
Chapter 7
Electron Induction Linacs

George J. Caporaso and Yu-Jiuan Chen

Electron induction linacs have been used for over four decades for a variety of
applications. As discussed in Chap. 8, these include basic studies in magnetically
confined fusion, transport of intense electron beams in various gases, the genera-
tion of electromagnetic radiation from free electron lasers, radiation processing of
materials and food, and flash X-ray radiography sources.

In this chapter we will discuss the basic structure of electron induction linacs,
describe the focusing system commonly used and treat the most important instabil-
ities in these machines.

7.1 Introduction

Typical electron induction linacs incorporate focusing elements into each accelera-
tor cell. Since the induction cells are electrically independent they may be closely
placed without affecting their performance. In order to obtain the highest accelerat-
ing gradient possible, the usual configuration consists of accelerator cells grouped
into blocks of 4–10, which are separated by short sections of transport tube called
intercell regions. A typical 4-cell block is shown in Fig. 7.1. Solenoids are typically
incorporated into the accelerator cells as can be seen, for example, in Fig. 6.2.

The intercell regions usually provide the pumping ports necessary to ensure ade-
quate vacuum in the accelerator (typical pressures range from 10−6 to 10−8 Torr
in long-pulse machines like DARHT-II). These pumping ports may also provide
access for diagnostics such as insertable probes, cameras, etc. Diagnostics such as
beam position monitors and current monitors are also generally located in these
sections. Solenoids for focusing along with dipole steering coils are also typically
found in intercells. The layout of an induction linac (the ETA-II at LLNL) is shown
in Fig. 7.2, and the photo of the ETA-II is shown in Fig. 7.3.
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Fig. 7.1 A 4-cell block is
illustrated. The induction
cells do not interact
electrically and may be
placed as closely as possible
to achieve maximum
accelerating gradient

Fig. 7.2 Layouts of the ETA-II accelerator at LLNL is shown above. The machine consists of an
injector with 9 induction cells and six 10-cell blocks

Fig. 7.3 The ETA-II accelerator at LLNL is shown above with the injector in the foreground. This
accelerator consists of a 1 MeV injector with 9 induction cells followed by six 10-cell blocks. The
machine produces a 5.3 MeV, 2 kA beam with a 50 ns pulsewidth and runs at 1 Hz. It has also
operated at 2 kHz in burst mode as discussed in Chap. 2
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The accelerator requires almost continuous focusing along its length to confine
the beam against its space charge and to suppress the growth of instabilities. Electron
induction linacs use solenoids to focus the beam as they are suitable for cylindrically
symmetric beams and are compatible with placement into the induction cells with-
out compromising the accelerating gradient.

The use of focusing is a double-edged sword. Since the focusing elements can
never be perfectly aligned and the energy of the beam can never be perfectly constant
across the pulse, the beam centroid will develop progressively higher frequency dis-
tortions called corkscrew as the beam propagates. The beam is also subject to vari-
ous instabilities as it propagates. Those of most concern are the image displacement
and beam breakup (BBU) instabilities. Successful strategies to control all of these
problems exist and will be described. We will begin by discussing beam formation.

7.2 Electron Sources

7.2.1 Cathodes

Most of the applications of the electron induction accelerators demand high current
density beams, which are emitted from a conducting cathode material. There are
several approaches that can be used for extracting electrons from the cathode.

Electrons in the cathode material’s conduction band need to either surmount
or tunnel through the potential barrier, the work function, between the conducting
material and the vacuum interface before being extracted freely by the electric field
in the electron gun. To help these electrons tunnel through the potential barrier, the
electric field on the entire emitter surface needs to be in the range of 104 kV/cm,
which is hard to do. When the electric field on the emitter surface reaches this level,
it is very likely that all the conducting electrodes and beam pipe wall in the electron
gun are also emitting.

We can provide electrons with additional energy by heating the cathode either
with a conventional heat source or an intense laser beam, such that these electrons
have large enough kinetic energy to overcome the work function of the material
(typically a few tenths of an eV) and escape the surface.

The mechanism for electron emission using a conventional heating method
is called thermionic emission. The ETA-II injector uses a thermionic dispenser
cathode, which is a porous tungsten disk impregnated with 6BaO−CaO−2Al2O3
and coated with osmium alloy. The coatings on the thermionic cathodes usually
lower the work function by roughly 50%. However, they tend to be poisoned easily.
The electron gun’s vacuum needs to be around 10−7 Torr or better. Typically,
thermionic dispenser cathodes need to be heated to around 1,100◦C in order to
provide space charge limited emission, and hence the intrinsic electron temperature
is about 0.1 eV. The thermionic emitters have been consistently delivering current
density of 10–100 A/cm2. Their high current density and low intrinsic electron
temperature make them a good source for generating high brightness beams. The
lifetime for operating at the space charge limited emission region is about 1,000 h
at 10 A/cm2.
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The mechanism for electron emission using a laser is called photoemission. So
far, this kind of cathode (photocathode) has been used mainly in RF machines,
in which the beam pulses are a few picoseconds to a few nanoseconds in length.
A space charge limited current at about 90 A/cm2 over 15 ns was achieved in a
feasibility study at LANL [1] with a cathode made of Pb and Al. However, using
photoemission to generate longer beam pulses or higher current density beams could
be problematic. The high laser intensity (about 1 MW/cm2) needed to achieve space
charge limited emission will create a plasma near the cathode surface and in the
anode–cathode gap. The beam quality will then be degraded by this plasma for-
mation. Without degradation by plasma formation, the electron beam’s intrinsic
temperature is also about 0.1 eV.

Another approach to generate beams is to reduce the work function of the emitter
in situ with electron emission. First, the electric fields are enhanced locally, which
leads to field emission (breakdown). The localized breakdown produces a cold,
dense plasma arising from adsorbed gasses on the emitter surface. Since plasma has
a near zero work function, the anode–cathode gap electric fields can easily extract
an electron current from this plasma. This emission mechanism is called explosive
emission. This type of emitter does not require any additional heating, and is inex-
pensive. A typical cathode only consists of a piece of ordinary velvet [2] cloth glued
with conductive epoxy to a metal plate. Simply apply an electric field greater than
16 kV/cm in the anode–cathode gap. The bound polarization charge at the tip of the
dielectric fiber will enhance the electric field at the tip, which leads to plasma forma-
tion and subsequent electron emission. Depending on the distribution of the velvet’s
tufts, electron emission could be uniform and up to 1 kA/cm2. The intrinsic temper-
ature of the emitted electrons is in the range of 0.5–2 eV [2, 3]. The plasma gap clo-
sure velocity is reasonably low at about 2 mm/μs. Since cathode poisoning is not an
issue, the vacuum in the gun region can be 1–2 orders higher than that for thermionic
cathodes. Its only obvious disadvantage is that the velvet fibers will erode during a
beam pulse. Velvet cathodes have been used in single-pulse machines, such as ATA
and on the first axis of DARHT. The lifetime of velvet emitters is about 105 shots
for regular velvet and 106 for velvets coated with a cesium iodide salt [3].

7.2.2 Electron Guns

Figure 7.4 shows the configuration of LLNL’s 1 MeV, 2 kA ETA-II injector. This
injector consists of nine induction cells and a diode. There are 5 induction cells to the
left of the diode and 4 cells to the right of the diode with the electron beam going to
the right. The beampipe and the inner bores of those induction cells at the anode side
form a transmission line. Voltage waves created in those cells travel down the trans-
mission line and provide the voltage on the anode electrode. Similarly, the cathode
stalk and the inner bores of the induction cells at the cathode side form another
transmission line. Voltages generated at those cells would be applied to the cathode.
Each induction cell provides a voltage at 111.1 kV, and the total anode–cathode
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Fig. 7.4 Configuration of LLNL’s 1 MeV, 2 kA ETA-II injector

gap voltage is 1 MV. Once the beam enters the anode entrance, the space charge
dominated beam will not be accelerated while it propagates in the injector beampipe.
One may prefer to minimize the distance that the space charge dominated beam
would travel before entering the accelerator by putting all the induction cells at
the cathode side. However, the cathode stalk would be long for this configuration,
which may be difficult to design and maintain mechanical alignment. To minimize
the cathode stalk length by putting all the cells at the anode side is also not desirable
since it maximizes the distance that the space charge dominated beam has to travel
before being accelerated. The optimal configuration is to minimize the distance
between the anode entrance and the accelerator entrance and the cathode stalk length
simultaneously. The ETA-II injector, as shown in Fig. 7.4, has 4 cells at the anode
side and 5 cells at the cathode.

The ETA-II diode is very similar to the schematic of the diode region shown in
Fig. 7.5. The entire system is cylindrically symmetric about the axis of the acceler-
ator. A nonzero canonical angular momentum, an invariant, will lead to an increase
of the effective beam emittance. To minimize the canonical angular momentum,
one or two bucking coils are used to cancel external focusing magnetic fields at
the cathode so that the electrons would be born in a magnetically field-free region.
The Pierce-angled cathode shroud is at the same voltage as the cathode and is used

Fig. 7.5 Diagram of a diode region of a typical injector
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to shape the potential contours near the cathode. This provides focusing for the
electrons in that region and also guides the electrons to, ideally, produce a laminar
flow. Once the extracted beam leaves the area immediate to the cathode surface, it
is held together (focused) by an array of solenoids wrapped around the anode pipe.
Although the detailed geometry of the diode configuration will affect the emitted
current density, the Child-Langmuir law for space charge limited current density
emitted from a planar diode given as

J0 = 4

9

√
2e

m

ε0V 3/2
0

d2
= 2.33 × 10−6V 3/2

0

d2
(7.1)

provides a reasonable estimation for the emitted current density [4, 5]. Note that the
Child-Langmuir law describes the emission of a non-relativistic beam. H. Ivey pro-
vided a modified space-charge-limited emission law for a relativistic beam [6]. As
shown in Fig. 7.6, the relativistic effects suppress the electron emission somewhat.

Generally, to obtain a small emittance and high current beam, the cathode area
should be small while the field stress in the diode region should be high. This may
lead to unwanted emission from electrodes due to excessive field stress on the elec-
trode surfaces. While electrons emitted at the tip of the shroud, where the field stress
is largest, cannot enter the anode entrance and spoil the beam emittance, electrons
emitted from the shroud near the cathode can easily be captured and phase-mixed
with the beam. These electrons are born at a large angle, θsh with respect to the
laminar flow. They can greatly increase the beam emittance. Figure 7.7 shows PIC
simulations of how a small fraction of electrons, 0.8% of the total ETA-II beam
current, emitted from the inner radius of the shroud are captured by the beam as it
is transported between the cathode and anode [7]. These unwanted electrons cause
large emittance growth. Let n be the fraction of beam current field-emitted from the
shroud with respect to the total extracted current. The factor of emittance growth
is approximately given by 1 + nθsh/θth , where θth is the intrinsic thermal angle
of electrons emitted from the cathode. To avoid this source of emittance growth,
injectors should use larger area cathodes with minimum field stress. Also, the shroud
electrode should be made of a material that is resistant to electron emission.

Fig. 7.6 Comparison of the
relativistic space-charge-
limited current and
Child-Langmuir law
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Fig. 7.7 Normalized emittance, E , of the enclosed beam within radius r vs. r is plotted with
and without the presence of field emitted electrons from the shroud. The plots, given at various
transport distances, show the degradation of beam emittance resulting from mixing in a small
number of field-emitted electrons from the shroud (0.8% of the total beam)

7.3 Beam Dynamics in Induction Machines

7.3.1 Basic Force Equation

We wish to consider the motions of both individual charged particles and collections
of charged particles (beams). The motions of all particles, charged or otherwise, are
governed by

dp
dt

= F, (7.2)

where F is the force vector which acts on the particle whose momentum vector is
given by p. This equation holds for all forces and is valid for relativistic as well
as non-relativistic motion (note that the familiar ma = F is just a special case of
Eq. (7.2), which is valid when the mass is constant). For a charged particle with
charge q the force is just given by the Lorentz Force

FL = q[E + v × B], (7.3)

where E is the electric field and B is the magnetic field.
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For an electron moving along the z-axis and subject to only transverse forces the
equation of motion becomes

γbme
dv
dt

= −e[E + v × B]⊥, (7.4)

where the subscript on the Lorentz force indicates that we are just taking the trans-
verse component. Here

γb = 1√
1 − v2

c2

(7.5)

and γbme is the “transverse mass”. If acceleration is present (due to a z-component
of electric field from an accelerating cell for instance), then we must replace the left
hand side of Eq. (7.4) by d(γbmev)/dt . From this point on, we will assume that we
have purely transverse forces.

A very important case in practice, is that of transverse velocities being small
compared to the longitudinal velocity. Equivalently, whenever ∂x/∂z and ∂y/∂z are
both substantially less than 1, we speak of the motion as being “paraxial” (nearly
parallel to the axis). This is frequently the case for a relativistic particle and allows
us to simplify the dynamics by replacing t with z as the independent variable in the
force equation.

If v2⊥/v2 � 1, then we have that vz � v (in practice this is usually a good
approximation if ∂x/∂z ≤ 1/3). Under these conditions, we can write

d

dt
� v

d

dz
� vz

d

dz
(7.6)

for a single particle.
With this approximation, we may rewrite the equation of motion (7.4) as

γbβ
2mec2 d2r

dz2
= −e[E + v × B]⊥, (7.7)

where r is the transverse position vector.

7.3.2 Coordinate Description of a Beam

We wish to consider the analog of Eq. (7.7) that is appropriate for a collection of
particles (a beam) instead of just one. If we had N particles in our beam, we could
just hang a subscript on r and write Eq. (7.7) for each of them.

We could also regard the beam as a continuous fluid. In this case, the beam
dynamics will be a function of time (or equivalently, z) and some other quantity
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Fig. 7.8 Beam coordinate system

that labels the position of the particle along the beam. We will imagine that the
beam can be divided into imaginary “slices” labeled by a coordinate τ that has the
definition (see Fig. 7.8)

τ ≡ t − z

v
. (7.8)

τ is usually defined so that it is zero at the front or head of the beam and increases
toward the tail.

The quantity τ is a local coordinate in the beam frame (i.e., if you were riding
along with the beam, τ would measure the distance back from the head of the beam
divided by v). Another way to think of τ is that if you had an array of beam position
monitors along the accelerator that you were examining with oscilloscopes, the time
axis on each scope trace would actually be τ . In general, all quantities we would
want to compute are functions of z and τ . So if we have some function f (z, τ ), then
its total time derivative is

d f (z, τ = t − z/v)

dt
= ∂ f

∂z

∣∣∣∣
τ

dz

dt
+ ∂ f

∂τ

∣∣∣∣
z

(
dt

dt
− 1

v

dz

dt

)
= v

∂ f

∂z

∣∣∣∣
τ

, (7.9)

and our analog of Eq. (7.7) for a continuous beam becomes simply

γbβ
2mec2 ∂

2r(z, τ )
∂z2

= −e[E + v × B]⊥. (7.10)

7.3.3 Focusing in a Solenoidal Field

Let us consider a solenoid [8] that is one of the most commonly used focusing
systems for electrons (virtually all electron induction accelerators use solenoidal
focusing).

Because the magnetic field lines must close on themselves (since the divergence
of B is zero), there must be a radial as well as an axial component of field in a finite
length solenoid:

B = êr Br + êz Bz . (7.11)
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z

r

Fig. 7.9 Schematic of a solenoid with current coming out of the page in the upper plane and enter-
ing the page in the lower plane. The curves wrapping around the solenoid indicate the magnetic
field lines

We can estimate this radial field by using the fact that the divergence of the
magnetic field vanishes. We have (with no azimuthal field)

∇ · B = 0 = 1

r

∂

∂r
(r Br ) + ∂Bz

∂z
. (7.12)

Now near the z-axis, we have approximately that

Br � −r

2

∂Bz(z, 0)

∂z
, (7.13)

where we have integrated Eq. (7.12) with respect to r by taking the z-derivative of
Bz to be a constant (at its on-axis value). The radial component causes a divergence
of the field lines at either end of the solenoid. These are referred to as “fringe fields”
and are illustrated in Fig. 7.9. The normalized Bz field and Br/r are plotted in
Fig. 7.10.

Solenoids can focus a beam and confine the transverse motion of its centroid.
We will consider the idealized case of a continuous, constant solenoidal field (in
actuality, the focusing is provided by many discrete solenoids usually placed so
close together that the field is treated as continuous to a first approximation). The
case of a magnetic field that varies in z can be treated by the same methods but
is somewhat more complicated. In what follows, we will consider only a constant
field. In that case, the magnetic field is just

B = êz B0. (7.14)

Fig. 7.10 Plots of the normalized z and r components of the field of a solenoid
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The equation of motion just becomes

γbβ
2mec2 ∂

2r
∂z2

= −ev × B. (7.15)

Using Eq. (7.14), this becomes

∂2r
∂z2

= − e

γbβ2mec2

[
βc

∂x

∂z
êx + βc

∂y

∂z
êy + βcêz

]
× êz B0. (7.16)

Retaining only transverse components of force, this becomes

∂2r
∂z2

= − eB0

γbβmec

[
−êy

∂x

∂z
+ êx

∂y

∂z

]
. (7.17)

Finally, these can be simplified as

x ′′ + kc y′ = 0, (7.18)

and

y′′ − kcx ′ = 0, (7.19)

where a prime denotes differentiation with respect to z and where we define the
cyclotron wavenumber kc as

kc ≡ eB0

γbβmec
= B0(kg)

1.703γbβ
(cm−1). (7.20)

The cyclotron wavenumber is a measure of the focusing strength of the solenoid.
The easiest way to solve the coupled set of Eqs. (7.18) and (7.19) is to use pha-

sors. A phasor is a complex quantity that we can use to combine Eqs. (7.18) and
(7.19) into a single equation. We define the phasor ξ as

ξ ≡ x + iy. (7.21)

Multiplying Eq. (7.19) by i and adding it to Eq. (7.18) and using the definition
(7.21), we have

ξ ′′ − ikcξ
′ = 0. (7.22)

Once we solve Eq. (7.22), we can immediately find x and y as

x = Re(ξ), (7.23)
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and

y = Im(ξ), (7.24)

The solution to Eq. (7.22) is just

ξ = A + Beikcz, (7.25)

where A and B are complex constants that will be determined by the initial condi-
tions on x , y, x ′ and y′. We have

ξ(0) = x(0) + iy(0) = A + B, (7.26)

while

ξ ′(0) = x ′(0) + iy′(0) = ikc B. (7.27)

Thus

ξ(z) = ξ(0) + iξ ′(0)
kc

− iξ ′(0)
kc

eikcz . (7.28)

Taking the real and imaginary parts and using Eqs. (7.26) and (7.27), we find that

x(z) = x(0) − y′(0)
kc

+ y′(0)
kc

cos kcz + x ′(0)
kc

sin kcz, (7.29)

and

y(z) = y(0) + x ′(0)
kc

− x ′(0)
kc

cos kcz + y′(0)
kc

sin kcz. (7.30)

Let us consider a simple example with x(0) = y(0) = x ′(0) = 0 and y′(0) = y′
0.

Then we have

x(z) = − y′
0[1 − cos kcz]

kc
, (7.31)

and

y(z) = y′
0

kc
sin kcz. (7.32)

Projected onto the x–y plane, this motion is just a circle. In the laboratory frame
the orbit describes a helix since it is advancing in z.
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Fig. 7.11 Projection of the
particle orbit onto the x–y
plane for the example in the
text

kcz = 0

x

y
kcz = π/2

kcz = π

kcz = 3π/2

It is not clear how the motion depicted in Fig. 7.11 describes focusing. We will
find that when viewed from a special reference frame this motion will appear intu-
itively to provide focusing. We will first do this mathematically and then show how
it works physically.

Let us return to Eq. (7.22) and solve it in another way. We can remove the first
derivative by use of a standard mathematical trick. We define a new dependent vari-
able Ω such that

ξ = Ωe
ikcz

2 , (7.33)

and substitute it into Eq. (7.34). We have

ξ ′ =
(
Ω ′ + ikcΩ

2

)
e

ikcz
2 , (7.34)

and

ξ ′′ =
(
Ω ′′ + ikcΩ

′ − k2
cΩ

4

)
e

ikcz
2 . (7.35)

Substitution of these expressions into Eq. (7.22) yields

Ω ′′ + k2
cΩ

4
= 0. (7.36)

We note that Eq. (7.36) is a harmonic oscillator equation with betatron wavenum-
ber given by kc/2. What we have done with the transformation given by Eq. (7.33)
is to go into a rotating reference frame that is spinning with angular “velocity” given
by kc/2 which is called the Larmor wavenumber or “frequency” (the rotating frame
is called the Larmor frame). When viewed in this frame, the motion described by
Eqs. (7.31) and (7.32) is an oscillatory motion in a single plane, which goes through
the origin. Figure 7.12 shows the Larmor frame and its relationship to the laboratory
frame.

Let us reexamine the motion shown in Fig. 7.11. We will label various points
corresponding to increments of kcz equal to π/2 in both the laboratory and Larmor
frames as shown in Fig. 7.13.
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Fig. 7.12 The Larmor frame
and its relationship to the
laboratory reference frame

x

θ = kcz/2

xL

y

yL

The orbit starts at position 1 which is at the origin in both coordinate systems.
By the time the particle has advanced to position 2 in the lab frame, the Larmor
frame has rotated by such an amount that the particle is along its positive y-axis. By
position 3, the Larmor frame has rotated counter-clockwise by 90◦ so that position 3
appears further out along its positive y-axis. By position 4, the electron appears to
be moving down along the positive y-axis of the Larmor frame, and by the time the
electron has moved to position 5, it has completed one cyclotron orbit in the lab
frame but only half a betatron orbit in the Larmor frame. At this point the Larmor
frame has rotated 180◦ counter-clockwise so that the negative-y axis is pointing
“up” in the lab frame. Therefore, as the electron makes its second orbit in the lab
frame, it will be seen to move up and down along the negative y-axis in the Larmor
frame. Upon completion of its second orbit, the Larmor frame would have rotated a
full 360◦. This picture is essentially unchanged even if the magnetic field changes
with propagation distance.

Thus far we have looked at the focusing effect of an electron in a constant, axial
field, and we found that transverse components of velocity were needed in order
for there to be any transverse force components. If the electron is moving purely
parallel to the field, no forces will be generated. Of course, real focusing systems
have solenoids of finite length so that there will be fringe fields. These fringe fields
will give rise to transverse components of velocity, which the main, axial field can

Fig. 7.13 Motion of an electron in a uniform solenoidal field as observed over two complete orbits
in the laboratory frame (left) and in the Larmor frame (right)
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Fig. 7.14 Fields of a solenoid
divided into two fringe field
regions and an interior region
of approximately constant
axial field

then act on to give focusing. The actual mechanism can be understood in terms of a
three-stage process depicted in Fig. 7.14.

We divide the fields of the solenoid arbitrarily into three regions. In region 1,
a charged particle moving parallel to the axis of the solenoid is acted upon by the
radial component of the field giving rise to an azimuthal velocity. In the interior
region (region 2), the situation is roughly what we have just investigated, a constant
axial field. The azimuthal velocity is now acted upon by the axial field to produce a
radial (focusing) force. As the particle leaves the solenoid in region 3, it encounters
a radial field of opposite sign to that in region 1, which spins the particle back down,
removing its azimuthal velocity. The particle then leaves the solenoid with a net kick
towards the axis and no rotation.

Solenoids whose polarities alternate from one to the next can also be used to sta-
bly transport a beam and have certain advantages. Magnetic and electric quadrupoles
can also be used to focus and guide beams. Magnetic quadrupoles have gener-
ally been employed only for downstream beamlines in electron induction linacs as
described in detail in Chap. 8.

7.4 Envelope Equations

There are several types of envelope equations that can be found in the literature. One
that is widely used in electron induction linacs is that due to Lee and Cooper [9]. It
is an equation for the RMS (root mean square) radius of a cylindrically symmetric
beam and is correct for arbitrary radial density profiles (since almost all induction
linacs use solenoidal focusing the beam is generally cylindrically symmetric inside
the accelerator).

7.4.1 Lee-Cooper Envelope Equation

We will sketch the derivation of this envelope equation. We start from the single
particle equation of motion for a particle subjected to a radial force F(r):

γbβ
2mec2 ∂

2r
∂z2

= F(r)êr . (7.37)
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We now dot r into this equation to get

γbβ
2mec2r · ∂

2r
∂z2

= F(r)r. (7.38)

Now

r · ∂
2r

∂z2
= ∂2

∂z2

(r · r
2

)
−
(
∂r
∂z

)2

, (7.39)

so that Eq. (7.38) can be written as

γbβ
2mec2

[
∂2

∂z2

(
r2

2

)
−
(
∂r
∂z

)2
]

= F(r)r. (7.40)

We now average this equation over the beam profile. The average of r2 is just the
square of the RMS radius R. The second term in brackets in Eq. (7.40) is just the
square of the total transverse velocity so that its average is the square of the RMS
transverse velocity V (when using z as the independent variable we will often speak
of a quantity such as ∂x/∂z as a velocity even though it is dimensionless and is in
fact an angle). Performing the average yields

γbβ
2mec2

[
∂2

∂z2

(
R2

2

)
− V 2

]
= F(r)r , (7.41)

where the bar over the right hand side indicates an average over the beam. Expand-
ing the second derivative gives (where a prime denotes differentiation with respect
to z)

γbβ
2mec2(R R′′ + R′2 − V 2) = F(r)r . (7.42)

We can now write this as

R′′ =
(

V 2 − R′2

R

)
+ F(r)r

γbβ2mec2 R
. (7.43)

We must now define a quantity called the emittance which is a measure of the area
in transverse phase space occupied by the beam (actually it is the area in transverse
trace space x–x ′ as opposed to phase space which is x–px ). For a cylindrically
symmetric beam the RMS emittance E is given by

E = Rθt , (7.44)

where θt is the RMS random transverse velocity at a point where the beam has
R′ = 0. The quantity γβE is called the normalized RMS emittance and is constant if
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the forces on the beam are linear in radius. When these forces are not linear, the emit-
tance may grow and the envelope equation becomes less accurate as a computational
tool to evaluate beam behavior.

The condition that the emittance is conserved implies that the external forces
are linear in r and that the beam undergoes self-similar (profile preserving) radial
motion. Under these assumptions, we may decompose the transverse velocity into a
coherent part and a random residual part

V = R′ r
R

+ θ t . (7.45)

Now if we square Eq. (7.45) and average over the beam, we obtain

V 2 = R′2 + θ2
t + 2

R′

R
r · θ t . (7.46)

The last term in Eq. (7.46) vanishes since it is the average of the radial component
of the random velocity which has zero mean. Therefore, we have that

θ2
t = V 2 − R′2, (7.47)

so that with the help of Eq. (7.44) we may write Eq. (7.43) as

R′′ = E2

R3
+ F(r)r

γbβ2mec2 R
. (7.48)

Equation (7.48) is a simplified form of the beam envelope equation. The force F(r)
in general includes the beam’s own space charge fields and the external focusing
force.

Let us consider the beam’s space charge fields first. When viewed in the lab
frame, the beam has a line charge density of I (r)/βc which produces a radial
electric field

Er = I (r)

2πε0βcr
, (7.49)

where I (r) is the current enclosed as a function of radius.
Now the beam also appears in the lab frame as a moving current so that it pro-

duces an azimuthal component of magnetic field

Bθ = μ0 I (r)

2πr
. (7.50)

The total (radial) Lorentz force on a charged particle in the beam is given by

F(r)s = e[Er − βcBθ ] = e

[
I (r)

2πε0βcr
− μ0 I (r)βc

2πr

]
= eI (r)

2πε0γ
2
b βcr

, (7.51)
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where we have used the fact that γ−2
b = 1 − β2. The subscript s on the left hand

side of Eq. (7.51) refers to the fact that we are computing the radial force due only
to the beam’s self fields. The net self force causes the beam to expand.

Let us now consider the average of F(r)sr over the beam:

F(r)sr = eI (r)

2πε0γ
2
b βc

. (7.52)

To compute the average over the beam of any quantity A, we use the prescription

A = 1

I

∫ ∞

0
2πr J (r)Adr, (7.53)

where J (r) is the current density. This simply weights the quantity A(r) by the
amount of current near that radius and is the continuum analog of summing the
quantity Ai for a beam particle over all the particles in the beam and dividing by the
total number. But,

J (r) = 1

2πr

dI (r)

dr
, (7.54)

so that Eq. (7.52) can be written as

F(r)sr = e

2πε0γ
2
b βcI

∫ ∞

0
I (r)

dI (r)

dr
dr = eI

4πε0γ
2
b βc

. (7.55)

Using this result in Eq. (7.48) gives the envelope equation

R′′ = E2

R3
+ I

(γbβ)3 I0 R
+ F(r) f r

γbβ2mec2 R
(7.56)

where the quantity I0 which has dimensions of current is

I0 = 4πε0mec3

e
∼= 17.1 kA. (7.57)

I0 is related to the Alfvén current IA by IA = γβ I0 which represents a limiting
current where the beam’s magnetic field bends the electrons backwards and inhibits
propagation in vacuum [10]. The subscript f on F(r) on the right hand side of
Eq. (7.56) refers to the fact that now F(r) is due to external focusing forces.

We have derived Eq. (7.56) under the assumption that γ was held constant. That
restriction may be removed to produce a more general envelope equation capable
of handling acceleration. When external focusing is present, it can be represented
by a term proportional to R (this will be valid for solenoids or any other type of
linear focusing system). The constant of proportionality is the square of the betatron
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wavenumber which is the analog of the oscillation frequency in a mass-spring
system. The betatron wavenumber is in general a function of z. Thus we may write

R′′ + (γbβ)
′

γbβ
R′ = E2

R3
+ I

(γbβ)3 I0 R
− k2

β R. (7.58)

Equation (7.58) is the most general envelope equation for a cylindrically symmetric
beam (without canonical angular momentum that is).

There are many interesting and useful solutions to Eq. (7.58). We will examine
just one of these: the equilibrium radius of the beam in a solenoidal focusing field.
The condition for equilibrium is

R′′ = R′ = 0. (7.59)

The solution of Eq. (7.58) then becomes

R =
√

2E

kc

[
θ +

√
θ2 + 1

]1/2
, (7.60)

where the dimensionless quantity θ is given by

θ ≡ I

2(γbβ)3 I0kc E
. (7.61)

When θ is very large, the beam is said to be space charge dominated and the equi-
librium radius asymptotes to

R =
√

2I

(γbβ)3 I0k2
c
. (7.62)

When θ is very small, the beam is emittance dominated and the equilibrium radius
becomes

R =
√

2E

kc
. (7.63)

7.4.2 KV Envelope Equations

So far we have discussed an envelope equation which corresponds to the RMS
quantities of a beam. Another envelope equation in wide use is that due to Kapchin-
skij and Vladimirskij [11]. The KV distribution is a delta function in the four
dimensional transverse trace space of the beam and has the property that any two
dimensional projection of this distribution is uniform. Thus a KV beam has uniform
density in configuration space and produces linear self fields. This beam has a hard
edge and the KV are used in the presence of quadrupole focusing.
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If the situation is rotationally symmetric, these equations collapse to

R′′ = E2

R3
+ 2I

(γbβ)3 I0 R
− k2

β R, (7.64)

where R and E now represent edge quantities [note the factor of 2 difference in the
space charge term between this result and Eq. (7.58)].

7.5 Corkscrew Motion

An accelerator is never perfectly aligned. We will focus on the effects of chro-
matic aberration and misalignments of solenoidal focusing systems on the beam
transverse motion in this section. An incoming beam misaligned with respect to the
magnetic flux line will gyrate around the magnetic flux line regardless of whether
the beam or the magnet is misaligned with respect to the machine axis. If the beam
energy is constant within the pulse, the entire beam rotates at the same cyclotron
frequency. Then, at any given z position along the machine, the beam is uniformly
displaced in the transverse plane. However, if there is an energy variation within
the beam pulse, the energy dependence of the cyclotron frequencies makes different
slices of the beam rotate at different rates. Theses slices arrive at a downstream z
position with different phase advances and different transverse displacements. The
beam becomes twisted, and its centroid will progressively distort into a higher pitch
helix as it travels downstream. If the difference in the phase advances among these
slices are larger than 2π , the beam displacement of the entire beam pulse resem-
bles a corkscrew. Hence, we call the transverse beam motion caused by chromatic
aberrations and misalignments “corkscrew motion” [12–14]. Corkscrew-type oscil-
lations can also be found in any linear focusing system, such as alternating gradient
(AG) quadrupole transport systems. An initially straight beam in an AG system will
develop wiggles whose frequency upshifts as the beam propagates.

7.5.1 Corkscrew Amplitude

If a magnet is misaligned with respect to the beam, the beam will experience an
error dipole field component. For an offset δsx in the x direction, the error field is
approximately

δBx ≈ −δsx

2

∂Bz(z, r)

∂z

∣∣∣∣
r=0

êx , (7.65)

as given by Eq. (7.13). For a tilt δθx in the x direction, the error field is approxi-
mately

δBx ≈
[

Bz + z − z0

2

∂Bz(z, r)

∂z

∣∣∣∣
r=0

]
δθx êx . (7.66)
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For simplicity, we use phasors to represent the error field, the transverse displace-
ment and the corkscrew amplitude in this section. The total error field of the focal
system is δB(z) = ΣδB j (z), where

δB j (z) = δBx, j (z) + iδBy, j (z), (7.67)

and j is the index of the j-th misaligned solenoid. The displacement of the magnetic
flux line of this solenoidal system is given by

�(z) =
∫ z

0

δB(z′)
Bz

dz′. (7.68)

Assuming no acceleration, the equation of motion for the beam is

ξ ′′ − ikcξ
′ = −ikc

δB

Bz
, (7.69)

where ξ = x + iy. Assume that the beam is perfectly aligned at the beginning of the
accelerator, i.e., ξ = 0 and ξ ′ = 0. Then, the beam slice at location z rotates around
the displaced flux line �(z) with a gyro-radius |ρ(z, τ )| as shown in Fig. 7.15 and
its transverse displacement ξ(z, τ ) is given by

ξ(z, τ ) = �(z) − ρ(z, τ )eikc(τ )z, (7.70)

where

ρ(z, τ ) =
∫ z

0

δB(z′)
Bz

e−ikc(τ )z′
dz′

=
n∑

j=1

∫ z

0

δB j (z′)
Bz

e−ikc(τ )z′
dz′, (7.71)

n is the index of the last magnet within distance z, and kc(τ ) is the cyclotron
wavenumber. Since the error field usually is localized around the misaligned magnet

Fig. 7.15 Beam centroid
gyrates around an offset
magnetic flux line. Beam
slices with different energies
have different gyro-radii and
phases 0

y

x

0’

Δ(z)

ρ(z,τ2)eikc(τ2)z

ρ(z,τ1)eikc(τ1)z
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location, we can extend the above integration range to (−∞,∞) and rewrite the
above equation as

ρ(z, τ ) =
n∑

j=0

δ B̃ j (τ )

Bz
, (7.72)

where

δ B̃ j =
∫ ∞

−∞
δB j (z

′)e−ikc(τ )z′
dz′, (7.73)

is the Fourier component of the j th error field at the cyclotron wavenumber. For
a beam having an energy variation over its length, different beam slices rotate at
different cyclotron wavenumbers with different gyro-radii as the beam propagates
in the solenoidal system. The differential gyration within the beam pulse is called
corkscrew motion, and its amplitude is given as

η(z, τ ) = 〈ρ(z, τ )eikc(τ )z〉 − ρ(z, τ )eikc(τ )z, (7.74)

where 〈 〉 denotes time averaging over the beam pulse. The time averaged
corkscrew amplitude A(z) is given as

A(z) = 〈ρ(z, τ )ρ∗(z, τ )〉1/2. (7.75)

The phase of the beam gyration is accumulated from the misaligned magnets’ origin.
When the differential phase advance δkc(τ )z within the pulse is much less than 1,
the corkscrew amplitude is roughly a linear function of the energy variation δγ , i.e.,

η(z, τ ) = δkc(τ )z

[
−iρ(z, τ0) + 1

z

∂ρ(z, τ )

∂kc

∣∣∣∣
τ0

]
eikc(τ0)z, (7.76)

and the time averaged corkscrew amplitude is given by

A(z) = 〈δk2
c (τ )〉1/2z|ρ(z, τ0)|

∣∣∣∣1 − 1

z

∂ρ(z, τ )/∂kc

ρ(z, τ )

∣∣∣∣
τ0

. (7.77)

The second terms in Eqs. (7.76) and (7.77) are usually much smaller than the first
terms since the Fourier spectrum of the error field is relatively flat around the
cyclotron wavenumber. Hence, the corkscrew amplitude also increases linearly in
z when the relative phase advance is small.

After the beam has traveled some distance, the relative phase advance is greater
than 2π . The beam will resemble a corkscrew. The corkscrew motion is then “fully
developed” with the gyro-radius as its amplitude, i.e.,

η(z, τ0) ∼= −ρ(z, τ )eiδkc(τ )z, (7.78)
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and the time averaged corkscrew amplitude is given by

A(z) ∼= |ρ(z, τ0)|
[

1 + 1

2

∣∣∣∣∂ρ(z, τ )∂kc

∣∣∣∣
τ0

〈δk2
c (τ )〉1/2

]
. (7.79)

Generally, the error field δB is linearly proportional to the focusing strength Bz

so that changing the focusing field will not change the Fourier spectrum of δB/Bz

while the cyclotron wavenumber changing linearly with Bz may result in differ-
ent gyro-radius. If the system has random error fields like white noise, the gyro-
radius would be constant regardless of the focusing field strength. Then, according
to Eqs. (7.76) and (7.77), the corkscrew amplitude also increases linearly in Bz

when the differential phase advance within the pulse is much less than 1. However,
it is noteworthy that Eqs. (7.78) and (7.79) indicate that the amplitude of a fully
developed corkscrew motion may not change when the focusing solenoids’ strength
is changed.

7.5.2 Tuning Curve Algorithm

The corkscrew motion is caused by misalignment of the system and energy variation
within the beam pulse. Intuitively, one would try to reduce the magnetic flux line’s
transverse displacement to minimize the corkscrew motion within a beam pulse with
a given energy variation. However, this method does not always reduce corkscrew
amplitude. Reducing the transverse displacement of the magnetic flux line only
guarantees reduction of the DC component of the error field or the z-averaged error
field. Since the corkscrew amplitude depends on the Fourier component of the error
field at the cyclotron wavenumber kc(t), to remove the corkscrew motion, we have
to remove the Fourier component of the error field at the cyclotron wavenumber
kc(t) instead.

To begin the beam steering during accelerator operation, the focusing magnet
should be set to produce a chosen magnetic profile for the target beam quality.
The steering procedure can be incorporated into a computerized data acquisition
and control system, such as the MAESTRO [14] program used on the ETA-II. The
control system acquires and processes signals from the beam position monitors.
The beam displacements x(z, t) and y(z, t) are recorded as functions of time t at
the beam position monitors. The beam centroid position over the pulse t1 to t2 is
given by (〈x(z, t)〉, 〈y(z, t)〉). The corkscrew amplitude η(z, t) is calculated as

η(z, t) = [x(z, t) − 〈x(z, t)〉] + i[y(z, t) − 〈y(z, t)〉], (7.80)

and the time averaged corkscrew amplitude is calculated as

A(z) =
〈
[x(z, t) − 〈x(z, t)〉]2 + i[y(z, t) − 〈y(z, t)〉]2

〉1/2
. (7.81)
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Fig. 7.16 The time-independent, dynamic beam steering algorithm reduces the corkscrew ampli-
tude by minimizing the time averaged corkscrew amplitude

Since the corkscrew amplitude is the differential beam displacement from the aver-
aged centroid position, the offset of the beam position monitor will not be included
in the calculated corkscrew amplitude. Therefore, the time-averaged corkscrew
amplitude calculated by the control system is only determined by the net error field
that includes both the alignment error field and the steering field. Varying the exci-
tation current on a steering magnet will change the magnitude of the time averaged
corkscrew amplitude A(z). We will obtain a well-defined minimum A(z) while tun-
ing the steering coils current to its optimal setting. Operationally the accelerator is
steered iteratively, starting at the injector and sequentially adjusting a chosen steer-
ing coils current for a minimum in the time averaged corkscrew amplitude observed
by a downstream beam position monitor until the end of the accelerator is reached
(see Fig. 7.16). When the alignment errors are large, repeating the steering process
for the whole accelerator may be needed to reach convergent settings on the steering
coils.

Note that the corkscrew motion is removed when the Fourier component of the
steering field at the cyclotron wavenumber cancels out the error field’s Fourier com-
ponent at kc. Therefore, one can minimize the corkscrew amplitude on the BPM
at the end of the accelerator while using only one pair of steering coils at the
beginning of the accelerator if the steering supply can supply infinite amount of
steering current, and if the displacement in the middle of the accelerator is not an
issue.

Figure 7.17 shows the corkscrew motion observed on the ETA-II accelerator. For
the 20-cell experiments, two beam position monitors are located at the end of the
20 cells [15]. The unsteered corkscrew amplitude was about 8 mm (see Fig. 7.17a).
When the steering coils were used to straighten the magnetic flux line by using the
Stretched Wire Alignment Technique (SWAT) [16–21], i.e., the DC component of
the error field was minimized. The observed corkscrew amplitude was only reduced
slightly from 8 to 6 mm (see Fig. 7.17b). Finally, we steered the beam by imple-
menting the corkscrew tuning curve steering algorithm. The observed corkscrew
tuning curves for all the steering coils had the shape of “V” with well-defined
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Fig. 7.17 Measured beam displacement for 40 ns on a 20-cell ETA-II experiment with (a) no
steering, (b) correction of tilts by using SWAT values, (c) the corkscrew tuning curve steering
algorithm, and (d) observed ETA-II corkscrew tuning curves for the horizontal and the vertical
steering coils at the last injector cell [16]

minimums, and that for the steering coil pair at the last injector cell are shown
in Fig. 7.17d. We had observed one order of magnitude reduction on the 20-cell
ETA-IIs corkscrew amplitude, and the final corkscrew amplitude was reduced to
0.6 mm (see Fig. 7.17c). A similar corkscrew amplitude reduction was also achieved
on the FXR accelerator by using this tuning algorithm [22, 23].

7.6 Instabilities

7.6.1 Image Displacement Instability

Both instabilities to be discussed in this section depend on the beam current. This is
a parametric instability and arises because an offset beam is subjected to a peri-
odic defocusing force at each accelerating gap. This force arises from the lack
of cancellation of the electric and magnetic image forces at the gap [24, 25].
The presence of the gap nearly eliminates the restoring force to the beam cen-
troid provided by the image current. The gap, however, only minimally perturbs
the destabilizing force from the image charge. The model geometry is shown in
Fig. 7.18. We will assume that the image current forces are absent over the gap
while the image charge forces are unperturbed from their smooth pipe value. We
can then Fourier analyze the spatial dependence of this force and define a gap
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Fig. 7.18 Periodic-gap
geometry for image
displacement and BBU
calculations is shown Accelerating Gap

Lg

b
CL

w

occupation function g(z). In terms of this function, the equation of motion for the
centroid is

ξ ′′ − ikcξ
′ − p2g(z)ξ = 0. (7.82)

We remove the first derivative term as we did in Sect. 7.3.3 by defining ξ =
Ωeikcz/2. Then we obtain

Ω ′′ + k2
c

4
Ω − p2g(z)Ω = 0, (7.83)

where p2 is given by

p2 = 2I

γβ3 I0b2
. (7.84)

Here g(z) is given by

g(z) = w

Lg
+ 2

π

∞∑
n=1

1

n
sin

(
nπw

Lg

)
cos

(
2πnz

Lg

)
. (7.85)

If we retain the first two terms in the expansion for g(z), we will obtain the Mathieu
equation

Ω ′′ +
[

k2
c

4
− k2 − 2p2

π
sin

(
πw

Lg

)
cos

(
2π z

Lg

)]
Ω = 0, (7.86)

where k2 is given by

k2 = 2Iw

γβ3 I0b2Lg
. (7.87)

Here Lg is the distance between gaps, w is the effective gap width, and b is the pipe
radius. By defining ζ = 2π z/Lg , we may cast this equation into a standard form

∂2Ω

∂ζ 2
+ [a − 2ε cos(ζ )]Ω = 0, (7.88)
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with a and ε given by

a = L2
g

4π2

[
k2

c

4
− k2

]
, (7.89)

ε = p2L2
g

2π3
sin

(
πw

Lg

)
. (7.90)

The solutions to Eq. (7.88) may be stable or unstable depending on the values of
a and ε. A plot of the boundaries between stable and unstable solutions is shown
in Fig. 7.19. The shaded regions are stable. An approximation for the shape of the
stability boundary between a = 0 and a = 1/4 is given by

a(ε) = 1

4
− ε − ε2

2
. (7.91)

Applying this condition for the first stability region 0 ≤ a ≤ 1/4 requires

ε <

√
3

2
− 2a − 1. (7.92)

Note that k2
c ∼ γ−2 while k2 ∼ γ−1 so that if the solenoidal field strength is not

increased with acceleration to higher energies eventually a(ε) will become negative
and the beam motion will become unstable. At that point, the average defocusing
force of the gaps will be stronger than the applied focusing.

This instability can be of concern for very high current machines where some
novel accelerating cell geometries have been developed to minimize both the image
displacement effect and the Beam Breakup Instability [26]. The constraints imposed
upon accelerator design and magnetic field tune by the image displacement force are
further discussed in Sect. 7.7.1.

Fig. 7.19 Stability
boundaries of the Mathieu
equation. The dark regions
are stable
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7.6.2 Beam Breakup Instability (BBU)

This is perhaps the most serious instability for a long, high current linac and sets
the focusing requirements and current limit for the machine (an exception may
occur for high current, heavy ion linacs where the focusing required to confine the
beam against its own space charge forces may be a more demanding requirement
than suppressing BBU). Historically, the instability was discovered circa 1957 but
gained prominence when SLAC was turned on. As initially designed, SLAC had
only ∼10 betatron wavelengths for the entire 2 mile accelerator. The appearance of
BBU necessitated the installation of extra quadrupoles to limit the number of e-folds
of growth [27].

The instability arises from the beam interacting with the dipole TM modes of the
accelerating cavities. These modes have z-components of electric field that extract
energy from the beam and have transverse magnetic fields that act to deflect the
beam. In most high current linacs the accelerating cavities are far enough apart that
electromagnetic fields from one cell do not appreciably excite modes in adjacent
cells. This leads to what is termed cumulative BBU where there are only local inter-
actions between the cavities and the beam.

7.6.2.1 Continuous System Model

We will treat a set of model equations for the instability that approximates the accel-
erator structure as a continuous system. This requires that there be many gaps per
betatron wavelength. Any phenomena that depend upon the periodic spacing of the
cavities will be lost in this model, but it yields the most important features of the
instability. In addition, we will assume continuous solenoidal focusing although the
method and the results can be easily extended to any type of smoothed focusing
system.

In general, there will be many dipole RF modes. When the beam passes by
the accelerator gap, it will experience a transverse Lorentz force from the mode
magnetic field. This force will result in a change in transverse momentum of
the beam. Let us define � as the average change in angle of the beam per unit
length

� ≡ �px + i�py

pz Lg

= − e

γbβmec

∫
gap

(
êx · βcêz × êy By + i êy · βcêz × êx Bx

) ( dz

βc

)
. (7.93)

From now on, we will take β = 1. The dipole modes in the cell are in turn
excited by the transverse beam oscillations as described in Sect. 6.10.1. With a
beam displacement ξ varying as exp(iωt) the frequency dependent response of
the cell can be characterized by the transverse interaction impedance discussed in
Sect. 6.10. Using the definition of transverse impedance in Eq. (6.29), the change
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in angle per unit length can be related to the beam centroid oscillation amplitude
as [28, 29]

� = − ieZt (ω) I

Lgγbmec2
ξ. (7.94)

We now complete the set of model equations by writing the equation of motion
for the beam centroid

∂

∂z

(
γb

∂ξ

∂z

)
− iγbkc

∂ξ

∂z
= γb�, (7.95)

where we have explicitly allowed for acceleration and variable focusing strength.
A detailed analysis of the general case with varying energy and focusing strength
is presented in the following Section, assuming a single high Q mode. Here we
derive a useful scaling law for the instability growth rate by considering the disper-
sion equation of a uniform system (constant focusing strength and constant beam
energy). With a beam centroid displacement of the form

ξ ∼ exp (iωτ − ikz) (7.96)

from Eqs. (7.94) and (7.95) we have the following solution for the wavenumber
k(ω)

k(ω) = −kc

2
±
[

k2
c

4
+ i A(ω)

]1/2

(7.97)

where

A(ω) = eZt (ω) I

Lgγbmec2
. (7.98)

It is easy to show that the instability is convective in the lab frame [30], so the
amplification over a distance z as a function of the excitation frequency can be
computed from Im(k) at Re(ω). In most cases of interest, the focusing strength is
strong enough to make

A � k2
c

4
(7.99)

In this case, the amplification after N accelerator cells (N = z/Lg), is

ξ ∼ exp

[
N I

B0c
Re
(
Zt (ω)

)]
. (7.100)
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7.6.2.2 Instability Growth with a Single High Q Mode

If we take the single mode model, we can express the transverse impedance as

Zt (ω) = iω3
0(Z⊥/Q)/c

ω2
0 − ω2 + iωω0/Q

. (7.101)

The parameter Z⊥/Q is called the transverse shunt impedance of the mode and
determines the degree to which the mode is excited by the beam. The real and imag-
inary parts of the impedance are plotted in Fig. 7.20. The real part is responsible for
BBU as we have shown. The value of the imaginary part of Zt at zero frequency is
responsible for the image displacement force. The actual impedance will be the sum
of the contributions from all of the RF dipole modes in the cell. If the modes are well
separated, the peaks of the real part will be almost unaffected by the presence of the
other modes. However, all the modes will contribute to the value of the imaginary
part at zero frequency.

We consider an initial value problem to obtain the asymptotic growth rate, and
use the Laplace transform notation s = iω. If the cavities are quiescent when the
head of the beam passes by, motion of the beam centroid is given by

∂2ξ̃

∂z2
+
(

1

γb

∂γ

∂z
− ikc

)
∂ξ̃

∂z
− h(s)

γb
ξ̃ = 0, (7.102)

where a tilde denotes the Laplace transform and the function h(s) is

h(s) = ω2
0G

s2 + ω0
Q s + ω2

0

. (7.103)

Here the quantity G is given by

G = 4πε0ω0

Lg

I

I0

(
Z⊥
Q

)
. (7.104)

Fig. 7.20 Single mode dipole
cell impedance for Q = 4
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We proceed to remove the first derivative terms by defining

ξ̃ = Ω̃√
γb

exp

{
i

2

∫ z

0
kcdz′

}
. (7.105)

Substitution into Eq. (7.102) yields

∂2Ω̃

∂z2
+
[

k2
c

4
− h(s)

γb
+ i

2

∂kc

∂z
− 1

2γb

∂2γ

∂z2
+ 1

4γ 2
b

(
∂γ

∂z

)2

+ ikc

γb

∂γ

∂z

]
Ω̃ = 0.

(7.106)

We now consider the case of uniform acceleration and put

γb = γ0 + λz. (7.107)

We now assume that kc changes very little in a cyclotron wavelength, i.e. that
k2

c � k′
c and also that kc � λ/γb. Then, Eq. (7.106) becomes

∂2Ω̃

∂z2
+
[

k2
c

4
− h(s)

γb

]
Ω̃ ∼= 0, (7.108)

which has the WKB solution

Ω̃ ≈ A(s)[
k2

c
4 − h(s)

γb

]1/4
exp

{
i
∫ z

0

[
k2

c

4
− h(s)

γb

]1/2

dz′
}

+ c.c. (7.109)

Let us consider a beam that is injected into the accelerator with an aiming error but
with no initial displacement. Then ξ(0, τ ) = 0 and ξ ′(0, τ ) = ξ ′

0, and we find that

ξ̃ (z, s) = ξ ′
0

s

√
γ0

γ

exp
{ i

2

∫ z
0 kcdz′}

[
k2

c (0)
4 − h(s)

γ0

]1/4 [ k2
c
4 − h(s)

γb

]1/4
sin

{∫ z

0

[
k2

c

4
− h(s)

γb

]1/2

dz′
}
.

(7.110)

In order to somewhat simplify Eq. (7.110) we will make the strong focusing approx-
imation. Specifically, we require

k2
c

4
� h(s)

γb
. (7.111)

We will see later that this is satisfied if k2
c
4 � G Q

γb
. We use this condition to neglect

h(s) in the denominator of Eq. (7.110) while we expand the radical in the exponent
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and keep the first term in h(s). It is this term that will yield the asymptotic growth
rate. We define φ(z) and Γ (z) as

φ(z) =
∫ z

0
kcdz′, (7.112)

Γ (z) =
∫ z

0

dz′

γbkc
. (7.113)

Then we may write Eq. (7.110) as

ξ̃ (z, s) ≈ ξ ′
0

ikc(0)s

√
γ0kc(0)

γ kc
[eiφ(z)−ih(s)Γ (z) − eih(s)Γ (z)]. (7.114)

In order to obtain the inverse Laplace transform of Eq. (7.114), we must compute
integrals of the form

I± ≡ 1

2π i

∫ c+i∞

c−i∞
ds

s
esτ±ih(s)Γ (z), (7.115)

where the contour is taken to the right of all the singularities of the integrand. Con-
sider the exponent of Eq. (7.115):

Λ± = sτ ± ih(s)Γ (z). (7.116)

Let us define a dimensionless variable σ and θ such that

s = ω0σ, (7.117)

and

θ = ω0τ

GΓ (z)
. (7.118)

With these definitions Λ± becomes

Λ± = GΓ (z)χ± = GΓ (z)

[
θσ ± i

σ 2 + σ
Q + 1

]
, (7.119)

and I± becomes

I± = 1

2π i

∫ c+i∞

c−i∞
dσ

σ
eGΓ (z)χ±(σ ). (7.120)

We will evaluate these integrals by the saddle point method. The asymptotic solution
resulting from this procedure will become increasingly valid as GΓ gets larger. The
saddle points are found from solutions of
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∂χ±
∂σ

= θ −
(±i)

(
2σ + 1

Q

)
(
σ 2 + σ

Q + 1
)2

= 0. (7.121)

There are two limiting cases corresponding to θ � 1 and θ � 1.

7.6.2.3 Long-Pulse BBU

Now we consider the important and interesting case θ � 1. In order to satisfy
Eq. (7.121) we must have σ 2 + σ/Q + 1 → 1, i.e. σ must be close to the resonant
frequency. So σ is approximately

σ ∼= − 1

2Q
± i, (7.122)

where we have neglected terms of order 1/Q2. At this point we do not know which
sign to choose in Eq. (7.122). We now substitute into Eq. (7.121) to obtain

(
σ 2 + σ

Q
+ 1

)2

∼ (±i)(±2i)

θ
= ±2

θ
. (7.123)

The solutions to this equation give the saddle points. It turns out that the domi-
nant contributions will come from the saddle points with an overall minus sign in
Eq. (7.123). One can verify this by solving for the saddle points and then insert-
ing them into the expression for χ± and looking for the largest real part. Thus the
dominant saddles are found as

σ0+ ≈ − 1

2Q
+ i + 1√

2θ
,

σ0− ≈ − 1

2Q
− i + 1√

2θ
. (7.124)

If θ < 2Q2, the dominant saddle points will lie to the right of the imaginary axis
and there will be no contribution from the pole at the origin. If θ > 2Q2, the saddle
points will lie to the left of the imaginary axis and there will be a contribution
from the pole to the integrals in Eq. (7.120), but the saddle point contributions will
dominate. These choices give

χ±(σ0) ≈ ±iθ − θ

2Q
+ √

2θ. (7.125)

and

1

2

∂2χ±(σ0)

∂σ 2
≈ 2

(
θ

2

)3/2

. (7.126)
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Fig. 7.21 Complex σ plane
for I+

We see from Eq. (7.126) that the steepest descent paths are vertical in the complex
σ plane as shown in Fig. 7.21 (i.e., if we put σ − σ0 = ηeiλ, we will find that
λ = π/2). We now have all the pieces needed to assemble the solution

ξ(z, τ ) ∼ ξ ′
0

kc(0)

√
γ0kc(0)

γbkc(z)

eiφ/2

2
√
πGΓ

(
2

θ

)3/4

e
GΓ

(
− θ

2Q +√
2θ
)

cos

(
φ

2
− ω0τ

)
,

(7.127)

where the magnitude of the growth is given by

|ξ(z, τ )| ∼ |ξ ′
0|

2
√
πGΓ kc(0)

√
γ0kc(0)

γbkc(z)

(
2

θ

)3/4

e
GΓ

(
− θ

2Q +√
2θ
)
. (7.128)

Let us write out the exponential term in the growth formula:

GΓ Re(χ) = −ω0τ

2Q
+√

2ω0τGΓ . (7.129)

Examination of this equation reveals that there is unique time τp for which the
exponent is a maximum. For late times, the growth is damped by the losses in the
cavities. Differentiating Eq. (7.129) and equating the result to zero yields τp as

ω0τp = 2Q2GΓ. (7.130)

The location of the peak growth in the pulse moves further back towards the pulse
tail as the beam propagates down the accelerator (increasing Γ ). This is an example
of a convective instability. Eventually the peak of the growth will propagate out the
tail of the pulse leaving behind a growth envelope that is monotonically increasing
from head to tail.

The value of the exponent, which occurs at τp, is

GΓ Re(χ)max = G QΓ, (7.131)
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Fig. 7.22 Convective
behavior of long-pulse BBU

and the maximum magnitude of the growth is

|ξ(z, τ )| ∼ |ξ ′
0|

2
√
πGΓ kc(0)

√
γ0kc(0)

γbkc(z)

eG QΓ

Q3/2
. (7.132)

Figure 7.22 shows the value of |ξ | versus τ at two different values of GΓ that cor-
respond to two different axial positions down the accelerator. The rapid oscillations
are occurring at the frequency of the RF mode. Note the scale change between the
two plots.

The maximum exponent, Eq. (7.131), has different functional forms depending
on the focusing scheme used. The equation turns out to be correct for any type of
smooth linear focusing if we just replace kc by 2kβ . For a constant field with or
without acceleration, we have

kβ = k0

γb
→ Γ = z

2γbkβ
, (7.133)

while if the field is ramped as
√
γb, we have

kβ = k0√
γb

→ Γ =
√
γb − √

γ0

λk0
. (7.134)

Finally, if the field is ramped proportionally to γb, we have

kβ = k0 → Γ = 1

2λk0
log

(
γb

γ0

)
. (7.135)



152 G.J. Caporaso and Y.-J. Chen

Fig. 7.23 BBU growth versus
G QΓ in the DARHT-II
accelerator is shown on a
semi-log scale showing the
exponential growth [31]

The parameter G Q that appears in the growth exponent is proportional to the
product of all three RF mode parameters ω0(Z⊥/Q)Q, which we can recognize
as the peak of the resistive part of the transverse impedance for the single pole
model (Eq. 7.101). Indeed, the e-folding rate in Eq. (7.133) for the case of a uniform
focusing field is the same as Eq. (7.100).

The growth of BBU versus distance is shown for the DARHT-II machine in
Fig. 7.23 [31]. Note that the measurements performed correspond to BBU growth
due to the low frequency peak of the mode spectrum shown in Fig. 6.12. The growth
is indeed exponential as expected and the inferred transverse impedance (from the
BBU growth) is very close to the value determined by the technique described in
Sect. 6.10.3.

7.7 Induction Linac Design Considerations

7.7.1 Optimal Focusing Strategy

The output beam of a high current accelerator may be required to drive a free elec-
tron laser or other device with a high energy selectivity. A typical requirement for a
variety of applications of these beams is that the energy variation across the useful
portion of the pulse (generally called the “flat top”) needs to be no larger than a few
percent. This relatively small energy variation raises the possibility that practical
machines could be constructed such that ωsτp � 1. An obvious way to satisfy this
criterion is to use a weak focusing field. However, a weak focusing field will invite
BBU growth. We will shortly see that there is a unique way to grade the focusing
strength so as to minimize the phase advance of a machine for a given level of BBU
growth [32].

Let us recall that the number of e-folds of BBU in the long-pulse limit (the regime
of operation of most high current linacs) is

Re(Λ) = G QΓ = G Q
∫ z

0

dz′

2γbkβ
. (7.136)
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We also need the betatron phase advance:

φβ =
∫ z

0
kβdz′. (7.137)

We take the case of constant average acceleration

γb(z) = γ0 + λz. (7.138)

Then we may express Eqs. (7.136) and (7.137) as integrals over γ :

Re(Λ) = G QΓ = G Q

2λ

∫ γ∞

γ0

dγ ′

γ ′kβ(γ ′)
, (7.139)

φβ = 1

λ

∫ γ∞

γ0

kβ(γ
′)dγ ′, (7.140)

where γ∞ is the value of γ at the end of the accelerator.
The problem now is to minimize (7.140) subject to the constraint Eq. (7.139).

That is, we wish to specify a fixed number of e-folds of BBU growth and find the
functional form of kβ(γ ) that minimizes the betatron phase advance. To solve this
problem, we minimize the auxiliary integral

φβ = 1

λ

∫ γ∞

γ0

[
kβ(γ

′) + μG Q

2γ ′kβ(γ ′)

]
dγ ′, (7.141)

where μ is a Lagrange multiplier. We use the Euler-Lagrange equation on the inte-
grand J of Eq. (7.141):

d

dγ

(
∂ J

∂k′
β

)
− ∂ J

∂kβ
= 0, (7.142)

where k′
β is the derivative of kβ with respect to γ . This condition reduces simply to

∂ J

∂kβ
= 0 = 1 − μG Q

2γbk2
β

, (7.143)

with the solution

kβ =
√

μG Q

2γb
. (7.144)

By examining the expressions we have derived for the betatron wavenumber of vari-
ous types of focusing systems, the result in Eq. (7.144) tells us that the optimum way
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to grade the strength of the focusing system is to have the solenoidal field strength
be proportional to

√
γ .

We can now determine μ by substitution into the constraint equation (7.139) as

√
μ =

√
2G Q

λRe(Λ)

(√
γ∞ − √

γ0
)
. (7.145)

So, we can now find the values of kβ and φβ as

kβ =
√

2G Q

λRe(Λ)

(√
γ∞ − √

γ0
)

√
γb

. (7.146)

φβ = 2G Q

λ2Re(Λ)

(√
γ∞ − √

γ0
)2

. (7.147)

From Eqs. (6.3), (7.101) and (7.104), it is clear that increasing the pipe radius b will
have high leverage in lowering the phase advance and number of BBU e-folds in
an accelerator. In fact, a figure of merit may be defined for an accelerator transport
system that is just

φβRe(Λ) = 2G Q

λ2

(√
γ∞ − √

γ0
)2

. (7.148)

For a given choice of energy and beam current, this figure can be minimized by
using a larger pipe and higher accelerating gradient.

The DARHT-I accelerator at LANL was the first induction machine to be
designed using some of these considerations [33]. Cost and availability of ferrite
led to the choice of pipe radius as 7.5 cm. A Γ of 3 was chosen as a design goal for
a beam current of 3 kA. The fact that the two pulsed power drive rods were close to
the accelerating gap locations led to a splitting of the BBU mode impedances in the
horizontal and vertical direction. This splitting led to an effective impedance that
was lower than that in either plane since the mode frequencies in the two directions
were different by about 20%.

In order to achieve a high beam brightness from the velvet cathode, an injector
voltage of 4 MV was chosen. The machine consists of 64 cells with an accelerating
voltage of 250 kV each. A minimum accelerating gap was chosen as 1.5 cm to be
consistent with the breakdown strength of the vacuum electrodes while minimizing
the transverse impedance. An initial magnetic field was chosen at 250 Gauss in
order to avoid problems with the image displacement effect and to minimize the
phase advance for corkscrew. Increasing the magnetic field with energy by a modest
factor leads to a BBU exponential gain of approximately 3.
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7.8 Nonlinear Focusing to Suppress BBU

7.8.1 Motivation for Nonlinear Focusing Systems

Electron beams propagating in accelerators always deviate from the axis due to mis-
alignments of focusing elements, injection errors or “error” fields. In addition, there
are a variety of instabilities that may lead to amplification of this transverse motion.
It has long been known that nonlinear focusing systems will lead to phase mix damp-
ing of particle motion. Phase mixing occurs when particles in a thin axial slice of
the beam have a distribution of betatron wavelengths. This leads to a damping of
the motion of the centroid since after several oscillations the particle orbits will
loose phase coherence. If the spread in betatron wavelengths is sufficiently large,
some instabilities, like BBU can actually be suppressed while the behavior of others
is qualitatively changed. Unless there is an instantaneous energy spread in a slice,
phase mixing does not occur in linear focusing channels since the betatron frequency
in a quadratic potential (which yields a linear restoring force) is independent of the
amplitude of the motion. In a nonlinear channel, the potential is anharmonic so
that the betatron frequency is amplitude dependent and phase mixing will occur.
The focusing systems to be discussed in this section was motivated by the desire to
incorporate phase mix damping.

7.8.2 Laser Generated Ion Channel

If the accelerator could be filled with a suitable low-pressure gas, a plasma channel
could be produced by propagating a laser beam along the axis. When a relativis-
tic electron beam encounters the plasma, its radial electric field expels the plasma
electrons, leaving behind a positively charged ion channel, as illustrated in Fig. 7.24.

All that is required for phase mixing is that the ion density profile be non-uniform
in radius. The potential well created by the ions will then be anharmonic. We will
see in Sect. 7.8.3 that only a small degree of nonlinearity may be required in order
to suppress instabilities. Only 0.1 mTorr pressure of a gas such as benzene or

Fig. 7.24 Laser guiding scheme. The accelerator tube is filled with a dilute gas that is ionized by
a laser pulse, producing a plasma column. The radial electric field of the electron beam expels the
plasma electrons leaving behind a positively charged column that focuses the beam
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n-diethyl aniline is required to produce a strong channel. KrF lasers producing
several hundred millijoule pulses have been used to ionize channels on the order of
100 m in length [34, 35]. Today, high intensity, short-pulse lasers can ionize virtually
any gas in any ionization state.

Consider a uniform density ion channel of radius a with total linear charge den-
sity λ. The radial electric field of this channel is then

Er = λr

2πε0a2
for r ≤ a, (7.149)

Er = λ

2πε0r
for r > a, (7.150)

We can consider two extreme cases. If the beam fits within the channel, it experi-
ences a linear focusing force and we may write its envelope equation as

R′′ = E2

R3
− 2cλR

γbβ2 I0a2
, (7.151)

with equilibrium radius

R =
[
γβ2 I0a2 E2

2cλ

] 1
4

, (7.152)

and

kβ = 1

a

[
2cλ

γβ2 I0

] 1
2

. (7.153)

If the beam is very much larger than the channel, then we have wire-like focusing
and the envelope equation becomes

R′′ = E2

R3
− 2cλ

γbβ2 I0 R
, (7.154)

with equilibrium radius

R =
[
γβ2 I0 E2

2cλ

] 1
2

, (7.155)

and an approximate kβ given by

kβ ≈ 2cλ

γbβ2 I0 E
= 2cλ

β I0 En
. (7.156)
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Note the slow dependence of kβ on γ . In the case of a large or harmonic channel kβ
varies as γ−1/2 as shown in Eq. (7.153) while for a wire-like channel (or a wire) it
has virtually no energy dependence as shown in Eq. (7.156).

Laser guiding has been remarkably successful in suppressing the beam breakup
instability and other sources of transverse beam motion, but it is not without diffi-
culties. Most of the troubles can be traced to the fact that the ions are not stationary
on the time scale of the beam pulse. From the point of view of an ion in the channel,
it experiences the radial electric field of the beam that will cause it to oscillate about
the beam axis with “sloshing” frequency

ωs =
√

eI

2πε0βcMa2
b

, (7.157)

where ab is the beam edge radius and M is the ion mass. For 10 kA and singly
ionized benzene, the sloshing time can be on the order of tens of ns. The mobility
of the ions can give rise to a potent instability known as ion-hose, which must be
considered for long-pulse machines such as DARHT-II.

7.8.3 Phase Mix Damping of BBU

Beam breakup can grow very quickly in a high current accelerator, but the char-
acteristic e-folding length is generally long compared to a betatron wavelength. In
fact, this is implied by the condition for strong focusing

k2
β � G Q

γb
→ kβ z � G Qz

γbkβ
∼ G QΓ. (7.158)

This raises the possibility that a small spread in the betatron wavenumber due to
some nonlinearity in the focusing system may lead to a damping rate that is at least
as large as the growth rate. If that condition can be achieved, we may expect the
instability to be suppressed. We anticipate that a spread in betatron wavenumber will
yield a damping rate of roughly �kβ so that in order to suppress BBU we must have

�kβ ≥ G Q

γbkβ
. (7.159)

We will see that this argument works very well.
Consider the free oscillations of a system of undamped, non-interacting oscilla-

tors with a distribution of frequencies that are all labeled by their frequency k:

x ′′
k + k2xk = 0. (7.160)

The distribution of frequencies f (k) is normalized such that
∫ ∞

−∞
f (k)dk = 1. (7.161)
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The ensemble average of the displacement is given by

x̄(z) =
∫ ∞

−∞
f (k)xk(z)dk. (7.162)

Suppose all oscillators have an initial displacement of x0 with zero initial x ′. Then,
the solution to Eq. (7.160) is just

xk(z) = x0 cos(kz). (7.163)

Let us choose f (k) to be a Lorentzian as shown in Fig. 7.25,

f (k) = �k/π

(k − k0)2 + (�k)2
, (7.164)

where �k is the half width of the distribution at half height. Now we can
compute x̄ as

x̄(z) = x0�k

π

∫ ∞

−∞
cos(kz)

(k − k0)2 + (�k)2
dk = x0 cos(k0z)e−�kz . (7.165)

We could have achieved the same result from an equation for x̄ that reads

x̄ ′′ + 2�kx̄ ′ + (k2
0 + �k2)x̄ = 0. (7.166)

That is, the ensemble average oscillates with frequency
√

k2
0 + �k2 and has an

effective linear damping term 2�kx̄ ′. If we had made a different choice for f (k),
we would not have obtained an exponential damping term. We might have obtained
z−1 or z−2 for kz � 1 or some other dependence, but the result would have been a
damped oscillation.

This result suggests a crude way of modeling phase mix damping of BBU. We
can simply add a linear damping term to the equation of motion for the beam cen-
troid and work through the growth theory again.

Fig. 7.25 Lorentzian
distribution
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We consider the case of an ion channel guided beam with the channel radius
assumed to be larger than that of the beam. This is the usual condition for a long
transport region, where the Rayleigh range of the laser would prevent holding a very
tight focus over an extended distance. The focusing of the channel is described by
Eq. (7.153), which we use to modify Eq. (7.95) to get

∂2ξ

∂z2
+ 1

γb

∂γb

∂z

∂ξ

∂z
+ 2�k0√

γb

∂ξ

∂z
+ k2

0

γb
ξ = �, (7.167)

where we have added a damping term characterized by the wavenumber spread
�k0/

√
γb. Now the variable ξ stands for either x or y since there is no coupling

between motion in the two planes as there was with solenoidal guiding.
If we again Laplace transform Eq. (7.167) and use (7.94) and (7.101) with s =

iω, we may eliminate � to obtain

∂2ξ̃

∂z2
+ 1

γb

∂γb

∂z

∂ξ̃

∂z
+ 2�k0√

γb

∂ξ̃

∂z
+
(

k2
0

γb
− h(s)

γb

)
ξ̃ = 0. (7.168)

We now make the transformation

ξ̃ = Ω̃√
γb

e
−�k0

∫ z
0

dz′√
γb , (7.169)

and obtain the equation for Ω̃ as

∂2Ω̃

∂z2
+
(

k2
0 − h(s)

γb

)
Ω̃ ∼= 0, (7.170)

where we have made the additional assumption that (�k0)
2 � k2

0. Equation (7.170)
is of the form (7.108) with the replacement of k2

c/4 by k2
0/γ . We could write down

the solution directly, but at this point we are interested in finding the condition to
suppress BBU.

Let us evaluate the exponent for the long-pulse case, where we are at the point in
the pulse of maximum growth. The real part of the exponent in the expression for ξ
contains the term G QΓ as well as a part from the transformation (7.169). Thus the
total real exponent is

Re(exp) = −�k0

∫ z

0

dz′
√
γb

+ G Q
∫ z

0

dz′

2k0
√
γb

. (7.171)

Both integrals have the same z dependence so that we will have no growth if

�k0 ≥ G Q

2k0
. (7.172)



160 G.J. Caporaso and Y.-J. Chen

Fig. 7.26 A schematic of the ATA is shown in the center above. Beam current traces at different
axial locations are shown on the left. Along the right side are shown outputs from loops that
respond to the time changing azimuthal magnetic field caused by the rapid centroid motion of the
BBU. The 830 MHz oscillations are evident in the traces

If we divide both sides of this expression by
√
γ , we will see that it is just equal

to our original guess, Eq. (7.159). This result is borne out by the results of a more
rigorous calculation [36].

This method of phase mix damping was used to suppress BBU in the ATA
machine [34]. With the nominal 3 kGauss guide field in the accelerator, there were
more than 10 e-folds of BBU growth for a 10 kA beam. By introducing low pressure
benzene gas and a laser beam along the axis through a hole in the cathode, BBU was
completely suppressed. Figure 7.26 shows the shortening of the beam pulse due to
loss of the tail to large amplitude BBU.

The use of the laser guiding technique completely suppressed the instability and
permitted transport of the full 10 kA beam without the use of any guiding mag-
netic field in the accelerator whatsoever. The results of this technique are shown in
Fig. 7.27.
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Fig. 7.27 Results of laser guiding. The top trace is measured at the downstream end of the acceler-
ator (50 MeV). The body of the pulse shows an absence of 830 MHz oscillations. The lower trace
shows the beam current at the end of the accelerator at the full 10 kA value. The beam current was
fully preserved throughout the entire machine
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