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Chapter 1

Introduction

Since the experiment of Rutherford, the scattering among particles has become
one of the basic tools in particle physics to look deeply into Nature. This has
basically meant to study shorter and shorter distances, with the aim of finding
the fundamental structures that describe all physical phenomena. As soon as it was
understood, thanks to the De Broglie relation, that for studying short distances, high
energy is required, a big race to reach higher energies started, leading, eventually,
to huge particle accelerators such as LEP at CERN in Geneva and the TEVATRON
at FERMILAB in Chicago.

Whereas the energy of the devices increased, an overwhelming subatomic world
appeared, showing up as a complicated world of new particles. Since the 30’s, a
large advance has been done toward the understanding of this subnuclear scenario,
starting with the formulation of QED and the establishment of the electroweak and
the strong interactions and culminating in the formulation of the Standard Model
of the elementary particle physics (SM) [1-3]. This model has become the standard
theory and is an exceptional tool to describe the phenomenology of high energy
physics. In particular, the accuracy of the LEP experiments has allowed us to test
this model even at the loop level.

However, there is one sector of the SM one could consider not satisfactory, which
is the Higgs sector. The reason for this is that its main ingredient, the neutral Higgs
boson, has not been discovered. The Higgs sector is necessary to create masses for
all particles. Furthermore, the mixing among different quark families originates also
in the Higgs sector. The latter is parametrized by a 3 X 3 unitary matrix, the
so-called Cabibbo-Kobayashi-Maskawa matrix (CKM) [4, 5].

The CKM matrix contains the only source of CP violation within the SM. The
effect of CP violation has been observed up to now only in a few systems, namely
the neutral K and B mesons. Currently the CKM picture undergoes a detailed
experimental test, but until now theoretical predictions and experimental data seem
to agree. However, there is still hope to find new effects in this sector, since it is
known that the CP violation required for explaining the baryogenesis is larger than
the one provided by the SM. In conclusion, it can be stated that the CKM sector of
the SM has not been tested at a satisfactory level of accuracy.

In order to test this sector, one has to study flavor changing charged and neutral
currents. Within the SM framework, these processes are mediated by electroweak
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currents involving W* and Z° bosons and are described in terms of quarks. How-
ever, in the experiment only hadrons are observable and, in order to connect SM
parameters with the data, one has to deal with the problem of confinement in the
strong interaction. This problem has not yet been solved, since it requires a non-
perturbative ansatz such as lattice QCD.

Over the last decade significant progress in the description of weak heavy flavor
decays has been made. These decays are also subject of large experimental efforts
and are about to become one of the best possibilities to test some of the parameters
of the CKM matrix. The B factories at SLAC and KEK are producing a lot of
information about decays of B-meson with high statistics and low systematic errors.
Therefore it is mandatory for theory to try to match the experimental accuracy, i.e.
to reduce the uncertainties induced by our poor control over QCD interactions at
large distances.

This can be achieved by means of factorization theorems which separate the
perturbative physics from the non-perturbative one. There are two kinematical
regions where these factorization proofs can be stated at the level of Lagrangian and
operators in a model independent way by means of two effective field theories. The
first is Heavy Quark Effective Theory (HQET) [6-14], which describes interactions of
heavy quarks with soft gluons and quarks, and the second is Soft Collinear Effective
Theory (SCET) [15-27], which involves energetic light particles almost on-shell. The
main impact of these theories relies on the appearance of symmetries in the leading
order Lagrangian that were not present in the full one [28-32].

Corrections to the leading terms can be obtained systematically. The first kind of
corrections are parametrized in terms of higher dimensional operators, the dimension
of which is compensated by couplings proportional to inverse power of m, the mass of
the heavy quark, or F, the energy of the collinear particles. However, this requires
to introduce additional unknown non-perturbative parameters or even functions.
Secondly, the QCD radiative corrections are governed by the hard scale, which can
be obtained perturbatively

Both theories together with Heavy Quark Expansion [33-42] settle the basis to
study the QCD interaction of heavy meson weak decays, and the specific subject of
this thesis are transitions mediated by heavy to light currents.

Heavy to light currents transition in the limit in which the mass of the heavy
quark is large in comparison with the soft momenta carried by the light components
can be studied using HQET and in those in which the momenta transfered to the
light quark is large with SCET.

The method of the effective field theory corresponds to expanding full QCD
operator by an OPE [43,44], their coefficient are operators with the correspondent
dimensionality and quantum numbers. The effective operators describe the low
energy physics and are multiplied by Wilson coefficients which factorize the short
distance interactions.

In the HQET limit, matrix elements of heavy to light currents operators in the
full and in the effective theory will be parametrized in terms of non-perturbative
universal form factors, for which no reliable method of calculation exists. However,
in the effective theory symmetries appear and relation between them can be es-
tablished. In particular, matrix elements between the vacuum and B or B* meson



states, which define meson decay constants, are described, at leading order, by only
one form factor in the effective theory. Therefore, ratios of meson decay constants,
such as fp-/fp, are given at leading order by ratios of the corresponding matching
coefficients which are computable perturbatively.

Based on an analysis of singularities in the Borel plane, one can obtain the
behaviour of the perturbative series for large L, where L is the order of perturbation
theory. These singularities yield renormalons ambiguities (see review [45]). The
nearest singularity determines the leading asymptotic behaviour.

In schemes without strict separation of large and small momenta, such as MS,
this procedure artificially introduces infrared renormalon ambiguities in matching
coefficients and ultraviolet renormalon ambiguities in HQET matrix elements.

For a physical observable, without renormalons ambiguities, it has been proven
that the infrared renormalons in the coefficients, corresponding to information on
long distances, cancel against ultraviolet ones in the matrix elements [46,47], con-
taining information on short distances.

However, this has been shown explicitly only in the large-3, limit, which relation
to real QCD is unclear. Assuming that this holds beyond this approximation, one
may obtain additional information, in a model independent way [48,49], on the
structure of the infrared renormalon singularities of matching coefficients, based on
ultraviolet renormalons in higher-dimensional matrix elements, which are controlled
by renormalization group methods.

Singularities in the Borel plane are branch points, whose powers are deter-
mined by the relevant anomalous dimensions, but normalization factors cannot be
calculated. The asymptotic behaviour of the perturbative series for the leading
QCD/HQET matching coefficients (due to the nearest infrared renormalon) was
studied in [46,50,51]' in the large-3y limit. In this thesis, an analysis beyond this
approximation is presented [52].

An outstanding progress has been reached in the study of inclusive decays [53—
59] using Heavy Quark Expansion. The heavy mass set the large scale and the
(differential) rates are expressed by means of an Operator Product Expansion in
terms of a series of increasing dimension local operators [60-63]. In the context of
differential rates for inclusive decays into light particles in order to extract the matrix
element V,;, of the CKM matrix experimental cuts on the energy of the outgoing
particles are necessary to suppress the large background signal of charm production
forcing the kinematics to the end point region of the spectrum , where the final state
hadron carries large energies Ey ~ mg, but small invariant mass sy ~ mgAgep. In
this region, the OPE breaks down, but this problem can be solved by a resummation
of certain terms of the OPE. This leads to non-local operators evaluated on the light
cone, the matrix elements of which lead to non-perturbative functions, the so-called
shape functions [60-62].

A systematic treatment can be performed in the end point region mainly in two
steps [16,64,65]. First, matching QCD to SCET, where the hard short distance fluc-
tuations are integrated out and a second matching onto HQET where the collinear
degrees of freedom are integrated out after a decoupling of soft and collinear degrees
of freedom has been performed by a field redefinition.

!Note a typo in (4.8) of [50]: denominators of both terms with a should be 27, not .
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A study of the leading shape functions, including the radiative corrections, shows
that differential decay can be written in terms of dI' = H - J ® S [16,64-66], where
H is the hard kernel accounting for the hard fluctuation of order mg, J is a Jet
function, of the collinear scale \/mgAgcp, S, is the leading shape function and the
symbol ® represent a convolution integral.

In order to extract V,,;, with a good accuracy, a study of power suppress contribu-
tions is needed. A tree analysis of them has been performed previously in [63,67-69].
Here, the first step toward a systematic study of the subleading terms using SCET
is presented at tree level. New shape functions appear, which have not considered
previously. Moreover, it will be showed that the factorization formulae hold beyond
leading order [70].

In deriving the Heavy Quark Theory, one introduces the velocity vector v of
the hadron in order to split the momentum of the heavy quark into a large mgv
and a small or "residual” £ ~ Agep component, pg = mgv + k. As long as
the velocity fulfills that the residual momentum & ~ Agcp, one has the freedom
to redefine it. This reparametrization freedom is the so-called Reparametrization
Invariance (RI) [52,71-78], its main feature is that connects different orders of the
1/mg expansion and survives renormalization [74, 75|, which means that relations
obtained at tree level hold.

In this thesis, the consequences of Reparametrization Invariance for the non-local
operators apparent in the endpoint region are studied. The main result is that the
number of unknown functions that appear at 1/mg are reduced [77].

The present thesis is organized as follows:

In Chapter 2 and 3 an introduction of HQET and SCET including corrections to
the limiting behaviour and a derivation of the heavy to light currents following [21,22]
in the SCET limit is presented.

Chapter 4 is devoted to the study of heavy to light currents for an arbitrary
Dirac structure and B-meson decay constants up to 1/m at next to leading order.

The asymptotic behaviour of the leading order Wilson coefficients as well as for
ratios of meson decay constants will be presented in Chapter 5.

In Chapter 6 power corrections for B-meson inclusive decays will be studied in
the end point region of the spectrum using the SCET formalism, a factorization
formulae at subleading order will be presented; results are collected in Appendix B.
Chapter 7 will be devoted to the study of the consequences to consider RI in the end
point region in the HQET framework. Finally, conclusion are exposed in Chapter 8.



Chapter 2

Heavy Quark Effective Theory

Contents
2.1 Effective Theory . .. .. ... ... . .. 5
2.2 HQET Lagrangian . . . . . . .« v v v vt v v v v v v v v 7
2.2.1 Heavy Quark Symmetry . . . .. ... ... ... ..... 10
2.3 Corrections to the Heavy Mass Limit . . ... ... ... 10
23.1 1/mg Correction . . . ... ... ... ... ... ..., 10
2.3.2 Radiative Corrections . . . . .. ... .. ... ...... 11
2.4 Parameters of the Effective Lagrangian . . ... ... .. 13
2.5 Reparametrization Invariance . . . . ... ... ... ... 14

2.1 Effective Theory

Looking at the known particles, one realizes the amazing range covered by the mass
spectrum, going from a few eV up to hundreds of GeV. Due to this large variation
of mass scales, one common situation in particle physics phenomenology is that a
physical problem may involve a widely separated energy scales allowing the study
of the low-energy dynamics, independently of the high energy interactions.

The standard examples are the weak decays of leptons and hadrons which involve
energy scales around MeV or GeV but are mediated by the gauge boson fields, W
and Z, whose masses round the hundreds of GeV.

For such a scenario, a description that does not explicitly involve the heavy gauge
boson should be possible. In other words, one expects to switch to a low-energy
effective theory [79] in which the heavy degrees of freedom have been removed.

In general, that can be done due to the decoupling theorem [80] which states that
a heavy particle decouples from the light ones in the limit in which its mass tends
to infinity. The only remnant of the heavy particles will be a logarithm dependence
with the mass of the heavy quark absorbed in the coupling constant and a series of
inverse power of the heavy quark mass.
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This corresponds to an expansion in inverse powers of the heavy quarks mass up
to logarithm of the Green functions of the theory. This expansion may be obtained
from the Lagrangian field theory, which is called an effective theory [81,82].

The construction of the effective theory Lagrangian involves several steps [44,
82,83]. After having identified the massive degrees of freedom, these degrees are
removed by integrating it out from the functional integral of the full theory. This
is possible since at low energies the heavy particle does not appear as an external
state. However, whereas the action of the full theory is usually a local one, what
results after this first step is a non-local effective functional action. The non-locality
is related to the fact that in the full theory the heavy particle with mass M can
appear in virtual processes and propagate over a short but finite distance. The
second step is required to obtain a local effective Lagrangian. That will be done by
rewriting the non-local effective action as an infinite series of local operators with
increasing dimensions by means of an Operator Product Expansion (OPE) [43, 84].
This, roughly speaking, corresponds to an expansion in powers of 1/M. In this
step, the short and long distance physics is disentangled. The long distance physics,
corresponding to low energy interactions, is the same in both the full and the effective
theory and is described by the operators. The short distances effects arising from
quantum corrections involving large virtual momenta are not described correctly in
the effective theory since the heavy degrees of freedom have been removed. They
appear as a coupling constant of the operators, the so-called Wilson coefficients [43],
which are dealt with renormalization-group techniques.

The dimension of the effective Lagrangian is four. The leading term in the ex-
pansion generally corresponds to a four-dimension operator which has dimensionless
coupling defining the renormalizable piece of the effective Lagrangian. This will be
used to calculate the renormalization group flow in the effective theory. The higher-
dimensional operators have dimensional coupling constants, the scale of which is set
by the heavy mass. However, they do not spoil the renormalizability of the effec-
tive theory since up to some given order in the heavy mass expansion only a finite
number of higher dimensional operators appears and any finite number of insertions
may be renormalized.

There is a slightly different approach to construct the effective theory. Knowing
the light degrees of freedom, the symmetries, and the expansion parameter of the
system to describe, one can build the effective Lagrangian as a sum over all possible
operators compatible with the symmetries of the system up to certain order and
involving only the light degrees of freedom. Each operator will have associated
a coefficient which will be determined by imposing that a certain energy scale pu,
typically of the mass of the heavy particle. Both the Green functions of the full and
effective theory have to match. In this way, the coefficient of the operators of the
effective theory are determined in terms of the parameters of the full one. These
coefficients are the Wilson coefficients accounting for the short distance physics.

The scale p is introduced to disentangle the short from the long distances, and
generally, is chosen such that Agep < ¢ < M. In this way, the effective theory is
derived to be equivalent to the full one at long distances. The short distance effects
are absorbed in the coupling constant (Wilson Coefficient). Moreover, the non-
dependence of the physical quantities in the scale choice will allow the establishment
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of the renormalization group equation.

Finally, remember the advantages of the effective theory over the full one. First,
there are examples, where the full theory is not known or the matching is not
suitable. In these cases, it is obvious that one performs the calculation in the
effective theory. But even in cases where the matching is possible, like in HQET, it
may be advantageous to switch to an effective theory mainly for two reasons. First,
the renormalization group equation can be used for resumming the large logarithms
apparent in perturbation theory for the presence of two disparate scales and second,
it may happen that new symmetries appear. That is the case of HQET which will
be introduced in some detail in the next section.

2.2 HQET Lagrangian

Heavy Quark Effective Theory is an effective field theory derived from QCD de-
scribing physical systems with a heavy quark interacting with the light degrees of
freedom mainly by exchange of soft gluons. The high-energy scale is given, in this
case, by the heavy quark mass, mq and the light degrees of freedom by Agep, a
typical energy scale of the hadronic physics.

At the energy scale of the heavy particle the physics is perturbative. Therefore, it
can be calculated in QCD. For energies lower than the heavy quark mass the physics
becomes nonperturbative and complicated because of confinement. The goal is to
find a simplified description in this region using an effective field theory.

In contrast to other effective field theories, HQET has the particularity that the
heavy particle does exist as an external particle. Therefore, it will not be possible to
remove the heavy quark field completely. However, the heavy degrees of freedom can
be identified by means of field redefinitions and consequently, they can be integrated
out.

The starting point is the full QCD Lagrangian with a heavy quark [41]:

L(z) = Q) (i) — mq)Q(z)

where () is the heavy quark field, mg is the heavy quark mass and D* = o¥+ig A
is the covariant derivative. Noting that the velocity of the heavy quark inside of an
hadron is almost the same as the hadron itself and is almost on-shell, its momentum
may be expressed as:

P =mq - v" + k" (2.1)

where v is the four-vector velocity of the hadron v = Pgagron/Mmadron and there-
fore ¥2 = 1 . k is the so-called residual momentum being of the order of Agep.
Interactions of heavy quarks with the light degrees of freedom, light quarks or soft
gluons, change the residual momentum by an amount of the order of Ak ~ Agep,
but the corresponding change in the heavy quark velocity vanishes in the limit
Agcep/mg — 0. Then, v is conserved and becomes a good quantum number.

The derivation of the HQET Lagrangian from QCD involves a redefinition of the
quark fields @,

Q(x) = eI Q, (x) (2.2)
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where the large momentum dependence of the heavy quark field has been explicitly
identified. Q,(x) can be decomposed into:

Qu(z) = hy(x) + Hy(x) (2.3)

where h, and H, are, respectively, the small and the large components of the field.
The covariant derivative acting over the redefined field is:

iDFQ(7) = e "RV (mgut + iDM)Q, () (2.4)

being (iD*)Q), ~ Agcp since corresponds to the residual momentum. Therefore,
it follows that iD*h,(z) ~ iD"H,(z) ~ Agcp. Moreover, the small and large
components can be written in terms of the original field by:

hy(x) = €™ P,Q(x)
H,(z) = ™V P_Q(x)

where P, are projection operators defined as:

_ 1/

Py 5

(2.5)
The new fields satisfy #h, = h, and $H, = —H,. In the rest frame, v* = (1,0).
Then, h, corresponds to the upper components of the field and annihilates a heavy
quark with velocity v whereas H, corresponds to the lower components and creates
a heavy antiquark. Expressing the QCD Lagrangian in terms of the new fields, it
can be expressed as:

L = hy(iv - D)h, — H,{(iv - D) + 2mg}H, + h,ilp | H, + H,ilD | h,, (2.6)

where D = D*—v#(v-D) and fulfills {}p |, ¢} = 0. From the Lagrangian expression,
it is apparent that h, is a massless field and therefore describes the light degrees
of freedom of the heavy quark. On the other hand, H, is a field of mass 2mg and
describes the heavy degrees of freedom which will be removed. At the classical level
this can be done by solving the equation of motion for the large field H,,

1
2mQ+iv-D

H,(x) = ( ) i) hy(x). (2.7)
This shows that the large field is of order 1/m¢ and thus, in the heavy mass limit
mq — 00, the field vanishes. Inserting this expression in the heavy quark field one
gets the non-local effective heavy quark field:

1

— —imQu-T 1
Q) =e { +<2mQ+w-D

)ip.| o (23)

In a similar way, for the Lagrangian one gets the non-local effective Lagrangian

1

L = hy(iv - D)h, + hyi —
T = (v - D)y + ZlDL<2mQ+w-D

) i Lhy (2.9)
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The non-locality of the Lagrangian is connected with propagating modes of high
energy at virtual level [41]. In a virtual level, it is possible that a heavy quark
transforms into a heavy antiquark and after a short time, the latter becomes a
quark again. The energy of the propagating antiquark is at least 2mg larger than
the energy of the quark and can propagate over a short distance Az ~ 1/2mg. This
kind of processes are generated by the mixing term in (2.6) and corresponds to the
interaction
T (hyilp L H,H,i]D  h,) .

Contracting the large heavy quark fields, one obtains the propagator recovering, in
this way, the non-local term of the effective Lagrangian. The non-local terms can
be expanded in terms of an infinite series of local operators. In the framework of
the effective theory, this corresponds to a short distance expansion and hence, these
operators have to be renormalized.

The tree level relation may be derived from the geometrical series expansion of
the non-local terms. The covariant derivative acting over the effective fields is of
order (iv - D)h, ~ Agep. The mass of the heavy quark sets the heavy scale, then
one can make an expansion in terms of powers Agcp/mg. Hence, the field reads as:

Q(z) = e MV [1 + <;> uDL] h, =

2mQ +w-D
—imQu-T L
= ¢ime [1 + g ZJZ)L} hy + O (Ajep/mg) - (2.10)

In an equivalent way, the Lagrangian is written as:

1

= hy (iv - D) hy + hyi —
Lrgrr = ho (- D) hy + ”pl(2mQ+w-D

) iPihy, =

o 1
= hy (iv - D) hy — %hv D11 hy+ O (Myop/mp) (2.11)

Taking into account that h, contains a P, projection operator, and using the identity

PyiD i P, = P, [(iD.)? + %a,w GW] P, (2.12)

where i[D* D'] = g, G" is the gluon field-strength tensor, one finds the HQET
Lagrangian up to order 1/mg [11,14]:

_ 1 -
‘CHQET = hv (Z'U . D) hv + 2— hv (ZDJ_)2 hv

mqQ

gs v
+m ho 0 G* by + O (Ap/m3)) - (2.13)

Starting from the generating functional of the Green function of the full QCD, one
can get the same effective Lagrangian. The action can be written as [14]:

SHQET == /d41‘ EHQET — ilHA, (214)
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with Lyqer given in (2.9). A is the determinant coming from the integration of the
heavy degrees of freedom and can be ignored.

Finally, one may notice that the effective theory only describes heavy quarks
and says nothing about heavy antiquarks. This is due to the choice of the sign in
the phase redefinition of the field in order to identify the heavy degrees of freedom.
Changing the sign of the global phase in (2.2), one gets a description for heavy
antiquarks [38]. In the next section, the symmetries of the effective Lagrangian will
be discussed.

2.2.1 Heavy Quark Symmetry

Taking the limit in (2.13) of mg — oo only the first term remains and yields the
effective Lagrangian of the Heavy Quark Effective Theory [12,85]:

Lo =hyiv-Dh,. (2.15)

Looking at the Lagrangian one discover two symmetries not present in full QCD.
The mass of the heavy quark is absence, since has been removed and there is no
any Dirac structure, the soft gluons do not distinguish the spin of the heavy quark.
These symmetries are called heavy Flavour and Spin symmetries [28-32]. A direct
consequence of the symmetry is the prediction of equal masses for the degenerated
states of spins (07, 17). Moreover, relation between form factors can be found, for
example, B meson decay constants in the effective theory are described at leading
order by only one form factor. Heavy to heavy transition at leading order are
described by the Isgur-Wise form factor [32,86]. Similar results for exited mesons
have been studied in [87]. For D mesons similar results are predicted [88] and
confirmed in [89]. For the baryons, similar results have been found [87,90,91].

2.3 Corrections to the Heavy Mass Limit

In contrast to model dependent descriptions of QCD, in HQET it is possible to
calculate in a systematic way the corrections to the heavy quark limit. These will
be given in terms of two small parameters: the strong coupling constant, accounting
for the radiative corrections, and Agcp/mg accounting for the finiteness of the
heavy quark mass, the latter being of non-perturbative character.

2.3.1 1/mg Correction

Corrections related to the long distances physics are given in terms of a series of
increasing dimension operators that scales with inverse powers of the heavy quark
mass. These corrections are of non-perturbative character of order Agep. Therefore,
at higher order in 1/mg new parameters or even form factors will appear, which can
not be calculated within the HQET framework.

As an example, one can consider a matrix element of a current gI'Q) mediating
a transition between a heavy meson and some arbitrary state |A). For this matrix
element, there are two sources of 1/mg corrections, corrections to the currents and
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corrections to the states. The corrections to the currents arise from the 1/mg
expansion of the fields (2.8) and will give local contributions

Q;Qim] ho(z) + O (1/mj)) (2.16)

whereas the corrections to the states arise from considering the higher order terms
of the Lagrangian as perturbative ones and will give rise to non-local contributions.
The matrix element under consideration up to order 1/mg takes the form ' [92,93]:

Q(z) = e7"mav® [1 +

(AlgTQIM(v)) = (AlqThy[H (v)) (AlgTP_iDhy|H (v)) (2.17)

_|_ -
2mQ
L / 2 (A|T{Ly (2)qThy Y H (v)) + O(N2yp /m3)

where L, are the first-order corrections to the Lagrangian given in (2.13). Further-
more, |M(v)) is the state of the heavy meson in full QCD, including all its mass
dependence, while | H (v)) is the corresponding state in the infinite mass limit. When
combined with radiative corrections, new operator compatibles with the symmetries
of the problem can appear. In Chapter 4, the operator basis at 1/m¢ will be given
for heavy to light currents in terms of Spin-0 operators, Section 4.3, and Spin-1
operators, Section 4.4.

2.3.2 Radiative Corrections

HQET describes the low energy behaviour of QCD of a heavy quark interacting
softly with the light degrees of freedom. Processes involving hard virtual loops
are not described properly. This is corrected by Wilson coefficients extracted by
comparing both theories a certain scale where perturbative QCD still works.

The Heavy Quark Effective Lagrangian in presence of hard loops is modified
to [10,11,13]:

L = hyiv - Dh,, + % [0k 4 Con (1) O ()] + O(1/m3)) (2.18)

mq
_ 1_
O = —h,Dih,, O = §hUGaﬁaa’8hv,

O and O,, are, respectively, the kinetic and the chromomagnetic operators contain
the low energy physics. Due to reparametrization invariance [71], the kinetic-energy
operator, Oy, is not renormalized, and its coefficient is unity to all orders in pertur-
bation theory. This will be shown in Sect. 2.5.

The chromomagnetic-interaction coefficient C,,(x) can only be found approxi-
mately by matching the amplitudes of an appropriate scattering process in QCD
and HQET. Its dependence on mg is given as a combined expansion in the coupling
strength oy = ¢g*/(47) with n; light flavours and logarithms of my,

C (mq/p) = an (2.19)
+ a1 (asIn (mg/p)) + aroas
+ a9 (agIn (me/p)” + as oy (g In (mo/ 1)) + age?.

ight quarks are considered to be soft.
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This splitting between short and long distances is known as the factorization theorem
and corresponds to the statement that the ultraviolet divergences in the effective
theory have to match the logarithmic mass dependences of full QCD.

The factorization scale p is an arbitrary parameter. The Lagrangian does not
depend on it. Therefore, differentiating (2.18) with respect to the factorization scale
i yields the renormalization group equation

dlillu {Cm (%) Om(ﬂ)} =0 (2.20)

where O,, is the renormalized chromomagnetic operator. Then, the running of the
Wilson coefficient C'(mg/u) is given by:

_d
dlnp

where

Y (1) = (O (1))

is the anomalous dimension, 7,,, of the chromomagnetic operator O,,, in the MS [11,
93-95]

=20, % 1 20, (170 — 13Tem) (a5)2 + (2.22)
Tm = 2L ir g4 A FNy e .
Equation (2.21) defines the renormalization group equation in the effective theory

and allows one to shift the logarithm dependence in the Wilson coefficient. Solving
the renormalization-group equation yields

o) = o (2) 7 (e, (223

O‘S(MO)

in the MS scheme, (3(a,) = —%dlog as/dlog = Boas/(4m) + B1(as/(4m))% +- - -, and
for any anomalous dimension v(ay) = Yo/ (47) + 71 (as/(47))? + - - - and

Equation (2.23) sums the large logarithms that appear in (2.19). Calculating the
renormalization group functions § and v at two loops and the finite Wilson coef-
ficient at one loop up to the subleading logarithms ("' In" mg) are resummed,
corresponding to a resummation of the first and second row of (2.19).

The full one-loop correction to C,, has been calculated in [10], and the two-loop
correction in [95]. One obtains(see [96])

5 _ as(po) |

Cpn=14+cm i + , (2.25)
5 55 C C?

Cm1 =20 + =Cy — (3CF + —CA> 44 (11CF + 7C},) —2‘ .
2 6 Bo 50
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where

o = e Sm. (2.26)

In Chapter 4 and 5 radiative corrections of matrix elements of heavy to light
currents will be discussed including 1/m corrections. These matrix elements, are
impossible to calculate from first principles, with the exception of Lattice calcula-
tions. However, (2.21) allows the extraction of the short distance piece, i.e., the
logarithms of the large mass m and to shift them into the Wilson coefficients.

The radiative corrections will be included in the effective theory following the
steps. First, a calculation in both QCD and HQET is performed. After subtracting
the ultraviolet divergences the matching is carried out, at the large scale mg, getting
in this way the Wilson coefficients that account for the short distance behaviour. In
this process, a scale which is used for obtaining the renormalization group equation
of the effective theory is introduced. This is used for lowering the renormalization
point at scales ;1 < mg where one can switch to the effective theory, performing at
the same time the resummation of the problematic large logarithms that appear in
the full theory.

2.4 Parameters of the Effective Lagrangian

Looking at the effective Lagrangian, one may notice the presence of two parameters:
the velocity v and the mass of the heavy quark. The velocity appears after the
splitting of the heavy quark momentum into a large and a residual part breaking
the Lorentz invariance, since a reference system is chosen. This can be restored by
integrating it in more degrees of freedom [85],

Lo =Y hy(iv-D)hy (2.27)

But two heavy quarks with different velocities are separated by a gap of infinite
energy AP = mg(v — v') with mg — oo and hence, independent. This is known
as a Superselection rule. Then, from now on, only quarks moving with a certain
velocity will be considered.

Moreover, the velocity is not present in QCD and from that point of view it can
be considered as an external variable. This means that redefinitions of the velocity
of compatible size with the dynamical assumptions to derive HQET should leave
the physical results invariant. This is the so-called Reparametrization Invariance
[71,72,74-76] explained in the next section. Its application to the end point region
will be studied in Chapter 7.

The other parameter that appears in the Lagrangian is the mass of the heavy
quark. The mass of the heavy particle is not a physical quantity, because of
confinement, and one has some freedom to define it. Redefinition of the mass

mg = mg + dmg amount to redefinitions of the so-called binding energy of the
hadron H:

A = (mp, —mg) (2.28)

mg—00
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Physical quantities are independent of this choice [97]. For ém = 0, as it is usually
implicitly done in the HQET, a heavy-quark mass is defined, the pole mass of the
heavy quark [98].

Finally, one may note that my, A and ém are non-perturbative quantities, al-
though, they are evaluated by means of perturbative methods. A careful study of
the perturbative series reveals that it not possible to define these quantities un-
ambiguously [99,100]. The perturbative expansion shows a factorial divergence for
large orders, which is related with the appearance of singularities in the right side of
the real axis of the Borel plane, the so-called Renormalons [45,48,101-109]. There
is no unique way to deal with these singularities and hence, an ambiguity appears.
As far as physical quantities are concerned all ambiguities cancel [46,47,110]. This
has been proof for many applications in the large-3, limit. In Chapter 5, it will be
shown this cancellation by a direct calculation in the large-3, limit for heavy to light
currents in the HQET framework.

2.5 Reparametrization Invariance

In deriving the heavy mass expansion from QCD, one introduces a velocity vector v
which is the velocity of the hadron containing the heavy quark, v = Pyadgron/Mhadron-
The heavy quark momentum pg inside the heavy meson is decomposed into a large
part mgv and a residual part &,

pQ:va—i-k

v must be chosen such that the residual momentum k& ~ Agep. Then, the heavy
mass expansion is constructed by expanding the amplitudes in the small quantity
k/mg. However, the splitting of the momentum is not unique, a different choice

po =mgv' + k'

is valid (as long as v = 1) such that v = v + A and k' = k — mgA , with
A ~ Agep/mg to maintain k' ~ Agep. From this point of view, the velocity vector
v in HQET is an external variable which is not present in full QCD and is only fixed
up to terms of the order Agep/mg. Consequently, small reparametrizations of the
form v — v + A with A = O(Agep/meg) should leave the physical results of the
heavy mass expansion invariant.

This so-called Reparametrization Invariance(RI) is known since the early days
of heavy quark effective theory (HQET) [71,72]. Like other symmetries RI will be
useful for constraining the shape of the Lagrangian and physical observables. The
HQET Lagrangian, like the full one, is invariant under small changes of the velocity
as long as all the terms of the 1/mg expansion are considered. In other words,
the truncation of the expansion up to certain order implies the introduction of a
dependence in the velocity up to the same order. The key point of RI is that connects
different orders of the 1/m¢ expansion. Moreover, RI survives renormalization [74,
75], which means that relations obtained at tree level hold. Therefore, relations
among the coefficients of the operators will be obtained, the most prominent of the
example is the non-renormalization of the kinetic energy operator h,(iD)2h, [71].
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If one considers two versions of HQET with two different choices of the velocity
vectors v and v’ differing by a small quantity A [72], then

v? =1, v?=1=@w+A)?2=1+2v-A+ O(A?) (2.29)

with v - A = 0 and such that A is of order Agcp/mg. Then, the two versions of
HQET must be equivalent.
Constructing HQET from QCD involves a redefinition of the quark field @) of
the form
Q = exp(—imqv - x)Q, (2.30)

such that the covariant derivative acts as
iD,Q = exp(—imqu - x)(mgu, + iD,)Q, (2.31)

The left hand side corresponds to the full heavy quark momentum which is not
changed under reparametrization. This implies for the change d; of the covariant
derivative acting on the quark field @,

Sr(iD,) = —mgA,, . (2.32)

In the following, a consistent scheme to count the powers of Agep/my in order to
expand the Lagrangian in a systematic way has to be developed. Defining the action
to be O(1), one obtains that the static heavy quark field is O(A?géD). The covariant
derivative as well as the variation dg of the covariant derivative are O(Agep), and
the variation of the heavy quark field under reparametrization is

Orh, = % |:1 + %] hy + O[AZ/(%D(AQCD/mQ)g] . (233)

Note that the leading contribution originates from the variation of the projector
P, = (#+1)/2 and is of order AZ/ZD/mQ
Equations (2.29), (2.32) and (2.33) are the reparametrization transformations of
all relevant quantities needed to exploit the consequences of this symmetry.
Reparametrization invariance connects terms of different orders in the 1/mg
expansion. As an example, the HQET Lagrangian is considered

L=Ly+ L+ =hy(iv-D)h, (2.34)

1 - T o=, ) y
+%hv(zD)2hv — %hv(zDu)(sz)a” h, + O(AGQCD/mQ)
with h, = Ph, where P, = (1+ ¢)/2.
The leading order term Lo is of order Agqp, while its variation is of order
AE&)CD/mQ -
0rLo = hy(iA - D)hy + O[AYep/m?) (2.35)

Note that the leading term of the variation of the fields (2.33) does not contribute
since

P.AP, =P (v-A)=0 (2.36)
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The variation of the leading-order term is compensated by the kinetic energy term,
since

= Lo
or (hv(w - D)h, + %hv(szhv) = O[AYcp/m)] (2.37)

Relation (2.37) is preserved under renormalization which ensures that the kinetic
energy piece is not renormalized [71].

In a similar way one can obtain relations between higher order terms in the
Lagrangian and also for matrix elements. Again these relations do not change un-
der renormalization from which relations between renormalization constants can be
derived.

Next Chapter is devoted to Soft Collinear Effective Theory(SCET).
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3.1 Introduction

Soft Collinear Effective Theory (SCET) [15-27] is an effective theory derived from
QCD describing a jet of light particles almost on-shell moving along one direction.
This kind of jet can be produced in a heavy hadron weak decay. SCET together
with HQET settle the basis to study in a systematic way heavy quark decays into a
jet of light particles. The aim of the effective theory is to expand physical quantities
in a small parameter A\. Considering a weak decay of a heavy quark with mass
m, the jet of the decaying collinear particle is defined to move along the direction
n_ with a momentum of order m to amount an invariant mass of the order (m\?).
SCET deals with the physics below this scale. In this Chapter, the discussion given
in [21,22] is closely followed. The momentum can be decomposed as:

" n nt o n'y nl oo
P'=mp)5+ ) 5 +Pl=pim +p = epop), (31

where n_ and n, are two light cone vector n3. = 0 and n_ -n, = 2. The momentum
is chosen to scale as:

pr~mA, p_~m, pL~m, (3.2)

such that p?> ~ m?2)\? is fulfilled. From now on, the mass of the heavy quark is
set to 1, m = 1. Then, the dimension of any quantity is restored by inserting the

17
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appropriate power of m. The invariant mass of the jet does not change if a particle
with soft momenta A? is added. Therefore, the effective theory has to include these
soft degrees of freedom. However, the effective theory does not contain particles
with momenta scaling as A, hard-soft, since adding that to a collinear particles
with momentum p implies an invariant mass (p + k)?> ~ X in contradiction with
our kinematical assumption. The Theory is constructed in order to reproduce the
Green function of QCD under the above kinematical assumption as an expansion of
A. Hard modes of order m and hard-soft modes of order A can be integrated out.
Effective fields for soft and collinear quarks and gluons will be introduced creating
or annihilating soft and collinear (anti-)particles respectively. The collinear field will
be split in a large and small component:

o m m -

(), n(x) =

where (1757/1)/4 are projection operators, and 7/_¢ = 7f.n = 0. In order to con-
struct a systematic expansion, one has to assign a scaling rule for the fields which
is obtained from the projection of the QCD propagator. For the ¢ fields:

yh Vi+ P th— :/ d*p ﬂ_— inyp )
4 (2m)* 2 p?+ie '

the(x) = &(x) + (), () e(x),  (33)

(0T e () e (y)10)

(0TE(2)E(y)|0) =

(3.4)
dp* is of order \*, therefore the right-hand side scales as A2. From there, and an
analogous equation for 1, one arrives at:

£~ n~ A\ (3.5)

The small component 1 will be integrated out. For soft fields, ¢ taking into account
that dp? ~ A8, since p? = A%. One obtains:

g~ M. (3.6)

If these particles are produced from a heavy quark decay, the heavy quark field has
to be included. The effective quark field h, carries soft momenta, hence, it will scale
as h, ~ A3, Finally, with a similar arguments, the collinear gluons scales as:

nyA,~1, Al ~X n_ A~ N (3.7)

For a soft gluon field,
Al ~ )2, (3.8)

Derivatives of fields correspond to their momenta. Therefore, a full covariant deriva-
tive scales as,

Dtpg = (i0 + gA¥)p ~ Nobs. (3.9)
for a soft field and
NyDee ~ oy DFde ~ Ao, n_D ~ N (3.10)

for a collinear field with iD# = 0" 4+ gA¥. Finally, the integration element d*z in
presence of a collinear and soft fields scale as the inverse of the integration element of



3.2.  Effective Lagrangian 19

a collinear momenta 1/A*, only when soft fields appear as 1/\®. This is related with
the fact that the integration over x eliminates a momentum integral when expressing
the fields in their Fourier transform and therefore, eliminating the soft integration
in an integral such as [ d*p;. d*ps. d*pss would no longer ensure that the momentum
p3 = —(p1e + pac) is soft. In next section the Effective Lagrangian will be derived.

3.2 Effective Lagrangian

First, the Lagrangian that describes only collinear quarks is derived. The starting
point is the QCD Lagrangian for massless particles:

Lo =1 (i) e, (3.11)

where 1), is assumed to describe a nearly on-shell particle with large momenta in the
n_ direction and iD = i0 + gAs + gA.. Decomposing the collinear field as in (3.3)
the Lagrangian reads as

e 4

Lo=ESminDE+ning D+ (i) n+n(iP1)E (3.12)
Solving the equation of motion for the 7 field,
n(z) = %; (inyD +ie)~"ilp, £(x). (3.13)

where an appropiate ie prescription is introduced. From this equation, one confirms
that the n fields scales as \2. Inserting the small field into the Lagrangian, one gets
the non-local effective Lagrangian:

L.=Ein_DIE d* £+ gzlm lpﬂf+ (3.14)

nyD + e
The non-locality can be shown explicitly by using the properties

ing DW = W in,0, (inyD + €)™ =W (iny 0 +ie) ' WT. (3.15)
with W (z), a Wilson line defined by:

W(z) = Pexp (ig /_0 dsn Az + sn+)> , (3.16)

oo

with WW1T = WIW = 1. Now, defining the action of the inverse of in, 0 with a
+1e-prescription as

! — p(x) = —i/ ds ¢(x + sny ). (3.17)

iny0 + i€ %

The collinear Lagrangian in a manifest non-local way is written by:

= &(z) in_ D’¢+ (:r)+z‘/_iods &P w]@) [W*i%%f (z+sny), (3.18)
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Before the soft quark are introduced, it is worthwhile to study the gauge symmetry
of the theory. The effective theory must have a remnant gauge symmetry from gauge
functions U(z) that can themselves be classified as collinear or soft. A soft field with
small momentum moves along long distances and therefore, cannot resolve the short
distance variations of the collinear fields. On the other side, the collinear fields
see the soft field as a background field. Thus A, transforms covariantly under soft
gauge transformations and inhomogeneously under collinear gauge transformations,
but with the derivative replaced by the covariant derivative with respect to the
background field. These properties are summarized by:

collinear: A, — U, AUl +~U, [D,Ul], €= U.¢
g
As — As, q—4q,
(3.19)
soft: A, — U A UL, §— Us&,
As—>UsASUJ+§US[8,UJ], ¢ — Usq,

The heavy quark field h, has transformation properties identical to ¢. Note that
the sum A, + Ag transforms in the standard way under both types of gauge trans-
formations. However, 1. = & 4+ 1 plus ¢ do not transform as the full QCD . The
relation of the effective field with the full one is not linear. This is related with the
fact of applying the equation of motion for the collinear field. In [22], it has been
prooven that the relation of the effective fields with the full QCD one is given by:

A=A, + A, (3.20)

Y =E4+WZig— ﬁ é—* (i &+ [[iD.WZ']] q) (3.21)

Z is the soft Wilson line define as (3.16) but with the full gauge field replaced by

the soft one. It is invariant under collinear gauge and under the soft one transforms

as:
7 = Uy Z. (3.22)

while T transform as:
W —UW, W —UW. (3.23)

The “double-brackets” are defined by
[f(D)A]] = f(D)A = Af(Ds),  [[Af(D)]) = Af(D) — f(Dy)A,  (3.24)

Soft fields transform homogeneously under gauge transformations, but collinear
fields do not. Under collinear gauge transformations, they receive contributions
of order A\? due to the soft derivative, besides soft field are multiple expanded in
presence of collinear fields:

Bu(@) = 6u(a-) + [2.06] (2-)

+ % n_x [ma gbs] (z_) + % [quxl,La“a”qbs () +O(N¢s). (3.25)



3.2.  Effective Lagrangian 21

all derivatives on soft fields scale as A2. The collinear field multiplying this expan-
sion varies over distances ; ~ 1/X and n_x ~ 1, and therefore, the term with 0, ¢
is of relative order A\ and the terms with n, 9@, and 9,0, ¢s are of relative order \2.
In momentum space this Taylor expansion corresponds to the fact that in p;+p. the
soft momenta along the perpendicular and n, direction is small in comparison with
the collinear one and therefore are expanded in these small momentum components
causing the non conservation of the momenta at the vertex interactions. In coordi-
nate space this corresponds to a breaking of manifest translation invariance due to
the Taylor-expansion of soft fields around an arbitrary point in the transverse and
n, direction which is restored order by order in A. In the same way, the collinear
fields under a soft gauge transformation transform as

{(z) = Us(z) £(z) = Us(z-) &(z) + [(zL0) Us)(z-) £(z) + .. .,
Ac(x) = Us(a-) Ac() Ul (22) + [(2.100) UJ(x-) Ac(z
U (2) Ad(2) [(200) UN (@) + . ..., (3.26)

o
0
I

which clearly shows the in-homogeneity of the transformation law. As a conclusion,
the gauge transformations (3.19) mix terms of different order, and hence when re-
placing the full QCD field in the Lagrangian for the effectives one and expanding in
A. The individual terms £® of the effective Lagrangian (3.38) are no longer invari-
ant under soft and collinear gauge transformations, so that, only the sum " L®
is gauge-invariant up to higher-order corrections.

In order to obtain gauge invariant terms, one needs to find new collinear fields
é and /Alc, such that the Lagrangian expressed in terms of the new field variables is
invariant under the homogenized version of the gauge symmetries given by

collinear:

neA, = Uny A, UL + ; U, [n,0,U], £ UE
AJ_C — UCAJ_C UCT + g Uc [8J_, UCT] )

n A, - Un_ AU+ ; U, [n_Dy(z_), U],

(3.27)
Ay — A, q—q,
soft:
Ae = Us(w-) A US(22), €= Us(z-) ¢,
As—>UsASU§+§.US[8,U§], q— Usq.

Now every term has the same scaling in A. Since the soft fields transform homoge-
neously, no redefinition of these fields is needed. In (3.27) fields and gauge trans-
formations without argument are taken at = as in (3.19), while other arguments are
given explicitly. The collinear Wilson line

W,(z) = Pexp (ig / 0 dsny A(z + sn+)> (3.28)

—0o0
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transforms as

W, = UW,, — W.—= Ufs_)WUl(z_), (3.29)

because the arguments of collinear fields in the path-ordered product correspond to
the same (x+sn+) = x_. The other objects with simple transformation properties
under (3.27) are £, g, F* inyD,, iD ., in_D (but not in_ D) and iD¥. (The “hat”
indicates that the covarlant derivative contains A,, not A, .) The multipole-expanded
Lagrangian will be composed of these objects.

In [22], the relation between the hat fields and the original ones has been found.
It is given by:

¢ = RW[E,
gAL. =R (WT iD W, zc’h) R, (3.30)
gn_A. =R (Wjin,DWC — in,Ds(x,)> R'.

with R
1) = Pesp (i [yt (331)

with C a straight path from z_ to x. Here the fields without hats on the left-hand
side are in light-cone gauge n, A. = 0. It is simple to check that the new fields have
the required collinear and soft transformations (3.27). Now, all the ingredients in
order to obtained the multiple-expanded Lagrangian are settled. This will be done
in the next section.

3.3 The Multipole-Expanded Quark Lagrangian

In order to get the effective Lagrangian, first, the full QCD field expressed in terms
of the effective one (3.21) is inserted in the full QCD Lagrangian and, second, the
field redefinition for the collinear fields (3.30) is performed taken in the collinear
light-cone gauge (where WZ! = 1). The resulting expression is expanded in \. An
example of the sort of terms that arise, after the field redefinition, is given by the
collinear quark Lagrangian (3.14) which takes the form:

= gm_D’%g + W, (R'in_Dy(x)R — in_Dy) Wj”f—%f
1

- Rwt
iny Dy(x) ‘

+& (i1 + W, (RN s(2)R — i) W) W.R

(D1 W, (RiD(o)R — i9) W)

where the hat of the fields have been dropped from here on. The in_D contains the
collinear gauge fields at x and the soft gauge field at xz_ after multiple expanded.
This convention will be taken for all soft fields in presence of collinear ones. Soft
fields with derivatives will set to x_ after the derivative applies. From this and
similar manipulations of the terms in the Lagrangian with the soft quark field the
terms (RYin_Dg(z)R —in_Dy), (RYilp,s(x)R —id,), Ri(in, Ds(z)) 'R, Riq(z) and

(3.32)
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if); RTq(x) appear which have to be multiple expanded in power of A\. The expansion
is performed as [22].

Rlin_Dy(x)R — in_D; = /0 ds (w —w_)"n” R (y(s)) gFp,(y(s)) R(y(s))

1 1
=ain” gF,, + 5 -7 niin” gF,, + - 5 ahw,n? (DL, gFs, 1+ O(N°),  (3.33)

RYDL(2)R — if, = / ds s (x — Yo RN (y(s)) gF% (y(s)) R(y(s))

1 v S
1 1 1 1 1
Rl——— R=— Fy, + o\ 3.35
iny Ds() inyd in 0 2$L +9 n+8 (A, (3:35)
=1
Riq(z) = ; o (x—x_)p ...(x —2_), DI ...DI"
=q+x.,D!q+ O(Nq), (3.36)
1
i, Riq(z) = Z—’ T—2_)p ... (x—x_), ilp DM .. Di"q, (3.37)
n=0

After this expansion every single term has a homogeneous scaling behavior in A.
With these results, it is easy to write down the multipole-expanded SCET La-
grangian to any order in A. To order A\? the result takes the form

~ (. . r
L=¢ (Zn_pﬂmcm 5 zlh;) /a8 £ +q(x )z@s(x)q(x)+£§1) +Lé2)+£g]) +£§2q>,
+4e

where the power-suppressed interaction terms are given by (335
Eg) =¢ (x‘in’i W, gFZVWCT) % , (3.39)
£ % € ((n—x) nn” W, gF3, Wi+t n" W [DE, gF3,]W/) %* ¢ (3.40)

+%§<i%c +1D A WegFp, WE+ &l o We gFp, Wi - +1D i, )d;f
L8 = Wi €€ Weq, (3.41)
Eg) = qW! (in-D +ilp,. (inyD.)” zlplc) 1 £+ qmlub Whilp, £ (3.42)

_g% (in_ﬁ +i,, (in.D.) @sz0> cq— & Wew,,Dlq. (3.43)

3.3.1 No Renormalization

The effective theory is constructed to describe modes below the scale (mA?). There-
fore, one can think that hard corrections above this scale enter in the theory by
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radiative corrections generating beyond tree level new operators. In SCET the hard
scale is carried along the n, direction in (pn_)nf ~ A°. Lorentz invariant ob-
ject generated in loop at the hard scale can only be formed by the combination of
(pn_)n’; (p'n_)n,, but n? is equal to zero, and all hard loops vanish. One con-
cludes that the Lagrangian derived above is not renormalized and complete !. For
completeness the Yang Mill Lagrangian is derived.

3.4 The Yang-Mills Lagrangian.

Before the field redefinition (3.30) the Yang-Mills part of the Lagrangian of the
effective theory is the same as in QCD with A replaced by A.+ Aus. The Yang-Mills
Lagrangian ca be written as:

1 v C 4 S 1 4 S
Lyy = 3 tr (ij GW) —tr (Gﬁj Fw(x)) b tr (FS“ (x)FW(x)) (3.44)
with the definition
G = [Df(x), A{] — [D{ (x), AL] —ig [AY, AY]. (3.45)

The first two terms of (3.44) contain products of collinear and soft fields and hence,
are multipole-expanded. The third term is the soft Yang-Mills Lagrangian, which
contributes a leading power term to the action.

Now, the redefinition of the field (3.30) is inserted. The Lagrangian up to A
looks:

Lym = —% tr (FIFS,) — %tr (Fe (2)FS, (2) + L3 + L (3.46)
where the collinear field strength tensor Fy, is defined by
gnyn_ F* =[ny D, in_D], gF!Mvs = [DEL (DY,
gni  F' = [ny D, iDYY, gn_, F*"*+ = [n_D,iD’"]. (3.47)

This definition almost coincides with the standard one except that it contains n_D
rather than n_D,, which is related to the presence of A in the collinear transfor-
mation of n_A. in (3.27). The first and second order terms are given by:

'C%(llzd = tr (n’_f_FC w. z[xln Fs WCT[ZDZLWC]] WJ) - tr( F[U/J_W nf FS WT)

po> vy
(3.48)
1
Egﬁd =3 tr (n“ F, W z[n rnin? Fy, 4+ af x 1,0 [Df, F,,], WJ[Z’D’C’LWC]] WJ)

1
-5 (nJmF’“’lW Z[W 5, Win_DW, — m_Ds] Wi )
Ftr (F;MWC z[ 0 FS,  WHiD,,, Wc]] WJ)

1
+ 5 tr (nin? Fg, Wenln” F, W) =t (F W Fy , W)
—tr (ny F**Wen? z 1D, F5, [W]). (3.49)

La more rigorous proof can be found in [21]
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3.5 Heavy-to-Light Current to Order )\

In this section, the result for the representation of colour-singlet currents ¢ T'Q in
the effective theory, where I" is an arbitrary Dirac matrix will be discussed. These
currents appear in weak decays of heavy quarks () into light quarks. The matching
to SCET is relevant in the kinematical region where large momentum is transferred
from the heavy quark to the final state light quarks and gluons.

Here, the heavy to light currents are derived at tree level up to correction of
order \2. The emission of a collinear gluon from the heavy quark puts the heavy
quark far off mass-shell by an amount of order m?2. The heavy quark is described by
HQET, and therefore this sort of interaction can not be explained at the Lagrangian
level, but has to be reproduced by the effective current. After the collinear gluon is
emitted from the heavy quark, the heavy quark stays off-shell until the heavy quark
decays into a light quark. The infinite number of tree diagrams that correspond to
the emission of collinear and soft gluons has to be summed into the effective current,
which in position space is represented by:

Joen(x) = ()T Z/dzl v dzn Dp(w = 21)igh(z1) - Dr(zn-1 = 2n) ig Ae(2n) Q(2n)

Zza — (04 (- 9A ) Q)

— e—imv~:v ’(I}F (1

1
- grfk) Qu, (3.50)
i) —m (1—9)
where Dp is the heavy-quark propagator and D* = 0, —igA,, contains collinear and
soft gluons, A = A.+ A;. The collinear field next to the heavy quark puts the heavy

quark off-shell. The field @), is defined in (2.3). The collinear gluon field A* can be
written in a manifest gauge invariance way.

gAQu =i) —m (1 = )] Qu—[ilus —m (1 = )] Qv = [ip —m (1 — )] Qy (3.51)

where the equation of motion of the heavy quark has been used. Fields in terms of
the effective ones are inserted after the redefinition (3.30) is performed. Expanding
the currents using the method present above yield:

[(D(@) T Q)] gopy = € ™ {J<A°> + JAD 4 g2 4 g B 4 J(BZ)} (3.52)

with
_ETWo,, (3.53)
_ _ -1
JAY = EPW, 2., Dihy — EiDD (mﬁﬁc) %*rwchv, (3.54)
| | s
JAD = 7w, ( n_xnyDgh, + = 5 Ty Xy DYDYy + Lfm ) (3.55)
_ -1 d-i— "
~ €05 lin DW= Wein D h, _ &, (zmﬁ ) ELDW, 2L, Dih,,
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-

J(Bl) = —EF% [ilpj_ch] hva (356)
S R S :
JB) = ¢ P% (i), W] x DBy — ET o [in.DW, — W,in_Dg] h,

_ 1 i, WSS g
3 W, hy (D) EErfip wih, (357
er | v, (mD) L fipwn., .57)
Remember that derivatives operate on soft fields before x = x_ is set, and that
derivatives with square brackets act only within the brackets.

In the next Chapter heavy to light transitions in the HQET framework are going
to be studied.
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Heavy to light currents are of great importance since they appear in many com-
posite operator coming from the weak interaction and contain in their coefficients
some of the parameters of the CKM matrix elements. When taking matrix elements
of them, one has to deal with the confinement problem of the QCD interactions.

Here, heavy to light transitions are going to be considered in the limit in which
the mass of the heavy quark is large in comparison with the soft momenta carried
by the light components. In this limit, one can use HQET in order to deal with the
QCD interactions.

The full QCD operators are expanded in a 1/m series, and their coefficients
are HQET operators with the corresponding dimensionality and quantum numbers.
The effective operators describe the low energy physics and are multiplied by Wilson
coefficients which account for the short distance interactions.

Matrix elements in the full an in the effective theory are parametrized in terms
of non-perturbative universal form factors, non computable from first principles.
The simplest one, matrix elements between the vacuum and B or B* meson states,
define meson decays constants which appear in many processes, i.e., in B — yl.
This decay, on case of better luminosity, will allow the extraction of V.

In the effective theory symmetries appear and at leading order only one function
parametrizes the non-perturbative physics. Therefore, ratios of meson decays con-
stants, such as fp«/fp, are given by ratios of the corresponding Wilson coefficients,
which are computable perturbatively.

In order to compete with the experimental results, one needs to include symmetry-
breaking subleading terms in the 1/m expansion, and also radiative corrections.
Previous analyses of heavy to light currents have been performed on this direc-
tion [111-113]. Here in this chapter a full next-to-leading analyses will be performed
for an arbitrary Dirac structure.

27
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The result of the 1/m expansion of the dimension 3 full QCD currents for an
arbitrary Dirac structure will be collected in Sect. 4.1, including reparametrization
constrains and the one loop corrections for the Wilson coefficient of the subleading
4 dimension HQET operator. Furthermore, it will be shown that only four different
currents are needed in order to describe a generic heavy-to light transition, two spin-0
currents and two spin-1 currents. In Sect. 4.2, the renormalization of the dimension
4 operator will be presented. In Sect. 4.3 and Sect. 4.4, the Spin 0 and Spin 1
currents will be studied in detail. Ratios of matrix elements such as fp and fp-
are given at leading order by ratios of the corresponding matching coefficients. The
full next-to-leading analysis of the meson decay constants including 1/m correction
expressed in terms of invariant renormalization constants will be given in Sect. 4.3
and Sect. 4.4. In these sections, it can be seen that matrix elements of the 4-
dimension operator receives non-trivial radiative corrections. This will establish the
basis to study the asymptotic behaviour of the leading order matching coefficients
which will be presented in the next Chapter.

4.1 Heavy to Light Currents

The dimension three heavy to light current in terms of the bare quarks fields is
written as:

Jo = @oI'Qo (4.1)
where [' is an antisymmetrized product of n Dirac v matrices
F — f)/[Lal “ e fyjoin] or r)/[Lal e Vinil}ﬁ , (42)

which commutes or anticommutes with ¢:
pr=0oly, o==1,

and v} = v* — pv®. The bare currents can be written in terms of the renormalized
currents by jo = qoI'QoZ} (v (1)) jr(p). Here () is the QCD coupling with ny =
n;+1 flavours. Z}(c (1)) is the renormalization constant and j(x) are renormalized
currents which receives contributions from a large range of energy scales, starting
at ;o =m, for a b quark at ;o = my, down to u = Agep. jo does not depend on the
parameter p, and hence follows the renormalization group equation

(i 4 o) ) o = (13)

dlnp

where dloc Z
0og
T (ag(p) = -

is the anomalous dimension and is known up to three loops [114]. Up to two
loops [50]:

4.4
dlog (4.4)

I 9(p — _ Gs
1= —2(n—1)(n-3)Cr

x {1 +[L1(5(n — 2)2 = 19)Cp — 1(3(n — 2)2 — 19)C,4] Z‘—W}

— i —1)(n—15)Cpp) (%)Z--- (4.5)
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where n is the number of the gamma matrices. Note that [ vanishes for the vectorial
case, n = 1.
In HQET, at leading order, there is only a single current

Jo = qoLhwo = Zj(ars(12))j (1) (4.6)
where the heavy quark has been replaced by the effective heavy quark h,, which
is renormalized in the heavy quark effective theory and carries momenta of order
Agep. as(p) is the QCD coupling with n; flavours and the dependence with p is
given by the renormalization group equation:

d - _ dlogZ,
S = ] = 4.
(7)) i =0, 7= S22 (@.7)
the anomalous dimension 4 does not depend on I' [8,31,115-117].
Qs
Y= 30 4.
8, 5 2 , 49 10 s\ 2

QCD currents are expanded in a 1/m expansion; the coefficient of this expansion
are HQET operators with the appropriate quantum numbers and dimensionality.
At tree level this is given by the expansion of the full heavy quark field in terms of
the effective one:

1
i = Thy + —— T Dh, 4.9
j=qChy, + o p (4.9)

Beyond tree level the low energy effective field theory, HQET, does not describe the
short distance interactions properly and these are corrected by Wilson coefficients:

j(p') = Cr(p, () +O1/m) . (4.10)

where Cr(y', 1) are the short distance Wilson coefficients. In doing the matching
the logarithmic m dependence of the QCD currents has been isolated in the Wilson
coefficients. It is more natural to perform the matching at ' = p = m, where the
matching coefficients do not contain large logarithms. For an arbitrary normalization
scale, applying the renormalization group equations (4.3) and (4.7)

Crlpt o) = Co ()™ (209) 7 ke (@t sl
Cr = Cr(m,m)K"_, (a.(m))K5(as(m)), (4.11)

T8

which relates currents at arbitrary normalization scale. Here K' involves the n -
flavour S-function (. The full one-loop corrections to C,(m,m) were obtained
in [10], and two loops ones in [50,118]. Cp are renormalization group invariant
constants and are given by perturbation series in a(py):

~ o Qg
CF:1+ZCE< 4(/7:0)
L=1

)L , (4.12)
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+ [(—37° + &) Cr + (37° + 8) C4] % — 3(11Cp + 7C.) %
+[3((n—22=5)Cpr—1(38(n—2)>—4)C4] (n—1)(n— 3)%6

+ (11Cp +7C ) (n = 1)(n — 3)C—2} )

where n = —o(—1)" and p = me /%, It is possible to obtain ¢} from the known

two-loop results for Cr(m,m) since 42 has been calculated recently [119]. In the
next Chapter, the behaviour of the coefficients ¢} at L > 1 will be investigated
using a renormalon analysis.

There are various prescriptions for handling 75 in dimensional regularization.
Multiplying I' by the anticommuting ¥4 does not change Cp. This is not true for
the 't Hooft—Veltman V. QCD currents with 72 and 7V are related by finite
renormalization factors [120-123]:

(ars°Q), = K,

! i - HV
1ot (€40 (3 Q) (4.13)

“I ’
where the anomalous dimensions 7,F7AC = 7 and 7IF7HV differ starting from two
5 5

loops. In HQET, both currents have the same anomalous dimension 7, and hence the
similar renormalization factor is unity. Therefore, Cr.uv (', p1) differs from Cr(p', p)
only by K;,F(a’s (') in (4.11), and éF7?V = Cr. For 0, multiplication by 'V is
just a Lorentz rotation, and does not change the anomalous dimension. Therefore,
(00°42°Q) , = (a0°7EVQ) . and Cy, (i, p1) = Co, 44, ) [30], where o2 =
s

There are 8 different Dirac matrices I' (4.2) in 4-dimensional space. For our
investigation of Cr, one can restrict the basis to

=1, ¢, 21, 717, (4.14)

because the other 4 matrices can be obtained from (4.14) by multiplying by V.
Non-vanishing matrix elements between B or B* and the vacuum are:

(01(q7“Q)ul B) = —imp f5 (1),

017y “QIB) = ip* f5,

(0lgy*Q|B*) = imp- fp-e,
(0(70as@)ul BY) = fi- (1) (pe” — pe®), (4.15)

where e is the B* polarization vector. Ommitting v factors, the first matrix
element is studied with T' = 1, the second with ' = ¢ after contracting with v,
corresponding to Spin 0 current transitions. The last ones are studied with I' =+,
and [' = *yfyﬁ respectively, after contracting with e,, since the longitudinal part
vanish, and with v®e®. These correspond to Spin 1 current transitions. In turn, the
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HQET matrix element due to heavy quark and spin symmetries can be described in
a compact way:

_ F(p
(0|(qThy) | M) = %Tr[l“/\/l] (4.16)
M is the effective B meson state, F'(u) is the effective B meson decay constant and

due to flavour spin symmetry only one is required. M is the spin wave function of
the meson M, for the ground state:

_ 1+¢ _2757 JPZO_)
M = f—t {¢; e, (4.17)

Therefore ratios as fg/ fp+ are given at leading order by ratios of computable Wilson
coefficients.

Jor _ OA”. (4.18)
fB C,;

Corrections to the leading order current appears as higher order dimension opera-
tors [124]:

50) = Crluls )+ 5= S0 BIGE mO) + O /m?) . (419

O; are 4 dimension local operators with the appropriate quantum numbers, when
taking matrix elements to order 1/m, one can either take the leading order HQET
Lagrangian with the subleading operator or the leading order current with the sub-
leading terms of the HQET Lagrangian. Here, the latter terms are included in the
expansion by adding the bilocal operators [92]:

Cr / dzi T {5(0), O4(x) + CosOpm(x)} . (4.20)

where Oy, is the kinetic operators which is not renormalized due to RPI, and O,,
is the chromomagnetic operator. The Wilson coefficients of these bilocal operators
will be given in terms of products of known Wilson coefficients. The full one-loop
corrections to B; for vector currents (and axial currents with anticommuting 7s)
were given in [125,126]. Some general properties of the matching coefficients B; and
the anomalous dimension matrix of O; following from reparametrization invariance
and equations of motion were established in [126], and the two-loop anomalous
dimension matrix was calculated in [112,113].

The dimension 4 local operators are of the form q’bhv and gDh,. The terms in
the sum with the derivative acting on the heavy-quark field can be obtained from
reparametrization invariance [126]. Let I' = 4l® ... 42l Tt can be decomposed into
the parts commuting and anticommuting with ¢:

1

The matrix element of the renormalized QCD current gI'Q) from the heavy-quark
state with momentum muwv to the light-quark state with momentum 0 is

% (Cp+ + Cpf) u,lu(mu) + % (C’p+ — C’pf) ugpTu(mu) . (4.21)
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In this equation, substituting v — v + k/m,
% (CF+ + Op_) ﬂun(mv + k)
#3(Cr = e (44 2 ) Putmo 1 1),

and using u(mv +k) = (1 + £/(2m)) u,(k), one obtains the leading term (4.21) plus

ﬁ [(Cr, 4+ Cr_) uglfu, + (Cr, — Cr_) g (fTF + 2kT) u,] .

Therefore, the gDh, terms in the sum in (4.19) are
2 (Cr, +Cr) @Uilphy + 5 (Cr, — Cr_) q(fTip + 2iPT) h,, . (4.22)

The coefficients of operators with the derivative acting on the light-quark field are
not determined by general considerations. These coefficients appear first at the one-
loop level. To obtain them, the matrix element of the QCD current from the heavy
quark with momentum muv to the light quark with momentum p (with p*> = 0),
expanded in p/m to the linear term, and equate it to the corresponding HQET
matrix element is calculated. In HQET, loop corrections contain no scale, and
hence vanish (except, possibly, massive-quark loops, which first appear at the two-
loop level). The QCD matrix element is proportional to @(p)T'(p, mv)u(muv), where
['(p, mv) is the bare proper vertex function. At one loop, it is given by Fig. 4.1. the

£

muv k+mv} k+p 'p

Figure 4.1: One-loop matching

term linear in p has the structure:

with L; x Ry = p-vl X1, p-vpy, X ¥, p vy X 9", 1 X p, vy, X ¥#p.
The coefficients x; can be obtained by solving a linear system, from the double
traces of Dirac matrices to the left from T’ with L; and those to the right from
[ with R;, with L; X Ry = ¢p x (L +4), v x (1 4+ $)7", 17:9p x (1L +$)77",
< (L4+9)p, vop % (1+9)py". Now one can take these double traces of the integrand
of Fig. 4.1, and express x; via scalar integrals. Their numerators involve (k - p)™;
putting £ = (k-v)v+k, and averaging over k, directions in the (d — 1)-dimensional
subspace, one can express them via the factors in the denominator.
Now assuming:

u(mu) (4.23)

prr=0ol'p, o==£1, -~y =20hl". (4.24)
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For the I matrices (4.2),

d
h=mn (n - —) , n=—o(=1)". (4.25)
Then (4.23) becomes

(21 + (22 + 225) - 2h 4 23(2h)°] p - v u(p)Tu(mo)
+ [z4 — x5 - 2h) u(p)Tpu(mo) . (4.26)
Performing the simple calculation, the result is:

2,,—2€
gom

u(p)L'(p, mv)u(mv) = |1+ CFWF(S)CF u(p)T'u, (0)
+ o B [ v )P0+ ) (0)] . (42)

where

(1= h)(d— 2+ 2h)

T A )d-3)

o 1= 2)(d=8) — (d=5)(d— 1+ 2h)h
b (d—2)(d—3)(d-5) ’
C L d-2—h

b = =)

The zeroth-order coefficient ¢ has been found in [10,50]; the first-order coefficients
for components of the vector current in [125,126].

For I' = 1, ¢, the square bracket in (4.27) becomes br p - v u(p)T'u,(0), with
by = by, by = b’f + 2b§. These results have been checked by taking the trace of the
whole integrand of Fig. 4.1 with (1 + #)p and calculating the integrals. For I' = 4%,
v¢9, the square bracket in (4.27) becomes br 1 p - v @(p)y$u,(0) + bropTa(p)u,(0),
with by, 3 = b1*, by, 5 = 200%, by, g1 = b1 4+ 2005, by 50 = —2b7"7. These results
have been checked by taking traces of the integrand with (1 + #)pap and (1 +9)7ap.
An additional strong check is provided by the Ward identity: contracting the vertex
function I'*(p, mv) (for I' = 4*) with the momentum transfer (mv —p),, one obtains

I'“(p, mv)(mv — p)o = mI(p, mv) + X(mv),

where I'(p, mv) is the scalar vertex (for I' = 1), and ¥ is the heavy-quark self-energy.
At the first order in p, this leads to

b — by =2(cy, —cy) . (4.28)

The results (4.27) satisfy this requirement.
In the next Section, the renormalization of the four dimension operators will be
discussed.
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4.2 Renormalization of dimension-4 operators

In order to study the renormalization of the dimension four operators it is convenient
to choose a set of operators, which close under renormalization. That is, a set of
bare operators O} are renormalized to a combination of the same set of renormalize
operators O(p);:

04 = Z(1)i;O(p); (4.29)

where Z(p);; is the matrix of the renormalization constants. The renormalized
operators follows the renormalization group equations,

dO(p)i
dlog

+ 7 (s (1)) O () = 0 (4.30)

where the anomalous dimension matrix v is determined by the matrix of renormal-
ized constants Z

y = B HRBTU ) (4.31)

where (dloga/dlogp) = —2(e + (i) has been used in the last step. Z can be
written as:

7 7
logZ=1+"—"+"2+... (4.32)
€ €
Since the anomalous dimension should be finite when ¢ — 0, one can identify:

dz, dZ,

. dZ,
dlogag’ dlog ag

dlogag

v = = (Z1 — Blas)) (4.33)

Hence, the matrix of renormalization constant can be expressed in terms of matrix
of anomalous dimension . Up to two loop accuracy:

1 « 1 Qg \ 2
Z =1+ >y + < [(70 + 260)70 — 271€] (—S)
me 8 4re

1 « g\ 2
77V =14 Sy + (70 + 2B0)v0 — 271€] (4—7f€> (4.34)

1
2 4me 8
First, the local operators are studied. As discussed in [112], three operators
O = giD°Th,, O =g (—zﬁj) Th,,
Of = q(—iv- D) 2§Th, = —iv -0 (q124Th,) (4.35)

close under renormalization for any I'. Two operators are full derivatives of the

leading order current which is renormalized by Z. Therefore, they renormalize by:
O3 = ZOjy , Oy — Oy = Z(Oy — Oz). Op mixes with O, and Os. The non-

mixing part renormalize with Z. Reparametrization invariance links O] with the
leading order current, whose ultraviolet behaviour is governed by 7. Therefore,
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Op = Z(a(11))O" (1), where

~ 0 Za Zb » 0 ?a Zb
Z=zZ+\|02,2,|, Z'=Zz'+102Z,2, |,
00 0 000
0 Ya Vo
Y= :Y + 0 Ya Vb . (436)
000
For I' = ~,I"”, then
O1F0 = Oy, Ogo = Oy, Ogo = (3 —2¢)0y, (4.37)
where
O] =0, ((v°T'hy) , Oy =iv-0(TI"hy) . (4.38)

with O) = Z(av,(11))O' (1), since they are full derivatives of the leading order current.
In terms of the renormalize finite operators:

O1 (1) = Oy () + Z (Zo + (3 — 22) Zy) Oh(n) ,
O5 (1) = |1+ Z (Zy+ (3= 2) )| Oh(w),
O3 (1) = 305(n) - (4.39)

Therefore, Z (Z, + (3 — 2¢)Z,) must be finite at ¢ — 0. This allows one to recon-
struct v, from ~,:

1 1 s\ ?
M=%Vt A%), AY = 3% (Yao — 250) (—) +0(a3) . (4.40)
3 3 4
The anomalous dimensions 7, ; have been calculated in [112] to two-loop accuracy
(they are called 72,4 in [112]). The result there, satisfies relation (4.40):

) 4
Yo = 3C’Fa— + CF —77'2 —5H CF
41 3

1, 41 10 52
) o iy (—) 4.41
+< 37T + 3> A 3 Fnl:| A + ( )

The finite parts, at the next-to-leading order, are

Of (1) = O (p) + L ) 04 ()

3 4
0500 = |1+ 32| O3,
O} (1) = 305 (n) . (4.42)

Note that O}, = O}, but Of (1) # O} (p): additional counterterms in (4.39) yield a
finite contribution, because of the O(¢) term in (4.37).
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Now the bilocal terms with the kinetic insertion are studied. As discussed
n [113], two operators

o :q(_wb) Th,, OF :z'/da:T{thu,Ok(x)}

close under renormalization for any I', and

. (00 Y 4 (00 (00

with 7% up to two loops [113]:

2 2
= —SCF —|— CF |:<—%7TQ - %) CF

16 , 608 160 )2
20 o Rty <_)
* ( 37 9 ) AT F”l} )

(4.43)

Finally, the bilocal operator with the chromomagnetic operator will be explained.
The closed set of operators under renormalization for any I’

o =—1q <—iv : %) owl' (1 +9)o" h,,

05 = 37 (=iD.) inT(1 + Poh,

»J:-I»—‘

or = / 4o T {qThy, O (2)} (4.44)

Note that the indices pu, v live in the subspace orthogonal to v, due to ph, = h,.
These operators have [113]

Z 0 0 Z1 0 0
Z=\ 2, Z+27, 0 , Z =\ Z, Z7'+Z, 0 ,
VA AL/, VA AL AV e
0 0 0
Y=+ % 0 |. (4.45)
V%' Vo Ym

The first two operators in (4.44) are (4.35) Of and O} with I, = —Liy#yD(1 +
¥)0uq; therefore, the upper left 2 x 2 blocks in (4.45) follow from (4.36). Of" needs
additional counterterms from O7* and 07'. The anomalous dimensions up to loops
were calculated in [113].

Yo = —2CF
A m
war| (5= ) e (3 5 iom] (2
Y = —QCF% +
Oy (_%0 s 13_6> Cr (L;Wz _ %) CA+gTFn,] ()’
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Now the heavy-to light Spin 0 currents transitions will be presented.

4.3 Spin-0 currents

In the case of the currents with ' = 1, #, the leading term in the expansion (4.19)
contains j = ¢h,, and the 1/m corrections are given by four operators

Ol - qlthv = iaa (quahv) y
Oy =17 (—iv . ﬁ) hy, = —iv - 0 (qhy) ,
Os=i [ dsT (3(0),04(2)} .
O =i / 4z T {3(0), O (2)} - (4.47)
The operators O; » are renormalized multiplicatively with Z. ForT =1 Ok, =
O30 and O3 = Oy and hence need counterterms proportional to O,. Therefore, the

renormalization constant and the anomalous dimension matrix of the dimension-4
operators (4.47) have the structure:

0 00O 0 00O
~ 0000 - 0000

where 7* is given in (4.43) and ™ can be obtained from the known 77",. In the case
I' =1, the operators (4.44) are related to (4.47) by:

O%:—(1—6)(3—28)020, O%:—(l—é‘)Ogo,
O3 = Og.- (4.49)
The renormalized operators are related by:
O3 (1) = Oa(p) (4.50)
+lzzszm - (1— ) Z (2 + (3 - 25)2,:")] Os(11) .
Therefore, . o )
Z7'Z 2 — (1 —e)Z (Z) + (3 —22)Z)")

must be finite at ¢ — 0. This allows one to reconstruct 7™ in (4.48) from
in (4.45):

Y=g =3+ AT (4.51)
m m m m O 2
AY™ =[5 (Ymo — 2B0) (Yap + 5750) — 5Ya0Va0) (E) +0(a?) .
With
gl —80F47T+CFK 5™ T 3>CF

32 ., 548 160 g\ 2
—= —C,y— —/T (—) 4.52
+< 97r+9>A 5 Fnl] . + ( )



38 Chapter 4. Heavy to Light Currents

The finite part, at the next-to-leading order, is

QS(M)

O (1) = Oa(p) + 5 (i + 5750) o

Os(p) - (4.53)

The Wilson coefficients B;(u/, u) have to be determined. From the bilocal inser-
tion (4.20) and the reparametrization relation (4.22) one obtains,

Bl =B;=C,, B;=0C,C,
Bl =cCy—20C, , BY=Cy, B|=0C,Cy. (4.54)

They follow the renormalization group equation:

OB" (1, p)

dlogp v (s(m) B (4, 1) (4.55)

The unknown coefficients B (i, 1) for T' = 1, § are obtained by solving the renormalization-
group equations

=3By ++"B; +9™By , (4.56)

with the initial conditions B} (m,m) obtained by matching at x4/ = u = m. The
ratio By (¢, 1) /Cr(, 1) does not depend on p/':

By(u'\n) _ By _ /QS(“) 7" (o) da
CF(/'Llal'L) OI‘ as(po) 25(&5) Qs
() 3 das

as(pu) om
A 1m0 7O 28
- mas(lj’(]) *Po / K- m(as)oz ’
as(po) 25(045) ! ’ Qs

(4.57)

(see (2.23)). The renormalization-group invariants BY start at one loop: BY =
by s (pio) / (47) + - - -

B3 (m,m) for T' = 1,  with the one-loop accuracy are obtained by writing down
the sum in (4.19) via the bare operators:

Cr I 1 ()b + Oro + O + O
F(4ﬂ_)d/2 €)orUszo 10 30 40

k m
= | Cpbp — o0 06" ) s (m) Os(m) + (other operators) .
2 dre

Taking & + 5" = 0 into account, both br should vanish at e = 0. The O(g) terms
of (4.27) give [125-127]

as(m) ag(m)
and (o) »
Bl =g, Xs\Mo) B _ 190, Qs\H0) L 158
2 F 47T + ) 2 F 47'(' + ( )

(using 75 + 75" = 0).
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An exact relation between B% and B;’ can be derived. The QCD vector current
and the scalar one are related by the equations of motion:

Z.aoz].[()l = iaaja = myjJo = m(ﬂl)](ﬂl) ) (459)
where
710
[ (u’))wé
m(y :m< - K’ (o(
(1) o (o) ¥ (e (1)
is the ns-flavour MS running mass, and (4.5) 7{ = —6Cray/(47) + - - - is minus

the mass anomalous dimension. j® = (j - v)v®* + j¢ is separated and substitute the
expansions (4.19) with (4.47), (4.54). The matrix element of (4.59) from the heavy
quark with momentum muv to the on-shell light quark with momentum p reads

, 1
m0¢(u,u){1+—

2m |\ Cy(i', ) Cy(W's 1)
L [By(y', 1)
_ l l 1 2 ) .
m(p')Cy (1, ) { +to— {701 M',M)p v +r]} :

where

. <qli [ dx T {j(1), (Or + Con(11) O (1)), } 1Q> — pa <q|7*(11)|Q>
<q|j(p)|Q> ’

J* = qy*hy. At leading order in 1/m, this yields [50]

m__ G oom_ G (4.60)
m(p')  Cy(u's 1) mo Oy
At first order, yields,

B%(Mlau) o Bg(//au) —9 (C’M (Mlau) o 1)

Ci(Wsp)  Cylu', ) Cy(i's 1)
/\1 /\¢ A~

or B2 Ba_ o (Cu ) (4.61)
C, Oy Cy

Note that (4.28) is just the one-loop case of this general result. The one-loop re-
sults (4.58), of course, satisfy this requirement.

As discussed above, these results do not change when replacing § — ¢v4C. Now
the leading term is 7 = §v2Ch,, and the definitions of O; (4.47) are changed accord-
ingly. Taking matrix elements between B meson states:

<0 (795°Q),, B> = —imp f5 (1),
<0|qv5 7" Q|B> = —ifspf (4.62)

where

R = 7 (“’s(“') ) " K, ol (1) (463)
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The HQET matrix element of the leading order current [111]:

(013(1)| B) = ~iy/m5F (n). (4.64)

where |B) is understood as the effective state and

P = F (52) ™ Kot (165)

with F, pu-independent, is thus just a (non-perturbative) number times A%. For
O > the full derivative pick the difference of the momenta of the states [111]:

(0|01 (1) |B) = —(002| B) = —i/mpAF () , (4.66)
where A = mp —m is the B-meson residual energy. O3 following [111] is defined by:
(0103(n)|B) = —i/mpF (1) Gr(p) , (4.67)

However, the formulae of [111] only hold for O, at leading order. Following [111]

1
(005" (W) |M) = S F (WG ()T Proy, Ma™]. (4.68)
Defining
(0[O4()|B) = —in/mpF (1) G(p), (4.69)
at the next to leading order, one obtains:
- 1 O
Gl = G + RE(0n(u)A, B =1 (s 4505 20 (a70)

The hadronic parameters Gy, (/) obey the renormalization-group equations

T o)A,
Bm) | (1)) = 7" ). @)

Their solution is

Gr(p) = Gy — [\{V_g log o (1) +/°‘S(“) (“Yk(as) _ 7_(’)“) %}
0

250 4 26(as) 2By oy
Con(11) G (1) = Chy <a34(:7/:0)> Biin
as(p) ~m o
~ — Y (as) O 1 dCYS

where G}, and G,, are again p-independent and thus are just some (non-perturbative)
numbers times Ay.
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Taking the matrix element of (4.19), it results in

{fgf(u'> } _ Cr(u\’/,ﬂF(u)

x {1 + i (CA(A + Gi(p) + O (1) G (1)) | (4.73)

where I' =1, ¢, and

By (i, p O, (1 1) By, u
o =1-Zsy Clm=1-2 (;ﬁ((ﬂ' u)) - C;Eu’ ui '

Substituting the solutions of the renormalization-group equations, one arrives at the
explicitly p-independent expressions

()= ()"

I i ) s

1+L<C A+ G+ CrG (a(/“’))wo)], (4.74)
2m

X

47

where

0 B

Cr=1-2 { } -2z
A ’YJ_/C?f CF
0 1o 2slt0) /‘“("0) (v’“(as) "% ) dog

250 4T 0 26(a)  2By) s

as(po) Am Ym0

. Ym0 Y™ () — 552 dag

— C o 260 / —K . (as)as 70—
(o) 0 28(a) (o) Qs

At next-to-leading order,

{fg} <(y5(uo)> ;BOO C’F N {1
IB dm /M
1 'Y ( ) Cy5(:“0) 1
+ % |:< 21030 l 47 meO + Rl 4 T >

+ Gy + Gy (ail(““))% (1 +cm1a3(“°) +>} } (4.75)

™

where

m

k m k m
Y0 NT™h B (70 7o )
——1$1(c"’—c”)—bp+—cm— +
( ) ! ! 2 Ym0 ' 250 258

Ym0V — Vo Ymi
2680 (Ymo — 200)

(here 7§ + 45 = 0).

+
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The matrix element of (4.59) is

fEw) _ ms o fE_me (4.76)

[B m(u') IB m

Substituting (4.73) (or (4.74)) and using the relation (4.61), one obtains

fﬁ(ﬂ’)_Cl(u’,u)< §> ﬁ_ﬁ( §>
T Calito ) 1+ ) or fs = G, 1+ . (4.77)

The ratio of the quark masses is given by (4.60). Naturally, it contains no 1/m
corrections with B-meson hadronic parameters; it is just a series in a;(fg), see the
Appendix A. In the next section the Spin 1 currents will be studied.

4.4 Spin-1 currents

In the case of the currents with I' = ¢, y¢#, the leading term in the expansion (4.19)
contains j* = §y%h,, and the 1/m correction; six operators

0% = §iDh,

op = z’/de{ja(O),Om(x)} | (4.78)
From the insertion of the Lagrangian (4.20) and reparametrization invariance (4.22),

By (1) = 2Cy(p), —B3*(n) = BI* (1) = C,, (1),
Bt () = Co()C L (1)

—LB (1) = By (p) = BI*Y () = Oy, 4(n)

B (1) = Con(1)Cy, (1) - (4.79)

The renormalization constant and anomalous dimension matrix of the dimension-4
operators (4.78) have the structure [126],

002, 2,0 0 007 % 00
000 000 000 000
- ooz, zo00 oo oo
Z=7%1000 o000 | "7 ]oo0 000 (4.80)
00 0 ZF0 0 000 A0 0

002" 23" 0 Zy, 009" 73" 0 Y
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The operators O3, are renormalized multiplicatively with Z, which determines the
second and the fourth rows. The same holds for

0(110 - O??O = i@i (‘johv(l) = Z(O? - O?)a (4-81)

and hence the first and the third rows coincide. Furthermore, the form of By 2 56(1)
(see (4.79)) fixes the columns 1, 2, 5, 6. From Sect. 4.2 for I' = 1, O} = Of and
hence receives counterterms from O = 0% and O} = Of. The bilocal operator
0% = O with T' = 7§ mixes with Of = Of. Finally, Of = Of* mixes with Of,.

One can reconstruct the anomalous dimension 77 from the known ~g%. For
[ = ~%, the operators (4.44) are related to (4.78):

Off = (1—2)(14+2:)0%, 0% = (1 —22)05, + 205,
om =02, (4.82)

From the renormalized operators
05" (n) = Og (1) (4.83)
+ [Z*IZ;;Z{“ (1= 20)(Z + Z0) ]

vz (02924 22) 2; +<1—s>(1+2e>22,:n 08 ().

ZZATm 4 (1= 2e)(Z + Z,) 2™

and
Ztzgm ((1 —26) 7, + 52) Zm 4+ (1 —e)(1 +28) 22"

must be finite at ¢ — 0. This allows one to reconstruct 77 in (4.80) from 7,
n (4.45):

=1+, =+ Ay, (4.84)
Qs \ 2
AV =70 (Va0 — Ymo + 250) <E> +0(a?),

m m m m Qg 2
Ay =[5 (Ymo — 260) (Va0 + V0) — 37a0Ve0) (E> +0(a?) .

The anomalous dimensions 77" has been calculated in [113] to two-loop accuracy
(they are called 73 in [113]):

s 8
V= =20 4 O K——w + ) o
dr

9
2, 206 52 g\ 2
e S Pty o (_>
—|—<97T 9> A+ 9 Fn;:| A +
« 40 10
m_— (. — 2 7
%) C’F47T+CF|:< 97T 3)0}7‘

10 , 46 44 0\ 2
S i =T (—) . 4,
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which satisfies (4.84). The anomalous dimension 4™ (4.52) is, from (4.51) and (4.84),
V™= = — 3y 4 Ay, (4.86)

m m m as 2
Ay = [(hmo = 260) (s +450) — $ra0tt] (T) +OLad).

The finite part, at the next-to-leading order, is

03 (1) = 0§ (1) 15105y + (o2 + ) 205wy . (a87)

The unknown coefficients B (41, ) for I' = 1, 71§ are obtained by solving the
renormalization-group equations

T
OBs_ (54 72) BY + BT ++7"BL.
dlog i
OB} - m
alogu =3B} +v (B + B}) +v*B} +y'Bg (4.88)

(where (4.5) 7/ 4 = 2Cras/(47) + --+), with the initial conditions B} 4(m,m) ob-
tained by matching. The ratios B} (¢, 1)/Cr (i, 1) do not depend on p':

Ya0

s - (212) * i

é é —Ja0 as (1) a\ O 332 dovg
_{ 75/ YL }as(ﬂo) 260 /( );((a ))K’ya(as)asﬂo - (4.89)
Qs (0 s s
vmo=7a0 [ (1) fym(as) a0 =m0 (] ey
. / ) 215(@ ) 10m (@) s 7 a—} ’
Qs (0 S s
B};(//aﬂ) _ B;E . /as(u) Vo(rs) {B_g 19 { éﬁ/évL }] %
OF(/'LIJM) CF as(po) QB(CYS) OF Qg —1 Qs
[ e
o (1o) 25(&5) Os

. vmo s (H) v (as) ~2mo ey
— Cmas(uo)%/ 2K, ()as P —2 (4.90)
as(po) QB(CYS) ’ Qs

(in the last formula, the running B} (¢, i) /Cr (i, 11) corresponding to the integration
variable o is understood).
BgA(m, m) for I' = 7, v, ¢ is found to one-loop accuracy by writing down the
sum in (4.19) via the bare operators:
gom o o
CFWP(S) (bp72030 + br71040) + 010 F 020 + 050 + 060

_ Qs (m)

Kchp,Z F Yao — %) 0%(m)

&+ 5
2

4dme

+ (C'Fbp,l F Yoo — ) Of(m) + (other operators)
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The values of br; at ¢ = 0 have to cancel these anomalous dimensions. The O(¢)
terms of (4.27) give

a (m) ag(m)
BgL(m7m):4OF?+... , BZJ-(m,m):—ZLOFT_'_. ,
By (m,m) = 2C aifm) 4o, BPM(mym) = _60FO‘54(m) L

i 7r

The results for I' = «, were obtained in [125,126]; those for I' = 7, ¢ are new.
Using the one-loop anomalous dimensions, the related invariant renormalization
coefficients are:

. 2 (o) - g (fo)
BJt =-C .-~ B+ =6C
3T Ty T P
s 26 ou(no) v _ 2, 0n(n0)
B’YL# — C . B’YJ‘ — —C 491
3 3P a0 Pe T3ty (4.91)
Taking matrix elements
<0|quaQ|B*> = mB*fB*ea 9
<0 (10°°Q) , |B*> = ifh. (1) (e°ph- — €’ ) (4.92)

!

7o) = 78 (S0 R ).

The HQET matrix elements are [111]

<O ()| B> = g F(u)e” ] (4.93)
<0|02(1)| B> = <0|0%(1)| B> = —/mp-AF(j)e® .

The matrix elements of Of and Of are equal, due to (4.81). However, the formu-
lae [111] for these matrix elements hold only at the leading order. Let us define

<0[07(n)| B> = <0105 (1)| B> = s A AF () R(os()e”, (4.94)

where R =1+ O(ay). It obeys the renormalization-group equation

dR
dlog

+ ’YaR + 3’7{, =0. (495)

Following [111], it is defined

Fy(p)

<0|0] (u)|M> = Try§T M, (4.96)

where M = B or B*, and M is the corresponding Dirac structure. Now, using
=,

3
<0|OT (u)|M> = §F2(u) TrT' M.
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Taking into account (4.42) and
1
<00y ()| M> = <0|03 (1) [M> = =5 AF (1) Tr "M,
at the next-to-leading order, one obtains:

1- 1 O
Fy(p) = —gAF(u)R(as(u)) , Rla,) =1+ 3Ya07 -+ O(a?). (4.97)
The general result for R(as) can be derived by solving (4.95) and requiring the
absence of fractional powers of oy (or by requiring that (4.97) is reproduced):
8 [ (3 () Yao | —385 da
R(or) = Ky, (ag) |14 o™ Ky, (o) + 550 s 70— . (498
(o) = Koo [1+ [T (THOIR 0 22 ) ol 0] (aos)

The matrix element of Of is [111]

<0|05(w)|B*> = /mp-F (1) Gr(p)e” . (4.99)

However, the formulae [111] for the matrix element of Of hold only at the leading
order. Following [111], one can define

1 1
<0|05*(p)|M> = EF(,u)G(,u) Tr F#UWJMU”V : (4.100)
For B*, defining
* 1 A «@
<0|0g|B*> = -3 (G (1) + Ron (s () A] /mp=F (p)e® (4.101)
at the next-to-leading order (4.87), one obtains:
m m Qs
R (as) = — (715 + 4730) A + 0(@3) : (4.102)
R,, obeys the renormalization-group equation
o R4 4™ 4 AR+ 395 = 0 (4.103)

Its solution (which contains no fractional powers of «, and reproduces (4.102)) is

Im0
Ry (as) = K., (as)as™ (4.104)
% /as " (evs) + " (evs) R(ews) + 373" () K., (as)a;%% _
0 25(%) Ol
Taking the matrix element of (4.19), the result for the Spin 1 heavy to light
transitions is:

Ui = e

X {1 + i (CA(WA + Gi(1) = 5Cm (1) Grm(w)) | (4.105)
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where I' = 7, , v, #, and

Chm =+1 - gt
1 Col ) /Co (W) |, B ) o
3 <2{ —1 } + CF(MIaM)> R( s(lu'))
2l Ron)

Substituting the solutions of the renormalization-group equations, one arrives at the
p-independent expressions

() (o) a2
s dr mp-

|14 — (C£A+Gk — 160G (%&‘”) )] . (4.106)
where
- By (¢, 1)
CF — 41 - 2422
A Cr(i, p)
1 Cy(i!s 1)/ Coy, (1 u)} Bg(uﬁu))
—— {9 AVARE v\ + R(a,
3< { -1 Cr(p', 1) (k)
_’Y_(I)Clo M_/as(ﬂ) ,Yk(as) _’Y_(I)C das _lo ( )R ( ( ))
26, 8 4r ), 2B(cs) 268y ) @, 3 mTml
1. rmo [ ™ (g —220 doy
— 2o A St K s o 8 . 4.1
+ 3ol [ T8 (e, (4.107)

At first sight, it is not obvious that GK does not depend on p. However, differentiat-
ing it in log 1 and taking into account the renormalization-group equations (4.88),
(4.95), (4.103), one obtains zero. Therefore, the expression with u = 1 can be used:

R BI' 1 shle Br
o/ s (2{@/% } + CY_SK_%(%(MO») R(ays (o))

r 3 -1 r

G /asw (7’“(%) 7§>das
0

250 4 O[—s

26(cs) 269
_ léme'ym (v (f10)) R (s (f10) )

3

1 4 vma [ (H0) 7™ (evg) —Imo ey

—C,as 28 LYK D o — 4.108
+ 3o () B[ I (0, B (4.108)

Comparing this with (4.107), B} (¢, 1)/Cr(i/, 1) can be rewritten in a form which
seems different from (4.90) but is equal to it:

Bi(w.p) _ BY 1, [Cy/C ) BEW ) b
T | T el B o) ELCX )



48 Chapter 4. Heavy to Light Currents

1 sle Br
+ 3 (2 { Cﬁi?u } + é—iK%(as(uo))> R(as(po))
_’Y_(If as(p) B as (k) (’Yk(as) _7_§> da,

25 o8 a; (o) /a 28(c;)  2B0)

— SO R0 (1)) + 5 ConK o (0(110)) R 10)

s(po)

as(pn) Am Ym0

~ Ym0 Y (as) 2B das

Clncrs (j10) ¥ / K_., (a)a, 7o 2% (4.109)
an(uo) 28(s)” " a

(to convince oneself that this is equivalent to (4.90), one can check that they coincide
at i1 = po, and that (4.109) obeys the renormalization-group equation (4.88).)
At next-to-leading order,

U= () et
fe- )\ dn Nara
1
3

IYm
51 ag(po) \ 20 s (o)
Gy — =G, | = 1+c,, , 4.110
+ Gy, 3 ( A + Cm1 . —+ ( )
where
,Ym
=500 ( —ef) = Joh — b — 5o F o + ol + $o8
m
=t L (70 = 3%")  Ym0¥" = W m1

25 253 650 (’Ymo - 250) .

The ratio fg*/fB* at the leading order in 1/m is given by the perturbative series
in as(po). (from the result in [50], omitting the m, # 0 effect, and the three-loop
anomalous dimension 7/, of the tensor current [114]). This ratio is, from (4.106),

A

fBT* C’u¢ { A ( QS(MO) >:|
= ——(1+¢ + .- , 4.111
I C,, 3m My ( )

en =3 (ch" ki) = — ey (07 -0 )+ 3 (0 = i) — o

Recall that meson decay constants are fundamental constants of the theory, of non-
perturbative character, and non-computable using perturbative methods. Using
HQET, at leading order ratios of these quantities are expressed by ratios of pertur-
bative computable Wilson coefficients. Beyond leading order, symmetry-breaking
non-perturbative HQET parameter as A enter, which can be computed in the lattice
or using sum rules with better accuracy in comparison with meson decay constants
themselves.

In the next Chapter, the asymptotic behaviour of the leading Wilson coefficients
of the heavy to light currents will be studied giving the chance to study the asymp-
totic behaviour of the matching coefficient which appear in ratios as fp-/fp.
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Asymptotic Behaviour of fp«/fp
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The understanding of the structure of the perturbative series has advanced con-
siderably over the recent years, see the review [45]. It became clear that perturbative
series are at best asymptotic, not even Borel-summable. Based on an analysis of
singularities in the Borel plane, one can obtain the behaviour of the perturbative
series for large L, where L is the order of perturbation theory. The nearest singu-
larity determines the leading asymptotic behaviour. Most of the investigations use
the large-fy limit, whose relation to the real QCD is unclear. At the first order in
1/fy, singularities in the Borel plane are simple poles. At the higher orders, they
become branching points. However, there is an approach [48,49] based on the renor-
malization group, which yields model-independent results. Singularities in the Borel
plane are branching points, whose powers are determined by the relevant anomalous
dimensions, but normalization factors cannot be calculated.

Effective field theories make use of the fact that a large scale is present, and
physical quantities can be expanded in inverse powers of this large scale. In Heavy
Quark Effective Theory (HQET, see the textbook [42]), this scale is the heavy quark
mass m. Renormalon singularities in HQET were investigated in [99,108]. Unlike
in QCD, the HQET heavy-quark self-energy has an UV renormalon at positive u,
namely v = 1/2,which leads to an ambiguity in the residual mass term.

A typical matrix element in the full theory, QCD, is expanded in 1/m:

1
<j>=0<4>+ — B;<O;>+ -+ 5.1
j J +2mz + (5.1)

(see (4.19)), with short-distance matching coefficients C, B;,... and long-distance
HQET matrix elements <j>, <O;>,...
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The QCD matrix element <j> contains no renormalon ambiguities, if the op-
erator j has the lowest dimensionality in its channel.! In HQET, short- and long-
distance contributions are separated. In schemes without strict separation of large
and small momenta, such as MS, this procedure artificially introduces infrared renor-
malon ambiguities in matching coefficients and ultraviolet renormalon ambiguities
in HQET matrix elements. When calculating matching coefficients C,..., The in-
tegrals run over all loop momenta, including small ones. Therefore, they contain,
in addition to the main short-distance contributions, also contributions from large
distances, where the perturbation theory is ill-defined. They produce infrared renor-
malon singularities, factorially growing contributions to coefficients of the pertur-
bative series, which lead to ambiguities ~ (Aqcp/m)” in the matching coefficients
C,... Similarly, HQET matrix elements of higher-dimensional operators <O;>,...
contain, in addition to the main large-distance contributions, also contributions
from short distances, which produce ultraviolet-renormalon singularities. They lead
to ambiguities of the order Afy, times lower-dimensional matrix elements (e.g.,
<j>). These two kinds of renormalon ambiguities should cancel in physical full
QCD matrix elements <j> (5.1) [46,47].

Although this has been shown explicitly only in the large-f, limit, it is as-
sumed to hold beyond this approximation. Based on this assumption, one may
obtain additional information on the structure of the infrared renormalon singulari-
ties of matching coefficients, based on ultraviolet renormalons in higher-dimensional
matrix elements, which are controlled by the renormalization group. This model-
independent approach was applied to some simple HQET problems: the heavy-quark
pole mass [100] and the chromomagnetic-interaction coefficient [96].

In this Chapter the heavy to light currents are investigated. The asymptotic be-
haviour of the perturbative series for the leading QCD/HQET matching coefficients
(due to the nearest infrared renormalon) was studied in [46,50,51]% in the large-3,
limit. Here, an analysis of the heavy to light IR renormalons beyond the large-3,
limit will be presented. In Sect. 5.1, an introduction of the IR renormalons in large-
Bo limit and how beyond it one can infer information of the asymptotic behaviour
of the matching coefficients will be discussed. In Sect. 5.2, the cancellation of the
IR renormalons against the UV renormalons of the subleading four dimension oper-
ator of the heavy to light currents will be shown explicitly by a direct calculation.
Assuming that this cancellation holds beyond that limit, in Sect. 5.3 and Sect. 5.4
the asymptotic behaviour for the two Spin 0 currents and two Spin 1 currents will
be given.

Ratios of meson matrix elements, such as fp-/fp, are given by the ratios of the
corresponding matching coefficients at the leading order in 1/m. The asymptotic
of the perturbative series for this ratio is studied in Sect. 5.5. The large two-loop
correction in this ratio was observed in [50]; here a model-independent results for
higher orders which continue this trend is presented.

!Otherwise, there may be several ultraviolet renormalons on the positive half-axis, leading to
ambiguities of the order Afqp, times lower-dimensional matrix elements.
2Note a typo in (4.8) of [50]: denominators of both terms with a should be 27, not .
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5.1 IR Renormalons

The leading order Wilson coefficients, Cr, of the heavy to light currents transitions
can be expressed by a perturbative series in terms of the renormalization group

invariant terms: 00 I
~ Qg (MU)
o 1 § :F 5.2
== + CL < | > ) ( )

c; and ¢ are known. The asymptotic behaviour of this perturbative series ¢} with
L — oo can be studied by analyzing the structure of the divergences in the Borel
plain. The Borel transform is defined by,

i cr u\"! . d\"
Sr(u) = —_ <—> y Cpag = (60—> St (u) (5.3)
L=1 (L=t \Fy o du u=0
Formally, one can recover the expansion (5.2) by expanding around u = 0,
R 1 [ 4T
Cr=1+ —/ Sr(u) ex (—7u> du . 5.4
: Bo Jo r(v) exp Boavs(po) 5-4)

However, if Sp(u) has singularities on the integration contour (which is the positive
u axis), then the integral (5.4) is not well-defined, and the series (5.2) is not Borel-
summable. To deal with these singularities some prescription is needed, leading to
ambiguities in Cr.

The matrix element of the full bare QCD current computed perturbatively can

be expressed as:
oo L—1 92 L
n 0
113 S ( (M)M) ] | (55)

L=1 n=0

POZF

In the large 3y limit where ) — oo the leading contribution is given by ar r_;.
This is determined by inserting L — 1 quark loops into the gluon propagator in the
one loop correction to the heavy to light matrix element. It can be shown that the
perturbative matrix element can be written in terms of:

B 1 >\ F(e, Le) B \"
FU_F[1+BO; - <6+5> +] (5.6)
where
Fle,u) = ue™ay (1 4+ u — e)p®* D(e)¥/<, (5.7)

and a;(n) is the one loop expression of 'y where the power of the gluon propagator
has been risen to n, and D(e) = 1 + (5/3)e one of the additional factors that come
from the L —1 loop insertions. Renormalizing this perturbative series and matching
with HQET where all loops vanish, if renormalize on-shell, the Wilson coefficients
are given by the terms in the expansion with €’. From here, the perturbative series
for the renormalization group invariant in the large-beta zero limit can be expressed

as:
47

N 1 ©
Cr=1+ %/0 Sr(u) exp (—mu> du . (5.8)
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with,

Sr(p) = : (5.9)
Ko
Sr(u) was calculated in [50],

B C(u)T(1 — 2u)
Se(u) _CF{ T(3 - u)
2(n -2 - 5}

[2(n —2)* = 2n(n — 2)u + 3u® + u — 5]

o (5.10)

(the results for the components of the vector current were obtained in [46]). Ex-
panding this Sr(u) in u reproduces leading large-f, terms in (5.2) (in particular, in
c¢}). This Borel image has IR renormalon poles at u > 0. The pole nearest to the

origin (and thus giving the largest renormalon ambiguity) is situated at u = 3,

SF (U) =

+ (regular terms at u = 3). (5.11)

1
2
This leads to an ambiguity in the sum (5.4) of the series (5.2), the natural measure
of which is the residue of the pole:

Aép = 70—F€5/6—A/\1\47S

Bo m

where Ay is for n; flavours. This is commensurate with the 1/m corrections
in (4.19). It is convenient to measure all such ambiguities in terms of the UV

renormalon ambiguity of A [99]

Y

_ Ars
AN = —20pe/6 M5 (5.12)
Bo
Then [50],
A 1 15] AA

ACr = -3 [2(n—2)2—77(n—2) v Bt (5.13)

Beyond this limit, it will be shown that the simple pole becomes a branch point:

T re
SF(U,) = Z m + SF g(U/) (514)
i \2

where a; and r; are unknown coefficient. S{*(u) is regular at v = 1/2. The IR

renormalon ambiguity of Cr — generalizing the prescription to take the residue of
the pole — is defined to be the integral of (5.14) around the cut divided by 27i:

séo=goo | 2 St (B) T oo

3

Requiring the cancellation of renormalons ambiguities, one obtains a; and r; in
terms of known perturbative coefficients. Therefore, expanding (5.14) as (5.3), one
can obtain the asymptotic behaviour of the perturbative series

Cho = 1ri274(26)"T (1 + a;) 'nin® (1 + O(1/n)) (5.16)

S1Y(u) has singularities at w = 1 (IR) and u = —1(UV), and thus gives exponentially
smaller contributions with (£)" instead of (235)™.
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5.2 UV Renormalons

In this section, the UV renormalons for the dimension four operators in the large
Bo limit will be calculated for the first time by a direct calculation, checking the
cancellation of the UV renormalon against the IR ones of the leading order Wilson
coefficients.

Finally, the UV renormalon ambiguities will be generalized beyond the large-[3,
limit.

Ultraviolet contributions to the matrix elements of O34 are independent of the
external states, and one may use quarks instead of hadron states (see (4.69)). By
dimensional analysis, the UV renormalon ambiguities of the matrix elements of
O;4 are proportional to AA times the matrix element of the lower-dimensional
operator 7 with the same external states. In order to avoid IR divergences, it is
enough to consider transitions from an off-shell heavy quark with residual energy
w < 0 to a light quark with zero momentum. For Oj, all loop corrections to the
vertex function (see Fig. 5.1) vanish. The kinetic-energy vertices contain no Dirac
matrices, and one can take i of the trace on the light-quark line; this yields £ at the
vertex, and the gluon propagator with insertions is transverse. There is one more
contribution [96] which have to be taken into account. The matrix element F of j
should be multiplied by the heavy-quark wave-function renormalization Zi/ 2, which
contains a kinetic-energy contribution. This contribution is known to have an UV
renormalon ambiguity [96]

A=y
thus giving —(3/4)(AA/m)F as the ambiguity of the matrix element of O3. This
must be equal to F' - AG/(2m). Therefore:

AG(p) = —%AA, (5.17)

Figure 5.1: Matrix element of O3; renormalon chains are inserted into the gluon
propagators

For Oy, a straightforward calculation of the diagram similar to the first one in
Fig. 5.1 gives the bare matrix element of the usual form (see [50,96])

L S () o ()]

with 5 - 50055(/1’)/(471')7

r

—1 4 2u)0(1 — )

T2+u—c) D)™

2u
r
F(ﬁ, U,) = —QdFCFCBfre% (—LQQJ> 678“ (
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where

5

3
1 1 1
ol + ﬁa’“’ +7 = 2dFF—+ﬁ ,
2 2 2
1
dr =5 [(1-2n(n—2))>-3].
The renormalization-group invariant matrix element has the form (5.4) with py =
—2we™%% and
F(0,u) — F(0,0
S - PO = F0.0
u 1=ho
w (T(=14+2u)T'(1—u) 1
= —2dpCpCp(—2w)— — .
rCrCn w)m< I'(2+u) o

Taking the residue at the pole u = %, one obtains the UV renormalon ambiguity

(dr/3)Cy(—2w)(AA/m) times the matrix element of j. For B-meson, dr = 3;
comparing with (4.73) gives:

AGn,(p) = 2AA (5.18)
From (4.72), (5.17) and (5.18), one obtains:
AGy=—SAR, AG, = < - ﬂ) AA. (5.19)
2 Ym0

In the 1/m expansion for the meson decay constants (4.75), I' = 1 and ¢ corre-
spond ton = 0,7 = —1l and n = 1, n = 1 in (5.13), and the IR renormalon
ambiguities (5.13) are —(3/4)(AA/m) and (1/4)(AA/m). They cancel with the UV
renormalon ambiguities of the hadronic matrix elements (5.12), (5.19) in the 1/m
corrections in (4.75). In fact, the results (5.17) and (5.18) were first obtained [46]
from the requirement of such cancellation for T' = 9, v, by solving a system of
two linear equations, and later confirmed [50] by considering all possible ' (this
gives three equations, thus providing a consistency check). Here the cancellation of
renormalon ambiguities by a direct calculation has been shown.

This cancellation should hold also beyond the large 3y limit. By dimensional ar-
guments, the UV renormalon ambiguities of the p-independent hadronic parameters

A, Gy, G,,, must be equal to Az times some numbers:

A]\ = N()Ag, Aék == —gNlAg, Aém == N2 ( - 7_0) Ao,

m0
Ay = —20F65/6E .
Bo

(5.20)

The normalization factors are unity in the large [y limit, N; = 1 + O(1/f,); in
general, they are just some unknown numbers of order one. Using

B
27 as(po) \ 288
A = -
VS Moexp{ 50%(%)]( 4w )

BoBa — BF avs(o)
" {1 BT

+] . po=¢e %m (5.21)
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(see (2.26)), One can represent the UV renormalon ambiguities of the 1/m correc-
tions as exp[—27/(fBoas(o))] times a sum of terms with different fractional powers
of a(p0)/(4m).3 In order to cancel this ambiguity, one should have the branching
point

Sp(u) =Y # (5.22)

- &

instead of a simple pole (5.11).
In the next Sections, base on this assumptions the asymptotic behaviour for the
leading matching coefficients of heavy to light current transitions will be presented.

5.3 Spin 0
At the next-to-leading order, recovering the result (4.75) of previous chapter, one
has:
{fg} _ (as(uo)ﬁ CrF {1
/B 4m N
1 % o as(po) %, @s(ko) 2
Sy f +1+ 10 ) A
+2m{< 20, 8 47 +*ym0+CA1 47 +
(1) ) 0 (10)
~ ~ 280
+ Gt G [ 220 (U (5.23)
4 4
where
m k m k m
+7 A1 (76 +8")
chy=0F1 (cﬁ—cﬂ)—berfy—Ocm—ry1 L+
Al ( ) 1 1 21 Vom0 1 260 253

Ym0 V1 — V0 Ymi
250 (’Ymo - 250)

(here v% + i = 0). The left part of the equation has no renormalon ambiguities.
Therefore, assuming the cancellation of the IR renormalons ambiguities of the Wil-
son coefficients (5.15) against the UV ones (5.20) one obtains an equality from which
the unknown coefficient a; and r; can be extracted

Once a; and r; are known, one can obtain the Borel transform in terms of them (5.14):
Cr
i) = —E [ el (=) - {

(-w)'"

k 1 m
Yo ;U < 51>> Yo Tr (1 ] /
—— | lo - I+ =) )1+ —+cyi(5—u)+- | N
[ 250( & 50 ¢ 253 Ymo A1(2 ) 0

—%N{+< —ﬁ>Ng(§—u)¥5_3[1+c;m(§—u)+---]}, (5.25)

TYmo

3Tt is convenient to replace log[as (o) /(4m)] — [(as(i0)/(47))? — 1]/, and take the limit § — 0
at the end of calculation.
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where
N N S N . fil,m
_0:_1:P<1+5—12> Oﬁéa _2:P<1+6—12_u>5062 2ﬁ07
NO Nl 250 N2 250 250
25 ( Bofa — Bt ) 26
T r 1 T r 1 _k T
C = — C , C = — (¢ — = C ,
1 B 250 Al 2 (Al 57 1)
2¢m1 + YmoCL'
Oy = o (em & Ymoct') (5.26)
Br — BoYmo
In the large fy limit, the formula (5.25) reproduces the known results (5.11),

(5.13).
The asymptotic of ¢} (4.12) at L > 1 is determined by the renormalon singularity
closest to the origin (see (5.3)). At n > 1,

I'(n+a+1)=nln® <1+

LED Y

2n

and one arrives at

B1 I'n
éﬂz=x%numm"@@mrﬁ(1+ al +ﬂ~)[

25071
”70 70 CF”
log 2 +1 -+ | N,
( 260 o T o 20 ) ’
3 o o (|
— 2N — ) Ny (280m) 0 (1 . 2
gVt ( m0> 2(260m)" ( + Qﬁon + - ; (5.27)
where
2 — 2823, — 3/3% +
= of -2 4?3’»51 =kt 6125 o
0 0
2(81 + B2) — BoYm
CIr,nl = Cm1 — Tmo (5, 5405)2 Bt . (5.28)
0

The result (5.27) is model-independent and the powers of n are exact. However, the
normalization factors N; cannot be determined within this approach. The leading
term at n — oo formally is the logarithmic term, because 7y, is positive (see (2.22)).
At moderate values of n, all leading terms are of similar importance.

The ratio of the decay constants taken from (4.77) is:

E_Q<_%
o 1+— ). (5.29)

where C, / C’¢ is the ratio of the quark masses given by (4.60). Naturally, it contains
no 1/m corrections with B-meson hadronic parameters; it is just a series in a;(fg),
see Appendix A. The Borel image S(u) of this series is

R R R N (R
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iy _ 26, (Cgm/m) BofS2 — 51)
B 263 ’
e
Bi(Br — 255)
v |:C(m/m) 5052 51 roP2 — P (m/m)

2 Qﬁo 1
838 ’ '
and the asymptotics of ™™ at L > 1 is
. o (g iy
Crn+1 = 4CFN0 n! (250) (250”) 14 QBOTL + (25[]”)2 + - y (531)
i) mf) 2602 — 26855 — 307
483
(m/i)! _ (mfin) 26002 + 26861 — BT ¢ )
S i
248585 — 125353 + Bi(B1 — 267)(36 032 — 2787 — 105751 — 87)

9655

These results are equivalent to [100].
It is possible to estimate the size of N, following [128-130]. The function

~ +51
Sonp () = (1= 20)" " S,y (),

o) C(mm) w L1
CSOEDYD ( T o (5—) (5.32)

L=1

still has a singularity at u = 1/2 due to S{(u) in (5.14), but has a finite limit at
u — 1/2 — 0. The radius of convergence of its expansion in u is 1/2, but the series
should converge at u = 1/2. Therefore, one can calculate Sy, /s (1/2), and hence Nj,

from this expansion. Substituting c; (/) for L >> 3 from Appendix A, one finds

Ny ~ 0.288 - (1 4 0.075 + 0.630 + ...) = 0.491 (5.33)

The three loop correction turns out to be large, which casts some doubts on this
estimate of Ny. Next, the matrix elements with Spin 1 will be studied.

5.4 Spin 1

At the next-to-leading order from (4.110) :

()= () Gl
B dm mp-
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1 Yooy o) 1 Rl r Qs (o) -
— log =00 4 = (4 — A
+2m[< 250 % 4 T3 o) € N T

o () (il )

where

o
A= 1+1) (Ci” _ Jf) - %'YOUCmI T 2y + Iym 4 4y
_ = B (6 5)  med = 95

203y 263 650 (Ymo — 260)

In the large-f, limit, the IR renormalon ambiguities ACp (5.13) for T' = ~v., v, ¢
(having n =1, = —1 and n = 2, n = 1) are (11/12)(AA/m) and (5/4)(AA/m).
They cancel with the UV renormalon ambiguities of the hadronic matrix elements (5.12),
(5.19) in the 1/m corrections in (5.34).

Beyond the large [y-limit, requiring the cancellation of the renormalon ambigu-
ities and extracting the unknown parameters, the Borel images are

(see (5.26)), and the perturbative coefficients at n > 1 are

Bl CF//
Cni1 = 2Cr 0! (260)" (2on) > <1 + + - ) [

250%

Yo 1 7" CRI{
log 28om + = [ £1 — 20 ) 4+ AL .. N,
(250 08 2f0m 3( - ) 2o 0

- gNl - % ( - %) N(28m) " 0 (1 + Q;W +- )] (5.36)
(see (5.28)).

The ratio fg*/fB* at the leading order in 1/m is given by the perturbative series
in ag(po) with

cg =0Cp

l—|

1 C
-1+ (8CF - CA)ﬁ (11CF +7C ) A], (5.37)
0 0

Co = CF{(—%WZ +8) By + (2G + $7%log2 — Bx® + 19 O
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(4G — gm°log 2+ 37m — 5) Ca + (—m + 7)) Tr

1296
+ | (326 — ) G + (=T8¢ + L) CrCa + (42G — 1) 3
— 200, Ty + 8 C’ATF]ﬁl
0

+(6§_5013D 461020 +2375C CA 5110A

1
+ B CRCu Ty + O3 T g

CA

0

— L (75C} + 25CFC 4 +21C7) (11Ck + 7C4) —2

14

2 CF
+1Cr (11CF +7C) —A}
0

(from the result in [50], omitting the m. # 0 effect, and the three-loop anomalous
dimension v/ of the tensor current [114]). This ratio is, from (4.106),

A

fBT* C’u¢ { A ( QS(MO) >:|
2= =l — [ 14y ————F 4 , 5.38
I C,, 3m My ( )

en =3 (i’ — ki) =t — e+ (B =0 ) 3 (07— ) — S
Therefore, the Borel image of the perturbative series is

S(u):—ch—N 1+ (5 —u)+--], (5.39)

(-0

¢ = 25—610 <6A1+C1— 6052260 51) )

and the asymptotics of ¢;, at L > 1 is

Cn-l—l = —§CFNO n’ (250) (25071) ﬁ (]. + C” + .- ) , (540)

250%
26082 — 2635 — 357
463 '

/!
€l =Cp1t+C1 —

5.5 Results and Conclusion

The main result is for the ratio of two (in principle) measurable quantities, fg-/f5.
It is given by the perturbative series in «;(pp) with

Cc1 = —2CF, (541)
CQZCF|:—3ﬁ0+( 8C3—|—16 210g2 %71'24—31)0}?

+ (40— log2 + 3% —6) Ca - (27— 4) Ty |
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(from [50], omitting the m. # 0 effect). This ratio is, from (5.23) and (5.34),

() )] e

30 4Cp  8(42 +3)Cp — (872 — 93)C.a
— |- 22F .
4 (CM CA1> 6Cr [ 3Ca 27(Bo — Ca)

where

CA1 =

The Borel image of the perturbative series is

4 C Y ,
S(u):§—Fﬂl[<1—7—00+ Al( “)"‘"')No

() MG 0rdu G+ e

where

2 7 2
fo=T e (1235) ] g e

r_ 6062 61
Ci =C — 250 .

The asymptotics of the coefficients is

8 22 "0 CXI
Cn+1 = gCF n!(250)" (26on) *%0 {(1 - — + -+ ) No

Ymo  206on
P No(280n) %0 (14 1 + - (5.44)
Ymo) N 25on ’ .

where

m + 2&2)
o= cn + (1 T > (CI + 51(51 0 :
M A Ymo ! 453

" (51 — Boymo) (Br + 285 — BoYmo) .

C C + C
ml — tml 1 3

Substituting numerical values, the perturbative series is

I 205(#0) 2 4 115 (Mo) ?
It _q_ 2 (=26 + Zr’log2 4+ —n2 4 —2
s 3 7 C3+277r 082+ g7 + 5 7r

+...+@<%> _ (5.45)
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The asymptotics (5.44) becomes

224 | (50\" (50 L2, 0203\ 1
Cpi1 = ——n! | — —n —— | — 4
i 81 3 3 25 250000 ) n 0

9
2 (50 \ % 40157 1
N (2 |t B 5.46
+7 2(3") <+3125000n+ )} (5.46)

Definite quantitative predictions cannot be made, because the normalization coef-
ficients Nyo are unknown. Table 5.1 shows the growth of the coefficients . The
coefficients cr, /4" of a,(jup)/m are given in three columns. The first column shows
the exactly known ones (5.45). The second column shows the results of the large-3,
limit. The Borel image S(u) in this limit is, from (5.10),

1+ u)(1 - 2u)
'3 —u)

S(u) = —4cp (5.47)

Expanding it at v = 0 (5.3), one gets:
c1==2Cp, c==3Cpfy, c3=—Cr (37 +7)57,
ca = —3CF (8G+2n° +8) B3, ¢ =—Cp (144G + 2 + 287° + 93) 57,
cg = —Cp (14405 + 16075 + 840¢3 + 367 + 1507 + 22) 37, . ..

This limit reproduces ¢; and the fy-term of ¢y (5.41). Finally, the third column
shows the asymptotics (5.46) at Ny = Ny = 1. Let’s stress once more that this is
not the result of QCD, but simply a numerical illustration of the typical behaviour of
the perturbative coefficients. The large-f3, result includes not just the pole at u = %,
but the whole function S(u) (5.47). In contrast to this, the asymptotics (5.46) is
determined by the nearest singularity at v = % only, but includes all powers of 3;, not
just the highest one. To show the rate of convergence of the 1/n expansion (5.46),
the next column shows the ratio of the sum of the subleading (i.e., 1/n suppressed)
terms to the sum of the leading ones. One can see that the reliability of our next-
to-leading order results at L < 10 is not high. Finally, the last column shows the
complete L-loop contribution to fg-/fp, according to (5.46) with Ny = Ny = 1.
The value o, (e=%/%m;) = 0.299 has been obtained using RunDec [131]. The smallest
contribution seems to be the 3-loop one, and it is about 4% (though this small value
is due to a partial cancellation between the leading order and the next-to-leading
one, and thus is not quite reliable). Therefore, calculation of this 3-loop correction
is meaningful (and it is actually possible, using the technique of [132,133]), while
there would be no sense in the 4-loop calculation.
For the ratio m/m, the result, using Appendix A, is:

2
m 891 as(fo) 173 1.2 1.2 | 168550145 o (f10)
— =l g+ (G T log2+ 57 +4ozgm4)( -

188 50225 - 14392~ _ 4396763 » _ AT 1A o 1427 2
+ ( 57 04 + 568G — T52 T 63 T Tisso1s 03 — 162108 2 — g log” 2

3
as(f10)
1402485 _2 461 _4 | 220317449 _2 | 4065915400751 s
— Sse08 7 1082+ 75T + Sosgrsa0 7 T 191854512144) ( -

+...+@<%> , (5.48)
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Table 5.1: The perturbative series for fg-/fp

L —ep /4 NL/L | —ep (%’@)L
1067 0.67

2 | 4.06 2.08

3 29.17 47.26 | —0.50 | 0.0406
4 333.26 | 002.44 | —0.33 |  0.0736
5 6342.19 | 18699.42 | —0.26 |  0.1450
6 128998.30 | 44943153 | —0.21 | 0.3312

The asymptotics (5.31) becomes

231
m/h 16 50\" /50 | o=

688161953 1 830261 4 oo,

— — ——T —T

1653125000 7 7187500 T 625" 7 625
8332134087653830381 ) 1 }

— 4
+49190800781250000000 (5.49)

n2

It depends on just one normalization constant Ny. In the large-f, limit, from (5.10)
one obtains [99]

and

C(u)T(1 — 2u)
['(3—u)

S(u) = 6Cy [ (1—u)— i] , (5.50)

M =30k, M = Cw (77 +3) B,

MM = Cp (12¢ + 72+ 2) 82,

MM = 30k (6¢; + 3t 4 Ln? + 2) 3,

™™ = 3C (144G + 167G + 12¢3 + St + 72 + 3) g

M = O (720C2 + 1080C; + 12072C; + 90Cs + 270
+9rt + Br? + B) 5o, ...

(the terms with the highest powers of 3y in the Appendix A are reproduced). Nu-
merical results are shown in Table 5.2. For L=3, the 1/(L — 1) expansion (5.49)
seems to converge well; comparison with the exact 3-loop result from Appendix A
suggests that the normalization factor Ny is smaller that its large-3, value 1, namely,
Ny ~ 0.27. This conclusion is in a qualitative agreement with the estimate , espe-
cially if the problematic 3-loop correction in it is omitted. Finally, the last ra-
tio (5.37) considered is

o 2
fg* 707 o (f10) 77 1. 2 1.2 | 1380868721 as(f10)
fp T T (13563 + 77 log 2 + 57 + Tisgem1a0s) -

+...+@<%> , (5.51)

my
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Table 5.2: The perturbative series for m/m

L
cp/Ab NL/L | e (2222
0.84 05
156 7.37
5497 | 3623 | 04738 | 0.21 | 01755

641.71 9990.14 | 0.14 0.2283
9062.48 | 150271.92 | 0.10 0.3899
206941.30 | 2925923.81 | 0.08 0.8225

O Ol W N |

The asymptotics (5.40) becomes
231
16 50\" (50 \ 513268907 1
1= ——Non! (2] (2 it I 52
il = g ol (3) <3”> ( 153125000 > (5:52)

It also depends on just one normalization constant N,. In the large-§, limit,
from (5.10), S(u) differs from (5.50) by the factor —% (this reproduces the terms
with the highest powers of 3 in (5.40)). Numerical results are shown in Table 5.3.

Table 5.3: The perturbative series for fg /B~

L —cp, /A" NL/L | ¢ (%)L
{022 017

2 1.95| 246

3 1208 | —3813| —1.68| —0.0327

4 21390 | —96.08 | —1.12| —0.0076

5 3020.83 | 245947 | —0.84|  0.0191

6 68080.43 | 113207.40 | —0.67|  0.0834

Neglecting subleading a; corrections, then, from (5.38) and (5.29), one obtains:

. . -1/
./ fm = (F5186) (55)

This equality also holds at the first order in 1/fy, to all orders of as. Therefore, the
ratio of the perturbative coefficients (5.52) and (5.49) is —5, up to corrections sup-
pressed by 1/n and 1/f,. Similarly, neglecting subleading «; corrections, including
those suppressed by [,/ (47)]m0/(25) then, from (5.42) and (5.29), one obtains:

N - 2 m 14
fulfo = (F51tn) " a=-2(1-20) 2.

Therefore, the leading asymptotics of the perturbative series for fg«/fp (5.46) and
m/m (5.49) are related by
fe</fs = (m/m) . (5.54)

The term with N5 in (5.46) violating this relation is suppressed not only by (23yn)~%/%,

but also by a small numerical factor % This approximate relation was first noted
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empirically at the 2-loop level in [50], with the exponent o = %, which is very close
to 14/27.
Let’s summarize our main results.

1. Behaviour of the Borel images of perturbative series near the leading singu-
larity u = 3 for the matching coefficients (5.25), (5.35), and for the ratios
m/m (5.30), fE./fg- (5.39), and fp-/fp (5.43) has been found. The pow-
ers of % — u are exact; further corrections are suppressed by positive integer
powers of % — u. The normalization factors Ny ;2 cannot be found within
this approach; they are some unknown numbers of order unity. Logarithmics
branching is a new feature of this problem; it follows from the fact that the
anomalous dimensions matrices cannot be diagonalized.

2. Asymptotics of perturbative coefficients ¢z, at L > 1 for the matching coeffi-
cients (5.27), (5.36), and for the same ratios (5.31), (5.40), (5.44) have been
found. The powers of n = L — 1 are exact; further corrections are suppressed
by positive integer powers of 1/n. Logarithmic terms follow from the same
property of the anomalous dimensions.
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6.1 Introduction

Inclusive decays are defined as the decay of a particle into the sum of all possible
final states with a given set of global quantum numbers. This class of decays is
usually approximate to be the partonic decay. The theoretical study of these decays
has two main advantages. First, the effects of the initial bound states, like the Fermi
motion of the heavy quark, are treated in a systematic way using the Heavy Quark

65
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Expansion. Second, the final state is a sum over all possible hadronic states and all
the properties of the individual hadrons are eliminated. The latter feature is related
to the so-called quark-hadron duality and is based on the fact that cross sections
and decay rates are calculable in QCD after a smearing or averaging procedure has
been applied [134]. From a practical point of view, the validity of this assumption
relies on the convergence of the Operator Product Expansion (OPE) required to deal
with these processes. However, it is important to stress that quark-hadron duality
has not yet been derived from first principles, but, still, it is a necessary assumption
for many applications of QCD.

For inclusive decays, an expansion for the rates is obtained by an approach sim-
ilar to the one known from deep inelastic scattering [54-56,59, 135]. The first step
consists of an operator product expansion (OPE) which yields an infinite sum of
operators with increasing dimension. The dimensions of the operators are compen-
sated by inverse powers of a large scale, which is in general of the order of the heavy
mass scale. The decay probability is then given as forward matrix elements of these
operators between the state of the decaying heavy hadron; these matrix elements
still have a mass dependence, which may be extracted in terms of a 1/m expansion
using HQET, as in exclusive decays.

Applying this idea to the energy spectrum, the relevant expansion parameter is
not 1/mg but 1/(mg — 2Es) = 1/(mgA?) [62]. In almost all the phase space, A ~ 1,
and a 1/m¢g expansion is performed.

However, for inclusive decays into light particles, experimental cuts on the energy
of the lepton pair are necessary to suppress the large background signal from charm
production forcing the kinematics into the end point region of the spectrum, A ~
Agcep/mg, where the final state hadron carries large energy Ey ~ mg but small
invariant mass sg ~ mgAgcep. Therefore, the OPE breaks down. This can be solved
by a resummation of the more singular terms of the OPE, or by performing a twist
expansion in terms of non-local operators of non-perturbative character evaluated
on the light cone.

In addition, in the end point region, the perturbative short distance corrections
are more complicated than most of the cases where a heavy quark expansion in
terms of local operators can be carried out, since involve three widely separate mass
scales: mg (Hard), \/moAgcp (collinear) and Agep (soft). As usual, perturbation
theory generates logarithms of theses ratios that have to be resummed.

A systematic treatment can be performed in the end point region for inclusive de-
cays into light particle using effective field theories, along with a two-step matching
procedure. First, matching QCD to SCET, where the hard short distance fluctu-
ations are integrated out, and second, matching onto HQET where the collinear
degrees of freedom are integrated out after a decoupling of soft and collinear degrees
of freedom has been performed by a field redefinition.

A study at leading order, including radiative corrections shows that differential
decays can be written in terms of dI' = H ® J ® S [16,64-66], where H is the
hard kernel accounting for the hard fluctuation of order mg, J is a Jet function,
of the collinear scale \/mgAgcp, S is the leading shape function and ® means a
convolution integral.

In order to extract V,;, with a good accuracy, a study of power suppress contribu-
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tions is needed. A tree analysis of them has been performed previously in [63,67-69].
Here the first step toward a systematic study of the subleading terms using SCET
is presented at tree level. New shape functions not considered previously appear.
Moreover, it will be shown that the factorization formulae beyond leading order
hold.

This chapter will be focused on the study of the endpoint region of the spectrum.
First, the techniques to deal with the spectrum decays will be presented, which will
be written in terms of forward scattering matrices of the decaying particles. It will
be shown that the normal OPE is not valid in the endpoint region and a distinction
among different kinematical regions will be necessary where different effective field
theories are required. In the next sections, the factorization for inclusive decays
up to 1/mg will be presented in three steps, factorization of the hard fluctuations,
decoupling of the soft-collinear degrees of freedom and factorization of these degrees
of freedom.

6.2 Energy Spectrum

The starting point for a heavy flavor electroweak decay into light particles is the
electroweak effective Hamiltonian. In a general way, it can be written as:

G
Hepr = TZLJ (6.1)

G'r is the Fermi constant where is encode the matrix element of the CKM matrix, L
is the non-hadronic current, and can be a leptonic pair or radiative products whereas
J is a generic hadronic current of the form

J(z) = q(2)TQ(x) (6.2)

being Q(z) and ¢(x) the heavy and the light quark respectively. The differential
decay mediated by these currents can be written as:

dl = ﬁd[RS.]pm(O|LT|X>(X|L|O>W(q) (6.3)

where | X)) is the non-hadronic decay product and W(q) is

W(g) =Y d[P-SJnaar(27)*6" (Pp — Px — q)(B|JT|X)(X|J|B) (6.4)

the sum runs over all possible hadronic final states |X). The matrix element of L
can be calculated perturbatively, whereas W (q) is related to the forward scattering
amplitude

W(q) = —2ImT(q) (6.5)

where

T(q) =i / d'z e~ (B|T (J'(2)J(0)) |B) (6.6)
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via the optical theorem. T'(q) is the hadronic tensor, which receives contributions
from widely separated energy and distance scales. In terms of quarks the correlator
reads as:

T(q) = i/d4fv e (B(v)|T (Q(x)I' q(x) ¢(0)LQ(0)) [B(v)) (6.7)

The matrix element contains a large scale, the mass of the heavy quark mg. This
scale can be made explicit by a phase redefinition of the heavy quark field:

Q(z) = 7™V, (), (6.8)
This leads to

T(q) =i [ d's O (BO)T (Q@ a(o) gOFQ0) B (69)

where () = myv — ¢ corresponds to the energy of the non-hadronic products.
As long as in euclidian space Q% >> 0, the time-ordered product can be expanded
by performing an OPE [43,53,59]

T(q) =Y Cul(@; 1)(On(p)) (6.10)

where (...) means matrix elements and it has been assumed that the analytical con-
tinuation from Euclidean space to Minkowski space is not an issue. Here, C,,(Q; 1)
are the Wilson coefficients accounting for the short distance effects. The sum runs
over all possible Lorentz and gauge invariant local operators compatible with the
quantum numbers of the system. Performing an OPE expansion for B — X, + 7,
one gets for the photon spectrum [56]:

— Y 4, 0™ (1 —y) + (regular terms at y=1) (6.11)
dF,

For B — X[, the lepton spectrum looks like [60]:

j—; o zﬂ: b, 0™ (1 — ) + (regular terms at y=1) (6.12)
where the subscript n in the distributions functions means the n-th derivative, whose
coefficients are given by a, and b,. y = 2E(,;)/m; is the normalized energy of the
outgoing particle. Therefore, in the endpoint region y — 1, one has an infinite series
of divergent terms.

To understand the origin of this divergent behavior, one can study the shape of
the correlator function at tree level. Doing so, one becomes aware of three different
kinematical regions where a different theory is required, making clear the failures of
the OPE expansion for the endpoint region.

At tree level, the leading contribution to the correlator is obtained by contracting
the light-quarks fields [62]:

T(q) = i/d% ¢ (B(v)| T {Bv(x) It S, (x,0) rb,,(o)} IB(v)) (6.13)
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Here, S,(z,0) is the propagator of the g-quark. At tree level the momentum of the
light quark is p, = p» — ¢ = @ + k where k is the residual momenta of the heavy
quark k£ = p, — myv. Therefore,

B 1
B Q@+ Ik +ie

=@+F)

54(Q)

1
(Q*+2Q - k + k2 + ie)

(6.14)

In (6.14) , € denotes, as usual, an infinitesimal positive number and gives the pre-
scription to deal with poles or branch-cut singularities. Since the residual momentum
associated with the interactions of the heavy quark with light degrees of freedom is
of order Agcp, the matrix elements are of the order:

(ik) ~ O(Agep),
(2k-Q ) ~ O(Agep Eg),
(k*) ~ O(Apep), (6.15)

where Eg, of order mg and, ( = mg - v — ¢ would correspond to the energy and the
momentum of the light quark considering the heavy quark on-shell. Depending of
the value of its invariant mass, one can distinguish among three kinematical regions
where a different OPE or theory is needed.

i) Q" ~ O(Ep),
i) Q" ~ O\gep),
i)  Q* ~ O(Agep Eg). (6.16)

Let discuss these regions.

General Kinematical Regions

i) The first one corresponds to the energetic hadronic jet with energy close to the
decaying particle mg and with a large invariant mass. In this situation, all
the terms with £ can be neglected and it is legitimate to expand the correlator
in a series of local operators multiplied by coefficients functions that contain
inverse powers of (), recovering the free quark decay model up to small non-
perturbative corrections, like the Fermi motion of the heavy quarks. A higher
accuracy is reached considering higher order terms of the expansion!. Over
the most of the phase space Q* ~ mg, and thus, the expansion reduces to an
expansion in powers of Agcop/mg yielding the presented energy spectrum in

(6.11,6.12).

i1) For Q* ~ Ajcp, the term with & becomes dominant in the denominator of the
propagator and no term can be neglected. This is the resonance region where
the dynamics is dominated by the emission and the consequent decay of few

Tt is clear that a consistent inclusion of the 1/mg corrections involves also the expansion of
the heavy quark field b(z) into the effective quark field h,(z) up to the required order.
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resonances and can be deal in a systematic way in the framework of SCET;
and SC'ETy; , in the lattice or using quark models. The fact that the resonance
region is parametrically smaller than the endpoint region allows one to neglect
it in the study of the endpoint region [62].

iit) For the endpoint region, the final jet has a relative small invariant mass Q? ~
AgepEg but Eg ~ mg. It is not possible to neglect the term linear with &
in the denominator. Then, the expansion performed in i) breaks down in an
infinite series of singular terms. This can be resummed in terms of non-local
operators. But the formalism is much simple when presented in using the
language of soft-collinear effective theory.

6.3 End-point Region Kinematics

The kinematics of the end-point region becomes more clear when presented for the
radiative case B — Xyv at the partonic level. It is convenient to introduce two
light-like vectors ny = (1,0,0—,1) and n_ = (1,0,0,1) with n> = n2 = 0 and
n_-ny = 2. Any 4-vector can be expanded in terms of the light-cone vectors:

Ju Ju

n n_
= (n_p)7+ + (nep) 5 + 01 = (04 -1 (6.17)

The b quark is defined to be at rest p, = my,-v with v* = (1,0,0,0)) = m,;/2(1,1,0).
For the radiative product, ¢> = 0 and defines one of the light-cone directions ¢ =
mp/2(x,0,0), in the End point region z — 1. Finally, the final s quark

m m,
ps:Q:pb—q:71)(1—36,1,0):7()()\2,1,0) (6.18)

Moreover, the End point region is defined to scale as: p? = myAgep and then
A = y/Agcp/my. One can generalize this result for the hadronic jet either for the
semileptonic and for the radiative decay to:

p?] = mp\® = p_p, +pi —pr= mb()\Z, 1, ) (6.19)

However, by a choice of coordinates, the perpendicular component always can be set
to zero. The important thing to remark is that this is exactly the power counting
that make use SCET. Therefore, one can use the machinery of SCET described in
Chapter 3 in order to deal with these decays in the end point region.

6.4 Factorization of the Hadronic Tensor within
SCET

In this section the correlator will be calculated using SCET. At leading order the
hadronic tensor can be written generally as T~ H - J® S with H, the hard kernels,
which picks the hard scale, .J, a jet function of the collinear scale and S, a shape
functions which carries the non-perturbative information of the B meson-state.
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Here, the Hadronic tensor beyond leading order will be presented. It will be
shown that the same pattern is obtained.

This will be achieved in three steps. Below the scale p ~ my, the current can be
expanded using SCET. In addition, one has to take into account corrections coming
from the matrix elements in term of insertion of Lagrangians. In this first step the
hard-collinear interaction will be integrated out.

Second, by a field redefinition the collinear and soft degrees of freedom are de-
coupled at the level of Lagrangian. The hadronic tensor is sandwiched between B
meson states, which only contains soft degrees of freedom. Therefore, the collinear
fields have to be created and annihilated in the vacuum. These involves scales of
v/Agcpmy and can be calculated using perturbative methods.

Third, matching onto HQET the collinear degrees of freedom are integrated
out. One is left only with the soft degrees of freedom, which contain the non-
perturbative physics of the system. These will be parametrized in terms of scalar
“shape functions”.

Although the formalism is general, the calculation presented here and results in
Appendix B are at tree level and in the light cone gauge. This will greatly simplify
our analysis.

Under the scale p ~ my the QCD currents are expanded as:

(QTyq)(z Z / ds\ds, . ..ds, Z C’ 31, So, ... )J](k)(§1, S9,...8p;) (6.20)

C’Z-(f ) are the Wilson coefficients and factorize the hard scale. The suppress A terms
at one loop were calculated in [136,137] This factorization can be performed at all
orders in a; and can be done at all order in A, .J are the SCET currents. The ¢ stands
for a different type of Gamma matrices, j accounts for the mixing of the operator
beyond tree level, k£, means the order of the expansion, being 0 the leading order

and ds; are the convoluted variable in the hard scale. At tree level this simplifies to:
[9(2) D Q)] gy = €7 {JU0) 4 AV 42 4 g0 gL (6.21)

with
= ETW.hy, (6.22)

_ _ -1
J(Al) — gFWc xLuDéth — 52’%1_0 (Zn+§c) %FWch’ua

1 1 us
JA2) _fFW ( n_x ny Dgh, +2x#Lx,,LD D’ h, +12lpm )

—&r
§ iny D,

g~ ¢ r“—* RS

—1
in_DW, — Woin_Dy|h, — i}, <m+ﬁ ) d—;FchLuDg‘hv,

J(BQ):—SFd_ [i1pL WV, x,., DVh,, —5r’¢ lin_ DW, — W,in_Dy) h,

_ep L {zlhczlhc ]h +5zlch(m+ﬁ) d*Fd D IRALS

iy D,
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where all the hard functions are unity in momentum space. Moreover, from the time
ordered products and matrix elements, one has to consider insertions of the HQET
Lagrangian:

. 1
L = hyiv - Dh, + P (O + Crn (1) O ()] + O(1/m?) (6.23)
_ 1.
Ok = _thihva Om = ihvGaﬁO—aﬁhva
h, is a soft field and the derivatives D = 0 — igA; only contains soft degrees of
freedom, C), is the chromomagnetic Wilson coefficient and contains the hard scale

and together with éij (i) collect all the hard interactions. Second, by the SCET
Lagrangian:

1
L= 5(m D+ilpre—s D i, >d+§+q( )iy(x)q(@) + LY + £ + L8 + £,

(6.24)
where the power-suppressed interaction terms are given by
é f_(an We.gFy, WT) d+ (6.25)
2 _ L1z W syt Ny
£ = S € ((no) b W g, W] 4 s W D2, g5, )W) 5 ¢
1. 1
+t3 £ (Z.LDLC D. oA WegFp, Wi+t o W, QFSVWCT ZDLC) 7¢_+ ¢,
+
»Cg]) = quTZDch - giDLch q,

£ = qwi(in D+ily. (in, D) zlmc) (s €+ qui DIWilp, €

—f_% (inﬁ—l—iﬁm (m+ ) zﬁLc>Wq—fllchW 21, D5 q.

Hence the hadronic tensor can be written generically by:
T=> HoTV (6.26)

H is the hard function coming from the Wilson coefficients of the SCET currents and
the HQET Lagrangian and T¢// is the time-ordered product of SCET Currents with
Lagrangians inserted involving collinear and the soft degrees of freedom which are
coupled by (6.24). At tree level, H are delta functions and the convolution becomes
a simple product. T/ at tree level is:

e 1 ABi . .
Telf — Z;Z / d'z / dyr . dry ISP @) i () i () TEAEDT0) (6.27)
The contribution at leading order will come from products of:

o JAN (). 7040 (0)
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At the first subleading order from:
o JAVT(7) M9 (0)+ symmetric

o JUI(2) LM (y)JU(0)

In addition at every order one can insert an arbitrary number of leading order
Lagrangians which couple soft and collinear degrees of freedom and prevent us to
factorize the soft from the collinear fluctuations.

In next section, a field redefinition that decouples the soft degrees of freedom
from the leading order Lagrangian will be given.

6.4.1 Decoupling Soft Degrees of Freedom

At every order in the hadronic tensor, one can have an arbitrary number of insertions
of the leading order Lagrangian,

_/ _ 1 i
(0) — _ s
L0 =¢ <mD+zlchm+ ) zlpu> 5 & (6.28)

where in_ D =1in_0+ gn_A.+ n_A, couples soft and collinear degrees of freedom.
However, this coupling only appears through the n_ light cone vector. One can
remove this interaction by a field redefinition,

£(r) = [VED(2), A, =[YVADYT(z), and W, = (YWOVT)(x). (6.29)
with Y (z) the Wilson line:

Y () = Peap (z g / U dsn_ Ao+ sn_)> (6.30)

o0

which satisfies [in_DY] = 0. The Lagrangian in terms of the new fields:

~ 1
L. = 5(0) (m D )+ ZLDCJ_ 0 leS?_) 71_+ (0) (6.31)

m + 2
where only collinear fields appear. The same occurs with the Yang Mill sector.
Hence, the leading order effective Lagrangian will look as:

Lepp =L+ LMy Lo+ LM+ Lroer+ ... (6.32)
colﬁr?ear ;)?t

which factorizes soft and collinear interactions. The leading order currents in terms
of the new fields are written as:

A0 = [ETW,h,](z), = JAY = [EOTW OV, | (2) (6.33)

The field redefinition complicates the form of the currents, but, now, £© W , the
collinear fields, and [Y'h,](z_), the soft ones, are not coupled by the leadlng order
Lagrangian and can be treated separately. Although, they are mixed by the first
subleading Lagrangian even after the field redefinition,

L= O @n WOy gF; YW )d+ (6.34)

one can show order by order the factorization of the soft and collinear degrees of
freedom at all orders.
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6.4.2 Factorization at Leading Order in 1/m,

Inserting the leading order current, the effective correlators are:

T (q) =i / d*z '@ (6.35)
(B()|T [y (2 )W ()D€ (2)€(0)TWe(0)y (0)] [B(v))

Performing the field redefinition:

T (q) =i / d*z '@ (6.36)
(B()T ([h,YWIOTTEO] (2) [€OTW OV Th,] (0)|B(v)))

The new collinear fields do not couple with soft fields at leading order, since the
leading SCET Lagrangian does not couple them. The B-meson state by definition
does not contain collinear degrees of freedom since the b quark, inside of it, is
supposed to be almost on-shell, and hence an interaction with a collinear particle
would put it far off-shell (p,+p.)? > mi. Therefore, the collinear degrees of freedom
have to be created and annihilated with the vacuum. Leaving the color and the
spinor indices open, the correlator gives:

T (q) = i/d% €9
(Bo) [RY],, (o) [Vh],, O)1BE) x
(QIT ([WCT(O)g(O)} (@) [€OWO], (0)) DTWTl,  (6.37)

c

The collinear correlator carries the scales /Agcpmy and can be evaluated pertur-
batively:

QT ([WIO0],; (2) [EOWO], (0)) 19) =

Al . sy -
Sab / 2 e”'%%;” Jo(1?) (6.38)

where J(12) defines the Jet function. At tree level in the light cone, W, = 1,

- 1

Jo (1) (6.39)

T+ Tt
+

Corrections to this order in «ay are calculated by inserting the collinear part of the
leading order Lagrangian, if one inserts subleading order Lagrangian one would
have as well a suppression in A in addition to the perturbative one. At one loop,
the collinear jet function has been calculated in [64,65]. The correlator is given by:

e —0 d4l iz(Q— 7
T (q) = —5abra5—%27ﬂyﬁ/d4x L et *(@=D) Jo(1%)

(B(v) [hY],, (22) [YThy],5 (0)|B(v))  (6.40)
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For the radiative decay the exponential factor is:
z(mpv — (@ +1) = (mp —1_)x /2 + (my — (¢+ 1))z /24 (g +1),. (6.41)

Moreover, since the soft field only depends on the z_ variable, rewriting the in-
tegration variable in terms of light cone coordinates,(d*Q = 1/2dQ_dQ,dQ ), one
obtains delta functions from the dz | dx, integration, which can be used to integrate
dl_ and dl; in turn. The correlator gives:

dl

TeIf () = — / dr_5i5's ¢ /2Q=04) Jo (1. )

(B(v) [hY] (x)éabra(s%;” i, [Y'h,],5 (0)[B(v))  (6.42)

The heavy quark operator can be written as:

N . 5
(7, Y] (z )T [YOh,] (0) = [A,Y] (0)Te? +7= [YOh,] (0) = hyaTe™ +*= h,g

= / dky e~ WDRee= b T3 (k. +iDy)h, (6.43)

where the property of the Wilson line has been applied [inDY| = 0 and the covariant

derivative acts to the right after doing an integration by parts in the hadronic tensor.
The matrix element using

1 1 1 .
P.TP, = 5P+Tr(P+F) — 5sNTr(s“F) = 5Tr [PJF] (6.44)

where s, = P.v,7;P; between heavy quark fields can be written as:

(BEIT ([WY],, (52) [YOR],, (0)) |B() =

(5ab i 1+ ﬁ
2| dky e Pker- 5 (F ) <—> (6.45)
N, 2 /s
with i
S(ky) = (B(v)| ho 6(k+ + D) hy | B(v)) (6.46)
the leading shape function, the odd part vanishes by parity invariance. Hence,
e dl i my— T
T (q) = —/dx_dk+—2(2;) ¢l /2me=(a 1) J(1 ) S (k) x
Oap (1 —|—¢ ﬁ_(s,y t
5abﬁc <T>5 FMTFW (6.47)

Inserting this in the hadronic correlator function and integrating:
eff —1 i 1=
T (q) = S [ b Sk dolmy — (g + 8 ) T [PITEST ] (6.8)

Defining:
Jo(12) = Im.Jo(1?) (6.49)
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The imaginary part of the correlators
eff -1 o
including the hard kernel:
-1 e
ImT(q) = -5 Hn Q) [ dk S(ky)Jo(my — (¢ +k)y) Tr | PLT 7F (6.51)

where H contains the hard scale Q)4 ~ my , Jy the collinear scale ~ \/Agcpmy, and
S the soft scale ki ~ Agep. One could use the renormalization group equation to
run the scale down to soft scales performing the resummation of the large logs [64].
In the next Section the subleading terms will be investigated.

6.4.3 Beyond Leading Order

The fact that the leading order Lagrangian does not couple the soft and collinear
degrees of freedom was relevant in order to show factorization at leading order. But,
the first subleading Lagrangian couples them. This can break the factorization the-
orem at subleading order. It will be shown that order by order this factorization can
be achieved at the price of obtaining more complicated sub-leading shape functions
which accommodate soft degrees of freedom coming from the subleading Lagrangian
and from the currents. The leading order correlator function with an insertion of
the first subleading Lagrangian yields a subleading contribution,

717 =i [ datiyt BT (T2 @il (5) Ty 0)) 1B
=i [ dstayt O (BE)T (b, YTV (6.52)
& (i Vg, V) BEEI) TY J0) ) 1)
where W, is not written. At this order in the expansion, again, the redefined fields

do not couple through the leading order Lagrangians, one has to insert sub-leading
Lagrangians to do so. Therefore,

Tl = z’FLKdJ;”F / drtdy* e’ @” x (6.53)

QT (69 () [€9) v €D1wER (0)) 1) %
(BT ([ Y Jaaw )02 Y1 g F, Y]aely-) YT hulus (0)) [B(p)

The collinear matrix element at tree level in the light cone gauge is,
=0 =0
QIT (9(2) ) 1D w)ER () 1) =

— 10cd0ef 1/L 2’” oo d*p d*le” e J1(p?, 12) (6.54)
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with
JHp?, 1) = Jo(p*) I (1), (6.55)
and 5
JHI?) = ————Jy(1%). (6.56)
ol

In Appendix B.1 a list of the jet functions that appear at tree level can be found.
The heavy quark operator can be written in analogy with (6.43):

[hY] (z_)L [YTig F3,Y] (y-) [YTh,] (0) =
/ ds dkye” 250 e=Wkev-08 (s, ) (6.57)
with
Oy (54, ky) = hyD(sy +iD%) ign” Fy, 6(ky +iD?%) h, (6.58)
Using the projector properties (6.44):
J

PJ_ .
O (sy,ky) =Tr {71“] 0, (6.59)

Taking matrix element of this operators, only the part related with the odd structure
s of the matrices will contribute, since together with F),, it is possible to build an
even operator. Generally, this soft matrix element between B-meson states satisfying
all the symmetries, projecting into the heavy quark fields, and taking into account
that the n_ and v vectors are available can be parametrized in terms of scalar shape
functions:

(Bulho(2-)aan” igFy 1, (2-)caho(0)os| By) =

ITATAL (144, 1+4\ €
13 ~P Vg . Tn,vCl(x,,z,) (6.60)

where the color and the spinor structure are defined to give the unity by contracting

with 04.04. Ci(z_,y_) is a sub-leading scalar shape function and can be identified
by:

EJ_

5o n-vCi(sy, ky) = (B(0)0,” (51, k4)[B(v) (6.61)

The soft fields only depend of the x_ and y_ coordinates and again the integration
of dr | and dx_ can be performed in the collinear sector. Integrating, the hadronic
correlator in terms of the scalar shape function is:

1931(g) = 5 [ s b, O k) JH(@ — 510, Q2 — ,Q1)

(nv)% x Tr {SpFT%F] (6.62)
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Adding the hard-collinear interaction:

T(q) = Hn-Q)y [ dsydbuCilsi k) I (Q7 -~ 5:Q-, Q" ~ K. Q.)

(nv)% x Tr {SpFT%F] (6.63)

where H again carries the hard scale, J# the collinear scale and S, the soft degrees
of freedom. Hence, a similar factorization formulae beyond leading order hold.

For the multiple expansion the soft fields depend only on one light-cone direction
which ensures the convolution between soft and collinear fields along that direction.
Two convolution variables appear at first subleading order when inserting the first
subleading Lagrangian. At order A", up to n+1 convolution variable can appear due
to (£L')™ insertions. The fact that the subleading Lagrangian mixed soft and collinear
degrees of freedom has not spoilt the factorization formulation. At every order, the
hadronic tensor can be factorized due to the factorization of the Leading order
Lagrangian. However, new subleading, non-perturbative, shape functions appear at
every order and might accommodate information both from the current and from
the subleading Lagrangians. A classification of them must be done at all orders.

In the next Section, the calculation of the hadronic tensor up to order 1/m is
performed at tree level.

6.5 Correlator at O(\?)

In this section the correlator at O(A?) will be calculated at tree level and in the light
cone, W, = 1. Besides Eq. (6.63) the remaining contribution at order A come from
insertions of the first subleading currents:

JUADT (1) 749 (0) 4 symmetric. (6.64)
At A% ~ Agep/my the contribution will come from time order products of:
o JUADI(7) ]9 (0)+ symmetric

o JUAVH(3).7(A1(0)

o JUVH @)L (y)LY(Y)

S~
b
2
—
o
S—

At tree level, the current needed at order O(\) are:
I (@) = ED WYt w, Dlhy

_ —
T (@) = —Ei P, (iny B)l%+ Ty A,
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At second order:

i1
T (x) = ET WYt~ 5 L @iy Dify Dl by

J4D () = eewyt lD “ By
me

T (@) = ~&i Do (iny D) 1¢+ T WYy, Dih, (6.65)

The currents J® do not contribute at tree level. Since W, = 1, this discards all
the partial derivatives in Eq. (6.23) and Eq. (6.26) acting over W,.. Contribution
with and A, will vanish between the collinear vacuum at tree level and with two
A, will yield a loop correction which is not considered here. Moreover, at tree level
in all, but the insertion Lagrangian L, the collinear covariant derivative can be
replaced by simple 0 derivative. The hard functions are unity. Next, an example of
calculation is given.

6.5.1 Sample Calculation at Order \?

The hadronic tensor with JQ(AZ)T(JC)J(AO)(O) looks as:

T (q) = ; / do'e'Q” (6.66)
(BT (1hi DLi D w1, Y €O @)EY TR (0)) | B(0)

Again the soft collinear factorization can be done:

Teff(q) — %/dx4eiQm
(BT ([hi D 1D, Y] Yol TR (05 ) 1B(0) %
QT (1071, ))as[EQ)(O)1) )T ] 55

The soft fields only depend on x_. Hence the collinear integration

/dederei(Q“)/ZGiQL“(mT ([xuxmf(o)](x)aé[g(o)](o)bv) €2)

= ina 22 [t 0001 00) (6:67)

at tree level:

0

jl?u(l+7 QJ.) Q ) aQL

Ty, Q1,Q-) (6.68)

the imaginary part:

T34, Q1 Q) =Im J3,(11,Q1,Q-) (6.69)
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With that, the heavy quark operator inside the correlator can be written as:
hyi D" i D YT () [V Thy](0) = / dkye(/Dkea= prvp ) (6.70)
with I' = "% and
F(ky) = hyiD**iD" T §(ky +iD%) h, = FW‘Tr[PJ'FT%‘r] (6.71)

Generally, the soft matrix element can be decompose into scalar shape functions:

(B,| [h iD’ 2‘5“] ),,ﬂ|B ) =

the Fourier transform of them can be easily identified,ie.:

Filk,) = 9; Frt (k) (6.72)
The imaginary part of the effective hadronic tensor can be written by:
eff _ 1 -
ImT%7) = 1 dly J3 (my —2E, + 1) Fy (1) Te[P.T 71“] (6.73)

where J5 = (¢1"/2).J}, and Q_ = my. F, does not contribute since it is contracted
with the symmetric tensor. The hard function H is 1 at tree level and carries
the hard scale, .J3 is the jet function, which carries the collinear scale and F} is
a subleading shape function. Therefore, the factorization formulae beyond leading
order hold at 1/m ~ A%, Before going further some aspect to remark in the structure
of the subleading shape function. The subleading shape function operator contains
in comparison with the leading order one two covariant derivative insertions, which
will amount up to a correction of \* ~ A3, /mj. This is enhanced by the collinear
function which two insertions of 2| amounting a correction of A\=2 ~ my/Ngep to
give a correction of A\2. This kind of sub-subleading shape function and enhanced
collinear function are a new feature within this approach and are due to the multipole
expansion of the soft fields. Generally, O(A") will give subleading shape functions
up to O(A*") and enhanced collinear jets up to O(A™"). In the next section, a
classification of the soft shape function operators that appear up to second order
will be presented.

6.5.2 Shape Function Operators

The factorization of the soft and collinear degrees of freedom can be performed at
all orders. The collinear part, still, perturbative can be calculated and integrated
out. The non-perturbative physics are B meson matrix elements of soft fields and
has to be classified.
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From JA21(z).J(49(0) and JAY(2).JAY(0), one obtains:
Toohioy o D?hy , By D" D" 1. (6.74)

All terms are bilocal. The derivative in the second term can act to the left or to the
right. The fact that the second current is chosen to be at zero makes that the double
derivative only acts to the left, this term comes from the multipole expansion and
comes with x| which vanishes if chosen at zero. These soft products give rise to the
shape Function operators:

S(ky) = hy To(ky +iD3) by
Ol (ky) = B fzé(k+ +iD?%) D’h,
O%(ky) = h, TiD? §(k, + iD%) h,
FY"(ky) = hy,T iD" iD"" §(k. 4 iD%) h,. (6.75)

The first term is the leading order shape function operator, the following two are
subleading operators with a A% suppression and have already appeared in the liter-
ature. The last one, is a new sub-subleading shape function operator.

From JAD(z )El( )JA0(0)4 symmetric:

hon' i gF; by, hy D" in Y gF; By (6.76)

These terms are tri-local objects. The derivative only acts to the left for the multiple
expansion. The corresponding operators:

O, (54, ki) = B,j F§(s+ +iD%) in’ gFy, 6(ky +iD7) hy
K’ (s4,ky) = hyTiD2 6(s,. +iD?%) i gFy, 6(ky +iD5) hy. (6.77)

The first terms has a A? suppression and the second one is a new sub-subleading

operators with a \* suppression.
From JAOT () £2(y)J19(0):

ign” F;lh, .
(6.78)

us)

hun i gF by | hi gFS by, hu/d‘l LY (), B[iD?

These are tri-local. The operators that come up:

O*(s4,ky) = hyD6(sy +iD%) in’nhgF}, (ks +iD3) hy

Oy (4. ky) = hoT0(sy +1iD%) i gF;, 6(ky +iD%) hy
t(s+):/d T (RF 8(ss +iD3)hy Ly ()
G, (sy,ky) = h,L0(sy +iD3) [iD2,i g F5,) 8(ky +iD5) hy

The last one is a new sub-subleading operator.
Finally, from JAYt(2) L (y) L (y)JA9(0), one obtains

Bvin’igFlfl,in gF; shy | hyqahy, (6.79)
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which are tetra-local objects and the operators are:

Spals4, bk, Qy) =
hyT8(sy +1iD5)n" i gFs, 6(ky +iD3)n i g FS 5 0(Qs +iD%) b,

These are new operators. In previous analyses, tetra-local objects were not found.
Both of them are suppressed by a factor of A\, as the rest of these terms, they
come with enhanced collinear jet functions to amount a total A? suppression. In
addition, it is the first time that a four-quark shape function at order 1/m; is found.
Its phenomenological relevance, still, has to be analyzed. The hadronic tensor up
to O(N\?) for Q1 # 0 in terms of these Operators is given in Appendix B.2. All
this operators are non-perturbative objects which have to be sandwiched between
B-meson states. It is possible to check the result at tree level by taking free quark
states and the Feynman rules of these operators which are given in Fig. 6.5.2 and
comparing with the QCD result.

Fri(wy) 07 (w+) 05 (w+)
KRS (ws + k) KPS (wy + ky) KPS (wy + k)
P (wy) 07 (w+) 05 (w+)
k k k
Vi v v
a,’a a, o a, o
gT (wy + ki) x 9T (wy + ky —13) g*@ 9T (wy + ki) g™
(R = 17)gh* + kH ")
Gf, (54, wy)n” Oy (54, k) Kf, (54, wi)n”
kA kA kA
Vi Vi Vi
a,’a a,’a a,’a
—9T0 (wy + ki) 1P Ly x 9Tl g,% — lug,%)x 9T (ly g,* — 1ug,*) (kP — 17)x
d(sp +hky —14)g,” S(wy +hy)d(sy +ky —1y) S(wy +hy)d(sy +ky —1y)
P (wy) Oy (54, k) G (s wy)n?.
kA kA ks
l e p l e p lJ p
a, & b, 3 a, a b, a,a b 3
96 (wy + ky)x P T (Gusma = guams) X 81777 (9500l — 9hgups ) x
(T°Ttg"*g"P + T'Tg"Pgi*) 6 (wy + (k —1—=p)+)d (ws + ki) 3 (wy + (k=1 —p)1)d (wy +Fy)
Suvp(se,we, Qo)n? n’ Kf, (s, wy)n”
by by
l‘ p l‘ p
a,a b 3 a,a b3
9 L i (T°T* gupgrad (wy + (k — 1))+ 9%0 (wy + ki) (TT* (wy + (k — p)1)ps
TT" guagysd (wi + (k = p)+)) X 90905 + TPT6 (wy + (k =14 )14 gggua)

O(s4 +(k—1-p)1)d(Qs + k)

Figure 6.1: Feynam Rules of the Shape Function Operators.
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6.5.3 Tree Level QCD

In this section the tree level result of QCD is presented for no gluon, one gluon and
two soft gluons emission up to O(A\?). The b quark is defined to have p, = myv — k,
with & ~ Agep = mpA? and in the end point region Q = ¢ — my, - v with Q_ ~ my,
Qi+ ~ mpA?, Q1 ~ my\ . The emitted gluons carry soft momenta [ ~ p ~ myA2.
At every oder, one can have insertions of the leading order Lagrangian. However, in
order to perform the tree level matching from QCD to SCET, the emission of soft
components is sufficient to deduce the result.

no-gluon

The hadronic tensor is written from Fig. 6.2:

i
iT = bl ——TT (6.81)
@+ ¥

Expanding the propagator up to second order:

. —k? n/y A )
= = R B A :
r=o (2Q—(Q+ e el ot )t (6:82)

which equals the SCET result given in Appendix B.4.1. The first term is reproduced
by J2(A2) JA0) " The second is a local terms and is not reproduced by SCET, since
actually the imaginary part of the correlator is matched and this term vanishes, it
is not a problem. The third term is reproduced by adding JA2J4° and JY g5
The expansion of the b quarks fields is reproduced in all the processes by J(AU)J2(A3)
and its symmetric term.

pb/«

Figure 6.2: no-gluon and one gluon emission Feynman diagrams

one gluon

The QCD digram from Fig. 6.2 for the one gluon case gives:

— T, (6.83)
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Expanding the propagator up to second order, one obtains:

r=-ir (ke - g () (ems) 99

o (mf/ <<@+1k>+> I <(Q+/1+l)+>>> r

The first term is reproduced in Appendix B.4.2 by JQ(AQ) JA0 and Jl(Al)ﬁg)J(AO). In
addition to these the second terms is obtained from .J (Ao)ﬁg) JA0 g (Ao)ﬁg) J A0,
The last two terms are reproduced by adding JZ(AQ) J(A0), JI(AI)JZ(AI) and J(Ao)ﬁg)JI(Al).

two gluons

The hadronic tensor from Fig. 6.3:

1 ioTO 1 T 1 t
—@Hé—l—)égT ff(p)7@+k_yng/*(l)7@+ka
+ (I = p,a —b), (6.85)

iT = bl

up to second order is:

a0 1 1 T
P= b =—5" ((Q+k—l—p)+> ((Q+k>+>”
(= pa—b). (6.86)

J (Ao)ﬁg) JAO from Appendix B.4.3, antisymmetric in the color indices, repro-

duces this result and contains and spare term of the form T*T%*e* which is com-
pensated for the rest of the SCET contributions. The matching from SCET to QCD

Figure 6.3: two gluon emission Feynman diagrams

is not simple and generally involves the summation of several SCET terms to re-
produce some of QCD. As an example, one can study the Abelian case of QCD by
taking 7 =T° =1

T _ 21‘\1‘%__1'\6161
(@)qcp = ¢ 9 762,

<m—(;—k)+> (m—(q—;+l+p)+> (6.87)




6.6. Scalar Shape Functions 85

The result, contrary to the tree digram before expanding, contains only two propa-
gators, and one of them has shrink to a point, becoming local. In SCET, this result
is reproduced by adding three contributions, one of them JZ(AI)T(x)Eél)(y)J(AO)(O):

T(g) = g’ 0 (m - (ql— k)+>2

(i) o () o

The SCET term contains three propagators. They come from the enhanced jet
function, where the x| turn into a derivative, increasing the power of the denomina-
tors. This compensates the presence of soft momenta in the numerator which comes
from the derivatives in the soft function operators. This momenta can be written
in terms of denominators and combined with other SCET terms, where the same
manipulation have to be done, yields to the cancellation of propagators reproducing
QCD.

In this section, the hadronic tensor up to order A\? has been presented. The
factorization formulae beyond leading order hold due to the factorization of the soft
and collinear degrees of freedom of the leading order Lagrangian. New features have
been presented. Up to order A\? three convolution variables can appear due to the
double insertion of the first subleading Lagrangian.

New enhanced jet functions and extra-suppressed subleading shape functions due
to the multiple expansion appear. The latter, of non-perturbative characters are not
computable between this approach but are universal and can appear in many decays
of B-meson states.

A new feature is the four quark operator, which in addition of the non-perturbative
physics of the initial states contains soft fields, non-perturbative physics of the final
state. The relevance of this feature has to be analyzed.

Although, non-perturbative object, the tree level matching has been presented
in order to check our calculation taking the Feynman rules of our operators.

In the next Section the matrix element between B-meson states of the soft fields
that appear in our calculation will be presented. These are parametrized in terms
of scalar functions, the shape functions.

6.6 Scalar Shape Functions

In the previous section the shape function operators that appear at tree level have
been classified. Leaving the color and Dirac indeces open, taking matrix element
between B-meson, in this section, the shape function operators will be decomposed
in terms of invariant functions, shape functions. Between two heavy quark states the
only possible Dirac structures are 1 and v*"v5 = (y#—#v*)vs. The available external
vectors are N = n” /(n_v) and v* and in addition one can use the symmetric metric
tensor g, and the antisymmetric Levi-cevita tensor which is used in the combination
ejl, = l€upen” v7. The Greek indices refer lorentz(spinor) indices and the Latin to
color. Matrix elements have to form a color singlet, therefore, one can define the
scalar shape functions:
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(By|ho(2)aahn(0)ss] By) = Oba 1 (ﬂ
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<Bv|ﬁv<x_>aahv<0>w [ LB =
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2i fABCTCﬁ‘ngTﬁE 2ichABCT;le§T,,§E
- NC(NCZ—]_) 2(1',,Z,,y,)—|— (NC—4)(NC2—]_) 3(‘T* Z*Jy*)

1\ [1+¢, 1494\ €, 2000 T2 T}
(7)( 5 B 5 >6 %TLJJ ]\ﬂi_rfE‘l(x*?Z*)y*)

2i fABCTCﬁ‘ngTﬁE 2ichABCT;le§T,,§E
- NC(NCZ—]_) 5(1‘—72—7y—)+ (NC—4)(NC2—]_) 6($—7Z—7y—)
<Bv|Bv(ﬁ—)aahv(o)bﬁ%(z—)w%(y—)d5|Bv> =
Opalae | 1 (149
N2 {5 (T)ﬁ [557}71(.1'7, 2y y*) + %57F2(£U,, 2y y*)
_Hﬁ—é'yF?) ("B—a R y—) + (%%—)57}74(1‘—7 2 y—)]

+1 (ﬂvL”VE)ﬂ) ; [(yuys)or Fs (@, 2, y-)

2 2 2

(%7#75)57176(‘%*’ R y*) + (%*7#75)57177(‘%*7 R y*)
+(Prh—yuv5) oy Fs (-, 2, y-)]}

ATATS |1 1+
iy {5 (557) Wb,z + Pt )

sy iz, 20, y-) + (Prh-) sy Fro(r—, 2,y )]

1/1+ 1+
5 —ﬁVL”%—ﬁ [(%75)57}713 (‘T—a Z—, ?J—)
2 2 2 B

(%7#75)571714(55*7 R y*) + (%*7#75)57}715(‘%*7 R y*)
+(h- )iy Fre (@, 2y )1} (6.89)

_|_

In total, 32 scalar shape functions appear. The result in terms of these scalar
shape functions for a generic case where ), # 0 is in Appendix B.3 where a total
of 20 scalar shape functions appear. If one takes the limit (), = 0 the number
reduces to 17. The fact that these functions are non-perturbative objects complicate
the analysis of these processes and an extraction of V,;, at the moment, seems
to be difficult in a model independent way. However, constrains given by RPI,
simplification by integrating by parts in the hadronic tensor and equation of motions
reduce the number of independent shape functions up to 4. Although, this reduction
only has been proven at tree level for the non-abelian case and to all orders for the
abelian case [70].

6.7 Factorization Theorem at 1/my
The analysis at subleading order is complicated since 36 shape functions appear
already at tree level(more may be needed beyond it). However, the structure of

factorization beyond leading order is clear:

e Express the correlators in terms of SCET currents and Lagrangians
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e Perform the hard factorization and the soft-collinear decoupling field redefini-
tion and factorize the matrix elements into:

(B|soft fields|B) x (€Q|collinear fields|(2)

e Performs the collinear integration.

e Parametrize shape Functions.

This yields the result:

N
9 —~ —~

my, mg A2 mg A4

1 _
ImT = ™ Z\H *:](0, & (5+al+,k+)1*5(24 (s, 01, ki)

Therefore, the differential decay rates can be written up to order 1/m; by:
dU o GR|Vigar - Vel [Hi x Ji (s4) * S(s4)+

1 ; -
me Z '« Ji(o, Y (S-l-a l-l-a k-l—) * 5(274)(84-7 l-l-a k-i—)
mp

where the upper indeces in S and .J mean the power suppresed or enhanced of the
soft and the jet function in comparision with the leading orden ones, the sum of the
indices sums 2 yielding a correction of order \? .

6.7.1 Beyond Tree Level

Beyond tree level a hard convolutions appear along the jet direction:
- Z/d§1d§2 Cd3n Y O (51,80 50) T (51,8, Sas ) (6.90)
k J

Although, this complicates the form of the factorization theorem in terms on con-
volution between the hard coefficients and the Jet functions the formalism studied
here applies and a similar factorization formula appears. Additional shape functions
appear coming from structure not considered in the tree level analysis,ie:

<BU|B ( )aa [iD;L,n” ing ] ( )cdhv(o)bﬂ|Bv> =

2Tb12Tc§ (14—}4) g#ﬂn ’UD ( )
Ba

N2—12 2 2

225 2) (540 132) oo

A complete proof of factorization beyond tree level including radiative corrections
and constrains of the shape functions by RPI invariance and equation of motion will
be presented in the near future. The goal is to reduce the number of shape functions
closed to the number that appear in the literature by using the approach of [63,67],
(BLM), since will allow the extraction of the V,;, with a good accuracy including
radiative corrections.
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6.8 Comparison with Previous Results

In contrast with the two matching steps presented above, QCD — SCET — HQET,
in the BLM approach [63,67] a single step is proposed, matching QCD onto HQET
directly. This matching can be only performed at tree level, but beyond tree level
HQET, alone, cannot absorb the collinear degrees of freedom that appear in this
kinematical region. Since the calculation present above is a tree level, it is worthwhile
to compare the methods since the number of shape functions at subleading order is
much lower at the BLM and, if possible, it is derisible to reduce the basis given in
Equation (6.89) to the BLM one.
Imaginary part of the correlator can be matched at leading order onto:

n7(e) = 5o [ do [Co@)On) + CEafedPral) + 0 (S52)] . (60)

N 2mg J mq

where Op(w) and P, o(w) are the two operators required at leading order in the twist
expansion:

Oo(w) = hyd(w +in - D)h, (6.92)

and the correspondent odd parity operator:
Poo(w) = hyYays(w + in - D)h, (6.93)

C;’s are Wilson coefficients. These, in principle, are obtained by calculating the
QCD correlator between quark states instead of the B-meson states and matching
with (6.91). This, can be done since the short distance coefficients do not depend
on non-perturbative physics of the external states. From the tree level correlator
calculated in (6.84) after doing the expansion of the effective heavy quark fields

by () = <1 + ﬂ) ho (), (6.94)

QmQ

simplifying the Dirac structure

1
hy T hy, = 3 Tr (T Py) hy hy — 3 Tr (75 Py T Py) hy v*75 hy (6.95)

and matching with (6.91), one gets for the Wilson coefficients:

Co(v, ¢, w) = gTr (P.THD) 6(1 = n - — w) (6.96)
Ceo(v,q,w) = —gTr (s"TI0) 6(1 —n - § — w) (6.97)
For a heavy meson flavor decay, the odd contribution cancels since the matrix ele-

ment of the axial vector current between B-meson states vanishes by parity invari-
ance.
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6.8.1 Subleading Order
At subleading order, the BLM basis of shape functions operators:
OY(w) = h, {Z'Du, §(in - D + w)} Tih,
0L — ip, [iD“, §(in - D + w)] Tih,

0¥ (wy,wy) = h 5(m D +w,) {iD",iD"}é(in - D + w)I"h,  (6.98)
oY Z(wl, wy) = ghyd(in - D 4 wo)G"8(in - D + w;)T'h,,

(w) = / d'y / dt e 'T (h, (0)Thy (t) L1 (y)) (6.99)

where I'" = (1, v,75) according to Equation (6.44) .
At subleading order the nonlocal OPE in (6.101) is

—2mq Im T'(q) Z/dw(] v, q, w) {0} (w)) (6.100)

A2
2mQ Z/dwldwg M U q,W1,W2)<Oi’#y(W1,W2) + (@) ( SLC2'D>

b

where the ¢ means a sum over all operators including the odd ones and the second line
represent all the subleading operators, which at most appear with two convolution
variables. The Wilson coefficients at tree level for B — X v can be found in [63,67]
and for the B — X, [ v in [67].

It is easy to reproduce this result from the QCD correlator, at tree level the
leading contribution is:

T(q) = / dig Qe (B(v)|T{BU(x) rt Sq(x,O)FbU(O)} 1B(v)) (6.101)
Expressing the first field and the propagator in momentum space and performing

the d'z integration. The propagator reads as:

1
Q-(Q+k)y +Qk_ +k?

54(Q) =@+ ¥ (6.102)

where k is the residual momenta of the heavy quark and scale as k = my(A\2%, A%, \?)
and @ is chosen to scale as Q@ = m;(A\?,1,0). Expanding the QCD fields in terms of
the effective ones, the correlator at leading order can be written as:

-
(Q+Fk)y

the tilde means the Fourier transform of the field. T = I'"%=T". Now, if one performs
the manipulation:

T(q) = / A4 ey (1) T (0) (6.103)

ho(k) = / dize*h, (z) = / dize e, (0) (6.104)
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integrating over x and k. The correlator can be expressed:

_ o 1
T(q) / A By (003 (ks + 04T 0) 5 (6.105)
performing the usual manipulations and taking the imaginary part reproduces Equa-
tion (6.51). In SCET this is reproduced by T¢// which only contains the soft and
collinear degrees of freedom. At tree level, the hard contribution is unity. One
can see that the Wilson coefficients, C', at the BLM corresponds at tree level with
the Jet function calculated in SCET. The subleading Wilson coefficients in terms
of the BLM operators at tree level can be obtained going beyond leading order in
the expansion of the propagator. The O3 operator is not reproduced in the SCET
derivation. This Operator is obtained from the QCD correlator, with no emission of
gluons, from the quadratic term of the light quark propagator. The corresponding
term of the correlator:
< 1 .
7(q) = - [ dih (k) ( CETR H,e) K2 Th, (0) (6.106)

Using Eq. (6.104) and inserting a delta function to avoid the square in the denomi-
nator:

ImT(q) = — / deyds o (0)5 (ks +i0.)0%0 (s + 02 )Thy (0) x

(s
. (Q+k)y +ie(Q+ s)4 + ie
= /dk+ds+C’3(s+,k+)u,,0§f"(k+,s+) (6.107)

one can extract Cf;l,(er, k) which agrees with the literature. However, it can be
written in terms of SCET operator directly using Eq. (6.104).

2
1 g[“/ 1
T(q) =— [ dk F* (k) ~— | —————— 6.108
(¢) / + (+)2 <(Q+k)+—|—16> ( )
where F* = h,(0)6(ky + i0,)0% h,(0). However, for the one gluon emission, one
will obtain Oj instead. In fact, if one restores gauge invariant in Eq.(6.13), applies
Eq. (6.104) one obtains
1
@ +ilp
Expanding this expression reproduces exactly the BLM result. The BLM seems
to be correct at tree level, but the four quark emission which was not consider
there. However, the SCET analysis works beyond tree level and new shape function
operators appear. By trivial manipulation, at tree level and to all order for an
abelian theory the new shape function operators can be written down in terms of
the BLM ones when convoluted with the Jet functions, but, still, it is not clear that
this holds beyond tree level for the non-abelian case and the basis required may
be larger that the one provided by BLM. Research work in this direction has to
be carry out. In the next Chapter, the consequences of studying reparametrization
invariance in the HQET framework for the BLM set of operators is studied.

T(q) = (B(v)|h,(O)T

Th, (0)|B(v)). (6.109)
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Assuming that the Basis given by the BLM approach is the correct one, leaving
apart the four quark state which was not consider in previous analyses, in this chap-
ter the consequences of studying the RPI in the end point region will be discussed.
The leading operators are (6.92,6.93):

(w+ (in - D))h, (7.1)
vO(w =+ (in - D))y s5hy (7.2)

Notice that P, = (1 +¢)/2 and s, = P,v,7P; form a basis in the space of (two-
component) spinors projected out by P,. At subleading order from 6.98:

O (w) = hy {(iD"),0(w + (in - D))} hy (7.3)
04 (w) = ihy [(iD"),6(w + (in - D))] hy

O (w1, ws) = hyd(wy + (in - D)) {iD" | iD" } §(w; + (in - D))h,

@) ) = i hy0(wy + (in- D)) [iDY , iD%]6(wi + (in - D))h,

Zy(wlaw2 =

for the “spin-independent” operators and from (6.98)

P (w) = hy {(iD"),6(w + (in - D))} v"y5h (7.4)
Py (w) = ihy [(iD"),0(w + (in - D))]7*v5ho

’Wa(wl, wy) = hyd(we + (in - D)) {iD" | iD" } §(wy + (in - D))y*vsh,
"wi,ws) = i hyd(wy + (in - D)) [iDY , iD%]6(wi + (in - D))y*yshs

for the “spin-dependent” ones. The (differential) rates are expressed in terms of
convolutions of w-dependent Wilson coefficients with forward matrix elements of

93
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these operators [61]
v = [ o (Cow)Onw) + CANEE (@))) (75)
> [ do (Co)Ofw) + Ol IR W)

i=1,2

S doos (G, 02)(02 w1, 2)

i=3,4

1
I
mgq

1
S
mq

+ Ci(i)m (w1, wa) (P! (wn, w2)>)
4.

where (..) denotes the forward matrix element with b-Hadron states and the ellipses
denote terms originating from time-ordered products with higher order terms of the
Lagrangian, which are not relevant for the current purpose.

The main result is that the number of unknown functions that appear at 1/mg
for the B’s transitions is reduced [77]. To do that first, the variation of the light-like
vectors will be given. Next, an invariant operator will be found, which is related
a leading order to the leading order shape function and its expansion will connect
subleading order operators with the leading one.

7.1 Reparametrization of the Shape Functions

In the following, the implications of reparametrization invariance for the non-local
light-cone operators will be discussed. Similar to the case of local operators, repa-
rametrization-invariant relates combinations of operators containing different orders
of the 1/m¢ expansion. To investigate this, first, it is necessary to compute the
variation of the light cone vectors under a reparametrization transformation, which
means that v is varied according to (2.29) and ¢ is kept fixed. Expressing the
light-cone vectors in terms of ¢ and v one gets
1 1

n= m[2(v ~q)v—gq|] and n= mq (7.6)

then, the variation 0 under reparametrization is

0
Srny, = aZM Ag =20, + 7, (7 A) (7.7)
_ on o
ORpMy = %ZAQ = —n,(n-A)
Using this, one can study the variation of
. - 1
@) = h,—Th, 7.8
o() w + (in - D) (7.8)

which is of order A, since w is consider to be of order O(Agep). The imaginary
part (by replacing w — w + i€) of this expression is either Oy(w) (for I' = P,) or
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P (w) (for T' = s* = P.y*y5Py). From (2.32) and (7.7) one obtains:

Or(in- D) = —mg(n-A)+ (n-A)(in- D)+ 2(iA - D) (7.9)
and thus
3On(w) = b8 T} o (7.10)
. 1 _ - ) 1
+hvm[m¢2(n -A)—(n-A)(in- D) —2(iA - D)]mfhv

+0[Agen/mp)

where terms of subleading order in 1/m¢ coming e.g., from the variation of the
heavy quark fields, have been omitted.

The first term vanishes due to (2.36) and the fact that I' is either Py or s, =
P, v,v5P;. The second term contains a piece of order Azgcz) (which is of the same
order as Oy(w) itself) coming from the variation of the covariant derivative, whereas
all the others terms in (7.10) are of higher order.

First, the variation of order A%, p will be discussed. This can be written as

. - 1 3
5R00((,U) = hvme(n . A)thv + O(AQC’D/mQ)
=~ (5500 ) mo(rn- ) + O /ma) (7.11)

which means that the O(AZp)-variation can be absorbed into a shift w — w —
mg(n - A).

In the following, it will be assumed that A does not have a light cone component,
i.e., it is only considered A+ for which one has (n - A+) = 0. Note that this also
implies (i - AY) = 0 due to (2.29). In this way (7.10) simplifies to

2 _jAL.py— 1

0500(w) = hy————— —
rOo(w) w+ (in - D) w+ (in- D)

Thy + O(Ngep/my) . (7.12)

The aim is to construct a reparametrization invariant, which is equal to Op(w)
to leading order. The variation of Og(w) is of order unity as given in (7.12), and a
subleading contribution is needed to compensate this variation. To construct this
invariant, one first notes that

0 ((m - D) + i(ml)?) =0 (7.13)

mqQ

which means that

1
<w + (m . D) + mLQ(Z'DJ_)Q) (7.14)

is an exact reparametrization invariant.
Furthermore, using reparametrization invariant fields,

S P

2m Am? (iD)*hy +---, dghy) =0 (7.15)
Q Q
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one can construct the reparametrization-invariant quantity

1 P
’ (w + (in- D) + mLQ(zDLV) Ehy (7.16)

where I' is again either P, or s, = Pyv,7:Py.

This formal expression can be expanded to obtain the reparametrization invari-
ant combination of operators appearing in the twist expansion of inclusive rates.
Truncating the expansion yields operators for which reparametrization invariance
holds to a certain order in the 1/mg expansion. One gets

1

R(0) =h,————Th 1
Bo ) = i D) " g o n D) P e D)
R - 1 1 - 1 1
R(2) = h, 7Fh - —hy— D+ L
0 () + (in- D) mQ "w+ (in - D)(Z ) w+ (in - D)
B + IN
(i )w+(m D)(ID )
hy 3 (iD* Th,
*am my " {(Z y > w+ (in- D)
1 1 1
—-h, D+ D+)? Th
5w (m-D)(Z )w+(m )(Z )w—l—(z’n D)
where it holds: "
ORRY = (AL, /ml™) (7.18)

For the case I' = P, one may rewrite R(() ) in terms of the Oy (w) and O3(wq,ws)

. do 1 do do Y
R () = / Ol0r) — / L 9% 0w ) (7.19)

w—o0o 2mg ) w—o1w — 0y

and replace w — w + i€ in (7.19) to identify

1 1 do do y
R[(]l)(w) = OU(W) + —Im ( / - ! - 2 gqug (0'1,0'2))

s 2mg w—+1e— oy w+1e— 0y

— Oplw) — —— /d01 dos (5(“’ —o) 0w UQ)) G508 (a1,05)  (7.20)

QmQ 01 — 09

to be (up to order Ag.p/mg) the reparametrization-invariant light-cone operator
involving the leading order operator Ogp(w).
Likewise, for I' = s* one gets

Q)" (w) = PP(w) (7.21)
1 S(w—01) — 0(w — 03) Vo
—%/d(ﬁ doy ( o1 — o giyp?f‘ (01,09)

for the spin-dependent reparametrization-invariant quantity up to order Aégc o/ mé.
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7.2 Subleading Operators

The other operators of subleading order are not related to Oy(w) or P§*(w). In order
to investigate the behavior of Of(w), the covariant derivative is splitted according
to

1
iD* = (i = n)(in - D) + D!} (7.22)

where the equation of motion for the heavy quark has been used, which implies
(in - D) = —(in - D) in Of(w) as well as in P{*(w). In the same way one can
consider O"(w) in which the ¢ function is replaced by 1/(w + (in - D)). According
to (7.22) and splitting O*(w) into O’f’H(w) and OAfL(w) one gets

A - 1
1% (= .
Ol,||(w) = (nﬂ — n“)hv(l’n . D)mrhv (723)
= (a* — o™ |\h.Th —why ——— T
(a* — n*) |h,Th, whvw i D) Iy

Taking the imaginary part (after w — w + i€) for I' = P, results in
Of’H(w) = (n* — a")why6(w + (in - D))h, = (n* — ") w Oy (w) (7.24)

which means that OiH
ments apply for the spin-dependent operator P{**(w), where Pﬁ‘a (w) is entirely given
in terms of P (w)

However, for the perpendicular pieces Of | (w) and P{(w) the reparametrization

variation is

(w) is completely given in terms of Oy(w). The same argu-

0701 L (w) = —2mAT Oy(w) + O(Agep/ma) (7.25)
0Pl (w) = —2mA () + O(Agen/ma) (7.26)

which means that this variation contains a contribution of the same order as the
operator itself, which would need to be compensated for by some other sublead-
ing operator. However, there is no such an operator, and so, one concludes that
reparametrization invariance requires that only O (w) and Pj*(w) contribute to a
physical quantity.

Using the same arguments for the case of Oy(w) and P5(w), one gets Oy (w) =
0 = Pl (w). However, unlike for Of(w) and P/**(w), a reparametrization transfor-

2|
mation yields

0705, (w) = O(Agep/me) (7.27)
05 Pyl (w) = O(Agen/ma) (7.28)

since these operators involve a commutator rather than an anticommutator, and
hence, they will in general contribute.

Finally, nothing new can be obtained for O} or P/ from reparametrization
invariance; these operators are related through reparametrization to higher order
terms, which have not yet been classified.
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7.3 Applications
One immediate consequence of the above result concerns the matching coefficients
for light cone operators. Since physical observables such as (differential) rates are

reparametrization invariants, the matching coefficients Cy(w) of Op(w) and the one
of 05" (w1, wsy) have to be related, such that

ar = / s (Co(w) (Ro(w)) + Doa(w) (PE())) (7.29)
- / 0 (Co(w) (O0()) + Doa(w)(F3(@)))
2;@ /dwC’g( )/d01 do, (6(w —01) — 0w — 02)> 95 (0% (01, 02))

01 — 02
1 dw—01)—d(w—0o Vo
“Smg deOa(w)/dal do ( ( ;3 — Ui 2)> G (PE (01, 02))

which can be compared to (7.5), yielding to the reparametrization-invariance relation
between the coefficients

o (00, 03) = —% / 4 Co(w) (‘5(“’ —o1) — 0w = “2)> gh  (7.30)

g1 — 02
1 Nw—o01) —6(w—0
C?Ei)wa(UI;OQ) = —§/dw(]&2(w) ( ( 01_3 — 0_2 2)> gjl, (731)

Relation (7.30) has been shown at tree level by explicit calculation for the case of
B — Xy in [61] and holds also for the case B — X, (i [60], but here, it is stated
that such a relation is a consequence of reparametrization invariance and thus, has
to hold including radiative corrections.

In particular, it must hold for the renormalization kernel of the subleading op-
erators 04 (w1, ws) and P§"*(wy,ws). While up to now, only the renormalization
kernel of the leading order term has been investigated [138] [139], a relation like
(7.30) has to relate the kernel of O§”(wq,ws) to the one of Og(w), and the kernel of
P (wy,ws) will be related to the one of P (w).

In this way, reparametrization invariance reduces the number of unknown func-
tions, parametrizing e.g. the photon spectrum of B — X,v to subleading order.
Following [63], the non-vanishing matrix elements leading to independent functions
are

(B(v)|Oo(w
(B(v)|05" (w1, wo

)B(v)) = 2mp f(w) (7.32)
)
(B(v)|P5o(w)
)
)

(v)) =
B(v)) = 2mp ga(wi,w2)g"”
B(v)) = 2mphi(w)e'] ,
(B(v)|Prg(wi,w2)|B(v)) = ( 170"
(B(v)|Or(w)|B(v))

B(v 2mB hg wl,w2)5p(ra[3 g, 9, v

B(v)) = 2mpt(w),

where &/ is

el = et Py, (7.33)
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and £"?% = 1. Furthermore, Or(w) is the contribution originating from the time-

ordered product of the leading-order operator Oy(w) with the 1/mg corrections to
the Lagrangian; the precise definition can be found in [63].
The contributions of g, and hy can be gathered into a function of a single variable

Go(o) = / du dey g (w1, w2) [5(0 — w:}z - i(; — wQ)] (7.34)
Hy(0) = /dwl dws ha(wr, wo) {5(0 - “2}3 - i(; - “2)] (7.35)

which is, at least for g9, not surprising, since it is a consequence of reparametrization
invariance. In [63], the conclusion was reached that the four universal functions
F(w) = f(w)+t(w)/(2mg), Ga(w), hi(w) and Hy(w) are needed to parametrize the
subleading twist contributions to heavy-to-light decays.

From reparametrization invariance, one concludes that the functions F(w) and
Go(w) have to appear always in the same combination, such that

1 1
is a single universal function. This has been confirmed at tree level by explicit
calculation, though this should hold to all orders in a,(mg).






Chapter 8

Conclusions

Heavy flavour physics, and in particular the physics of the bottom quark, has become
an excellent scenario for testing some parameters of the SM. Big efforts have been
made both experimentally and theoretically for the extraction of the V,;, and V.,
parameters of the CKM matrix.

The theoretical progress in this area is related with the establishment of two
effective theories HQET and SCET. These two, together with Heavy Quark Expan-
sion, settle the basis to study and control the QCD interaction in heavy to light
weak currents transitions.

In this thesis a short introduction of these theories has been presented in the
first two chapters in order to prepare the stage to consider several aspect of QCD
heavy to light weak currents. In the first place, heavy to light currents in the
limit in which the momentum of the light quark is small in comparison with the
mass of the heavy quark has been studied in detail in the Chapter 4 by means
of HQET and Heavy Quark Expansions. A complete next-to-leading analysis has
been presented including 1/m corrections for a general Dirac structure. Based on
a renormalons analysis the behaviour of the leading order Wilson coefficients and
ratios of B and B* mesons decays constants have been calculated assuming that
the cancellation of the renormalons ambiguity beyond the large-3, limit holds. Our
main result is the asymptotic behaviour of the perturbative series of the measurable
quantity fp-/fp. The large two-loop correction in this ratio was observed in [50];
here a model-independent result for higher orders which continue this trend has been
presented. The smallest contribution seems to be the 3-loop one, and it is about 4%
(though this small value is due to a partial cancellation between the leading order
and the next-to-leading one, and thus is not quite reliable). Therefore, calculation of
this 3-loop correction is meaningful (and it is actually possible, using the technique
of [132]), while the 4-loop calculation seems to be no necessary. The main results
are:

1. All Dirac structures for heavy to light currents can be reduced to the study of
two different cases; two currents with Spin 0 and two with Spin 1.

2. The coefficients By and Bg of the subleading operator Oy for the currents with
I' =1 and ¢ are related by (4.61). One-loop results for the generic I' (4.27)
and for the tensor current (4.91) are also new and were presented in [52].
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3. The heavy-quark symmetry relations [111] for B- and B*-meson matrix el-
ements of subleading operators get non-trivial radiative corrections (4.97),
(4.102).

4. An explicit renormalization group equation at the next to leading order for
the B and B* meson decay constants have been presented [52].

5. By an explicit calculation the cancellation of the IR renormalon of the leading
matching coefficient against the UV ones of the subleading operators has been
shown.

6. Behaviour of the Borel images of perturbative series near the leading singular-
ity u = 1 for the matching coefficients (5.25), (5.35) at the NLO, at the NNLO

for fL./fp- (5.39), and fz./f5 (5.43) and at the NNNLO for m/m (5.30), have
been found. The powers of % — u are exact; further corrections are suppressed
by positive integer powers of % — u.

7. The normalization factors Ny ;o cannot be found within this approach; they
are some unknown numbers of order unity. Comparison with the exact 3-
loop result from Appendix A suggests that the normalization factor Nj is
smaller that its large-3, value 1, namely, Ny ~ 0.27. This conclusion is in a
qualitative agreement with the estimate (5.33), especially if the problematic
3-loop correction in it is omitted.

8. Logarithmics branching is a new feature of this problem; it follows from the
fact that the anomalous dimensions matrices cannot be diagonalized.

9. Asymptotics of perturbative coefficients ¢z, at L > 1 for the matching coeffi-
cients (5.27), (5.36), and for the same ratios (5.31), (5.40), (5.44) have been
found. The powers of n = L — 1 are exact; further corrections are suppressed
by positive integer powers of 1/n. Logarithmic terms follow from the same
property of the anomalous dimensions.

Second, motivated by experimental constrains, the spectra of inclusive decays
for B meson has been studied in the end point region of the spectrum by a two
step matching up to second order in the parameter of the expansion. At leading
order, it was shown that the spectra can be written in terms of a convolution of a
hard, a jet, and a soft function. Here, it has been proven that the same pattern
beyond leading order holds. The fact that the subleading Lagrangians couple soft
and collinear degrees of freedom does not spoil the factorization theorem. Since the
leading order Lagrangian does not couple them, at every order of the expansion the
decoupling can be done at the cost of introducing in the soft function information
of the subleading collinear Lagrangians, obtaining at every order more complicated
shape functions. Up to order A2, 32 scalar shape functions appear at tree level.
The hadronic tensor has been calculated up to order \? at tree level in terms of
shape function operators Appendix B.2. Up to 20 shape functions appear when
written in terms of scalar shape functions Appendix B.3. However, some of them
may be related by equation of motions and reparametrization invariance constrains.
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The tree level result has been checked taking Feynman rules of the shape functions
operators and comparing with QCD, Appendix B.4. The formalism present here is
quite general and can be applied systematically to include subleading order terms
and include radiative corrections. The main results are:

1. The factorization formulae hold beyond leading order

2. In comparison with previous results up to three convolution variables are
needed to proof factorization up to A2. This is due to the insertion of two
subleading Lagrangians. In general at order A" it will necessary 2n + 1 inte-
gration variables.

3. New shape functions appear. In particular at order A\? appear subleading shape

functions suppress by a factor of A\*. This is due to the multipole expansion
of the soft fields.

4. At order \? enhanced jet functions appear up to order A\=2 accompanying the
extra suppress shape functions. This is due to the multipole expansion.

5. Four quark state subleading shape functions at order 1/m appear. Their
phenomenological relevance has to be analyzed.

These results have been compared with previous analysis of subleading shape func-
tions valid, only, at tree level done at the BLM. A tree level, when taking Feynman
rules of the shape function operators both results can give the right answer since
match to QCD. The basis of shape functions required by BLM is lower, and there-
fore it is desirable to reduce the set of functions close to the BLM one, with the
exception of the four quark state which has not been considered there. This can be
done at tree level and at all orders for an abelian theory [70], but for the real QCD
is need it more reseach.

Assuming that the set of shape functions present here collapses to the BLM one.
The consequences of considering reparametrization invariance for the subleading
shape functions have been studied within the HQET framework. Looking at the
first subleading terms, reparametrization relates the leading order shape function to
one of the subleading matrix elements, leading to identical matching coefficients for
the two contributions. As a practical consequence, the spectra of inclusive heavy-
to-light transitions are parametrized in terms of three unknown universal functions,
once the first subleading terms are included. This last conclusion has to be revised
in the SCET framework.

The appearance of the universal functions opens the possibility of measuring V,,
in a model independent way including subleading terms. The idea is to measure the
universal shape function from the experiment in a process like B — X v and use
this information in B — X,7I[, to obtain the V,, parameter. Research work in this
direction touches the phenomenological applications of SCET, which are the topic
of ongoing studies.






Appendix A

The Perturbative Series for m/m

The ratio of the on-shell mass m and the renormalization-group invariant MS mass

m is the series ;
Qg
m_ 14 Z ( (1o )

in the n-flavour as(po) (1o = €~>/®m). Using the 3-loop relation [132,140] ! between
m and m(m) (omitting the m, effect known at two loops [140]) together with the

4-loop S-function [142] and the mass anomalous dimension [143,144], as well as [145,
146]

as(m) = alg(m)

1 ol (m) 2
14+ = — 39 To [ =2 B

we obtain

1
=CF {— — (SCp +8Cy) 7 +3(11CF + 7Ca) CA] :
0 0

C2 = OF{(W2 + %) By + (—6C3 — 8n%log2 + 5% + 12_1) Cr
+ (12C3 +4n%log2 — 5% + &) Cy+ (472 _ 4_6) Ty
+ [+%C§ + (66¢; — 182) CrCa + (—66¢; + 1) CF

1

Po
+ 1% (135002 + 504C F?C 4y — 3948CC% — 483C%

500 T+ 1600AT ]

1
— 35200k Ca T — 2240C3T5) =

0

% ( 1502 —5CrCH + 7CA) (110}:‘ + 7CA) OA

0

14
0

2 C4
+ %OF (110F+7OA) —},

!The three-loop coefficient in it had been found numerically [141] before the analytical result
[132] was obtained.
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C3 = C’F{(12<3 + 7T2 + %)
[(128a4 + 100G + $log* 2 + 272 log? 2 — 327> log 2
— 2t U2y 32—3)%
+ (—64a4 —61(3 — %log4 2 — %79 log® 2 + 1672 log 2
+ §7T4 + 13—37r2 + %?’)CA
+ (48C3 - —)TF] 8!
+ (768a4 + 80Cs 4 4725 + 305Cs + 321og* 2 — 3272 log? 2
— 5087 log 2 + 4r* + x4 T08) 2
+ (—384a4 —200¢5 + 767r2C3 +10¢s — 1610g" 2 + 167 log? 2
+ Gt log2 — gnt — Hrt — —73229)%0/1
+ (3()(5 _ 517r243 — 150G — Br2log2 + St 4 1052 4 431)0A
+ (% 64 2log 2 — 8967r2 log2 — %74 + %ﬂj — %)CFTF
+ (406 — 87°G — 421Gy — 2 log” 2 — 1887 log 2
+ Bt 4 5252 w)cATF
b (-S4 Y T2 4 4(6G, + T)Crr
[( 67¢; + 60m2log 2 — Br? — @)03

+ ( 440Cs + 111¢3 + 3472 log 2 + 617r2 + 112082869)02 Ca
+ (220g5 —201¢; — 3272 log 2 + 6177 + 4175)6}03
+ (2206 + 175, + Z32)

(307r + 40) C? wlr + ( 8800 _ 3272 + @)C’FCATF
(STC + %) OATF _ %CFTﬁ 32000 Tz

9 1

Bo

+ |-l (—693c3 — 2647 log 2 + 1657° + 222 ) C1.C4

64(C3 — 1)CFFCA - 16(21<3 - 2)CFA:|

+ (428G + 847° 10g 2 — 1057° - 49189)OFCA (<6166, + 7))

—125C3 Ty + (1827% — 1955) CRC4 Ty + (8477 — 52 ) CrCA T
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— BT+ URCRCATE + BRCTE + (— 526 + B2 CppCh

+(%C3—%)8>CFACA+< o1, +80)CAA] 1

+ [~ HECE + 1656050 + (21786 + B2) CACH

+ (—792@, - 13;223)0%0;’; + (—1386<3 - %)CFCZ“ +4Ch

1
+ 1100C3C Ty + 20 C2C2 Ty — 280CHCH Ty — %UCATF]
0
+ & (135()0; — 2664C3C 4 — 6140C%C% + 637CC3 + 7840
C
35200204 Tr — 22400F03TF) (11Cy + 7C) =
02
+ 2Ck (—15C% + 6CC 4 + 14C%) (11Cx + 7C,)* —2
0
9,2 3 Cfl
+ 207 (11Cr +7Ca)° =4,
0
where a4 — Liy (%), and
dabcd dabcd dabcd dabcd dabcd dabcd
C — F F , C — F A , C —
FF T]%NA FA TFNA AA = NA
(see notations in [142,144]). For SU(N,) with Tp = 1,
N* —6N2 +18 N.(N? +6) _ N2(NZ -+ 36)

CFF = CFA =

24N2 24 24






Appendix B

Hadronic Tensor up to O(\?)

B.1 Tree Level Jet Functions

In this section, the required set of Jet Functions is presented:

1

Q) = g
TR+, Q1) = —8&” Jo(Q4,Q 1)

(@000 = Bn(Q. Q)

JHQn Q1) = 55— (@ Q)

BHQn Q) = 55— (@ Q)

JHQL QA Q) = 50— h(QL QU@ Q1)

B.2 Shape Function operators

The correlator in terms of the shape functions operators is presented:

B.2.1 Order())

(ALt (40)
L. For Jyy " (z)

T(0) = 5 [ 52 08tk 7u((Q = 51 < To | Por

2. Jiy () g

4

1
Toq) =5 [ e S0 @~ k) % Tr {mrf%m;
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3. Jiy () g
7o) = [ b 500 Q- 1)) x T [P B By
4. T (@)Lt () Jg
Tq) = 5 [ dhi ds. O (k)0
(@ -BT(@- ) x T [Pt (B3
B.2.2 Order()\?)
T3 (@) T39(0)
T(vq) = %l/d8+ Of (s )n4u 17 ((Q — 5)+)%Tr [PJIT?/%_F] (B.6)
Ty (@) J0(0)
7o) = 1 [ dse P 5@ - )T | P ] (B.7)
T (@) J50(0)
1) =5 [ as. o @ -m < [prer]
Ty (@) T5(0)
T = 5 [as B @m0 < [, | o)
Ty (@) J59(0)
7o) = [ 5 085 I (@~ 1) x e [Pt Bl for) (B
Ty (@)753(0)
7o) = [ 5 085 I (@~ k) x e [Pt iarfir) (B
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Ty (@) T35 (0)

(2)
I
Tog) = 5 [ ds 60 2@ =BG x T [Pt B ,r| B

T @) L8 (y) I3

/ ds by K2 (54, k) n” JE((Q = 5)4, (Q — )4, Q1)

Tr [P+ N ¢2 ¢2+ 72‘ F} (B.13)

wlb—*

T(q) =

T (@£ () 73"

T(0) = = [ dsidhe Ol (s k) JEQ = ) J(Q ~ )2)
pifhe, - r} (B.14)

Tr [P+ —*pr 5

T(q) = 5 [ dsedby Ofy (s ki) A((Q ~ B))IE(@Q ~ B)2)

x Tr [P+F“/L7_M/%+F] (B.15)

T (@) £ () £ (2) 139

(54, by, l1)n” n® Tr [P Fﬂ; :|5a05d65fb

1
T(vq) = 5 / dsydkydly Sioel
(B.16)

JO(Q - 5)+)J§a((Q - k)+, (Q - l)+)
Tt @) L8 () T

T0) = 5 [ dsidis Ofy (e bt (@ = 5))IE(Q = B)2)

x Tr {PJT%‘F] (B.17)
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Ty (@)L () T
-1
1) = [ dsedbe Gl (s bant (@ = 5)) T4 (Q = )2)

Tt @) L8 () T

T(q) = 1

T (@) L8] () T

T(vq) =

B.3 Scalar Shape Functions

Ty @75 (0)

1

xTr |:P_|_

T() = &

Ty @)} (0)

1(0) = § [ ds (o) %Il )T | P ]

Ty @) 5(0)

T(vq) =

rif-

€
+A3(3+)%Tr

Tr {PJ”%P]

[ s 0, (51, k) TEQ = 90 7@ ~ 1))

X Tr {PJ*%MWZF]

/ dsydhy O (51, k) Jo((Q — 5):)J((Q — k)
o e

[ TP
92 fYJ_’YLp 2 9

[ s (sl + Aa(s )il E(Q - 90 G

Tr [Pﬂ“”%‘l“]

v

o [ s (oo + As(oit T | P o

1

[smr*%‘r]) 7@ 5).)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
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I 0
T(vg) = 4_—7; ds, ((A (5. )07 + AL (1) ) Tr {pm%r%]
Ay (o) 2T [sir“%m]) M@-9, B2y
T (@) J0(0)
Te) = 3 [ s, s )@ )0 B2 o] ea)
T (@) J3)(0)
Ton) = 3 [ s, st 8@ pom [t er] oo
Ty (@) J3)(0)
7o) = 5 [ s, 56 (@0 2T [P pr| (B
T @)L () I3
1(0) = 5 [ ds: koD (52 k) % 197((Q — 5120 (@~ 1))

Tr [P+ rf %‘ r] (B.28)

1

T(vq) = 5 / sy B0 oCy (5., k) E(Q — ) ) T(Q — ).)

Tr |:SLFT %; %0%2 r] (B.29)

L

/ Bs.dhy 2 n_0Cy (5.4, K Jo((Q — 9))717((@ — F).)

Tr [erm Vi, ¢2+ ] (B.30)



Appendiz B. Hadronic Tensor up to O(\?)

1 By(si kily)  Bs(sy,kp,l
T(vq) = Z/ds+dk+dl+ <E1(s+,k+,l+)+ 2(5+’2 nile) | 3(8+,2 = +)> "

Tr [ar“%r] B 0 02 ((Q — ) (Q ~ K)o (Q — 1)) (B3

T(0q) = - [ dsiidhy Cafs k(@ = 5))T(Q — )

Tr {PJT %r] (B.32)
ooy (@) L8 () T3
—1 I "
Tlq) = 5 [ dssdie %0 oDa(ss, k) 1@ — 5 T((@ - 1))
Tr [PJ“*%F] (B.33)
Ty @)L () T
. 1
T0) = 5 [ dsidby B Cols, k)@ — 5))TE(Q - b))
Tr |:S(J;F 7/; fprfyLF] (B.34)
o) (@) L8 () 1)
1
T0) = § [ dsidhe BColsr b 2@~ ) )T(Q ~ B)2)
Tr {S;FT %—npr] 4 (B.35)

T (@) Lo (1) LEN(2) T

] N?Z -1
T('Uq) = —/d8+dk+dl+ <W <F2(8+;k+,l+)Tr |:P+FT% 'YL%’YJ—%
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Fs(54, by, 1) Tr |:SLFT¢ ’Yﬂé'Yu'YWL% ]) +
Wl_l) <F10(3+,k+,l+)Tr [P+FT1/L—7HML% ]
+Fi3(s4, ke, 1) Tr [S” FT%Z Vs Va 2F]
Fiy(sy, ks, 1) Tr {SHPT% VHAW%VL% }))
Jo((Q = 5)1) Jo((Q — k) ) Jo((Q — (s +k+1))4)

B.4 Tensor Current at Tree Level

B.4.1 No Gluons Emission

TP ()74 (0)

7o) =T r k(@ + 1)) 22

TSP ()74 (0)

T(6) = 5 PRI ((Q + 1))
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T () 54 (0)
T(0) = P10, T IE(Q + 1)) 2 (B.43
B.4.2 One Gluon Emission
T () 749 (o)
— a _* T%— p QLp
T(q) = —gT% THETI(Q + k) 4) 52 (B.44)
2 Q-
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B.4.3 Two Gluon Emission
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T (@) L8 () T
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B.5 Radiative Decay, (), =0

B.5.1 No Gluons
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T(q) =

T(q) =g

B.5.3 Two Gluons
T @) I (*00)

T(q) = %gQ{T“,T”}FT%FQ €, (mb — L k)+> (B.76)
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