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Introduction

The proton induced reactions play impor-
tant role as energy generating processes in dif-
ferent stages of evolution of stars. The seeds
in the concerned mass region A=40-54 are
mainly produced in hydrostatic carbon burn-
ing and explosive oxygen burning and they
take part in initiating the rp-process nucle-
osynthesis. This ultimately results in ther-
mal burst in some astrophysical scenario e.g.
in x-ray bursters. Study of the nucleosynthe-
sis mechanism during various phases of stellar
burning requires a complicated and coupled
network calculation concerning various reac-
tion rates or cross sections. However, very of-
ten these rates can not be measured experi-
mentally due to instability and unavailability
of targets. In such cases, theoretical extrapo-
lation can supplement the purpose.

Methodology

The radiative (p,y) cross sections have been
studied in Hauser-Feshbach formalism with a
semi-microscopic optical model potential us-
ing reaction code TALYS [1], over an energy
range from 1 to 3 MeV corresponding to the
Gamow window and relevant to the tempera-
ture ~ 2 GK of usual x-ray bursts. The optical
potential is obtained by folding the DDM3Y
NN interaction. The density dependent factor
used in the folding is,

g(p) = C[1 = Bp*/*] (1)
with target radial matter densities p(r)

obtained from relativistic-mean-field (RMF)
model with FSU Gold lagrangian density [2].
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FIG. 1: Density profiles of **Ti and **Cr. Solid

lines denote our results and discrete points indi-
cate the Fourier-Bessel (FB) parameterized val-
ues.

The value of C and (3 are taken from nuclear
matter calculation [3]. The optical model po-
tential is constructed by taking its imaginary
part identical to the real part of the folded po-
tential. Finally, both the real and imaginary
parts of OMP are renormalized with multi-
plicative factor of 0.9.

The cross sections (o(E)) are then con-
verted to astrophysical s-factors to remove
the strong energy dependence, as S(FE) =
Eo(E)e*™. Here, F is energy in the center-
of mass frame and 7 is Sommerfield parame-
ter. The S-factors are then compared to avail-
able experimental data. Obviously, reasonable
agreements between experiment and theory
will validate our theoretical model and allow
to apply and extend it to unknown regimes.
Finally, we present (p, ) rates for some impor-
tant reactions as identified by Parikh et al.[4]
and compare them with theoretical NON-
SMOKER calculation [5].

Results

RMF densities play important role in fold-
ing model analysis. Hence, it is reasonable
to test the success of the RMF theory. For
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Nucleus B.E (MeV) Charge radius (fm)
Theory FExpt. Theory Expt.

WAr 34036 343.81  3.36 3.42
$Ca  370.13 369.83  3.44 3.49
453¢  386.85 387.85  3.48 3.54
4671 393.69 398.20  3.52 3.60
51V 441.25 445.85  3.57 3.59
50Cr  428.69 435.05  3.60 3.66

TABLE I: RMF binding energy (BE) with N,N,
correction [6, 7] and charge radius values are com-
pared with measurements for a few nuclei in the
mass range of interest.

©

=
o

~

[EnY
o
[=2]

. PBeei108
1 15 2 25 3
ELap (MeV)

S factor (MeV mb)
(=Y
(@]

E| ap (MeV)

FIG. 2: Present calculation (solid line) of astro-
physical S factor are compared with experimental
values (discrete point) for **Ca and **Cr.

this purpose, point proton densities are convo-
luted with Gaussian form factor [8] to obtain
charge densities and then, root mean square
(rms) charge radius values. Fig. 1 shows the
charge density profiles for a few nuclei in the
concerned mass range with the Fourier-Bessel
parameterization determined from fitting the
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FIG. 3: Comparison of (p,~) rate (solid line) with
NON-SMOKER result (dotted curve).

experimental elastic electron scattering data

[9]. In Table I, we have listed binding energies
and rms charge radius values for a few nuclei
with available measurements from Ref. [10]
and Ref. [11], respectively. The (p,7) as-
trophysical S factors for **Ca and °*Cr are
shown with measurements in Fig. 2. The ex-
perimental data for **Ca are from Mitchell
et al.[12] while for 54Cr are from Zyskind et
al.[13]. Finally, Fig. 3 shows the astrophysical
proton capture rates for 4Ti and 6V along
with NON-SMOKER rates. It will be very
interesting to see the effects of these rates in
abundance calculations in relevent astrophys-
ical environment.
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