Misner [24] has studied the effect of vis-
cosity on the evolution of cosmological models. A number of authors have discussed
cosmological solutions with bulk viscosity in various context [25–33].

In 1917, Einstein introduced the cosmological constant into his field equations
of general relativity in order to obtain a static cosmological model since, as is well
known, without the cosmological term his field equations admit only non-static so-
lutions. After the discovery of the red-shift of galaxies and explanation thereof Ein-
stein regretted the introduction of the cosmological constant. Recently, there has
been much interest in the cosmological term in the context of quantum field theories,
quantum gravity, super-gravity theories, Kaluza-Klein theories and the inflationary-
universe scenario. Shortly after Einstein’s general theory of relativity Weyl [34] sug-
gested the first so-called unified field theory based on a generalization of Riemannian
geometry. With its backdrop, it would seem more appropriate to call Weyl’s theory
a geometrized theory of gravitation and electromagnetism (just as the general theory
was a geometrized theory of gravitation only), instead a unified field theory. It is not
clear as to what extent the two fields have been unified, even though they acquire
(different) geometrical significance in the same geometry. The theory was never
taken seriously in as much as it was based on the concept of non-integrability of
length transfer; and, as pointed out by Einstein, this implies that spectral frequencies
of atoms depend on their past histories and therefore have no absolute significance.
Nevertheless, Weyl’s geometry provides an interesting example of non-Riemannian
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3 Bulk viscous inhomogeneous cosmological models with electromagnetic field in Lyra geometry763

connections, and recently Folland [35] has given a global formulation of Weyl mani-
folds clarifying considerably many of Weyl’s basic ideas thereby.

In 1951 Lyra [36] proposed a modification of Riemannian geometry by intro-
ducing a gauge function into the structure-less manifold, as a result of which the
cosmological constant arises naturally from the geometry. This bears a remarkable
resemblance to Weyl’s geometry. But in Lyra’s geometry, unlike that of Weyl, the
connection is metric preserving as in the Riemannian case; in other words, length
transfers are integrable. Lyra also introduced the notion of a gauge and in the “nor-
mal” gauge the curvature scalar in identical to that of Weyl. In consecutive investiga-
tions Sen [37], Sen and Dunn [38] proposed a new scalar-tensor theory of gravitation
and constructed an analog of the Einstein field equations based on Lyra’s geometry.
It is, thus, possible [37] to construct a geometrized theory of gravitation and electro-
magnetism much along the lines of Weyl’s “unified” field theory, however, without
the inconvenience of non-integrability length transfer.

Halford [39] has pointed out that the constant vector displacement field φi in
Lyra’s geometry plays the role of cosmological constant Λ in the normal general
relativistic treatment. It is shown by Halford [40] that the scalar-tensor treatment
based on Lyra’s geometry predicts the same effects within observational limits as the
Einstein’s theory. Several authors [41] have studied cosmological models based on
Lyra’s manifold with a constant displacement field vector. However, this restriction
of the displacement field to be constant is merely one for convenience and there is
no a priori reason for it. Beesham [42] considered FRW models with time depen-
dent displacement field. Singh and Singh [43], Singh and Desikan [44] have studied
Bianchi-type I, III, Kantowaski-Sachs and a new class of cosmological models with
time dependent displacement field and have made a comparative study of Robertson-
Walker models with constant deceleration parameter in Einstein’s theory with cosmo-
logical term and in the cosmological theory based on Lyra’s geometry. Soleng [45]
has pointed out that the cosmologies based on Lyra’s manifold with constant gauge
vector φwill either include a creation field and are equal to Hoyle’s creation field cos-
mology [46] or contain a special vacuum field, which together with the gauge vector
term, may be considered as a cosmological term. In the latter case the solutions are
equal to the general relativistic cosmologies with a cosmological term.

Recently, Pradhan et al. [47], Casama et al. [48], Rahaman et al. [49], Bali
and Chandnani [50], Kumar and Singh [51], Yadav et al. [52], Rao, Vinutha and
Santhi [53], Pradhan [54] and Singh and Kale [55] have studied cosmological models
based on Lyra’s geometry in various contexts. With these motivations and following
the technique of Pradhan et al. [56], in this paper, we have obtained exact solutions
of Einstein’s modified field equations in inhomogeneous space-time within the frame
work of Lyra’s geometry in the presence of magnetic field and bulk viscous fluid for
time varying displacement vector. This paper is organized as follows. In Section 1
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764 Rashid Zia, R.P. Singh 4

the introduction and motivation for the present work is discussed. The metric and
the field equations are presented in Section 2. In Section 3 the solutions of field
equations for two cases §3.1 and §3.2 are derived for time varying displacement field
β(t) in presence of magnetic field and their geometric and physical properties are
also described. Finally, in Section 4 discussion and concluding remarks are given.

2. THE METRIC AND FIELD EQUATIONS

We consider the metric in the form

ds2 = dx2−dt2 +B2dy2 +C2dz2, (1)

whereB and C are both functions of x and t. The energy-momentum tensor as taken
has the form

T ji = (ρ+p)uiu
j +pgji +Eji , (2)

where Eji is the electromagnetic field given by

Eji = FilF
jl− 1

4
FlmF

lmgji . (3)

and

p̄= p− ξui;i (4)

Here ρ, p, p̄ and ξ are, respectively, the energy density, isotropic pressure of the
cosmic fluid, effective pressure and bulk viscous coefficient; Fij is the components
of electromagnetic field tensor; and ui is the flow vector satisfying the condition

giju
iuj =−1. (5)

The co-ordinates are considered to be co-moving so that u1 = 0 = u2 = u3 and u4 = 1.
If we consider that the current flows along the z-axis, then F12 is the only non-
vanishing component of Fij .
The field equations (in gravitational units c = 1, G = 1), in normal gauge for Lyra’s
manifold, obtained by Sen [37] as

Rij−
1

2
gijR+

3

2
φiφj−

3

4
gijφkφ

k =−8πTij , (6)

where φi is the displacement field vector defined as

φi = (0,0,0,β(t)), (7)

where other symbols have their usual meaning as in Riemannian geometry.
For the line-element (1), the field Eq. (6) with Eqs. (2) and (7) lead to the
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following system of equations

B̈

B
+
C̈

C
+
ḂĊ

BC
− B

′C ′

BC
+

3

4
β2 =−8π

(
p̄+

F 2
12

2B2

)
, (8)

C̈

C
− C

′′

C
+

3

4
β2 =−8π

(
p̄+

F 2
12

2B2

)
, (9)

B̈

B
− B

′′

B
+

3

4
β2 =−8π

(
p̄− F 2

12

2B2

)
, (10)

B′′

B
+
C ′′

C
+
B′C ′

BC
− ḂĊ
BC
− 3

4
β2 =−8π

(
ρ+

F 2
12

2µ̄A2B2

)
, (11)

Ḃ′

B
+
Ċ ′

C
= 0. (12)

Here, and also in the following expressions, a dot and a dash indicate ordinary dif-
ferentiation with respect to t and x respectively.
From (8)-(10), we obtain

B′C ′

BC
− ḂĊ
BC

=
C ′′

C
+
B̈

B
, (13)

and

8π
F 2
12

B2
=
C ′′

C
− C̈
C
− B

′′

B
+
B̈

B
. (14)

The energy conservation equation T ii;j = 0 leads to

ρ̇+ (ρ+ p̄)

(
Ḃ

B
+
Ċ

C

)
= 0. (15)

and

(Rji −
1

2
gjiR);j +

3

2
(φiφ

j);j−
3

4
(gjiφkφ

k);j = 0. (16)

Equation (16) leads to

3

2
φi

[
∂φj

∂xj
+φlΓjlj

]
+

3

2
φj
[
∂φi
∂xj
−φlΓlij

]
− 3

4
gjiφk

[
∂φk

∂xj
+φlΓklj

]
−

−3

4
gjiφ

k

[
∂φk
∂xj

+φlΓ
l
kj

]
= 0.

(17)

Equation (17) is identically satisfied for i= 1,2,3 but for i= 4, it is reduced to

3

2
ββ̇+

3

2
β2

(
Ḃ

B
+
Ċ

C

)
= 0. (18)
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3. SOLUTION OF FIELD EQUATIONS IN PRESENCE OF MAGNETIC FIELD

We have the six independent equations (8)-(12) and (18), in seven unknowns
B, C, ρ, p, ξ, β and F12. For the complete determinacy of the system, we need
one extra condition which is narrated hereinafter. The research on exact solutions is
based on some physically reasonable restrictions used to simplify the field equations.
Let us consider functional separability of the metric coefficients as given by

B = f(x)g(t), C = h(x)k(t). (19)

Eqs. (12) and (19) reduce to

f ′/f

h′/h
=− k̇/k

ġ/g
= a (constant), (20)

which leads to
f ′

f
= a

h′

h
, (21)

and
k̇

k
=−aġ

g
. (22)

Eqs. (21) and (22) lead to

f = bha, k = dg−a, (23)

where b and d are constants of integrations. Using (19) in (13), we obtain

ah′2

h2
− h

′′

h
=
g̈

g
− aġ

2

g2
= ` (say), (24)

which gives

h′′

h
− ah

′2

h2
=−`, (25)

and
g̈

g
− aġ

2

g2
= `. (26)

Here two possible cases arise.

3.1. CASE I: WHEN a > 1, ` > 0

In this case Eqs. (25) and (26) lead to

h=K2 cosh−
1
ακ (K1−αx), g =K4 sec

1
ακ (αt+K3),

f = bKk
2 cosh−

a
ακ (K1−αx), k = dK−k4 sec−

a
ακ (αt+K3),

(27)
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where K1, K2, K3, K4 are integrating constants, κ =
√

a−1
` and `κ = α. Accord-

ingly, we obtain

B = fg = bKk
2K4 cosh−

a
ακ (K1−αx)sec

1
ακ (αt+K3), (28)

and

C = hk = dK2K
−k
4 cosh−

1
ακ (K1−αx)sec−

a
ακ (αt+K3). (29)

In this case, after suitable transformation of coordinates, the metric (1) reduces to the
form

ds2 = (dX2−dT 2) + cosh−
2a
ακ (αX)sec

2
ακ (αT )dY 2+

+ cosh−
2
ακ (αX)sec−

2a
ακ (αT )dZ2. (30)

3.1.1. Some Physical and Geometric Properties of the Model in Presence of
Magnetic Field

Equation (18) gives

β̇

β
=−

(
Ḃ

B
+
Ċ

C

)
, as β 6= 0, (31)

which leads to

β̇

β
=
α(1−a)

κ
tan(αT ). (32)

Equation (32) on integration gives

β = cos
(a−1)
ακ (αT ). (33)

Using (28), (29) and (33) in (8) and (11), the expressions for pressure p and density
ρ for the model (29) are given by

8πp̄= 8π(p−ξθ) =

(
α

κ
+

1

κ2

)
tanh2(αX)−

(
a2

κ2
− aα

κ

)
tan2(αT )+

(a−1)α

κ
−

− 4πF 2
12

cosh−
2a
ακ (αX)sec

2
ακ (αT )

− 3

4
cos

2(a−1)
ακ (αT ), (34)

8πρ=
(a+ 1)α

κ
− a

κ2
tan2(αT )−

(
n+

aα

κ
+

3a2

κ2

)
tanh2(αX)−

− 4πF 2
12

cosh−
2a
ακ (αX)sec

2
ακ (αT )

+
3

4
cos

2(a−1)
ακ (αT ), (35)
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where n= α
κ + 1

κ2
− a2

κ2
, κ > 0. Here θ is the scalar expansion calculated for the flow

vector ui as

θ =

(
1−a
κ

)
tan(αT ). (36)

For the specification of ξ, we assume that the fluid obeys an equation of state of the
form

p= γρ, (37)

where γ(0≤ γ ≤ 1) is a constant.
Thus, given ξ(t) we can solve the system for the physical quantities. Therefore,

let us assume the following ad hoc law, [28–30]

ξ(t) = ξ0ρ
m, (38)

where ξ0 and m are real constants. For large value of ρ, m is quite small and Santos
et al. [31] suggested to get more realistic models if m lies in the regime 0≤m≤ 1

2 .
For small density, m may even be equal to unity as used in Murphy’s work [33] for
simplicity. Also if m= 1, Eq. (38) may correspond to a radiative fluid [57].
On using Eq. (38) in (34), we obtain

8π(p− ξ0ρmθ) =

(
α

κ
+

1

κ2

)
tanh2(αX)−

(
a2

κ2
− aα

κ

)
tan2(αT ) +

(a−1)α

κ
−

− 4πF 2
12

cosh−
2a
ακ (αX)sec

2
ακ (αT )

− 3

4
cos

2(a−1)
ακ (αT ), (39)

For simplicity and realistic models for physical importance, we consider the follow-
ing two cases:
Model I: Solution for m= 0.

When m= 0, (38) reduces to ξ = ξ0. With the use of (36) and (37), (39) leads
to

8πp= 8πγρ= 8πξ0

(
1−a
κ

)
tan(αT )+

(
α

κ
+

1

κ2

)
tanh2(αX)−

(
a2

κ2
− aα

κ

)
×

× tan2(αT ) +
(a−1)α

κ
− 4πF 2

12

cosh−
2a
ακ (αX)sec

2
ακ (αT )

− 3

4
cos

2(a−1)
ακ (αT ). (40)

Model II: Solution for m= 1.
When m= 1, (38) reduces to ξ = ξ0ρ. With the use of (36) and (37), (39) leads

RJP 57(Nos. 3-4), 761–778 (2012) (c) 2012-2012



9 Bulk viscous inhomogeneous cosmological models with electromagnetic field in Lyra geometry769

to

8πρ=
8πp

γ
=

1[
γ− ξ0

(
1−a
κ

)]
[(

α

κ
+

1

κ2

)
tanh2(αX)−

(
a2

κ2
− aα

κ

)
tan2(αT )+

+
(a−1)α

κ
− 4πF 2

12

cosh−
2a
ακ (αX)sec

2
ακ (αT )

− 3

4
cos

2(a−1)
ακ (αT )

]
, (41)

The non-vanishing component F12 of the electromagnetic field tensor Fij is obtained
from (14)

4πF 2
12 =

sec
2
ακ (αT )

cosh
2a
ακ (αX)

[
2aα

κ
+
(
n− aα

κ

)
tanh2(αX) +

(
n+

aα

κ

)
tan2(αT )

]
. (42)

The component of charge current density is given by

J2 =
−tanh(αX)sech

1
κα (αX)sec−

a
κα (αT )√

(8πI)
[α(nκ−aα)sech2(αX)−Ł], (43)

where

Ł =

[
2aα

κ
+
(
n− aα

κ

)
tanh2(αX) +

(
n+

aα

κ

)
tan2(αT )

]
.

Halford [39] has pointed out that the displacement field φi in Lyra’s manifold plays
the role of cosmological constant Λ in the normal general relativistic treatment. From
(33) it is observed that the displacement vector β(T ) is a periodic and decreasing
function of time and it approaches to a small positive value at late time, which is
corroborated with Halford as well as with the recent observations [58, 59] leading to
the conclusion that Λ(T ) is a decreasing function of T . It is observed from (40) and
(41) that the energy density in both models is also a decreasing function of time and
it is positive under appropriate condition.
The expressions for the Hubble parameter H, shear scalar σ2, deceleration parameter
q and proper volume V 3 for the model (30) are given by

H = 3

(
1−a
κ

)
tan(αT ), (44)

σ2 =
(a2−a+ 1)

κ2
tan2(αT ), (45)

q =−1− ακ

a−1
cosec2(αT ), (46)

V 3 =
√
−g = cosh−

(a+1)
ακ (αX)sec−

(a+1)
ακ (αT ). (47)
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From (45) and (46) we obtain

σ2

θ2
=

(a2−a+ 1)

(1−a)2
= constant. (48)

The rotation ω is identically zero.
The non-vanishing components of conformal curvature tensor are obtained as

C12
12 =

1

6

[(
3a2

κ2
+

2aα

κ
− a

κ2
−n
)

tanh2(αX)+

(
−a2

κ2
+

2aα

κ
− a

κ2
+n

)
tan2(αT ) +

2α

κ

]
, (49)

C13
13 = C24

24 =
1

6

[(
a2

κ2
− aα

κ
− a

κ2
+ 2n

)
tanh2(αX)+

(
a2

κ2
− aα

κ
− a

κ2
− 2α

κ
− 2

κ2

)
tan2(αT )− 4α

κ

]
, (50)

C14
14 = C23

23 =
1

6

[(
2a

κ2
− aα

κ
−n
)

tanh2(αX)+

(
2a2

κ2
− aα

κ
+

2a

κ2
+n

)
tan2(αT ) +

2α

κ

]
, (51)

C24
14 =

a

κ2
tanh(αX)tan(αT ), (52)

C34
13 =− a

κ2
tanh(αX)tan(αT ). (53)

Generally the model (30) represents an expanding, shearing and non-rotating uni-
verse in which the flow vector is geodetic. The model (30) has initial singularity
at X = 0, T = 0. The model will start expanding at T > π

α and the expansion will
be maximum at T = 0, T = π

α . Since σ
θ = constant, the model does not approach

isotropy. As T increases the proper volume also increases. The physical quantities
p and ρ decrease as F12 increases. It is observed from Eq. (46) that q < 0 when
κα> 0, which implies an accelerating model of the universe. Recent observations of
type Ia supernovae [58, 59] reveal that the present universe is in accelerating phase
and deceleration parameter lies somewhere in the range −1 < q ≤ 0. It follows that
our model of the universe is consistent with recent observations. When α = 0, the
deceleration parameter q approaches the value (−1) as in the case of de Sitter uni-
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11 Bulk viscous inhomogeneous cosmological models with electromagnetic field in Lyra geometry771

verse. The space-time is non-degenerate Petrov-type I, in general. If we put ξ = 0 in
above results, we get the results recently obtained by Pradhan et al. [56].

3.2. CASE II: WHEN a < 1, ` < 0

In this case (25) and (26) lead to

h= c2 cosh
1
d (dζx+ c1), g = b2 sec−

1
d (b1−d ζ t),

f = bha = bca2 cosh
a
d (dζx+ c1), k = dg−a = db−a2 sec

a
d (b1−dζt),

(54)

where b1, b2, c1, c2 are constants of integration, a−1 =−d, `=−ł, ζ =
√

ł
d , d > 0.

Accordingly, we obtain

B = fg = bb2c
a
2 cosh

a
d (d ζ x+ c1)sec

−1
d (b1−d ζ t), (55)

and

C = hk = dc2b
−a
2 cosh

1
d (d ζ x+ c1)sec

a
d (b1−d ζ t). (56)

In this case, after suitable transformation of coordinates, the metric (1) reduces to the
form

ds2 = (dX2−dT 2) + cosh
2a`
w2 (wX)sec

2`
w2 (wT )dY 2+

cosh−
2`
w2 (wX)sec−

2a`
w2 (wT )dZ2, (57)

where ζd= w.

3.2.1. Some Physical and Geometric Properties of the Model in Presence of
Magnetic Field

In this case Eq. (18) leads to

β̇

β
=
` d ζ(a−1)

w
tan(wT ), (58)

which on integration gives

β = cos
`(a−1)

w2 (wT ). (59)

The expressions for pressure p and density ρ for the model (58) are given by

8πp̄= 8π(p−ξθ) =

(
`2

w2
+ `

)
tanh2(wX)−

(
a2`2

w2
−a`

)
tan2(wT )+(a−1)`−

4πF 2
12

cosh
2a`
w2 (wX)sec

2`
w2 (wT )

− 3

4
cos

2`(a−1)

w2 (wT ), (60)
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8πρ= (a+ 1)`− a`
2

w2
tan2(wT )−

{
(a2 +a+ 1)

`2

w2
+ (a+ 1)`

}
tanh2(wX)−

− 4πF 2
12

cosh
2a`
w2 (wX)sec

2`
w2 (wT )

+
3

4
cos

2`(a−1)

w2 (wT ). (61)

Here θ is the scalar expansion calculated for the flow vector ui as

θ =
(1−a)`

w2
tan(wT ), (62)

On using Eq. (38) in (61) we obtain

8π(p− ξ0ρmθ) =

(
`2

w2
+ `

)
tanh2(wX)−

(
a2`2

w2
−a`

)
tan2(wT ) + (a−1)`−

− 4πF 2
12

cosh
2a`
w2 (wX)sec

2`
w2 (wT )

− 3

4
cos

2`(a−1)

w2 (wT ), (63)

For simplicity and realistic models for physical importance, we consider the follow-
ing two cases:
MODEL I: SOLUTION FOR m= 0

When m = 0, Eq. (38) reduces to ξ = ξ0. With the use of (36) and (37), (63)
leads

8πp= 8πγρ= 8πξ0
(1−a)`

w2
tan(wT )+

(
`2

w2
+ `

)
tanh2(wX)−

(
a2`2

w2
−a`

)
×

× tan2(wT ) + (a−1)`− 4πF 2
12

cosh
2a`
w2 (wX)sec

2`
w2 (wT )

− 3

4
cos

2`(a−1)

w2 (wT ). (64)

MODEL II: SOLUTION FOR m= 1
When m= 1, (38) reduces to ξ = ξ0ρ. With the use of (36) and (37), (63) leads

8πρ=
8πp

γ
=

1[
γ− ξ0 (1−a)`w2 tan(wT )

][( `2
w2

+ `

)
tanh2(wX)−

(
a2`2

w2
−a`

)
×

× tan2(wT ) + (a−1)`− 4πF 2
12

cosh
2a`
w2 (wX)sec

2`
w2 (wT )

− 3

4
cos

2`(a−1)

w2 (wT )

]
. (65)

The non-vanishing component F12 of the electromagnetic field tensor Fij is obtained
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from (14)

4πF 2
12 = cosh

2a`
w2 (wX)sec

2`
w2 (wT )

[
2a`+

{
(1 +a)`+ (1−a2) `

2

w2

}
×

× tan2(wT ) +

{
(1−a)`+ (1−a2) `

2

w2

}
tanh2(wX)

]
. (66)

The component of charge current density is given by

J2 =
−tanh(wX)sech−

a`
w2 (wX)sec−

2`
w2 (wT )√

(8π~)
×

×
[
w

(
(1−a)`+ (1−a2) `

2

w2

)
sech2(wX)− `~

w

]
, (67)

where

~ =

[
2a`+

(
(1 +a)`+ (1−a2) `

2

w2

)
tan2(wT )

+

(
(1−a)`+ (1−a2) `

2

w2

)
tanh2(wX)

]
. (68)

From Eq. (60), it is observed that the displacement vector β(T ) is a periodic function
of time. It is observed that the displacement vector β(T ) is a decreasing function of
time and it approaches to a small positive value at late time, which is corroborated
with Halford as well as with the recent observations [58,59] leading to the conclusion
that Λ(T ) is a decreasing function of T . It is observed from Eqs. (65) and (66) that
the energy density in both models is also a decreasing function of time and it is
positive under appropriate condition.

The expressions for the Hubble parameter H, shear scalar σ2, deceleration pa-
rameter q and proper volume V 3 for the model (58) are given by

H = 3
(1−a)`

w2
tan(wT ), (69)

σ2 =
(a2−a+ 1)`2

w4
tan2(wT ), (70)

q = 1 +
w2

`(a−1)
cosec2(wT ), (71)

V 3 =
√
−g = cosh−

`(a−1)

w2 (wX)sec−
`(a−1)

w2 (wT ). (72)
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From Eqs. (70) and (71) we obtain

σ2

θ2
=

(a2−a+ 1)

(1−a)2
= constant. (73)

The rotation ω is identically zero.
The non-vanishing components of conformal curvature tensor are obtained as

C12
12 = C34

34 =
1

6

[(
2a2`2

w2
− a`

2

w2
− `2

w2
− (a+ 1)`

)
tanh2(wX)+

(
`2

w2
− 2a2`2

w2
− a`

2

w2
+ (2a+ 1)`

)
tan2(wT ) + 2`

]
, (74)

C13
13 = C24

24 =
1

6

[(
a2`2

w2
− a`

2

w2
− 2`2

w2
− (a+ 2)`

)
tan2(wT )+

(
2`2

w2
− a

2`2

w2
− a`

2

w2

)
tanh2(wX)−2`

]
, (75)

C14
14 = C23

23 =
1

6

[(
a2`2

w2
+

2a`2

w2
+
`2

w2
− (a−1)`

)
tan2(wT )−

(
`2

w2
+
a2`2

w2
− 2a`2

w2
+ (a+ 1)`

)
tanh2(wX)

]
, (76)

C24
14 =

a`2

w2
tanh(wX)tan(wT ), (77)

C34
13 =−a`

2

w2
tanh(wX)tan(wT ). (78)

Generally the model (57) represents an expanding, shearing and non-rotating uni-
verse in which the flow vector is geodetic. The model (57) has initial singularity at
X = 0, T = 0. The model will start expanding at T > π

α and the expansion will be
maximum at T = 0, T = π

w and expansion will be maximum at T = 3π
2w . The ex-

pansion stops at T = 0, T = π
w . Since σ

θ = constant, the model does not approach
isotropy. As T increases the proper volume also increases. The physical quantities
p and ρ decrease as F12 increases. It is observed from Eq. (71) that q > 0 always.
So in this case the model is in decelerating phase. The space-time is non-degenerate
Petrov-type I, in general. If we put ξ = 0 in above results, we get the results recently
obtained [56].
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4. DISCUSSION AND CONCLUDING REMARKS

By revisiting the solutions of Pradhan et al. [56], in this paper, we have ob-
tained a new class of exact solutions of Einstein’s modified field equations for inho-
mogeneous space-time with a bulk viscous fluid distribution within the framework of
Lyra’s geometry in presence of magnetic field. The solutions are obtained by using
the functional separability of the metric coefficients. The source of the magnetic field
is due to an electric current produced along the z-axis. F12 is the only non-vanishing
component of electromagnetic field tensor. In both cases the electromagnetic field
tensors are given by equations (42) and (66). It is observed that in the presence of
magnetic field, the rate of expansion of the universe is faster than that in absence
of magnetic field (although the results in absence of magnetic field are not reported
in the present paper). The idea of primordial magnetism is appealing because it
can potentially explain all the large-scale fields seen in the universe today, specially
those found in remote proto-galaxies. As a result, the literature contains many stud-
ies examining the role and the implications of magnetic fields for cosmology. In the
presence of a magnetic field both the models (30) and (57) represent an expanding,
shearing and non-rotating universe in which the flow vector is geodetic.

It is observed that the displacement vectors β(t) in both cases coincide with the
nature of the cosmological constant Λ which has been supported by the work of sev-
eral authors as discussed in the physical behavior of the model in previous section.
In recent time Λ-term has attracted theoreticians and observers for many a reason.
The nontrivial role of the vacuum in the early universe generates a Λ-term that leads
to inflationary phase. Observationally, this term provides an additional parameter to
accommodate conflicting data on the values of the Hubble constant, the decelera-
tion parameter, the density parameter and the age of the universe (for example, see
Refs. [60] and [61]). In recent past there has been an upsurge of interest in scalar
fields in general relativity and alternative theories of gravitation in the context of in-
flationary cosmology [62–64]. Therefore the study of cosmological models in Lyra’s
geometry may be relevant for inflationary models. There seems to be a good possibil-
ity of Lyra’s geometry to provide a theoretical foundation for relativistic gravitation,
astrophysics and cosmology. As discussed in previous section, we have generalized
the results recently obtained by Pradhan et al. [56].
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