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A Rayleigh–Schrödinger many-body perturbation theory (MBPT) approach is introduced by making 
use of a particle-number-breaking Bogoliubov reference state to tackle (near-)degenerate open-shell 
fermionic systems. By choosing a reference state that solves the Hartree–Fock–Bogoliubov variational 
problem, the approach reduces to the well-tested Møller–Plesset, i.e., Hartree–Fock based, MBPT when 
applied to closed-shell systems. Due to its algorithmic simplicity, the newly developed framework 
provides a computationally simple yet accurate alternative to state-of-the-art non-perturbative many-
body approaches. At the price of working in the quasi-particle basis associated with a single-particle 
basis of sufficient size, the computational scaling of the method is independent of the particle number. 
This paper presents the first realistic applications of the method ranging from the oxygen to the nickel 
isotopic chains on the basis of a modern nuclear Hamiltonian derived from chiral effective field theory.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Over the past two decades the ab initio description of nuclear 
structure properties has extended significantly both with respect 
to accessible mass numbers and to the open-shell character of 
the targeted system. Simplest approaches applicable to closed-shell 
systems start from a single-determinantal, e.g., Hartree–Fock (HF), 
reference state and account for dynamic correlations via the inclu-
sion of particle–hole excitations on top of it. In this context, a 
plethora of many-body frameworks have been developed to de-
scribe medium-mass systems, e.g., many-body perturbation the-
ory (MBPT) [1–3], coupled-cluster (CC) theory [4–8], self-consistent 
Green’s functions (SCGF) theory [9–11] or the in-medium similar-
ity renormalization group (IMSRG) approach [12–15]. For doubly 
closed-shell nuclei, all of these methods agree well with quasi-
exact no-core shell model (NCSM) calculations for ground-state 
energies of nuclei in the A ∼ 20 regime [16].

However, when going away from nuclear shell closures, the 
single-determinantal description becomes qualitatively wrong be-
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cause several determinants contribute strongly to a configuration 
interaction (CI) expansion, requiring a proper treatment of static 
correlations. In order to overcome this drawback, more general 
reference states are required, i.e., either multi-determinantal or 
symmetry-broken reference states. The latter were first used in 
nuclear structure through the Gorkov extension of SCGF (GSCGF) 
that relies on a particle-number-broken Hartree–Fock–Bogoliubov 
(HFB) vacuum to describe singly-open-shell nuclei [17,18]. A sim-
ilar extension led to designing the Bogoliubov CC formalism, al-
though only proof-of-principle calculations limited to small model 
spaces and two-body forces have actually been performed so 
far [19]. In parallel, multi-determinantal reference states were suc-
cessfully applied in the multi-reference extension of the IMSRG 
(MR-IMSRG) [20]. The first MR-IMSRG applications used particle-
number-projected (PNP) HFB states [16,20,21]. More recently, so-
lutions of no-core shell model (NCSM) calculations [22–24] in 
a small model space were employed, leading to the so-called 
in-medium no-core shell model (IM-NCSM) [25], and proof-of-
principle calculations with angular-momentum projected HFB 
states were presented in [26]. With the revival of perturbative 
techniques in nuclear structure theory [1,2] the concept of multi-
determinantal reference states inspired the development of a MBPT 
variant based on a NCSM reference state in a small model space, 
yielding the perturbatively-improved no-core shell model (NCSM-
PT). This method has allowed the first description of medium-mass 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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nuclei with even and odd mass numbers on an equal footing [3]. 
In general the use of a perturbative framework is computationally 
advantageous since it obviates the storage of large tensors like, e.g., 
cluster amplitudes in CC theory or the flowing Hamiltonian in IM-
SRG, and, furthermore, does not require a solution of a numerically 
more challenging non-linear set of equations.

Even though pioneering work based on symmetry-broken refer-
ence states was done within the GSCGF framework, similar ideas 
have scarcely been employed in ab initio calculations. One reason 
is that symmetry breaking cannot occur in finite quantum systems, 
hence the explicitly broken symmetry must eventually be restored, 
which has been a long-standing challenge already on a formal 
level. While the design of a proper symmetry-restoration protocol 
remains yet to be formulated within the GSCGF framework, full-
fledged symmetry-broken and -restored MBPT and CC formalisms 
have been recently designed to consistently restore the symme-
try at any truncation order [27,28]. The spin-projected CC version 
of this formalism [27] has been transferred and implemented suc-
cessfully on the Hubbard model and on molecule dissociation [29].

While the full details of the newly derived Bogoliubov many-
body perturbation theory (BMBPT) formalism will be described in 
a forthcoming publication [30], its first full-fledged implementa-
tion in large model spaces with an approximate inclusion of three-
body forces via normal-ordering techniques is presented in this let-
ter. We investigate ground-state energies along complete medium-
mass isotopic chains with further emphasis on two-neutron sep-
aration energies to monitor footprints of nuclear shell closures. 
Whenever possible, BMBPT calculations are benchmarked against 
well-established non-perturbative IT-NCSM, GSCGF, and MR-IMSRG 
results for the same input Hamiltonian.

2. Many-body formalism

Bogoliubov MBPT is an expansion of the exact A-body ground-
state energy in perturbations around a (possibly) symmetry-
breaking reference state. In semi-magic nuclei, the relevant sym-
metry is the U (1) global gauge symmetry associated with particle 
number conservation. Breaking U (1) symmetry permits to effi-
ciently deal with Cooper pair’s instability associated with the su-
perfluid character of open-shell nuclei. The degeneracy of a Slater 
determinant with respect to particle–hole excitations is lifted via 
the use of a Bogoliubov reference state and commuted into a de-
generacy with respect to symmetry transformations of the group. 
As a consequence, the ill-defined (i.e. singular) expansion of ex-
act quantities with respect to a Slater determinant is replaced by 
a well-behaved one.1

Eventually, the degeneracy with respect to U (1) transforma-
tions must also be lifted by restoring the symmetry. However, 
BMBPT only restores the symmetry in the limit of an all-order re-
summation, and, therefore retains a symmetry contamination at 
any finite order. While BMBPT is presently used as a stand-alone 
approach it eventually provides the first step towards the imple-
mentation of the particle-number projected BMBPT (PNP-BMBPT) 
which exactly restores good particle number at any truncation or-
der [28]. While the present focus is on BMBPT, the next step will 
consist of implementing PNP-BMBPT.

The formalism is based on the introduction of the Bogoliubov 
reference state

|�〉 ≡ C
∏

k

βk|0〉 , (1)

1 Extending the treatment to doubly open-shell nuclei also requires a treatment 
of the SU (2) symmetry associated with the conservation of angular momentum.
where C is a complex normalization constant and |0〉 denotes the 
physical vacuum. The Bogoliubov state is a vacuum for the quasi-
particle operators β†

k , βk that are obtained from the creation and 
annihilation operators of our chosen single-particle basis via the 
transformation

βk ≡
∑

p

U∗
pkcp + V ∗

pkc†
p , (2a)

β
†
k ≡

∑
p

U pkc†
p + V pkcp . (2b)

While other choices are possible [30], |�〉 is presently obtained 
by solving the Hartree–Fock–Bogoliubov variational problem. The 
transformation matrices (U , V ) consist of the eigenvectors of the 
HFB eigenvalue equation [31], and the quasi-particle energies 
{Ek > 0} are the corresponding eigenvalues. This fixes the refer-
ence state and corresponds to the Møller–Plesset implementation 
of the otherwise more general Rayleigh–Schrödinger BMBPT for-
malism. We note that only like-particle pairing is included at the 
HFB level and, thus, proton–neutron pairing is absent from the for-
malism.

While the HFB reference state is not an eigenstate of the 
particle-number operator2 A, the expectation value of A is con-
strained to match the number of particles A0 of the targeted sys-
tem. It is enforced in the HFB iteration via the use of a Lagrange 
multiplier λ in the minimization of the grand potential � ≡ H −λA
expectation value. In actual applications, separate Lagrange mul-
tipliers are used to constrain proton and neutron numbers sepa-
rately.

In the next step, the grand potential � is normal ordered with 
respect to the HFB reference state

� =
�[0]︷︸︸︷
�00 +

�[2]︷ ︸︸ ︷
�20 + �11 + �02

+ �40 + �31 + �22 + �13 + �04︸ ︷︷ ︸
�[4]

, (3)

where �i j denotes the normal-ordered component involving i ( j) 
quasi-particle creation (annihilation) operators, e.g.,

�31 ≡ 1

3!
∑

k1k2k3k4

�31
k1k2k3k4

β
†
k1

β
†
k2

β
†
k3

βk4 . (4)

Thus, �00 is the expectation value of � in |�〉, �[2] is an effec-
tive, i.e., normal-ordered, one-body operator and �[4] is an ef-
fective two-body one. Working in the normal-ordered two-body 
approximation (NO2B) [32] in the quasi-particle representation,3

the residual three-body part �[6] is presently discarded. Details on 
the normal-ordering procedure as well as expressions of the ma-
trix elements of each operator �i j in terms of the original matrix 
elements of the Hamiltonian and of the (U , V ) matrices can be 
found in Ref. [19].

To set up the perturbation theory, the Hamiltonian (i.e. grand 
potential) must be partitioned into an one-body unperturbed part 
�0 and a residual part �1, i.e.,

� = �0 + �1 . (5)

2 In practice the constraint has to be done for neutron and proton-number oper-
ators N and Z , respectively by introducing two separate chemical potentials λN and 
λZ . In our formalism A stands for either one of them.

3 We emphasize that the NO2B approximation does not break particle number 
itself, i.e., the truncated grand potential does commute with A.
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Using a HFB reference state, � appearing in Eq. 3 is already nat-
urally partitioned given that �20 = �02 = 0 and that �11 is in 
diagonal form, i.e.,

�0 ≡ �00 +
∑

k

Ekβ
†
kβk , (6a)

�1 ≡ �40 + �31 + �22 + �13 + �04 , (6b)

with Ek > 0 for all k. Introducing many-body states containing 
even numbers of quasi-particle excitations of the vacuum

|�k1k2...〉 ≡ β
†
k1

β
†
k2

. . . |�〉 , (7)

the unperturbed system is fully characterized by its complete set 
of orthonormal eigenstates in Fock space

�0 |�〉 = �00 |�〉 , (8a)

�0 |�k1k2...〉 =
[
�00 + Ek1k2...

]
|�k1k2...〉 , (8b)

where the strict positivity of unperturbed excitations Ek1k2... ≡
Ek1 + Ek2 + . . . characterizes the lifting of the particle–hole degen-
eracy authorized by the spontaneous breaking of U (1) symmetry 
in open-shell nuclei at the mean-field level.

With these ingredients at hand, the perturbation theory can 
be entirely worked out algebraically and/or diagrammatically. This 
can equally be done on the basis of a (imaginary) time-dependent 
formalism or of a time-independent formalism. While the former 
framework leads to working with Feynman (time-dependent) di-
agrams, the latter makes direct use of Goldstone (time-ordered) 
diagrams. The complete Rayleigh–Schrödinger BMBPT formalism, 
including the automatic generation and evaluation of all possible 
diagrams appearing at an arbitrary order n on the basis of 2N and 
full 3N interactions will be presented elsewhere [30,33].

The BMBPT expression for the grand potential can be written in 
compact form as a Goldstone-like formula

E0 − λA0 = 〈�|�
∞∑

k=0

( 1

�00 − �1
�1

)k−1|�〉c . (9)

The lower index c indicates that only connected diagrams con-
tribute to the expansion. Thus, BMBPT is a size-extensive many-
body framework that properly scales with system size. As a result 
of Wick’s theorem, the first three orders contribute to Eq. 9 ac-
cording to

E(1)
0 − λA(1)

0 = +�00 ,

E(2)
0 − λA(2)

0 = − 1

24

∑
k1k2k3k4

�40
k1k2k3k4

�04
k1k2k3k4

Ek1k2k3k4

,

E(3)
0 − λA(3)

0 = +1

8

∑
k1k2k3
k4k5k6

�40
k1k2k3k4

�22
k5k6k2k3

�04
k1k5k6k4

Ek1k2k3k4 Ek1k5k6k4

.

The lifting of the degeneracy with respect to particle–hole exci-
tations in open-shell nuclei implies that the energy denomina-
tors in the perturbative corrections are non-singular and well be-
haved. Indeed, the HFB quasi-particle energies are bounded from 
below by the superfluid pairing gap at the Fermi energy, i.e., 
Mink{Ek} ≥ �F > 0. This would not be true in standard MBPT 
based on a Slater determinant reference state where energy de-
nominators associated with particle–hole excitations within the 
open shell would be zero. Of course, BMBPT does strictly reduce to 
standard MBPT in a closed-shell system [30]. In particular, the sin-
gle third-order diagram whose algebraic expression is given above 
generates the three, i.e., particle–particle, hole–hole and particle–
hole, third-order HF-MBPT diagrams [30]. This reduction of the 
number of diagrams at any order n is a consequence of working 
in a quasi-particle representation that does not distinguish particle 
and hole states. Conversely, all summations over quasi-particle la-
bels run over the entire dimension of the one-body Hilbert space, 
which significantly increases the computational cost compared to 
standard MBPT. In any case, low-order BMBPT corrections only 
induce low polynomial scaling with respect to quasi-particle sum-
mation and do not suffer from the storage of large tensors as more 
sophisticated all-order many-body approaches such as CC or IM-
SRG.

As Eq. (9) stipulates, the extraction of the binding energy at a 
given order n requires the subtraction of the Lagrange term com-
puted at the same order. Computing A(n)

0 can be done straightfor-
wardly by replacing the leftmost operator � by A in Eq. (9) [30]. 
As the reference state is constrained to have the correct parti-
cle number on average, it implies that A(1)

0 = A0. Working with a 
HFB reference state, it can be shown that A(2)

0 = 0 due to the fact 
that �20 = �02 = 0. Consequently, the first correction to the aver-
age particle number appears at third order such that it becomes 
A0 + A(3)

0 	= A0, i.e., it does not match the particle number of the 
targeted system. This feature requires an iterative BMBPT scheme 
in order for the particle number to be correct at order n ≥ 3. To do 
so, one needs to rerun the HFB calculation with a shifted chemical 
potential such that, through a series of iterations, one eventually 
obtains, e.g., A(1)

0 + A(3)
0 = A0. Such an iterative procedure has 

not been implemented yet in the third-order results shown below, 
hence they contain an associated contamination �E(3)

0 .4

3. Hamiltonian

The nuclear Hamiltonian used in this work is derived from chi-
ral effective field theory. It combines a chiral two-nucleon (2N) 
interaction at next-to-next-to-next-to leading order with a cutoff 
of �2N = 500 MeV [35] with a three-nucleon (3N) interaction5 at 
next-to-next-to leading order with a local regulator based on a cut-
off of �3N = 400 MeV [32,36].

The Hamiltonian is further softened using a Similarity Renor-
malization Group (SRG) transformation with a flow parameter α =
0.08 fm4 [23,37–40]. This transformation induces many-nucleon 
forces that are included consistently up to the 3N level, i.e., chi-
ral and induced many-body forces beyond that level are neglected. 
SRG-evolved Hamiltonians have already been used in a number of 
medium-mass calculations and have been shown to be soft enough 
to be used successfully in MBPT calculations [1].

4. Low-order results in mid-mass nuclei

All calculations are performed using the eigenbasis of a spher-
ical harmonic oscillator with frequency6 h̄� = 20 MeV. One- and 
two-body operators are represented using all states up to emax =
(2n + l)max = 12. Three-body matrix elements on the other hand 
only use a subset of the triplets built from the truncated basis such 
that their corresponding excitations are limited to E3max = 14. For 

4 We subsequently denote preliminary third-order BMBPT results without 
particle-number adjustment by BMBPT(3∗) to indicate this contamination.

5 We still use the original value of cD , although it was recently found that this 
does not reproduce the triton half-life. This interaction still provides a valuable 
starting point for the comparison of many-body approaches.

6 The chosen value was confirmed to be close to the variational minimum from 
IMSRG calculations. A systematic study of variations of the oscillator frequency in 
the BMBPT framework is postponed to a future publication [30].
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Fig. 1. (Color online) Systematics along O, Ca and Ni isotopic chains: (a) absolute binding energy, (b) two-neutron separation energy, (c) neutron-number dispersion, (d) per-
turbative correction to the average neutron number. Plot markers correspond to HFB ( ), second-order BMBPT ( ) and third-order BMBPT ( ). Experimental values are 
shown as black bars [34].
the Hamiltonian employed here, this has proven sufficient up to 
heavy nickel isotopes [41].

Calculations are presently restricted to even–even semi-magic 
nuclear ground states characterized by J	 = 0+ . This enables the 
use of angular-momentum coupling techniques to solve the HFB 
equations and compute the perturbative corrections. Furthermore, 
perturbative corrections displayed above are recast into traces 
over matrix products that can be evaluated economically using 
BLAS routines. This allows a very efficient evaluation of low-order 
BMBPT corrections. More details, including the J -scheme expres-
sions for the normal-ordered grand potential and of the perturba-
tive corrections will be presented in a future publication [30].

Fig. 1 provides systematic results of first-, second- and (prelim-
inary) third-order BMBPT calculations along O, Ca, and Ni isotopic 
chains. The top panel displaying absolute binding energies demon-
strates that the bulk of dynamic correlations is obtained at second 
order [1,3]. In closed-shell, sub-closed or slightly paired open-
shell nuclei, the third-order contribution is consistently suppressed 
compared to second order and indicates a gentle behavior of low-
order BMBPT corrections. The computation of fourth-order contri-
butions will further assess the convergence behavior of low-order 
BMBPT contributions based on SRG-transformed Hamiltonians in 
the future.

While being informative, our preliminary third-order calcula-
tions are clearly contaminated in open-shell nuclei for which the 
correction to the particle number is significant, e.g., in 42–46Ca and 
50–54Ni. We observe that the spurious arches in the binding energy 
directly reflect the behavior of A(3)

0 displayed in panel (d) of Fig. 1. 
It is consistent with the fact that the contaminating term is noth-
ing but �E(3)

0 ≡ λA(3)
0 , leading to an overbinding whenever A(3)

0
leads to an excess of particles as it is systematically the case here. 
The contamination �E(3)
0 is presently exaggerated by the fact that 

the employed Hamiltonian overbinds mid-mass nuclei [41], thus 
making the neutron chemical potential artificially large and nega-
tive. In any case, the iterative readjustment of the average particle 
number at the working order n will eventually eliminate the spu-
rious arches in the binding energy.

Panel (b) of Fig. 1 displays two-neutron separation ener-
gies. While results are already qualitatively correct at first order, 
second-order corrections are non-negligible and tend to shrink 
magic gaps. The behavior is overall very satisfactory. Panel (c) 
shows the neutron-number dispersion σ ≡ √〈A2〉 − 〈A〉2, which 
typically grows with the nuclear mass. While the dispersion is 
bound to go to zero in the limit of an all-order resummation, 
the second-order contribution does not decrease it compared to 
HFB. This indicates the merit of exactly restoring U (1) symme-
try to complement low-order dynamic correlations with non-
perturbative static ones, as in projected Bogoliubov CC [28] or 
MR-IMSRG [20,26]. Because the dispersion changes abruptly at 
(sub-)shell closures, restoring good particle number will mostly 
affect differential quantities, e.g., two-neutron separation energies, 
around (sub-)shell closures.

Fig. 2 benchmarks second-order BMPBT results against well-
established many-body approaches that are partially or fully non-
perturbative. The Hamiltonian is the same in all calculations and 
numerical details associated with the basis size and the treatment 
of three-body forces are identical whenever possible or at least 
consistent. The most advanced reference, only available for O iso-
topes, is the importance-truncated no-core shell model (IT-NCSM) 
using a natural-orbital single-particle basis [42]. Results from the 
NCSM-PT to second order are also available along the O isotopic 
chain [3]. Covering the same range of mid-mass nuclei as BMBPT, 
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Fig. 2. Absolute ground-state binding energies (top) and two-neutron separation energies (bottom) along O, Ca and Ni isotopic chains. Results are displayed for second-order 
BMBPT ( ), second-order NCSM-PT ( ), large-scale IT-NCSM ( ), GSCGF-ADC(2) ( ), MR-IMSRG(2) ( ) and CR-CC(2,3) ( ). Experimental value are shown as black bars [34].
MR-IMSRG and GSCGF calculations are systematically displayed. 
While the IMSRG flow is truncated at the two-body level, i.e., 
yielding the IMSRG(2) approximation [12,15,20], GSCGF includes 
skeleton self-energy diagrams up to second order, i.e., yielding 
the so-called ADC(2) approximation [17,43]. Finally, closed-shell 
CC calculations performed at the CR-CC(2,3) level [41] are added 
whenever available. Each of these many-body methods systemat-
ically incorporates large classes of perturbation theory diagrams 
beyond second-order BMBPT.

We find that second-order BMBPT ground-state energies are in 
very good agreement with the more sophisticated methods for 
all systems under consideration, i.e., the relative deviation does 
not exceed 2%. In particular all methods are similar and in good 
agreement with IT-NCSM in O isotopes. MR-IMSRG(2) and NCSM-
PT (when available) do provide a stronger binding compared to 
second-order BMBPT. On the other hand, GSCGF-ADC(2) results are 
very comparable to second-order BMBPT while being often slightly 
less bound. Of course, it will be of great interest to perform this 
comparison again once proper third-order and/or particle-number-
restored BMBPT are systematically available. The consistency of 
the absolute binding energies and two-neutron separation energies 
provided by all the many-body methods further confirms that dis-
crepancies with experimental data, e.g., the systematic overbinding 
in Ca and Ni isotopes or the incorrect behavior of S2N around 56Ni, 
reflect the shortcomings of the employed chiral Hamiltonian. CR-
CC(2,3) calculations further incorporates the effect of triple excita-
tions that are absent from MR-IMSRG(2), GSCGF-ADC(2) or second-
and third-order BMBPT. Corresponding results demonstrate that a 
highly-accurate description of mid-mass systems requires the in-
corporation of triples, i.e., six-quasi-particle excitations in the lan-
guage of BMBPT. The leading contributions of this type appear 
at fourth order in the BMBPT expansion. In addition, one should 
eventually consider the explicit inclusion of the 3N interaction 
without resorting to the NO2B approximation, as demonstrated in 
the CC context [44,45].

Fig. 3 provides the computational runtime in CPU hours of 
second- and third-order BMBPT calculations for several isotopic 
chains. The tin isotopic chain is included here for the record even 
though the corresponding results were not displayed in Figs. 1
and 2 due to the poor performance of the chiral Hamiltonian and 
to the lack of convergence of the calculation with respect to the 
E3max = 14 truncation in this mass region. BMBPT calculations 
were performed on an Intel Xeon X5650 computing node with 12 
Fig. 3. Computational runtime versus mass number from BMBPT(2) ( ), BMBPT(3∗) 
( ), MR-IMSRG(2) ( ) and ADC(2) calculations.

cores at 2.67 GHz. The runtime is essentially independent of the 
mass number of the system for fixed values of emax and E3max. 
A typical run requires only up to 15 CPUh for open-shell nuclei 
and as little as 6 CPUh in closed-shell nuclei. The reduction in the 
closed-shell case is achieved by exploiting that the Bogoliubov ma-
trix V (U ) becomes zero for particle (hole) states when the grand 
potential is normal ordered, i.e., one recovers the benefit of an ex-
plicit partition between particle and hole states. Since our code is 
designed to treat systems with pairing we do not make use of op-
timizations that are only valid in the limiting case of HF-MBPT. 
Therefore, the employed BMBPT code is a factor of 5–10 slower 
than a fully-optimized HF-MBPT code.

Most importantly, Fig. 3 demonstrates that third-order BMBPT 
calculations generate results similar to state-of-the-art medium-
mass approaches at a computational cost that is about two or-
ders of magnitude smaller, e.g., MR-IMSRG(2) requires roughly 
2000 CPUh per run when applied to an open-shell system. The 
computational advantage of low-order BMBPT calculations over 
non-perturbative approaches could make BMBPT a particularly 
useful tool to provide cheap systematic tests of newly generated 
chiral EFT Hamiltonians over a wide range of nuclei.

5. Conclusions

We presented the first full-fledged ab initio application of Bo-
goliubov many-body perturbation theory to finite nuclei. Expand-
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ing the exact solution around a particle-number-broken Hartree–
Fock–Bogoliubov reference state, this single-reference many-body 
perturbation theory is systematically applicable to genuine mid-
and heavy-mass open-shell nuclei. As a first proof-of-principle in-
vestigation, systematic ground-state energies along complete iso-
topic chains from oxygen up to tin have been computed using 
a standard chiral effective field theory Hamiltonian. Low-order 
BMBPT calculations performed on the basis of a soft interaction 
was found to agree at the 2% level with state-of-the-art non-
perturbative many-body methods at a small fraction of the compu-
tational cost. As a matter of fact, the approach is applicable beyond 
the tin region without becoming computationally infeasible. For 
now, it is the (in)accuracy of modern Hamiltonians in heavy sys-
tems and the handling of three-body matrix elements necessary 
to reach model-space convergence that prevent us from perform-
ing meaningful studies on nuclei far above mass number A ≈ 100. 
Furthermore, the dominance of nuclear deformations for A > 100
requires the additional breaking of SU (2) symmetry.

Our goal is to expand BMBPT in several directions in the fu-
ture. The immediate next step consists of implementing the con-
sistent adjustment of particle-number corrections at third order, 
which requires an iterative evaluation of the HFB equations, of the 
quasi-particle normal-ordering and of the perturbative corrections. 
A detailed investigation of this, together with a sensitivity analy-
sis of BMBPT results with respect to model space parameters and 
the similarity renormalization group transformation of the Hamil-
tonian, will be the content of an upcoming publication. Next, the 
fourth-order correction will be evaluated for high-accuracy calcu-
lations and to further probe the convergence pattern of the BMBPT 
expansion. In that respect, it is also of interest to test Bogoliubov 
reference states that are not optimized by solving the HFB equa-
tions. While the first application is limited to ground-state ener-
gies, the underlying formalism is currently being extended to other 
observables, e.g., charge radii, as well as to low-lying excitation 
energies and electromagnetic transitions. Given our capacity to au-
tomatically generate and evaluate all diagrams appearing at an 
arbitrary order n on the basis of 2N and 3N interactions [33], it is 
also of interest to test the validity of the normal-ordered two-body 
approximation to the full 3N interaction. As a mid term goal, we 
plan to implement the particle-number-restoration [28] at second-
order to investigate the impact of the symmetry contaminations 
on various systems/observables. In parallel, the non-perturbative 
Bogoliubov CC extension of BMBPT will be implemented along the 
line of Ref. [28] in order to achieve realistic applications. On the 
longer term, it is of interest to implement a many-body perturba-
tion theory that consistently breaks (and restores) both SU (2) and 
U (1) symmetries to tackle doubly open-shell nuclei [27,28].
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