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Abstract

Recently the method of dualities as the AdS/CFT correspondence has been used in
higher spin gauge theories to understand gauge theories, gravities and M theory. Because
higher spin gauge theories contain the infinite tower of higher spin fields, their relations
with the tensionless limit of string theories have been studied. However the relations are
not clear. One of the reasons is probably the poor understanding of the tensionless string
theory. Therefore its understanding is very important to investigate the relation between
the tensionless string theory and higher spin gauge theories and to consider dualities on
the tensionless string theory.

Classical string theories have the spacetime symmetry as the global symmetry, as well
as point particle theories. The theory of a string with tension, tensionful string theory,
has the Poincare symmetry and the tensionless string theory has the spacetime conformal
symmetry. As is well known, the quantization of a tensionful string usually causes the
anomaly in the Poincare symmetry, the Lorentz anomaly. To avoid this anomaly, the
spacetime dimensions and the operator ordering constant are determined.
Such anomalies and restrictions are known also in the quantum tensionless string theory.
For example, in the light-cone gauge quantization method, the existence of the spacetime
conformal anomaly is known in a certain operator order.

Because there is only one transverse direction in three dimensional light-cone coor-
dinate, the Lorentz anomaly vanishes trivially for the light-cone string theory in three
dimensions. Recently this specialty of three dimensional light-cone gauge has gathered
attention and then the mass spectra of some 3-dim. tensionful strings in the light-cone
gauge have been investigated in detail. Because there is not any restriction except for
D = 3 in the case of the bosonic tensionful string, the operator ordering constant is un-
determined. Such an ambiguity is removed for the tensionful superstring. Similarly, the
ambiguity in three dimensional theories might be removed by the requirement of a larger
symmetry.

In this thesis based on [1], we consider a tensionless closed bosonic string in the light-
cone gauge in various dimensions and operator orders. The main products of our study
are the construction of the non-separable mass eigenfunctions in the Reference order(R-
order), the avoidance of the spacetime conformal anomaly in the Hermitian R-order and
the explicit calculation of the spacetime conformal anomaly in the XP-normal order.
In three dimensions, we make use of the above specialty of three dimensions to investigate
the spacetime conformal symmetry for the tensionless string in the light-cone gauge. In
the Hermitian Refernce order, we verify the absence of the spacetime conformal anomaly
and the removing of the ambiguity coming from the operator ordering. Furthermore
we investigate separable and non-separable mass eigenstates in the theory without the
anomaly and then we consider the relations between such eigenstates in terms of the
Poincaré invariant corresponding to spin. In the XP-normal order, we calculate a dan-
gerous commutator in the spacetime conformal symmetry concretely to find anomalous
terms. To avoid the anomaly, we interpret the tensionless string in the XP-normal order
as the point-like theory.
Furthermore, in D > 3, we investigate the anomaly in the spacetime conformal symmetry
in the same way as three dimensional case. In the Hermitian R-order, we find the pos-
sibility of avoiding the anomaly. In the XP-normal order, we verify the existence of the
anomaly concretely.
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Notation and Conventions

Units

c = ℏ = 1 (1)

Minkowski metric ηµν = ηµν in D dimensions

In Orthogonal coordinate :

η00 = −1, ηij = δij (i, j = 1, · · ·D − 1). (2)

In Light-cone coordinate :

η+− = η−+ = 1, ηIJ = δIJ (I, J = 2, · · ·D − 1). (3)

The indices are raised and lowered with metric η.

Definition of Components in Light-cone Coordinates

Vector in Orthogonal coordinates :

Vµ = ηµνVν (µ, ν = 0, 1, · · · , D − 1). (4)

Light-cone components:

V ± = V∓ ≡ 1√
2

(
V1 ± V0

)
, V I = VI ≡ VI (I = 2, · · · , D − 1). (5)

Inner product :

VµUµ = ηµνVµUν = −V0U0 +
D−1∑
i=1

ViUi = V +U− + V −U+ +
D−1∑
I=2

V IU I = V µUµ. (6)

Square :

V2 = −(V0)2 +
D−1∑
i=1

(Vi)2 = 2V +V − +
D−1∑
I=2

(V I)2 = V 2 (7)

Dot product in light-cone coordinate :

V · U =
D−1∑
I=2

V IU I . (8)
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More Definitions in 3 Dimensions

Totally antisymmetric tensor :

ϵ012 = −ϵ012 = 1, (9)

ϵ+−2 = −ϵ+−2 = 1. (10)

Two rank anti-symmetric tensor Sµν = −Sνµ as the vector :

Sµ ≡ 1

2
ϵµνρSνρ (11)

Symbol of Summation

Unless otherwise noted, we use the following notations for summation.

∑
n

≡
∞∑

n=−∞

, (12)

∑
n ̸=0

≡
∞∑
n=1

+
−1∑

n=−∞

, (13)

∑
n>0

≡
∞∑
n=1

, (14)

∑
|n|≤N

≡
N∑

n=−N

. (15)

Representation of Gamma matrix in three dimensions

Γ0 = iσ2 =

(
0 1
−1 0

)
, Γ1 = σ1 =

(
0 1
1 0

)
, Γ2 = σ3 =

(
1 0
0−1

)
, (16)

Γ+ =

(
0
√
2

0 0

)
, Γ− =

(
0 0√
2 0

)
, Γ = Γ2 . (17)
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Chapter 1

Introduction

Recently the method of dualities as the AdS/CFT correspondence has been used in higher
spin gauge theories to understand gauge theories, gravities and M theory: [2–7] and [8–
16]. Because higher spin gauge theories contain the infinite tower of higher spin fields,
their relations with the tensionless limit of string theories have been studied [17–22].
However the relations are not clear. One of the reasons is probably the poor understanding
of the tensionless string theory, as well as higher spin gauge theories1. Therefore its
understanding is very important to investigate the relation between the tensionless string
theory and higher spin gauge theories and to consider dualities on the tensionless string
theory.

Classical string theories have the spacetime symmetry as the global symmetry, as
well as a point particle [33]. The tensionful string theory2 has the Poincare symme-
try and the tensionless string theory has the spacetime conformal symmetry in addition
to the Poincaré symmetry. As is well known, the quantization of the tensionful string
usually causes the anomaly in the Poincare symmetry, the Lorentz anomaly. To avoid
this anomaly, the spacetime dimensions and the operator ordering constant are deter-
mined [27–32].

Such anomalies and restrictions are known also in the quantum tensionless string
theory. There are two kinds of anomalies in the tensionless string theory, the Lorentz
anomaly and the spacetime conformal anomaly. The Lorentz anomaly in the tensionless
string theory is investigated with various methods. In the BRST3 quantization formalism,
the absence of the critical dimension is verified in a hermitian operator order [34] and the
same critical dimension and ordering constant as the tensionful string theory are verified
in the normal order [35]. On the other hand, in the light-cone gauge quantization method,
the absence of the critical dimension in some operator orders and the critical dimension
in the XP-normal order4 are verified [34,36].

The spacetime conformal anomaly in the tensionless string theory is also investigated
with various methods. In the BRST formalism, the critical dimension of the conformal

1Higher spin gauge theories are studied in detail by M. Vasiliev et al. [23–26].
2”Tensionful string” means ”string with tension” in this thesis.
3The BRST refers to Becchi, Rouet, Stora and Tyutin.
4In the XP-normal order, all positive modes of coordinate X and momentum P are to the right of

negative ones.
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string theory is two [37]5. On the other hand, in the light-cone gauge quantization method,
the case of two dimensions is not under consideration6 because of no stringy dynamical
variable. Furthermore it is verified by the calculation without mode the expansion that
the case of the light-cone gauge in higher dimensions causes the anomaly in the Reference
order, called R-order for short7 [38–40].
Similarly, tensionless string theories with the supersymmetry [41–44] and higher dimen-
sional objects [48,49] are studied.

There is only one transverse direction in three dimensional light-cone coordinate.
Therefore the Lorentz anomaly vanishes for the string theory in three dimensional light-
cone gauge, in addition to the usual critical dimension, D = 26 or D = 10. Such an
avoidance of the anomaly in three dimensions cannot be obtained with the BRST for-
malism. The difference between two quantization methods is strange and interesting. Of
course, there is no necessity for the coincidence of results in two methods, and we just
expect it.

Recently the specialty of three dimensional light-cone gauge has gathered attention
and then the mass spectra of some 3-dim. tensionful string theories in the light-cone gauge
have been investigated in detail [50]. Because there is not any restriction except for D = 3
in the case of a bosonic tensionful string, the operator ordering constant is undetermined.
Such an ambiguity is removed for a tensionful superstring [50–53]. Similarly, the ambiguity
in three dimensional theories might be removed by the requirement of a larger symmetry.

In this thesis based on [1], we consider a tensionless closed bosonic string in the
light-cone gauge in various dimensions and operator orders. The main products of our
study are the construction of the non-separable mass eigenfunctions in the (Hermitian)
R-order and the Weyl order, the avoidance of the spacetime conformal anomaly in the
Hermitian R-order8 and the explicit calculation of the spacetime conformal anomaly in
the XP-normal.

Because the appearance of the anomaly in the spacetime symmetry are different be-
tween the case of D = 3 and one of D > 3, we must consider their cases separately.

In D = 3, we make use of the above specialty of the three dimensions to investigate
the spacetime conformal symmetry for a tensionless string in the light-cone gauge. The
absence of the Lorentz anomaly is the same as the tensionful string theory.
In the Hermitian R-order, we verify the absence of the spacetime conformal anomaly
and the removing of the ambiguity coming from the operator ordering. Furthermore
we investigate separable and non-separable mass eigenstates in the theory without the
anomaly and then we consider the relations between such eigenstates in terms of the
Poincaré invariant corresponding to spin.
In the XP-normal order, we calculate a dangerous commutator in the spacetime conformal
symmetry concretely to find anomalous terms. To avoid the anomaly, we interpret the

5The BRST quantization of the tensionless string tells only the information of the Lorentz anomaly.
Therefore the conformal string, which has the extra coordinates to have the manifest spacetime conformal
symmetry, has been considered instead of the tensionless string. Of course, the action of the conformal
string is classically equivalent are to that of the tensionless string.

6Or non-anomalous trivially or topological.
7In the R-order, all P -modes are to the right of X-modes.
8The Hermitian R-order is defined as the Hermitian version of the R-order. It will be explained in

section 3.
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tensionless string theory in the XP-normal order as the point-like theory.

In D > 3, we investigate the anomaly in the spacetime conformal symmetry in the
same way as three dimensional case. In the Hermitian R-order, we find the avoidance of
the anomaly. In the XP-normal order, we verify the existence of the anomaly concretely.

Finally we discuss the supersymmetric string case and the open string case.

Organization of this thesis

In this thesis we consider mainly a tensionless closed bosonic string in the light-cone
gauge. Because the appearance of the anomaly in the spacetime symmetry are different
between the case of D = 3 and one of D > 3, we discuss their cases separately.

In chapter 2 we consider the classical theory for a tensionless string. First, from the
analogy of a massless point particle, we give the action for the tensionless string and the
generators of the spacetime conformal symmetry, which is the global symmetry. Next
we choose the light-cone gauge to fix gauge symmetries in the tensionless string theory.
After we solve constraints with the mode expansion, we represent the action and classical
generators of the spacetime symmetry in the light-cone gauge.

In chapter 3 the tensionless closed bosonic string in the light-cone gauge is quantized.
Then some candidates for the string ground state and operator order which are used in
the following chapter are shown. One of the orders is based on the Reference order, in
which all momentum P modes are to the right of coordinate X modes. Another one is
the XP-normal order, in which all positive modes of X and P are to the right of negative
ones.

In chapter 4 we consider the quantum 3-dim. tensionless closed bosonic string with
the Poincaré symmetry in the light-cone gauge. Because a dangerous commutator for the
Lorentz anomaly vanishes trivially in three dimensions and there is no restriction, the
constant of the ambiguity coming from operator order is undetermined. Therefore we
investigate the mass spectrum to consider the natural choice of the ordering constant. In
the R-order, its hermitian version and the Weyl order, we find the continuous spectrum
in addition to zero. Furthermore in these orders we find non-separable mass eigenstates,
which are not factorized with each Fourier-mode, as well as separable ones. From such
informations, we consider the natural choice of the ordering constant. In the XP-normal
order, we investigate mass eigenstates and their norms to consider the natural choice of
the ordering constant.

In chapter 5 we consider the quantum D-dim. tensionless closed bosonic string with
the Poincaré symmetry in the light-cone gauge. In D > 3, the avoidance of the Lorentz
anomaly restricts the theory. In the R-order and similar ones, the ordering constant is
determined to be zero but the dimension is free. On the other hand, in the XP-normal
order, the critical dimension is 26 and the ordering constant is determined. Furthermore
we give the mass spectra in theories without the anomaly.

In chapter 6 we consider the structures of commutators in some examples of the
operator order. Then we find the structures of dangerous commutators to use them in
the following chapters.

In chapter 7 we consider the quantum 3-dim. tensionless closed bosonic string with
the spacetime conformal symmetry in the light-cone gauge. We calculate explicitly a

– 13 –



dangerous commutator in the spacetime conformal symmetry. Although we need some
regularization in the Hermitian R-order, in chapter 7, we verify that there is no anomaly
which is irrelevant to the choice of the regularization. The concrete calculation with the
cut-off regularization is shown in appendix. On the other hand, in the XP-normal order,
we find the anomaly which can not be removed by the choice of the ordering constant.

In chapter 8 we consider the quantum D-dim. tensionless closed bosonic string with
the spacetime conformal symmetry in the light-cone gauge. In [38–40], the anomaly in
the spacetime conformal symmetry is considered from the calculation without the mode
expansion. In chapter 8 of this thesis, we give the calculations of dangerous commutators
with the mode expansion. Then we find the vanishing of the anomaly in the Hermitian
R-order and give the concrete form of the anomalous commutator in the XP-normal order.

In chapter 9 we discuss other types of string, super and open. We investigate the
difference from the tensionless bosonic closed string theory in supersymmetric and open
string theories respectively. Then we estimate whether the anomaly in commutators exists
or not.

Finally, we summarize this thesis and give the outlook for future works.

In appendix, we give the following contents: the lists of the generators of the spacetime
symmetry and useful commutation relations in some operator orders, the calculations and
considerations which have been omitted in the main body, and the short review of a 3-dim.
tesionful string in the light-cone gauge and so on.
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Chapter 2

Classical Theory of Tensionless
String

In this chapter we investigate the classical theory of a tensionless string. First we consider
the massless point particle for reference and then show the generators of the spacetime
conformal symmetry.
Next we define the action of a tensionless closed string. Then we find the gauge symmetry
corresponding to the world sheet diffeomorphism and the spacetime conformal symmetry
as the global symmetry. Furthermore we give the explicit representations for generators
of the spacetime conformal symmetry.
Finally we fix the gauge symmetry with the light-cone gauge to solve the constraints.
Then we find the time-like motion of the tensionless string as well as the null motion.
Furthermore we represent generators of the spacetime conformal symmetry in the light-
cone gauge.

2.1 Massless Point Particle and Global Symmetry

First we consider a massless point particle to get an useful help in constructing a tension-
less string theory. We start from the next action of a massless point particle.

S = −m
∫
dt
√

−ẋµẋµ , (2.1)

where xµ is the position of a particle, m is mass and the overdot ( ˙ ) means t-derivative.
This is written as

S =

∫
dt

[
ẋµpµ −

1

2
v
(
p2 +m2

)]
, (2.2)

where pµ is the conjugate momentum of xµ and v is a Lagrange multiplier for the on-shell
condition, p2 +m2 = 0. In the case of m2 ̸= 0, we solve pµ and v in order and then get
the original action (2.1).
We can choose m = 0 in the second action (2.2) to obtain

S =

∫
dt

[
ẋµpµ −

1

2
vp2
]
. (2.3)
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This is the action of massless point particle. (2.3) has the next gauge symmetry.
δxµ = αpµ
δpµ = 0
δv = α̇

(2.4)

where α is the parameter which depends on time t and the upper dot ˙means t-derivative.
In fact, the action (2.3) is invariant under this gauge transformation.

δS =

∫
dt ∂τ

(
1

2
αp2
)

= 0 (2.5)

The field equations of (2.3) for xµ, pµ and v are

ṗµ = 0,

ẋµ − vpµ = 0, (2.6)

p2 = 0.

From these equations, we find that the motion of the massless point particle is restricted
on the light-cone.

The action (2.3) has the global symmetry as well as the local gauge symmetry. It is
the spacetime conformal symmetry which consists of the translation, the Lorentz trans-
formation, the dilatation and the special conformal transformation. We give the explicit
representations for these transformations and their generators below.

The translation is {
δax

µ = aµ

δapµ = δav = 0
(2.7)

where aµ are parameters independent of t. The generators of the translation are

Pµ = pµ. (2.8)

The Lorentz transformation is
δωx

µ = ωµ
νx

ν

δωpµ = ωµ
νpν

δωv = 0
(2.9)

where ωµ
ν = −ων

µ are anti-symmetric parameters independent of t. The generators of
the Lorentz transformation are

J µν = xµpν − xνpµ. (2.10)

The scale transformation, dilatation is
δλx

µ = λxµ

δλpµ = −λpµ
δλv = 2λv

(2.11)

– 16 –



where λ is a parameter independent of t. The generator of the dilatation is

D = xµpµ. (2.12)

The special conformal transformation is
δbx

µ = xµ(bνx
ν)− 1

2
bµx2

δbpµ = −bµ(xνpν)− (bνx
ν)pµ + xµ(b

νpν)
δbv = 2(bνx

ν)v
(2.13)

where bµ are parameters independent of t. The generators of special conformal transfor-
mation are

Kµ = xµ(xνpν)−
1

2
x2pµ. (2.14)

The translation, Pµ, and the Lorentz transformation, J µν , are invariant under the
gauge transformation in (2.4). The dilatation, D, and the special conformal transforma-
tion, Kµ, are proportional to p2 under the gauge transformation (2.4). Therefore they are
weakly invariant.
Thanks to the gauge invariance of generators, we can use these generators in the light-cone
gauge only by changing the spacetime index.

2.2 Tensionless String and Global Symmetry

In this section we consider a tensionless closed string.

2.2.1 Action of tensionless string from Nambu-Goto action

First we change the Nambu-Goto action to the equivalent action on the phase space in
the same way as the point-particle case. The Nambu-Goto action for a string with tension
T 1 is

S[X] = −T
∫
dτ

∮
dσ

2π

√((
ẊµX′

µ

)2
− Ẋ2(X′)2

)
, (2.15)

where τ is the time-like coordinate on world sheet and σ is the space-like coordinate with
a period of 2π on world sheet. Here the overdot ( ˙ ) means τ -derivative and the prime
( ′ ) means σ-derivative. This action is classically equivalent to

S[X,P;V, U ] =

∫
dτ

∮
dσ

2π

{
ẊµPµ −

1

2
V
[
P2 + (TX′)2

]
− UXµ′Pµ

}
, (2.16)

where Pµ is conjugate momentum of Xµ, and V and U are Lagrange multipliers. In the
case of T ̸= 0, we solve Pµ, U and V in order and then get the original action (2.15).

We can choose T = 0 in (2.16) in the same way as the case of a point particle.

S[X,P;V, U ] =

∫
dτ

∮
dσ

2π

{
ẊµPµ −

1

2
VP2 − UXµ′Pµ

}
. (2.17)

1In our convention, T = 1
α′ .

– 17 –



This is one of the action of a tensionless closed string.
Of course, there are other equivalent actions for a tensionless string [33, 38, 40]. For
example,

S ′[X, V a] =

∫
d2ξ V a∂aX

µV b∂bXµ, (2.18)

where a = {0, 1}or = {τ, σ}. This is obtained from (2.17) by using Pµ = 1
V
(Ẋµ − UX′

µ),

V τ ≡ 1√
2V

and V σ ≡ − U√
2V

. Therefore (2.17) and (2.18) are classically equivalent.

We can easily find the world sheet diffeomorphism for the action in (2.18),{
δXµ = γa∂aX

µ

δV a = −V b∂bγ
a + γb∂bV

a + 1
2
(∂bγ

b)V a . (2.19)

(2.18) is a better representation for the covariant treatment such as the BRST quantiza-
tion.

Because the tensionlessness is clear and we can easily solve the constraints in the light-
cone gauge, we consider the first action, (2.17).

The first action, (2.17), has the next gauge symmetry corresponding to the world sheet
diffeomorphism.2 

δXµ = αPµ + βXµ′

δPµ = (βPµ)
′

δV = α̇ + U ′α− Uα′ + V ′β − V β′

δU = β̇ + U ′β − Uβ′.

(2.20)

In fact, the action in (2.17) is invariant under this transformation.3

δS =

∫
dτ

∮
dσ

2π

[
∂τ

(1
2
αP2

)
+ ∂σ

(
−1

2
αUP2 + β

(
ẊµPµ −

1

2
VP2 − UXµ′Pµ

))]
= 0

(2.21)

The field equations of Xµ, Pµ, V and U are

Ṗµ − (UPµ)
′ = 0,

Ẋµ − UXµ′ − VPµ = 0,

P2 = 0,

Xµ′Pµ = 0.

(2.22)

2.2.2 Global symmetry and generators

As well as a massless point particle, the action in (2.17) is expected to have the spacetime
conformal symmetry as the global symmetry. The explicit transformations, their genera-
tors and the gauge invariance of them are shown below.

2It is obtained by choosing γτ = α
V , γσ = β − αU

V in (2.19).
3Because the closed string has no boundary, the total derivative terms vanish. For the tensionless

open string, we have to select some boundary condition.
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The translation is {
δaX

µ = aµ

δaPµ = δaV = δaU = 0
(2.23)

where aµ are parameters independent of τ and σ. From the Noether charge for this
transformation, the generators of the translation are obtained as

Pµ =

∮
dσ

2π
Pµ. (2.24)

The Lorentz transformation is
δωX

µ = ωµ
νX

ν

δωPµ = ωµ
νPν

δωV = δωU = 0
(2.25)

where ωµ
ν = −ων

µ are anti-symmetric parameters independent of τ and σ. The generators
of the Lorentz transformation are

J µν =

∮
dσ

2π
[XµPν −XνPµ] . (2.26)

The dilatation transformation is
δλX

µ = λXµ

δλPµ = −λPµ

δλV = 2λV
δλU = 0

(2.27)

where λ is parameter independent of τ and σ. The generator of the dilatation is

D =

∮
dσ

2π
XµPµ. (2.28)

The special conformal transformation is
δbX

µ = Xµ(bνX
ν)− 1

2
bµX2

δbPµ = −bµ(XνPν)− (bνX
ν)Pµ +Xµ(b

νPν)
δbV = 2(bνX

ν)V
δbU = 0

(2.29)

where bµ are parameters independent of τ and σ. The generators of the special conformal
transformation are

Kµ =

∮
dσ

2π

[
Xµ(XνPν)−

1

2
X2Pµ

]
. (2.30)

These generators change under the gauge symmetry in (2.20) as follows:

δPµ =

∮
dσ

2π
(βPµ)

′ = 0

δJ µν =

∮
dσ

2π
(βXµPν − βXνPµ)′ = 0

δD =

∮
dσ

2π

[
αP2 + (βXµPµ)

′] = ∮ dσ

2π
αP2 ≈ 0

δKµ =

∮
dσ

2π

{(
β
[
Xµ(XνPν)−

1

2
X2Pµ

])′
+ αXµP2

}
=

∮
dσ

2π
αXµP2 ≈ 0,

(2.31)
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where ≈ means ”weakly equal” which is satisfied by using field equations. Thus the gen-
erators of the translation and the Lorentz transformation are invariant and the generators
of the dilatation and the special conformal transformation are weakly invariant. Thanks
to the gauge invariance of generators, we can use these generators in the light-cone gauge
only by changing the spacetime index.

2.3 Tensionless String in Light-cone Gauge

In this section we fix the gauge symmetry in (2.20). First we define the light-cone coor-
dinate as

X± ≡ 1√
2
(X1 ±X0), XI ≡ XI ,

P± ≡ 1√
2
(P1 ±P0) = P∓, PI ≡ PI ,

(2.32)

where I is the index of transverse directions, I = 2, . . . , D − 1.
The light-cone gauge is defined as

X+ = τ , P− = p−(τ) ̸= 0. (2.33)

This gauge choice fixes most of the gauge freedoms such that α = 0 and β = β0(τ). The
residual gauge by β0(τ) corresponds to σ-shift and is related to the unique constraint as
seen later.
The Lagrangian density in the light-cone gauge is

L = P+ + Ẋ−p− + Ẋ · P − 1

2
V (2P+p− + P · P )− U

(
(X−)′p− +X ′ · P

)
, (2.34)

where · means the product over the indexes of the transverse directions.
In order to clarify the constraint corresponding to β0 and solve the rest constraints, we
separate the function of σ into the center of mass part and the rest part as follows:

f(τ) ≡
∮
dσ

2π
F (τ, σ),

F̄ (τ, σ) ≡ F (τ, σ)− f(τ),

∮
dσ

2π
F̄ (τ, σ) = 0.

(2.35)

where F = XI , PI , X
−, P+, U . By using the above separation, the Lagrangian is written

as

L = p+ + ẋ−p− + ẋ · p+
∮
dσ

2π
˙̄X · P̄ − u

∮
dσ

2π
X̄ ′ · P̄

− p−

∮
dσ

2π

[
V

(
P+ +

1

2p−
P · P

)
+ Ū

(
(X̄−)′ +

1

p−
X̄ ′ · P

)]
.

(2.36)

In this Lagrangian, X̄− is not dynamical variable and then its variation gives Ū ′ = 0.
Because of

∮
dσ
2π
Ū(τ, σ) = 0, we obtain Ū = 0. On the contrary, the variation of Ū gives
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the next relation.4

p−(X̄
−)′ = −X̄ ′ · P +

∮
dσ

2π
X̄ ′ · P̄ . (2.37)

Therefore X̄− is represented with other fields.
The variation of P+ gives V = 1

p−
and the variation of V gives

P+ = − 1

2p−
P · P. (2.38)

Therefore we can write P+ with other fields. The c.o.m. part of P+ is the Hamiltonian,

H ≡ −p+ =
1

2p−

(
p · p+M2

)
, (2.39)

and the mass square operator is

M2 = −p2 = −2p+p− − p · p =
∮
dσ

2π
P̄ · P̄ . (2.40)

After most of constraints are solved by (2.37) and (2.38), the Lagrangian is written as

L = ẋ · p+ ẋ−p− +

∮
dσ

2π
˙̄X · P̄ −H − u

∮
dσ

2π
X̄ ′ · P̄ . (2.41)

We can choose u = 0 with the residual gauge symmetry by β0, and then we obtain the
next Lagrangian with the unique constrain.

L = ẋ · p+ ẋ−p− +

∮
dσ

2π
˙̄X · P̄ −H, (2.42)

and the unique constraint is ∮
dσ

2π
X̄ ′ · P = 0, (2.43)

(2.43) corresponds to the level-matching condition for the tensionful string theory. In the
quantum theory, this constraint is imposed on states.

2.3.1 Equation of motion in light-cone gauge

The field equations in (2.42) are

ẋ− = −H

p−
, ṗI = ṗ− = 0, ẋI =

pI

p−

˙̄XI =
P̄ I

p−
, ˙̄PI = 0.

(2.44)

From these, we obtain the τ -dependences of XI and x− as

XI(τ, σ) = XI(σ) +
P I(σ)

p−
τ

x−(τ) = x− − H

p−
τ.

(2.45)

To find τ -dependence of X̄−, we need the concrete representation of X̄−.
4The second term in the r.h.s. have been added because

∮
dσ
2π X̄

− = 0. We find soon that this is the
same as the unique constraint.
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2.3.2 Fourier mode expansions of fields

In order to write X̄− and P+ concretely, we use the periodicity of the closed string. X(σ)
and P (σ) are expanded as follows:

XI(σ) =
∑
n

XI
ne

inσ , XI
0 = xI ,

PI(σ) =
∑
n

PI,ne
inσ , PI,0 = pI ,

(2.46)

where
∑

n ≡
∑∞

n=−∞. From the reality condition of XI(σ) and PI(σ), the next relations
are satisfied.

(XI
n)

∗ = XI
−n , (PI,n)

∗ = PI,−n, (2.47)

where A∗ means complex conjugate of A.
By using (2.46), P+ is solved concretely as

P+(σ) = − 1

2p−

∑
n

Lne
inσ, (2.48)

where

Ln ≡
∑
m

Pm · Pn−m , (Ln)
∗ = L−n. (2.49)

In particular, its zero mode is L0 = 2p−H = p · p+M2 and the mass square operator is

M2 =
∑
n ̸=0

Pn · P−n. (2.50)

Similarly, by using (2.46), X̄− is written as

X̄−(τ, σ) = − 1

p−

∑
n̸=0

i

n
Mn(τ)e

inσ, (2.51)

where

Mn(τ) ≡ −i
∑
m

m
(
Xm +

1

p−
Pmτ

)
· Pn−m =Mn − i

n

2p−
Lnτ , for n ̸= 0

Mn ≡Mn(τ = 0) = −i
∑
m

mXm · Pn−m , (Mn)
∗ =M−n.

(2.52)

Because the c.o.m part of X− is x−, we find X− = x− + X̄−.
Furthermore the unique constraint in (2.43) is written as

M0 ≡ −
∮
dσ

2π
X̄ ′ · P = −i

∑
n

nXn · P−n = 0. (2.53)
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2.3.3 Motion of tensionless string in light-cone gauge

With the mode expansion, the Lagrangian (2.42) is written as

L = ẋ · p+ ẋ−p− +
∑
n ̸=0

Ẋn · P−n −H, (2.54)

and then the field equations for zero modes and non-zero modes are

ẋI =
pI

p−
, ẋ− = −H

p−
, ṗI = ṗ− = 0,

ẊI
n =

P I
n

p−
, ṖI,n = 0.

(2.55)

Because of Ṁn = −i 1
2p−

Ln, we obtain

XI(τ, σ) = XI(σ) +
P I(σ)

p−
τ,

X−(τ, σ) = X−(σ) +
P+(σ)

p−
.

(2.56)

From (2.56), we obtain

Ẋµ(τ, σ)Ẋµ(τ, σ) =
1

p2−
(2P+(σ)p− + P (σ) · P (σ)) = 0, (2.57)

where we use the constraint in (2.43). This means that each point of the tensionless string
moves on the light-cone.
However, the c.o.m. of the string does not always move on the light-cone unlike massless
point particle.

ẋµẋµ = −M2

p2−
(2.58)

2.3.4 Classical generators in light-cone gauge

Finally we give the representations for generators of the spacetime conformal symmetry
in the light-cone gauge. Because all generators are invariant under the gauge symmetry
in (2.19), all we have to do is to change the spacetime indexes in generators to indexes in
the light-cone base. Furthermore we will verify that generators are independent of τ by
using field equations, or constraints.

From (2.24), the generators of the translation in the light-cone gauge are

P− = p− , PI = pI , P+ = p+ = − L0

2p−
(2.59)

Because Pµ(σ) is independent of τ , these generators are clearly independence of τ .
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From (2.26), the generators of Lorentz transformation in the light-cone gauge are

J +I = −xIp− , J +− = −x−p− , J IJ =
∑
n

(XI
nP

J
−n −XJ

nP
I
−n)

J −I = x−pI − i

p−

∑
n ̸=0

1

n
MnP

I
−n +

1

2p−

∑
n

XI
nL−n.

(2.60)

We find that these generators are independent of τ from τ -dependence of XI
n and x−,

(2.56).
In three dimensions, J IJ does not exist and we can write Lorentz generators as vector,

J + = J +2 , J = −J +− , J − = −J −2, (2.61)

where J µ = 1
2
ϵµνρJνρ and ϵ+−2 = −ϵ+−2 = 1.

From (2.28), the generator of the dilatation in the light-cone gauge is

D = x−p− +
∑
n

Xn · P−n. (2.62)

We find that this is independent of tau from (2.56) and the definition of Hamiltonian, H,
in (2.39).

From (2.30), the generator of special conformal transformation in the light-cone gauge
are

K+ =− 1

2

∑
n

Xn ·X−np−

KI =xIx−p− + i
∑
m̸=0

1

m
XI

mM−m +
∑
n

∑
m

[
XI

nX
J
mPJ,−n−m − 1

2
XJ

nX
J
mP

I
−n−m

]
K− =x−x−p− + x−

∑
n

XnP−n +
1

p−

∑
m̸=0

1

m2
MmM−m

− i

p−

∑
n

∑
m̸=0

1

m
XIMmPI,−n−m +

1

4p−

∑
n

∑
m

XI
nX

I
mL−n−m.

(2.63)

We find that these generators are independent of τ by using the next relation: 2P+(σ)p−+
P (σ) · P (σ) = 0.
In three dimensions, KI becomes simple a little.

K = KI=2 = xx−p− + i
∑
m̸=0

1

m
XmM−m +

1

2

∑
n

∑
m

XnXmP−n−m, (2.64)

where we omit the index of transverse direction.

In quantum theory, the representation of the generators for the spacetime conformal
symmetry become complicated, according to the choice of the operator order. Furthermore
there are quantum effect’s terms in K−, which become anomalous. The detail is in the
later chapter.
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Chapter 3

Quantization, Operator Order and
String Ground State

In the last chapter we have considered the classical theory of a tensionless string in the
light-con gauge. In this chapter we quantize the tensionless string in the light-cone gauge
and then consider some candidates for the operator order and the string ground state.
In the following chapters we calculate the infamous dangerous commutator, [J −I ,J −J ],
and other dangerous commutators in the operator orders given in this chapter and then
investigate whether the anomaly for the spacetime symmetry exists or not.

3.1 Quantization of Tensionless String in Light-cone

Gauge

The dynamical variables of the tensionless string theory in the light-cone gauge in chapter
2 are XI(σ) and x−, and their conjugate momenta, PI(σ) and p−. They are quantized as
follows:

[x−, p−] = i, [XI(σ) , PJ(σ
′)] = 2πiδIJδ(σ − σ′), (3.1)

and otherwise zero. For Fourier modes, the second commutators is written as

[xI , pJ ] = iδIJ , [X
I
n, PJ,m] = iδIJδn+m,0, (3.2)

where the delta function is one for the periodic function,

δ(σ) =
1

2π

∑
n

einσ. (3.3)

3.2 Some Candidates for Operator Order and String

Ground State

Next we consider some operator orders and the string ground state corresponding to them.
The vacuum for the zero mode part is the eigenstate of momenta, pI and p−, |pI , p−⟩.
The operator order for the zero mode part is given by the Weyl order or the hermitian
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average1 of terms ordered so that p and p− are to the right of x and x−.
We generally represent the ground state for the part of non-zero modes as |0⟩stringy. Then
we collect both parts to obtain the total ground state as

|pI , p−⟩ ⊗ |0⟩stringy. (3.4)

Now we consider the operator order of the non-zero part and the string ground state
explicitly. Because the principle which determines the operator order and the string
ground state for the tensionless string theory is not unclear, we refer to the case of a
usual tensionful string at first.

Tensionful string : T ̸= 0

In the case of a usual string with non-zero tension, T ̸= 0, we compose the left- and
right-moving modes from X-mode and P -mode and then consider the normal order of
them. For T ̸= 0, the left- and right-moving modes are defined as

αI
(T )n = −i

√
T

2
nXI

n +
1√
2T

PI,n,

α̃I
(T )n = −i

√
T

2
nXI

−n +
1√
2T

PI,−n,

[αI
(T )n, α

J
(T )m] = [α̃I

(T )n, α̃
J
(T )m] = nδIJδn,−m, [α

I
(T )n, α̃

J
(T )m] = 0.

(3.5)

In the normal order, where all positive modes are to the right of negative ones, the mass
square operator is

M2 = 2T
[∑
n>0

(α(T )−n · α(T )n + α̃(T )−n · α̃(T )n)− a− ã
]
, (3.6)

where a and ã are constants of the ambiguity arising from the operator order.2 (3.6) is the
set of the harmonic oscillators. Therefore, to be the eigenstate of (3.6) corresponding to
the minimum eigenvalue, the string ground state, |0⟩(T ), must be annihilated by positive
modes.

αI
(T )n|0⟩(T ) = α̃I

(T )n|0⟩(T ) = 0. (3.7)

Furthermore the unique constraint in the tensionful string theory is

M0 =
(∑
n>0

α(T )−n · α(T )n − a
)
−
(∑
n>0

α̃(T )−n · α̃(T )n − ã
)
≈ 0. (3.8)

This is the level-matching condition. The string ground state, |0⟩(T ), is the eigenstate of
M0 and then satisfies (3.8) if a = ã.
Thus the string ground state in a given operator order must be the mass eigenstate
corresponding to the minimum eigenvalue and then the eigenstate of M0.

3

1The hermitian average of operator A is defined as 1
2 (A+A†).

2In the tensionful string theory, avoiding the Lorentz anomaly determines the critical dimension and
the ordering constants, D = 26 and a = ã = 1.

3The string ground state does not have to satisfy the constraint because it is enough to discover the
physical state satisfying the constraint among the string ground state or excited states. The string ground
state is just the eigenstate of M0 to obtain the state satisfying the constraint.
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Tensioness String : T = 0

Now we change the topic to the case of T = 0. Because the tensionless string theory has
no dimensionful parameter such as tension T , we cannot make the combination such as
αI

(T )n or α̃I
(T )n. However we can refer to the tensionless limit of the tensionful string theory,

T → 0.
For the sufficiently large T , the left- and right-moving modes in (3.5) are

αI
(T )n ∼ 1√

2T
P I
n , α̃

I
(T )n ∼ 1√

2T
P I
−n. (3.9)

By collecting both positive modes, the state which is annihilated by PI,n for n ̸= 0 is one
of the natural candidates for the ground state in the case of the tensionless string theory.
We decide to represent it as |0⟩P .

PI,n|0⟩P = 0 for n ̸= 0 (3.10)

In the case of the tensionless string theory, the mass square is written only with P -mode.

M2
classical =

∑
n̸=0

Pn · P−n (3.11)

What is the operator order in which |0⟩P becomes the minimum eigenstate of the
mass square operator ? One candidate is the Reference order, in which all P -modes are
to the right of X-modes, called R-order for short [40]. Because the R-ordered mass square
operator is the same as the r.h.s. in (3.11), it is clear that |0⟩P is the eigenstate of the
R-ordered M2. Furthermore, because the eigenvalue of the R-ordered M2 is positive or
zero from its structure,4 |0⟩P corresponds to the minimum eigenvalue.5 The constraint
is considered in the next section.

However there is a caution in the R-order. Because most of generators in the R-order
are not hermitian, we have to hermitianize them. The generators of the translation which
consist only of P -modes do not need the hermitianization, but other generators need
usually.
We use the next hermitianization. In the R-order, the hermitian version of the R-ordered
generator is

G =
1

2

(
GR + (GR)

†) = GR − igR + · · · , (3.12)

where GR and gR are R-ordered operators.
Because M2 consists only of P -modes, we can choose other operator orders for the

same ground state, |0⟩P . For example, the Weyl order 6 is the order in which |0⟩P becomes
the eigenstate of M2. The other candidate is the Hermitian R-order in which all operators

4The mass square operator consists of the product of a operator and its hermitian conjugate such as
A†A.

5In the following chapters we see this minimality from the explicit eigenstates.
6In the Weyl order, all operators are totally symmetrized.
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are ordered so that each term has its hermitian partner such as the second formula in
(3.12). The generators and commutators of lower degree than 3 have the same ordering
ambiguity in these operator orders, but the generators and commutators of higher degree
such as K− and [J −I ,KK ] have the differences.7 Such differences affect the investigation
of the anomaly in the spacetime conformal symmetry.8

Above we have considered the operator order corresponding to |0⟩P , which is the limit
of the string ground state for the tensionful string theory. Of course, other ground states
are possible. From the structure of the mass square operator, M2, the state annihilated
by positive modes of X and P is the eigenvalue of M2. We represent it as |0⟩XP , which
satisfy

XI
n|0⟩XP = PI,n|0⟩XP = 0 for n > 0. (3.13)

The operator order corresponding to |0⟩XP is the ”XP-normal order”, in which all positive
modes of X and P are to the right of negative ones [36]. There is no ambiguity in the
definition of the XP-normal order because any two positive modes (or negative modes)
commute mutually. The positive P -modes in mass square operator are always to the
right end without causing extra terms. Thus we find that |0⟩XP is the mass eigenstate
corresponding to zero eigenvalue. The constraint is considered in the next section.

The other candidates are the orders in which linear-combinational modes of X and P
are normally ordered in the same way as the case of the usual tensionful string theory.
Here we call them the combinational normal order collectively, or the C-normal order for
short. One of the C-normal order is the normal order for the ”left”- and ”right”-moving
modes which are combined with an artificial dimensionful parameter ω > 0 instead of
tension T .9 We call this the ωLR-normal order. The fundamental modes are obtained
from the case of T = ω2 in (3.5). In this order, the constraint is separated into the part
of α-mode and that of α̃-mode in the same way as the case of the tensionful string theory
and then becomes the level-matching condition.
Because PI,n ∝ ω, if PI,n solved with α and α̃, we find M2 ∝ ω2. The power of ω
indicates the mass-dimension. Therefore we can always know the power of ω from the
mass dimension. Hence we choose ω = 1 and then omit the subscript (ω2) in α and α̃
below.
The mass square operator in the LR-normal order is

M2 =
∞∑
n=1

(α−n · αn + α̃−n · α̃n + αn · α̃n + α−n · α̃−n)− b, (3.14)

where b is the ordering constant. Unfortunately, the third and fourth terms in (3.14)
cause the problem. Especially, because of the 4th term, the state which is annihilated by
positive modes is not eigenstate of M2 in (3.14). Therefore we cannot use such a state as
the ground state.

7The detail is in the later chapter.
8Because there is no difference between the R-order case, the Weyl order case and the Hermitian

R-order case in [J−I ,J−J ], the check of the Lorentz anomaly in these operator orders is done similarly.
9”Left” and ”right” are artificial and irrelevant to the direction of oscillation on a string.
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Instead of the LR-normal order, we consider another C-normal order and the ground
state. We redefine the fundamental modes as aIn = αI

n and bIn = iα̃I
−n. a

I
n and bIn satisfy

the standard commutation relations, [aIn, a
J
m] = [bIn, b

J
m] = nδI,Jδn,−m. In this case, the

mass square operator is

M2 =
∞∑
n=1

(a−n · an − b−n · bn − ib−n · an − ia−n · bn)− c, (3.15)

where c is the constant of the ordering ambiguity. The state annihilated by all positive
modes of a and b is the eigenstate of M2. Other C-normal orders are similarly considered.
More discussion is given in next section.

3.3 Preparation and Consideration in Each Operator

Order

For calculations of commutators in the following chapters, the important operators and
their commutators are prepared. In this section we show the ordered version of the Fourier
modes of P+(σ) and X−(σ) written by XI

n and PI,n, the ordered mass square operator
and the ordered constraint operator in each order.

Ln =
∑
m

: Pm · Pn−m :,

Mn = −i
∑
m

m : Xm · Pn−m :,
(3.16)

M2 = −2p+p− − p · p = L0 − p · p =
∑
n ̸=0

: Pn · P−n : , (3.17)

M0 = −i
∑
n

n : Xn · P−n : (3.18)

Then the commutators of them are given.
The results in this section are collected in appendix B.

3.3.1 R-order case

In this subsection we consider the case of the R-order. First the Fourier modes of P+(σ),
Ln, is

Ln =
∑
m

Pm · Pn−m , L−n = (Ln)
†. (3.19)

Because P -modes commute mutually, there is no ordering ambiguity. From zero mode of
(3.18), we obtain

M2 = L0 − p · p =
∑
n ̸=0

Pn · P−n. (3.20)
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As seen in the last section, the ground state, |0⟩P , is the eigenstate of (3.20) corresponding
to zero eigenvalue, namely the massless eigenstate.
Next the Fourier modes of X̄−(σ), Mn for n ̸= 0, are

Mn = −i
∑
m

mXm · Pn−m , M−n = (Mn)
†. (3.21)

Because XI
m and PI,n−m commute mutually for n ̸= 0, there is no ordering ambiguity.

On the other hand, because XI
m and PI,−m do not commute mutually, M0 has a constant

of the ordering ambiguity. We move the ordering constant to the r.h.s. of the constraint
to obtain

M0 =
−i
2

∑
m

m(Xm · P−m − Pm ·X−m) = −i
∑
m

mXm · P−m ≈ a, (3.22)

where we used
∑

mm = 0 in the second equal sign. We expect that a is determined by the
requirement of the spacetime symmetry. From (3.22), we find that |0⟩P is the eigenstate
of M0 corresponding to zero eigenvalue.
Furthermore useful commutators of these operators are

[XI
n,Mm] = (n+m)XI

n+m , [PI,n,Mm] = nPI,n+m ,

[XI
n, Lm] = 2iPI,n+m , [PI,n, Lm] = 0 ,

(3.23)

[Ln, Lm] = 0 , [Ln,Mm] = (n−m)Ln+m , [Mn,Mm] = (n−m)Mn+m . (3.24)

The commutators in (3.24) satisfy the 2d Galiean conformal algebra (GCA) without the
central extension term.10

Hermitian R-order or Weyl order

The operators and commutators given above are unchanged in the cases of the Hermitian
R-order or the Weyl order. As seen in the later chapter, the difference arises in operators
of higher degree.

3.3.2 XP-normal order case

In this subsection we consider the case of the XP-normal order. First the Fourier modes
of P+(σ) are

Ln =
n∑

m=0

Pm · Pn−m + 2
∞∑

m=1

P−m · Pn+m , L−n = (Ln)
† (3.25)

for n > 0. There is no ordering ambiguity in the same way as the case of the R-order.
From zero mode of (3.25), we obtain

M2 = 2
∞∑
n=1

P−n · Pn. (3.26)

102d GCA are obtained also from the tensionless limit of the Virasoro algebra [56,57].

– 30 –



From this representation, we find that the string ground state, |0⟩XP , is massless eigen-
state.
Next the Fourier modes of X̄−(σ) are

Mn = −i
n∑

m=1

mPn−m ·Xm − i
∞∑

m=1

((n+m)P−m ·Xn+m −mX−m · Pn+m) ,

M−n = (Mn)
†,

(3.27)

for n > 0.
Because M0 can contain the constant coming from the ordering ambiguity, we move it to
the r.h.s. of the constraint to obtain

M0 = −i
∞∑

m=1

m(P−m ·Xm −X−m · Pm) ≈ a. (3.28)

From this, we find that |0⟩XP is the eigenstate of M0 corresponding to zero eigenvalue.
Furthermore useful commutators of these operators are

[XI
n,Mm] = (n+m)XI

n+m , [PI,n,Mm] = nPI,n+m ,

[XI
n, Lm] = 2iPI,n+m , [PI,n, Lm] = 0 ,

(3.29)

[Ln, Lm] = 0 , [Ln,Mm] = (n−m)Ln+m ,

[Mn,Mm] = (n−m)Mn+m +
D − 2

6
(n3 − n)δn,−m .

(3.30)

Here we note that there is the central extension in the last line.
As seen in the next next chapter, in the case of D > 3, the requirement of the Lorentz
symmetry determines D and a.

3.3.3 C-normal order case

Here we give the representations of the important operators and commutators in the linear-
combinational normal order and then see the C-normal order cause various problems: the
complicated mass square operator and the inevitability of negative norms. Therefore we
decide to exclude the C-normal orders in the following chapters.

Concretely, we consider the following linear-combinational modes.11

aIn = αI
n = −i 1√

2
nXI

n +
1√
2
P I
n , (a

I
n)

† = aI−n

bIn = iα̃I
−n = − 1√

2
nXI

n + i
1√
2
P I
n , (b

I
n)

† = −bI−n

[aIn, a
J
m] = [bIn, b

J
m] = nδI,Jδn,−m , [aIn, b

J
m] = 0.

(3.31)

Here we note that the abnormal hermitian property of b-mode. XI
n and P I

n are solved
with a- and b-modes as

XI
n =

i√
2n

(aIn + ibI−n)

P I
n =

1√
2
(aIn − ibI−n) , p

I =
√
2aI0 = −i

√
2bI0.

(3.32)

11As well as the last section, we set ω = 1.

– 31 –



By using (3.32), we get Ln and Mn for all n as follows:

Ln = An −Bn + Cn − cδn,0 , L−n = (Ln)
†

Mn = An +Bn , M−n = (Mn)
†,

(3.33)

where

An =
1

2

n∑
m=0

am · an−m +
∞∑

m=1

a−m · an+m , A−n = (An)
†

Bn =
1

2

n∑
m=0

bm · bn−m +
∞∑

m=1

b−m · bn+m , B−n = (Bn)
†

Cn = −i
n∑

m=0

αm · bn−m − i
∞∑

m=1

(a−m · bn+m + b−m · an+m) , C−n = (Cn)
†.

(3.34)

As well as M0, L0 also has the ordering constant c unlike the former two cases because
the fundamental modes are a and b, not X and P . The ordering constant in M0 is moved
the r.h.s. of the constraint.
The commutators of a-mode (or b-mode) and these operators are[

aIn, Am

]
= naIn+m ,

[
aIn, Cm

]
= −inbIn+m[

bIn, Bm

]
= nbIn+m ,

[
bIn, Cm

]
= −inaIn+m,

(3.35)

and

[Ln, Lm] = 0 , [Ln,Mm] = (n−m)(Ln+m − cδn,−m)

[Mn,Mm] = (n−m)Mn+m +
D − 2

6
(n3 − n)δn,−m.

(3.36)

In the last line of (3.36), there is the central extension term.
From zero mode in (3.33), we obtain the representations of M2 andM0. The mass square
operator is represented as

M2 = A0 −B0 + C0 − p · p =
∞∑
n=1

(a−n · an − b−n · bn − ib−n · an − ia−n · bn)− c (3.37)

and M0 is

M0 = A0 +B0 =
∞∑

m=1

a−m · am +
∞∑

m=1

b−m · bm ≈ a, (3.38)

where the ordering constant, a, was moved to the r.h.s. of the constraint. Although
M0 separates into the part of a-mode and the part of b-mode, two parts have the same
sign unlike the LR-normal order or the normal order in a usual tensionful string theory.
Therefore the constraint in (3.38) is a strong condition. Because the ground state is the
eigenstate corresponding toM0 = 0, there is no physical state for negative a or non-integer
a. Therefore a must be zero or positive integer.
When a equals to positive integer k, the states at level k satisfy the constraint. By using
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the next commutators of M2 and a-mode or b-mode, we find (aI−k − ibI−k)|0⟩C as the
simple eigenstate of M2.

[M2, aI−n] = n(aI−n − bI−n) , [M2, bI−n] = −in(aI−n − bI−n). (3.39)

However, because of (bIn)
† = −bI−n, the norm of (aI−k − ibI−k)|0⟩C is zero. Although we

create more complicated eigenstates for k > 1, their norms are zero or negative. The
ground state |0⟩C is only the mass eigenstate with positive norm. The cause of such
negative norm states is the hermitian property of b-mode, (bIn)

† = −bI−n. If we restrict
states excited only by a to avoid negative norm states, we cannot find any mass eigenstates
in excited states.

The LR-normal order, which is the original C-normal order, has the problem that
the state annihilated by positive modes is not the mass eigenstate. Therefore we have
considered aIn and bIn above as other combinations. However we have found above that
the excited states in new C-order cause the problem. Though the unique case in which
we can avoid the problem is a = 0, the case of a = 0 in the C-normal order is very similar
to the case of a = 0 in the XP-normal order. Therefore the C-normal order is excluded
from the discussion in the following chapters.

3.4 Operator Orders used in the Following Chapters

Here we collect the operator orders and the string ground states used in the following
chapters below.

Operator Orders used in the Following Chapters
Order name Ordering rule ground state

R-order all P -modes are to the right of X-modes |0⟩P
Hermitian R-order∗ the hermitian average of the R-order |0⟩P
XP-normal order all positive modes of X & P are to the right of negatives |0⟩XP

∗ : Weyl order is similar.
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Chapter 4

Quantum 3D Tensionless String in
Light-cone Gauge with Poincaré
Symmetry

In this chapter we consider a quantum 3-dim. tensionless closed bosonic string with the
Poincaré symmetry in the light-cone gauge.

For the preparation or the reference, the generators of the Poincaré symmetry in three
dimensions and the light-cone gauge are shown below. From (2.59) and (2.60),

P− = p− , P = p , P+ = − : L0 :

2p−
,

J + = J +2 = −xp− , J = −J +− = x−p− − i

2
,

J − = −J −2 = −x−p− 1

2p−
x : L0 : +

i

2p−
p+

i

p−

∑
n ̸=0

1

n
:MnP−n : − 1

2p−

∑
n ̸=0

: XnL−n : .

(4.1)

where the part sandwiched by : are ordered.

Because the dangerous commutator for the Lorentz anomaly vanishes trivially in three
dimensions, [J −,J −] = 0, the ordering constant a in the constraint (3.21) is not deter-
mined by the requirement of the Lorentz symmetry in any operator order.1 Therefore
there are many possibilities in the mass spectrum according to the value of a. We inves-
tigate the mass spectrum2 to consider the natural choice of the ordering constant.
In the Reference order, its hermitian version and the Weyl order, we find the continuous
spectrum in addition to zero. Furthermore in these orders we find non-separable eigen-
states, which are not factorized with each Fourier-mode, as well as separable ones. From
such informations, we consider the natural choice of the ordering constant. In the XP-
normal order, we investigate the norm of mass eigenstates to consider the natural choice
of the ordering constant.

1This specialty of three dimensions is the same as the case of the 3-dim. tensionful string theory [50–52].
2The spectrum given in this chapter would be also a help to the case of higher dimensions.
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4.1 Mass Spectrum in R-order

First we consider the mass spectrum in the R-order.3 The string ground state is |0⟩P ,
which is annihilated by non-zero P -modes.
The general states are created by acting {Xn}n ̸=0 on |0⟩P . The fundamental elements of
general states are

Xn1Xn2 · · ·Xnl
|0⟩P , (4.2)

where ni ̸= 0 (i = 1, 2, · · · , l). More generally the states acted the function of {Xn}n ̸=0

are possible.
To be the eigenstate of M2 and to satisfy the constraintM0 = a, the function of {Xn}n ̸=0

are restricted greatly. Furthermore it is also desirable to be the function consists of the
positive integer power of {Xn}n ̸=0.

To find the concrete eigenstates, we use the X-representation for non-zero mode. From
the commutation relation, [Xn, Pm] = iδn,−m, Pn is written in the X-rep. as

Pn = −i ∂

∂X−n

(4.3)

Then we close the states by the bra-state which is the eigenstate of {Xn}n ̸=0, ⟨{Xx}|, to
consider the wave functions.

4.1.1 Mass square operator M2 and constraint operator M0

First the mass square operator in the X-rep. is

M2 = 2
∑
n>0

PnP−n = −2
∑
n>0

∂

∂X−n

∂

∂Xn

. (4.4)

This reduce two Xs from the function acting on |0⟩P . Therefore most of eigenfunctions
of (4.4) are infinite series of {Xn}n ̸=0. Of course, we expect such series consists of the
positive integer power of {Xn}n ̸=0.
From the spacetime conformal symmetry, we expect the eigenvalue of M2 is zero or
positive continuous.4 In fact, we can know the continuity of the mass spectrum from the
representation of (4.4). If a mass eigenfunction corresponding to eigenvalue M2 is given
by ψM({Xn}), we do the scale transformation as Xn → λXn for all n to obtain a mass
eigenfunction corresponding to the eigenvalue λ2M2 as ψM({λXn}) = ψλM({Xn}).

Next the constraint in the X-rep. is

M0 = −i
∑
n

nXnP−n = −
∑
n

nXn
∂

∂Xn

≈ a. (4.5)

For example, for the state in (4.2),

l∑
i=1

ni = a. (4.6)

3Because the string ground state and the representation of the mass square operator are the same as
in the Hermitian R-order and the Weyl order, the mass spectra in these orders is the same.

4In the later subsection, we will see for normalizable eigenfunctions that there is no negative eigenvalue.
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If we want the states consisting of the positive integer power of {Xn}n ̸=0, a of integer
must be chosen.

4.1.2 Mass eigenfunction for separable type

Now we investigate a mass eigenfunction. To simplify the leading of eigenfunctions, we
use the polar representation of Xn and X−n.

Xn = rne
iθn , X−n = rne

−iθn (4.7)

for n > 0. Then M2 is written as

M2 = −1

2

∑
n>0

[
∂2

∂rn2
+

1

rn

∂

∂rn
+

1

rn2
∂2

∂θn2

]
. (4.8)

Now (4.8) can be separated into the part of each n. Therefore we can separate variables
to find solutions. The fundamental differential equation is

−1

4

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

]
ψm(r, θ) = m2ψm(r, θ), (4.9)

where r ≥ 0. From the symmetry of the ”angular” θ, we can assume ψm(r, θ) = ϕm,s(r)e
isθ

for integer s. Then ϕm,s(r) satisfy the next differential equation.[
d2

dr2
+

1

r

d

dr
+ 4m2 − s2

r2

]
ϕm,s(r) = 0. (4.10)

Thus we obtain the ordinary differential equation. To get the solution of (4.10) concretely,
we divide in two cases, m2 ̸= 0 and m2 = 0.

Solutions in m2 ̸= 0 case

In the case of m2 ̸= 0, (4.10) is written as[
d2

dr̂2
+

1

r̂

d

dr̂
+ 1− s2

r̂2

]
ϕm,s

(
r̂

2m

)
= 0. (4.11)

where r̂ = 2mr. The solution of this differential equation is given by the Bessel function
J|s|(r̂).

5 Thus we obtain

ψm(r, θ) = NmJ|s|(2mr)e
isθ (4.12)

where Nm is a normalization constant. From the regularity of the Bessel function on the
infinity, m must be real. Therefore m2 < 0 is excluded. We restrict to m2 > 0 below.
Because the argument of the Bessel function in (4.12) is 2mr, we obtain the eigenfunction
corresponding to eigenvalue λ2m2 by rescaling r → λr in (4.12).

5For integer ν, Jν(x) = (−1)νJ−ν(x).
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The solution in (4.12) is written by the original variables, Xn = rne
iθn and X−n =

rne
−iθn , as6

ψm,±|s|(rn, θn)=NmJ|s|(2m(XnX−n)
1
2 )

(
Xn

X−n

) s
2

=Nm(mX±n)
|s|

∞∑
l=0

(−m2)l

l! (l + |s|)!
(XnX−n)

l, (4.13)

where ± is the sign of s and we used

Jν(z) =
(z
2

)ν ∞∑
l=0

(−1)l

l! Γ(l + ν + 1)

(z
2

)2l
. (4.14)

From (4.13), we find that the eigenfunction is the positive integer power of Xn and X−n

as we expected.

Orthogonality and Normalization for m > 0

Here we show the orthogonality of above eigenfunctions and give the normalization of
eigenfunctions. According to appendix C, the inner product of two wave functions, ψ1(r, θ)
and ψ2(r, θ), is

(ψ1, ψ2) ≡
∫ ∞

0

dr

∫ 2π

0

dθ r ψ∗
1(r, θ)ψ2(r, θ). (4.15)

For two eigenfunctions written by the Bessel function, we get

(ψm,s, ψm′,s′) =
π

2

|Nm|2

m
δ(m−m′)δs,s′ (4.16)

(4.16) means the orthogonality of two eigenfunctions corresponding to different eigenval-

ues. If we set Nm =
√

2m
π
, we obtain (ψm,s, ψm′,s′) = δ(m−m′)δs,s′ .

The detail is in appendix C.

Solution in m2 = 0 case

In the case of m2 = 0, (4.10) is written as[
d2

dr2
+

1

r

d

dr
− s2

r2

]
ϕ0,s(r) = 0. (4.17)

The solution for s ̸= 0 is r|s| or r−|s|, and the solution for s = 0 is constant or log r.
Because of the regularity on r = 0, r|s| is chosen for s ̸= 0 and constant solution is chosen
for s = 0. The detail of such choice and the orthogonality is in appendix C.
These solutions are written by the original variables, Xn and X−n, as

ψ0,±|s|(r, θ) ∝ r|s|e±i|s|θ = (X±n)
|s|. (4.18)

This is the positive integer power of Xn or X−n and the structure estimated easily in the
original differential equation (4.4).

6We dropped n in sn or mn to avoid the confused representation.
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Total mass eigenfunction for separable type

The eigenfunctions of (4.10) for each n > 0 are given above. The separable total mass
eigenfunction is given by the product of them.

Ψ =
∏
n>0

ψmn,sn(rn, θn) (4.19)

Its eigenvalue is the summation over n,

M2 = 2
∑
n>0

(mn)
2. (4.20)

As mentioned before, the eigenvalue of M2 is zero or continuous. The separable total
mass eigenfunction corresponding to M2 = 0 is given by the product of eigenfunctions
(4.18) corresponding to mn = 0 for all n > 0. The separable total mass eigenfunction
corresponding to M2 > 0 is given by using the eigenfunction corresponding to m2

n > 0
for at least one of n.7

4.1.3 Physical mass eigenfunction

The mass eigenfunction has been investigated above. The physical states or wave functions
must satisfy the constraint M0 = a. In the polar coordinate, rn and θn, the constraint is

M0 = −
∑
n>0

n

[
Xn

∂

∂Xn

−X−n
∂

∂X−n

]
= i
∑
n>0

n
∂

∂θn
. (4.21)

For (4.19), the constraint is

M0 = −
∑
n>0

nsn = a. (4.22)

Because sn is integer, a must be integer. This is the requirement from the mass spectrum,
not from the spacetime symmetry. Furthermore the choice of integer a is separated into
two cases, of zero and non-zero integer. The ground state |0⟩P is physical in the first case,
but not in the second case. On the other hand, the states excited by one X-mode are not
physical in the first case, but in the second case.

We summarize the choice of a and the possible physical mass eigenstates in the next
table.

Choice of a and Physical mass eigenstates.
a |0⟩P X−i|0⟩P higher
0 ◦ × ◦

k ( non-zero integer ) × ◦ (for k = i) ◦
non-integer × × ×

◦ = ”physical states can exist”, × = ”unphysical”

7For other n’s, we can choose m2
n = 0.
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Thus a = 0 is special case. In fact, we must choose a = 0 to avoid the Lorentz anomaly
for the tensionless string in D > 3 in some operator orders, and to avoid the spacetime
conformal anomaly for the tensionless string in D = 3 in the Hermitian R-order.
Because the case of a = 0 is special and important, we consider particularly the case of
a = 0 below. The case of non-zero integer a is similarly discussed.

4.1.4 More physical mass eigenfunction for non-separable type
and Λ-action

So far we have considered the mass eigenfunction which can be factorized into each n
solution. But there sre also non-separable mass eigenfunctions.
If the number of variables is finite and a good symmetry exists, all we have to consider
is the separable eigenfunction. For example, we can know the general solution of the 3d
Schrödinger equation with the rotational symmetry from separable solutions expanded by
the spherical harmonics. However, because the number of variables is infinite, such a way
is too difficult.

Here we verify the existence of non-separable mass eigenfunctions. Then we find that
non-separable eigenfunctions are given by acting the operator Λ on separable ones.
First we consider the massless case and next the massive case.

Massless case : a = 0

First of all we give separable massless states. We must choose mn = 0 for all n to get
separable massless states. From (4.18) and (4.22), the simplest massless state for a = 0
is the string ground state |0⟩P and other separable ones are

Xn1Xn2 · · ·Xnl
|0⟩P , (4.23)

where
∑l

i=1 ni = 0 and ni + nj ̸= 0 for ∀i, j.8 From this, one of the second simplest
separable massless state is

X2X−1X−1|0⟩P . (4.24)

The monomial state of degree 1 of X is massless, but does not satisfy the constraint for
a = 0. The monomial state of degree 2 can satisfy the constraint such as XnX−n|0⟩P , but
is not mass eigenstate.

Next we give examples of the non-separable massless state.

(X1X−1 −X2X−2)|0⟩P ,

((X1X−1)
2 + (X2X

2
−2)− 4(X1X−1)(X2X−2))|0⟩P .

(4.25)

They are polynomial. The non-separable massless state of higher degree must be polyno-
mial similarly.
It is difficult to find the non-separable massless state of higher degree directly. Therefore
we consider the indirect way.

8Although we may order ni’s as n1 ≤ n2 · · · ≤ nl, it is not always necessary.
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In three dimensions, there is another Poincaré invariant in addition to the mass square
operator, M2 = −P2. It is Λ defined as

J µPµ ≡ Λ = −1

2

∑
n ̸=0

∑
m̸=0

n+m̸=0

(
1 +

m

n
+
n

m

)
Xn+m

∂

∂Xn

∂

∂Xm

. (4.26)

Two Poincaré invariants commute mutually and also with M0. Therefore the action Λ on
a mass eigenstate create another mass eigenstate corresponding to the same eigenvalue.9

In fact, two states in (4.25) are created by the action of Λ on another massless state as
follows:

ΛX2X−1X−1|0⟩P =3(X1X−1 −X2X−2)|0⟩P
ΛX2X2X−1X−1X−1X−1|0⟩P ∼ 6(2(X1X−1)− 3(X2X−2))X2X−1X−1|0⟩P (4.27)

ΛΛX2X2X−1X−1X−1X−1|0⟩P ∼ 54((X1X−1)
2 + (X2X−2)

2 − 4(X1X−1)(X2X−2))|0⟩P ,

where ∼ in the second and third line means omitting separable massless states. The r.h.s.
in the first line is the simplest non-separable massless state and the r.h.s. in the third line
is the fundamental non-separable massless state of degree 4. Because the fundamental
element is (XnX−n), we find that any non-separable massless state of degree 3 does not
exist.
Thus we can create a non-separable massless state from a separable massless state by
acting Λ.

The inner product of these non-separable massless states and massive ones is consid-
ered in appendix C.

Massive case : a = 0

We expect the existence of non-separable massive states. Although it is difficult to find
them directly, we can find them by acting Λ on other massive eigenfunctions. We con-
sider the case of M2 = 2m2 as example. We use r̂1 = 2m

√
X1X−1 and determine the

normalization of Nm = 1 for the simplicity to obtain

Λψm,0(X1, X−1)|0⟩P = ΛJ0(r̂1)|0⟩P = −3

2
m2 (X2ψm,−2(X1, X−1)) |0⟩P

ΛX4X−2X−2ψm,0(X1, X−1)|0⟩P ∼ 3(X2X−2 −X4X−4)ψm,0(X1, X−1)|0⟩P (4.28)

ΛX3X−2ψm,−1|0⟩P ∼ 7

6m

[
m2(2X2X−2 − 3X3X−3)J0(r̂1) +

1

2
r̂1J1(r̂1)

]
|0⟩P ,

where ∼ in the second and third lines means omitting separable massive states. In the
above calculation, we have used various relations for the Bessel function 10. The r.h.s.
of the first line is a separable massive state again. The r.h.s of the second line is the

9Because M2 and Λ commute mutually, we may diagonalize simultaneously and search the simulta-
neous eigenfunction of both. However, it is difficult and not practical. We use another operator in the
spacetime conformal symmetry to characterize the massless eigenstate. Therefore we use Λ as the tool
to find another eigenfunction.

10For example, we use the definitional differential equation, J ′′
ν (z) +

1
zJ

′
ν(z) + (1 − ν2

z2 )Jν(z) = 0, the

recursion relation, Jν−1(z) + Jν+1(z) =
2ν
z Jν(z), and

dkJn(z)
dzk = 1

2k

∑k
r=0

(−1)r k!
r! (k−r)!Jn−k+2r(z).
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product of a separable eigenstate corresponding to non-zero eigenvalue of (4.10) and non-
separable eigenstate corresponding to zero eigenvalue. The r.h.s. of the third line is the
non-separable massive state.
Thus we can get a non-separable massive state from a separable massive state by acting
Λ.

4.1.5 Characterization of massless states

So far we have considered the eigenstate ofM2 andM0. The physical state is characterized
by eigenvalues of M2 and M0.
From the explicit solution such as (4.23) and (4.25), we expect that the massless state is
characterized by another operator which counts the number of X-action. The operator ∆
which counts the number of X-action is defied by using a part of the dilatation generator
as

∆ ≡ iD̃R =
∑
n

Xn
∂

∂Xn

. (4.29)

where D̃R is the non-zero mode part of DR. ∆ satisfy

[∆, Xn] = Xn , for n ̸= 0. (4.30)

|0⟩P has ∆ = 0 and (4.23) has ∆ = l. Moreover the first line in (4.25) has ∆ = 2 and the
second line has ∆ = 4.11 Thus ∆ characterize massless states.

In fact, because the commutator of ∆ and M2 is

[∆,M2] = −2M2, (4.31)

∆ is good characterization for massless states with M2 = 0. Therefore we can use ∆
instead of Λ.12

4.2 Mass Spectrum in XP-normal Order

The string ground state in the XP-normal order is |0⟩XP , which is annihilated by positive
X- and P -modes. The excited states are created by acting {X−n, P−n}n>0 on |0⟩XP . If
the action of the negative exponent of X- and P -modes is prohibited, the general excited
states are

X−m1 · · ·X−mk
P−n1 · · ·P−nl

|0⟩P , (4.32)

where mi > 0 (i = 1, 2, · · · , k) and nj > 0 (j = 1, 2, · · · , l). The level of (4.32) is∑k
i=1mi +

∑l
j=1 nj.

The constraint M0 = a determines the level. By using the freedom of choosing the
ordering constant a, we investigate values of a which give the interesting physics.

First of all we give possible values as a. Then we find mass eigenfunctions and mass
eigenvalues for some a’s. Finally we extract the interesting value of a.

11∆ which counts X is opposite sign of the scaling dimension which counts P .
12Because of [∆,Λ] = −Λ, we cannot use both ∆ and Λ generally.
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4.2.1 Constraint

The constraint in the XP-normal order is

M0 = i
∞∑
n=1

n(X−nPn − P−nXn) ≈ a. (4.33)

M0 gives the level of states. The level of the ground state is zero and the level of the
finitely excited states is positive integer. Therefore a must be zero or positive integer.
For example, M0 = 0 for |0⟩XP and M0 =

∑k
i=1mi +

∑l
j=1 nj for (4.32). More explicitly,

the state which satisfy the constraint for a = 0 is only the string ground state |0⟩XP , for
a = 1 are P−1|0⟩XP ≡ |P−1⟩XP and X−1|0⟩XP ≡ |X−1⟩XP , and for a = 2 are the states
created by acting P−2, P−1P−1, P−1X−1, X−1X−1, X−2 on |0⟩XP . The case of larger a is
similarly discussed.

4.2.2 Action of mass square operator on physical states

Here we consider the action of the mass square operator for some values of a. The mass
square operator in the XP-normal order is

M2 = 2
∞∑
n=1

P−nPn. (4.34)

The action of this operator on states reduces one X and then adds one P . Therefore we
easily find that states created only by {P−n}n>0 are massless eigenstates. We verify below
that mass eigenstates are only such massless states.

a = 0 case

The state which satisfies the constraint for a = 0 is only the string ground state |0⟩XP .
This is the mass eigenstate corresponding to zero eigenvalue, massless state. The case of
a = 0 is point-like particle because there is no stringy excitation.

a = 1 case

The states which satisfy the constraint for a = 1 are |P−1⟩XP and i|X−1⟩XP . We act mass
square operator on them to obtain M2|P−1⟩XP = 0 and M2i|X−1⟩XP = 2|P−1⟩XP . This
action is represented as

M2 =

(
0 2
0 0

)
. (4.35)

From this, we find that |P−1⟩XP is the mass eigenstate corresponding to zero eigenvalue,
massless state. On the other hand, |X−1⟩XP is not a mass eigenstate.
(4.35) is the representation which can not be diagonalized. Because the mass square
operator is originally hermitian, it is strange. The cause of this strangeness is that we
represent M2 for the states restricted by the positive integer power of X−n or P−m.
Therefore we firstly investigate the eigenstates of (4.34) without restriction and then
should restrict the states which consist of the action of the positive integer powers of X−n
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or P−m.

For the simplicity, we consider only the action of X−1 and P−1. The general state
which satisfy the constraint M0 = a = 1 is represented as

P−1F

(
X−1

P−1

)
|0⟩XP , (4.36)

where F is a function of X−1

P−1
. We act the mass square operator on (4.36) to get

M2P−1F

(
X−1

P−1

)
|0⟩XP = −2iP−1F

′
(
X−1

P−1

)
|0⟩XP , (4.37)

where ′ means differential with respect to the argument, X−1

P−1
. If F ′(z) ∝ F (z), we obtain

a mass eigenstate. The solution of F ′(z) ∝ F (z) is an exponential function. Concretely,

P−1e
c
X−1
P−1 |0⟩XP =

(
P−1 + cX−1 +

c2

2

X−1X−1

P−1

+ · · ·
)
|0⟩XP (4.38)

is a mass eigenstate corresponding to M2 = −2ic. For each c, there is an eigenstate.
From (4.38), the state in which all terms consist of the zero or positive integer power is
only the case of c = 0. The state for c = 0 is |P−1⟩XP , which is one of the state at level
1 given above. Because another state at level 1 given above, |X−1⟩XP , is a part of other
eigenstates with c ̸= 0 such as (4.38), we should not extract only |X−1⟩XP . The case of
allowing the action of other modes as well as X−1 and P−1 is similarly discussed.

Thus we find that the mass eigenstate satisfying the constraint for a = 1 is only
|P−1⟩XP .

However, it is not practical to extract only the states consisting of the positive integer
power after searching the general mass eigenstate. Therefore we firstly give the states
consisting of the positive integer power and then extract mass eigenstates and exclude
others.

a = 2 case

The state which satisfy the constraint for a = 2 and consist of the positive integer powers
are |P−2⟩XP , |P−1P−1⟩XP , i|P−1X−1⟩XP , −|X−1X−1⟩XP and i|X−2⟩XP . The action of the
mass square operator (4.34) is represented as

M2 =


0 0 0 0 2
0 0 2 0 0
0 0 0 4 0
0 0 0 0 0
0 0 0 0 0

 (4.39)

From this, the first and second states are massless eigenstates. On the other hand, the
last three states are not eigenstates. Therefore we exclude the last three states.

Thus we obtain |P−2⟩XP and |P−1P−1⟩XP as mass eigenstate which satisfy the constraint
for a = 2.
Here note that in three dimensions we can not interpret these eigenstates as a dilaton
or a graviton because of the specialty of the irreducible representation for 3d Poincaré
group [54].
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a = k : positive integer case

More generally, the mass eigenstates which satisfy the constraint for a = k are

P−n1 · · ·P−nl
|0⟩P with

l∑
j=1

nj = k, (4.40)

where k is positive integer. The their mass eigenvalues are zero, massless.

4.2.3 Inner product and norm

Above we have investigated states consisting of the positive integer power of X−n and
P−m and then have found that mass eigenstates are created by the action of P−m on the
string ground state |0⟩XP . Here we consider the norm of such mass eigenstates.
The ground state |0⟩XP is annihilated by positive modes of X and P . The bra-state
conjugate of this, XP ⟨0|, is the state annihilated by negative modes of X and P . This is
consistent with the commutation relation, [Xn, Pm] = iδn,−m.
The norm of the string ground state is defined as

∥ |0⟩XP ∥2= XP ⟨0 | 0⟩XP = 1, (4.41)

where we normalized this to 1.
The norm of the general state F ({X−n}, {P−n})|0⟩XP ≡ |F ({X−n}, {P−n})⟩XP is defined
with the inner product. The inner product of |F ⟩XP and |G⟩XP is defined as(

|F ⟩XP , |G⟩XP

)
≡ XP ⟨0|

(
F ({X−n}, {P−n})

)†
G({X−n}, {P−n})|0⟩XP

= XP ⟨0|F ∗({Xn}, {Pn})G({X−n}, {P−n})|0⟩XP . (4.42)

From this, the norm of |F ⟩XP is

∥ |F ⟩XP ∥2= XP ⟨0|F ∗({Xn}, {Pn})F ({X−n}, {P−n})|0⟩XP (4.43)

Now we consider the norm of mass eigenstates. For lower level, we obtain

∥ |P−1⟩XP ∥2=XP ⟨0|P1P−1|0⟩XP = XP ⟨0|P−1P1|0⟩XP = 0

∥ |P−1P−2⟩XP ∥2=XP ⟨0|P2P1P−1P−2|0⟩XP = XP ⟨0|P−1P−2P2P1|0⟩XP = 0
(4.44)

Similarly, for higher level, the norm of mass eigenstates is zero because two P -modes
commute mutually. The physical interpretation of such zero norm is unclear.13

The fact that the unique positive norm state is the string ground state |0⟩XP , which is
not excited, probably indicates that the tensionless string in the XP-normal order must
be point-like. In the following chapter we will consider the requirement of the spacetime
conformal symmetry to see that this is a natural interpretation.

13To avoid zero norm of mass eigenstates, we may define the different inner product as follows:(
|F ⟩XP , |G⟩XP

)
≡ XP ⟨0|G∗({iPn}, {−iXn})F ({X−n}, {P−n})|0⟩XP . (4.45)

However, this inner product changes the meaning of the hermitian conjugate, (A|F ⟩, |G⟩) ̸= (|F ⟩, A†|G⟩).
Therefore we must reconstruct the foundation of quantum theory. That is no longer the ”quantum”
theory we know.

– 45 –





Chapter 5

Quantum Higher Dimensional
Tensionless String in Light-cone
Gauge with Poincaré Symmetry
(D > 3)

In this chapter we consider a quantum D-dimensional tensionless closed bosonic string
with the Poincaré symmetry in the light-cone gauge. In D > 3, the avoidance of the
Lorentz anomaly give the restriction. In the Reference order, the Hermitian R-order and
the Weyl order, the ordering constant is determined to be zero, but the dimension is free.
On the other hand, in the XP-normal order, the critical dimension is 26 and the ordering
constant is also determined. Furthermore we give the mass spectra in theories without
the anomaly.

5.1 R-order Case

In this section we consider the anomaly and mass spectrum of the tensionless string in the
light-con gauge in the R-order. For the Poincaré symmetry, the cases of the Hermitian
R-order and the Weyl order are similar.

5.1.1 Generators in R-order

In the R-order, some generators are not hermitian. Therefore we must hermitianize them
such as (B.6). From (B.1) and (B.6), the hermitian generators of the Poincaré symmetry
in the R-order are

P− =p− , PI = pI , P+ = − L0

2p−
,

J +I =− xIp− , J +− = −x−p− +
i

2
, J IJ =

∑
n

(XI
nP

J
−n −XJ

nP
I
−n) ,

J −I =x−pI − i

2p−
pI − i

p−

∑
n ̸=0

1

n
MnP

I
−n +

1

2p−

∑
n

XI
nL−n ,

(5.1)
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where Ln and Mn are R-ordered operators.

5.1.2 Lorentz anomaly and constraint

Most commutators in the Poincaré symmetry are easily calculated, but the infamous
dangerous commutator [J −I ,J −J ] needs long calculation [36]. From the calculation in
appendix E, we obtain

[J −I , J −J ] = − 1

p2−

∑
n ̸=0

1

n

(
P I
nP

J
−n − P J

n P
I
−n

)
M0. (5.2)

This is the result obtained also from the classical calculation, because there is no quantum
effect in [J −I ,J −J ] in the R-order as we can see from the consideration in next chapter.
The constraint on physical states isM0 ≈ a. Therefore there is no anomaly in the Poincaré
symmetry if and only if a = 0. The dimension D is free.

5.1.3 Mass square operator and constraint

In the R-order, we use the X-representation for the non-zero mode to consider the wave
function. From the commutation relation [XI

n, PJ,m] = iδIJδn,−m, PI,n in the X-rep. is

PI,n = −i ∂

∂XI
−n

(5.3)

By using this, the mass square operator and the constraint are written as

M2 =
∑
n ̸=0

P−n · Pn = −2
∑
n>0

∂

∂Xn

· ∂

∂X−n

(5.4)

M0 = −
∑
n ̸=0

nXn ·
∂

∂Xn

=
∑
n>0

n

(
−Xn ·

∂

∂Xn

+X−n ·
∂

∂X−n

)
≈ 0. (5.5)

Below we investigate the eigenfunction of M2 which satisfy the constraint.

5.1.4 Separable mass eigenfunction

In this subsection we consider the separable mass eigenfunction in the R-order according
to [36].
First we consider the eigenfunctions for each part of n > 0 in (5.4). The case of D > 3 is
a little more complicated than the case of D = 3. We replace XI

n and XI
−n with yI and

y∗I respectively to consider the next fundamental differential equation.

∂

∂y
· ∂

∂y∗
ψ(y, y∗) = −m2ψ(y, y∗). (5.6)

From the irreducible representation of SO(D − 2), we consider the solution of (5.6) such
that

ψ
I1...Iq
J1...Jq̄ ,m

(y, y∗) = N
(
yI1 · · · yIqy∗J1 · · · y

∗
Jq̄

)
tl
ψm(r) (5.7)
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where r =
√
y · y∗, N is the normalization constant and (· · · )tl means the traceless con-

dition,

δJāIa ψ
I1...Iq
J1...Jq̄ ,m

= 0 (a ∈ [1, . . . , q], ā ∈ [1, . . . , q̄]) (5.8)

Now we consider the action of ∂
∂y

· ∂
∂y∗

on ψ
I1...Iq
J1...Jq̄ ,m

. If ψm(r) satisfy the next differential

equation, ψ
I1...Iq
J1...Jq̄ ,m

satisfy (5.6).

ψ′′
m(r) +

2(D − 3 + h) + 1

r
ψ′
m(r) + 4m2ψm(r) = 0, (5.9)

where h ≡ q + q̄. The solution of (5.9) for m > 0 is written by the Bessel function as

ψm,h(r) = Nmr
3−D−hJD−3+h(2mr), (5.10)

where Nmis the normalization constant. The solution of (5.9) for m = 0 is

ψ0,h(r) = constant. (5.11)

Note that the solution excluded in the case of h = 0 is not logarithm unlike in three
dimensions. Thus we find that ψ

I1...Iq
J1...Jq̄ ,m

is a solution of (5.6).

The inner product of two eigenfunctions corresponding to non-zero eigenvalue, ψ
I1...Iq
J1...Jq̄ ,m

(y, y∗)

and ϕ
K1...Kq

L1...Lq̄ ,m′(y, y∗), is(
ψ

I1...Iq
J1...Jq̄ ,m

, ϕ
K1...Kq′

L1...Lq̄′ ,m

)
∝ δq,q′δq̄,q̄′

[
δ
(K1

(I1
· · · δKq)

Iq)
δ
(J1
(L1

· · · δJq)Lq)

]
t.l.
δ(m−m′). (5.12)

The derivation of (5.12) and the orthogonality of eigenfunctions such as (5.10) or (5.11)
are discussed in the same way as the case of D = 3. The detail is in [36].

Next we consider the constraint in (5.5). The fundamental element of M0 is

−y · ∂
∂y

+ y∗ · ∂

∂y∗
. (5.13)

The eigenvalue of (5.13) corresponding to ψ
I1...Iq
J1...Jq̄ ,m

is −q + q̄ ≡ −s. Therefore the con-
straint imposed on states is

M0 = −
∑
n>0

nsn = 0. (5.14)

The total mass eigenfunction which satisfies the constraint (5.14) is given by the
product over n > 0 such as

Ψ({XI
n}) = Π

n>0

[(
XI1

n · · ·XIqn
n XJ1,−n · · ·XJq̄n ,−n

)
tl
ψmn,hn(2mnrn)

]
, (5.15)

where
∑∞

n=1 nsn = 0 and we used

rn =
√
Xn ·X−n , hn = qn + q̄n , sn = qn − q̄n. (5.16)
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The mass eigenvalue of (5.15) is

M2 = 2
∑
n>0

m2
n. (5.17)

The inner product of total eigenfunctions is defined by the product of each n’s inner
product.

Thus we obtain the separable total mass eigenfunction corresponding to (5.17). Then
we find that the case of D = 3 is the special one.
Below we consider the massless state to find the interesting state which does not exist in
three dimensions. The massive state is discussed similarly.

Massless states

The traceless condition (5.8) in D > 3 is weaker than the case of D = 3. Therefore we
find the solution with new combination which can not be obtained in the case of D = 3.
Here we show examples of massless states with new combination. Although we cannot
obtain the separable massless state of degree 2 in D = 3, we obtain the following massless
states satisfying the traceless condition in D > 3.(

XI
nX

J
−n +XJ

nX
I
−n −

2

D − 2
δI,J(Xn ·X−n)

)
|0⟩P

(XI
nX

J
−n −XJ

nX
I
−n)|0⟩P

(5.18)

They are states with spin 2 rep. and spin 1 rep. of SO(D−2). Therefore they correspond
to 1 graviton and 1 Kalb-Ramond respectively. By considering the multiple action of the
operators in (5.18) for distinct n’s, we get ”multi-particle”1 massless states. This fact is
interesting because the usual tensionful string does not have such a state.
Furthermore we can similarly create massless states with higher spin. The appearance of
the massless higher spin state is also interesting.

5.1.5 Non-separable mass eigenfunction

The non-separable mass eigenfunction is expected in D > 3, as well as D = 3. We
consider the operator Λ̄I corresponding to Λ in three dimensions. Λ̄I is defined as

Λ̄I ≡
∑
n ̸=0

[
−1

2
XI

nL̄−n +
i

n
M̄nP

I
−n

]
, (5.19)

where the barred operators are defined by removing zero mode pJ from the unbarred ones.
Λ̄I commute with M2.

[M2, Λ̄I ] = 0 (5.20)

Therefore, by acting Λ̄I on a mass eigenfunction, we can obtain another mass eigenfunc-
tion. In particular, it is possible to obtain the non-separable mass eigenfunction, as well
as the case of D = 3. We have to decompose such a eigenfunction into the irreducible
representation, though.

1It is unclear whether these excitation for distinct n means the identical particle or not.

– 50 –



5.1.6 Characterization of massless states

As well as the case of D = 3, we define the operator counting the number of X-action as

∆ ≡
∑
n

Xn ·
∂

∂Xn

(5.21)

∆ satisfy the following commutation relations:

[∆,M2] = −2M2, (5.22)

[∆, Xn] = Xn. (5.23)

Therefore ∆ is a good operator which characterizes massless states.

5.2 XP-normal Order Case

In this section we consider the anomaly and the mass spectrum in the XP-normal order.

5.2.1 Generators in XP-normal order

From (B.13), the generators of the Poincaré symmetry in the XP-normal order are

P−,N =p− , PI,N = pI , P+,N = p+ = − L0

2p−
,

J +I
N =− xIp− , J +−

N = −x−p− +
i

2
,

J IJ
N =xIpJ − xJpI +

∞∑
n=1

[
(XI

−nP
J
n −XJ

−nP
I
n) + h.c.

]
,

J −I
N =x−pI +

1

2p−
xIL0 −

i

2p−
pI

+
1

2p−

∞∑
n=1

(XI
−nLn + L−nX

I
n)−

i

p−

∞∑
n=1

1

n
(P I

−nMn −M−nP
I
n)

(5.24)

where Ln and Mn are XP-normal ordered ones, (3.24) and (3.26).

5.2.2 Lorentz anomaly

Most commutators of the Poincaré symmetry are easily calculated, but the infamous dan-
gerous commutator [J −I

N ,J −J
N ] needs long calculation. From the calculation in appendix

E, we obtain

[J −I
N , J −J

N ] =
1

p2−

∞∑
n=1

[(D − 2

6
− 4
)
n+

(
2M0 −

D − 2

6

) 1
n

](
P I
−nP

J
n − P J

−nP
I
n

)
. (5.25)

From this, the critical dimension is D = 26 and the constraint is M0 ≈ a = 2. The fact
that this critical dimension is the same as one of the usual tensionful bosonic string is
interesting.
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5.2.3 Mass spectrum

Because of M0 ≈ 2, the mass spectrum in the XP-normal order is strongly restricted.
From (3.28),

M0 = −i
∞∑

m=1

m(P−m ·Xm −X−m · Pm) ≈ a = 2. (5.26)

Therefore, among states consisting of the positive integer powers of operators, states which
satisfy the constraint are

P I
−2|0⟩XP , P

I
−1P

J
−1|0⟩XP , (P

I
−1X

J
−1 − P J

−1X
I
−1)|0⟩XP ,

(P I
−1X

J
−1 + P J

−1X
I
−1)|0⟩XP , X

I
−1X

J
−1|0⟩XP , X

I
−2|0⟩XP .

(5.27)

From (3.26), the mass square operator in the XP-normal order is

M2 = 2
∞∑
n=1

P−n · Pn, (5.28)

and its representation for (5.26) is

M2 =


0 0 0 0 0 2
0 0 0 4 0 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (5.29)

The states in the first line of (5.27) are massless eigenstates. On the other hand, the
states in the second line of (5.27) are not mass eigenstates, but are a part of other mass
eigenstates. Therefore they are excluded in the same way as the discussion in the case of
D = 3.
The first and second states in the first line are the same type as the states obtained in
D = 3 and their norms is zero. The third state in the first line is new type and its norm
is negative. The interpretation of these zero or negative norm states is unclear.

To avoid the zero or negative norm states, we might interpret the dangerous commuta-
tor (5.25) as a new additional constraint. In that case, the commutators of new constraint
and generators (or other constraints) create additional constraints one after another. In
the XP-normal order, all additional constraints are satisfied only by the string ground
state. It means that the tensionless string in the XP-normal order is point-like. Also in
the following chapters, we will see the fact is natural.
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Chapter 6

Operator Orders and Structure of
Commutators

Some commutators in the spacetime conformal symmetry can be anomalous. Therefore
we take care in the calculation of them.
Some commutators contain terms of higher degree with respect to Fourier modes, Xn

and Pn. For example, [J −I ,KK ] contains operators of degree 4 and [J −I ,K−] contains
operators of degree 5. Furthermore, because of divergent terms, we need the regularization
in some operator orders. Therefore the calculation of commutators in the spacetime
conformal symmetry is very complicated.

Before we consider the spacetime conformal symmetry for the tensionless string theory,
we investigate the relation between the choice of operator orders and the structure of
commutators.

The effect of quantization in the calculation of commutators arises from terms which
are exchanged with other operators several times to be ordered correctly. Such quantum
effect’s terms, which is differences from classical results, can be anomalous. The fact that
the commutator of two Hermitian operators is anti-Hermite (or imaginary unit i times
Hermitian operator) restricts the structure of such quantum effect’s terms in commutators.

In this chapter we show some examples to consider the structure of quantum effect’s
terms which arise when a certain hermitian operator is ordered in a given operator or-
der.1 If we know how quantum effects appear in commutators, we can determine the
structure of commutators of generators to some extent to help the concrete calculation
of their commutators. Furthermore we give the possible structure of some dangerous
commutators in the Hermitian R-order and the XP-normal order, as examples.

6.1 Example 1 : Coordinate and Momentum

First we consider the coordinate x and the momentum p which satisfy the usual commu-
tation relation [x, p] = i as fundamental operators. We compare some hermitian combi-
nations with Weyl ordered ones. (A)W indicates Weyl ordered version of operator A.

1The case of Grassmannian operator is similarly discussed.
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Cubic example

Cubic operators of the product of two x and one p case are xxp, xpx and pxx. Hermitian
combinations of them are xpx, 1

2
(xxp + pxx) and (xxp)W ≡ 1

3
(xxp + xpx + pxx). The

first and second combinations cause no extra term when they are Weyl-ordered.

xpx =
1

2
(xxp+ pxx) = (xxp)W . (6.1)

Operators of the product of one x and two p are discussed similarly.

Quartic example

Hermitian combinations of quartic operators which are the product of three x and one p
are 1

2
(xxxp+ pxxx), 1

2
(xxpx+ xpxx), (xxxp)W ≡ 1

4
(xxxp+ xxpx+ xpxx+ pxxx) and so

on. The first and second combinations are Weyl-ordered as

1

2
(xxxp+ pxxx) =

1

2
(xxpx+ xpxx) = (xxxp)W . (6.2)

There is no extra term between two combinations and the Weyl-ordered operator. Oper-
ators of the product of one x and three p are discussed similarly.

Hermitian combinations of operators which are the product of two x and two p are
xppx, pxxp, 1

2
(xpxp+pxpx), 1

2
(xxpp+ppxx), (xxpp)W ≡ 1

6
(xxpp+xpxp+xppx+pxxp+

pxpx+ ppxx) and so on. These are Weyl-ordered as

xppx = pxxp = (xxpp)W +
1

2
1

2
(xpxp+ pxpx) = (xxpp)W

1

2
(xxpp+ ppxx) = (xxpp)W − 1

2
.

(6.3)

In this case, there are not quadratic but constant quantum effect’s terms. In the last line,
there is an extra term between the Hermitian R-ordered operator and the Weyl-ordered
one. Note that all these quantum effect’s terms are in the degree which is 4 degrees lower
than the highest degree.

Similarly, in the higher degree case, quantum effect’s terms can appear in terms which
is 4 degrees lower than the highest degree.

6.2 Example 2 : Creation and Annihilation Opera-

tors

Next we consider the creation operator a† and the annihilation operator a which are
Hermitian conjugate with each other and satisfy the usual commutation relation, [a, a†] =
1.
Here we reorder some Hermitian combinations in the normal order.
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Cubic example

The example of cubic operator is

aa†a+ a†aa† = a†aa+ a†a†a+ a+ a†. (6.4)

The quantum effect’s terms are linear, which is 2 degrees lower than the highest degree,
unlike the case of x and p. The reason is that a and a† are not self Hermitian conjugate
and are complex combinations of x and p, a↔ 1√

2
(p− ix), a† ↔ 1√

2
(p+ ix).

Quartic example

The examples of quartic operator which is the product of two a and two a† are

a†aa†a =a†a†aa+ a†a,

aa†aa† =a†a†aa+ 3a†a+ 1,

aaa†a† =a†a†aa+ 4a†a+ 2,

1

2
(aa†a†a+ a†aaa†) =a†a†aa+ 2a†a.

(6.5)

Thus the quantum effect’s terms are quadratic terms, which is 2 degrees lower than the
highest degree, and constant terms, which is 4 degrees lower than the highest degree.

Similarly, in the higher degree case, quantum effect’s terms can appear in the degree
which is 2 degrees lower than the highest degree.

6.3 Example 3 : Fourier Modes

In this section we consider Fourier modes of coordinate and momentum for a closed string,
Xn and Pn. For simplicity, we omit the index of the spacetime. Xn and Pn satisfy the
usual commutation relation and the reality condition, [Xn, Pm] = iδn,−m and (Xn)

† = X−n

and (Pn)
† = P−n.

We consider quartic operators as example. Because the ”dangerous” commutators such
as [J −I ,J −J ] and [J −I ,KK ] are quartic,2 it is important for finding the structure of
”anomalous” terms in these dangerous commutators to consider the quartic operator.
Here we concretely consider the latter case which can contain a constant quantum effect’s
term as well as quadratic terms. The former case is simpler.

First we compare some Hermitian combinations with Hermitian R-ordered one,
XnXmPlP−n−m−l + Pn+m+lP−lX−mX−n.
For example,

XnPlXmP−n−m−l + Pn+m+lX−mP−lX−n

= XnXmPlP−n−m−l + Pn+m+lP−lX−mX−n − iδm,−l(XnP−n − PnX−n),
(6.6)

2In the highest degree, the former contain quartic terms of the product of one X-mode and three
P -modes and the latter contain quartic terms of the product of two X-modes and two P -modes.
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XnPlP−n−m−lXm +X−mPn+m+lP−lX−n

= XnXmPlP−n−m−l + Pn+m+lP−lX−mX−n − i(δn,−l + δm,−l)(XnP−n − PnX−n).
(6.7)

Thus quantum effect’s terms appear in the second degree, which is 2 degrees lower than
the highest. If there are indexed-inverted partners, terms of the second degree make a
commutator. Thus we obtain only the constant quantum effect’s term, which is 4 degrees
lower than the highest.

Next, more generally, we consider the next operator which has the same structure as
generators or commutators in the spacetime symmetry for the tensionless string theory.∑

n

∑
m

∑
l

fn,m,lXnXmPlP−n−m−l (6.8)

where the summation symbol
∑

n indicates
∑∞

n=−∞ and the coefficient has the symmetry
which invert the sign of the Fourier mode index, fn,m,l = f−n,−m,−l, so called mode flipping
symmetry or world sheet parity symmetry.3

(6.8) in the Hermitian R-order is

1

2

∑
n

∑
m

∑
l

fn,m,l(XnXmPlP−n−m−l + Pn+m+lP−lX−mX−n)

=
1

2

∑
n

∑
m

∑
l

fn,m,l(XnXmPlP−n−m−l + P−n−m−lPlXmXn). (6.9)

We compare other Hermitian combinations with (6.9). If the operator order preserves
the mode flipping symmetry, a quantum effect’s term in Hermitian operator of degree 4
is only constatnt. We explicitly show this below.

6.3.1 Operator order with mode flipping symmetry

We reorder some Hermitian combinations preserving the mode flipping symmetry in the
Hermitian R-order and compare them with (6.9).

v.s. Sandwich order

For example, the Sandwich ordered-(6.8) is reordered in the Hermitian R-order as

1

2

∑
n

∑
m

∑
l

fn,m,l(XnPlP−n−m−lXm +X−mPn+m+lP−lX−n)

= (6.9)− 1

2
i
∑
n

∑
m

(fn,m,−n + fn,m,−m)(XnP−n − PnX−n)

= (6.9) +
1

2

∑
n

∑
m

(fn,m,−n + fn,m,−m).

(6.10)

The quantum effect’s term is constant, which in 4 degrees lower than the highest degree.

3We do not use the other symmetry for the coefficient such as fn,m,l = fm,n,l and fn,m,l = fn,m,−n−m−l.
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v.s. Weyl order

The Weyl ordered-(6.8) is reordered in the Hermitian R-order as∑
n

∑
m

∑
l

fn,m,l(XnXmPlP−n−m−l)W

≡ 1

24

∑
n

∑
m

∑
l

fn,m,l(XnXmPlP−n−m−l + (totally symmetric))

= (6.9) +
1

4

∑
n

∑
m

(fn,m,−n + fn,m,−m)

(6.11)

and the quantum effect’s term is constant, which is 4 degrees lower than the highest
degree.
Thus we find that quantum differences of a Hermitian operator between some two orders
preserving the mode flipping symmetry is 4 degrees lower than the highest degree.

From these two example, we can know the structure of [J −I ,KK ] in a operator order
preserving the mode flipping symmetry. For example, in the Hermitian R-order, we find
the next structure by using (B.1) and (B.2).

[J −I ,KK ] = i(ordered classical part) + iδI,K
C

p−
, (6.12)

where we included the term with M0 at the right end in the first part and C is constant.
We need some regularization if the constant C diverges. The detail of the regularization
is considered in appendix D.

6.3.2 Operator order without mode flipping symmetry : XP-
normal order

As an example of the order which breaks the mode flipping symmetry, we consider the XP-
normal order.4 We ignore zero mode.5 In the XP-normal order, all summation symbols
are unified into the sum over the half range,

∑
n>0.

Now we reorder (6.9) into the XP-normal order.
We divide the summation into four region where coefficients equal. The part of (n,m, l) =
(+ + +), (− − −) with the coefficient fn,m,l = f−n,−m,−l (n > 0,m > 0, l > 0) in (6.9) is
written as

1

2
(XnXmPlP−n−m−l + h.c.) +

1

2
(X−nX−mP−lPn+m+l + h.c.)

= P−n−m−lPlXmXn +X−nX−mP−lPn+m+l.
(6.13)

Note that all operators commute with each other. There is no extra term.
The part of (n,m, l) = (++−), (−−+) with the coefficient fn,m,−l = f−n,−m,l (n > 0,m >

4All positive mode of X and P are to the right of negative ones.
5We assume that the summation of (6.8) is restricted over n ̸= 0,m ̸= 0, l ̸= 0, n+m+ l ̸= 0, or that

the coefficient fn,m,l is restricted.
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0, l > 0) in (6.9) is written as

1

2
(XnXmP−lP−n−m+l + h.c.) +

1

2
(X−nX−mPlPn+m−l + h.c.)

= P−lP−n−m+lXmXn +X−nX−mPn+m−lPl

− i

2
(δn,l + δm,l)(X−nPn +X−mPm − P−nXn − P−mXm)− (δn,l + δm,l).

(6.14)

The part of (n,m, l) = (+−+), (−+−) with the coefficient fn,−m,l = f−n,m,−l (n > 0,m >
0, l > 0) in (6.9) is written as

1

2
(XnX−mPlP−n+m−l + h.c.) +

1

2
(X−nXmP−lPn−m+l + h.c.)

= X−mP−n+m−lPlXn +X−nP−lPn−m+lXm

+
i

2
δm,l(X−nPn +X−mPm − P−nXn − P−mXm).

(6.15)

Finally we exchange n and m in (6.15) to obtain the part of (n,m, l) = (−++), (+−−)
with the coefficient f−n,m,l = fn,−m,−l (n > 0,m > 0, l > 0) in (6.9).
We unify the above result to find that the quantum effect’s terms in XP -normal order
are quadratic and constant,

− i

2

∑
n>0

∑
m>0

(fn,m,−n + fn,m,−m − fn,−m,m − f−n,m,n)(X−nPn +X−mPm − P−nXn − P−mXm)

−
∑
n>0

∑
m>0

(fn,m,−n + fn,m−m).
(6.16)

From this, we can know the structure of [J −I ,KK ] in the XP-normal order. By using
(B.13), we find the possible structure in the XP-normal order as

[J −I
N ,KK

N ] =i(ordered classical part) + δI,K
1

p−
((X · P )-quadratic)

+
1

p−
(XIPK-quadratic) +

1

p−
(XKP I-quadratic) + iδI,K

C̃

p−
,

(6.17)

where we included the term with M0 at the right end in the first part and C̃ is constant
and the last part arises from the operator ordering of zero-mode terms. If the third or
4th part exists in the case of I ̸= K, [J −I ,KK ] has off-diagonal part and then becomes
anomalous.

6.3.3 Comment on other dangerous commutators

Other important dangerous commutators are [J −I ,J −J ] inD > 3 and [J −,K−] inD = 3.
XPPP -quartic operators appears in the halfway of the calculation of [J −I ,J −J ] and
XXPPP -quintic operators appears in the halfway of the calculation of [J −,K−].

From the consideration in the last two subsection, the structure of [J −I ,J −J ] inD > 3
and in the R-order is

[J −I ,J −J ] = i(ordered classical part) (6.18)

– 58 –



where we included the term with M0 at the right end in the first part. This is the same
as (5.2) calculated explicitly.
Similarly, the structure of [J −I ,J −J ] in D > 3 and in the XP-normal order is

[J −I
N ,J −J

N ] = i(ordered classical part) +
1

p2−
((P IP J − P JP I)-quadratic) (6.19)

where we included the term with M0 at the right end in the first part. This is the same
as (5.25) calculated explicitly.

Furthermore, the structure of [J −,K−] in D = 3 and in the Hermitian R-order is

[J −,K−] = i(ordered classical part) + iC ′ p

p2−
(6.20)

where we included the term with M0 at the right end in the first part and C ′ is constant.
From (6.20), we find that there is no anomalous term of degree 3. This is calculated
concretely in the next chapter. Because of the algebraic requirement, in the calculation
in the next chapter we must use redefined K̃− instead of K−.
Similarly, the structure of [J −,K−] in D = 3 and in the XP-normal order is

[J −
N ,K

−
N ] = i(ordered classical part) +

1

p2−
(XPP -cubic) + iC̃ ′ p

p2−
(6.21)

where we included the term with M0 at the right end in the first part and C̃ ′ is constant.
If exists, the second part in the r.h.s. of (6.21) becomes an anomalous part of degree 3.
This is calculated directly in the next chapter. Because of the algebraic requirement, in
the next chapter we must use redefined K̃− instead of K−.

Thus we obtain the structure of dangerous commutators, such as (6.12) and (6.17)-
(6.21). However we would not find coefficients of the quantum effect’s terms in dangerous
commutators unless we calculate concretely. Therefore, in the following chapter, we cal-
culate dangerous commutators in the spacetime conformal symmetry concretely with the
help of the information about the structure of commutators obtained in this chapter.
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Chapter 7

Quantum 3D Tensionless String in
Light-cone Gauge with Spacetime
Conformal Symmetry

In chapter 4 and 5, we have investigated the condition to avoid the Lorentz anomaly
in the tensionless string theory and the mass spectrum under such conditions in various
dimensions and operator orders. As seen in chapter 4, the ordering constant, a, is not
determined in three dimensions, unlike in D > 3. Thanks to the freedom of a, we obtain
the great possibility for the mass spectrum of the tensionless string theory. However,
from another point of view, we can say that the theory has an ambiguity. Removing this
ambiguity is one of the interesting problem.

The classical tensionless string theory has the spacetime conformal symmetry. There-
fore, it is natural to expect that the quantum tensionless string theory also has it. However
the quantum theory can cause the anomaly. Hence we must verify whether the anomaly
exists in the quantum theory and find what the condition to avoid the anomaly is.

In [38, 40], the existence of the anomaly in the traceless part of [J −I ,KK ] is shown.
In three dimensions,1 because the number of the transverse direction is only one, the
traceless part does not exist and then there is no anomaly in [J −I ,KK ]. However, the
difference in the trace part exists. Therefore the trace part must be absorbed in a new
definition for K−, namely K̃−. Furthermore we must verify commutation relations of
K̃− and other generators. According to appendix A, the commutators which we must
calculate in three dimensional conformal group are the definition, K̃− ≡ −i[J −,K], and
the dangerous commutator, [J −, K̂−].

In this chapter we calculate the dangerous commutators in the spacetime conformal
symmetry for the quantum 3-dim. tensionless string theory. First we calculate them in
the Hermitian R-order, and next in the XP-normal order. In the case of the Hermitian
R-order, particularly, we can avoid the spacetime conformal anomaly under the condition
of M0 = a = 0.

1In two dimensions and the light-cone gauge, because of X̄− = P+ = 0, there is no transverse variable
which should be quantized. The dynamical variables are x− and p−. By using these two operators,
for example, we obtain the finite closed algebra consisting of l−1 ∝ p−, l0 ∝ x−p− = −J +− and
l+1 ∝ x−x−p− = K−. Then, by using ln ∝ (x−)n+1p− for integer n, we obtain the infinite algebra,
Virasoro algebra. Furthermore, we add wn,m ∝ (x−)n(p−)

m to get the higher algebra. The detail is not
discussed in this thesis.
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7.1 Hermitian R-order Case

In the Poincaré symmetry, there is no difference between the cases of the pure R-order,
the Hermitian R-order and the Weyl order. On the other hand, in the spacetime con-
formal symmetry, because commutators of higher degree exist, there are differences in
the quantum effect, which appears in terms of lower degree. Furthermore, we need some
regularization because of inevitable divergent terms.
As seen in appendix D, the R-order breaks the hermitian property in the cut-off regular-
ization2. Therefore we consider the case of the Hermitian R-order below.3

7.1.1 Generators of dilatation and special conformal transfor-
mation

All generators in the Hermitian R-order is ordered as follows.

G ≡ 1

2

(
GR + (GR)

†) , (7.1)

where GR is the R-ordered generator. We use G in the calculation of commutators, instead
of GR.
Here we give GR for the rest of generators in the spacetime conformal symmetry. From
(B.2), GRs for the dilatation and the special conformal transformation are

DR =x−p− +
∑
n

XnP−n ,

K+
R =− 1

2

∑
n

XnX−np− ,

KR =xx−p− +
1

2

∑
n

∑
m

XnXmP−n−m + i
∑
n ̸=0

1

n
XnM−n ,

K−
R =x−x−p− + x−

∑
n

XnP−n +
1

4p−

∑
n

∑
m

XnXmL−n−m

− i

p−

∑
n

∑
m̸=0

(
n

m2
+

1

m

)
XnMmP−n−m,

(7.2)

where 1
p−

∑
m̸=0

1
m2MmM−m in the classical K− has been ordered correctly.

We can easily check that the commutation relations of generators except for K− is
correct. However, K− and some commutators with it must are modified.

7.1.2 Definition of K̃−

First we define K̃− by

K̃− ≡ −i[J −,K]. (7.3)

2This is seen as some kind of anomaly.
3The Weyl order case is similarly discussed.
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Because of the algebraic requirement, we must use this instead of K− in commutators of
the spacetime conformal symmetry.

According to the discussion in chapter 6, the structure of [J −,K] is (6.12).
Firstly, we consider the structure of the r.h.s. in (7.3) again in detail. From the number
of spacetime index, we find that the r.h.s. in (7.3) consists of the part with x− and the
part proportional to 1

p−
. The part with x− is easily calculated. Then we find that it is

the same as the part with x− in K−.
On the other hand, the part proportional to 1

p−
consists of XXPP -quartic, XP -quadratic

and a constant. The last two parts are the quantum effect’s terms, which arise in exchang-
ing operators to get the correctly ordered result. Because XXPP -quartic terms are in
the highest degree, we can know them by the classical calculation. After a long calcu-
lation, we obtain the same result as XXPP -quartic terms in K− and terms with M0 at
the right end. As seen in chapter 6, in the Hermitian R-order, XP -quadratic terms make
commutators and then become constant.

Thus we obtain the next:4

K̃− = K− +
C

p−
+

2i

p−

∑
n ̸=0

1

n
XnP−nM0. (7.4)

The first term is the original generator defined as (7.1). The second term is the gap by
quantum effect and C is generally divergent constant. The last term is related to the
choice of the ordering constant, through the constraint, M0 ≈ a.
Because there is the contribution from [Xn, P−n] = i for non-zero n to C, C is a divergent
constant even in the Hermitian R-order. Therefore we need some regularization.

Now we want to know whether the anomaly unrelated to the choice of the regulariza-
tion exists in the spacetime conformal symmetry. Therefore we assume the existence of a
good regularization and then use K̃−, as it is in (7.4). The calculation with the concrete
regularization is given in appendix E.

7.1.3 Commutation relations with K̃−

If all commutators with K̃− is desirable, we can maintain that the 3-dim. tensionless string
theory has the spacetime conformal symmetry. From the relatively easy calculation, we
can verify the following commutation relations.

[P , K̃−] = −i(D + J ) , [P , K̃−] = iJ − , [P+, K̃−] = 0

[J +, K̃−] = iK , [J , K̃−] = −iK̃−

[D, K̃−] = −iK̃− , [K+, K̃−] = 0

(7.5)

The rest of commutation relations, [J −, K̃−] = 0 and [K, K̃−] = 0, must be calculated
in detail because they are dangerous commutators. By using the Jacobi identity5, the

4The last term in (7.4) is obtained from [ i
p−

∑
l ̸=0

1
lMlP−l, i

∑
m ̸=0

1
mXmM−m] in [J−,K].

5In the calculation with the regularization, we will find the extra terms which vanish in the limit of a
regulator. Here we have to check that commutators of such extra terms vanish in the limit of a regulator.
Therefore we must take care of using the Jacobi identity in the calculation with the regularization. In
appendix E, we consider commutators of such extra terms.
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second dangerous commutator is calculated as follows:[
K, K̃−] = [i[J −,K+], K̃−]

= i
[
J −, [K+, K̃−]

]
+ i
[
[J −, K̃−],K+

]
.

(7.6)

The first term in the second line vanishes because of [K+, K̃−] = 0 in (7.5). The vanishing
of the second term depends on [J −, K̃−]. Therefore all we have to calculate is the first
dangerous commutator, [J −, K̃−].

7.1.4 Dangerous commutator : [J −, K̃−]

Here we calculate the dangerous commutator, [J −, K̃−], which may be anomalous. Firstly
we see the structure of this commutator. Then we calculate explicitly. The calculation
with the cut-off regularization is given in appendix E.

Structure of [J −, K̃−]

From the number of the spacetime index, [J −, K̃−] consists of the part proportional to
x−x−, the part proportional to

(
x− 1

p−
+ 1

p−
x−
)

6 and the part proportional to 1
p2−
.

Furthermore, from the mass dimension, the first part can contain only x−x−p. It is
easily calculated and then we find its cancellation.
The second part can consist of XPP -cubic terms and p-linear terms. XPP -cubic terms
in the second part are ordered classical results. On the other hand, p-linear terms are
forbidden because they are hermitian.
The third part consists of XXPPP -quintic terms, XPP -cubic terms and p-linear terms.
XXPPP -quintic terms in the third part are ordered classical results. As seen in chapter
6, XPP -cubic terms in the third part make a commutator [Xn, Pm] = iδn,−m in the
Hermitian R-order to be contained in p-linear term.

Thus we find the structure of [J −, K̃−] in the Hermitian R-order.

[J −, K̃−] = ix−x−p× (const.) + i
(
x−

1

p−
+

1

p−
x−
)
(cubic term : XPP + h.c.)

+ i
1

p2−
(quintic term : XXPPP + h.c.) + iC ′ p

p2−

= i(ordered classical part) + iC ′ p

p2−
,

(7.7)

where C ′ is a (divergent) constant and we contained terms with M0 at the right end in
the ordered classical part. The second term in the last line is a quantum effect’s term.

Because there is no term with the square of M0, the constraint, M0 ≈ a, does not mix
the first term and the second term in the last line of (7.7). Therefore they must be zero
separately.

6Although we may consider x− 1
p−

and 1
p−

x− separately, the hermitian combination is only
(
x− 1

p−
+

1
p−

x−). Their differences from the hermitian combination are ∓ i
2p2

−
. Then they are included in the part

proportional to 1
p2
−
.
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Calculation : Classical part of [J −, K̃−]

First we calculate the classical part of [J −, K̃−] in (7.7). Among K̃− defined in (7.4),
terms which contribute to the classical part are K− and the third term with M0.

Because we want the classical information, we can use R-ordered generators.[
J −, K− +

2i

p−

∑
n ̸=0

1

n
XnP−nM0

]
≃
[
J −

R , K
−
R

]
+
[
J −

R ,
2i

p−

∑
n ̸=0

1

n
XnP−nM0

]
⇒ i(ordered classical part),

(7.8)

where ≃ means the extraction of the classical part.

Firstly, we consider the first commutator in (7.8). Because the calculation is long,
we separate J −

R into three parts as below, and then calculate the contribution from each
part.

J −
R = −x−p− 1

2p−

∑
l

XlL−l +
i

p−

∑
l ̸=0

1

l
MlP−l (7.9)

The commutator of the first part in (7.9) and K−
R is classically[

−x−p, K−
R

]
≃ i
(1
4

∑
n

∑
m

XnXmL−n−m − i
∑
n

∑
m̸=0

n+m

m2
XnMmP−n−m

) p

p2−

+
i

2
x−

1

p−

∑
n

XnL−n + x−
1

p−

∑
m̸=0

1

m
MmP−m.

(7.10)

The commutator of the second part in (7.9) and K−
R is classically[

− 1

2p−

∑
l

XlL−l, K−
R

]
≃ − i

2
x−

1

p−

∑
n

XnL−n −
i

4p2−

∑
n

∑
m

∑
l

XnXmPlL−n−m−l

− 1

2p2−

∑
n

∑
m ̸=0

1

m
XnMmL−n−m.

(7.11)

The commutator of the third part in (7.9) and K−
R is classically[ i

p−

∑
l ̸=0

1

l
MlP−l, K−

R

]
≃ −x− 1

p−

∑
m̸=0

1

m
MmP−m +

i

4p2−

∑
n

∑
m

∑
l

XnXmPlL−n−m−l

− i
(1
4

∑
n

∑
m

XnXmL−n−m − i
∑
n

∑
m̸=0

n+m

m2
XnMmP−n−m

) p

p2−

+
1

2p2−

∑
n

∑
m̸=0

1

m
XnMmL−n−m +

2

p2−

∑
n

∑
m̸=0

n

m2
XnMmP−mP−n.

(7.12)

We collect (7.10)-(7.12) to obtain

[J −
R , K̂

−
R] ≃

2

p2−

∑
n

∑
m̸=0

n

m2
XnMmP−mP−n ≃ 2i

p2−

∑
m̸=0

1

m2
MmP−mM0, (7.13)
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where we usedM0 = −i
∑

n nXnP−n and then moved it to the right end. In the calculation
of the quantum part, we must not forget the contribution which arises in moving M0 to
the right end.

Next we consider the commutator of the second term in (7.8). By using the fact that
M0 commutes with all generators, we obtain[

J −,
2i

p−

∑
n ̸=0

1

n
XnP−nM0

]
=
(
− 6

p2−

∑
n̸=0

1

n
XnP−np+

1

p2−

∑
n ̸=0

1

n
XnL−n +

2i

p2−

∑
n ̸=0

1

n2
MnP−n

)
·M0.

(7.14)

This contains M0 at the right end again.

We collect (7.13) and (7.14) to find that the classical part in (7.7) consists only of
terms with M0 ≈ a at the right end. Therefore we determine the ordering constant such
that a = 0.7

Calculation : Quantum effect part of [J −, K̃−]

Next we calculate the quantum effect part of [J −, K̃−], that is the second part in the last
line of (7.7). This part contains p-zero mode. So we can know the cancellation of this
part from the commutator of x and [J −, K̃−].
By using the Jacobi identity, we deform it as follows.[

x, [J −, K̃−]
]
=
[
[x,J −], K̃−]+ [J −, [x, K̃−]

]
=

1

2

([
[x,J −], K−

R

]
+
[
J −, [x,K−

R]
]
+ h.c.

)
+

[
[x,J −],

C

p−
+

2i

p−

∑
n ̸=0

1

n
XnP−nM0

]
.

(7.15)

Below, we calculate each part.
The first commutator in the second line of (7.15) is calculated as follows.

[
[x,J −], K−

R

]
=x−x− + 2x−x

p

p−
+
i

2
x
p

p2−
− i

2
x−

1

p−
+

1

p2−

+ x−DR
1

p−
+ 2xDR

p

p2−
− i

2
DR

1

p2−
+ xJ − 1

p−
−KR

p

p2−
−K−

R

1

p−
,
(7.16)

where we used

J − = J −
R +

i

2p−
p,

[x,J −] = (−i)
(
x− + x

p

p−
− i

2p−

)
.

(7.17)

7Note that the classical part and the quantum effect part must vanish separately.
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The second commutator in the second line of (7.15) is calculated as follows.

[
J −, [x,K−

R]
]
= −x−x− − 2x−x

p

p−
− ix

p

p2−
+
i

2
x−

1

p−
− 1

p2−

− x−DR
1

p−
− 2xDR

p

p2−
+
i

2
DR

1

p2−
− xJ − 1

p−
+KR

p

p2−
− i
[
J −,KR

] 1
p−
,

(7.18)

where we used the following relations:

[x,K−
R] = i

(
x−x+ xDR

1

p−
−KR

1

p−

)
. (7.19)

We collect (7.16) and (7.18) to obtain

[
[x,J −], K−

R

]
+
[
J −, [x,K−

R]
]
= − i

2
x
p

p2−
−K−

R

1

p−
− i
[
J −,KR

] 1
p−
. (7.20)

Then we find that the second line of (7.15) is as follows:

1

2

([
[x,J −], K−

R

]
+
[
J −, [x,K−

R]
]
+ h.c.

)
=

1

4p2−
+ (K̃− −K−)

1

p−
− 1

2

[ 1

p−
, (K−

R)
†
]
+
i

2

[ 1

p−
, [J −,K−

R]
†
]
.

(7.21)

The third term in the r.h.s. of (7.21) is calculated as

−1

2

[ 1

p−
, (K−

R)
†
]
= −1

2

[ 1

p−
, (DR)

†x−
]
= − i

2

( 1

p−
x− + (DR)

† 1

p−

)
(7.22)

and the 4th term in the r.h.s. of (7.21) is calculated as

i

2

[ 1

p−
, [J −,K−

R]
†
]
= − i

2

[ 1

p−
, [J −,K−

R]
]†

=
i

2

([
K−

R,
[ 1

p−
,J −

]]
+
[
J −,

[
K−

R,
1

p−

]])†
=
i

2

([
K−

R,−i
p

p2−

]
+
[
J −,−i x

p−

])†
=
i

2

( 1

p−
x− + (DR)

† 1

p−

)
− 1

4p2−
.

(7.23)

Thus we get

1

2

([
[x,J −], K−

R

]
+
[
J −, [x,K−

R]
]
+ h.c.

)
= (K̃− −K−)

1

p−
=

C

p2−
+

2i

p2−

∑
n ̸=0

1

n
XnP−nM0.

(7.24)
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The last line in (7.15) is calculated as[
[x,J −],

C

p−
+

2i

p−

∑
n ̸=0

1

n
XnP−nM0

]
= − C

p2−
− 2i

p2−

∑
n ̸=0

1

n
XnP−nM0. (7.25)

We collect (7.24) and (7.25) to get[
x, [J −, K̂−]

]
= 0. (7.26)

Thus we find that p-zero mode in [J −, K̂−], including terms with p of higher degree, is
canceled. Therefore there is no anomalous term in [J −, K̂−].

In this section, in order to know whether the anomaly irrelevant to an explicit regular-
ization exists, we have calculated the dangerous commutator without the regularization.
In appendix E, we will calculate the dangerous commutator explicitly with the cut-off reg-
ularization and without using the Jacobi identity. There we will calculate regularized-C
in (7.4) concretely and then verify the cancellation of C ′ in (7.7).

7.2 XP-normal Order Case

Here we investigate the anomaly in the spacetime conformal symmetry for the tensionless
string in the XP-normal order. The commutators we should calculate are [J −,K] and
[J −, K̂−], as well as in the case of the Hermitian R-order. The first commutator defines
K̃− and the second one can be anomalous.
Because divergent terms do not appear in the XP-normal order, we do not need any
regularization.

7.2.1 Generators of dilatation and special conformal transfor-
mation

In the normal order, the non-zero mode part of generators is automatically hermitian but
the zero mode part is not hermitian. Therefore we hermitianize the zero mode part.

The important Lorentz generator, J −
N , in the XP-normal order is written as

J −
N = −x−p− 1

2p−
xL0 +

i

2p−
p+

Λ

p−
, (7.27)

where L0 = pp+M2 = pp+ 2
∑

n>0 P−nPn and Λ is defined as

Λ ≡
∞∑
l=1

[
−1

2
(X−lLl + L−lXl) +

i

l
(P−lMl −M−lPl)

]
. (7.28)
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Here we note that Λ is hermitian and p zero mode in Λ is canceled.
The important generators among the dilatation and the special conformal transformation
are

KN =xx−p− +
1

2
xxp− ix+ x

∞∑
n=1

(X−nPn + P−nXn) +
∞∑
n=1

X−nXnp

+
1

2

∞∑
n=1

∞∑
m=1

[
(X−nX−mPn+m + 2X−nP−mXn+m) + h.c.

]
− i

∞∑
m=1

1

m
(X−mMm −M−mXm),

(7.29)

and

K−
N =x−DN − i

2
x− +

1

8p−
(xxL0 + L0xx)−

1

p−
xΛ

+
1

2p−

∞∑
n=1

X−nL0Xn +
1

4p−

∞∑
n=1

∞∑
m=1

[
(X−nX−mLn+m + 2X−nL−mXn+m) + h.c.

]
(7.30)

+
i

p−

∞∑
n=1

∞∑
m=1

[(n+m

m2
X−nM−mPn+m +

n

m2
X−n−mMmPn −

m

(n+m)2
X−nP−mMn+m

)
+ h.c.

]
.

For the algebraic requirement, we must use K̃−
N defined below, instead of K−

N .

K̃−
N ≡ −i[J −

N ,KN ] = K−
N +

C

p−
+ δK−

N . (7.31)

The first term in the r.h.s. of (7.31) is the original XP-normal ordered generator in (7.30).
The second term is the quantum effect term arising only from zero modes. The third term
consists of the quantum effect term of degree 2 and terms with M0 at the right end, such
as

δK−
N =

i

p−

∞∑
n=1

(X−nPn − P−nXn)(g(n) + h(n)M0), (7.32)

where g(n) and h(n) is coefficients dependent on Fourier-mode index, n. In three dimen-
sions, we can absorb all quantum effect terms in the definition of δK−. However, as seen
in the next chapter, terms of the second degree like (7.32) become anomalous in D > 3.

Now we calculate K̃−
N defined in (7.31) and the commutators of K̃−

N in detail because
the commutators of generators except for K̃−

N is correct. All we have to calculate in detail
are [J −

N ,KN ] and [J −
N , K̃

−
N ], as well as the case of the Hermitian R-order. We can check

relatively easily that the rest commutators of K̃−
N is correct.

7.2.2 Calculation of K−
N

We calculate [J −
N ,KN ] explicitly to determine C and δK−

N in (7.31). Because the calcula-
tion is lengthy, the contribution to K−

N obtained by the classical calculation is omitted.
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The contribution from the commutator of the first three terms in (7.27) and KN is[
−x−p− 1

2p−
xL0 +

i

2p−
p, KN

]
∼ i

4p−
− 1

2p−

∞∑
n=1

(X−nPn − P−nXn), (7.33)

where ∼ means the extraction of the contribution to C and δK−
N . There is only the

contribution to i C
p−

in (7.33).

The contribution from the commutator of the last terms in (7.27) is lengthy. Therefore,
firstly we calculate the contribution from each line of KN in (7.29) and next collect them
to obtain [ Λ

p−
,KN ].

In the calculation, we may use the help of the following relations.

[Λ, x] = [Λ, p] = 0 ,

[Λ, Xn] =
1

n
M̄n + in

[n−1∑
l=1

1

l
Xn−lPl +

∞∑
l=1

( 1

n+ l
X−lPn+l −

1

l
P−lXn+l

)]
,

[Λ, Pn] = − i

2
L̄n + in

[n−1∑
l=1

1

l
Pn−lPl +

∞∑
l=1

( 1

n+ l
− 1

l

)
P−lPn+l

]
,

[Λ, M̄n] = iPn

(
2M0 +

1

6
(n2 − 1)− n(n+ 1)

)
+ nL̄0Xn

+
1

2
n

[n−1∑
l=1

L̄n−lXl +
∞∑
l=1

(X−lL̄n+l + L̄−lXn+l)

]

+ in

[n−1∑
l=1

1

l
M̄n−lPl +

∞∑
l=1

( 1

n+ l
M̄−lPn+l −

1

l
P−lM̄n+l

)]
,

[Λ, X−n] = −[Λ, Xn]
† , [Λ, P−n] = −[Λ, Pn]

† , [Λ,M−n] = −[Λ,Mn]
†,

(7.34)

where the barred operators are defined by removing to zero mode from unbarred ones.
After the calculation, we find that there is no contribution from the first and second lines
of KN in (7.29). [ Λ

p−
, (First line in (7.29))

]
∼ 0 ,[ Λ

p−
, (Second line in (7.29))

]
∼ 0.

(7.35)

Because x- or p-zero modes remain in the first commutator in (7.35), it does not contribute
to C

p−
and δK−

N . The contribution from the second commutator is canceled.

The contribution from the third line of KN in (7.29) is 8

[ Λ
p−
, (Third line in (7.29))

]
∼ 1

p−

∞∑
n=1

(X−nPn − P−nXn)f(n), (7.36)

where

f(n) =
(1
6
− 3
)
n+

1

2
+
(
2M0 −

1

6

) 1
n
− 2

n−1∑
m=1

n(n−m)

m2
. (7.37)

8We must not forget the contribution from terms arising in moving M0 to the right end.
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The sum of the last term in f(n) arises when we order 2i
p−

∑
m>0

1
m2M̄−mM̄m correctly.

Thus we collect (7.33) and (7.35)-(7.36) to find

K̃−
N = K−

N +
1

4p−
− i

p−

∞∑
n=1

(X−nPn − P−nXn)f(n). (7.38)

7.2.3 Anomalous terms in [J −
N , K̃

−
N ]

Here we calculate the anomalous terms in [J −
N , K̃

−
N ] by using K̃−

N obtained above.9

In chapter 6, we have investigate the structure of [J −
N , K̃

−
N ]. By using the mode ex-

pansion in (6.21), terms withM0 at the right end and quantum effect terms are separated
into the following parts.

i
p

p2−
× (const.),

p

p2−

∞∑
n=1

(X−nPn − h.c.)k(n),
(7.39)

1

p2−

∞∑
n=1

∞∑
m=1

(X−n−mPmPn − h.c.)g(n,m),

1

p2−

∞∑
n=1

∞∑
m=1

(X−nP−mPn+m − h.c.)h(n,m),

(7.40)

where g(n,m) and h(n,m) are coefficients which depend of n and m and contain M0 ≈ a.
The first line in (7.39) has the same structure as in the Hermitian R-order and the

second line in (7.39) is new one. Both structures in (7.39) contain zero mode, p. There-
fore, after the similar calculation to the case of the Hermitian R-order in which we have
considered the commutator of x and [J −, K̃−], we will find the absence of them.

Two structures in (7.40) are caused by the fact that the XP-normal order breaks the
mode flipping symmetry of coefficients. The anomaly in [J −

N , K̃
−
N ] vanishes if and only if

all g(n,m) and h(n,m) equal to zero. Because there is only one freedom in the choice of M0,
this dangerous commutator is anomalous unless the profound reason exists. We extract
the lowest part of (n,m) = (1, 1) in two structures of (7.40) to verify the existence of the
anomaly which is removed by the choice of M0.

Because of the lengthy calculation, we separate K̃−
N into K−

N + 1
4p−

and δK−.

First we separate the commutator of J −
N and K−

N + 1
4p−

into two parts as[
J −

N ,K
−
N +

1

4p−

]
=
[
−x−p− 1

2p−
xL0 +

i

2p−
p, K−

N +
1

4p−

]
+
[ Λ
p−
, K−

N +
1

4p−

]
. (7.41)

The contribution from the first part in the r.h.s. of (7.41) is obtained as 10[
−x−p− 1

2p−
xL0 +

i

2p−
p, KN

]
∼ 3

4p2−
(X−2P1P1 − h.c.) +

9

4p2−
(X−1P−1P2 − h.c.)(7.42)

9[KN , K̃−
N ] is obtained from [J−

N , K̃−
N ]. Therefore we will find it is anomalous. The rest of commutators

with K̃−
N is correct.

10Note that P+N = − L0

2p−
and [P+N ,K−

N ] = 0.
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where∼means the extraction of the contribution to (X−2P1P1−h.c.) or (X−1P−1P2−h.c.).
The contribution from the second part in the r.h.s. of (7.41) is calculated for each line of
(7.29) separately as follows.[ Λ

p−
, (First line in (7.29))

]
∼ 9

4p2−
(X−2P1P1 − h.c.)− 3

4p2−
(X−1P−1P2 − h.c.)[ Λ

p−
, (Second line in (7.29))

]
∼ − 3

4p2−
(X−2P1P1 − h.c.) +

3

2p2−
(X−1P−1P2 − h.c.)[ Λ

p−
, (Third line in (7.29))

]
∼ 1

p2−
(X−2P1P1 − h.c.)[4− 2M0]

+
1

p2−
(X−1P−1P2 − h.c.)

[25
4

− 7

2
M0

]
.

(7.43)

Then we collect them to obtain[ Λ
p−
, K−

N +
1

4p−

]
∼ 1

p2−
(X−2P1P1 − h.c.)

[11
2

− 2M0

]
+

1

p2−
(X−1P−1P2 − h.c.)

[
7− 7

2
M0

]
.

(7.44)

From (7.42) and (7.44), we find[
J −, K−

N +
1

4p−

]
∼ 1

p2−
(X−2P1P1 − h.c.)

[25
4

− 2M0

]
+

1

p2−
(X−1P−1P2 − h.c.)

[37
4

− 7

2
M0

] (7.45)

Next we calculate the contribution from the commutator of J −
N and δK−

N . The result is[
J −, δK−

N

]
∼ 1

p2−

(
(X−2P1P1 − h.c.) + (X−1P−1P2 − h.c.)

)[3
2
f(2) − 3f(1)

]
=

1

p2−

(
(X−2P1P1 − h.c.) + (X−1P−1P2 − h.c.)

)[
−51

8
− 9

2
M0

]
.

(7.46)

Note that the coincidence of coefficients of (X−2P1P1−h.c.) and (X−1P−1P2−h.c.) is the
specialty in n = m = 1. 11

Thus we collect (7.45) and (7.46) to obtain

[
J −, K̃−

N

]
∼ 1

p2−
(X−2P1P1 − h.c.)

[
−1

8
− 13

2
M0

]
+

1

p2−
(X−1P−1P2 − h.c.)

[23
8

− 8M0

]
.

(7.47)

From this, we find that there is no choice of M0 such that two coefficients vanish.

11 m
n+m + n

m = 1
2

(
1 + n

m + m
n

)
for n = m = 1.
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In this way, we find that the dangerous commutator, [J −, K̃−
N ], does not vanish.

Therefore there is the spacetime conformal anomaly in the 3-dim. tensionless string
theory in the XP-normal order.

If we interpret anomalous terms in [J −
N , K̃

−
N ] as a new constraint condition, com-

mutators of such a constraint and generators produce other new constraints, as we see
in [38, 40]. Under all constraint conditions, only the string ground state |0⟩XP survives.
It is point-like, not stringy. Because there is no anomalous term of i p

p2−
in the dangerous

commutator, the theory restricted to the point-like state has the spacetime conformal
symmetry. It means that the tensionless string in the XP-normal order is point-like. This
fact is natural from the consideration of the mass spectrum in chapter 4. There we have
found that the mass eigenstate with positive norm is only the string ground state, which
satisfy M0 = 0.
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Chapter 8

Calculation of Dangerous
Commutators in Spacetime
Conformal Symmetry in D > 3

In [38, 40], the existence of the spacetime conformal anomaly for a light-cone tensionless
closed bosonic string in the R-order is shown. R-ordered generators must be regularized
to avoid divergences. In [38,40], the dangerous commutator [J −I ,KK ] is considered with
the generic regularization and without Fourier expansion. Then it is verified that the
anomaly can appear in the traceless part of [J −I ,KK ] with respect to transverse indexes
as follows:

[J −I ,KK ] + iδI,KK̃− ∝ 1

ϵp−

∮
dσ[X̄K(σ)P̄ I(σ) + (H.C.)]t.l. ≡

1

ϵp−
LIK

t.l. , (8.1)

where ϵ is regulator1 andH.C. is the part compensated to preserve the hermitian property.
The form of H.C. depends on the operator order.

From the consideration in chapter 6, the possible structure of [J −I ,KK ] in the general
operator order of XI and P J is

[J −I ,KK ] =i(ordered classical part) + δI,K
1

p−
((X · P )-quadratic) + δI,K

i

p−
× (const.)

+
1

p−
(XIPK-quadratic) +

1

p−
(XKP I-quadratic)

(8.2)

where we included the term with M0 at the right end in the first part. From this, we
find that the traceless part comes from the second line and then that whether such a
anomalous term vanishes depends on the operator order greatly.

8.1 Hermitian R-order Case

Because the Reference order breaks the anti-hermitian property in commutators of higher
degree,2 we consider the Hermitian R-order instead of the R-order. The case of the Weyl

1The regularized commutation relation at the same point is [XI(σ), PJ (σ)]reg = iδϵ(0) ∼ i
ϵ .

2The check of breaking the anti-hermitian property for the R-order is done with the cut-off regular-
ization in appendix E.
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order is similarly discussed.
In D > 3 and in the Hermitian R-order (and the Weyl order), the constraint is M0 ≈ 0
from (5.2). Therefore the first ordered classical part in (8.2) is K−. In the following
calculations, we drop terms with M0 at the right end.
Furthermore, in the Hermitian R-order, which preserve the mode flipping symmetry for
coefficients of Fourier series, all quadratic terms in the r.h.s. of (8.2) make the commutator
and then are absorbed into the third part in the r.h.s of (8.2). Therefore there is no
traceless part in (8.2), such as (6.12). The difference in the trace part of (8.2) is absorbed
into the redefinition of K−. From (8.2) for I = K, we obtain

K̃− ≡ K− +
C

p−
≈ i[J −I ,KI ], (8.3)

where C is (divergent) constant and I is one of the transverse direction, not summed and
≈ means the dropping terms with M0 at the right end. On the other hand, from (8.2) for
I ̸= K, we obtain

[J −I ,KK ] ≈ 0 (8.4)

where I ̸= K.

Below we assume that some good regularization is used.3

Most of commutators with K̃− give the desirable result. The dangerous commutators
with K̃− are [J −J , K̃−] and [KK , K̃−].4

The first dangerous commutator, [J −J , K̃−], is calculated by using the Jacobi identity as

[J −J , K̃−] ≈ [J −J , i[J −I ,KI ]]

= −i[KI , [J −J ,J −I ]]− i[J −I , [KI ,J −J ]] ≈ 0,
(8.5)

where we used I different from J in the definition of K̃−. The first term in the second
line contains a dangerous commutator for the Lorentz symmetry and the second term
contains (8.4). Therefore, under the condition of M0 = 0, [J −J , K̃−] vanishes.5

3With the cut-off regularization, (8.2) in the Hermitian R-order is

[J−I
(N) ,KK

(N)] ≈ iδI,K
(
K−

(N) +
C(N)

p−
+ δK−

(N)

)
+ iδ(OIK

(N))t.l.,

where δ(OIK
(N))t.l. is a traceless part consisting of operators of degree 4. δK−

(N) and δ(OIK
(N))t.l. vanish in the

limit of N → ∞. We decide to use K̃− ≡ K−
(N) +

C(N)

p−
+ δK−

(N) in the rest of commutators. Furthermore

we must check that commutators of extra terms which vanish in the limit of N → ∞, such as δK−
(N),

δ(OIK
(N))t.l. or their commutators, also vanishes in the same limit. The check should be discussed in the

same way, as well as the three dimensional case in appendix E. Even though δ(OIK
(N))t.l. → 0, it is not

good that there is the traceless part in [J−I
(N) ,KK

(N)]. Therefore we may need better regularization instead
of the cut-off regularization.

4Although [KI ,KJ ] is also dangerous, this is calculated in the same way as [J−I ,J−J ]. Then we find
that this vanishes under M0 = 0.

5In the calculation with the cut-off regularization, we must check the dropping of contributions from
commutators of extra terms such as δK−

(N) or δ(O
IK
(N))t.l..
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Similarly, the second dangerous commutator [KK , K̃−] is calculated by using the Jacobi
identity as

[KK , K̃−] ≈ [KK , i[J −I ,KI ]]

= −i[KI , [KK ,J −I ]]− i[J −I , [KI ,KK ]] ≈ 0,
(8.6)

where we used I different from K in the definition of K̃−. The first term in the second line
contains (8.4) and the second term contains [KI ,KK ], which vanish under the condition
of M0 = 0. Therefore, under M0 = 0, [J −J , K̃−] vanishes.

Thus we find that the anomaly at least unrelated to the regularization does not exist
in the Hermitian R-order. The calculation with the cut-off regularization should be done
in the same way as the case of D = 3 in appendix E. However, it is not good that there
is the traceless part in [J −I

(N) ,KK
(N)], even though it is dropped in the limit of the cut-off

scale. . Therefore we may need a better regularization than the cut-off regularization.
In any way, there is the difference between the results in the light-cone gauge quantization
and the BRST quantization formalism in D > 3 as well as D = 3. It is probably the
reason of such a difference that the mode flipping symmetry for coefficients of Fourier
series is broken in the BRST formalism because of the fermionic ghost, which must be
ordered in the normal order.

Because the mass spectrum in M0 = 0 has been already investigated in chapter 5, it
is omitted here.

8.2 XP-normal Order Case

In chapter 7, we have verified the existence of the spacetime conformal anomaly for the
3-dim. tensionless string in the XP-normal order. There we have found the anomaly in
[J −

N , K̃
−
N ]. In D > 3, terms in the second line of (8.2) can exist. However, because these

terms possibly vanish, we must calculate the dangerous commutator [J −I
N ,KK

N ] explicitly
to verify the concrete coefficient of these terms.

Before the explicit calculation, we investigate the expected result of [J −I
N ,KK

N ] in
a little more detail. As seen in chapter 5, in the case of the XP-normal order, the
requirement of Lorentz symmetry determines the critical dimension and the ordering
constant in the constraint such that D = 26 and M0 ≈ a = 2.
When we calculate [J −I ,KK ] under these conditions, by using the Jacobi identity, we
obtain

[J −I ,KK ] ≈ [J −K ,KI ] (8.7)

where ≈ means the dropping of terms which vanish under D = 26 and M0 = 2. From
this, we expect that [J −I ,KK ] consists of the symmetric part in exchanging of I and K
and the part which vanishes under D = 26 and M0 = 2.

8.2.1 Preparation for explicit calculation

Here we give the explicit representation of important generators and some useful commu-
tation relations.
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In XP-normal ordered generators, non-zero mode is normal-ordered but zero mode is not.
Therefore we decouple zero mode.
First, the important Lorentz generator, J −I

N , is written as

J −I
N =x−pI +

(
1

2p−
xIp · p− i

2p−
pI
)
+

1

2p−
xIL̄0

+
pJ
p−

∞∑
l=1

[
(XI

−lP
J
l + P J

−lX
I
l )− (XJ

−lP
I
l + P I

−lX
J
l )
]
− Λ̄I

p−
,

(8.8)

where barred operators are defined by removing zero mode from unbarred ones and we
used

Λ̄I ≡
∞∑
l=1

[
−1

2
(XI

−lL̄l + L̄−lX
I
l ) +

i

l
(P I

−lM̄l − M̄−lP
I
l )

]
. (8.9)

Here we note that commutation relations of L̄n or M̄n is the same as the relations of
unbarred ones, (3.29), because unbarred ones does not contain any x zero mode.
In addition, the important generator of the special conformal transformation, KK

N , is

KK
N = xKx−p− + xK(x · p)− 1

2
(x · x)pK

+ xK
∞∑
n=1

(X−n · Pn + h.c.)− pK
∞∑
n=1

X−n ·Xn + xL

∞∑
n=1

(
(XK

−nP
L
n −XL

−nP
K
n ) + h.c.

)
+

∞∑
n=1

∞∑
m=1

[(
XK

−n(X−m · Pn+m) +XK
−n(P−m ·Xn+m) +XK

−n−m(Pm ·Xn)
)
+ h.c.

]
− 1

2

∞∑
n=1

∞∑
m=1

[(
(X−n ·X−m)P

K
n+m + 2(X−n−m ·Xm)P

K
n

)
+ h.c.

]
− i

∞∑
n=1

1

n
(XK

−nM̄n − M̄−nX
K
n ),

(8.10)

where h.c. indicates hermitian conjugate of the adjacent part. Because we do not need
K− in the calculation in the next subsection, we omit the representation of K− in D > 3.

Next we give some useful commutation relations below. For n > 0,

[
Λ̄I , XJ

n

]
=δI,J

1

n
M̄n + i

n−1∑
l=1

(
P J
n−lX

I
l +

n− l

l
XJ

n−lP
I
l

)
+ i

∞∑
l=1

(
XI

−lP
J
n+l + P J

−lX
I
n+l −

n+ l

l
P I
−lX

J
n+l −

l

n+ l
XJ

−lP
I
n+l

)
,

[
Λ̄I , P J

n

]
=− δI,J

i

2
L̄n + in

n−1∑
l=1

1

l
P J
n−lP

I
l + in

∞∑
l=1

(1
l
P I
−lP

J
n+l −

1

n+ l
P J
−lP

I
n+l

)
,[

Λ̄I , XJ
−n

]
=− [Λ̄I , XJ

n ]
† ,
[
Λ̄I , P J

−n

]
= −[Λ̄I , P J

n ]
†.

(8.11)
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and [
Λ̄I , M̄n

]
=inP I

n

(
−(n+ 1) +

[
2M0

1

n
+
D − 2

6

(
n− 1

n

)])
+

1

2
n

[
n−1∑
l=1

L̄n−lX
I
l +

∞∑
l=1

(L̄−lX
I
n+l +XI

−lL̄n+l)

]

+ in

[
n−1∑
l=1

1

l
M̄n−lP

I
l +

∞∑
l=1

( 1

n+ l
M̄−lP

I
n+l −

1

l
P I
−lM̄n+l

)]
,[

Λ̄I , M̄−n

]
=−

[
Λ̄I , M̄n

]†
.

(8.12)

8.2.2 Calculation of [J −I ,KK ] for I ̸= K and anomaly

Here we calculate [J −I ,KK ] for I ̸= K to get the explicit structure of the anomaly in
the spacetime conformal symmetry. Because the calculation is too lengthy, we omit the
ordered classical part except for terms with M0 at the right end and then show only the
anomalous part. The contribution to the anomalous part in [J −I ,KK ] comes from terms
with M0 at the right end and quantum effect’s terms, which arise from extra exchanging
operators to get the correctly ordered result.6

We firstly calculate the contribution from each part of J −I in (8.8) and then collect
the results. The commutator of the first term in (8.8) is

[x−pI , KK ] = ix−xIpK − ix−
∞∑
n=1

[
(XI

−nP
K
n −XK

−nP
I
n) + h.c.

]
∼ 0, (8.13)

where ∼ means extracting the contribution to the anomalous part. This has no contribu-
tion to the anomaly.
Next the commutator of the second part in (8.8) is[ 1

2p−
xIp · p− i

2p−
pI , KK

]
=−ix−xIpK +

i

2p−

[
xI(x · p)pK + h.c.

]
− i

2p−
(xIpJ + pJx

I)
∞∑
n=1

[
(XJ

−nP
K
n −XK

−nP
J
n ) + h.c.

]
∼ 0. (8.14)

Then there is no contribute from this to the anomaly.
Next the commutator of the third part in (8.8) is[ 1

2p−
xIL̄0, KK

]
=

i

p−
xIpK

∞∑
n=1

(X−n · Pn + h.c.) +
i

p−
xIΛK ∼ 0. (8.15)

Then there is no contribute from this to the anomalous part.
There are the contributions from the commutators of 4th and 5th parts in (8.8) to the

anomalous part. Though it is lengthy. Because the terms with odd degree of xI and pI

6Because the central extension terms in the commutation relation of M̄n in (B.23) also arises from
extra exchanging operator to get the correctly ordered result, they are the quantum effect’s terms.
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does not contribute to the anomalous part, we find that the contribution from the 4th
part to the anomalous part comes from commutators with the first and second lines in
(8.10). From a short calculation, we find that the commutator of the 4th part in (8.8)
and the first lines in (8.10) does not contribute to the anomalous part. Thus we obtain[

(4th term of (8.8)), KK
]
∼
[
(4th term of (8.8)), (2nd line of (8.10))

]
∼ −D − 2

2p−

∞∑
n=1

(
XI

−nP
K
n − h.c.

)
− D − 6

2p−

∞∑
n=1

(
XK

−nP
I
n − h.c.

)
. (8.16)

Similarly, the contribution from the 5th part in (8.8) to the anomalous part comes
from commutators with the 3rd, 4th and 5th lines in (8.10). We collect them to obtain[

− Λ̄I

p−
, KK

]
∼
[
−Λ̄I

p−
, (3rd, 4th and 5th line of (8.10))

]
∼ − 2

p−

∞∑
n=1

(n− 1)
(
XI

−nP
K
n − h.c.

)
+
D − 1

2p−

∞∑
n=1

(n− 1)
(
XK

−nP
I
n − h.c.

)
+
D − 4

2p−

∞∑
n=1

(n− 1)
(
XI

−nP
K
n − h.c.

)
− 1

2p−

∞∑
n=1

(n− 1)
(
XK

−nP
I
n − h.c.

)
+

1

p−

∞∑
n=1

(n− 1)
(
XI

−nP
K
n − h.c.

)
− 1

p−

∞∑
n=1

(
XK

−nP
I
n − h.c.

)[(D − 2

6
− 2
)
n+

(
2M0 −

D − 2

6

) 1
n

]
∼ D − 6

2p−

∞∑
n=1

(n− 1)
(
XI

−nP
K
n − h.c.

)
+
D − 2

2p−

∞∑
n=1

(n− 1)
(
XK

−nP
I
n − h.c.

)
− 1

p−

∞∑
n=1

(
XK

−nP
I
n − h.c.

)[(D − 2

6
− 2
)
n+

(
2M0 −

D − 2

6

) 1
n

]
. (8.17)

We collect (8.13)-(8.17) to get[
J −I , KK

]
∼ 1

p−

∞∑
n=1

[
(XI

−nP
K
n +XK

−nP
I
n)− h.c.

] [D − 6

2
n− (D − 4)

]
− 1

p−

∞∑
n=1

(
XK

−nP
I
n − h.c.

)[(D − 2

6
− 4
)
n+

(
2M0 −

D − 2

6

) 1
n

] (8.18)

As expected from (8.7), the first line in the r.h.s. of (8.18) is symmetric in exchanging I
and K and the second line vanishes under D = 26 and M0 = 2. Therefore the first line is
anomalous.

Thus we have gotten explicitly the anomaly of the spacetime conformal symmetry
for the tensionless string in the XP-normal order. If we interpret anomalous terms in
[J −

N , K̃
−
N ] as a new constraint condition to avoid the anomaly, in the same way as the three

dimensional case, only the string ground state |0⟩XP survives. Therefore the tensionless
string theory in the XP-normal order is point-like.
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Chapter 9

Discussion of Other Types of String :
Supersymmetric and Open

So far, we have considered the closed and bosonic type among the tensionless string
theories. In this chapter we discuss the other types of string, especially a superstring and
a open string.

9.1 Tensionless String with Supersymmetry

For the simplicity, we consider the tensionless closed string theory with the spacetime
supersymmetry in three dimensions to compare it with the bosonic case. Then we give
the short discussion of the anomaly in the spacetime (super)conformal symmetry.
For the tensionful case, there are two ways which construct the tensionful string theory
with the spacetime supersymmetry, the Green-Schwarz (GS) formalism and the Ramond-
Neveu-Schwarz (RNS) formalism. In three dimensions, the GS formalism is also possible
because of the Majorana spinor.
These formalisms can apply on the tensionless case. In this section we use the GS for-
malism to consider the superstring theory. The tensionless superstring theory has the
fermionic gauge symmetry, κ-symmetry as the local symmetry and the spacetime super-
symmetry as the global one.
The tensionless spinning string by the RNS formalism is similarly discussed.

9.1.1 Fermionic field in generators for tensionless superstring
theory

The action of a tensionless superstring is obtained with the next replacements from the
bosonic action.

Ẋµ → Πµ
τ ≡ Ẋµ + iΘ̄aΓµΘ̇a ,

(Xµ)′ → Πµ
σ ≡ (Xµ)′ + iΘ̄aΓµ(Θa)′ ,

(9.1)

where Θa is a two-component Majorana fermion and a = 1, · · · ,N and N is the number
of SUSY.
Thus the action of a tensionless superstring is written as the action on the phase space

81



with constraints:

S[X,P,Θ;V, U ] =

∫
dτ

∮
dσ

2π

{
Πµ

τPµ −
1

2
VP2 − UΠµ

σPµ

}
, (9.2)

where Θ̄ ≡ ΘtΓ0 and we used the next representation for the gamma matrix: Γ0 =
iσ2, Γ1 = σ1, Γ2 = σ3. Here note that we do not need the Wess-Zumino term, which is
proportional to the tension, T . The action of the null spinning string on the phase space
is in [45].

The action in (9.2) has the next gauge symmetry and the κ-symmetry as the local
symmetry. 

δXµ = α
[
Pµ − i

V
Θ̄bΓµ(Θ̇− UΘ′)b

]
+ βX′µ

δPµ = (βPµ)
′

δΘa = α
V
(Θ̇− UΘ′)a + βΘ′a

δV = α̇+ U ′α− Uα′ + V ′β − V β′

δU = β̇ + U ′β − Uβ′.

(9.3)


δXµ = −iΘ̄bΓµ(̸Pκ)b

δPµ = 0
δΘa = ( ̸Pκ)a
δV = −4iκ̄b(Θ̇− UΘ′)b

δU = 0.

(9.4)

Furthermore, as we expect, the action in (9.2) has also the spacetime superconformal
symmetry as the global symmetry. The explicit representations for the generators of the
spacetime conformal symmetry are

Pµ =

∮
dσ

2π
Pµ,

J ρ =

∮
dσ

2π

[
ϵρµνXµPν +

i

2
(Θ̄aΘa)Pρ

]
,

D =

∮
dσ

2π
XµPµ,

Kµ =

∮
dσ

2π

[
Xµ(XνPν)−

1

2
X2Pµ +

1

8
(Θ̄aΘb)(Θ̄bΘa)Pµ − i

4
ϵµνρXνPρ(Θ̄

aΘa)
]
,

(9.5)

and the representations of the additional generators of the spacetime superconformal
symmetry are

Qa =

∮
dσ

2π
̸PΘa,

Sa =

∮
dσ

2π

[
XµΓ

µ ̸PΘa − i

2
̸P(Θ̄bΘb)Θa

]
.

(9.6)

Of course, all the above generators are invariant undeer the gauge transformations in (9.3)
and (9.4).1

1To check the gauge invariance, we use the Fierz identity and the following properties of the Majorana
spinors: Ψ̄Φ = Φ̄Ψ, Ψ̄ΓµΦ = Φ̄ΓµΨ and so on.
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9.1.2 Light-cone gauge

Next we choose the light-cone guage to fix the gauge symmetries in (9.3) and (9.4). In
the light-cone guage, the bosonic variables are fixed by

X+(τ, σ) = τ , P−(τ, σ) = p−(τ) ̸= 0 , (9.7)

and the fermionic variable is fixed by

Γ+Θ = 0. (9.8)

In our representation of the gamma matrix,

Γ+ =

(
0

√
2

0 0

)
. (9.9)

Therefore Θ has only the upper-component. Because of the scale transformation of Θ, we
should write Θ as

Θ =

√
1

2
√
2p−

(
θ
0

)
. (9.10)

This leads to (Θ̄bΘa) = 0. Therefore the generators of the spacetime superconformal
symmetry become simple. Especially, the bosonic part, (9.5), has the same representations
as the tensionless bosonic string.

We repeat the same steps as ones in chapter 2 to solve the constraints of the Lagrangian
in the light-cone guage. Most of the constraints are solved by the following relations:

P+ = − 1

2p−
PP

p−(X̄
−)′ = −

(
X̄ ′ · P +

i

2
θθ̄′
)
+

∮
dσ

2π

(
X̄ ′ · P̄ +

i

2
θ̄θ̄′
)
.

(9.11)

The first line is exactly the same as the bosonic case. Therefore P+ and H are written
by Ln in (2.49). Especially, the mass square operator is unchanged and does not contain
any fermionic field.
The second line is solved with the mode expansion:

X̄−(σ) = − 1

p−

∑
m̸=0

i

m
Nme

imσ, (9.12)

Nm ≡Mm +
1

2

∑
n

(m
2
− n

)
θnθm−n. (9.13)

where Mn is the same bosonic part as (2.52) and the second term is the fermionic part.
Thus the contribution from the fermionic field to generators of the spacetime conformal
symmetry comes only through X−.
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After constraints except for one are solved, we obtain the next Lagrangian of the tension-
less superstring in the light-cone gauge with only one constraint.2

L = ẋ · p+ ẋ−p− +
i

2
θa0 θ̇

a
0 +

∑
n ̸=0

[
Ẋn · P−n +

i

2
θanθ̇

a
−n

]
−H, (9.14)

The unique constraint is

N0 ≡M0 −
1

2

∑
n

nθanθ
a
−n ≈ a′ , (9.15)

where a′ is the ordering constant. Here note the fermionic contribution.

9.1.3 Dangerous commutators in quantum tensionless super-
string theory

The quantization of the tensionless superstring is done by the next commutation relations
and anti-commutation relation.

[x−, p−] = i , [Xn, Pm] = iδn,−m , {θan, θbm} = δn,−mδ
a,b (9.16)

From the last relation, the ground state for the fermionic part is usually the state an-
nihilated by positive (or negative) modes of θn. Therefore the natural operator order
corresponding to it is the normal order.

In three dimensions, there is no Lorentz anomaly in the super Poincaré symmetry as
well as the bosonic case. We can easily check that the commutators and anti-commutators
with fermionic generators are correct. Thus the quantum tensionless superstring theory
preserve the super Poincaré symmetry. Therefore the mass spectrum is meaningful. Be-
cause M2 is the same as the bosonic case, we can use the results in chapter 4 and 5.
However the value of N0 changes according to the fermionic excitation level. Therefore
we fill find more various mass eigenstates than the bosonic case.

Next we consider the spacetime superconformal symmetry. In the bosonic case of
chapter 7 and 8, we have found the absence of the anomaly in the Hermitian R-order,
where the mode flipping symmetry is preserved, and the concrete form of the anomaly in
the XP-normal order, where the mode flipping symmetry is broken.
In the supersymmetric case, if we choose the Hermitian R-order for the bosonic modes as
well as the bosonic case, the mixing of the different operator order causes the anomaly in
the dangerous commutator such as [J −,K−]. If we choose the XP-normal order for the
bosonic modes, we must investigate the possibility of the cancellation of anomalous terms
in dangerous commutators for various numbers of SUSY. It is the future work.

9.2 Tensionless Open String

The open string has the end points. Therefore we have to investigate the boundary
conditions. For the simplicity, we consider the bosonic case.

2We use the following results: Π+
τ = 1 , Π−

τ = Ẋ− + i
2p−

θθ̇ , Π2
τ = Ẋ and Π+

σ = 0 , Π−
σ =

(X−)′ + i
2p−

θθ′ , Π2
σ = X ′.
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In order to compare the usual tensionful string, firstly, we consider the next action with
tension, T .

S =

∫
dτ

∫ 1

0

dσ
[
ẊµPµ −

V

2

(
P2 + T 2(X′)2

)
− U(Xµ)′Pµ

]
, (9.17)

where σ ∈ [0, 1]. The boundary term of the variation of this action is

δbS =

∫
dτ

∫ 1

0

dσ
[
−V T 2∂σXµδX

µ − UPµδX
µ
]
. (9.18)

The boundary values of U is chosen as U |σ=0 = U |σ=1 = 0, which are consistent with the
field equations in the light-cone guage. Therefore the second term of the r.h.s. in (9.18)
vanishes regardless of tensionful or tensionless.
In the tensionful case, the first term of the r.h.s. in (9.18) requires the Neumann bound-
ary condition, ∂σX

µ|σ=0 = ∂σX
µ|σ=1 = 0, the Dirichlet boundary condition, Xµ|σ=0 =

Xµ|σ=1 = 0, or the periodic boundary condition. For the open string theory with the
Poincaré symmetry, the Neumann boundary condition is chosen. In the case of Neumann
boundary condition, we can expand Xµ(σ) by the cosine function.
On the other hand, in the tensionless case, we do not need the boundary condition for
Xµ(σ). Therefore there is no evidence to decompose Xµ(σ) into modes. Unless Xµ(σ) is
expanded into some modes, we cannot use most of techniques in this thesis.

To compare with the tensionful case, we assume the Neumann boundary condition for
the tensionless open string. In the light-cone guage, we obtain the next expansions.

XI(σ) = xI + 2
∑
n>0

XI
n cos(πσ) =

∑
n

XI
ne

inπσ , XI
−n = XI

n (9.19)

P I(σ) = pI + 2
∑
n>0

P I
n cos(πσ) =

∑
n

P I
ne

inπσ , P I
−n = P I

n , (9.20)

where the eigenmode is cosine. Because fields are expanded by cosine, the delta function
is represented as δ(σ−σ′) = 1+2

∑
n>0 cos(nπσ) cos(nπσ

′) = 1+
∑

n>0

[
cos(nπ(σ+σ′))+

cos(nπ(σ + σ′))
]
. From this, the quantization condition for modes is

[XI
n, P

J
m] =

i

2
δI,J(δn,−m + δn,m) (9.21)

In the tensionful case, we combine X-modes and P -modes to make αI
n = −i ω√

2
nXI

n +
1√
2ω
P I
n , for T = ω2. α-modes satisfy the usual commutation relation of a harmonic

oscillator, [αI
n, α

J
m] = nδn,−mδ

I,J . Therefore we can make use of the results in the tensionful
closed string theory.
However, in the tensionless case, as seen in chapter 3, such combination is not useful
because the mass square operator is written by P -modes. It is natural to use X-modes
and P -modes, which satisfy (9.21), as the fundamental modes. We find that most of the
commutators in the spacetime symmetry is correct even in the case of (9.21). However the
dangerous commutator, [J −I ,K−], is greatly different. The structure of this commutator
is

[J −, K̃−] = i(ordered classical part) + iC ′ p

p2−
+

i

p2−

∑
n>0

C ′
(n)P2n. (9.22)
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The linear term of P -even modes in the last part is a different point from the closed case.
Although we omit the detail calculation here, C ′

(n) contains divergences of
∑

n>0 1-type

and
∑

n>0 n
2-type roughly. Because of the independence of two divergences, we cannot

renormalize both by the one ordering ambiguity. Therefore extra terms in (9.22) cause
the anomaly even in the Hermitian R-order.
For further investigation, we may need other methods without the mode expansion. How-
ever, because it is beyond this thesis, we do not discuss anymore. It is the future work.
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Chapter 10

Summary and Outlook

In this thesis based on [1], we have studied the tensionless closed bosonic string theory in
the light-cone gauge in various dimensions and operator orders.
The main products of our study in this thesis are as follows:

• Construction of non-separable mass eigenfunctions in (Hermitian) R-order

• Avoidance of spacetime conformal anomaly in Hermitian R-order

• Concrete calculation of spacetime conformal anomaly in XP-normal order

The first product has been obtained in chapter 4 and 5. There, in the R-order, we
have constructed the non-separable eigenfunctions of the mass square operator, M2, as
well as the separable ones.
We obtain the separable mass eigenfunctions relatively easily because of the factorization
into eigenfunctions of the ordinary differential equation for each Fourier-mode in (4.10) or
(5.9). On the other hand, in general, it is difficult to find the non-separable mass eigen-
function because we must solve the (infinite dimensional) partial differential equation.
However, in three dimensions, we have constructed the non-separable mass eigenfunctions
by acting another Poincaré invariance, Λ, on the separable mass eigenfunctions. There it
is essential that M2 and Λ commute mutually. Similarly, in the higher dimensions, the
non-separable mass eigenfunctions are constructed by acting Λ̄I , which commutes with
M2, on the separable eigenfunctions. Furthermore, for the massless states, we have given
the additional characterization.
The investigation of such non-separable mass eigenfunctions is very important to extract
the information of the helicity.

The second product has been obtained mainly from chapter 6, 7 and 8. In chapter
6, we have considered the structure of (dangerous) commutators in each operator order.
By using the information about the structure of dangerous commutators considered in
chapter 6, we have calculated the dangerous commutators of the spacetime conformal
symmetry in the Hermitian R-order, where the mode flipping symmetry corresponding
to the world sheet parity is preserved. Against the critical dimension of the conformal
string in the BRST formalism or the R-ordered calculation in the light-cone gauge without
Fourier expansion, we have found that there is no spacetime conformal anomaly unrelated
to the regularization in the Hermitian R-order (and the Weyl order), by the calculation
with Fourier expansion. Furthermore, in appendix, we have calculated the dangerous
commutators in the Hermitian R-order in three dimensions with the cut-off regularization
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to obtain the set of the desirable commutation relations for the spacetime conformal
symmetry in the limit of the cut-off scale, N → ∞.
The results obtained is a new example for the differences between the results in the BSRT
formalism and in the light-cone gauge quantization, such as the critical dimension of the
tensionful string theory in the BRST quantization formalism and the avoidance of the
Lorentz anomaly in the 3-dim. light-cone gauge quantization. Such differences between
the results in the BSRT formalism and in the light-cone gauge quantization are strange
and interesting and then need the further studies.

The third product has been obtained mainly from chapter 6, 7 and 8. By using the
information about the structure of dangerous commutators considered in chapter 6, we
have calculated concretely the dangerous commutators in three and higher dimensional
spacetime conformal symmetry in the XP-normal order, where the string ground state
breaks the mode flipping symmetry. Then we have verified the existence of the spacetime
conformal anomaly for the tensionless string theory in the XP-normal order. Furthermore
we have found that the tensionless string theory in the XP-normal order becomes point-
like when we interpret the anomalous commutators as additional constraints to avoid the
anomaly. It is similar to other works [38,40,49].

The outlooks for the future works are roughly divided as follows:

• Further study of mass spectrum in R-order

• Other types of tensionless string in light-cone gauge

• Reproduction of results in 3-dim. theories in light-cone gauge by a covariant method

or Reason for differences between results in BSRT and in light-cone gauge

• Interaction of tensionless string

• Relation between tensionless string theory and higher spin gauge theory

• Application of duality

Firstly, we must study more the mass spectrum of the tensionless string in the R-order,
especially the massless spectrum. In this thesis as well as other studies, we consider
the eigenfunctions only of the mass square operator in the tensionless string theory.
However there is another Poincaré invariance corresponding to spin, Λ, in three dimen-
sions. Although we have used it to construct the non-separable mass eigenfunctions, it
is possible in principle to diagonalize simultaneously M2 and Λ. It is interesting to find
states with various helicities like the case of the 3-dim. tensionful string in the light-con
gauge [50–53,63–65].

Next, as considered in the last chapter, other types of the tensionless string in the
light-cone gauge are interesting. The spacetime conformal anomalies of these theories
in the light-cone gauge are not satisfyingly investigated yet, against many studies of the
Lorentz anomaly [34,36,37].

Next, it is important to reproduce the results obtained in the light-cone gauge by some
covariant method. At present, the special results in three dimensional theories comes
only from the light-cone gauge quantization. It is not understood well whether the BSRT
formalism and the light-cone gauge quantization give really the same physics. Therefore
it is important to reproduce a result obtained in one method by other method(s). If we
cannot reproduce, we must consider its reason.
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In this thesis, we have not consider the interaction between tensionless strings. Al-
though there are abundant spectrum even in a single string, there will be new interesting
feature or some restriction in the interacting theory. Then the interacting theory probably
tell us the relation between tensionless string theories and higher spin gauge theories.

Finally we hope that the further study of the tensionless string leads to the applications
of the duality and the understanding of the relation between tensionless string theories
and higher spin gauge theories and then contributes to the development of the elementary
particle physics and other fields of physics.
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Appendix A

Generators and Commutation
Relations of Spacetime Symmetry

A classical string has the Poincaré symmetry as the global symmetry. We expect that a
quantum string also has the Poincaré symmetry. However the quantization of the string
can induce the Lorentz anomaly. Then we choose the critical dimension and the ordering
constant properly to avoid the anomaly.
Similarly we expect that a quantum tensionless string to have the space-time conformal
symmetry.
In this appendix, we give the commutation relations for the Poincaré group and the
spacetime conformal group in the light-cone base as well as the orthogonal base. Then
we indicate dangerous commutators, which can induce anomalies for string theories in
light-cone gauge.

A.1 Poincaré Group

Here we give commutation relations of the Poincaré group in general dimensions D and
three dimensions.

The generators of the Poincaré group are the translations, Pµ, and the Lorentz trans-
formation, J µν , such that

[Pµ,Pν ] = 0 , [Pµ,J ρσ] = i (ηµσPρ − ηµρPσ) ,

[J µν ,J ρσ] = i (ηνσJ µρ − ηνρJ µσ − ηµσJ νρ + ηµρJ νσ) .
(A.1)

In light-cone coordinate we find the following commutation relations:

[P±,J +−] = ±iP± , [P±,J ∓I ] = −iPI ,

[PI ,J ±J ] = iδIJP± , [PI ,J JK ] = i
(
δIKPJ − δIJPK

)
,

[J +−,J ±I ] = ∓iJ ±I , [J +I ,J −K ] = i
(
J IK + δIKJ +−) ,

[J ±I ,J KL] = i
(
δILJ ±K − δIKJ ±L

)
,

[J IJ ,J KL] = i
(
δJLJ IK − δJKJ IL − δILJ JK + δIKJ JL

)
,

(A.2)

and other commutators vanish. Here I, J,K, L = 2, · · · , D−1 and we used η+− = η+− = 1
and ηIJ = δIJ .
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The infamous dangerous commutator for quantum strings in the light-cone gauge is

[J −I ,J −J ]
?
= 0. (A.3)

This is not always zero for a quantum tensionful string in D > 3. To avoid the anomaly,
we must choose D = 26 and determine the operator ordering constant [27,28].
For a quantum tensionless string in D > 3 and in the Reference order,1 this commutator
is proportional to the constraint [36]. Therefore we can avoid the Lorentz anomaly.
For a quantum tensionless string in D > 3 and in the XP-normal order,2 we obtain
D = 26 and the definite ordering constant [36].
In D ≤ 3, this commutator for both tensionful and tensionless strings is trivially zero.

D = 3

In three dimensions Lorentz generators are rewritten as the vector, J ± = ±J ±2, J =
−J +−. Hence the commutation relations in (A.1) become simple as follows:

[Pµ,Pν ] = 0 , [J µ,Pν ] = iϵµνρPρ, [J µ,J ν ] = iϵµνρJρ. (A.4)

Furthermore we can make two Poincaré invariants which commute with each other,

M2 = −P2,

Λ = J µPµ.
(A.5)

Unitary irreducible representations of Poincaré group are labeled by the value of these two
Casimirs and irereducible representations with M2 ≥ 0 are only physical. When M2 > 0
we define the relativistic helicity by

s =
Λ

M
. (A.6)

Furthermore we call |s| ”spin”. If the Lorentz group is SO(1, 2), its double cover SL(2;R)
or its universal cover, s is respectively integer, half-integer or real number including the
rational and the irrational number [54].

In the light-cone base, the commutation relations of the 3-dim. Poincaré group are

[J ±,P∓] = ±iP , [J ,P±] = ±iP± , [J ±,P ] = ∓iP±,

[J ,J ±] = ±iJ ± , [J +,J −] = iJ ,
(A.7)

and other commutators vanish. In three dimensions [J −,J −] corresponding to a danger-
ous commutator in (A.3) vanishes trivially because there is only one transverse direction
in three dimensions [?,50–52]. Therefore the 3-dim. string theories in the light-cone gauge
have no Lorentz anomaly and preserves the Poincaré symmetry.

1In the Reference order, all momentum modes are to the right of coordinate modes.
2In the XP-normal order, all positive modes of coordinates and momentums are to the right of negative

ones.
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A.2 Conformal Group

First we give commutation relations of the spacetime conformal group in general dimen-
sions and next in three dimensions.
The generators of the space-time conformal group are the dilatation, D, and the spe-
cial conformal transformation, Kµ, in addition to Pµ and J µν . Additional commutation
relations are

[D,Pµ] = iPµ , [D,J µν ] = 0 , [D,Kµ] = −iKµ , [Kµ,Kν ] = 0,

[Kµ,Pν ] = i (ηµνD + J µν) , [Kµ,J ρσ] = i (ηµσKρ − ηµρKσ) .
(A.8)

In light-cone base,

[D,P±] = iP± , [D,PI ] = iPI , [D,K±] = −iK± , [D,KI ] = −iKI ,

[K±,P∓] = i
(
D ± J +−) , [K±,PI ] = −[KI ,P±] = iJ ±I ,

[KI ,PJ ] = i
(
δIJD + J IJ

)
,

[K±,J +−] = ±iK± , [K±,J ∓I ] = −iKI , [KI ,J ±J ] = iδIJK±,

[KI ,J JK ] = i
(
δILKK − δIKKL

)
,

(A.9)

and other commutators vanish.
The quantum tensionless string theory in general dimensions D have a dangerous com-
mutator as well as the case of the Lorentz anomaly for quantum tensionful string theories.
The first dangerous commutator in the tensionless string theory is

[KI ,J −K ]
?
= iδIKK−. (A.10)

The right hand side of this have the traceless part with respect to I, J in a certain operator
order. The difference of trace part is absorbed in the redefinition of K−. However the
traceless part can become anomalous in some operator orders [38, 40]. Moreover this
anomaly produces more anomalies from commutators of K− and other generators. The
other dangerous commutators are [J −I ,K−], [K+,K−] and [KI ,K−].
If there is no traceless part in the right hand side of (A.10), we use K− = i[J −J ,KJ ]
for J ̸= I and the Jacobi identity to find that these dangerous commutators are not
anomalous.

D = 3

In three dimensions the commutation relations (A.8) become simple a little as follows:

[D,Pµ] = iPµ , [D,J µ] = 0 , [D,Kµ] = −iKµ , [Kµ,Kν ] = 0,

[Kµ,Pν ] = i (ηµνD − ϵµνρJρ) , [Kµ,J ν ] = iϵµνρKρ.
(A.11)

In light-cone base,

[D,P±] = iP± , [D,P ] = iP , [D,K±] = −iK± , [D,K] = −iK,
[K±,P∓] = i (D ∓ J ) , [K±,P ] = −[K,P±] = ±iJ ± , [K,P ] = iD,
[K±,J ∓] = ±iK , [K±,J ] = ∓iK± , [K,J ±] = ±iK±,

(A.12)
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and other commutators vanish.
In three dimensions the commutator [K,J −], corresponding to a dangerous commutator
in (A.10), has no traceless part [1]. This commutator give us the redefinition of K− as

K̃− ≡ −i[J −,K]. (A.13)

Therefore there is no anomaly in (A.10).
However, in the calculation of commutators, we must use K̃− instead of K−. We can
check easily that most of commutators in the spacetime conformal symmetry are correct.
However there are the following dangerous commutators [1].

[J −, K̂−]
?
= 0 ,

[K, K̂−]
?
= 0.

(A.14)

The check of the first relation in (A.14) is one of the main contents in this thesis. Though,
the calculation of this is very complicated and lengthy.
If the first relation in (2.14) is correct, we use the Jacobi identity to find that the second
relation is not anomalous.

[K, K̂−] = [i[J −,K+], K̂−]

= −i[[K̂−,J −], K+]− i[[K+, K̂−], J −]

= i[[J −, K̂−], K+] → 0.

(A.15)

A.3 Dangerous Commutators

Here we summarize dangerous commutators which we must calculate in D = 3 and D > 3
on the next table.

Dangerous commutators which we must calculate
Spacetime dimension Lorentz anomaly Spacetime conformal anomaly

D = 3 nothing K̃− ≡ −i[J −,K], [J −, K̂−]
D > 3 [J −I ,J −J ] [J −I ,KK ]

– 94 –



Appendix B

List of Generators and Commutators

In this appendix the generators of the spacetime conformal symmetry and some important
commutation relations in the tensionless string theory are collected in each dimension and
operator order. If necessary, the list in this appendix should be referred.

B.1 R-order Case

B.1.1 Generators

Here we represent the generators of the spacetime conformal symmetry in general dimen-
sions and in the Reference order, called R-order for short. Then we give the alternative
representation of generators in three dimensions and important operators.
The R-ordered generators of the Poincaré symmetry are

P−,R = p− , PI,R = pI , P+,R = p+ = − L0

2p−
,

J +I
R = −xIp− , J +−

R = −x−p− , J IJ
R =

∑
n

(XI
nP

J
−n −XJ

nP
I
−n),

J −I
R = x−pI +

1

2p−

∑
n

XI
nL−n −

i

p−

∑
n̸=0

1

n
MnP

I
−n,

(B.1)

and the additional R-ordered generators of the spacetime conformal symmetry are

DR = x−p− +
∑
n

Xn · P−n,

K+
R = −1

2

∑
n

Xn ·X−np−,

KI
R = xIx−p− +

∑
n

∑
m

[
XI

nX
J
mPJ,−n−m − 1

2
XJ

nXJ,mP
I
−n−m

]
+ i
∑
m̸=0

1

m
XI

mM−m,

K−
R = x−x−p− + x−

∑
n

XnP−n

+
1

4p−

∑
n

∑
m

XJ
nXJ,mL−n−m − i

p−

∑
n

∑
m̸=0

n+m

m2
XJMmPJ,−n−m.

(B.2)
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Here we used

Ln =
∑
m

Pm · Pn−m , Mn = −i
∑
m

mXm · Pn−m. (B.3)

From the zero mode of above operators, we find the following important operators.

Mass : M2 ≡ −P2 = L0 − p · p =
∑
m̸=0

Pm · P−m, (B.4)

Constraint : M0 = −i
∑
m

mXm · P−m. (B.5)

Because many R-ordered generators in (B.2) are not hermitian, we must hermitianize
them as

G =
1

2
(GR + h.c.). (B.6)

In the R-order or the Weyl order, a hermitian generator in (B.6) must be reordered
correctly. On the other hand, in the Hermitian R-order, we use the combination of (B.6)
as a generator.

Specialty of D = 3

In D = 3, we represent Lorentz generators as vector:

J +
R = J +2

R , JR = −J +−
R ,

J −
R = −J −2

R = −x−p− 1

2p−

∑
n

XnL−n +
i

p−

∑
n ̸=0

1

n
MnP−n,

(B.7)

where J µ = 1
2
ϵµνρJνρ, ϵ

+−2 = 1 and η+− = 1. Furthermore the generator of the next
special conformal translation is simpler than that of D > 3.

KR = KI=2
R = xx−p− +

1

2

∑
n

∑
m

XnXmP−n−m + i
∑
m̸=0

1

m
XmM−m (B.8)

The important Poincaré invariant corresponding to ”spin” in three dimensions is repre-
sented as

Λ ≡ J µPµ =
∑
n ̸=0

[
−1

2
XnL−n +

i

n
MnP−n

]
. (B.9)

B.1.2 Useful commutation relations

The useful commutation relations in general dimensions are

[XI
n, Lm] = 2iPI,n+m , [PI,n, Lm] = 0 ,

[XI
n,Mm] = (n+m)XI

n+m , [PI,n,Mm] = nPI,n+m ,

[Ln, Lm] = 0 , [Ln,Mm] = (n−m)Ln+m , [Mn,Mm] = (n−m)Mn+m.

(B.10)

and the important relation for arbitrary operators O taken the average with respect to
string coordinate σ is

[M0,O] = 0. (B.11)
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Specialty of D = 3

The important commutation relation of Λ are

[Λ, x] = [Λ, p] = 0 ,

[Λ,M2] = 0.
(B.12)

From the first line of this, we find that Λ has no zero mode, x and p. And from the second
line, we find that Λ commutes with another Poincaré invariant, M2.

B.2 XP-normal Order Case

B.2.1 Generators

Here we represent the generators of the spacetime conformal symmetry in general di-
mensions and in the XP-normal order. Then we give the alternative representation of
generators in three dimensions and important operators.
In the XP-normal order, the non-zero mode part of generators are hermitian automati-
cally, but the zero mode part is not. Therefore we hermitianize terms with zero modes.

The XP-normal ordered generators of the Poincaré symmetry are

P−,N = p− , PI,N = pI , P+,N = p+ = − L0

2p−
,

J +I
N = −xIp− , J +−

N = −x−p− +
i

2
,

J IJ
N = xIpJ − xJpI +

∞∑
n=1

[
(XI

−nP
J
n −XJ

−nP
I
n) + h.c.

]
,

J −I
N = x−pI +

( 1

2p−
xIL0 −

i

2p−
pI
)
+

∞∑
l=1

[
(XI

−lP
J
l −XJ

−lP
I
l ) + h.c.

] pJ
p−

− 1

p−
Λ̄I ,

(B.13)

and the additional XP-normal ordered generators of the spacetime conformal symmetry1

DN = x−p− + x · p+
∞∑
n=1

(X−n · Pn + P−n ·Xn)− i
D − 1

2
,

K+
N = −1

2
(x · x)p− −

∞∑
n=1

X−n ·Xnp−,

KK
N = xKx−p− + xK(x · p)− 1

2
(x · x)pK − i

D − 1

2
xK

+ xK
∞∑
n=1

(X−n · Pn + h.c.)− pK
∞∑
n=1

X−n ·Xn + xL

∞∑
n=1

(
(XK

−nP
L
n −XL

−nP
K
n ) + h.c.

)
+

∞∑
n=1

∞∑
m=1

[(
XK

−n(X−m · Pn+m) +XK
−n(P−m ·Xn+m) +XK

−n−m(Pm ·Xn)
)
+ h.c.

]
− 1

2

∞∑
n=1

∞∑
m=1

[(
(X−n ·X−m)P

K
n+m + 2(X−n−m ·Xm)P

K
n

)
+ h.c.

]
− i

∞∑
n=1

1

n
(XK

−nM̄n − h.c.),

(B.14)

1Here we omit K−
N which is not used in D > 3. K−

N in three dimensions is given subsequently.
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where barred operators are defined by removing of x- and p-zero mode from unbarred
ones, and ΛI is

Λ̄I ≡
∞∑
l=1

[
−1

2
(XI

−lL̄l + L̄−lX
I
l ) +

i

l
(P I

−lM̄l − M̄−lP
I
l )

]
. (B.15)

These barred operators are

L̄n =
n−1∑
l=1

Pl · Pn−l + 2
∞∑
l=1

P−l · Pn+l,

M̄n = −i
n−1∑
l=1

lXl · Pn−l − i

∞∑
l=1

(
(n+ l)P−l ·Xn+l − lX−l · Pn+l

)
,

L̄−n = (L̄n)
† , M̄−n = (M̄n)

†.

(B.16)

for n ≥ 0 and from zero mode of these operators we obtain

M2 = L̄0 = 2
∞∑

m=1

P−m · Pm, (B.17)

M̄0 = i
∞∑

m=1

m(X−m · Pm − P−m ·Xm) =M0 (B.18)

Specialty of D = 3

In D = 3, we represent Lorentz generators as vector:

J +
N = J +2

N , JN = −J +−
N ,

J −
N = −J −2

N = −x−p− 1

2p−
xL0 +

i

2p−
p+

Λ

p−

(B.19)

where J µ = 1
2
ϵµνρJνρ, ϵ

+−2 = 1 and η+− = 1.
And generators of the special conformal translation, KN and K− are

KN =xx−p− +
1

2
xxp− ix+ x

∞∑
n=1

(X−nPn + P−nXn)−
∞∑
n=1

X−nXnp

+
1

2

∞∑
n=1

∞∑
m=1

[
(X−nX−mPn+m + 2X−nP−mXn+m) + h.c.

]
− i

∞∑
m=1

1

m
(X−mM̄m − h.c.),

(B.20)

K−
N =x−DN − i

2
x− +

1

8p−
(xxL0 + L0xx)−

1

p−
xΛ

+
1

2p−

∞∑
n=1

X−nL0Xn +
1

4p−

∞∑
n=1

∞∑
m=1

[
(X−nX−mLn+m + 2X−nL−mXn+m) + h.c.

]
(B.21)

+
i

p−

∞∑
n=1

∞∑
m=1

[(n+m

m2
X−nM−mPn+m +

n

m2
X−n−mMmPn −

m

(n+m)2
X−nP−mMn+m

)
+ h.c.

]
.

where we separated x in K−
N , but not p because K−

N is too lengthy.
In three dimensions, because the helicity operator have originally no zero mode, Λ = Λ̄.
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B.2.2 Useful commutation relations

The useful commutation relations in general dimensions are

[XI
n, L̄m] = 2iPI,n+m , [PI,n, L̄m] = 0,

[XI
n, M̄m] = (n+m)XI

n+m , [PI,n, M̄m] = nPI,n+m for n+m ̸= 0,

[XI
n, M̄−n] = [P I

n , M̄−n] = 0,

(B.22)

[L̄n, L̄m] = 0 , [L̄n, M̄m] = (n−m)L̄n+m ,

[M̄n, M̄m] = (n−m)M̄n+m +
D − 2

6
(n3 − n)δn,−m.

(B.23)

Note that the commutation relation in the last line has the central extension term. Be-
cause Ln and Mn have no x-zero mode, barred ones satisfy the same commutation rela-
tions.
As well as R-order case, for arbitrary operators O taken the average with respect to σ,

[M0,O] = 0. (B.24)

Furthermore we give the following relations with ΛI ,[
Λ̄I , xJ

]
=
[
Λ̄I , pJ

]
=
[
Λ̄I ,M2

]
= 0,[

Λ̄I , XJ
n

]
=δI,J

1

n
M̄n + i

n−1∑
l=1

(
P J
n−lX

I
l +

n− l

l
XJ

n−lP
I
l

)
+ i

∞∑
l=1

(
XI

−lP
J
n+l + P J

−lX
I
n+l −

n+ l

l
P I
−lX

J
n+l −

l

n+ l
XJ

−lP
I
n+l

)
,

[
Λ̄I , P J

n

]
=− δI,J

i

2
L̄n + in

n−1∑
l=1

1

l
P J
n−lP

I
l + in

∞∑
l=1

(1
l
P I
−lP

J
n+l −

1

n+ l
P J
−lP

I
n+l

)
,

[
Λ̄I , M̄n

]
=inP I

n

(
−(n+ 1) +

[
2M̄0

1

n
+
D − 2

6

(
n− 1

n

)])
+

1

2
n

[
n−1∑
l=1

L̄n−lX
I
l +

∞∑
l=1

(L̄−lX
I
n+l +XI

−lL̄n+l)

]

+ in

[
n−1∑
l=1

1

l
M̄n−lP

I
l +

∞∑
l=1

( 1

n+ l
M̄−lP

I
n+l −

1

l
P I
−lM̄n+l

)]
,[

Λ̄I , XJ
−n

]
=− [Λ̄I , XJ

n ]
† ,
[
Λ̄I , P J

−n

]
= −[Λ̄I , P J

n ]
† ,
[
Λ̄I , M̄−n

]
= −

[
Λ̄I , M̄n

]†
.

(B.25)
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Appendix C

Inner Product and Normalization of
Mass Eigenfunctions

In chapter 4 and chapter 5, we have investigated in the R-order eigenfunctions of mass
squared operator, M2. In this appendix we give the detail of the inner product and the
normalization of mass eigenfunctions in the R-order.
Firstly we consider each n’s factor of the separable wave function. For the simplicity, we
consider the case of three dimensions in chapter 4. The case of the higher dimensions is
in [36].
The inner product of two wave functions, ψ1(r, θ) and ψ2(r, θ), is defined as

(ψ1, ψ2) ≡
∫ ∞

0

dr

∫ 2π

0

dθ r ψ∗
1(r, θ)ψ2(r, θ). (C.1)

The inner product of two total wave functions are defined by the product of the inner
product for each n.
Because of the symmetry of θ direction, we assume that the eigenfunction of (4.9) is the
product as ψm,s(r, θ) = ϕm,s(r)e

isθ. Here ϕm,s(r) satisfy the next differential equation in
(4.10). [

d2

dr2
+

1

r

d

dr
+ 4m2 − s2

r2

]
ϕm,s(r) = 0, (C.2)

where m is zero or positive continuous and s is integer.

Orthogonality for two eigenfunctions corresponding to m > 0 and
m′ > 0

First we check the orthogonality of eigenfunctions corresponding to non-zero eigenvalue.
From (4.12), the eigenfunctions corresponding to non-zero eigenvalue are given by the
Bessel function: ψm,s(r, θ) = Js(2mr)e

isθ. From (C.1), the inner product of two eigen-
functions, ψm,s and ψm′,s′ , is

(ψm,s, ψm′,s′) = 2πδs,s′N
∗
mNm′

∫ ∞

0

drrJs(2mr)Js(2m
′r). (C.3)
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The integral in (C.3) can be calculated by using the next relation.∫ y

0

dxxJl(ax)Jl(bx) =
y

a2 − b2
[aJl+1(ay)Jl(by)− bJl(ay)Jl+1(by)] . (C.4)

We consider the limit of y → ∞ in (C.4) to obtain the next result for a > 0 and b > 0.∫ ∞

0

dxxJl(ax)Jl(bx)= lim
y→∞

y

a2 − b2
[aJl+1(ay)Jl(by)− bJl(ay)Jl+1(by)]

=
1

π

1√
ab

lim
y→∞

[
sin(a− b)y

a− b
− (−1)l

cos(a+ b)y

a+ b

]
=

1

a
δ(a− b), (C.5)

where we used Jl(0) = 0 for l > 0 and the asymptotic form

Jν(x) =

√
2

πx

[
cos

(
x− 2ν + 1

4
π

)
+O(x−1)

]
as x→ ∞ (C.6)

and the delta function defined by the Sinc function as1

lim
y→∞

sin(yx)

πx
≡ δ(x). (C.7)

Thus we obtain

(ψm,s, ψm′,s′) =
π

2
δs,s′

|Nm|2

m
δ(m−m′). (C.8)

If we choose |Nm| =
√

2m
π
, we obtain (ψm,s, ψm′,s′) = δs,s′δ(m−m′).

ψ0,s′ and Orthogonality

Next we consider the choice of the solution for m′ = 0 and the orthogonality between ψm,s

and ψ0,s′ . For ψ0,s′ , we consider the s′ = 0 case and the s′ ̸= 0 case separately.
From the general solution of (C.2) for m = 0 and s = 0, we obtain

ψ0,0(r, θ) = A log r +B, (C.9)

where A and B are constants. Because of the regularity on r = 0, the first term is
suspected to be problematic.
The inner product of ψm,s and ψ0,0 is

(ψm,s, ψ0,0) = 2πδs,0Nm

∫ ∞

0

dr r (A log r +B)J0(2mr)

= 2πδs,0Nm

[
− A

(2m)2
+ lim

Λ→∞
(A log Λ +B)

√
2

π

Λ
1
2

(2m)
3
2

cos
(
2mΛ− 3

4
π
)](C.10)

1The delta function defined in (C.7) and the dropping of the second term in the second line of (C.5)
make sense only on the finite support.
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where we use the asymptotic form in (C.6) and the following results∫ y

0

dx x J0(x) = yJ1(y) (C.11)∫ y

0

dx x log x J0(x) = y log yJ1(y) + J0(y)− 1. (C.12)

For m ̸= 0, the second term of the last line in (C.10) is seen as zero because of the same
reason as that of the dropping of the second term in the second line of (C.5). Therefore
the r.h.s. of (C.10) vanishes if and only if A = 0. Thus the solution for s′ = 0 is a
constant: ψ0,0 = const.

Next we consider the s′ > 0 case. The s′ < 0 case is also discussed similarly. From
the general solution of (C.2) for m = 0 and s′ > 0, we obtain

ψ0,s′(r, θ) = (Ar−s′ +Brs
′
)eis

′θ, (C.13)

where A and B are constants. Because of the regularity on r = 0, the first term is
suspected to be problematic.
The inner product of ψm,s and r

−s′eis
′θ for s′ > 0 is

(ψm,s, r
−s′eis

′θ)= 2πδs,s′Nm

∫ ∞

0

dr r r−sJs(2mr)

= 2πδs,s′Nm
ms−2

2(s− 1)!
, (C.14)

where we use the asymptotic form (C.6) and the next result for positive integer l∫ y

0

dxx−l+1Jl(x) = −y−l+1Jl−1(y) +
1

2l−1(l − 1)!
−→
y→∞

1

2l−1(l − 1)!
. (C.15)

Because of (C.14), we must set A = 0 in solution (C.13).
On the other hand, the inner product of ψm,s and r

s′eis
′θ for s′ > 0 is

(ψm,s, r
s′eis

′θ) = 2πδs,0Nm

∫ ∞

0

dr r rsJs(2mr)

= 2πδs,s′Nm

√
2

π
lim
Λ→∞

[
Λs+ 1

2

(2m)
3
2

cos

(
2mΛ− 2s+ 3

4
π

)
+ · · ·

]
,

(C.16)

where we use the asymptotic form (C.6) and the next result for positive integer l∫ y

0

dxxl+1Jl(x) = yl+1Jl−1(y). (C.17)

Although (C.16) is not determined strictly, we assume that (C.16) vanishes because of
the similar reason to that of the dropping of the second term in the second line of (C.5).
Thus the solution for s > 0 is ψ0,s = rseisθ. In the same way, we find that the solution for
s < 0 is ψ0,s = r−seisθ.
If we collect these three cases, s = 0, s > 0 and s < 0, we obtain

ψ0,s(r, θ) = Br|s|eisθ. (C.18)
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Comment on inner product of total eigenfunctions

The inner product of two total wave functions are defined by the product of the inner
product for each n. If a massless eigenfunction is separable (or monomial type), the inner
product of eigenfunctions is straightforward, as seen above. If a massless eigenfunction is
non-separable (or polynomial type), the integrands for some ns are different from (C.10)
or (C.16). They have more exponents of r than that of (C.10) or (C.16). After we inte-
grate partially, we will get the result like (C.10) or (C.16).
Note that the inner product of a separable eigenfunction and a non-separable one corre-
sponding to the same positive mass does not always vanish.
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Appendix D

Cut-off Regularization in R-order
and Hermitian R-order

In some operator orders such as the R-order and the Hermitian R-order, some Hermitian
generators of the spacetime symmetry have divergent terms [38, 40]. Therefore we have
to regularize them for explicit calculations. For example, the dilatation in the R-order is

DR = x−p− +
∑
n

Xn · P−n. (D.1)

Because this is not hermitian, we must hermitianize this. If we reorder the hermitian
generator into the R-order, we find the divergent term as follows:

D =
1

2

(
DR + (DR)

†
)
= DR − i

2

[
1 +

∑
n

(D − 2)
]
. (D.2)

In the Hermitian R-order where the ordered result is the second formula, the regularization
is not necessary in the dilatation. However, as seen in (6.12) or (7.2), generators of higher
degree such as K̃− defined by the commutator can contain the divergent term from the
quantum effect, C

p−
. Therefore we need some regularization.

In this appendix, we regularize divergences with the cut-off regularization, which drops
higher Fourier modes. The advantages of the cut-off regularization are that infinite series
become the sum of finite terms and that all commutators of generators except for K̃−

satisfy the desirable relations in the spacetime conformal group.1

For the simplicity, we consider the case of three dimensions below. The higher dimen-
sional case is similarly discussed.

1Of course, other regularizations exist. A example is using the approximate delta function. This
regularization smear the delta function of the commutation relation [X(σ), P (σ′)] = 2πiδ(σ − σ′). Ex-
plicit example is [Xn, Pm]ϵ = i

|n|ϵ δn,−m in Fourier mode, where the regulator ϵ measures the scale of

smearing. In this regularization, the divergent series may be represented by zeta functions. However all
the commutator have the difference in O(ϵ) and multiple commutators are too complicated.
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D.1 Cutoff Regularization

Here we define the cut-off regularization. We drop Fourier modes with index which is
larger than N as follows:

Xn = Pn = 0 for |n| > N, (D.3)

where N is some large positive integer. From (D.3), the Fourier mode of P+ and X− are

L(N)

n ≡
∑

|m|≤N
|n−m|≤N

PmPn−m,

M (N)

n ≡ −i
∑

|m|≤N
|n−m|≤N

mXxPn−m,
(D.4)

where (N) in the superscript indicates the regularized operators. By the definition, we find

L(N)

n =M (N)

n = 0 for |n| > 2N. (D.5)

Furthermore the fundamental commutation relations are for |n| ≤ N and |n+m| ≤ N

[Xn, L
(N)

m ] = 2iPn+m, [Pn, L
(N)

m ] = 0,

[Xn,M
(N)

m ] = (n+m)Xn+m, [Pn,M
(N)

m ] = nPn+m,
(D.6)

and otherwise vanish. ”|n +m| ≤ N” is a new restriction for the summation. Therefore
L(N)

n and M (N)
m with finite N do not satisfy 2D Galilean conformal algebra (GCA)2 and

the algebra of these is not even closed. However we expect that the limit of N → ∞
recovers the original algebra. The detail is given in the next section.

The regularized generators are defined by the restriction in (D.3) and indicated by (N)

in the subscript. For example,

J −=−x−p− 1

2p−

∑
l

XlL−l +
i

p−

∑
l ̸=0

1

l
MlP−l +

i

2p−
p

→ J −
(N) =−x−p− 1

2p−

∑
|l|≤N

XlL
(N)

−l +
i

p−

∑
0<|l|≤N

1

l
M (N)

l P−l +
i

2p−
p. (D.7)

D.2 Limit of N → ∞
In this section we consider the important point in taking the limit of the regulator N .
First we consider the commutators of L(N)

n and M (N)
m defined in (D.4). The commutators

of original Ln and Mn satisfy 2d GCA without any regularization. Therefore the limit of
the commutation relations of L(N)

n and M (N)
m must recover 2d GCA.

22D GCA is referred to [55–57]
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In the R-order or the Hermitian R-order3, the commutation relations of regularized
operators are[

L(N)

n , L(N)

m

]
=0[

L(N)

n ,M (N)

m

]
=(n−m)L(N)

n+m − 2
∑

|l|≤N,|l−n|>N
|n+m−l|≤N

(n− l)PlPn+m−l

[
M (N)

n ,M (N)

m

]
=(n−m)M (N)

n+m − i
∑

|l|≤N,|l−n|>N
|n+m−l|≤N

l(l − n)XlPn+m−l

+ i
∑

|l|≤N,|l−m|>N
|n+m−l|≤N

l(l −m)XlPn+m−l.

(D.8)

The first commutator is good, but the second term of the second commutator and the
second and third terms of the third commutator are extra. However, because they are
ordered correctly, we assume that they have a good convergence property and drop them
in limit of N → ∞. Thus we drop extra terms in the limit of N → ∞ to recover 2d GCA.
Dropping the extra terms correctly ordered corresponds to the shift of the index of sum-
mation in series of ordered operators.4 Therefore, when we take the limit of N → ∞ in
the cut-off regularization, we must drop the extra terms correctly ordered.

R-order and Hermitian R-order

Here we show that the above dropping in the R-order breaks the Hermitian property.
For example, we consider the commutator of the following two hermitian operators in the
R-order case and the Hermitian R-order case,

1

2

∑
|n|≤N

∑
|m|≤N

|n+m|≤N

(XnXmP−n−m + h.c.)=
∑
|n|≤N

∑
|m|≤N

|n+m|≤N

XnXmP−n−m − i(2N + 1)x , (D.9)

1

2

∑
|k|≤N

∑
|l|≤N

|k+l|≤N

(Xk+lP−kP−l + h.c.)=
∑
|k|≤N

∑
|l|≤N

|k+l|≤N

Xk+lP−kP−l − i(2N + 1)p. (D.10)

Here, in order to obtain terms of lower degree correctly, we write all the range of sum-
mation explicitly as well as extra ranges.
First the commutator of above two hermitian operators in the R-order is[ ∑

|n|≤N

∑
|m|≤N

|n+m|≤N

XnXmP−n−m − i(2N + 1)x ,
∑
|k|≤N

∑
|l|≤N

|k+l|≤N

Xk+lP−kP−l − i(2N + 1)p

]

=3i
∑
|n|≤N

∑
|m|≤N

∑
|l|≤N

|n+m+l|≤N

XnXmPlP−n−m−l + 2
∑
|l|≤N

[
3(2N + 1)− |l|

]
XlP−l − i(2N + 1)2

−4i
∑
|n|≤N

∑
|m|≤N

∑
|l|≤N

|n+m+l|≤N, |m+l|>N

XnXmPlP−n−m−l + i
∑
|n|≤N

∑
|m|≤N

∑
|l|≤N

|n+m+l|≤N, |n+m|>N

XnXmPlP−n−m−l, (D.11)

3These orders are equivalent to the Weyl order in lower degree.
4The shift of the index of summation in series of ordered operators is done when we derive the Virasoro

algebra for the usual tensionful string theory.
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Note that all together the right hand side becomes anti-hermitian. The last line consists
of the R-ordered extra terms. However it is not anti-hermitian. Therefore dropping the
extra terms correctly ordered in the limit of N → ∞ breaks the anti-hermitian property
in the equation. Such a breaking causes the anomaly unrelated to one which we would
like to know. If such breaking is accepted, anomalous quadratic terms such as the second
part in the r.h.s. of (D.11) arise in [J −I ,KK ]. This is probably the cause of the anomaly
in the traceless part of [J −I ,KK ] shown in [38,40].

Next we reorder the commutator (F.12) in the Hermitian R-order, instead of the R-
order.[ ∑

|n|≤N

∑
|m|≤N

|n+m|≤N

XnXmP−n−m − i(2N + 1)x ,
∑
|k|≤N

∑
|l|≤N

|k+l|≤N

Xk+lP−kP−l − i(2N + 1)p

]

=
3i

2

∑
|n|≤N

∑
|m|≤N

∑
|l|≤N

|n+m+l|≤N

(XnXmPlP−n−m−l + h.c.) + i(7N2 + 7N + 1) (D.12)

−2i
∑
|n|≤N

∑
|m|≤N

∑
|l|≤N

|n+m+l|≤N, |m+l|>N

(XnXmPlP−n−m−l + h.c.) +
i

2

∑
|n|≤N

∑
|m|≤N

∑
|l|≤N

|n+m+l|≤N, |n+m|>N

(XnXmPlP−n−m−l + h.c.).

Because of hermitian combinations, dropping the extra terms in the last line of (D.13)
does not break the anti-hermitian property in the equation. After taking the limit, the
quantum effect appears only in constant, which is 4 lower degree than the highest one.
Though, because such a quantum effect’s constant may cause the anomaly in commuta-
tors of the spacetime conformal symmetry, we must calculate concretely such dangerous
commutators.

In this way, when we consider operators of higher degree such as the special conformal
transformation and their commutators, the Hermitian R-order is supposed to be appro-
priate. Therefore, we should choose the Hermitian R-order instead of the R-order. In
the Hermitian R-order, all generators and commutators are ordered in the form with the
hermitian partner as follows.

G ≡ 1

2

(
GR + (GR)

†), (D.13)
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Appendix E

Calculations

In this appendix we give the detail of the calculations which have been omitted in the
main body of this thesis.

E.1 Lorentz Anomaly in D > 3 and in R-order

Here we calculate the dangerous commutator of the Poincaré symmetry, [J −I , J −J ], in
D > 3 and in the R-order and then obtain (5.2). We use the next representation of J −.

J −I = (x−pI − i

2p−
pI) +

1

2p−

∑
n

XI
nL−n −

i

p−

∑
n ̸=0

1

n
MnP

I
−n. (E.1)

Because the calculation of [J −I , J −J ] is lengthy, we divide the commutator into three
parts of J −.
The first part is

[
x−pI − i

2p−
pI , J −J

]
=− 1

p2−

∑
n̸=0

1

n
MnP

J
−np

I − i

2p2−

∑
n

XJ
nL−np

I

+ δIJ
(
− i

2
x−

1

p−
L0 −

1

4p2−
L0

)
.

(E.2)

The second part is

[
1

2p−

∑
n

XI
nL−n, J −J

]
=

i

2p2−

∑
n

∑
m

XJ
nP

I
mL−n−m

+ δIJ

(
i

2
x−

1

p−
L0 +

1

4p2−
L0 +

1

2p2−

∑
n ̸=0

1

n
MnL−n

)
.

(E.3)
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The third part is[
− i

p−

∑
n ̸=0

1

n
MnP

I
−n, J −J

]
=

1

p2−

∑
n ̸=0

1

n
MnP

J
−np

I +
i

2p2−

∑
n

XJ
nL−np

I

− i

2p2−

∑
n

∑
m

XJ
nP

I
mL−n−m − δIJ

1

2p2−

∑
n ̸=0

1

n
MnL−n

−M0
1

p2−

∑
n ̸=0

1

n

(
P I
nP

J
−n − P J

n P
I
−n

)
.

(E.4)

We collect (E.2)-(E.4) to get the next result.

[J −I , J −J ] =

[
x−pI − i

2p−
pI − i

p−

∑
n ̸=0

1

n
MnP

I
−n +

1

2p−

∑
n

XI
nL−n, J −J

]

= − 1

p2−

∑
n ̸=0

1

n

(
P I
nP

J
−n − P J

n P
I
−n

)
M0

(E.5)

where we set M0 to the right end. Thus we obtain (5.2).
The constraint on the physical state is M0 ≈ a. If we choose a = 0, the Lorentz anomaly
for the tensionless string in the light-cone gauge vanishes in all higher dimensions as well
as D = 3, where the dangerous commutator is zero trivially. Therefore there is no critical
dimension for the Poincaré symmetry in the light-cone tensionless string theory in the
R-order. The cases of the Hermitian R-order and the Weyl order are the same.

E.2 Lorentz Anomaly in D > 3 and in XP-normal

Order

Here we calculate the dangerous commutator of the Poincaré symmetry, [J −I , J −J ], in
D > 3 and in the XP-normal order and then obtain (5.25). We use the next representation
of J −.

J −I =x−pI +

(
1

2p−
xIL0 −

i

2p−
pI
)

+
1

2p−

∞∑
n=1

(XI
−nLn + L−nX

I
n) +

i

p−

∞∑
n=1

1

n
(M−nP

I
n − P I

−nMn).

(E.6)

Because the calculation of [J −I , J −J ] is lengthy, we divide the commutator into four
parts of J −.
The first part is

[
x−pI , J −J

]
=− δI,J

i

2
x−

1

p−
L0 − i(J −J − x−pJ)

pI

p−
. (E.7)
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The second part is[
1

2p−
xIL0 −

i

2p−
pI , J −J

]
= δI,J

i

2p−
x−

1

p−
L0 +

i

2p2−
xJL0p

I +
1

2p2−
pIpJ − 1

p2−

∞∑
n=1

(P I
−nP

J
n − P J

−nP
I
n)

+
i

2p2−

∞∑
n=1

(P I
−nL0X

J
n +XJ

−nL0P
I
n − P J

−nL0X
I
n −XI

−nL0P
J
n ).

(E.8)

The third part is[
1

2p−

∞∑
n=1

(XI
−nLn + L−nX

I
n), J −J

]

=
i

2p2−

∞∑
n=1

(XJ
−nLn + L−nX

J
−n)p

I +
i

2p2−
xJ

∞∑
n=1

(P I
−nLn + L−nP

I
n)

− δI,J
1

2p2−

∞∑
n=1

1

n
(M−nLn − L−nMn) +

i

2p2−

∞∑
n=1

(P J
−nL0X

I
n +XI

−nL0P
J
n )

+
i

2p2−

∞∑
n=1

∞∑
m=1

[
(XJ

−n−mLnP
I
m +XJ

−nL−mP
I
n+m +XJ

−nP
I
−mLn+m) + h.c.

]
− 3

2p2−

∞∑
n=1

(n− 1)(P I
−nP

J
n − P J

−nP
I
n) +

1

p2−

∞∑
n=1

P J
−nP

I
n ,

(E.9)

where h.c. in 4th line indicates the Hermitian conjugate of the adjacent bracket.
The last part is lengthy and we must take care of the center term of [Mn,Mm]. The result
of calculation is[

i

p−

∞∑
n=1

1

n
(M−nP

I
n − P I

−nMn), J −J

]

= − 1

p2−

∞∑
n=1

1

n
(M−nP

J
n − P J

−nMn)p
I − i

2p2−
xJ

∞∑
n=1

(P I
−nLn + L−nP

I
n)

+ δI,J
1

2p2−

∞∑
n=1

1

n
(M−nLn − L−nMn)−

i

2p2−

∞∑
n=1

(P I
−nL0X

J
n +XJ

−nL0P
I
n)

− i

2p2−

∞∑
n=1

∞∑
m=1

[
(XJ

−n−mLnP
I
m +XJ

−nL−mP
I
n+m +XJ

−nP
I
−mLn+m) + h.c.

]
− 1

2p2−

∞∑
n=1

(n− 1)(P I
−nP

J
n − P J

−nP
I
n)−

1

p2−

∞∑
n=1

P I
−nP

J
n

+
1

p2−

∞∑
n=1

[(
D − 2

6
− 2

)
n+

(
2M0 −

D − 2

6

)
1

n

]
(P I

−nP
J
n − P J

−nP
I
n).

(E.10)

We collect (E.7)-(E.10) to obtain

[J −I , J −J ] =
1

p2−

∞∑
n=1

[(
D − 2

6
− 4

)
n+

(
2M0 −

D − 2

6

)
1

n

]
(P I

−nP
J
n − P J

−nP
I
n).(E.11)
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This is anti-symmetric for exchanging I and J as a matter of course. Thus we obtain
(5.25).
From (E.11), the critical dimension and the ordering constraint for the Poincaré symmetry
in the tensionless string theory in the XP-normal order are determined as D = 26 and
M0 ≈ a = 2.

E.3 Commutators of 3-dim. Spacetime Conformal

Symmetry in Cut-off Regularization

In this section we calculate dangerous commutators of the spacetime conformal symmetry
in three dimensions with the cut-off regularization to investigate whether anomaly exist
or not. The cut-off regularization is defined as

Xn = Pn = 0, for |n| > N. (E.12)

The regularized operators or generators are defined by restricting only Xn and Pm in them
and are indicated by (N) at superscript or subscript, such as M (N)

n , L(N)
n and Kµ

(N). Note
that some commutators have extra restriction in the range of sum.

E.3.1 Definition of K̃−
(N)

First we calculate K̃−
(N) ≡ −i[J −

(N),K(N)] and then find the effect of the cut-off regulariza-
tion.
Because of

[J −
(N),K(N)] =

1

2

(
[J −

(N),K(N),R]− h.c.
)
, (E.13)

it is enough to calculate the commutator of the following two generators.

J −
(N) =− x−p+

(
− 1

2p−
xL(N)

0 + i
p

2p−

)
+

Λ(N)

p−
,

Λ(N) ≡
∑
l ̸=0

[
−1

2
XlL

(N)

−l +
i

l
M (N)

l P−l

]
,

(E.14)

K(N),R = xx−p− +
1

2

∑
n

∑
m

XnXmP−n−m + i
∑
m̸=0

1

m
XmM

(N)

−m. (E.15)

As we find in another appendix, we must take care so that the limit of N → ∞ does not
break the hermitian property. Therefore we use the Hermitian R-order where all terms
always have the hermitian conjugate partner of themselves.

Because the calculation is lengthy, we divide the commutator [J −
(N),K(N)] into three

hermitian parts of J −
(N) in (E.14). The first part is[

−x−p, K(N)

]
=
i

2

((
x−x−p− + x−

∑
l ̸=0

XlP−l

)
+ h.c.

)
. (E.16)
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The second part is[
− 1

2p−
xL(N)

0 + i
p

2p−
, K(N)

]
=
i

2

((
x−xp+

1

4p−

∑
n

XnX−nL
(N)

0 − x
Λ(N)

p−

)
+ h.c.

)
+

i

4p−
. (E.17)

The third part is[
Λ(N)

p−
, K(N)

]
=
i

2

((
1

4p−

∑
n

∑
m

n+m̸=0

XnXmL
(N)

−n−m − i

p−

∑
n

∑
m̸=0

n+m

m2
XnM

(N)

m P−n−m + x
Λ(N)

p−

)
+ h.c.

)

+
i

p−

(
−3

4
N2 − 1

4
N − 1

2

∑
|n|≤N

∑
0<|m|≤N

|n+m|≤N

n2

m2

)
− 2

p−

∑
n ̸=0

1

n
XnP−nM

(N)

0 + δK−
(N), (E.18)

where δK−
(N) is the effect of the cut-off regularization and its concrete form is

δK−
(N) =

1

2p−

∑
n

∑
m

∑
l

|n+m|>N

(1
4
+

n

2m
+
m2

nl
+
n+m

l

)
(XnXmPlP−n−m−l + h.c.)

− 1

2p−

∑
n

∑
m

∑
l

|m+l|>N

( l

m+ l
+
m2

nl
+
n+m

l
− nm

(m+ l)2

)
(XnXmPlP−n−m−l + h.c.).

(E.19)

We collect (E.16)-(E.18) to get

[J −
(N),K(N)] = i

(
K−

(N) +
C(N)

p−
+ δK−

(N) +
2i

p−

∑
n ̸=0

1

n
XnP−nM

(N)

0

)
≡ iK̃−

(N), (E.20)

where K−
(N) is the ordered generator without extra terms,

K−
(N) =

1

2

(
K−

(N),R + h.c.
)

K−
(N),R = x−D(N),R +

1

4p−

∑
n

∑
m

XnXmL
(N)

−n−m − i

p−

∑
n

∑
m̸=0

n+m

m2
XnM

(N)

m P−n−m,
(E.21)

and

C(N) = −3

4
N2 − 1

4
N +

1

4
− 1

2

∑
|n|≤N

∑
0<|m|≤N

|n+m|≤N

n2

m2
. (E.22)

Here we emphasize that δK−
(N) is obviously hermitian and does not contain any zero mode,

x and p. Although δK−
(N), which is ordered correctly in the Hermitian R-order, is dropped

in the limit of N → ∞, we must verify whether the commutators of this and other
generators becomes consist of only terms dropped in the limit.
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E.3.2 Dangerous part in [J −
(N)
, K̃−

(N)
]

From the consideration in chapter 6, the structure of [J −
(N), K̃−

(N)] in the Hermitian R-order
is

[J −
(N), K̃−

(N)] = i(ordered classical) + i
1

p−
(XPP-cubic)×M (N)

0 + i
p

p2−
× (const.). (E.23)

The first term of (E.23) corresponds to the part which is zero classically in the calculation
without the regularization. Therefore it consists of the terms which are dropped in the
limit of N → ∞.1 The second part2 is related to the choice of the ordering constant,
M (N)

0 →M0 ≈ a. The third part consists of terms of the lowest degree, which arises from
only the quantum calculation. The anomalous part consists of the second and third parts.

Here we calculate the anomalous part directly without considering the commutator
with x unlike the case of the main text. Then we verify that there is no contribution to
the anomalous part from the commutator of δK−

(N).

Because of the lengthy results, we divide [J −
(N), K̃−

(N)] into the commutators of each part

of K̃−
(N) defined by (E.20) and then give only the results of the anomalous part, ∝ i p

p2−
.3

First, we consider

[J −
(N),K−

(N)] =
1

2

(
[J −

(N),K−
(N),R]− h.c.

)
. (E.24)

and then see the contribution to the anomalous part.4

Because the calculation of (E.24) is lengthy, we divide J −
(N) into three hermitian parts in

(E.14).
We calculate the contribution from the commutator of the first part of J −

(N) in detail.

[−x−p,K−
(N),R] =

i

4p2−

∑
n

∑
m

XnXmL
(N)

−n−mp−
i

p2−

∑
n

∑
m̸=0

n+m

m2
XnM

(N)

m P−n−mp

+ ix−
1

p−

(1
2
xL(N)

0 − Λ(N)

)
=

i

4p2−

∑
n

∑
m

XnXmL
(N)

−n−mp−
i

p2−

∑
n

∑
m̸=0

n+m

m2
XnM

(N)

m P−n−mp

+
i

2

(
x−

1

p−
+

1

p−
x−
)(1

2
xL(N)

0 − Λ(N)

)
+

1

2p2−

(1
2
xL(N)

0 − Λ(N)

)
(E.25)

From this, we obtain

1

2

(
[−x−p,K−

(N),R]− h.c.
)
∼ 1

2

(
1

2p2−

(1
2
xL(N)

0 − Λ(N)

)
− h.c.

)
∼ i

p

4p2−
, (E.26)

1Because of the classical part, we do not have to mind the divergence.
2We can know the second part from the classical calculation as well as quantum one.
3The first term of (E.23) is the part which is dropped in the limit of N → ∞.
4In the calculation of (E.24), to obtain the Hermitian R-ordered version of terms proportional to

x− 1
p−

, we deform such terms by using x− 1
p−

= 1
2

(
x− 1

p−
+ 1

p−

)
− i

2p−
.

– 114 –



where ∼ indicates extracting of the anomalous part, ∝ i p
p2−
.

Similarly, the contributions of other parts are calculated. The results are below.
The contribution from the commutator of the second part of J −

(N) is

1

2

([
− 1

2p−
xL(N)

0 + i
p

2p−
, K−

(N),R

]
− h.c.

)
∼ −i p

2p2−
. (E.27)

The contribution from the commutator of the third part of J −
(N) is

1

2

([Λ(N)

p−
, K−

(N),R

]
− h.c.

)
∼ 2i

p2−

∑
n ̸=0

1

n2
M (N)

n P−nM
(N)

0 + i

(
3

4
N2 +

1

4
N +

1

2

∑
|n|≤N

∑
0<|m|≤N

|n+m|≤N

n2

m2

)
p

p2−

(E.28)

where we added the contribution from the term arisen when we move M (N)

0 to the right
end.
We collect (E.26)-(E.28) to obtain

[J −
(N),K−

(N)]

∼ 2i

p2−

∑
n̸=0

1

n2
M (N)

n P−nM
(N)

0 + i

(
3

4
N2 +

1

4
N − 1

4
+

1

2

∑
|n|≤N

∑
0<|m|≤N

|n+m|≤N

n2

m2

)
p

p2−

=
2i

p2−

∑
n ̸=0

1

n2
M (N)

n P−nM
(N)

0 − iC(N)

p

p2−
.

(E.29)

Next the commutator of
C(N)

p−
is[

J −
(N),

C(N)

p−

]
=
[
−x−p, C(N)

p−

]
= iC(N)

p

p2−
. (E.30)

This is canceled by (E.29).
Next we consider the contribution from the commutator with δK−

(N) to the anomalous
part. Because of the extra restriction on the range of the summation in (E.19), δK−

(N) does
not contain any zero mode. Therefore the contribution to i p

p2−
comes from the commutators

of terms with p in J −
(N) and δK−

(N).
The terms with p in J −

(N) are

J −
(N)|p = −x−p− 1

2p−
xpp+

i

2p−
p. (E.31)

Then we obtain[
J −

(N), δK−
(N)

]
∼
[
J −

(N)|p, δK−
(N)

]
= −

[
x−, δK−

(N)

]
p = iδK−

(N)

p

p−
. (E.32)

This is dropped in the limit of N → ∞ and has no contribution to the anomalous part.
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Finally the commutator of the last term in (E.20) is again the term with M (N)

0 at the
right end because M (N)

0 commutes with all regularized generators.[
J −

(N),
2i

p−

∑
n ̸=0

1

n
XnP−nM

(N)

0

]
=
(
− 6

p2−

∑
n ̸=0

1

n
XnP−np+

1

p2−

∑
n ̸=0

1

n
XnL−n +

2i

p2−

∑
n ̸=0

1

n2
MnP−n

)
·M (N)

0

(E.33)

All the terms with M (N)

0 at the right end in [J −
(N), K̃−

(N)] vanishes if and only if we choose
a = 0.5

Thus the anomalous part in [J −
(N), K̃−

(N)] vanishes if and only if a = 0.

E.3.3 The rest commutators with K̃−
(N)

Here we consider the rest of commutators with K̃−
(N). We can easily verify that most of

them give expected results even for finite N ,

[P−(N), K̃−
(N)] = −i(D(N) + J(N)) , [P(N), K̃−

(N)] = iJ −
(N) , [P+(N), K̃−

(N)] = 0

[J +
(N), K̃−

(N)] = iK(N) , [J(N), K̃−
(N)] = −iK̃−

(N)

[D(N), K̃−
(N)] = −iK̃−

(N) , [K+
(N), K̃−

(N)] = 0,

(E.34)

Although the last commutator which should be calculated, [K(N), K̃−
(N)], is complicated, the

calculation of this is parallel to that of [J −
(N), K̃−

(N)]. This consists of the classical ordered

part, the terms with M (N)

0 at the right end and the term of the lowest degree, i x
p−

such as

(E.23). The commutator of δK−
(N) does not contribute to the anomalous part in the same

way as the last subsection. So we get [K(N), K̃−
(N)] → 0 in the limit of N → ∞ and a = 0.

Thus we obtain the set of commutators which give the desirable results for the space-
time conformal symmetry in the limit of N → ∞.

5In the cut-off regularization, the constraint is M (N)

0 → M0 ≈ a = 0.
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Appendix F

Tensionful 3D String in Light-cone
Gauge

Three dimensional string theories have the specialty of three dimensions that the ”dan-
gerous” commutator is zero trivially, [J −,J −] = 0, and therefore preserves the Poincaré
symmetry. In this appendix, we give the short review about the three dimensional string
theory with tension T ̸= 0 in light-cone gauge [50–52]1. This chapter will be useful to
remember the usual string with tension.

F.1 Classical Theory

The starting point is the next action which is equivalent to the Nambu-Goto action for a
tensionful string.

S[X,P;V, U ] =

∫
dτ

∮
dσ

2π

{
ẊµPµ −

1

2
V
[
P2 + (TX′)2

]
− UX′µPµ

}
. (F.1)

This action has the next gauge symmetry which corresponds to the world sheet diffeo-
morphism, 

δXµ = αPµ + βX′µ,
δPµ = T 2(αX′)′ + (βPµ)

′,
δV = α̇ + U ′α− Uα′ + V ′β − V β′,

δU = β̇ + U ′β − Uβ′ + T 2(αV ′ − α′V ).

(F.2)

We choose the light-cone gauge as

X+ = τ, P− = p−(τ) ̸= 0, (F.3)

to fix the gauge symmetry in (F.2). We solve some constraints and field equations with
the Fourier mode to obtain the Lagrangian as

L = ẋp+ ẋ−p− − i
∞∑
n=1

1

n

[
α̇−nαn + ˙̃α−nα̃n

]
−H + u

∞∑
n=1

[
α−nαn − α̃−nα̃n

]
, (F.4)

1Their study have become the start of this paper’s study.
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where the Fourier modes are defined by

P − TX ′ =
√
2T
∑
n

αne
inσ , α−n = (αn)

∗

P + TX ′ =
√
2T
∑
n

α̃ne
−inσ , α̃−n = (α̃n)

∗,
(F.5)

and the Hamiltonian and the mass square operator are

H ≡ −p+ =
1

2p−
(p2 +M2) ,

M2 = −P2 = 2T
∑
n=1

[
α−nαn + α̃−nα̃n

]
.

(F.6)

Most of constraints are solved as

X− = x− − 1

p−

∑
n ̸=0

i

n

[
L⊥
n e

inσ + L̃⊥
n e

−inσ
]

(F.7)

P+ = − T

p−

∑
n

[
L⊥
n e

inσ + L̃⊥
n e

−inσ
]

(F.8)

L⊥
n =

1

2

∑
m

αmαn−m , L̃⊥
n =

1

2

∑
m

α̃mα̃n−m, (F.9)

but only the next constraint remains unsolved.

∞∑
n=1

α−nαn −
∞∑
n=1

α̃−nα̃n = 0. (F.10)

This is the level matching condition. We impose this condition on physical states.

F.2 Quantum Theory

The commutation relations of dynamical variables are

[x−, p−] = i , [X(σ), P (σ′)] = 2πδ(σ − σ′)

↔ [x−, p−] = [x, p] = i , [αn, αm] = [α̃n, α̃m] = nδn,−m , [αn, α̃m] = 0.
(F.11)

In the normal order for the left- and right-moving modes, the mass operator in (F.6) and
the constraint in (F.10) are represented as

M2 = 2T
(
N + Ñ − a

)
≈ 2T

(
2N − a

)
, (F.12)

(N − Ñ)|phys⟩ = 0, (F.13)

where N and Ñ are the level numbers of left- and right-moving mode respectively,

N =
∞∑
n=1

α−nαn , Ñ =
∞∑
n=1

α̃−nα̃n, (F.14)
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and a is the constant of the ambiguity coming from the operator ordering. Because the
”dangerous” commutator vanishes trivially in three dimensions, the ordering constant, a,
is not determined.
In the normal order,

L⊥
n =

1

2

n∑
m=0

αmαn−m +
∞∑

m=1

α−mαn+m , L⊥
−n = (L⊥

n )
†

L̃⊥
n =

1

2

n∑
m=0

α̃mαn−m +
∞∑

m=1

α̃−mα̃n+m , L̃⊥
−n = (L̃⊥

n )
†

(F.15)

for n ≥ 0. These operators satisfy the famous Virasoro algebra with the central extension
term severally. However we don’t have to calculate them because of the trivial vanishing
of [J −,J −] = 0.

Mass operator in (F.12) has the same structure as the harmonic oscillator. Therefore
the string ground state is the tensor product, |0⟩ ≡ |0⟩ ≡ |0⟩+ ⊗ |0⟩−. Here the state |0⟩+
is annihilated by positive α-mode and the state |0⟩− is annihilated by positive α̃-mode.
That is

αn|0⟩+ = α̃n|0⟩− = 0 for n > 0. (F.16)

The excited states are created by acting negative modes on the string ground state.
Furthermore the physical states must satisfy the level-matching condition N = Ñ and
their mass eigenvalues are given by level numbers such as (F.12). Here note that in the
case of a > 0 tachyonic states can exist.

F.3 Helicity Spectrum

The above results are the same as the usual tensionful string in higher dimensions. In
three dimensions, there is another Poincaré invariant,

Λ ≡ J µPµ = p−

∮
dσ

2π

[
X̄P̄+ − X̄−P̄

]
=

√
2T (λ+ λ̃) (F.17)

λ =
∞∑
n=1

i

n
(α−nL

⊥
n − L⊥

−nαn) , λ̃ =
∞∑
n=1

i

n
(α̃−nL̃

⊥
n − L̃⊥

−nα̃n) (F.18)

where we note that p =
√
2Tα0 =

√
2T α̃0 in λ and λ̃ is canceled.

Because Λ commutes with the mass square operator, M2, we can diagonalize them simul-
taneously. If the mass eigenvalue is non-zero, the helicity is defined by

s ≡ Λ

M
. (F.19)

Now we give eigenvalues of Λ at some lower levels. Because the left-moving part and
the right-moving part split, it is enough to calculate one hand of the left-moving or the
right-moving.
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Level 0

The state at level 0 is only the string ground state, |0⟩ = |1⟩+⊗|1⟩−. This hasM2 = −2Ta
and Λ = 0. Therefore s = 0.

Level 1

The staet at level 1 is only α−1α̃−1|0⟩ ≡ |1⟩+⊗|1⟩−. This has M2 = 2T (2−a) and Λ = 0.
Therefore s = 0.

Level 2

The states of the left-moving part at level 2 are |2⟩+ ≡ 1√
2
α−2|0⟩+ and |1, 1⟩+ ≡ 1√

2
α−1α−1|0⟩+.

In this base, λ is represented as

λ =
3

2
i

(
0 −1
1 0

)
. (F.20)

The eigenvalues of this are ±3
2
. We collect both moving parts to obtain eigenvalues of Λ

as Λ =
√
2T (0, 0, 3,−3). Because the mass square eigenvalue is M2 = 2T (4− a) at level

2, helicity s2 at level 2 is

s2 =

(
0, 0,± 3√

4− a

)
. (F.21)

From this, we find that s2 can become rational or irrational number as well as integer
and half integer according to a. Therefore we can find the anyons in the spectrum for the
tensionful string theory in the 3-dim. light-cone gauge.

Level 3

The states of the left-moving part at level 3 are |3⟩+ ≡ 1√
3
α−3|0⟩+, |2, 1⟩+ ≡ 1√

2
α−2α−1|0⟩+

and |1, 1, 1⟩+ ≡ 1√
6
α−1α−1α−1|0⟩+.

In this base, λ is represented as

λ =
i

2
√
3

 0 7
√
2 0

−7
√
2 0 9

0 −9 0

 . (F.22)

and the eigenvalues are 0,±
√

179
12
. Because the mass square eigenvalue is M2 = 2T (6−a)

at level 3, we collect both moving parts to obtain the helicity, s3, at level 3.

s3 =

(
0, 0, 0,±

√
179

12(6− a)
,±

√
179

12(6− a)
,±

√
179

3(6− a)

)
(F.23)

At level 3, we find that the helicity can become rational or irrational number as well as
integer and half integer according to a. Therefore we can find the anyons in the spectrum
for the tensionful string theory in the 3-dim. light-cone gauge.
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At higher level, irrational helicities appear infinitely. All of these irrational helicity,
anyons, cannot be removed by the choice of a. The existence of such anyons are ex-
pected from the representation theory of three dimensional Poincaré group [54, 58–60].
Anyons with various spin values (in three dimensions) are studied in various points of
view [61–67].

F.4 Some Comments

In three dimensions, we cannot determine a for the tensionful bosonic string because of no
dangerous commutator. Therefore we get various spectrum of mass and helicity according
to a. For example, for a > 4, there are non-scalar tachyons.
Above all, a = 0 case is special. In a = 0 case, there is no tachyon and then the string
ground state is massless.2

There is a questions of how a should be determined. In the main body of this thesis,
we find that the requirement of the spacetime conformal symmetry give a = 0 for a
tensionless string. For a string with tension, one of the answers of this question is super-
string.3 Because of the supersymmetry, there is no zero-point energy, a = 0. The detail
is in [51,52].

2A massive scalar exists at level 1 and states with fermionic helicity, s2 =
(
0, 0,±3

2

)
, exist at level 2.

Though irrational helicities at higher level are inevitable.
3In [53], the evidence of the equivalent between RNS formalism and GS formalism for the 3-dim.

tensionful string theory with the spacetime supersymmetry are investigated.
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[46] U. Lindstrom and M. Roček, ”D=2 null superspaces,” Phys. Lett. B 271 (1991)
79-84.

[47] Chao-Zheng Zha and Yu. Cai, ”Quantization of null spinning strings with U(1)
gauge symmetry,” J.Phys. A24 (1991) 3427-3434.

[48] P. Saltsidis, ”Tensionless p-branes with manifest conformal invariance,” Phys. Lett.
B 401 (1997) 21-29 [arXiv:hep-th/9702081].

[49] P. Saltsidis, ”The Mass Spectrum of the 2-dimensional Conformal String,”
Phys.Lett. B 396 (1997) 107-114 [arXiv:hep-th/9609169].

[50] Luca Mezincescu and Paul K. Townsend, ”Anyons from Strings,” Phys. Rev. Lett.
105, 191601,2010 [arXiv:1008.2334 [hep-th]].

[51] L. Mezincescu and P. K. Townsend, ”Quantum 3D Superstrings,” Phys.Rev. D 84
(2011) 106006 [arXiv:1106.1374 [hep-th]].

[52] L. Mezincescu and P. K. Townsend, ”3D strings and other anyonic things,”
Fortsch.Phys. 60 (2012) 1076-1079 [arXiv:1111.3384 [hep-th]].

[53] L. Mezincescu, A. J. Routh and P. K. Townsend, ”Equivalence of 3D Spinning
String and Superstring,” JHEP 1307 (2013) 024 [arXiv:1305.5049 [hep-th]].

[54] Birne Binegar, ”Relativistic field theories in three dimensions,” J. Math. Phys. 23
(1982) 1511-1517.

[55] F. Lizzi, ”The Zero Tension Limit of The Virasoro Algebra and the Central Exten-
sion,” Mod.Phys.Lett. A 9 (1994) 1495-1500 [arXiv:hep-th/9404148].

[56] Arjun Bagchi, Rajesh Gopakumar, Ipsita Mandal, and Akitsugu Miwa, ”GCA in
2d,” JHEP 1008 (2010) 004 [arXiv:0912.1090 [hep-th]].

[57] Arjun Bagchi, ”Tensionless Strings and Galilean Conformal Algebra,” JHEP 1305
(2013) 141 [arXiv:1303.0291[hep-th]].

[58] S. Daser and R. Jackiw, ”Statistics without spin. Massless D=3 systems,” Phys.
Lett. B 263 (1991) 431-436.

[59] Stefano Forte, ”Quantum mechanics and field theory with fractional spin and statis-
tics,” Rev. Mod. Phys. 64 (1992) 193.

[60] Jens Mund, ”The Spin-Statistics Theorem for Anyons and Plektons in d=2+1,”
Commun. Math. Phys. 286 (2009) 1159-1180 [arXiv:0801.3621 [math-ph]].

[61] R. Jackiw and V.P. Nair, ”Relativistic wave equations for anyons,” Phys. Rev. D
43 (1991) 1933-1942.

[62] V.P. Nair, ”Relativistic wave equation for anyons,” Int. J. Mod. Phys. B 5 (1991)
1685-1692.

– 126 –



[63] Luca Mezincescu and Paul K. Townsend, ”The Quantum 3D Superparticle,” SIGMA
7 (2011) 005 [arXiv:1011.5049 [hep-th]].

[64] Luca Mezincescu and Paul K. Townsend, ”Semionic Supersymmetric Solitons,” J.
Phys. A 43 (2010) 465401 [arXiv:1008.2775 [hep-th]].

[65] Luca Mezincescu, Alasdair J. Routh and Paul K. Townsend, ”All Superparticles are
BPS,” J. Phys. A 47 (2014) 175401 [arXiv:1401.5116 [hep-th]].

[66] Nicolas Boulanger, Per Sundell and Mauricio Valenzuela, ”A Higher-Spin Chern-
Simons Theory of Anyons,” arXiv:1311.4589 [hep-th].

[67] Nicolas Boulanger, Per Sundell, and Mauricio Valenzuela, ”Three-dimensional
fractional-spin gravity,” JHEP 1402 (2014) 052 [arXiv:1312.5700 [hep-th]].

– 127 –


