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1. Introduction and setup

1.1 Heuristic thoughts

Consider a standard slow-roll inflationary model. At the classical level, the inflaton field φ

gently rolls down its potential, and as long as the slow-roll conditions are met the universe

inflates. Eventually, once the inflaton kinetic energy becomes comparable to the potential

energy, inflation ends and the universe reheats. At the quantum level, on top of this

classical story there are small scalar quantum fluctuations, which after re-entering the

horizon during the post-inflationary era will lead to the familiar density perturbations. In

the gauge in which the inflaton follows its unperturbed classical trajectory, δφ = 0, the
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scalar fluctuations are conveniently parameterized by the variable ζ, which measures the

spatial curvature of constant-φ hypersurfaces, (3)R = −4∇2ζ/a2. For a given inflationary

history
(
φ(t),H(t)

)
the quadratic action for scalar perturbations is simply (see e.g. ref. [1])

Sζ =

∫
dtd3x

√−g φ̇2

H2

1

2

(
∂ζ
)2
, (1.1)

where the index contraction is done with the background FRW metric.

Upon canonical quantization of the above action, the typical size of quantum fluctua-

tions at horizon scales is

〈ζ2〉H ∼ H4

φ̇2
∼ 1

ǫ

H2

M2
Pl

, (1.2)

where ǫ is the usual slow-roll parameter, ǫ ≡ φ̇2/(2H2M2
Pl). ζ then remains constant

outside the horizon, and at horizon re-entering the scalar perturbations show up as density

perturbations, with initial amplitude given by ζ itself, δρ/ρ ∼ ζ.

From a geometric viewpoint, the variable ζ is directly the dimensionless perturbation

in the spatial metric of constant-φ hypersurfaces, gij = a2(t)(1 + 2ζ) δij . Hence, small ζ

fluctuations means that these hypersurfaces are slightly curved, whereas the extreme case

of ζ of order one corresponds to a highly deformed configuration. From eq. (1.2) we see

that the latter case arises when the inflaton potential is so flat as to make φ̇2 of order H4, or

smaller. In terms of the slow-roll parameter ǫ, this happens when ǫ . H2/M2
Pl. This regime

corresponds to eternal inflation. Indeed, to see this it is convenient to switch to a different

gauge, for example a spatially flat gauge, where scalar perturbations are parametrized

through the inflaton fluctuation δφ. Then, at lowest order in slow-roll parameters, the

quadratic action is that of a minimally coupled, canonically normalized scalar in a fixed

background geometry (see for example [1]),

Sδφ =

∫
dtd3x

√−g 1

2

(
∂δφ

)2
, (1.3)

whose typical quantum fluctuations at scales of order H are

〈(δφ)2〉H ∼ H2 . (1.4)

On the other hand, the inflaton vev in one Hubble time advances by an amount

∆φcl = φ̇ ·H−1 . (1.5)

In the ordinary, non-eternal regime quantum fluctuations are just a small correction to the

classical story. But if the classical φ̇ becomes very small — smaller than H2—the classical

inflaton advancement (1.5) drops below the typical size of quantum fluctuations. At that

point the classical downhill drift becomes unimportant and the system is dominated by

quantum diffusion. In particular backward diffusion is as likely as the forward one. Any

given observer will eventually experience reheating — because in a diffusion process the

probability for a given particle to touch any given position is always one. Nevertheless

inflation is globally eternal, in that backward diffusion, through the exponential expansion
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of the universe, leads to the creation of more and more Hubble patches which then have

a chance themselves to diffuse, and there will always be some Hubble patch that keeps

inflating. Notice that, as mentioned above, the eternal inflation regime sets in precisely

when ζ fluctuations become of order one, signaling large deformations in the geometry.

This condition was derived first in [2, 3].

The purpose of the present paper is to make progress in the quantitative understanding

of eternal inflation. Much work has been done in this direction since the first discovery

of this phenomenon [4 – 7, 2] long time ago, and some of the material, especially in this

section, will not be completely original (see two recent summaries by Guth [8] and by

Linde [9] and references therein). The main point will be to find a precise definition of

slow-roll eternal inflation (if it exists) and in particular the precise inequality that must be

satisfied by the parameters of the model to have eternal inflation.

Such a plan seems to be doomed to failure from the start. For one thing, when the

system is in or close to the eternal inflation regime, quantum fluctuations are so large as

to overcome the classical dynamics, thus impairing (a) the semiclassical approximation we

started with, and (b) the approximate homogeneity and isotropy of the universe. Once

these two features are lost, there seems to be very little hope to make any quantitative

progress. Indeed, the homogeneity issue is what usually makes so confusing the global

picture of false-vacuum eternal inflation, where bubbles of the new vacuum with different

cosmological constant keeps forming, giving rise to an intractable spacetime.

However, let’s look at these problems more closely for our slow-roll case. As to point (a)

above, large quantum fluctuations do not necessarily mean that the system is intractable.

Hardly anybody would suggest that a free scalar in Minkowski space in its vacuum state

is intractable, even though its dynamics is all in quantum fluctuations. Large quantum

fluctuations are only a problem if they are associated with strong coupling, that is if

they correspond to some interactions becoming large, thus leading to the breakdown of

perturbation theory. In other words, the issue of large fluctuations is a dynamical question

rather than a kinematical one. As long as interactions are small, a quantum field can be

reliably dealt with through the perturbative expansion. As to point (b), although in the

eternal inflation regime the typical size of ζ fluctuations at horizon scales is of order one, we

must recall that ζ parameterizes the scalar deformations in the spatial geometry induced on

the equal-φ surfaces. A large ζ means that these surfaces have a large intrinsic curvature.

This however can arise even if the four-dimensional geometry is virtually unperturbed,

but the φ fluctuations are so large as to dramatically bend the equal-φ surfaces in the

surrounding FRW geometry. In this case the full 4D geometry would still be approximately

homogeneous and isotropic, thus allowing once again for a perturbative approach.

either the full four-dimensional geometry is highly perturbed with respect to the back-

ground FRW solution, and this deformation gets projected onto the equal-φ surfaces, or

the four-dimensional geometry is virtually unperturbed, but the φ fluctuations are so large

as to dramatically bend the equal-φ surfaces in the surrounding FRW geometry. The latter

possibility is obviously harmless: in that case the full 4D geometry would still be approxi-

mately homogeneous and isotropic, thus allowing once again for a perturbative approach.

Fortunately in slow roll eternal inflation both perturbative expansions are allowed, and

are in fact one and the same, as we now explain.
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1.2 Why the system is perturbative

To see that the geometry is indeed very close to that of the unperturbed inflationary

solution, it is convenient to work in a gauge in which the metric fluctuations are mani-

festly small. This is the case for example in the gauge where the scalar perturbation is

parametrized by δφ and the equal-time hypersurfaces are flat,1

gij = a2(t)δij . (1.6)

Then the other components of the metric at linear order are perturbed by [1]

δg00 =
φ̇

HM2
Pl

δφ ∼
√
ǫ
H

MPl
, (1.7)

δg0i = − φ̇2

2H2M2
Pl

a2(t)

∇2
∇i

d

dt

(
H

φ̇
δφ

)
∼ a(t) ·

√
ǫ
H

MPl
, (1.8)

where we used the typical size of δφ fluctuations at horizon scales, eq. (1.4). We explicitly

see that by making ǫ smaller and smaller, we are actually suppressing the geometry fluctu-

ations [3]. In the limit of vanishing ǫ the spacetime geometry looks unperturbed, but this is

an artifact of the linear approximation. At quadratic order there are contributions to g00,

g0i of order (H/MPl)
2, which dominates over the linear ones for ǫ . H2/M2

Pl—precisely in

the eternal inflation regime. Higher orders are however further suppressed by higher powers

of H2/M2
Pl, thus allowing for a perturbative expansion in such a quantity. As suggested

above, the fact that in the eternal inflation regime ζ blows up is an artifact of the strong

bending of the equal-φ surfaces in an otherwise smooth four-dimensional geometry.

Similarly, for the interactions, in the slow-roll approximation the leading interactions

come from couplings with and within the gravity sector, while the ones coming from the

potential are subdominant [1]. Then it is clear that as long as metric perturbations are

small, interactions will be small as well and the perturbative expansion will be valid.

Indeed, after integrating out the metric fluctuations (1.7), (1.8) in the same gauge as

above, one gets trilinear, two-derivative self-couplings for δφ, schematically [1]

S3 ∼
∫

φ̇

HM2
Pl

δφ ∂δφ ∂δφ . (1.9)

By using again the typical size of inflaton fluctuations, eq. (1.4), we see that at scales of

order H interactions are suppressed with respect to the quadratic Lagrangian (1.3) by

S3

Sδφ
∼

√
ǫ
H

MPl
. (1.10)

That is, for smaller and smaller ǫ the system becomes more and more perturbative. Once

again, past the critical value ǫc ∼ H2/M2
Pl new interactions start dominating, namely

1We are restricting our analysis to scalar fluctuations. The inclusion of tensor modes is as straightforward

as uninteresting: nothing dramatic happens to them in the eternal inflation regime, their amplitude being

always of order H/MPl.
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Figure 1: Left: For standard, non-eternal inflation the inflationary phase (shaded region) is nearly

de Sitter, with slow-roll corrections and small inhomogenities; the reheating surface (red curve) is

slightly bent; the post inflationary phase is nearly FRW, with small perturbations inherited from

the reheating surface. Right: In the eternal inflation regime, the inflationary phase is very well

approximated by de Sitter geometry, with corrections of order H2/M2

Pl
, but the reheating surface

has wild fluctuations; as a consequence the post-inflationary phase is highly inhomogeneous, and

intractable.

quartic, two-derivative couplings [10]

S4 ∼
∫

1

M2
Pl

∂2 δφ4 ∼ H2

M2
Pl

· Sδφ , (1.11)

while higher-order interactions are suppressed by higher powers of H2/M2
Pl.

In summary, in the slow-roll regime geometry fluctuations and interactions are both

perturbative, with expansion parameters
√
ǫ · H/MPl and H2/M2

Pl in both cases. These

expansion parameters remain small even in the eternal inflation regime ζ ∼ H/(MPl
√
ǫ) ∼

1. Also for ǫ→ 0 the background FRW solution tends to de Sitter space. We are therefore

led to the conclusion that in this gauge at lowest order in slow-roll and H2/M2
Pl the system

is equivalent to a minimally coupled, free scalar in a background de Sitter space, with

no dynamical gravity. In hindsight, this conclusion is obvious. In the limit in which the

potential is flat the background geometry is that of de Sitter space and the only interactions

are gravitational in nature, thus leading to effects that are suppressed by GN times the

appropriate power of the only energy scale in the problem, H. In the following we are

going to neglect all corrections in the slow-roll parameters and in H/MPl. In particular we

are going to treat as constant the slowly varying parameters H and φ̇; towards the end we

will come back to discuss what happens when this approximation is relaxed.

Of course the simplification we discussed only applies to the inflationary era. Once

inflation ends the slow-roll approximation breaks down, and ζ fluctuations get converted

into density fluctuations. For ζ ∼ 1, one gets δρ/ρ ∼ 1 when the modes come back in
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the horizon, giving rise to a highly inhomogeneous four-dimensional geometry. Therefore

in the eternal inflation regime, ζ & 1, the post-inflationary era is as inhomogenous and as

confusing as the usual large-scale structure of false-vacuum eternal inflation; but as long

as we stick to the inflationary phase our picture of a free scalar in de Sitter space applies.

In any realistic inflationary scenario the breakdown of the slow-roll regime and the

consequent reheating of the universe will be gradual processes, but for our purposes it is

more convenient to picture them as instantaneously happening at some critical field value,

φ = φr. In this approximation reheating corresponds to some definite hypersurface in

spacetime. In the ordinary, non-eternal regime, φ̇/H2 ≫ 1, the spacetime region before

the reheating surface has a nearly de Sitter geometry, with small slow-roll corrections,

whereas after the reheating surface the universe is well approximated by a FRW solution

with small inhomogenities, whose amplitude is given ζ ∼ H2/φ̇. If we now make the ratio

φ̇/H2 smaller and smaller, the two above approximate descriptions tend to separate: the de

Sitter approximation before reheating becomes more and more precise up to the ultimate

accuracy of (H/MPl)
2, while the FRW one after reheating becomes strongly inadequate

past φ̇/H2 ∼ 1. The situation is schematically depicted in figure 1. In the eternal inflation

regime we have no hope to quantitatively study the large-scale structure of the universe

after reheating. However, we can study the geometry of the reheating hypersurface by

approaching it from the de Sitter phase, where our approximations are well under control.

We want to sharply characterize eternal inflation through some geometric property of the

reheating surface.

1.3 Finite comoving volume and UV smoothing

A natural candidate for characterizing eternal inflation is the volume of the reheating sur-

face: if starting with a finite inflationary volume at t = 0, the reheating surface ends up

having infinite volume, we are in eternal inflation. As explained above, this should happen

below some critical value of φ̇/H2, which in our approximations is the only dimensionless

parameter of the model. Of course the volume of the reheating surface has statistical fluc-

tuations, which supposedly are very large close to the eternal inflation regime, so our goal

is to determine whether there is a sharp transition value of φ̇/H2 at which the statistical

properties of the reheating volume abruptly change.

Before studying the volume statistics, we have to define our system more precisely.

First, as we already mentioned, it is better to talk about a finite initial inflationary volume,

otherwise the reheating volume would be infinite to begin with. Let’s therefore consider

an inflationary universe compactified on a three-torus, with fixed comoving size L. L then

plays the role of an infrared cutoff for the inflaton Fourier modes. We will explicitly see

that our results do not depend on the value of L. For simplicity we will assume that at the

initial time t = 0, the size of the universe is much larger than the Hubble radius, L≫ H−1

(we are choosing a(t) to be unity at t = 0). This is just for technical convenience, to use

integrals rather than sums in Fourier space.

Then, we want to study the constant-φ hypersurfaces, in particular that with φ = φr.

At short distances these surfaces are arbitrarily irregular, because the inflaton fluctuations

diverge at shorter and shorter scales, 〈(δφ)2〉k ∼ k2. This leads to a UV-divergent volume

– 6 –
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for the equal-φ surfaces. However this is true even in Minkowski space, and it has nothing

to do with the inflationary background we are studying. We can then cutoff the high

momenta above some UV scale by smoothing out the field in space over the corresponding

UV length scale. Notice that a fixed UV cutoff in physical distances looks time-dependent

— actually exponentially shrinking — in comoving coordinates. We thus consider the

smoothed inflaton field

φΛ(~x, t) =

∫
d3r fΛ(r)φ(~x+ ~r/a(t), t) , (1.12)

where fΛ(r) is a smooth function peaked at the origin and with typical width given by 1/Λ,

like for instance a Gaussian with σ = 1/Λ, and the explicit factor of a(t) gives the correct

time-dependence. Knowing the correlation functions for φ—which in the free field limit we

are working in are all determined by just the two-point function — we can compute all the

correlation functions for φΛ. In particular, φΛ too will be a Gaussian field, being a linear

superposition of Gaussian fields. It will be technically more convenient for us to work with

a sharp cutoff in momentum space and in this case we will see that our results do not

depend on the exact size of the cutoff. This strongly suggests that it does not matter how

we choose to implement the cutoff, i.e. what filter function fΛ(r) we pick. For reasons that

will soon become clear we need to smooth out the inflaton over several Hubble volumes,

that is, we need Λ−1 to be comfortably larger than H−1.

We then concentrate on the constant-φΛ surfaces. These are smooth by definition, with

no wrinkles below the UV length-scale 1/Λ. Studying these smoothed-out surfaces rather

than the original, ‘raw’ ones also makes more sense as far as reheating is concerned. Indeed,

above we were suggesting that reheating happens when the local inflaton vev reaches the

critical value φr, but of course ‘local’ has to be understood in a smoothed sense — roughly

speaking, what matters for reheating should be the inflaton average over at least one Hub-

ble volume. Once again, the fact that our results will be independent of Λ, for Λ ≪ H,

gives us confidence that the precise prescription we choose for defining the reheating surface

does not matter.

In the following we will drop the subscript ‘Λ’ from the smoothed field φΛ, and the

smoothing will be understood unless otherwise stated.

1.4 Space-likeness of the reheating surface

Our smoothing procedure is also important for making the reheating surface space-like.

Indeed, when we talk about computing the volume of the reheating surface, we are im-

plicitly assuming that such a surface is space-like, so that its volume can be interpreted

as the volume of the universe at the end of inflation. If such a surface were not space-

like everywhere, the ‘end of inflation’ would not be an event in time, but rather in some

space-time region it would look like a boundary in space. Also, the induced metric on

the surface would not be positive-definite everywhere. The space-likeness of the reheating

surface is not obvious when quantum fluctuations are taken into account. In the classical

limit the reheating surface is obviously space-like, as the classical motion gives a φ̇ with

definite sign. Quantum corrections add an additional motion to the classical one, as more
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and more modes enter in the filter fΛ(r) of eq. (1.12). It is not obvious that the resulting

motion gives rise to a space-like reheating surface.2

Fortunately the smoothing procedure helps in this respect: the probability for a

constant-φ surface not to be space-like somewhere is suppressed by ∼ e−H
2/Λ2

, where

Λ ≪ H is our UV cutoff. To see this, consider the inflaton field φ, without any smoothing

filter. The equal-φ surfaces are space-like if and only if φ itself is a good time variable, that

is if and only if ∂µφ is time-like everywhere,

(∂φ)2 > 0 (1.13)

(we use the (+,−,−,−) metric signature). Of course φ is a quantum field, and the above

condition cannot hold as an exact operator statement: at any space-time location there is

always a finite probability for ∂µφ to point in a space-like direction. The best we can hope

for is to make the above inequality valid as an expectation value, and quantum fluctuations

around it small; this issue is general, and it is not peculiar to the eternal regime we want to

study. As to the expectation value, if we split the field into background plus fluctuations,

we have

〈(∂φ)2〉 = φ̇2 + 〈(∂δφ)2〉 , (1.14)

where φ̇ is the classical inflaton speed, and δφ in our approximations is well described by

a free, minimally coupled scalar in de Sitter space. The fluctuating piece 〈(∂δφ)2〉 is UV

divergent; if we cut it off at some physical momentum Λ we get

〈(∂δφ)2〉 = −
∫ Λ·a(t) d3k

(2π)3
1

a2(t)

H2

2k
= −H2

8π2
Λ2 , (1.15)

which is negative. We thus see that quantum fluctuations tend to violate eq. (1.13), and

that the equal-φ surfaces cannot be assumed to be space-like at arbitrarily short scales.

Only for length-scales larger than the critical UV cutoff

Λ−1
c ∼ H

φ̇
= H−1 · H

2

φ̇
(1.16)

does the classical piece in eq. (1.14) dominate over the quantum one. We stress again

that this conclusion also applies to standard, non-eternal inflation. For instance, at scales

shorter than the above critical cutoff there is no sense in which one can use φ itself as

a clock and define the equal-time surfaces by the gauge-fixing δφ = 0. Notice however

that in the non-eternal regime φ̇/H2 is much larger than one and so the critical cutoff is

parametrically smaller than the Hubble radius; on the other hand close to or in the eternal

regime φ̇/H2 is of order one, thus making the critical cutoff of order of the Hubble radius.

2For a generic inflaton value, different from the reheating one, it is not even clear whether it makes sense

to talk about ‘surface of constant inflaton value’. Taking into account quantum fluctuations in the direction

opposite to the classical motion, it is possible to go through the same value of the inflaton many times, so

that the points of constant inflaton value will not form a smooth manifold. This cannot happen for the

reheating surface, because by definition after crossing φr inflation ends and the system cannot fluctuate

back again.
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This is why in our smoothing procedure we choose to filter out all modes with wavelengths

smaller than Λ−1 ≫ H−1.

Similarly for the standard deviation of eq. (1.13), at scales larger than 1/Λc the dom-

inant contribution comes from cross-product terms,

√〈[
(∂φ)2 − 〈(∂φ)2〉

]2〉 ∼
√
φ̇2 〈(δφ̇)2〉 ∼ φ̇ · Λ2 , (1.17)

Requiring this to be negligible compared to the classical value φ̇ gives a constraint on Λ:

Λ < Λc ≃ φ̇1/2, which is stronger than (1.16). In the eternal inflation regime however,

φ̇ ∼ H2, so that this just reiterates the conclusion that the cutoff must be parametrically

smaller than H.3

In summary, if we smooth out the inflaton field over length-scales somewhat larger than

the Hubble radius, we can safely assume that the constant-φ hypersurfaces are space-like.4

Of course there is always a non-vanishing probability of having a large quantum fluctuation

that locally brings ∂µφ onto a space-like direction. However thanks to the gaussianity of

the inflaton fluctuations, such probability is exponentially small with a width given by

eq. (1.17), roughly

P
(
(∂φ)2 < 0

)
∼ e

− φ̇2

φ̇Λ2 ∼ e−H
2/Λ2

. (1.18)

We stress again that the same arguments hold in the non-eternal regime: the gauge fixing

δφ = 0 only make sense with a sufficiently small cutoff Λ and neglecting exponentially

small corrections similar to the equation above.

1.5 Quantum field vs. classical stochastic system

Another reason why we need Λ−1 ≫ H−1 is that, in this approximation, as it was already

noticed in the context of eternal inflation in [2, 11], we can neglect the quantum nature

of the field and treat it as a classical stochastic system. Consider a single Fourier mode

of the scalar field; as we are neglecting interactions, it simply behaves as an harmonic

oscillator with parameters that depend on the background and are thus time dependent.

As it is well known, in the limit in which the mode wavelength is much larger than the

Hubble scale, the system is in a squeezed state with very large squeezing parameter [17].

3Eq. (1.17) is the correct expression in the eternal case, where we must choose Λ ≪ H . In the non-eternal

case, if we allow for Λ ≫ H there is another competing term of the form Λ4. Anyway one ends up with the

constraint Λ < Λc ≃ φ̇1/2 which is parametrically shorter than the Hubble radius in the non-eternal regime.
4One may argue that, although the smoothed reheating surface is spacelike, the real one may be not,

as reheating will be sensitive to scales of order H−1 and not much larger. This would be problematic at it

implies the existence of inflating points in the future light-cone of points where inflation already finished. As

we discussed, the post-inflationary era is not under control and it would therefore be impossible to proceed.

However, a model in which a potential giving eternal inflation abruptly ends and reheats is an idealization.

One should consider a realistic potential where ζ ≪ 1 close to reheating. As we will discuss later, this

period of non-eternal inflation does not change our conclusions, but it introduces a physical smoothing of

the reheating surface, as at short scales ζ is very small. This implies that the reheating surface is space-like.

This is the most physical way of looking at our smoothing procedure: the effect of a final period of inflation

during which quantum fluctuations are small. We thank Ben Freivogel and Raman Sundrum for discussions

about this point.
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This corresponds to the fact that the dynamics is dominated by the so called “growing

mode”, while the other independent solution dies away exponentially (“decaying mode”).

Although the system is still fully quantum, we expect that all physical measurements and

interactions will only be sensitive to the growing mode so that the decaying one can be

disregarded. This leads to a classical system, with the amplitude of the growing mode as

a classical stochastic variable.5

In conclusion, under our approximations the inflaton fluctuations are well described

by a classical stochastic field with Gaussian statistics. All correlation functions are then

determined uniquely by the two-point function. At equal times, before smoothing this is

〈δφ(~x, t) δφ(~y, t)〉 =
1

(2π)2
1

|~x− ~y|2 a2(t)
− H2

(2π)2
log

|~x− ~y|
L

, (1.19)

where L is our IR cutoff — the comoving size of the universe. The first term is the usual

two-point function for a massless scalar in Minkowski space. The second piece is peculiar

to de Sitter space, and it is the celebrated scale-invariant spectrum. Upon smoothing out

the field, the above expression is the correct one at distances larger than the UV cutoff,

|~x − ~y| · eHt ≫ Λ−1, whereas at shorter distances the two points can be thought of as

coincident and we get the classic result [12 – 14]

〈(δφ2(~x, t))〉 = αΛ2 +
H2

(2π)2
(
log ΛL+ β +Ht

)
=

H3

(2π)2
t+ const . (1.20)

As usual, the coefficient of the quadratically divergent piece, α, as well as the finite part

associated to the log-divergent piece, β, are order-one numbers that are regularization-

dependent, i.e. they depend on the precise filter-function we adopt to smooth-out the

field. On the other hand, the coefficient in front of the log-divergence is regularization-

independent, being determined by long-distance physics. The factor of t comes from the

explicit time-dependence of the UV-cutoff in comoving coordinates, or, equivalently, from

the time-dependence of the IR cutoff in physical coordinates. Physically, as time goes on

more and more modes are included in the smoothed field and, given the scale-invariance

of the spectrum, they all contribute to the variance (1.20). The coefficient of t is also

regularization-independent, being determined by the log-divergence coefficient and by how

the cutoff scales with time — not by the precise definition of the cutoff.

We see that the variance of δφ at a given comoving point ~x increases linearly with time.

This reminds us of a random walk and it is the base of the so called stochastic approach

to inflation which dates back to [15, 2, 11]. Indeed, if as smoothing procedure we choose

a sharp cutoff in momentum space, the analogy becomes exact: at any given point δφ(~x)

undergoes a random walk, every new mode included in the smoothing giving a random

kick to the field, totally uncorrelated to the previous ones. This will allow us to exploit

the technology of diffusion processes.

5Referring to the discussion of footnote 4, we can again assume that a period of non-eternal inflation,

ζ ≪ 1, stretches all the relevant modes largely out of the horizon, so that we are indeed allowed to treat

them classically.
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Before moving to the actual calculations, we want to underline the simplicity of the

system under study. Everything has been reduced to a free scalar in de Sitter space. Going

towards the eternal inflation regime however, we will see that this system gives rise to a

kind of phase transition producing an infinite reheating volume. Although we are studying

a free field, the relation between the reheating volume and the scalar is very non-linear and

this is what gives rise to the interesting dynamics.

2. Volume statistics

2.1 The average

Let us study the probability density ρ(V ) for the volume of the reheating surface φ = φr.

Our goal is to identify a sharp transition in the behavior of this probability density at

some finite value of the parameters of the model. In the setup discussed in the previous

section the only dimensionless parameter is given by the quantity φ̇/H2, the ratio between

the classical motion and quantum fluctuations. We want to see whether it is possible to

identify a critical value of φ̇/H2 where a sharp transition in the properties of ρ(V ) occurs.

This would correspond to the onset of the eternal inflation regime.

Let us start with calculating the average reheating volume 〈V 〉

〈V 〉 =

∫
dV V ρ(V ) . (2.1)

If we call tr(~x) the reheating time as a function of the comoving coordinate ~x, the average

volume can be written as

〈V 〉 =
〈 ∫

d3x e3Htr(~x)
〉

=

∫
d3x

〈
e3Htr(~x)

〉
, (2.2)

where we reversed the order of integration and averaging thanks to linearity of both. Then

the problem becomes very simple:

〈V 〉 = L3

∫
dt e3Htpr(t) , (2.3)

where pr(t) is the probability that at a given point ~x the field reaches the reheating value

φr at time t. By translational invariance this probability does not depend on the point ~x,

so that the integral over the comoving coordinates can be factored out to give the volume

of the comoving box L3.

To obtain the probability of reheating at time t we have to start from the probability

P (φ, t) of having a given field value φ at time t. This again does not depend on the point

~x. Then the probability to reheat at time t can be calculated as time-variation of the

probability of still being inflating, i.e. of having φ anywhere on the left of φr:

pr(t) = − d

dt

∫ φr

−∞
dφ P (φ, t) . (2.4)

As we already discussed in the previous section, at leading order in the slow roll parameters,

the perturbation of the inflaton field around the classical slow roll solution,

ψ = φ− φ̇t (2.5)
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Figure 2: At any given comoving point, the local inflaton value undergoes a random walk. Left:

for φ the reheating barrier is held fixed at φ = φr , but there is classical drift towards it. Right: for

the fluctuation ψ there is no net drift, but the barrier is approaching at a speed φ̇.

is a Gaussian field with variance σ2 that grows linearly with time (see figure 2),

σ2 =
H3

4π2
t . (2.6)

Here we dropped t-independent terms present in the full expression (1.20). It is straight-

forward to keep track of these terms and check that they do not affect our results, that

depend only on the late time asymptotics of σ2. In fact the constant pieces in eq. (1.20)

can be set to zero by a constant shift of the time variable, t→ t+ const. All properties of

the system that are dominated by the t → ∞ limit — like whether inflation is eternal or

not — are totally insensitive to such a shift. Note that the UV cutoff Λ does not enter in

the t-dependent part (2.6), nor does the IR cutoff L, so that our conclusions are not sensi-

tive to the values of Λ and L. To avoid the proliferation of numerical coefficients, in what

follows it is convenient to use σ2 itself as time variable. At any given ~x, the probability

distribution P (φ, t), when written as a function of ψ and σ2, satisfies the diffusion equation

∂P

∂σ2
=

1

2

∂2P

∂ψ2
. (2.7)

Inflation ends when the inflaton field φ reaches φr. Consequently, we are interested in

solving the diffusion equation (2.7) with an “absorbing barrier” at the corresponding value

of ψ, i.e. the solution should satisfy the Dirichlet boundary condition

P |ψ=ψr = 0 , (2.8)

with

ψr = φr − φ̇t = φr − 4π2 φ̇

H3
σ2 . (2.9)

Such a solution can be constructed by using a generalization of the method of images. One

starts with the standard solution describing diffusion without any barriers and with initial

condition localized at ψ = 0 for t = 0

P0(ψ, σ
2) =

1√
2πσ2

e−ψ
2/2σ2

. (2.10)
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In the case of a time independent barrier, it is well known that the Dirichlet boundary

condition can be satisfied adding a negative image located specularly with respect to the

barrier. In our case we have a barrier moving linearly in time. It is straightforward to

show that in this case the solution becomes

P1(ψ, σ
2) =

1√
2πσ2

(
e−ψ

2/2σ2 − e8π
2φ̇ φr/H3

e−(ψ−2φr)2/2σ2
)
. (2.11)

The image is symmetric with respect to the barrier position at time t = 0 and it is multiplied

by a constant factor which depends on the barrier speed. Note that in the whole physical

region, ψ < ψr, the contribution from the image is smaller than the P0 term, as it should

be in order for the density distribution P1 to remain positive. Far from the barrier the

contribution of the image is exponentially suppressed.

We can now use our solution for P to evaluate the probability (2.4) of reheating at a

given time t. By making use of the diffusion equation (2.7) and taking into account that

P vanishes on the barrier, eq. (2.8), we have

pr(t) = −H3

8π2

∂P

∂φ

∣∣∣∣
ψ=φr−φ̇t

. (2.12)

Disregarding the polynomial dependence in front of the exponential we have

pr(t) ∼ e−2π2 (φr−φ̇t)2

H3t . (2.13)

At late times this gives for the volume (2.3)

〈V 〉 ≃ L3

∫ ∞

0
dt α(t) e3Ht−

2π2 φ̇2

H3 t+O(1) , (2.14)

where the prefactor α(t) does not have exponential dependence on time. We see that the

average reheating volume remains finite if and only if

Ω ≡ 2π2

3

φ̇2

H4
> 1 . (2.15)

So far we have not talked about the initial condition we choose for the inflaton. Clearly, as

the general solution of the diffusion equation is given by the convolution of P1(ψ, t) with

the initial probability distribution, the initial condition is irrelevant for the convergence

of the average reheating volume. A similar criterium for the divergence of the inflating

volume was put forward in [16]. Here we focus on the more physical quantity of reheating

volume and we proceed to better characterize what happens at Ω = 1.

Equation (2.15) appears as a sharp criterion for whether eternal inflation takes place

or not. At the end we will argue that this is essentially correct; however to justify this

conclusion we first need to address several important subtle points. Let us try to understand

in more detail what happens to the probability distribution for the reheating volume ρ(V )

at the critical value Ω = 1, where the average reheating volume diverges. There are two

possible options. First, it may happen that each moment 〈V n〉 of the distribution has a
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different critical value of Ω when it starts diverging. This would happen, for instance, if

ρ(V ) had a power law asymptotics at large values of V with the power depending on Ω, e.g.

ρ(V ) ∝ 1

1 + V 1+Ω
. (2.16)

If this were the case, the value Ω = 1 associated to the divergence of 〈V 〉 would not re-

ally mark any sharp transition in the physical behavior. Each moment of the distribution

would single out a different transition point. Perhaps in this case a better characterization

of the onset of eternal inflation would be given by the value of Ω where the probability

distribution itself ceases to be normalizable (Ω = 0 for the model distribution (2.16)), if

such a value exists.

The other possibility is that at Ω = 1 all moments of the probability distribution

becomes infinite, including the “zeroth” moment, i.e. the probability distribution also ceases

to be normalizable at this point. This would happen, for instance, for a family of probability

distributions of the form

ρ(V ) ∝ q(V )e(1−Ω)V , (2.17)

where q(V ) has a power-law behavior at large V . In this case the critical value Ω = 1

indeed has a very sharp physical meaning.

We will see that the actual answer is somewhat more complicated than both of these

options. However, already at this point it is possible to argue that in the setup we are

considering the distribution is not of the type (2.17) and that different moments diverge

at different values of Ω. Indeed, it is straightforward to see that for any given value of Ω

there is a value n0 such that all moments of the volume distribution 〈V n〉 with n > n0

diverge. Indeed, let us imagine that Ω is much larger than one, so that naively one is very

far from the eternal inflation regime. Let us consider a class of inflaton trajectories that

at time t in one Hubble patch have a huge quantum fluctuation in the direction opposite

to the classical motion, such that the inflaton ends at

φ = φr − φ̇t . (2.18)

The classical trajectory would have φ = φ̇t, so that at large t the probability of such a

fluctuation is exponentially suppressed by a factor of order e−A·Ht, with A ∼ φ̇2/H4 ∼
Ω2. The important point is that the exponent grows only linearly with time (and not

quadratically). The reason is that the variance σ2 of the inflaton perturbation ψ is itself

a linear function of t. Then, with probability close to one such a trajectory will give rise

to a reheated volume at least as big as e3HtH−3, since this is the volume one would get

just classically rolling down from φ = φr − φ̇t to φ = φr. Consequently, for n > A/3 ∼ Ω2

the contribution to the moment 〈V n〉 from this set of trajectories grows exponentially as a

function of t—the large power of the exponentially growing volume over-compensates for

the small probability of the required fluctuation — and these moments diverge.

At this point one is tempted to conclude that the situation is analogous to what

happens with the distribution (2.16) and that there is no sharp transition to the eternal

inflation regime. We will argue later that this conclusion is too quick, and that instead
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there is a sharp transition. Notice that for the rough argument about higher moments to

work, it is essential to consider, as time grows, backward fluctuations that go further and

further along the potential without bound. To see what this implies, it is instructive to

understand the effect we just described at a more quantitative and detailed level. For this

purpose we are going to study now the behavior of 〈V 2〉 and show that indeed it starts

diverging at a critical value Ω > 1, i.e. when the average volume 〈V 〉 is still finite.

2.2 The variance

The calculation we did for the average is deceivingly simple as the only thing we needed

was the 1-point probability P (φ, t) to have a value of the field φ at time t, which is clearly

independent of the comoving position ~x. However the study of the full probability for the

reheating volume ρ(V ) is not straightforward as the only expression for it is based on a

functional integration over the field realizations

ρ(V ) =

∫
Dφ P[φ] δ

(
V −

∫
d3x e3Htr(~x)

)
, (2.19)

where Dφ is the functional measure on the set of all possible space-time realizations of the

inflaton field, P[φ] is the probability of a specific realization and tr(~x) is the reheating time

for a given realization as a function of the comoving coordinate ~x.

Instead of trying to evaluate the expression above, to calculate 〈V 2〉 we will follow

a procedure similar to the one used for the average. Namely, let us define the 2-point

probability distribution of the inflaton field P2(φ1, φ2, |~x1 − ~x2|, t1, t2), such that

P2 dφ1dφ2 (2.20)

gives the joint probability of finding the inflaton field in the ranges (φ1(2), φ1(2) + dφ1(2)) at

the two space-time points (~x1, t1) and (~x2, t2). For translational and rotational invariance

this joint probability just depends on the distance between the two points |~x1 − ~x2|. Anal-

ogously to the previous section we can define a probability density p2r(t1, t2, |~x1 − ~x2|) for

reheating to happen at the comoving point ~x1 at time t1 and at the comoving point ~x2 at

time t2. Similarly to (2.4) this will be related to P2 by

p2r(t1, t2, |~x1 − ~x2|) = −∂t1∂t2
∫ φr

−∞
dφ1

∫ φr

−∞
dφ2 P2(φ1, φ2, |~x1 − ~x2|, t1, t2) . (2.21)

Then the expectation value of V 2 can be written as

〈V 2〉 =

〈∫
d3x d3y e3Htr(~x) e3Htr(~y)

〉
= L3

∫
dt1dt2d

3x e3Ht1e3Ht2 p2r(t1, t2, |~x|) . (2.22)

To study the convergence of this integral we need to find the 2-point probability P2.

For fixed comoving distance |~x| between the two points this probability has a very different

behaviour at early and late times. At early times,

t1, t2 ≪ t∗ ≡ −H−1logH|~x| , (2.23)
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Figure 3: Our two-step approximation. The local inflaton fluctuations in two nearby comoving

points are assumed to be totally correlated until the physical distance between the two points exits

the UV cutoff (t < t∗), and totally uncorrelated afterwards (t > t∗).

the two points are within one Hubble patch and therefore they are not resolved by the

smoothing procedure. As such their evolution is perfectly correlated. In particular the

2-point distribution at equal times t1 = t2 is just given by the 1-point distribution (2.11),

P2(ψ1, ψ2, |~x|, t, t) ≃ P1(ψ1, t)δ(ψ1 − ψ2) for t≪ t∗(|~x|) . (2.24)

In the opposite limit, when the distance is much larger than the Hubble radius, the inflaton

fluctuations at the two points are completely uncorrelated. In this case, the probability

distribution P2 satisfies a diffusion equation with respect to each pair of variables (t1, φ1),

(t2, φ2),
∂P

∂σ2
1(2)

=
1

2

∂2P

∂ψ2
1(2)

for t1, t2 ≫ t∗ . (2.25)

In the equations above ψ1(2) and σ2
1(2) are related to t1(2) and φ1(2) by the relations (2.5)

and (2.6).

In the following we are going to use a “two steps” approximation in which we consider

a single random walk before t∗ and two uncorrelated ones after t∗, as dipicted in figure 3.6

The exact solution is more complicated as there is an intermediate period of partial corre-

lation [18]. However it will be easy to check that our results will not depend on the exact

definition of t∗, when the two regimes are matched. This strongly indicates that taking

into account the period of partial correlation would not change the range of Ω when 〈V 2〉
converges.

In this 2-step approximation, the 2-point probability when the distance between the

two points is larger than Hubble is obtained first following a single random walk until the

6The same approximation has been used in the study of structure formation in [18].
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time of “separation” t∗ and then convolving this initial condition with two independent

Green’s functions for the diffusion equation with a barrier. This translates into

P2(ψ1, ψ2, |~x|, t1, t2) =

∫ φr−φ̇t∗

−∞
dψ G(ψ1, ψ, t1 − t∗)G(ψ2, ψ, t2 − t∗)P1(ψ, t∗) , (2.26)

with t1, t2 > t∗. Notice that the dependence on |~x| is hidden in t∗, given by equation (2.23).

The Green’s function G is straightforward to construct by making use of the solution (2.11).

Namely, it is equal to

G(ψ1, ψ, t) = P̃1(ψ1 − ψ, t− t∗) (2.27)

where “tilde” indicates that φr in eq. (2.11) must be replaced by

φr − ψ − φ̇t∗ (2.28)

to take into account that the independent motion of each of the two points starts at ψ at

time t∗, rather than at the origin at t = 0.

To prove that the variance diverges when the average volume is still finite, it is enough

to obtain a lower bound on the integral (2.22). As the integrand is positive definite, we

can therefore restrict the range of integration by considering only pairs of points (~x1, ~x2)

in different Hubble patches (both at t1 and at t2). In other words we can impose a UV

cutoff on the integration over the comoving volume in eq. (2.22) by requiring

t∗(|~x|) < t1, t2 . (2.29)

It is anyway straightforward to check that the remaining range of integration gives a con-

tribution that always converges whenever Ω > 1.

As before we can use (2.25) to evaluate the integrals in (2.21) and arrive at the following

expression

〈V 2〉=−H
6 · L3

64π4

∫ ∞

0
dt1dt2

∫

|~x|>H−1e−Hτ

d3x e3H(t1+t2)∂ψ1∂ψ2P2(ψ1, ψ2, |~x|, t1, t2)
∣∣∣
ψ1(2)=φr−φ̇t1(2)

,

(2.30)

where τ = min(t1, t2).

The partial derivatives act on each of the two Green functions of eq. (2.26) and give

a dependence analogous to the 1-point case eq. (2.13). The evolution before splitting

given by P1 contains the image term and one should sum the two contributions. However,

as already discussed in the previous section, we will find that the divergence of 〈V 2〉 is

dominated by trajectories which are exponentially far from the barrier as time becomes

large. This implies a posteriori that the image term is completely irrelevant.

The convolution integral in (2.26) can be done in saddle point approximation. The

saddle point is given by

ψsaddle = t∗
(ψ1 + ψ2) t∗ − t2ψ1 − t1ψ2

t2∗ − t1t2
. (2.31)

This gives for the exponential part of P2

P2(ψ1, ψ2, |~x|, t1, t2) ∼ exp

(
−2π2

H3
· t2ψ

2
1 − 2t∗ψ1ψ2 + t1ψ

2
2

t1t2 − t2∗

)
. (2.32)
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Note that this expression non-trivially depends on the spatial separation |~x| through the

horizon crossing time t∗, as shown in (2.23). To plug this result back in (2.30) it is conve-

nient to use

t± = t1 ± t2 (2.33)

as time variables and the horizon exit time t∗(|~x|) in place of the comoving separation ~x.

With this change of variable and keeping only the leading exponential behavior at large

times as in the previous section, one obtains (restricting to t1 ≥ t2)

〈V 2〉 ∼
∫ ∞

0
dt+ e

3Ht+

∫ t+

0
dt−

∫ t+−t
−

2

0
dt∗ e

−f(t+,t−,t∗) , (2.34)

where

f(t+, t−, t∗) = 3Ht∗ + 3HΩ

(
t+ − 2t∗ +

4t2∗(t+ − 2t∗)

t2+ − t2− − 4t2∗

)
. (2.35)

The first term on the right hand side of this equation comes from the change of integration

measure from x to t∗(|~x|). To check whether the integral over t+ converges, we can minimize

the function f with respect to t− and t∗ in the range of integration. As t− enters into f

only in the denominator of the last term, it is clear that the saddle point is

t− = 0 . (2.36)

Then the minimization with respect to t∗ gives

t∗min =
t+
2

(√
2Ω − 1

)
, (2.37)

and the value of f at this minimum is

f(t+, 0, t∗min) = 3Ht+

(√
2Ω − 1

2

)
. (2.38)

This grows faster than 3Ht+ for

Ω >
9

8
. (2.39)

We conclude that 〈V 2〉 ceases to be finite when the parameter Ω drops below 9/8, i.e. before

the average volume 〈V 〉 starts diverging. As a consistency check of the calculation, note

that at Ω = 9/8 the optimal horizon exit time t∗min indeed belongs to the integration

interval in (2.34). For Ω > 2 this would no longer be true and the dominant contribution

would come from t∗ = t+/2: 〈V 2〉 would be dominated by the dynamics before the two

points become independent.

2.3 Uphill barrier

The above explicit calculation of 〈V 2〉 nicely fits into the general argument presented at

the end of section 2.1. We have seen that, in saddle point approximation, the dominant

contribution to 〈V 2〉 comes from points that reheat at the same time t1 = t2. These points

start evolving independently when separated by a physical distance ∼ H−1; this happens
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at a fraction of the eventual reheating time, which is equal to 1/2 for the critical value

Ω = 9/8, see (2.37).

Where is the most likely position along the potential at t∗, when the two points start

their independent evolution? From the saddle point result (2.31) we see that it is a position

with a huge backward fluctuation with respect to the classical trajectory

ψ = −
√

2

Ω
φ̇ t∗min . (2.40)

For Ω < 2 this fluctuation corresponds to a negative value of the inflaton

φ =
(
1 −

√
2/Ω

)
· φ̇t∗min , (2.41)

so that the most likely position at t∗min is higher than the starting point at t = 0 and it

becomes higher and higher without bound for t∗min → ∞. This agrees with the general

argument above.7

To summarize, all this sounds as if the volume distribution has qualitative properties

similar to the model distribution (2.16), where the various moments start diverging at dif-

ferent values of Ω. Thus it seems that the value Ω = 1, where the average volume diverges,

does not really correspond to any sharp physical transition. However this conclusion is too

quick. In section 3, where we study a discretized version of the same system, we will argue

that at Ω = 1 another sharp transition occurs besides the divergence of 〈V 〉: the total

probability of having a finite reheating volume becomes smaller than one! This property

is expected in the transition into the eternal inflation regime as it tells us that there is a

finite probability of an infinite reheating volume or equivalently for inflation to last for-

ever. Clearly this sharply defines Ω = 1 as the transition point to eternal inflation. Before

moving to this issue, let us conclude our study of the moments of the distribution ρ(V ).

As we stressed, the divergence of the higher moments is qualitatively different with

respect to the case of the average. The explicit calculation of 〈V 2〉, following the general

argument made in section 2.1, shows that the divergence is related to the possibility of

fluctuating uphill without bound, infinitely far from the barrier. What we are going to

check is that, if we put a bound to the possibility of going infinitely uphill, all the moments

diverge at the same critical value Ω = 1.

To impose a limit on fluctuations infinitely far from the reheating point, we can put a

reflecting barrier so that the field value is constrained to satisfy

φ > φup , (2.42)

where φup will be a large negative value. The value of ψ at the barrier will be given by

ψup = φup − φ̇t . (2.43)

Here we are going to study the effect of this new barrier on the calculation of 〈V 2〉,
while we postpone the discussion about all higher moments to appendix A. We do not

7Notice that as 〈V 2〉 is dominated by a splitting point infinitely far away from the barrier it is justified

disregarding the image terms of the probability P1 in (2.26).
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need to find the explicit form of the solution of the diffusion equation with two barriers.

To keep track of the late time exponential behavior for large enough |φup|, it is enough to

consider that the integration range in the convolution (2.26) is now restricted to (ψup, ψr)

and it is not extended infinitely uphill. For Ω < 2 the saddle point position (2.41) moves

backwards and thus it eventually hits the new uphill barrier. The saddle point exits the

physical region and therefore, in the leading exponential approximation, the result will be

dominated by a splitting point position on the uphill barrier, i.e. the point closest to the

(would-be) saddle. In this approximation one obtains for the 2-point distribution

P2(ψ1, ψ2, |~x|, t1, t2) ≃ exp

[
−2π2

H3

(
(ψ1 − ψup)2

t1 − t∗
+

(ψ2 − ψup)2

t2 − t∗
+
ψ2

up

t∗

)]
. (2.44)

We are interested in the late time behaviour of this expression. The position of the uphill

barrier φup becomes irrelevant in this limit as it is dominated in (2.43) by the time de-

pendent term. This means that φup disappears from the calculations and therefore from

the final critical value of Ω and it can be thought just as a regulating device, which can

be sent to infinity. Notice however that its effect is crucial. Mathematically this comes

from the fact that the large φup limit and the late time limit do not commute, because

the saddle point (2.31) eventually exits the integration region at any finite value of φup.

In more physical terms this means that no matter how far the barrier is there will be a

sufficient large time such that

H3t & φ2
up (2.45)

so that the diffusion is so large to be sensitive to the presence of the extra barrier. As

the transition to eternal inflation is sensitive to arbitrarily large times, the presence of the

regulating barrier will be important, independently on how far we put it.

To see that the presence of the second barrier changes the value at which 〈V 2〉 diverges,

let us plug (2.44) in the expression (2.30) for the 〈V 2〉. We obtain the same result as (2.34)

with the function f now taking the form

f(t+, t−, t∗) = 3Ht∗ + 3HΩ (t+ − t∗) (2.46)

We see that now the integral for 〈V 2〉 converges for Ω > 1. Note that the integral over t∗
is saturated at the upper limit, justifying a posteriori an assumption implicit in the whole

derivation — that in the late time limit (meaning large t1,2 limit) t∗ also indefinitely grows.

On the other hand it is easy to check that there is no effect of the second barrier on

the calculation of 〈V 〉; this is just a consequence of the fact that solutions to the diffusion

equation behave continuously when one removes one of the barriers to infinity. This is

checked in appendix A, where we study the explicit solution in the presence of two barriers.

In conclusion, in the presence of an uphill regulating barrier, Ω = 1 is the critical point

both for 〈V 〉 and for 〈V 2〉. In appendix A we will see that this holds also for all higher

moments 〈V n〉.
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p1−p

i i−1

Figure 4: The branching process.

3. Bacteria model of inflation

The above results strongly suggest that Ω = 1 sets the transition to eternal inflation. To

conclusively confirm this one would like to directly check that at Ω < 1 there is a finite

probability for inflation to run forever. A natural quantity to look at to address this issue

is the total probability to have a finite reheating volume,

Pf =

∫
dV ρ(V ) , (3.1)

where ρ(V ) is the volume probability distribution defined by eq. (2.19). Clearly, Pf = 1 if

inflation always ends in a finite time. On the other hand, as we will see in this section, for

Ω < 1 the total probability Pf drops below one. This is a direct signal of eternal inflation

— in this regime there is a finite probability (1−Pf ) that the total volume of the reheating

surface is infinite. This result also shows that the transition to the eternal regime is quite

similar to a second order phase transition, with (1 − Pf ) being an order parameter.

To derive this result one needs more detailed information about the probability distri-

bution ρ(V ) rather than just its multipole moments. This seems to be hard to achieve, as

the only available definition of ρ(V ) is a rather formal functional integral formulae (2.19).

As usual with functional integrals, to gain more control over ρ(V ) it is natural to switch

to a discretized description of the inflationary dynamics. This will be the approach of the

current section.

With a biological analogy, consider at t = 0 a bacterium that can live in a discrete set

of positions along a line (see figure 4). At t = 1 the bacterium splits into N copies. Then,

each bacterium (independently of all the others) hops with probability p to the neighboring

site on its right, and with probability (1 − p) on the left. N and p are fixed numbers. At

t = 2 each second-generation bacterium reproduces itself, and so on. The analogy with our

inflationary system is clear: each bacterium represents an Hubble patch; sites are inflaton

values. Reproduction is the analogue of the Hubble expansion; at every e-folding ∼ e3 new

Hubble volumes are produced starting from one. From then on the inflaton inside each

Hubble volume evolves independently, with a combination of classical rolling and quantum

diffusion. This is represented by the random hopping of our bacteria. The difference in the

probabilities of moving right and left gives a net drift, and thus corresponds to the classical

motion. To complete the analogy we have to assume that there is a “reheating” site, i = 0

in the figure: when a bacterium ends up there it stops reproducing and moving around — it

dies. In the previous sections we studied the statistical properties of the reheating volume
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V as a function of Ω. In the bacteriological analogy the reheating volume corresponds to

the number of dead bacteria (= non-reproducing Hubble patches) in the asymptotic future.

For analogy we denote the latter quantity by V , which of course now takes discrete values.

Our task is to study the probability distribution of V as a function of the parameter p.

A discrete system like the one we described goes under name of branching process, more

precisely a multi-type Galton-Watson process (see e.g. ref. [19]). Similar models have been

studied in the context of eternal inflation in [20]. Here the focus will be the relationship with

the continuum case and the precise characterization of what happens at the critical point.

Before moving to the explicit study of the model, let’s summarize the main results we

will achieve:

• We will explicitly show that in a suitable continuum limit the discrete model precisely

converges to the full inflationary case we studied in the previous sections.

• There is a critical value pc > 1/2 such that for p ≤ pc the expectation value 〈V 〉 of the

number of dead bacteria at future infinity diverges, whereas it converges for larger

p’s. For inflation, pc is the analogue of the critical Ω below which the expectation

value of the reheating volume becomes infinite. We shall see that in the continuum

limit the value of the critical Ω that we can infer from the discrete model matches

the one obtained directly in the inflationary case.

• The behavior of the variance of V crucially depends on whether we consider a semi-

infinite or finite line of sites. In the semi-infinite case the variance starts diverging at

a new critical value for p that is larger than the above pc and agrees with the corre-

sponding value of Ω, eq. (2.39). In the finite case on the other hand, the two critical

values coincide, and the same happens for higher moments as well. This perfectly

matches what we found in the inflationary system, where the critical behavior of the

variance and higher moments is sensitive to whether arbitrarily large field excursions

are allowed.

• The most dramatic way of characterizing the transition at p = pc is that the proba-

bility distribution develops a finite probability for strictly infinite V . In other words,

there is a finite probability for the branching process not to terminate. This indicates

that also in the inflationary case, for Ω < 1 there is a finite probability of having an

infinite reheating volume. This is the most pristine definition of eternal inflation —

a finite probability of never ending inflation globally.

Notice however that there is always a finite probability to end inflation everywhere:

for instance if in all Hubble patches the inflaton always fluctuates towards reheating,

we have a global exit from inflation. The probability for this to happen is clearly non-

zero, but it becomes smaller and smaller the larger the initial inflationary volume. In

the limit of a very large initial volume the transition at Ω = 1 becomes completely

sharp: the probability of an infinite reheating volume jumps from zero to one.
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Figure 5: The gaussian model described in the text.

To get further intuition about how a finite probability for infinite V develops we will

study the distribution of dead bacteria as a function of time in the simplest case of

just two sites.

3.1 Recovering the inflaton dynamics from the discrete model

The bacteria branching process described above clearly captures many of the qualitative

features of the actual inflaton dynamics, but it is not totally obvious that it allows to take

the continuum limit that exactly reproduces the inflationary results. To explain how this

happens, let us start by describing a different discrete model, which has a straightforward

continuum limit reproducing inflation. This model is harder to analyze than the bacteria

process, but we will explain why the two are equivalent for our purposes.

To begin with, note that in the branching process description we have two different

discretizations. First we have a discrete time step; for N ∼ e3 one step of the branching

process corresponds to a time interval of order H−1. Second, the possible values of the

inflaton field are discretized as well, and labeled by the bacteria positions. However, to

reproduce the inflationary results we do not actually need to get rid of the time discretiza-

tion. Indeed, as discussed in section 1.3, a space-time smoothing of the scalar field over the

scale Λ−1 & H−1 is understood in all our calculations. The physical results, such as the

transition point, do not depend on the details of the smoothing procedure and an explicit

space-time discretization (as in the branching process approach) is as good as the smooth

filter (1.12). Hence we only need to take the continuum limit in field space to reproduce

the continuum results.

In the “two steps” approximation we have been using in studying inflation — see

the discussion below eq. (2.25)—the inflaton dynamics is fully determined by the diffusion

equation for the probability of the inflaton values at one point in spacetime, or equivalently,

by the gaussian distribution (2.10) for the inflaton fluctuations. A straightforward way to

approximate this dynamics by a branching process is to consider the following sequence of

processes. For the k-th process of the sequence at each step every bacterium splits into Ñ

copies. Then each bacterium hops with probabilities pi (i = −k, . . . , k) to the 2k adjacent

sites (see figure 5). As k goes to infinity we require the probabilities pi approach the shifted

gaussian distribution. In principle, all general results about branching processes described

below apply to this process as well. We will refer to this process as the “gaussian model”, as

opposed to the bacteria model discussed before. Clearly, the latter is much more tractable
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for explicit calculations.

Fortunately, for our purposes the two processes are equivalent. Indeed, let us start

with a bacteria process where at every time-step each bacterium divides into N copies.

Equivalently, one can consider another process, where at each step a bacterium divides into

Ñ = Nk copies, which then hop to the 2k adjacent sites with probabilities pi generated

by iterating k times the elementary process. Obviously, the late time properties of the

two processes, such as the average number of dead bacteria, or whether all bacteria die or

not, are the same. The two processes are in fact one and the same — only in the latter

case we are observing the system less frequently, every k time-steps. Also, by the central

limit theorem, at large k the probabilities pi generated in this way approach a gaussian

distribution, so one gets the gaussian model.

Let us now consider the bacteria process and establish the exact relations between its

parameters N and p and the inflation parameters. As we said, it is enough to derive the

diffusion equation and match its parameters in the two cases. Also, from above we know

that in the large k limit the time interval ∆t corresponding to one step in the bacteria model

goes to zero (while the time interval corresponding to one step of the gaussian model ∆̃t =

k∆t remains constant). Let us consider one bacterium. The probability P (j, n + 1) for a

bacterium to be at site j at time step (n+1) is given in terms of the probabilities at time n by

P (j, n + 1) = (1 − p)P (j − 1, n) + p P (j + 1, n) . (3.2)

We can now make the following identification

j = − φ

∆φ
, n =

t

∆t
, (3.3)

and treat φ and t as continuous variables. Taylor-expanding both sides of eq. (3.2) up to

linear order in ∆t and quadratic order in ∆φ we find

∂tP (φ, t) ≃ (1 − 2p)
∆φ

∆t
∂φP (φ, t) +

1

2

(∆φ)2

∆t
∂2
φP (φ, t) . (3.4)

This equation can be expressed in terms of the variables ψ = φ− φ̇ t and σ2 = H3/4π2 · t
defined in section 2.1, obtaining

∂σ2P (ψ, σ2) ≃ 4π2

H3

(
(1 − 2p)

∆φ

∆t
+ φ̇

)
∂ψ P (ψ, σ2) +

1

2

4π2

H3

(∆φ)2

∆t
∂2
ψP (ψ, σ2) . (3.5)

This diffusion equation coincides with the inflationary one (2.7) if in the continuum limit

we take ∆φ, ∆t→ 0 in such a way that

∆t =
4π2

H3
(∆φ)2 . (3.6)

Also in this limit the hopping probability p can be related to the slow roll parameter Ω

using −(1 − 2p)∆φ
∆t = φ̇ :

p =
1

2
+

2π2φ̇

H3
∆φ =

1

2
+

√
6π2Ω

∆φ

H
(3.7)
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Finally, the number of bacteria copies N at each reproduction event clearly is

N = 1 + 3H∆t . (3.8)

Given the discussion above one should not be surprised that the number of copies N goes

to one in the continuum limit. This does not give rise to any problems, in spite of the

fact that strictly speaking the bacteria process is defined only for integer values of N . As

we explained the actual process we are interested in is the gaussian one with the number

of copies Ñ = Nk kept fixed in the continuum limit. One may regard working with the

bacteria process and analytically continuing its results to real values of N close to one as

a technical trick to simplify the algebra for the gaussian process.

To directly confirm that the discrete approximation works let us start with reproducing

with the bacteria model the results obtained in the previous sections. As a byproduct we

will see at a more concrete level why the above analytic continuation works.

3.2 Dead-bacteria statistics: the average

Let us start with the case of a semi-infinite line. Suppose we begin at t = 0 with one single

bacterium at position i. Following ref. [19], for all different i’s we can defineMij as the aver-

age at the following time-step of the number of bacteria at position j. If i 6= 0, the bacterium

produces on average Np bacteria on its right and N(1−p) on its left. If i = 0, the bacterium

does not reproduce itself and stays there. Therefore, in matrix form Mij is given by

M =




1 0 0 0 · · ·
Np 0 N(1 − p) 0 · · ·
0 Np 0 N(1 − p) · · ·
0 0 Np 0 · · ·
...

...
...

...
. . .




≡
(

1 0

I M̃

)
, (3.9)

where we have represented M in block-form defining

I =




Np

0

0
...



, M̃ =




0 N(1 − p) 0 · · ·
Np 0 N(1 − p) · · ·
0 Np 0 · · ·
...

...
...

. . .




. (3.10)

As the average is a linear operator, the matrix M defines a linear map between the initial

state vector and the average state after one time-step. That is, starting with n0, n1, . . .

bacteria at positions 0, 1, . . . , the average number of bacteria at position j after one time-

step is
∑

i niMij . We denote by |i〉, for i = 0, 1, . . . the elements of the canonical basis in

which the above matrices have been written.

Likewise, consider the matrix M
(n)
ij that gives after n time-steps the average occupation

number at position j when starting with one bacterium at position i. It is straightforward
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to show by induction that M (n) = (M)n [19].8 Thanks to the block structure of M , we get

M (n) =

(
1 0(∑n−1

m=0 M̃
m
)
|I〉 M̃n

)
. (3.11)

We want to compute the average number of dead bacteria at time n starting with one

bacterium at a generic site, and then send n to infinity. Suppose we start at the i = 1 site

(we will see below that this assumption does not affect our results). In this case we have

to compute

〈1|Mn|0〉 = Np 〈1|
n−1∑

m=0

M̃m|1〉 = Np 〈1|1 + M̃ + M̃2 + · · · + M̃n−1|1〉 . (3.12)

Restricting to the subspace spanned by the |i〉’s with i ≥ 1 we define lowering and

raising operators S and S† by

S|i〉 =

{
|i− 1〉 if i 6= 1

0 if i = 1
, (3.13)

S†|i〉 = |i+ 1〉 . (3.14)

It is easy to verify that these operators satisfy

S S† = 1 , S†S = 1 − |1〉〈1| , [S, S†] = |1〉〈1| . (3.15)

Then we can rewrite M̃ as

M̃ = N(1 − p) S +Np S† . (3.16)

Each term in eq. (3.12) thus has the form

〈1|M̃m|1〉 = 〈1|
(
N(1 − p)S +NpS†

)m
|1〉 . (3.17)

This is non-zero only for even m, m = 2l:

〈1|M̃2l|1〉 =
[
N2p (1 − p)

]l 〈1|
(
S + S†

)2l
|1〉 ≡

[
N2p (1 − p)

]l
A(l) . (3.18)

Applying iteratively the commutation rule in eq. (3.15), we can write

A(l) = 〈1|
(
S + S†

)(
S + S†

)2l−1
|1〉 = A(0)A(l−1) + 〈1|

(
S + S†

)
S
(
S + S†

)2l−2
|1〉

=. . . = A(0)A(l−1) +A(1)A(l−2) + · · · +A(l−1)A(0) =
l−1∑

k=0

A(k)A(l−1−k) . (3.19)

8Usually in the branching-process literature the ending site i = 0 is not included, and each bacterium

has a given probability of disappearing. This amounts to concentrating on the matrix M̃ . Here instead we

include the occupation number of the ending site so that we can follow the number of dead bacteria — the

analogue of the reheating volume. It is immediate to adapt the standard results to this case.
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This rather complicated recursion relation can be solved by defining the following gener-

ating function

F (x) =

∞∑

i=0

A(l)xl , so that
1

l!

dlF (x)

dxl

∣∣∣∣
x=0

= A(l) . (3.20)

Then the above recursion relation translates into an algebraic, second order equation for F ,

F (x)2 =
F (x)

x
− A(0)

x
, (3.21)

whose solution is

F (x) =
1

2x

(
1 ±

√
1 − 4x

)
, (3.22)

where we used A(0) = 1. The solution relevant for us is that with the minus sign, since all

the A(l)’s are positive. Expanding in Taylor series we find

A(l) = 2l
(2l − 1)!!

(l + 1)!
. (3.23)

We are interested in studying the convergence of the average value of V , i.e. the number

of dead bacteria at future infinity,

〈V 〉 = Np

∞∑

l=0

〈1|M̃2l|1〉 , (3.24)

where we used eq. (3.12). At large l

A(l) ∼ 4l

l3/2
, 〈1|M̃2l|1〉 ∼

[
4N2p (1 − p)

]l

l3/2
. (3.25)

The series (3.24) converges for

p ≥ pc ≡
1

2

(
1 +

√
1 − 1

N2

)
, (3.26)

and it diverges for smaller p’s. By making use of the matching relations (3.6)–(3.8) one

immediately checks that in the continuum limit the expression for pc agrees with the correct

inflationary result for Ω, Ω = 1.

This result does not depend on the initial position of the original bacterium, which

in the above we assumed to be i = 1. In fact, any other site j can be reached starting

from i in (j − i) time-steps with finite probability, and vice-versa. This implies that if the

average of V diverges starting from a given position, it must also diverge starting from any

other position. Of course this conclusion also holds for all higher moments of V , so in the

following sections we will always assume that we start from i = 1.

Note finally, that (3.24) implies that at p > pc, when 〈V 〉 is finite, all eigenvalues of M̃

are smaller than one, and at p < pc at least one eigenvalue is larger than one. Indeed, a well-

known result in linear algebra is that an arbitrary matrix M̃ can be presented in the form

M̃ = A−1JA ,
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where A is a non-degenerate matrix and J has the normal Jordan form (i.e., its only non-

zero elements are those on the main diagonal — equal to the eigenvalues λi of the matrix

M̃—and those on the diagonal right above the main one — equal to one). Consequently,

calculating powers of M̃ reduces to taking powers of J , that have a rather simple form,

and all matrix elements of J2l scale as λ2l
i at large l. Consequently, the sum (3.24) diverges

iff one of the eigenvalues |λi| > 1.9

Notice now, that considering an extended bacteria process with a non integer number

of children N instead of the gaussian one corresponds to working with the matrix M̃ with

non integer N instead of M̃k with k such that Nk = Ñ is constant and integer. Clearly, this

doesn’t change whether there is an eigenvalue larger than one, so the critical probabilities

pc are the same in the two cases.

3.3 The variance: enhancement for the infinite line

We now consider 〈V 2〉. To compute it, it is convenient to introduce the matrix of second

moments for the bacteria populations at different sites. Namely, assuming for simplicity

that we start with one bacterium at the i = 1 site, we define C
(n)
ij ≡ 〈N (n)

i N
(n)
j 〉, where

N
(n)
i is the number of bacteria at site i after n time-steps. Then we are interested in

〈V 2〉 = lim
n→∞

C
(n)
00 . (3.27)

An explicit expression for C(n) can be obtained recursively [19]. Using the generating

function technique reviewed in the next section it is straightforward to show that

C(n+1) = MTC(n)M +

∞∑

i=0

W(i)〈1|Mn|i〉 , (3.28)

where M is the matrix of averages (3.9), and W(i) is the covariance matrix of bacteria after

one time step if one starts with one bacterium at site i. The sum runs over all sites; once

again we assume that we have a semi-infinite line of sites. The above recursion relation

can be easily solved to yield [19]

C(n) =
(
MT

)n
C(0)Mn +

n∑

m=1

(
MT

)n−m
(

∞∑

i=0

W(i)〈1|Mm−1|i〉
)
Mn−m . (3.29)

We want to show that the variance (3.27) as a function of p diverges at a critical value

pvar
c where the average is still finite, that is pvar

c > pc. For this purpose a lower bound on

eq. (3.27) suffices. Since all terms in eq. (3.29) are positive definite, we can neglect the first

term and consider just the sum over m.

The matrix W(i) is straightforward to compute. Starting from the i-th site with one

bacterium, the numbers of bacteria at nearby sites after one time step obey a binomial

9This is assuming that the vector |1〉 has a non-trivial projection onto the corresponding Jordan block.

This is true in our case, as follows from the above argument that if (3.24) diverges for some initial position

i, then it diverges for all other initial positions as well.
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distribution. Obviously W(0) = 0, because bacteria at i = 0 neither reproduce themselves

nor move around, whereas for i ≥ 1 we get

W(i6=0) = Np (1 − p)




. . .
i
↓

0 0 0 0 0

0 1 0 −1 0

i→ 0 0 0 0 0

0 −1 0 1 0

0 0 0 0 0
. . .




≡ 2Np (1 − p) |ψi〉〈ψi| , (3.30)

that is, W(i) is proportional to the projector on the state

|ψi〉 ≡
1√
2

(
|i− 1〉 − |i+ 1〉

)
. (3.31)

We then have

C
(n)
00 ≥ 〈0|

n∑

m=1

(
MT

)n−m
( ∞∑

i=0

W(i)〈1|Mm−1|i〉
)
Mn−m|0〉 =

= 2Np (1 − p)

n∑

m=1

∞∑

i=0

〈1|Mm−1|i〉 |〈ψi|Mn−m|0〉|2 . (3.32)

All terms in the sum are positive, so that for getting a lower bound we can restrict to

any of them. For n even we just consider the term with m = i = n/2. Using the lowering

and raising operators introduced in the previous section it is straightforward to show that

〈ψn/2|M
n
2 |0〉 =

1√
2

(Np)
n
2
−2 〈n/2 − 1|

(
S†
)n

2
−2

|1〉 =
1√
2

(Np)
n
2
−2 , (3.33)

〈1|M n
2
−1|n/2〉 =

(
N(1 − p)

)n
2
−1〈1|S n

2
−1 |n/2〉 =

(
N(1 − p)

)n
2
−1

. (3.34)

Plugging these results back into eq. (3.32) we get

C
(n)
00 ≥ 1

N4p3

(
N3p2(1 − p)

)n/2
. (3.35)

As n→ ∞, this quantity diverges for

N3p2(1 − p) > 1 , or p < pcov
c with pcov

c & 1 − 1

N3
for N ≫ 1 . (3.36)

As claimed, we notice that pcov
c > pc for the infinite chain: the covariance of the number

of dead bacteria diverges before the expectation value. This qualitatively agrees with the

inflationary case, however at the quantitative level the bound (3.36) is too weak — for

instance, it is useless in the continuum limit, N → 1.

To exactly reproduce the inflationary results note that the sum over the site number

i in eq. (3.28) is the discrete analogue of the convolution over the inflaton field values at
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horizon crossing in eq. (2.26). Similarly, the discrete variable m in (3.28) corresponds to

the horizon crossing time t∗ in the continuum case. Both integrals, over t∗ and over inflaton

values at horizon-crossing, were dominated by the saddle point, determined by eq. (2.37)

and eq. (2.41). This suggests that the double sum in eq. (3.28) is also dominated by a

single term. The natural guess for the optimal choice10 for m based on eq. (2.37) is

m∗ = n
(√

2Ω − 1
)
, (3.37)

where we identified the total number of steps with the total time, so that n = t+/(2∆t).

Similarly, from eq. (2.41) we deduce the optimal choice for i,

i∗ =
(√

2/Ω − 1
)
φ̇m∗

∆t

∆φ
= 2π

√
3
(
3
√

2Ω − 2 − 2Ω
)
H−1n∆φ , (3.38)

where at the last step we used the matching relations (3.6)–(3.8). To calculate the cor-

responding term in eq. (3.28) we need expressions for the matrix elements 〈1|Mm∗−1|i∗〉
and 〈ψi∗ |Mn−m∗ |0〉. Actually, as before, to decide whether the variance remains finite in

the late time (large n) limit we need just the leading exponential asymptotics of these

elements. In this limit one can replace these elements by 〈1|M̃m∗ |i∗〉 and 〈i∗|M̃n−m∗ |1〉.
Then by making use of eq. (3.16) we write

〈1|Mm∗−1|i∗〉 ≃ 〈1|M̃m∗ |i∗〉 = Nm∗(1 − p)
m∗+i∗−2

2 p
m∗−i∗−2

2 〈1|(S + S†)m∗ |i∗〉 (3.39)

for even (m∗ + i∗), and zero otherwise. In the leading exponential approximation one can

estimate 〈1|(S + S†)m∗ |i∗〉 just by counting the monomials in the expansion of (S + S†)m∗

that contain (i∗ − 1) more S’s than S†’s. This gives

〈1|(S + S†)m∗ |i∗〉 ≃
(

m∗
m∗+i∗−2

2

)
≃
(

2µµµ(µ2 − 1)−µ/2
√
µ− 1

µ+ 1

)i∗
, (3.40)

where µ = m∗/i∗ does not depend on n and is determined by (3.37) and (3.38). The

validity of the estimate (3.40) is not immediately obvious, because many of the monomials

with the right number of S and S† still give vanishing matrix elements. Using techniques

similar to those used in section 3.2 one can check that this estimate is nevertheless correct

(see appendix B). The same logic applied to the matrix element 〈ψi∗ |Mn−m∗ |0〉 gives

〈ψi∗ |Mn−m∗ |0〉 ≃ Nn−m∗p
n−m∗+i∗−2

2 (1 − p)
n−m∗−i∗−2

2

(
n−m∗

n−m∗+i∗−2
2

)
(3.41)

Finally, by making use of these equations and of the expressions (3.37), (3.38) for m∗, i∗
one obtains

〈1|Mm∗−1|i∗〉|〈ψi∗ |Mn−m∗ |0〉|2≃
(
1−12π2

(
∆φ

H

)2 4
√

2Ω3/2−18Ω+13
√

2Ω−6

2Ω−3
√

2Ω+2
+O

(
∆φ3

)
)n

(3.42)

10Using the approximate expressions we derive below it is straightforward to check directly that this is

indeed the optimal choice.
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This contribution (and, consequently, the variance of V ) diverges at late times when the

coefficient of the (∆φ)2 term crosses zero. This happens at Ω = 9/8, so we exactly reproduce

the inflationary result for when the variance diverges, eq. (2.39). Note that, just like in the

continuous case, this result crucially relies on the infinite range for the inflaton field (infinite

number of sites in the bacteria model). Indeed, for a finite chain the sum over i in (3.32)

runs up to some finite value imax, so that at large enough n one has i∗ > imax analogously

to how in the continuous case the saddle point (2.41) ceases to be in the integration region.

Moreover, analogously to the case of the average, it is clear from eqs. (3.29) and (3.32)

that the variance remains finite if all eigenvalues of the matrix of averages M̃ are smaller

than unity for the finite chain, so that the variance and the average diverge at the same

value of p. This is true for all higher moments as well (see, e.g. [19])

3.4 Extinction probability in the semi-infinite line

The principal advantage of the bacteria model is that it allows to directly study the tran-

sition to the eternal regime, without relying on indirect criteria, such as the divergence of

the probability distribution moments for the number of dead bacteria (reheating volume

in the inflationary case). Indeed the most direct and physical characterization of eternal

inflation is that it can run forever. In the context of the bacteria model this corresponds

to a non-zero probability that the population never dies out.

There is a theorem (see e.g. [19]) that for a finite chain the extinction probability

is equal to one for a jumping probability p close to one. However, when p drops below a

certain critical value pc the extinction probability becomes smaller than one. At the critical

value pc one of the eigenvalues of the matrix of averages M̃ crosses one and stays larger

than one in the eternal regime. In the previous two sections we saw that when the matrix

M̃ develops an eigenvalue larger than 1, then the expectation value and the variance of the

number of dead bacteria begin to diverge as time n goes to infinity. We see now that at the

same critical value of p the extinction probability drops below one. Given the importance

of this result, we find it instructive to explain it in more detail; as a byproduct we will

see that the whole picture can be continuously extended to the infinite line case. This

will confirm our expectation that also in the infinite line case, the transition to the eternal

regime happens at the same value of p (slow roll parameter in the inflationary case) where

the average number of dead bacteria diverges.

Let us first consider a branching process on a line of length L. A convenient tool to

study the branching process is the set of generating functions f
(n)
i (sj), where i, j = 1, . . . , L.

These are defined as power series

f
(n)
i (sj) =

∑

k1...kL

p
(n)
i;k1...kL

sk11 . . . skL
L (3.43)

where p
(n)
i;k1...kL

is the probability that in a branching process that started with a single

bacterium at the i-th site after n steps one has k1 bacteria at the first site, k2 bacteria at

the second site, etc. It is convenient to combine together all functions f
(n)
i with the same

number of steps n into a map Fn from the L-dimensional space of the auxiliary parameters

si into an L-dimensional space parametrized by the fi’s. Also in what follows we often
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1
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1

Figure 6: Left: Plot of F1(s) for large p (thick curve). The only fixed point in the unit cube is

s = 1. Further applications of F1 (thinner curves) drive the curve to the F∞ = 1 line. Right : For

smaller p’s a new fixed point sf enters the unit cube. Now the limiting line is F∞ = sf .

drop the subscript from the si variables and denote by s a point in the L-dimensional space

with coordinates (s1, . . . , sL).

The main property making generating functions useful is the iterative relation

Fn+1 = F1(Fn) . (3.44)

This property is straightforward to check by making use of the definition of the branching

process and elementary properties of probabilities. We are interested in the late time

behavior of the branching process, which is determined by the limiting function F∞. The

iterative property (3.44) implies that

F1(F∞) = F∞ ,

i.e. the set of values of the function F∞ is a subset of the fixed points of the function F1,

such that

F1(s) = s . (3.45)

For our purposes is enough to study the mapping F1 inside the L-dimensional cube IL
of unit size, 0 ≤ si < 1. The definition (3.43) of the generating functions implies that all

partial derivatives of F1(s) are positive. Also, the normalization of probabilities implies that

F1(1, . . . , 1) = (1, . . . , 1) ≡ ~1 .

Another important property of the mapping F1, also immediately following from its def-

inition, is that the Jacobian of F1 at the point s = (1, . . . , 1) is equal to the matrix of

averages M̃ . Clearly, the mappings Fn also satisfy the straightforward analogues of all

these properties. This and the iterative relation (3.44) immediately implies the relation

M̃ (n) = M̃n
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used above to calculate the late time behavior of the average number of the dead bacte-

ria. Also by applying the chain rule twice to (3.44) it is straightforward to reproduce the

recursion relation (3.28) used to calculate the variance.

We are ready now to discuss how the transition to the eternal regime happens. Note

first, that if the mapping F1 has no other fixed points in the cube IL apart from ~1 (see

figure 6), then

F∞ = ~1 .

By definition of the generating functions, eq. (3.43), this means that in the late time

asymptotics with probability one there are no bacteria at any of the sites. The extinction

probability is exactly equal to one (inflation ends). The situation changes when a non-

trivial fixed point sf solving eq. (3.45) enters the region IL (see figure 6). Now one has

F∞ = sf < ~1 .

This implies that, as before, the probability to have any finite non-zero number of bacteria

at any site vanishes. However, the probabilities to have zero bacteria at the various sites,

p
(∞)
i;0...0 = f

(∞)
i (0) = (sf )i , (3.46)

are all less than one. This means that there is a non-vanishing probability that the popu-

lation never dies out and that the total number of bacteria grows indefinitely at late times.

This corresponds to the eternal inflation regime. Clearly, this implies that the number of

dead bacteria also has a finite probability to grow indefinitely; in the context of eternal

inflation this translates into

1 −
∫
ρ(V )dV > 0 .

To identify the critical value of p where the transition happens it is instructive to track

the position of the fixed point sf in s-space as a function of p. According to the above

discussion, at the critical value of p the fixed point enters into the unit cube IL. It is

straightforward to check that the monotonic property of the generating functions (3.43)

imply that the trajectory of the fixed point necessarily passes through the point ~1. Conse-

quently, at the critical probability the graph of the mapping F1(s) is tangent to the surface

fi = si at ~1 along one direction in the (2L)-dimensional space parametrized by the fi’s and

si’s. The projection of this direction onto the s-hyperplane is tangent to the trajectory of

the fixed point at ~1. Algebraically this means that at the transition p one of the eigenvalues

of the Jacobian of F1 at ~1 is equal to one,

∂F1(~1)

∂s
v ≡ ∂f

(1)
i (~1)

∂sj
vj = vi , (3.47)

where v is a vector tangent to the fixed-point trajectory at ~1. At lower values of p this

eigenvalue becomes larger than one. Recalling that the Jacobian of F1 at ~1 coincides with

the matrix of averages M̃ , we see that the transition to the eternal regime indeed happens

at the same value pc where the average number of dead bacteria (and, in the finite line

case, all higher moments) diverges at late times.
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Let us now extend this result to the infinite line. The infinite-line process can be ap-

proximated by a sequence of finite-dimensional branching processes with defining matrices

M̃L, where M̃L is the projection of M̃ onto the first L basis vectors. The matrix M̃L de-

scribes a branching process with L sites, where bacteria can also “die” with probability (1−
p) jumping from the L-th site to the left. Now, the crucial point is that the extinction prob-

ability for the infinite line is smaller than that of the branching process described by M̃L, for

any finite L. This is quite clear as in going from the finite to the infinite case we are increas-

ing the survival probability of each bacterium. Therefore if we are able to prove that for

p < pc and sufficiently large L the extinction probability associated with M̃L is strictly less

than one, our claim follows. The finite-dimensional theorem implies that this is equivalent

to showing that for sufficiently large L the maximum eigenvalue of M̃L is larger than one.

The matrix M̃L is just the L× L truncation of M̃ in eq. (3.10),

M̃L =




0 N(1 − p) 0 · · ·
Np 0

. . .
...

0
. . .

. . . 0
... 0 N(1 − p)

· · · 0 Np 0




L×L

. (3.48)

We want to solve the eigenvalue problem 〈v|M̃L = λ〈v|. In components this reads

Npv2 = λ v1 (3.49)

Npvj+1 +N(1 − p) vj−1 = λ vj for 1 < j < n (3.50)

N(1 − p) vL−1 = λ vL . (3.51)

Let’s try the ansatz

vj = Aj , (3.52)

where A is a complex number. Eq. (3.50) implies

NpA2 − λA+N(1 − p) = 0 ⇒ A± =
λ±

√
λ2 − 4N2p(1 − p)

2Np
. (3.53)

Eq. (3.49) is equivalent to the recursion relation eq. (3.50) with initial condition v0 = 0.

This then implies that the correct linear combination is

vj = Aj+ −Aj− . (3.54)

Analogously, eq. (3.51) gives the ‘final condition’ vL+1 = 0,

AL+1
+ = AL+1

− . (3.55)

This cannot hold if A± are distinct real roots. Then the square root in eq. (3.53) must be

purely imaginary, λ2 ≤ 4N2p(1 − p), in which case A+ and A− are complex-conjugate of

each other. Therefore eq. (3.55) implies that

arg(AL+1
+ ) = k · π ⇒ arg(A+) = k · π

L+ 1
, (3.56)
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p

01

1−p

Figure 7: The 2-site branching process.

where k is an integer. Distinct solutions correspond to 1 ≤ k ≤ L, which exhaust the set

of eigenvalues of M̃L. From eq. (3.53) we have

cos
(
arg(A+)

)
=

λ√
4N2p(1 − p)

, (3.57)

which combined with eq. (3.56) finally yields the eigenvalues

λk =
√

4N2p(1 − p) · cos
(

π k

L+ 1

)
, 1 ≤ k ≤ L . (3.58)

The largest eigenvalue is that with k = 1, which for sufficiently large L is arbitrarily close to√
4N2p(1 − p). For p < pc,

√
4N2p(1 − p) > 1 (see eq. (3.26)), and the largest eigenvalue

will become strictly larger than one for sufficiently large L. This completes the proof.

3.5 How the probability distribution can lose its normalization

To understand how the extinction probability can change abruptly when p crosses pc, it

is instructive to track the probability distribution for the number of dead bacteria as a

function of time. For simplicity we do this for a minimal branching process with just two

sites and N = 2 copies at each reproduction event (see figure 7). In this case the generating

functions (3.43) are particularly simple:

f
(1)
0 (s0, s1) = s0 , (3.59)

f
(1)
1 (s0, s1) =

(
(1 − p)s1 + ps0

)2
. (3.60)

It is straightforward to apply here the generic results discussed in the last section. The

critical probability is the value of p for which ∂s1f
(1)
1 computed at (s0, s1) = (1, 1) becomes

larger than one. We get

pc =
1

2
. (3.61)

The extinction probability is the fixed point of f
(1)
1 (setting s0 = 1) inside the unit interval

0 ≤ s1 ≤ 1,

pext =
1 − 2p + 2p2 −

√
(1 − 2p)2

2(1 − p)2
=

{
1 p > 1/2

( p
1−p)

2 p < 1/2
, (3.62)

which indeed drops below one for p < pc.
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Figure 8: Time evolution of the dead-bacteria probability distribution in the two-site model.

Thinner (thicker) lines correspond to earlier (later) times. Left: supercritical case, p > pc. As a

function of time the distribution boringly relaxes to its asymptotic form. Right: subcritical case,

p < pc. A “bump” develops and gradually shifts towards larger and larger dead bacteria counts,

while getting wider and lower, and bringing some finite probability to infinity.

To follow the time-evolution of the dead-bacteria probability distribution we numer-

ically iterate the recursion relation Fn+1 = F1(Fn) for different values of p. As before n

counts the number of time-steps. The results are plotted in figure 8. For p larger than the

critical probability, the probability distribution at early times is strongly peaked around

small numbers, and as time goes on it smoothly asymptotes to its n→ ∞ form. The prob-

ability distribution is obviously normalized to one for every n, and so is the asymptotic

n→ ∞ distribution. Related to this, the extinction probability is one, as expected.

More interesting is the p < pc case. There, at early times one can notice a feature — a

“bump” — in the probability distribution. As time goes on the bump moves towards larger

and larger dead-bacteria numbers, spreading out at the same time. The n→ ∞ asymptotic

distribution shows no bump. Still, one can check that its normalization is strictly smaller

than one — it is in fact the extinction probability pext < 1, as it should. The bump has

taken away some finite probability to infinity! The fact that the asymptotic probability

distribution is not normalized to one is due to the fact there is a finite probability of having

infinitely many dead bacteria.

We warn the reader that the qualitative presence of the bump is not a distinctive

feature of the subcritical (p < pc) case. The plots in figure 8 were done with p = 0.6

and p = 0.4. However a bump can also be noticed in the supercritical case, p > pc, if

we take p quite close to pc, say p = 0.51. In such a case the bump follows the same

qualitative time-evolution as for the subcritical case — it moves to the right, spreads out,

and disappears. The question of whether it takes away some finite probability to infinity

is then a quantitative one, and an explicit check shows that is does not, as expected.

Technically what happens in the p < pc case is that as n → ∞ the sequence of

probability distributions Pn(V ) converges pointwise to the asymptotic P∞(V ),

∀V Pn(V ) − P∞(V ) → 0 , (3.63)
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but it does not converge strongly,

||Pn(V ) − P∞(V )|| → (1 − pext) 6= 0 , (3.64)

where the relevant norm here is the L1 norm, ||f ||1 ≡
∫
dx |f(x)|.11 As a consequence

taking the n → ∞ limit and taking the norm do not commute. The r.h.s of eq. (3.64) is

precisely the probability taken away by the “bump”.

However we can formally supplement the asymptotic probability with a δ-function

supported at infinity, with coefficent (1 − pext),

P∞(V ) = lim
n→∞

Pn(V ) + (1 − pext) δ(V −∞) . (3.65)

Such a term fixes the normalization, and it also makes all moments diverge, as we know

they must. Indeed if one does not include the point at infinity, the moments computed with

the asymptotic probability (3.63) do not coincide with those we computed in the previous

sections, which read

〈V m〉 = lim
n→∞

∫
dV Pn(V )V m . (3.66)

Once again, taking the m-th moment and taking the limit in n do not commute because of

the absence of strong convergence. The addition of the δ-function in eq. (3.65) is a formal

way of achieving strong convergence. The situation is somewhat subtler for the infinite

chain, where we know that different moments diverge at different values of p. This cannot

be reproduced by adding a single δ-function contribution at infinity. Instead, it may be

that when the m-th moment 〈V m〉 diverges, the probability distribution acquires a term

∝ δ(m)(V −∞).

4. Generalization to realistic models

So far we assumed that the parameters H and φ̇ do not depend on the position along the

potential. Although in the slow-roll approximation these parameters are slowly varying,

i.e. they are approximately constant during an Hubble time, one cannot neglect their

variation over a large range of φ.12 Let us discuss how our results change taking this

effect into account. We want to prove the following. We have eternal inflation, i.e. a

non-zero probability of an infinite reheating volume, if and only if Ω < 1 somewhere along

the potential. This statement is true up to slow-roll corrections and up to corrections of

order (H/∆φ)2, where ∆φ is the range of φ where the slow-roll conditions are satisfied.

The proof is quite easy. Consider the case in which Ω < 1 somewhere along the

potential. The slow-roll conditions imply that one can take a range of φ around this point,

with ∆φ ≫ φ̇ · H−1 ∼ Ω1/2H, in which Ω and H can be treated as constant. Now the

11We are using a continuous notation for V , because we have in mind the reheating volume in inflation,

whereas in fact in the model at hand V is a discrete variable — the number of dead bacteria. The proper

changes in the notation are obvious.
12Some specific realistic models with potential of the form φn were first studied in the context of eternal

inflation in [2, 3], reaching conclusions qualitatively similar to ours.
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idea is to restrict to this interval and prove that the extinction probability is less than one.

For example one can consider a model with an absorbing barrier at the downhill limit of

the interval and with a reflecting one at the uphill limit. This model is studied explicitly

in appendix A, where it is shown that the extinction probability gets less than one when

Ω < 1, up to corrections O(H/∆φ)2. On the other hand, this restricted model has clearly

an extinction probability larger than the model probing the full potential. This proves that

Ω < 1 ensures an extinction probability strictly less than 1, i.e. a non-zero probability of

an infinite reheating volume.

The other case is even simpler. If Ω > Ω0 > 1 everywhere, then one can consider a

model with Ω = Ω0 everywhere. This model has an extinction probability smaller than

the original one. On the other hand we know that the extinction probability with constant

Ω > 1 is 1. This proves that the extinction probability is 1 if Ω > 1 everywhere: the

probability of infinite reheating volume vanishes. We see that the condition for eternal

inflation is local in field space: it is enough to have Ω < 1 in a range of field values

parametrically larger than H.

This also shows that all our conclusions do not change if we assume that the last stage

of inflation before reheating is far from the eternal regime, i.e. ζ ≪ 1, as we observe for

example in our Universe. The additional e-folds of inflation with negligible perturbations

act as a sort of physical smoothing of the reheating surface: ζ is large only on scales

which are huge compared to the horizon at the end of inflation. This is the way one should

understand the somewhat artificial smoothing of the reheating surface we used in the paper.

It is interesting also to see whether our results can be extended to non-minimal models

of single field inflation. This will include k-inflation models [21] with reduced speed of

sound, like DBI inflation [22], and models where higher derivative terms are important,

like ghost-inflation [23, 24]. A useful way of writing down the most generic theory of single

field inflation has been recently studied in [25, 26], where modifications with respect to

the minimal slow-roll scenario are parametrized in terms of operators for the perturbations

around the inflating background.

There is an important qualitative difference between these non-minimal models and

the simplest slow-roll inflation case: eternal inflation may lie outside the regime of validity

of the effective field theory. In the case of slow-roll, we discussed in section 1.2 that, even in

the eternal inflation regime ζ ∼ 1, non-linearities are small and can be treated as corrections

to the free field picture.13 However this is not the case for more general models. Eternal

inflation can be studied only if the theory is weakly coupled for ζ ∼ 1; otherwise this regime

is sensitive to the UV completion and cannot be studied within the effective field theory.

Whether the theory is weakly coupled or not at ζ ∼ 1 will depend on the size of the

various operators, but some general conclusion can be drawn. For models with a reduced

speed of sound, cs < 1, it is shown in [26], that the same operator that reduces the speed

13Even in the slow-roll case non-linearities become important if one is interested in very large (and very

unlikely) fluctuations ζ ≫ 1. In particular the quartic interaction eq. (1.11) will become as important as

the quadratic action for δφ & H/
√

ǫ. It is easy to realize however the these extremely unlikely fluctuations

are irrelevant in all our discussion. What must be weakly coupled are the typical fluctuations, which means

ζ ∼ 1 when one gets close to the eternal inflation regime.
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of perturbations also induces interactions among fluctuations. The relation between the

two features is fixed by the symmetries of the system. In particular one can show that the

effect of cubic and quartic interactions at horizon crossing with respect to the quadratic

action is of order [26 – 29]

S3

S2
∼
(

1

c2s
− 1

)
ζ

S4

S2
∼
(

1

c2s
− 1

)2

ζ2 , (4.1)

which should be compared with eq.s (1.10) and (1.11) in the case of slow-roll. This implies

that the theory becomes strongly coupled at horizon crossing if one approaches the eternal

inflation regime ζ ∼ 1, unless cs is very close to one [30]. In other words eternal inflation is

out of the regime of validity of the effective field theory for models where the speed of per-

turbations deviates substantially from one. Similar conclusions were reached in the context

of brane inflation in [31] and in the context of models with small speed of sound in [32].

The same conclusion holds in another interesting case of single field inflation: that of

ghost inflation [23, 24]. Indeed the Lagrangian for the canonically normalized perturbation

π contains an interaction of the form π̇3/2M2 where M2 = φ̇ is the velocity of the time

dependent condensate. Again comparing this with the quadratic Lagrangian

S3

S2
≃ π̇3/M2

π̇2
≃ Hπ

φ̇
≃ ζ . (4.2)

This implies that the theory is strongly coupled in the regime of eternal inflation ζ ∼ 1.

Exactly the same argument holds for the other de Sitter limit of inflation discussed

in [26] where, using the language of ref. [26], the unitary gauge operator (g00 + 1)δKµ
µ

dominates at horizon crossing. Also in this case the theory contains the cubic operator

π̇3/2M2, so that again eternal inflation is not under control of the effective field theory.

5. Summary and discussion

In this paper we gave a precise definition of slow-roll eternal inflation by identifying a sharp

change of behaviour of the system at the critical value

φ̇2

H4
=

3

2π2
. (5.1)

A model gives rise to eternal inflation if and only if Ω ≡ 2π2φ̇2/(3H4) < 1.

We reviewed in section 1 the reasons why inflation is under control even in the eternal

regime. It is easy to check that the system can be perturbatively studied in an expansion

in the slow-roll parameters and in H2/M2
Pl; indeed these small quantities suppress both the

deviation of the metric from exact de Sitter and the self-interactions of the scalar degree

of freedom. Our analysis has been done at leading order in these parameters.

Starting from a finite inflationary volume, we identified the volume of the Universe at

reheating, smoothed on scales much larger than the Hubble radius H−1, as indicator of the

onset of eternal inflation. We expect, in fact, the reheating volume to become larger and

larger without bound as we approach the eternal regime. Indeed in section 2 we proved, at
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leading order in slow-roll andH2/M2
Pl, that all moments of the reheating volume probability

distribution ρ(V ) diverge at Ω = 1, signaling a sharp change in the behaviour of the system.

To get further insight into the nature of this transition, we studied in section 3 a

discretized version of slow-roll inflation. The dynamics of inflation can be mimicked, with

a biological analogy, with a set of bacteria which can hop left or right on a one dimensional

lattice, representing the position of the inflaton. The expansion is represented by the

constant reproduction rate of these bacteria, which at every time step split into a fixed

number of independent offsprings. This discrete version of the system is simpler to study, as

one can apply to it the whole machinery of the theory of branching processes. On the other

hand it can be shown to exactly approach the continuous case in the limit in which the

lattice spacing goes to zero. This discrete model allows us to reach the conclusion that the

onset of eternal inflation at Ω = 1 corresponds to the development of a non-zero probability

of strictly infinite reheating volume: this is the sharpest definition of eternal inflation.

Our results are obtained at leading order in slow-roll and H2/M2
Pl. Even small correc-

tions to the asymptotic time dependence would completely change the results; for example

this would happen if the reheating probability (2.13) goes at large times as exp(t1+ǫ) where

ǫ is small correction.14 From a preliminary analysis, we expect that this is not the case and

that the qualitative picture of a sharp transition remains unaltered, with only perturbative

corrections to the exact point where the transition happens. The proof of this, however,

is not entirely straightforward. Indeed, at subleading order in our expansion parameters

many new ingredients must be taken into account. The Hubble rate H and inflaton speed

φ̇ are not constant anymore, but depend on the position along the potential; the scalar

degree of freedom is not a free field anymore as cubic and quartic self-interactions must be

taken into account; the metric deviates from exact de Sitter and, finally, also tensor modes

must be taken into account. We expect the diffusion equation to still capture the relevant

dynamics of the phase transition, but further work is needed to extend our results at sub-

leading order. Another weak point of our discussion is that eternal inflation is characterized

studying a classical, smoothed observable: the reheating volume. Although the exact value

of the smoothing scale does not appear in the final equations (in the limit in which it is

much larger than the Hubble radius H−1), it would be nice to have a more intrisic and

quantum mechanical definition of eternal inflation, without need of a smoothing procedure.

The sharp characterization we gave of slow-roll eternal inflation may be a first step

towards a more profound understanding of its features and implications. In particular

there are reasons to suspect that the semiclassical description of eternal inflation, with its

infinite creation of volume may be misleading (see for example [30]) or even that eternal

inflation itself may be censored in a fundamental theory [33]; if this is the case the effective

theory description must break down before Ω = 1.

In the context of the conjectured dS/CFT correspondence put forward in [34], it would

be interesting to understand what is the nature of the transition at Ω = 1 on the CFT

side. Another possible direction is to try to understand the connection between our critical

point Ω = 1 and other critical point for the existence of eternal inflation, like in the case

of old inflation [35] and topological inflation [36, 37].

14We thank David Gross for emphasizing this point.
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A. Proof that all moments diverge at the same Ω

In this appendix we want to prove that in the presence of a regulating uphill barrier all

the moments of the distribution ρ(V ) start diverging at the same point Ω = 1.

Let us first solve the diffusion equation with a drift term

∂P

∂t
= −φ̇∂P

∂φ
+
H3

8π2

∂2P

∂φ2
(A.1)

in the presence of an absorbing barrier at φ = φr and a reflecting one at φ = φup. At the

reheating barrier the boundary condition is P = 0, while on the uphill barrier we have to

impose a vanishing value of the probability current

φ̇P − H3

8π2

∂P

∂φ
= 0 at φ = φup . (A.2)

Using the standard method of separation of variables one can write a general solution as

exp

[
4π2φ̇ φ− 2π2φ̇2t

H3

]
∑

n

an sin

[
αnπ(φr − φ)

φr − φup

]
exp

[
−H

3t

8π2
· α2

nπ
2

(φr − φup)2

]
. (A.3)

The boundary condition at the reheating point is clearly satisfied, while the coefficients αn
must be chosen so that each sinus satisfies the boundary condition on the uphill barrier.

This gives the following equation

tg(αnπ) = − H3

4π2φ̇
· 1

φr − φup
· αnπ . (A.4)

Let us check first of all that, sending φup → −∞, the result reproduces the case with

only the reheating barrier. In the limit in which the uphill barrier is removed we see that

the solutions of (A.4) behaves as αn → n, so that the series reduces to a normal Fourier

decomposition. Using the Fourier decomposition of the δ function we take the coefficients

of the series to be

an =
2

φr − φup
sin

nπφr
φr − φup

. (A.5)

Therefore the series in eq. (A.3) takes the form

∑

n

exp

[
−H

3t

8π2
· n2π2

(φr − φup)2

]
1

φr − φup

[
cos

nπφ

φr − φup
− cos

nπ(2φr − φ)

φr − φup

]
. (A.6)

In the limit φup → −∞ the sum becomes an integral. The first sum of cosines becomes

∫ +∞

0
dX e−

H3t
8
X2

cos (πXφ)

√
2π

H3t
e−

2π2φ2

H3t . (A.7)
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Taking into account the exponential factor in front of the series in eq. (A.3), we see that

we reproduce the result (2.11) in the presence of the reheating barrier only.

The important feature for us of the general solution (A.3) is that at late times it is

dominated by the first term of the sum, which is the slowest to decay. For large and

negative φup, α1 ≃ 1 so that the full time dependence of the leading term is

exp

[
−2π2φ̇2t

H3
− H3t

8(φr − φup)2

]
∼ exp

[
−2π2φ̇2t

H3

]
= exp(−3HΩt) . (A.8)

We are interested in studying the n-th moment of the reheating volume distribution,

which is easily related to the n-point joint reheating probability pnr by

〈V n〉 =

∫
dx1 . . . dxn

∫
dt1 . . . dtn e

3H(t1+···+tn) pnr(t1, . . . , tn, ~x1, . . . , ~xn) . (A.9)

Clearly, if 〈V 〉 diverges, also 〈V n〉 diverges, therefore we concentrate on the case Ω > 1,

when 〈V 〉 is finite.

The simple time dependence of eq. (A.8) will also appear in the reheating probability.

Let us take n points. Going backwards in time they progressively merge together: at t∗(n−1)

the distance between the two closest points gets smaller than H−1 and we are left with

n − 1 independent points; at t∗(n−2) a couple of the remaining points merge to n − 2 and

the process continues until t∗1, when we are left with a single point. It is easy to prove by

induction from eq. (A.8) that

pnr(t1, . . . tn, ~x1, . . . , ~xn) ∼ exp [−3HΩ(t1 + t2 + · · · + tn)

+3HΩ(t∗1 + t∗2 + · · · + t∗(n−1))
]
. (A.10)

Let us now use this expression to study the convergence of 〈V n〉, eq. (A.9). For a given

comoving position of the n points, the integral over time can be divided into many intervals

each going from tmin to tmax; in each interval the n points are grouped into m independent

subsets. At very early times all the points are separated by a physical distance ≪ H−1,

so that their evolution is completely correlated, so that they form a single group. As time

passes the n points split in subgroups: the elements of each subgroup still evolve together,

while the evolution of different subgroups is not correlated.15 We obtain

∫
dx1 . . . dxn

∑

intervals

∫ tmax

tmin

dt1 . . . dtme
3H(t1·k1+···+tm·km)pmr(t1, . . . , tm, ~x1, . . . , ~xm) ,

(A.11)

where the sum is extended over the different time intervals during which the n points are

divided intom groups, each group consisting of ki points. Before tmin some points belonging

to different groups are correlated (using the notation of the previous paragraph tmin =

t∗(m−1)), after tmax some of the points in the same group start to evolve independently

as they become separated by more than ∼ H−1. Clearly the extrema tmin and tmax are

functions of the comoving coordinates x1 . . . xn.

15As in the case of the variance we neglect the intervals of partial correlation using a two-step approxi-

mation.
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Using eq. (A.10) we can write

〈V n〉 =

∫
dx1 . . . dxn

∑

intervals

e3HΩ(t∗1+···+t∗m)

∫ tmax

tmin

dt1 . . . dtme
3H(k1−Ω)t1 . . . e3H(km−Ω)tm .

(A.12)

The next step is to rewrite the integration over comoving coordinates as integrals over time

variables, similarly to what we did in eq. (2.34) for the 〈V 2〉 case. The distances among

the various groups fix the values of t∗i. For a particular sequence of merging of the groups

going backwards in time, one can choose the following spatial coordinates: e−Ht∗(m−1) is

the distance between the two closest groups, e−Ht∗(m−2) is the distance between the next

to closest and so on.

One can thus perform all the integrals over the relative positions of the groups, except

for the one over tmin:

∏

i

∫ t
∗(i+1)

t
∗(i−1)

dt∗i e
3H(Ω−1)t∗i ∼ e3H(Ω−1)(m−1)tmin , (A.13)

where we used that for Ω > 1 each integral is dominated by the upper limit of integration.

The integral over the positions of the points inside each group can be done noticing that

tmax fixes the maximum distance inside any group: the points with the largest separation

will be the first ones to start an independent evolution, changing the way the n points are

divided. Thus the integral over the internal coordinates give

∼
m∏

i=1

e−3H(ki−1)tmax . (A.14)

Including tmin and tmax, this exhausts all the spatial coordinates except one, whose integral

just gives an overall comoving volume L3.

For each time interval we are left with

∫
dtmin

∫
dtmax e

3H(Ω−1)(m−1)tmin

m∏

i=1

e−3H(ki−1)tmax

m∏

j=1

∫ tmax

tmin

dtj e
3H(kj−Ω)tj . (A.15)

Each of the integrals in the product at the end gives

∼ e3H(kj−Ω)tmax for ki > Ω (A.16)

∼ e3H(kj−Ω)tmin for ki < Ω (A.17)

For Ω > 1 the integral over tmax is always convergent and dominated by its lower bound

tmin. Therefore we end up with a simple integral over tmin

∫
dtmin e

−3H(Ω−1)tmin , (A.18)

which is always convergent for Ω > 1.

This proves that 〈V n〉 always converges when 〈V 〉 does and therefore that all moments

start diverging at the same critical point Ω = 1.
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B. Asymptotics of 〈1|(S + S
†)m|i〉

Here we will prove the estimate (3.40) for the leading exponential asymptotics for matrix

elements of the form A(m,i) ≡ 〈1|(S + S†)m|i〉 at large i. Let us start with deriving a

recursion relation for these matrix elements in analogy to (3.19). One writes

A(m,i) = 〈1|
(
S + S†

)m−1 (
S + S†

)
|i〉

= A(m−1,i−1) +A(m−2,i)A(0,1) + 〈1|
(
S + S†

)m−2 (
S + S†

)
S|1〉

= . . . = A(m−1,i−1) +

m−2∑

k=0

A(k,i)A(m−2−k,1) . (B.1)

As before, it is convenient to introduce a generating function

G(x, y) =
∞∑

m=0

∞∑

i=1

A(m,i)xmyi

It is straightforward to check that the recursion relation (B.1) and A(0,1) = 1 implies the

following algebraic equation for G,

xy G(x, y) + x2G(x, y)F (x2) = G(x, y) − y ,

where F (x) is the generating function (3.22) for A(m,1). Consequently,

G(x, y) =
2y

1 +
√

1 − 4x2 − 2xy
. (B.2)

Unlike for the function F , finding the Taylor coefficients of G in closed form is rather

challenging. However, what we need is just the leading exponential asymptotics of A(µi,i)

at large i and fixed µ. In other words, we are looking for λ, such that

A(µi,i) = λif(i) (B.3)

where f(i) is not exponential at large i. To find this asymptotics it is convenient to work

with another pair of variables (x, z = y xµ), so that

G(x, z) =
∞∑

m=0

∞∑

i=1

A(m,i)xm−µizi . (B.4)

Then the coefficients A(µi,i) are generated by G0(z), which is the x-independent part of

G(x, z),

G0(z) =

∞∑

i=1

A(µi,i)zi (B.5)

Note that G0(z) 6= G(x = 0, z), because the series for G(x, z) contains negative powers of

x. Instead, it is given by the contour integral

G0(z) =

∮
dx

x
G(x, z) =

∮
dx

x2

2z

xµ−1(1 +
√

1 − 4x2) − 2z
(B.6)
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in the complex x-plane. Here the integration contour should enclose the point x = 0, and

should not exit the region where the series (B.4) converges, so that one can interchange

the order of summation and integration. From the definition (B.2) it follows that this is

the case for x≪ 1 and y = z/xµ ≪ 1.

To find the value of λ in (B.3) note that G0(z), by its definition (B.5), is analytic for

|z| < |λ|−1 and diverges at |z| = |λ|−1. Given that all coefficients in (B.5) are real positive

numbers, we can restrict to real values of z. The integrand in (B.6) has two cuts extending

from x = ±1/2 to x = ±∞, and a double pole at x = 0. Also at small z it has (µ − 1)

additional poles near x = 0. The integration contour encloses all these poles and does

not cross the cuts. At larger values of z one has two extra poles entering from the second

sheet — they appear in the first sheet at x = ±1/2 when z crosses 1/2µ. These poles are

outside the integration contour. The singularity in G0(z) arises when, for even larger z,

one of these two new poles merges with one of (µ + 1) poles inside the contour: at this

value of z the contour necessary passes through a singularity. Consequently, a singularity

appears when the denominator in (B.6) develops a double zero (other than the trivial one

at x = 0). By calculating its derivative we find that this happens at

z = zc ≡ 2−µµ−µ
(
µ2 − 1

)µ/2
√
µ+ 1

µ− 1
.

Hence λ = z−1
c , exactly reproducing the estimate (3.40).
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