THE UNIVERSITY OF

MELBOURNE

Dark Matters

A UV Complete Picture of Asymmetric Dark Matter and Coannihilations

Alexander J. Millar
Supervised by A. Prof Nicole F. Bell and Prof Raymond R. Volkas

A thesis submitted in partial fulfilment of the requirements for the degree of Master
of Science (Physics).

School of Physics
University of Melbourne
Australia

October, 2014



Abstract

Asymmetric dark matter models simultaneously explain the predominance of matter over
antimatter in our universe (baryogenesis) and why Qpy =~ 5Qyy. We look at asymmetric
dark matter models that have a conserved global U(1) symmetry, which creates equal and
opposite asymmetries in the dark and visible sectors. Recently the idea of an asymmetry
forming through coannihilation has been introduced, but has not been widely studied, with
most asymmetric dark matter models relying on other means to generate an asymmetry.
This thesis looks at high energy completions of a toy model of coannihilation, and explores a
new model, the lepton portal. We study the CP violation and asymmetry formation of these
theories. We find that the lepton portal is capable of correctly producing the relic abundance
of dark matter, and explaining the matter-antimatter asymmetry.
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Chapter

Introduction and Review

Cosmology has come a long way since Ptolemy’s celestial spheres, but we still lack a clear
understanding of the material that makes up our universe and how this material came to
exist. The Standard Model (SM) does an excellent job of describing the matter we observe
on earth and in terrestrial experiments (baryonic matter), but astrophysical observations
show us that the SM only describes 15% of the matter in the universe!| This “dark matter”,
though it is invisible, has a profound impact on the formation of structure in our universe;
without it we would not have the rich array of galaxies we see today. Further, the SM cannot
explain how the luminous matter came to exist. In fact the SM predicts an almost empty
universe. Asymmetric dark matter (ADM) models explain the formation of this baryonic
matter (baryogenesis) via interactions between luminous matter and dark matter. This thesis
explores a recent avenue for achieving ADM, where coannihilations of particles, rather than
the typical decay, cause baryogenesis. In particular, we are looking for a renormalisable
theory that can accomplish this.

1.1 Dark Matter

Dark matter is one of the oldest cosmological problems. As far back as 1933 [1]] there has
been evidence that a significant fraction (85%) of the universe’s matter was non-luminous,
or “dark”. In the 80 years since then, it has grown increasingly certain that five-sixths of
the matter in the universe does not strongly interact with SM particles (via the strong or
electromagnetic forces). Unfortunately, despite the significant indirect evidence that dark
matter exists, we are yet to have a clear and uncontroversial discovery of dark matter via
more direct means. This is due mainly to the weak interactions between dark and visible
matter - we only have evidence of gravitational interactions. Unfortunately because of this
it is extremely difficult to narrow down the large number of dark matter candidates which,
while giving theorists a large amount of freedom, deprives us of a clear direction for explain-
ing this excess matter. To remedy this, theorists attempt to incorporate dark matter into a
larger theoretical framework in order to provide new ways to understand it.

Though initial evidence for dark matter came from rotation curves of galaxies, more com-
pelling evidence for non-baryonic matter exists. Gravitational lensing indicates that galaxies
and clusters of galaxies possess significant amounts of non-luminous matter, while at the
same time demonstrating that massive astrophysical bodies could not provide this extra
mass [2,3]. Data from the Bullet Cluster (two colliding clusters of galaxies) indicates that, at
least at low temperature, dark matter does not have significant self interactions [4]. More-
over, non-baryonic matter is required to explain the formation of large scale structure in the
universe [5]], as well as the acoustic peaks of the CMB [6]].

'Only 30% of the universe is any kind of matter; the lion’s share of the universe consists of the mysterious
“dark energy”.



Dark Matter Candidates

Due to the large amount of freedom theorists have in constructing dark matter models, it is
not surprising that there are many candidates for the elusive dark matter. Asymmetric dark
matter theories will be discussed later in section 1.4

WIMPs

Historically, the most popular candidate for dark matter is that of a weakly interacting
massive particle (or WIMP). As the name would suggest, WIMPs interact with normal
matter with a strength similar to that of the weak force. WIMPs do not couple at tree level to
photons or gluons, though they often have tree level interactions with the W and Z bosons.
WIMPs naturally arise in many beyond the SM theories (such as supersymmetry) and with
the so-called “WIMP miracle” can naturally produce the correct relic abundance of dark
matter [7]. To see this, note that if the relic density is determined by thermal freeze out then

xT3
ij"lmvrl, (1.1)
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where x5 = mppy/ Ttreeze out (typically ~ 20), Ty is the present day temperature, p. is the critical
density, (040) is the velocity averaged cross section of the annihilations, Qpy (Qvy) is the
ratio of dark matter (visible matter) density to the critical density and Mp, =~ 1.22 x 10" GeV
is the Planck Mass. For a weak scale cross section,
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where the factor of 1 (¢v?) is for S-wave (P-wave) interactions and gues =~ 0.65 is the weak
gauge coupling. Plugging in the numbers, a dark matter mass of 100 — 1000 GeV reproduces
the correct relic density. As this is a very natural mass scale for the weak force (the W, Z and
Higgs bosons are all ~ 100 GeV), we have the WIMP miracle.

Unfortunately there is a lot of conflicting evidence regarding the potential discovery of
WIMP particles, and minimal supersymmetry is disfavoured by the LHC. More complex
theories of supersymmetry and unrelated theories (such as Kaluza-Klein dark matter from
extra dimensions) can still produce WIMPs [8].

Exotics

Unlike WIMPs, which are produced thermally, exotics are (usually) produced by non-thermal
effects. These less familiar particles, such as wimpzillas and axions, are often produced
through phase transitions or inflationary effects [9) [10]. For example, axions were intro-
duced to solve the strong CP problem (why there is no charge-parity (CP) violation in the
strong force) as a pseudo-Nambu-Goldstone boson due to the breaking of the proposed
Peccei-Quinn symmetry. They can be produced non-thermally by the phase transition as-
sociated with this symmetry breaking. Unlike WIMPs, axions do not naturally produce the
correct abundance of dark matter, which must be put in by hand.

While this is clearly an incomplete list of the various dark matter theories, it gives some idea
of the cornucopia of theories at a physicist’s disposal when trying to describe dark matter.
See [7] for a more in depth discussion of dark matter theories.



1.2 Baryogenesis

A puzzling feature of the universe is that it consists almost entirely of matter. In colliders,
whenever we create a particle of matter, a corresponding antimatter particle is made. Indeed,
in perturbative SM interactions, the total baryon number, B, is conserved. So how then can
we explain this difference in abundance between matter and antimatter? We might consider
different initial conditions for matter and antimatter, but inflation dilutes any initial nonzero
B to be negligible [11]. So it is necessary to have a dynamically generated net baryon number.
The forming of this asymmetry is called “baryogenesis”. We define the baryon number of a
proton to be 1, so quarks have a baryon number of 1 and antiquarks have a baryon number
of —%. We can similarly define a lepton number, L, where electrons and neutrinos have a
lepton number of 1.

Evidence for Baryogenesis

On Earth clearly there is effectively no antimatter (any sizeable amount of antimatter would
soon destroy those searching for it). But this does not tell us that there are no stores of
antimatter elsewhere in the universe. By looking for the tell-tale gamma rays from hydrogen
annihilating with anti-hydrogen (such as at the borders between a matter and an antimatter
region), we can search the observable universe for antimatter. This rules out antimatter re-
gions on scales smaller than 10%° solar masses [12], so if the universe was baryon symmetric
we would need to segregate matter and antimatter on scales of at least 10% solar masses.

We can also employ the freeze out condition to determine the relic abundance of matter
and antimatter. Freeze out occurs when the rate of an interaction maintaining equilibrium
becomes less than the rate of expansion of the universe. If B is conserved, annihilations
freeze out at a temperature of around 22 MeV. This corresponds to 2 = £ = 7 x 1072, where
2 is the number density of baryons weighted by the entropy. However we know that the
average density of the universe is nine orders of magnitude larger [13]. Further, to avoid
this annihilation through segregation of matter and antimatter, the mechanism must occur
before the abundances drop below 2 = % = 8 x 107", their present value. This corresponds
to a temperature of 38 MeV. At 38 MeV the horizon of the universe contains only 1077 solar
masses, so we could not create a segregation of the order 10% solar masses without violating
locality [14].

The need for baryogenesis seems inescapable.

Sakharov Conditions

Now that we know baryogenesis is necessary, we might wonder what conditions are re-
quired for the formation of a baryon asymmetry. We can use these to identify theories that
might effectively lead to baryogenesis. It turns out that there are three conditions we must
meet, known as the Sakharov conditions [15] .

1. Bviolation. This first condition seems self evident. No matter what else is happening,
if there are no interactions that violate baryon number then no net baryon number may
form. We might ask ourselves if the SM can provide baryon number violating terms;
while baryon number is an accidental global U(1) symmetry of the SM, it is in fact
anomalous [16]. Sphalerons, the product of tunneling between different non-trivial



vacuum gauge configurations, violate B, while conserving B — L.

2. C and CP violation. If matter and antimatter are not treated differently, then any B
violating interactions will be cancelled by corresponding charge reversed B violating
interactions. For example, consider

ff = ff, (1.3)

with f being a fermion charged under B. This interaction violates baryon number by
—2B(f). If C, charge conjugation, is not violated then this reaction rate is exactly the

same as the rate of L
ff—ff (1.4)

which violates baryon number by +2B(f). So C must be violated to get a net baryon
number. When we average over spins we find that we also need CP violation. The
weak interaction has C maximally violated but little CP violation. Exactly how CP
violation generates an asymmetry is discussed in section

3. Thermal Non-equilibrium. So say we have a theory with B, C and CP violation. If
the particles are in chemical equilibrium, then the chemical potentials of any non
conserved quantum number are zero. In addition, if the particles are also in kinetic
equilibrium then they will share a temperature with their CP conjugates. CPT invari-
ance guarantees that a particle and its antiparticle have the same mass [17]. So as the
phase space densities are given by [1 + exp (p*> + m?)/T]| ™}, they are necessarily equal
at thermal equilibrium. This is essentially due to requiring unitarity and CPT invari-
ance [18]]. Fortunately, due to the expansion of the universe, it is not too hard to find
non-equilibrium conditions. For example, in the SM a small baryon asymmetry could
be caused by the electroweak phase transition (EWPT). Unfortunately this transition
is second order, and consequently does not lead to a significant abundance of mat-
ter [19]. Roughly speaking, a first order phase transition is discontinuous in the first
derivative of the free energy, like water boiling, and a second order phase transition is
discontinuous in the second derivative. Viable electroweak baryogenesis theories add
interactions that make the electroweak phase transition first order.

While the SM satisfies all three Sakharov conditions, the baryon asymmetry created within
the SM is several orders of magnitude too small [20] to explain the observed matter abun-
dance. The presence of B and L violating (but B — L conserving) interactions in the SM
cannot be ignored, as they are often very useful in theories of baryogenesis. In particular,
leptogenic theories create a nonzero L, and then use sphalerons to transfer the asymmetry to
the baryons [21]. In Chapter 4, we will follow a similar path with the lepton portal.

Boltzmann Equations

Once we invent some interactions satisfying the Sakharov conditions, we need to know
the magnitude and nature of the asymmetry they generate. The equations that govern
the evolution of the number density of a particular particle are known as the Boltzmann
equations. For the process ¢ +a+b+... — i+ j+..., evolving in the Friedmann-Robertson-
Walker metric, the evolution of 1, is given by [17]:

ay x

dx H(m)s

x C(y), (1.5
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3
where dI1 = gﬁi—g, x=%Y= nT”’, H(m) = 1.67¢*m?/mp, is the expansion rate of the
universe, |M|? is the matrix element squared, f; is the phase space density of particle species

i, s is the entropy per comoving volume and

C(IP)E/dedHade...dHide QY S i+ pj. =Py —Pa—Pb---)

2 2
X [|M|w+a+b+...—>i+j+...ﬂfb¢ - |M|i+j+...—>¢+a+b+...ﬁﬁ . ] .

C(v) is often referred to as the collision term. In this case, g does not denote a coupling but
rather the number of internal degrees of freedom and g. is effective degrees of freedom of
the radiation bath. If the process conserves time reversal (T) symmetry (which CP violating
processes do not), then

(1.6)

IME? =M (1.7)

i+j+.. > Y+a+b+.. Y+a+b+.. =it j+.

To solve the Boltzmann equations, it is necessary to write them in a more malleable form. As
we will be using Maxwell-Boltzmann statistics as a (good) approximation throughout this
thesis, we can factor out the chemical potential from the phase space

= (P"P_ELP)/T: py/T o4
fo=e et fw, (1.8)

where f*7 and the soon to be used n* refer to the equilibrium values when the chemical
potential is zero. We can then use conservation of energyﬂ to make the replacement

ff > f"fff.., (1.9)
and define:
_ nlu[) _ ‘uw/T
7’11; = —eq =e . (110)
ny

If time reversal (T) symmetry is respected then the collision term can be written as:
C@) =(rirj...—ryra...)
X /dnlpdnadnbnidnj QTN i+ =Py —Pa—Pr- ) IMWa. > 0P

=(rirj...—ryte. JWQEa... >0, j..), (1.11)

where W(B — a) is the equilibrium reaction rate density. To satisfy the Sakharov conditions,
there must be CP (and by the CPT theorem, T) violation. We parametrize the CP violation
as,

Wip,a...—i,j..)-W(@Ej...>,a..)

foifo = — — p 1.12
o] WW,a...—ij..)+W@Ej...>,a...) (112)
and define the CP symmetric reaction rate density as:

Weym = %[W(i,j... S, )+ Wpa... i) (1.13)

In general both €y, ;.. and W, will be temperature dependent. Putting this all together
we have

CW)=rrii,j... > p,a...)—ryro(P,a... > 1i,j...)
= Wsym[i‘ﬂ"]' ce (1 — elp,a...—ﬂ,j...) —Tyla... (1 + €¢,a“__>i,]'m):|. (114)

2Technically in an expanding universe there is no timelike Killing vector that would allow us to define
energy as a conserved quantity. Fortunately in practice the relatively slow expansion of the universe allows us
to treat energy as conserved. Similarly, particles are never quite in equilibrium.
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The evidence of a baryon asymmetric universe tells us that the SM fundamentally cannot
explain the universe we live in. This provides some of the strongest evidence for physics
beyond the SM, both scientifically and psychologically. The abundance of matter is almost
entirely dependent on the asymmetry between matter and antimatter; any theory related to
the abundance of matter must explain this discrepancy.

1.3 CP Violation

Charge, Parity and Time Reversal symmetries have played a pivotal role in the development
of modern physics. In QCD, QED and classical mechanics these are all exact symmetries.
Due to this many physicists were very surprised to see C and P violated by the weak inter-
action [22]. They were even more surprised when CP violation was discovered in 1964 [23];
CP violation implies that there is a preferred direction of time in the laws of physics (by the
CPT theorem [24]]). As CP violation is one of the Sakharov conditions, it is fortunate for us
that this is the case.

While C, P and T are all broken symmetries, as long as Lorentz invariance holds the CPT the-
orem guarantees that CPT is conserved. In theories of spontaneous baryogenesis, CPT and
Lorentz invariance are spontaneously broken, so the Sakharov conditions do not hold [17].
CP violation and thermal non-equilibrium are not required as the mass of a particle and its
antiparticle are now different. We do not consider models of this type.

It is also worth mentioning that if we want a process, such as a decay, to violate CP we must
have more then one final state allowed. This is due to a combination of CPT and unitarity;
it is easy enough to show [18] that

Y MG - E =) IMGE— R, (1.15)
j j
where i is the CP transform of i.

How do we get CP violation?

While charge conjugation is relatively straightforward, CP violation has several subtle fea-
tures. It is possible to show that for CP violation to occur we must go beyond tree level [25].
To give a clearer picture of how the complexity of the couplings and higher order diagrams
come into play in the generation of CP violation, consider a toy model where we have
complex couplings [17],

L=gXf fot+ g2Xfafs+ 83Yfifs + @Y fofs+ He, (1.16)

where the g are dimensionless couplings, X and Y are scalar fields and the f are fermionic
tields. When looking for CP violation, we desire theories with complex couplings. Compare
the CP and Hermitian conjugate transforms|

§Xf.fo = §Xfohr
eXfifo =5 X fr.

3See [26] for a complete list of C, P and T transforms

(1.17)




We can see from this that the Hermitian conjugate of a term is structurally the same as a CP
conjugate, but has the complex conjugate of the coupling constant, g. So the degree to which
a term violates CP is measured by the complexity of the coupling. To ensure the couplings
are indeed complex, it is important to consider rephases of the fields when looking at CP
violation. A charged particle f can always be redefined, f — ¢, which can be used to
remove a complex phase. We will refer to this as “rephasing” a particle. As this is just a field
redefinition, none of the physics is altered: no change will be made to any observable. But
there is a clearer picture of how many physical phases there actually are. For example, in
the toy Lagrangian above, if X and Y are complex scalars, the fs, as well as X and Y can be
rephased. However, the couplings are constructed so there are not four linearly independent
equations. Because of this, while any of the ¢ can be chosen to be real, ¢1¢5¢3¢; cannot be
made real, so there is one physical CP violating phase. Further, CP violating effects must
involve all four of the g. If some different, less prescient definition of our fields were made
the observables would not change but it would be unclear why only one combination of
phases kept appearing in the cross sections.

If we compare, say, the process X — 71 f> with its conjugate, we get

T(X = f,f) = 181 Tiee + 1838383 int + (81838383 in)” + 19217195184 PTioop + - - -,
F(X - fzfl) = |g1|21tree + g;gzg;gzllint + (gyingggéllint)>+ + |g2|2|g3|2|g4|2[100p +...,

where we have simply used the usual matrix element perturbation series and pulled the
coupling constants out from the functions of momentum. I denotes the momentum part
of the tree level decay width and Iy is the interference between tree level and the one loop

graph, as shown in fig.

(1.18)

f27 f4
f27 f4

Figure 1.1: Graphs contributing to CP violation.

The difference between the two decay rates is given by 4Im(g1¢5¢3¢,)Im([i) at lowest order.
From this it is easy to see that to get CP violation we must get a net complex phase, and
Iiny must similarly be complex. With the exception of particle antiparticle mixing (such as
in kaons), the requirement that I;; is complex is equivalent to the requirement that the loop
particles must be on shell [18]. The imaginary part of I;;,; is often referred to as the “absorptive
phase”.

To evaluate the imaginary parts of the phase space function Iy, we will use Cutkosky
rules [27]. It is possible to show that, ignoring complex couplings, the only way to have
a complex matrix element is to have a branch cut in the centre of mass energy [28]. To



tind the discontinuity of the matrix element associated with a Feynman diagram (Disc(M) =
2ilm(M)), we simply follow three steps:

1. Cut through the diagram in all ways that allow one to simultaneously put cut prop-
agators on shell, splitting the graph into two halves. We must make sure to keep the
tirst half of the graph containing all the initial particles, and the second half containing
all the final particles.

2. Replace the cut propagators (m ; for fermions we do not replace the numerator of

the propagator) with 2mid(p* — m?) and evaluate the loop integrals.
3. Sum over all possible cuts.

This is computationally much more efficient than calculating the full matrix element and
taking the imaginary part, and usually allows one to bypass divergences and renormalisation
concerns. By calculating Im(I;;), and knowing the complex phases of a theory, we know
exactly how CP violation enters our interactions. An example calculation can be found
in Appendix Al It should be noted that these are the cutting rules for zero temperature
quantum field theory; when thermal effects dominate it is necessary to use the rules contained
in [29,130]. As we will only be interested in the dominant contributions to CP violation near
freeze out we will use the zero temperature cutting rules.

1.4 Asymmetric Dark Matter

Previously we noted that Qpy = 5Qy)y. In scenarios where the abundances of dark and
visible matter are unrelated (such as the standard WIMP scenario), this must be chalked
up to a massive coincidence. The core concept of asymmetric dark matter (ADM) is that
dark and visible matter share a common origin, with their abundance determined by the
same process. As we noted in the preceding section, the abundance of visible matter is
determined by baryogenesis - by the asymmetry between matter and antimatter. In the
purest incarnation of this idea, baryogenesis is caused by interactions between dark and
visible matter. While this idea has been around for a while [31], it is only recently that the
abundances of dark and visible matter were confirmed to be so similar. Since then, there has
been a large increase in interest in ADM models.

Types of Asymmetric Dark Matter

As we desire to relate the asymmetry in normal matter to the abundance of dark matter,
it makes sense to define a dark analogue of baryon number for dark matter. For visible
and dark matter to be stable, both symmetries must be preserved at low energies. For
baryogenesis to occur, some combination of the two must be broken. We classify three basic
types of models based on the preservation or non preservation of the global symmetries.
Denoting the visible baryon number B, and the dark baryon number D, the possibilities are:

1. A (nontrivial) linear combination of B and D is conserved, but a linearly independent
combination is not. This is the most common option in ADM, as it naturally gives
Qpm = Quy. It is easy enough to show that we can always consider the conserved
combination to be B—D and the broken combination to be B+ D [32]. To avoid anomalies
breaking the conserved linear combination, the visible baryon number is often actually
a combination, B — L, of baryon and lepton number. The models studied fall into this
category.



2. One of B or D is broken, and the other is conserved. In these models some extra
mechanism is required to reprocess the asymmetries until they are roughly equal
(see [33] for an example).

3. No combination of B and D is conserved. To regain the relation Qpy =~ Qyy, some
process must force the asymmetry in dark and visible matter to be similar (e.g [34]).

We will focus on the first type of ADM, where there is a conserved global symmetry. The
most obvious value for the DM mass is ~5 GeV. This assumes that the the dark matter has
Q(DM)p = +1[f As long as the symmetric component of dark matter annihilates away we
regain the relationship Qpy = 5Qyy. Itis possible to have dark matter carry a different bary-
onic number, and consequently gain freedom in the dark matter mass. After the electroweak
phase transition is taken into account, we find that [32]

Mppm = Q(DM)D X (17 - 5) GeV. (119)

where Q(DM)p, is the charge of dark matter under D. The value of 1.7 GeV occurs for totally
asymmetric dark matter with a Qp of 1 where baryogenesis occurs entirely before the EWPT.
This is a wonderful constraint on the mass of dark matter for a given model. Alas most ADM
theories do not contain an explanation as to why the mass of dark matter is so similar to the
proton mass. The exceptions to this are Mirror Matter and models involving the breaking
larger gauge groups [31,35]

As in normal baryogenesis, there are a number of mechanisms to create the asymmetry.
Decays of heavy particles [34], first order phase transitions [36] and the Affleck-Dine mech-
anism [37] have all been used to create a baryon asymmetry, but we will focus on a more
recent mechanism.

Asymmetric freeze out was first used in an ADM context in 2006, through the neutron portal
model [38]]. Consider an interaction of the type

di+ X —dj+uy, (1.20)

where X, the dark matter, is a Dirac spin half fermion. This conserves a global Up_;_p(1)
symmetry while violating D and B. These coannihilation interactions can violate CP, and
so freeze out occurrs at different times for dark matter and its antiparticle. If X freezes out
after X, then there will be extra quarks created through the above processes. These same
processes leads to proton decay [39], as well as the dark matter particle decaying. In the
original proposal, a strongly temperature dependent coupling was introduced to resolve
this, suppressing baryon number violating interactions at low temperature. Unfortunately
the original proposal does not lead to baryogenesis due to unitarity constraints; it is possible
to extend this model so that baryogenesis occurs and protons do not decay [39]. We will
discuss this extension in Chapter 3 This method has been generalised recently in [40] with
the introduction of a toy model, and has been used in [41] to create a version of the neutron
portal capable of achieving baryogenesis (albeit with no dark matter candidate). While
coannihilations have been considered in a leptogenesis context [42, 43], the CP violation
(in particular its temperature dependence) is different for these models. Notably, while
in leptogenesis these scatterings are usually negligible, we will show that it is possible to
generate the full baryon asymmetry of the universe with just scatterings when dealing with
ADM.

4This also assumes that baryogenesis occurs after the electroweak phase transition.



1.5 UV completions

In all these cases, and many others in particle cosmology, effective field theories (EFTs)
were used to reduce model dependence and study the broad behaviour without needing
too many specific details. In an EFT heavy particles are integrated out, giving couplings
with non-renormalizable mass dimensions (mass dimensions less than zero). Unfortunately,
this comes at the cost of removing some of the information which a renormalisable (or UV
complete) theory possesses. Renormalisable theories function at high energies where an EFT
would break down, revealing high energy phenomena.

The move from an EFT to a UV complete theory has a strong precedent in the SM. Originally,
through the Fermi ”current-current” model the weak force was thought of as a contact
interaction between four fermions; u, d, e and v, given by the operator’| [44]

Ady*uey,v. (1.21)

While, with some modification of the Dirac structure, this models the low energy behaviour
of the weak interaction well, problems arise when considering the coupling A. The mass
dimension of A is —2, so the cross sections at tree level of the 2 — 2 scatterings at some
energy E are given by

_ AZEZ
o(ud — e*v) = — (1.22)

which is unbounded. In fact, the perturbation series expansion, which consists of an infinite

series of terms o« A*'E*~2 blows up at E ~ 1/ VA ~ 100 GeV. This violates unitarity. While
this may seem like a fatal blow to the theory, it is more proper to think of it as an indication
of new physics. If a new massive particle is included to mediate the interaction then is
broken up into two renormalisable operators. This is often referred to as “opening up” the
operator, shown in fig. In the case of the weak interaction, a ~ 100 GeV vector boson, the
W boson, can accomplish this, though massive vector bosons themselves violate unitarity.
As this is the story of baryogenesis, and not the Higgs mechanism, we will not be concerned
with this. Now the operators are

S Wy + %ELyHuLw; +He, (1.23)

B 2

where g is the dimensionless weak coupling constant, and ; refers to the left chiral compo-
nent of the respective fermionf| When the Higgs mechanism is included, this theory now
produces sensible answers at any energy scale (or at least until gravitational effects become
important). To see some of the benefits in UV completing this EFT, note that in the EFT we
should have also included the operators

Bﬁy“uﬁyyd, Cvyteey,v, (1.24)
as they are allowed by the same symmetries as (1.2). But there is no obvious connection
between A, B and C, as well as the respective couplings for different families of the fermions.
When looking at the UV completion, however, it is clear that they all must be the same:

Fermi’s constant Gr = ¢*/(4 \/Em%v) This inability to predict relationships between the
different parameters is one of the main limitations of EFTs. Many physicists live in hope

5This operator is often written in terms of the proton and neutron for historical reasons, but we have
neglected to do so here for clarity.
6This is the modification of the Dirac structure mentioned before.
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that we will one day find a theory to which the SM itself is the low energy limit and so
explain the many mysteries of the SM. Relevant to our work, EFTs are incapable of properly
calculating CP violation. While EFTs can often predict at what order CP violation should
occur, they do not give the full dependence on the couplings of the underlying theory; as
above an EFT often overestimates the number of independent couplings. We shall show that
the CP violation that was assumed to occur in the EFTs of [40, 41] is in fact non-minimal,
requiring multiple heavy intermediaries. Further, EFT’s cannot give a full measure of how
complex or natural a theory is; it is possible to write down two EFT’s with the same number
of parameters that have minimal UV completions of differing complexity.

Figure 1.2: Effective operator (left) compared to a UV completion (right). The non-renormalisable
vertex (denoted by the circle) has been replaced with an intermediate particle. It is clear
that the UV completion reduces to the EFT when the energies are small compared to the
mass of the W; explicitly the propagator 1/(p> —ms,) goes to —1/ms), in this limit (neglecting
couplings and Lorentz structure).

1.6 Thesis Outline

In this research we explore UV completions of coannihilation models of ADM. In Chapter
we use the toy model introduced in [40] as a testing ground for these techniques, and
to study coannihilation in a clean environment. Having found UV completions of the toy
model, we calculate the CP violation of these models, which come from one loop corrections.
Once we know the CP violation, we solve the Boltzmann equations for the evolution of the
number densities and asymmetries of the particles. We then extend these methods in order
to study the more realistic scenarios, in particular those which lead to stable dark matter. In
we explore extensions of the neutron portal, and introduce a new model which we will
refer to as the lepton portal. We analyse a case study of the lepton portal in Chapter @, and
show that it can lead to viable ADM.
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Chapter 2

Toy Model

To gain an insight into more realistic models of asymmetric dark matter, we must first cut our
teeth on the toy model introduced in [40]. This is the simplest case of asymmetric dark matter
via coannihilations and, while not physically realistic, it contains all the essential ingredients
for baryogenesis. Originally the only method to generate a baryon asymmetry was thought
to involve a process that violates both baryon number and CP. However, we will show that it
is possible to divide the task of satisfying Sakharov’s conditions between different processes.
In this way, baryogenesis can be caused indirectly, by first forming a flavour asymmetry. The
flavour asymmetry is generated by processes that violate CP while conserving B—L, and then
is transferred to a baryon asymmetry by B — L violating (but CP conserving) processes. This
shows that there are two ways for baryogenesis to occur with 2 — 2 scatterings. In order for
the toy model to work as originally intended, we will show that it is necessary to introduce
two copies of the mediating particle. While after this extension flavour effects can still be
important, the original source terms are far more effective at generating an asymmetry.

2.1 Minimal Completion

We consider the toy model

Lin = KT fof + XYy + GFfFF, (2.1)
where the iJs and f are Dirac fermions [40]. In this model the fs will form the dark matter, and
carry a dark baryon number equivalent that we will call D, with, for simplicity, Qp(f) = 1.
The ¢ sare gauge singlets under the SM, carrying a nonzero SM B — L of 1. Again we have
chosen B — L of 1 for simplicity. B—L and D are broken, but there is a global Up_;-p(1) which
is conserved. This global U(1) symmetry protects the model from Majorana mass terms. If
the s were Majorana we would not be able store an asymmetry in the ybsﬂ

The simplest way to break up the effective operators into mass dimension 4 operators is by
introducing a scalar. It is also possible to introduce further Dirac structure (y, and possibly
y5), allowing us to break this operator with a massive vector boson. If this vector boson
comes from a gauge boson, with a broken symmetry, then all the couplings will be the
same within families. Because this is non minimal and gives us less freedom to choose the
couplings (asymmetric couplings enhance the asymmetry formed) we will not consider this
version. The Lagrangian terms are

Lini = A Xy; — gfX'f + He, (2.2)

where X is a complex scalar carrying a Qp_;-p of —2, and is significantly more massive than
the other particles. We have imposed a Z, symmetry to stop s decaying to f via terms

involving fX1;, which would be allowed if we only had a U(1) symmetry. The minimum

'In our case the 1Ps are not ultra relativistic, so we cannot use helicity as a substitute for baryon number as
in [45].
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number of generations of ¢ for a CP violating phase to arise is two, though written in this
form it is difficult to see what, if any, symmetries the matrix A;; has. As there are charge
conjugate terms in the couplings, the diagonal terms are not necessarily real. Writing out the
full Lagrangian we have

Xy + X XY
+ A Xpa + Ay XY
+ A 5 Xipy + Ay X5 (2.3)
+ A2 X + Ay ha X5
+8f X f+ g FXS"
While A;; is not symmetric, it has the same degrees of freedom as a symmetric matrix. To

see this, we make use of the identity axc = x¢°. Hence, we now define A3 = Ay, + Ay and
rename Aq; and Ay, as Ay and A, respectively. So there are four phases which are complex
(before any field rephasing); g, A1, A, and As.

It appears that, with four fields to rephase and four complex phases, all the couplings can be
made real. Fortunately, there are not four linearly independent equations; the three A cannot
be made real simultaneously. We end up with a net complex phase from the combination
A%/\]A;. For our example solutions, we have assumed maximal CP violation, with /\%/\’;/\;
being purely imaginary. In general the asymmetry formed is roughly proportional to the
imaginary part of A3A7A;.

The Lorentz structure of the operators could be changed, say to Kift/l_l? ffey j- Unfortunately
this makes it impossible to introduce a symmetry (such as Z,) to protect the model from

i — fff as the A couplings cannot be forbidden. We would be forced to kinematically
disallow this decay by requiring My, ~ M. This is overly restrictive for exploring the effects
of coannihilation across a large parameter space, so we do not consider this version.

The toy model was designed so that the s go out of equilibrium as a result of the annihila-
tions freezing out. As there is CP violation, the annihilations for ¢y and ¢ occur at different
times, creating an asymmetry between 1 and 1. If ¢ experiences freeze out before 1, P will
be Boltzmann suppressed from the continued annihilations. This leaves us with a net B — L.
We will show that it is not necessary to have CP violation in the B — L violating terms. We
have, for simplicity, My, > My, > M.

It should be noted that in this model the symmetric components of {, and f are not annihi-
lated; while an asymmetry is generated, both 1, and 1, populations remain high. To fulfil
the ADM philosophy, the final abundance of dark matter must be determined by the baryon
asymmetry. A further interaction must be introduced to accomplish this. For example, the
Y could decay into SM particles, and a new interaction could annihilate the f so that they
form asymmetric dark matter. In our solutions we assume that the f are close to equilibrium
for their entire thermal history. As the interactions responsible for asymmetry generation by
coannihilation must freeze out, this will be a generic problem for these ADM models.
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2.2 CP Violation

With two generations of 1), there is exactly one CP violating phase and all the A couplings
must be included for the phase to present itself. At low temperatures (below My), graphs
requiring that Xs in the loop are on shell become massively Boltzmann suppressed. For this
reason the only graphd(fig. which contribute to the €, are negligible.

Figure 2.1: Graphs contributing to €,. At temperatures around m,, these are negligible.

>

b5 Vi P Z (7

%m }ﬂl

Figure 2.2: Tree level (left) and one loop (right) graphs contributing to CP violation in €;jy.

| |
| |
I X X |
| |
| |

L &

CP violation for the ¥;{); — Y and ¢;f — 1;f processes are similarly negligible, with the
same graphs contributing. Significant CP violation does occur in @gb]- — U1 processes.
This comes from interference between the tree graph and the box graph (fig.[2.2), which can
be cut at energies above the ) masses. As these processes are baryon number conserving, it
may seem irrelevant, but this CP violation allows us to generate a flavour asymmetry.

We do not write down, or gain much insight from, the general calculation of this graph
as it would extend this thesis by nine pages and give the author a repetitive strain injury.
Instead we will proceed directly to evaluations of the Boltzmann equations. For the curious,
Appendix|A|lhas an example calculation following the Cutkosky rules that is the same in all
respects save the trace structure. The traces were evaluated with Feyncalc [47], and the phase
space integrals performed in Mathematica [48]. The results have been checked to satisfy the
unitarity conditions, though small errors due to the numerical integration of the velocity
averaged cross sections must be removed.

2This Feynman diagram, and all others throughout this work, were drawn with [46].
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2.3 Boltzmann Equations

To work out precisely the asymmetry and calculate the number densities of our particles, we
must solve the Boltzmann equations. The final baryon asymmetry is caused by the 1) freezing
out, so we consider a senario where all the Xs have decayed. As Mx > M, (so we reclaim
the EFT at low energies) this is a perfectly valid assumption. We also neglect thermal field
theoretic effects in this analysis; as the purpose of the work is exploratory we only require
accuracy up to an order of magnitude. Similarly, we will use Maxwell-Boltzmann statistics,
neglecting Pauli blocking and stimulated emission. In order to focus on how coannihilations
lead to baryogenesis we will kinematically disallow the decay ¥y — ¥,1b,. This means
that the only decay is {1 — Y f f, and by the CPT theorem it is CP conserving [18]. We use
the notation W(a + b — ¢ +d) = n,'n, (vo(a + b — ¢ + d)), and parameterize the CP violation
as

(vo(@a+b — c+d)y—(vo(c+d — a+Db))
(vo(a+b - c+d))y+{(vo(c+d > a+b))

€

We compute (vo(a + b — c + d)) from the cross sections by using the result from [49],

T [T
(wola+b— c+d)y = L8 / P Ertraoks (L )ds, (24)
87e41, 1, J (1 my )2 T

where s is the square of the centre-of-mass energy, p, is the centre-of-mass momentum of
a and b and K;(x) is a modified Bessel function of the second kind of order i. This must be
solved numerically, which can allow small artificial violations of unitarity to arise. To deal
with these small errors, we enforce the unitarity relations (1.15), which will be discussed
further below. We can now catalogue the interactions relevant to asymmetry formation.
As a note of caution, we will not use the Einstein summation convention when discussing
Boltzmann equations.

Annihilations

For annihilations, we have

Wp; — F) T WEf — Pi)) = (L +e)W,, (2.5)
W@, — £ = WEF = vi)) = (1 - e)W,, (2.6)

where a = 1,2,3; with 1 corresponding to two 11, 2 corresponding to two 1, and 3 corre-
sponding to the off-diagonal coannihilation. This numbering is introduced to avoid double
counting. We write the CP conserving part of the interaction as W, and use €,W, for the CP
violating component.

Flavour changing scatterings

We note that for flavour changing scatterings, there are

CPT

Wb — Yin) = W = Yip)) = (1 + €w)Zap, (2.7)
WW; — Pe) = Wb = pip) = (1 — €a)Zap, (2.8)

with Zub = Zbu and €Egp = —€pg-
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— —— (CPT ., —— -
WWih; = ) = WEihx = i) = (1 + €iu) Tiju, (2.9)
— - CPT ., —— -
W@ i = Yuip) = Wk = Piypy) = (1 = €ijua) Tk, (2.10)
with Ty = Tyij = Tiji = Tjix and € = €ixji = —€jik = —€nij-
The flavour changing terms do not appear in the Boltzmann equation for the overall baryon
asymmetries as they do not violate B — L or D. But they are (indirectly) important for the
formation of a baryon asymmetry.

B — L and D violating scatterings

Finally, there is

WWif = ;) = W(le—>¢f) Sijy (2.11)
WEif - ;) = WE; > if) = (2.12)

At low energy there is no CP violation in the B — L and D violating scatterings, and S;; = S;;.

From these we write down the Boltzmann equation for the number densities of the ¢:

dn
d;“ +3Hny, = 221 = e)Wr + (1= e)Wal = 721+ e)Wr = rs(1 + &) Ws
+2 Z(rar; —rir)Su+ 2 ) 2201 = e1)Zi + (1 - €3) 7]
-2 2[27’ (1 + €10)Z1a — 15(1 + €30)Z3a] + Z[Vkrj(l — €1ju) Tojin = 1ir5(1 + €1jua) T
i
+ 2n1q1"1(r§r7 —1)
(2.13)
and
dn
d;llz + 3Hi’l¢2 = 1’]2—([2(1 - €2)W2 + (1 - €3)W3] - 7’22(1 + €2)W2 - 1’3(1 + 63)W3

+2) (a7 = rarp)Sa+ 2 ) 721201 = €2)Zay + (1 - €37)Zo)

-2 2[273(1 + €20)Z20 — 15(1 + €30)Z3a] + Z[Wz(l — €2j1) T2jit = 1215(1 + €2j1) Toju]
a jki
+2n Ty (r; - rzrf;),

(2.14)
with r§ interpreted as r17,. The €; (and €,, if they were non-zero) act as source terms for a

flavour asymmetry. These can be combined with the Boltzmann equations for i to obtain
the Boltzmann equation for baryon number,
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dnp_p,

_ 2 2,2 2 _ 2,2, .2, 2
+3HnB_L—2;(rE ra+r7 rf)Wa 2;(rﬁ+ra+r?+rf)euwa

dt
+2 Z(r]—rjy —1i7f)Sij + Zniql‘l(rT -1+ rir% - rzrjzc) (2.15)
ij
dn
= d_tD + 3Hnp.

Looking at this it is clear that the €, would act as a source term for a baryon asymmetry.
For clarity, we will only refer to baryon number violating source terms in our Boltzmann
equations as source terms, and simply speak of a flavour asymmetry generation when
referring to non baryon number violating source terms. While it may appear that if the ¢,
are zero, then no net B — L may form, this is not true if there is a flavour asymmetry. This
does not violate Sakharov’s conditions; a flavour asymmetry still requires CP violation to
form. We simply divide the task of satisfying Sakharov’s conditions between two processes.
Consider a flavour asymmetry with r; = crq, cr, = 1, and 11 = r, = r. Focusing on the first

term of (2.15),

Np-L
— t 3Hng_ =2 ;(ré -2+ rjz7 — r;)Wa

(2.16)
=2r*(1 - *)(W1 — Wa),

it is clear that this gives us a nonzero baryon number when W; # W,. This occurs when the
couplings or masses of the i are different. Even if there were a source term, this can still be
a significant effect if there is an efficient way to transfer the asymmetry, such as B violating
decays.

The Boltzmann equations are similar to those in [40], as we would expect for a UV completion.
In this work we have not neglected CP violation in the T;j terms. Additionally all CP
violation is calculable from the single underlying CP violating phase. To evaluate these, we
use a change of variables to write the Boltzmann equations in terms of temperature, given

by [17]
4\, T 1
H=[2™ 2t _ L 2.17
( 45 ) & My 2t (2.17)
As the total entropy in the universe is conserved, we will normalise the number densities

by the entropy densities. This will hold in the absence of a first order phase transition. This
defines Y = n/s, where

2
e _ Sty T (ﬁ )
n[l - 27’(2 KZ T (2.18)
2 2
5= %gﬁ. (2.19)

This holds true for a radiation dominated universe. When recast in this way, the Boltzmann
equations become

172
M * d e
dYa _ _( U ) Pi§ (1 + T 8 ff) Cu/ (220)

T 45 s\ Ager dT

where C, is the collision term for a particle species a.
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Unitarity Constraints

The requirement that CPT and unitarity must hold imposes an important restriction on
our CP violating terms. While, if all calculations are performed correctly, these should
automatically hold, these relations are very important for error checking and correction.
They are also quite illustrative as to how CP violation behaves. The relevant unitarity
condition is obtained from (I.15). This can be transferred into our language [50-52],

ZW(i—>j)=ZW(j—>i)=ZW(:‘—>7)=ZW(§—>]'). (2.21)
j 7 ; j

As the CP symmetric components of these equations cancel, we are left with a restriction on
the €. To obtain the unitarity condition relevant for our case, consider the initial (or final)

state 111,. After the symmetric parts cancel, we have

Z €12 T1ai; = 0. (2.22)
7

It is easy to see that €151, is zero, as the initial state is the same as the final state (since the
phase space is symmetric, €212 is both symmetric and antisymmetric). This gives us

€1221T1221 + €1222T1222 + €1211T1211 = 0. (2.23)

When combined with and (2.14), this constraint ensures that if all particles are in
equilibrium then no flavour asymmetry may form, enforcing the third Sakharov condition.
The actual structure of the epsilon is non-trivial. Each epsilon is the result of two graphs,
with different phase spaces. By calculating these graphs we get the temperature dependence
of the epsilon. From dimensional analysis, we naively expect €;jTjj o T%/ mg This is true
at high temperatures for €12, and €111, but may not be true for €121 T1221 (fig. . If the
couplings are all equal, then cancelations between the two graphs that compose €121 T1221
lead to it being constant. It is straightforward to check that the unitarity conditions are
satisfied; as the absorptive phase is symmetric under exchanging the initial, final and loop
particles we get the necessary cancelation]

" 10—30
[=]
.S
3107
2
8 10738
% T
D le1221 T1221]
9
< le1121 T1121l
21074
B le2221 T22211
[}
> 10-50 . . ,
10 100 1000 10°

Temperature [GeV]

Figure 2.3: CP violating components of the annihilation cross sections. At high temperature €127 and
€1211 are proportional to T*, but €121 T1221 is constant.

3Technically, it is the integrand of the velocity averaged cross section that is invariant. For just the cross
section, the initial particles are treated in a privileged way as they are not averaged over.
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2.4 Numerical Solutions

Now we have an understanding of the CP violation and Boltzmann equations, we use Math-
ematica to numerically solve the four coupled differential equations. We treat the number
densities of 1, 1,1, and ¥, as independent, and assume that f stays close to equilibrium.
These solutions have been found to be numerically stable under changes to the precision
and the initial conditions.

In order to form significant asymmetry, it is necessary to have Trreeze out = My, (see fig. . If
the freeze out temperature is any lower than this, there is a massive Boltzmann suppression
of the asymmetry, as shown in fig. Raising the freeze out temperature similarly will re-
duce the asymmetry, as all particles are closer to equilibrium and decays cease to be efficient.
The decay of ¢ is crucial for an efficient transfer of asymmetry. If we kinematically disallow
all decays, such as in fig. the total asymmetry drops by an order of magnitude.

While we do not achieve the full asymmetry required for baryogenesis, Yg =~ 107, this is
a simple toy model and does not have the full range of interactions we expect for a more
complete model. Further, the range of parameters in which a reasonable asymmetry can be
formed is quite narrow. It is interesting to see whether including source terms for baryon
number will lead to a significant increase in the asymmetry. As the original EFT was capable
of reaching an asymmetry of order 107!, we suspect that source terms will dominate.

10- 13[7
1073}

107}

[Ye_L|

10~ 191

1x10% 2x 106 5x10°1x107 2x107 5x10” 1x108
Mass of X [GeV]

Figure 2.4: Asymmetry formed as a function of Mx.

2.5 Extended Toy Model

To extend this model so that the source terms are not zero we must introduce a second copy
of the intermediate scalar X. We assume that this new X is similarly much heavier than the
and f, both to generate maximal asymmetry and to restore the EFT in the low energy limit.
This gives us the Lagrangian

Line = =AiphSXpp; — 8, fX.f + H, (2.24)

where p runs from 1 to 2. Using the same arguments as before, we relabel A;;, — Ay,
Azypy — Ay and App, — Az, After considering field rephasings, we now have four complex
phases, which we will write as

CP; = Phase(AnAjA11A},), CPy = Phase(A3,A5,A%),

2 3¢ 24 e (2.25)
CP; = Phase(A3,A5,A4],), CP4 = Phase(g,81A1147,).
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Figure 2.5: Example solutions to the Boltzmann equations with mx = 10® GeV, m; = 1000 GeV,
my = 400 (950) GeV and mf = 50 GeV for the left (right) hand side. Without decays a
significantly smaller B — L is formed.

Looking at this we can see that CP; and CP, depend on mixings between different scalars
whereas CP, and CP; only require couplings from one scalar. This model is completely
symmetric under interchange of the two intermediate scalars.

Simply increasing the number of complex couplings will not necessarily lead to nontrivial
source terms - we must have new graphs that can be cut at low energy. When the masses,
or couplings, of the X are different, there is a contribution to the €, from the bubble graph in
tig. The calculation of this graph can be found in Appendix[A] If we send the mass of the
second scalar to infinity (or couplings to zero), all the CP violating phases cease to matter
save CP,, our original complex phase. This can be seen from the calculation in Appendix
where the CP violating terms vanish as the mass of the second scalar goes to infinity. This
restores the minimal toy model.

(&

Figure 2.6: Tree level and one loop graph contributing to €,.

As before, we can use (2.21) to get constraints on the CP violation from unitarity. By
considering ff and ;}; as initial states, we derive

Z e,W, =0,

a

Z €wZap =0,

ab

in addition to (2.23). It is simple enough to check that the results from [2.6| satisfy this for
any values of the couplings. We also get new contributions to €;j;, where we now allow the

(2.26)

(2.27)
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Figure 2.7: A non-example of a one loop correction to the transverse graphs. All cuttings of the loop
particles are kinematically forbidden.

scalars to be X; or X, in fig. There is no contribution to the T channel processes S;; and
Ty from graphs as in fig. since all cuttings are kinematically forbidden.

We now have two competing generation mechanisms for the baryon asymmetry; to see which
of these dominate we must turn to the Boltzmann equations. The Boltzmann equations are
the same as before but now ¢, and €,, are non-zero.

Numerical Solutions

The extended toy model has significantly more independent degrees of freedom: five masses,
eight couplings and four phases. These degrees of freedom extend the range of parameter
space, allowing a significant asymmetry to form with higher my,. Fig.2.8shows the depen-
dence of the source terms on the mass difference of the intermediate scalars. Source terms
dominate over flavour violation when the decays are not efficient, or the two Xs are close in
mass. Through these source terms, we are now capable of reaching the same asymmetry as
[40], AB=L ~ 107! (see fig. . However, to maximise the asymmetry formed it is necessary
to minimise the cancelation from the various contributions to the CP violation. This requires
an asymmetric treatment of the couplings; the 1) should not couple equally to X; and X. As
the source terms do not rely on efficient decays to form an asymmetry, there is a larger range
of masses where an asymmetry can be formed, as shown in fig. Unfortunately, if the
two scalars are more than an order of magnitude apart, asymmetry formation from source
terms is suppressed, as shown in fig.

Introducing the source terms leads to an increase in the asymmetry of approximately two
orders of magnitude for peak values. Generically, source terms tend to be more forgiving
than relying on flavour violating processes. Further, in many models of interest, such as
the lepton portal, the heavy particles which would store the flavour asymmetry are in fact
Majorana.

2.6 Summary
In this chapter we have explored minimal UV completions of the toy model introduced in [40],
and shown that there are two methods to generate an asymmetry with 2 — 2 annihilations.

Flavour effects can play an important role in asymmetry generation, as long as there is an
effective way to transfer the flavour asymmetry to a baryon asymmetry, typically decay.
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Figure 2.8: (Left) Example solution of the toy model with source terms. The final asymmetry is of
order 10~!1. (Right) Variations of the mass of the second scalar, keeping the first fixed at
1.4 X 10°. We can see that while there is an order of magnitude in which a reasonable
asymmetry is formed, asymmetry is maximised for a factor of two difference. Source
terms dominate over flavour effects.

However, for generating a large asymmetry, direct baryon number violating source terms
are much more effective and can generate an asymmetry over a larger range of masses.
Generating these source terms required two copies of the intermediate scalar, X, with similar
masses, though they can be as much as an order of magnitude different. As we soon show,
our realistic model of ADM, the lepton portal, also requires two intermediate scalars, so
many of the same conclusions about mass ranges will hold. With the methods shown here,
we are now equipped to deal with a full theory.
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Chapter 3

Towards a Realistic Model of Asymmetric
Dark Matter

While the toy model is an excellent testing ground for the concepts of 2 — 2 scatterings, to
explain baryogenesis a physically realistic model is required, involving SM particles. There
are two main avenues of interest - extending the neutron portal and a new model we will
refer to as the lepton portal. Extending the neutron portal we mentioned in section
requires additional particles so that the asymmetry is in fact generated by 2 — 3 scatterings.
Ultimately the neutron portal is not a generic method for achieving ADM via coannihilations.
The lepton portal will prove promising and is studied further in Chapter

3.1 Extensions of the Neutron Portal

The simple neutron portal of [38] cannot form an asymmetry via coannihilations. Recently
[41] has considered a version of the neutron portal capable of baryogenesis, but with no dark
matter candidate. To turn this into a fully functional asymmetric dark matter theory, it is
necessary to move beyond 2 — 2 scatterings. The essential neutron portal operator is

XuRﬁdR, (31)

where X is Dirac. Without a temperature dependent coupling (which would make the model
very difficult to test), X decays into neutrons. Consequently new particles must be intro-
duced to store the asymmetry in and to ensure the stability of X, if X is Dirac. If instead X is
Majorana there must be a Z, symmetry between X and a new particle to form ADM, though
it is not necessary for X to be stable. Both cases are essentially the same, so we will only
explicitly consider the Dirac case.

That X must be stable in the Dirac case is clear from considering an asymmetry being
generated by the neutron portal and stored in another particle, Y, such as in hylogenesis [53].
These models generically have a conserved U(1) symmetry that makes the lightest dark
particle stable, leading to the constraint

AX +AY = 0. (3.2)

If X were to decay, the conserved charge requires that the asymmetry stored in Y would then
vanish. Any asymmetry generated by the coannihilations would therefore be wiped clean.

Because of this, X must be kept stable by kinematically disallowing the decay. Dark matter
will then be an admixture of X and the lightest other particle charged under the global
symmetry. The simplest way to make a stable version of the neutron portal is to introduce
the effective operator XuRdfadRa, where X is a SM singlet and ¢ is a complex SM singlet scalar
(similar to a model proposed by [39]). There is a global U(1) symmetry giving X and o a
conserved charge. As in [41], to form an asymmetry there must be multiple generations of
either X or 0. We chose to introduce another generation of o as it turned out to have a simpler
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UV completion, though similar results hold for a second generation of X.

There are multiple ways to open up this effective operator, shown in fig. The only
UV completion that is capable of generating an asymmetry is the first. In all others, there
are rapid 2 — 2 flavour changing scatterings (fig. [3.2), which are problematic. As the
2 — 2 scatterings are mediated by only one heavy intermediate scalar, they dominate over
the 2 — 3 scatterings. This delays departure from thermal equilibrium; as we desire CP
violating effects involving the 2 — 3 scatterings to be as large as possible during freeze out
this is a serious suppression. The first UV completion gives us the Lagrangian

AL = —/\i(pfum - AideTRidR]‘ - KZCPQO; +H.c

, (3.3)
+ quartic terms,

where [ runs from 1-2.

X X
u
u
7 _ 7
U // X //
// U // 0-
e 7
7 7
d
U
< d

Figure 3.1: UV completions of the stable neutron portal operator.
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Figure 3.2: Flavour changing scatterings - f can be u, d or X depending on the model.

The mediating scalars ¢ and 0 have quantum numbers (5, 1,-4/3,D) and (5, 1,-4/3,0) re-
spectively, with D being the dark conserved charge. For the sake of simplicitly we take
My = My. Unfortunately, flavour changing scatterings are necessary to generate an asym-
metry [39]. Without these, the unitarity constraints derived from cancel all baryon
number violating source terms. In this case it is the lack of 2 — 2 scatterings, rather than
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their rapidity, that reduces the asymmetry formed. It is possible to introduce a new mech-
anism to relate o; to oy, but it must be tuned to be roughly equal in rate to the 2 — 3
scatterings at freeze out. But there is no obvious reason why two unrelated processes should
be so similar at freeze out. To give a concrete example, consider introducing a SM singlet
real scalar 7. The new Lagrangian is

AL = —/\iagbayum - /\ideTRide - glgi)GG; - K[kG;Gkﬂ - )/XXT] +H.c

. (3.4)
+ quartic terms.

With a sufficient hierarchy between the couplings of o; and o0, to 7 it is possible to use
the 77 terms to simultaneously provide an efficient means to generate asymmetry in o, and
annihilate the symmetric components of X and o,. To allow go* — 11", 1 must be a light
scalar, and its couplings to 01 must be heavily suppressed so that departure from thermal
equilibrium is unaffected. Requiring that the 2 — 2 scatterings are less rapid than the2 — 3
scatterings at freeze out yields the suppression

)4 < (Tfreeze out/mq))?)/z- (35)

In addition, there must be a large branching fraction for 0; — 0,7 so that the asymmetry
stored in o7 can be transferred to 0, and the unitarity constraints do not stop asymmetry
formation. From this it is easy to show that

Y 2 (mg, [mg)*"?. (3.6)

If the freeze out temperature is approximately the mass of o it is possible to satisfy both of
these bounds, but only for a very narrow range of parameter space. Unfortunately in coanni-
hilation models peak asymmetry production tends to occur when the freeze out temperature
is a bit below the mass of particle going out of equilibrium, squeezing this parameter space
even more. Further, as these are completely separate processes, that they should be con-
nected in this way requires explanation. A similar argument holds if n)is a very heavy scalar.

It seems that the only way to obtain a working ADM neutron portal is to have unnatural
couplings, which is not obviously an improvement over temperature dependent couplings.
Any full theory of 2 — 3 scatterings must explain why two seemingly unrelated processes
conspire to allow an asymmetry to be formed. If instead X is Majorana, a similar conclusion
is reached. We must look elsewhere for a generic method for ADM via coannihilations.

3.2 Alternative to the Neutron Portal: the Lepton Portal

To produce a realistic model of ADM via coannihilations using the neutron portal, we
were forced to use 2 — 3 scatterings, which had significant problems. This raises the
question of whether it is possible to use another operator to obtain a viable 2 — 2 scattering
model. This new operator must have only two SM particles in order to avoid the pitfalls
of the neutron portal. Fortunately for us, one combination of two SM particles is a gauge

singlet, LH.

From this we construct an effective operator, LYH¢, with ¢ a complex gauge singlet and Y
a Majorana fermion. Our ADM candidate will be ¢, carrying a non-zero B — L. To satisfy
unitarity constraints we will have two copies of the Ys and one ¢. We choose the Ys to
be Majorana in this model, as kinematically disallowing decays would require the rather
implausible mass difference between ¢ and Y of ~ m,. This can be avoided if the Ys decay
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Figure 3.3: UV completions of LYH¢. We label them as case 1 (top left), case 2 (top right) and case 3
(bottom).

after the EWPT, but only as a special case. We envision the Y's as the most massive particles,
going out of equilibrium first. There are three possible UV completions (fig. [3.3).

The first completion has a Dirac SM singlet, f as intermediary. We impose a global lepton
number conservation (or B—L conservation), to preclude the Y from acting as an intermediate
particle and coupling to the leptons. For CP violation to arise at one loop it is necessary to
include two copies of f.

The second case may be discarded as the intermediate fermion has the same quantum num-

bers as L, and must gain its mass from the Higgs mechanism, never leading to LYH¢ as an
EFT. The case study in Chapter 4| and [41] show that a very heavy intermediary is optimal
for an asymmetry to form from coannihilations. Further, f is essentially a copy of the left
handed leptons and so forbidden by the limits on a fourth generation of leptons.

The third completion is an extension of inert two Higgs doublet models (IDM) [54]. The
intermediate particle, H, has the same quantum numbers as the SM Higgs but cannot play
the same role. As the SM is consistent with LHC data [55, 56]], this new particle cannot sig-
nificantly influence the EWPT and fermion mass generation. IDM can resolve these issues
by introducing a new parity. By having the H,, ¢ and the right handed neutrino be nega-
tive parity states the stability of the lightest negative parity state is ensured. A global U(1)
symmetry can be imposed, with H, and ¢ being charged under B — L and D, respectively, so
B — L — D is conserved. While CP violation is possible with just one inert Higgs doublet, we
will show that to get a sufficient asymmetry to form, two inert Higgs doublets are necessary.

As the IDM completion is particularly educational, we will study this case in more detail
in Chapter @ The thermal histories of both realistic UV completions (cases 1 and 3) are
essentially the same. At high temperature, the Y's are kept in equilibrium by the rapid 2 — 2
interactions from fig. Around the mass of the heavier copy of Ys, these annihilations
freeze out. As these annihilations violate CP, B — L is stored in the ¢, creating a baryon
asymmetry (as long as this occurs above the EWPT). Subsequently, the Y's decay into leptons
and ¢, a process that also violates CP, potentially leading to further asymmetry formation.
To see which process dominates, as well as the size of the asymmetry formed, it is necessary
to solve the Boltzmann equations.
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Chapter I

Case study: Lepton Portal

To see a realistic model in action, we will study the inert Higgs doublet completion of the
lepton portal. As in IDM, we add a massive scalar SU(2) doublet which will function as
our heavy intermediary. We also introduce a new parity, with the Lagrangian symmetric
under H, — —H,, Y — =Y, and ¢ — —¢. All SM particles are even under this parity. We
call H, inert as it does not acquire a vacuum expectation value (vev), and does not play a
role in the fermion mass generation[l| However, H, still interacts with the SM Higgs and the
electroweak gauge bosons. Where this work differs from traditional IDM is that in our case
H, carries a non-zero B — L. The relevant additions to the SM Lagrangian are

AL = _m%_lz|H2|2_/\iaHZZiYa_KHlH;(P_/\l|H1|2|H2|2_/\2|HIH2|2_/\3|H1|2|¢|2_/\4|¢|4+H-C- (4.1)

We consider the Y to have a mass higher than the EWPT, and H, to be heavy enough that it can
always be considered off shell, typically several orders of magnitude heavier than the next
lightest particle, Y;.There is a conserved global symmetry U(1)g_;-p, where D = A¢. As the
lepton portal does not violate baryon number directly, sphalerons are required to reprocess
the lepton asymmetry into a baryon asymmetry. Thus, for a maximal baryon asymmetry all
processes, including decays, should finish before the EWPT. When decays are unimportant
it is possible to relax this condition; it is only necessary to have Tteeze out > TEwpr. In this
work we only consider the former case. In addition we assume that there is an additional
process that keeps the ¢ in equilibrium, but remain agnostic as to which process mediates
this. For ¢ to be ADM this is necessary to ensure the symmetric component is annihilated.
For an example, ¢ quartic coupling to a light real scalar field could be used for this purpose.
It is also possible for ¢ to decay into lighter particles, and for them to have new interactions
that annihilate their symmetric component, but we do not consider that scenario in this work.

After considering field rephasings, there are two CP violating phases left, that we write as

CP1 = Phase(Azz/Xll/le/\iz),

4.2
CPQ = Phase(Agz/\n/\;l/'\]z). ( )

For our example solutions we choose CP; = 7/2 and CP, = n/4.

While normally in IDM neutrinos gain Majorana masses through radiative corrections [57],
this is prohibited in our model as B — L is conserved. In this model neutrinos can gain a Dirac
mass through the Higgs mechanism (with the addition of Dirac SM singlets). The model
proposed is the simplest extension of the IDM that gives asymmetric dark matter; the mass
ranges required for H, to be ADM instead of ¢ are excluded by a combination of collider
searches and electroweak precision tests [58]].

1 As H, does not acquire a vev, it is slightly misleading to label it a Higgs boson. We have chosen to do so
here as it conforms to the literature.
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4.1 Phenomenological Constraints

As we are introducing a second copy of the Higgs, as well as a light singlet scalar, there
may be concerns about unwanted phenomenological effects, such as the electroweak phase
transition becoming first order. Fortunately, due to the mass range of H, we are considering,
most of the couplings in our theory are unconstrained.

Electroweak Phase Transition

While the population of H, is negligible during the EWPT, it is worth considering the effects
of the EWPT on H,. In addition, while ¢ is a SM singlet it can still influence the EWPT.
During the electroweak symmetry breaking (EWSB), H; acquires a vev v and acts as the SM
Higgs. On the other hand H, only experiences mass splitting. It is possible to parameterize

H, as
H+

where H* and H? are complex scalars. After EWSB we have

My, = my, + Ao? 9
my, = my, + (A + A2)v’.

There is also a contribution to the mass of ¢) when H; acquires a vev, as well as mass mixing
between H? and ¢. This gives us a mass matrix

¢
2

m? + A30* kv L5
KU g (4.5)

We expect this to diagonalise to a heavy state and a light state, which we will label ¢ppeavy
and ¢rign respectively with a mixing angle of xv/m?,. This occurs for small mixing angles,
ok/mp < (m3 +A30%)12. This requirement for small mixing is our only real constraint relevant

to asymmetry formation. For x =~ my and my ~ 0, we have mygn ~ As0?. Aswe envision PLight
to be ADM, we must have A5 ~ 5% 107 to get the correct relic density (mpigne = 1.7 GeV as
in (1.19)). Intriguingly it is possible to have the entire mass of ¢y g1 to be generated by EWSB.

Introducing ¢ can potentially alter the EWPT, but only via its quartic coupling to H;. One
might worry that if the EWPT is made first order, there will be two competing methods for
baryogenesis - electroweak baryogenesis and coannihilations. From the analysis in [59] it
can be shown that the EWPT is first order if

4

A3 1., Ay Vi A 1(me 2
g~ 37+ A)> lAHl (? i 3) " 32w (7) ’ (.6)

where Ay, is the quartic self coupling of H; and y; is the Yukawa coupling of H; to the top
quark. As Aj is small, the EWPT remains second order. We make the approximation that the
electroweak phase transition occurs the same way as in the SM.

Electroweak Precision Tests

As H, still couples to the electroweak gauge bosons, electroweak precision tests are in
principal sensitive to H,. In particular the electroweak precision tests are only sensitive to
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the mass splitting of H, [54]. Standard electroweak precisions tests can be cast in terms of the
“oblique parameters” S, T and U, which parametrize the radiative corrections due to new
physics. A full explanation of the S, T and U terms can be found in [60]. From [54] the main
contributions to electroweak precision tests (at one loop order) can be written as

T 32120’
/\2,02 (4.7)
AS =
81 my.

AT

This gives a AT of ~ 1 for A, ~ 1. The experimental values are ATy- = .08 + .07 and
ASy= = .05+.09,s50 A, < .1isrequired to satisfy electroweak precision tests [61]. Fortunately,
A, does not affect asymmetry production, so this constraint does not seriously affect the
model. AS is negligible for all sensible parameter choices.

Self Interactions

While the self couplings of ¢ do not affect asymmetry production directly, they will contribute
to the thermal mass of ¢p. The most stringent limits on dark matter self interactions come
from the Bullet Cluster. From this there is the constraint, [62} [63]]

, cm?

Tlf 91072 4.8)
MLight GeV’ '

The self interaction is simple enough to calculate, yielding

2

A
—— < 10° GeV™>. (4.9)
mLight

This leaves A4 essentially unconstrained. As the thermal mass of ¢ will be determined by
Ay, this freedom is useful for the kinematics.

Fortuitously only one of these constraints affect parameters required for asymmetry forma-
tion, so we are free to choose parameters to maximise the asymmetry formed. The only
limitation is that vx/my < (m?> + A30%)12,

4.2 Thermal Masses

While in the toy model all thermal field theoretic effects were neglected, there is one effect
that must be included in our realistic model. At high temperatures particles can gain an
effective mass through interactions with the plasma. This mass is determined by which
particle species are abundant and the interactions of the individual particle species. For Hj,
L and ¢, these thermal masses are kinematically significant. For a particle to gain a thermal
mass, there must be particles in the plasma which could appear in a loop correction to the
propagator of that particle. H, is too massive to appear in the plasma and so does not acquire
a thermal mass, nor does it contribute to thermal masses. Similarly, as the Y only interact
via H, they also do not acquire a thermal mass. The main effect of thermal masses is to
change the kinematics; it has been shown that effects such as the apparent breaking of chiral
symmetry can be neglected, to good enough approximation for our purposes [64-66]. The
prescription is simply to replace the mass of all the particles (save Y3, Y, and H,) with the
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relevant thermal masses, both in the phase space and propagators. From [65]67], the thermal
masses are given by:

3 1 1 1
My, = (—168§ + Egzy + Z%z + EAHl) T, (4.10)
3 1
= (325”% ¥ 3_2g2Y) T N
A4 T?
mt =0T (4.12)

where g is the coupling constant of SU(2); and gy is the coupling constant of U(1)y in the
SM. The electric charge and the Weinberg angle are related to g, and gy by sinOwg, = e
and cos Owgy = e. We have neglected all other Yukawa couplings and contributions from
As. In our solutions we use my, = .71T, my = .59T and m; = .19T. In general, the asym-
metry formed increases when the thermal masses are increased. We can safely neglect the
Lagrangian mass of ¢ at the temperatures we consider.

Interestingly, as the Y do not acquire a thermal mass, at temperatures above 1.4my, the SM
Higgs can decay into Y rather than the other way round (depending on the thermal mass
of ¢). While there could be concerns about the CP violation of these decays, as H; is in
equilibrium these are ineffective. This is in agreement both with ansatz calculations of the
CP violation and the results from [66].

4.3 Interactions and CP violation
We now catalogue the relevant interactions.
Annihilations

Our CP violating annihilations are given by:

W(Y,L > Hip) T W(g'H: — LY,) = (1 + &,)W,, (4.13)
W(LY, - ¢°H)) T W(Hip — Y,L) = (1 —e,)W,, (4.14)

where we have included an implicit sum over the three families of leptons. Because all the
leptons have essentially the same mass and chemical potential, it is not really necessary to
consider them as separate species except when summing the couplings for a process. These
annihilations will be the main generators of the asymmetry. The relevant unitarity constraint,

derived from (2.21)), is
€1W1 = —€2W2. (415)

As before, we calculate the CP violation due to interference between one loop and tree
graphs. The only CP violation for the process Y,L — H;¢ comes from graphs like fig.
involving a Majorana mass insertion. Following the Cutkosky rules, we find that at high
temperatures

K2 Ny, My,

Wy ~ - s
ST 56 s,

(4.16)

where we have assumed order one couplings for the A. As we were forced to use the Majo-
rana mass of Y to get a CP violating graph, from dimensional analysis it is clear that there

30



is no temperature dependence (at high temperature) in the CP violation?] As we will soon
show, this will suppress the asymmetry by about an order of magnitude.

Figure 4.1: Graphs contributing to €,. The one loop graph (right) has a Majorana mass insertion.

We also have CP conserving scatterings, which we label

W(Y,H, = L") = T,, (4.17)
W(Y,¢ — HiL;) = U,, (4.18)
W(Y,L = Y,L) = Sa, (4.19)
W(LL — Y,Y3) = Py (4.20)

While LL — Y, Y}, is not technically CP conserving, CP violation in this term only leads to a
flavour asymmetry. As Y is Majorana, there is no method to store this asymmetry or transfer
it to a non-zero B — L so these terms can be safely neglected. Even if the Y were Dirac, from
the toy model in Chapter 2it is clear that they would be subdominant. The rest are similar to
the T channel processes in the toy model - all Cutkosky cuts that could lead to CP violation
in these processes are kinematically forbidden.

Decays

At different times, Y;, Y, and H; can all decay, though we are only interested in the CP
violation of the Y decays.We will label these decays by:

T(H, - YL$") =Ty, (4.21)
T(Y; = Y,LL) =Ty (4.22)
T(Y, — LH¢) = %(1 +ep)ip (4.23)

I(Y; - LH¢") = %(1 —ep)lip (4.24)
T(Y, = LH1$) = T(Y, — LH¢") = %rz, (4.25)

where we have parameterized the CP violation in decays by ep. Contributions to €p come
from the graphs in fig. There is a further contribution to the CP violation from the
3 — 3 scattering LH;¢p — LH}¢". While the CP symmetric component of this scattering is
negligible, CP violation in this process serves to cancel the CP violation in the decays at
thermal equilibrium (as in [41]). This can be seen by applying the unitarity relation to
the state leqb, to derive

_ eq
€LH,p—LH;¢* WZHﬂP—>LH]¢* = 560”1 ['a, (4.26)

2This is, of course, ignoring the implicit temperature dependence of the thermal masses, but the overall
point still stands.
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which we include in our Boltzmann equations.

Figure 4.2: Graphs contributing to ep. The one loop graph (right) has a Majorana mass insertion.

4.4 Chemical Potentials

Since ¢, as well as the leptons, will be kept close to equilibrium above the EWPT it is
unnecessary to have a Boltzmann equation for each particle species. Rather, we can solve
our Boltzmann equations with the chemical potentials of these species, using to obtain
their number densities. This is where the advantage of using Maxwell-Boltzmann statistics
lies: we can separate out the chemical potentials. Here we are not considering processes
(or the relevant chemical potentials) below the EWPT. Our task is made simpler by the fact
that all our chemical potentials can be written in terms of us. As our model is similar to
standard treatments of B and L violation, such as leptogenesis, we can borrow the chemical
potentials from [68], and just note that the segregation of B — L into ¢ is the only source of
B — L violation. By making the replacement

B—L = ug, (4.27)
we obtain the chemical potentials:
~7
HL = g ko (4.28)
—4
pis, = = b (4.29)
These can be related to the asymmetry generated in ¢ by using
T2
ne — 1’15 = ?‘qu) (430)

To write this all in terms of the baryon asymmetry, we use

28
B = ~5Ho- (4.31)

Thus armed, we are ready to tackle the Boltzmann equations.

4.5 Boltzmann Equations

Because of the simplifications we gain from using the chemical potentials, we have only three
coupled differential equations to solve, even less than in the toy model. These Boltzmann
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equations are similar to those in [41]; in both cases we have two heavy Majorana particles,
which experience CP violation through decays and 2 — 2 scatterings. For Y; and Y, we
have:

d?’lyl

dt

+3Hny, = l"mnifl (75 + 170, 79) 12 = 1y, 1 + Flbn;q] [rirsry, — 1y,

1
eq . . s _ - eq e g
+ IﬂHl,lnH1 [re, + 1 nrary, oty | 2€DF1,17’1Y1 [rerlrd) e, g

+ Wil 1 + rgrg = 1y, (1 + 1) = €Whlru,rg = rgrs + 1y, (7 = 1)

+ Tafrery+rgr =1y, (re, + rg)l + Walray g+ v = 1y, (rg + 19)]

+ Sol(r; + 1) (rv, = 1v,)] + 2Pl — 13,1+ Pralryn = ry,1y,]

(4.32)

and

dnyz
dt

+3Hny, = an;qz[(rer—lra + 17, 19) /2 — 1y, ] — Flbn;q] [rirry, — 1y,
+ I’Hlbn;jl [rh, + 1y = 1irgty, = 1oy, + Wolrarg + rgrg —ry, (g + 1))
+ eW[ra g — gty + 1y, (1 — 1) + Talrery + 15 = 1y, (ra, + 177)] (4.33)
+ WUnry, 1y + gt = 1y, (1 + 13)] = Swl(r+1)(ry, = 1v,)]
+ 2Pp[rry = 15 1+ Puolrjry — 1y, v, |-

The Boltzmann equation for B — L is:

dng_p
dt

1
+3Hnp-p = Tiany), [rirers = rire ] — Eeplﬂlanif1 [2ry, = (g + 17 76)]

Eq o Eq e 3 _ . .
+ FZQnYZ[rerlr 5 e el + l"HlanHl [7h, i+ gty — Nrghy, + Ty, ]

eq
+ l“Hlan1 [ry, — I+ 1Tely, = TfgTy, + rirery, ] + Z Wa["H_l”a — Tu Ty + 1y, — 11y,]

a=1,2
+ Z Tolry,ry, — Ty, + 15T = ror] + Z Ua[rH—lrl = Tyt 1Ty, = ToTy,]
a=1,2 a=1,2
+ eWh[(r + Vj)(ﬁ/l —1v,)]
an
—— + 3Hn
dt P

(4.34)
As in the toy model, the terms with €; and ep are source terms for the asymmetry. We have
used (4.15) to write the Boltzmann equations solely in terms of these two CP violating terms.
We can now numerically solve these to see the evolution of an asymmetry.

4.6 Numerical Solutions

To solve this set of coupled differential equations, we will again call on Mathematica. As
before, these solutions are stable under changes to the precision, starting temperature (for
sensible values of the temperature) and initial conditions. We start our solutions at high
temperature, where 2 — 2 scatterings can wash out any pre-existing asymmetry, and then
track the evolution of B — L down to the EWPT. To good approximation, at the EWPT
sphalerons simply switch off, freezing the value of B. In general, Y; or Y, may come to
dominate the energy density at some time, causing the universe to become matter dominated
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(instead of radiation dominated, as we assume). This would lead to a dilution factor,
approximated in [69] as

Yalrsomy,
(Ty,Mp)12" |

where Y;|ry, is the density to entropy ratio of Y, (the slowest decaying particle) at freeze out.
For the interesting regions of parameter space (those which lead to large asymmetries) this
condition is not satisfied, but for completeness we do include the dilution factor.

d = Max |1.8¢M/* (4.35)

For example solutions see fig. As in [41], for regimes where the two Y are relatively
close in mass coannihilations dominate the asymmetry. As there are two mass scales in this
problem (once we choose a mass for Y;), we scan over x and my,, keeping in mind that
ok/mpo S (m} + A30%)!/2. The asymmetry is maximised when x ~ mmy, and o ~ 10* X 1y,
Unfortunately, this model does not generate the full asymmetry required for baryogenesis;
from fig. [4.4]it can be seen that the maximum asymmetry is of order Y_; = 107'1. This is quite
puzzling: with such similar Boltzmann equations and asymmetry production methods, how
can this model fail where [41] succeeded? The answer lies in the CP violation. Whereas
in the neutron portal case there were graphs that gave the CP violation in coannihilations
the property e(Xu — dd) o« T*W(Xu — dd), there is no temperature dependence in our CP
violating terms. As was suggested in [41], which we will show explicitly, in the neutron portal
case this temperature dependence made the coannihilations relevant at a higher temperature,
enhancing the asymmetry production. To obtain similar temperature dependence, we must
have CP violating graphs without Majorana mass insertions. To get this crucial temperature
dependence we must, as in the toy model, add a second intermediate scalar. In fact, this
conclusion also holds for [41]; to get the full asymmetry found in the EFT studied it is
necessary to have two heavy intermediate scalars regardless of the number of CP violating
phases.

4.7 Extended Lepton Portal

Three copies of the Higgs boson is not a far-fetched notion - three Higgs models have been
explored in both an inert and general context [70, 71]. We will not write down the full
potential, as most of the terms are irrelevant for asymmetry formation, but simply note that
to satisfy electroweak precision tests it is necessary to avoid significant mixing between the
two inert scalars [72]. The Lagrangian now looks like

AL = —mi, [Hyl* = AigyHyLiY, — k,HiHy¢ + Hee, (4.36)

where p = 2,3. With 14 relevant couplings there are now 8 CP violating phases, which for
the sake of the example we will choose to be

Phase(}tm) Z%, Phase(/lgzl) = g, Phase(/\m) = %, Phase(/\212) = %
4.37)
7T T 7T T (
Phase(Azzz) :E, Phase(Agu) = %, Phase(/\(gz) = E, Phase(KZ) = 5,

where we have chosen phases that avoid cancellations between the various CP violating
graphs. The first two phases correspond to those in the unextended lepton portal. Unlike
the previous models, we have chosen to specifically assign phases to the various couplings
because of the sheer number of phases we are now dealing with. We choose all other
couplings to be real, without loss of generality. As in the toy model, there are additional
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Figure 4.3: Example solutions with my, = 100,000, my, = 90,000 (top right); my, = 100,000, my, =
60,000 (top left) and my, = 100,000, my, = 30,000 (bottom). Coannihilations dominate

. . my, 3
over decays in asymmetry formation when =2 > z.
hS1
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My 1x10

Figure 4.4: Asymmetry formed as a function of x and my,. There is a ridge of values where the
asymmetry formed is significant, corresponding to a freeze out temperature of order My;,.
Maximal asymmetry corresponds to  ~ my, and mgo ~ 10% X my,.

graphs involving a closed fermion loop (fig.[4.5). As there are no Majorana mass insertions,
this graph exhibits the desired temperature dependence, €;W; o« T?W;. There are similar
contributions to the CP violation in decays, which we also include. Armed with this new CP
violation, we can again solve the Boltzmann equations for the evolution of B — L.

Numerical Solutions

With the temperature dependent CP violation, we see a significant increase in the asymme-
try. Aslong as there are no significant cancellations between the various contributions to the
€, the full baryon asymmetry of the universe is generated (see fig.[4.6). Fittingly for ADM,
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Figure 4.5: New one loop graphs contributing to CP violation. The graph on the left (right) contributes
to €, (ep). Neither graph has a Majorana mass insertion.

cancellations are minimised when the A;,, are not symmetric under changing families (of the
leptons, as well as the Y and inert Higgs). This asymmetry in the couplings does not need
to be more than an order of magnitude for significant enhancement, as in (fig. £.7). As in
the toy model, we can scan across a single «, or my, (fig. [£.8). It is preferable for x, and
K3 to be approximately an order of magnitude different, and my, and my, to be within an
order of magnitude of each other. Comparing this to the asymmetry formed when only the
mass insertion graphs are included (fig. we see that the asymmetry starts forming much
earlier, culminating in a significantly higher asymmetry.

0.001}

—_———— Yy,

Yy,

—_— ¥y,
Yr,

|YB| Temperature independent coannihilations

|Y B| Temperatur

10712

10—15 . . N .
100 1000 10* 10° 100 107

Temperature [GeV]

Figure 4.6: Example solution with my, = 100,000, my, = 90,000. The asymmetry generated is
Yp=11x10710.

Due to the similarity of the asymmetry production, Boltzmann equations and CP violation
between this model and [41], it is clear that main asymmetry production in the neutron
portal EFT studied in [41] was also due to this temperature dependent CP violation (rather
than the mass insertion diagrams that are also there in the neutron portal case). One can also
see this by comparing the slope of asymmetry formation in [41] with our own model: when
temperature dependence is introduced the slopes become similar. This provides compelling
evidence that for coannihilations to dominate a heavy intermediate particle is necessary (to
provide the dimensionality for temperature dependence). As many cosmological models are
EFTs, this will often be satisfied. Further, multiple intermediate particles (leading to bubble
graphs) seem to be a generic feature of coannihilation models.
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Figure 4.7: Asymmetry formed vs mass of Y. For asymmetric couplings the asymmetry formed is
as much as two orders of magnitude higher than when all the couplings are the same.
When there is little or no discrimination between the couplings, the asymmetry formed is
essentially the same as the unextended lepton portal.
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Figure 4.8: (Top) Asymmetry formed vs k,, with k1 held at 2 x 10° GeV. (Bottom) Asymmetry formed
vs the mass of the second intermediate scalar, with My, held at 4.5 X 107 GeV.
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We have shown that it is possible to create a realistic model of ADM, with the primary
mechanism of asymmetry formation being coannihilations. Further, we have demonstrated
explicitly the importance of temperature dependence in the CP violating terms.
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Chapter

Conclusion

The predominance of matter over antimatter in our universe, as well as the presence of dark
matter, are two of the most confounding features of the world we live in. That the SM cannot
explain these essential facts is one of the main driving factors towards new physics. This
thesis explored models that combine these problems, positing a common origin for dark and
visible matter. As the effects of coannihilations in ADM have not been explored at detail,
we looked at both a toy model of coannihilations and the new lepton portal model in a UV
complete manner.

In the toy model we showed that there is a second mechanism to produce ADM with 2 — 2
scatterings. Instead of relying on scatterings which both violate CP and baryon number,
a flavour asymmetry can be formed and then transferred to a baryon asymmetry. In the
simplest UV completion of the toy model, this is the only source of a baryon asymmetry.
Even when the model is extended to allow CP violation in the baryon number violating
scatterings these flavour effects can still be important. However, for the creation of a large
asymmetry the original method proves to be far more effective.

To understand the behaviour of these models in the wild we applied the techniques of the toy
model to more realistic scenarios. In particular, we examined the feasibility of the neutron
portal providing a viable ADM candidate. While it is possible to construct such a model,
this requires serendipitous connections between unrelated processes and moving to 2 — 3
scatterings. As the aim was to explore simple and general models of coannihilations we
introduced a new model using the lepton portal. In the lepton portal case we showed that it
is possible to create a fully functional model of ADM, with the asymmetry produced through
thermal freeze out. By studying the UV completions of this model, we explicitly demon-
strated the importance of temperature dependence in the CP violation of the coannihilations.
For future model builders to see a significant asymmetry caused by 2 — 2 scatterings the
quadratic temperature dependence will be a key feature. An interesting avenue for future
research is the annihilation of the symmetric part; it would be minimalistic to have the same
process create an asymmetry and annihilate the symmetric component of ADM.

Exploring these kinds of avenues towards new physics is crucial for understanding both
the matter in the universe and how this matter came to exist. As there is no confirmed
experimental detection of dark matter, for the time being it is these theoretical considerations
that may help reveal the dark side of matter.
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Appendix

Cutkosky Rules: an Example

Cutkosky rules allow us to evaluate the imaginary part of a matrix element without per-
forming the full calculation; in particular we wish to calculate the imaginary part of the
interference between a one loop and tree level graph. For the phase space to be complex,
there must be on shell loop particles. As an example, we calculate the CP violation in
Yi; — ff due to the graphs in fig. Though this is the simplest example of CP violation
used in this thesis, the principles and techniques are used throughout. The two main sources
of complication are the trace structure and kinematics[| Here and in all other Feynman
diagram calculations we use the Feynman rules of [73]. These rules are more general than
those in most QFT textbooks, allowing us to handle charge conjugate and Majorana fields.
The calculation is carried out in the centre of momentum frame.

Figure A.1: Kinematics of the process ¢;; — ff. Note that if all the scalars are the same, or the
scalars are degenerate in mass and couplings, the complex couplings will cancel.

We define X1 to be % Y. MiM;, where My and M; are the matrix elements of the tree and
ab,c,d

loop graphs, respectively. Reading off from the graph, we have

—1 -
Xrp I Z Wypia Uy fclk fald fdU feOybUpia
Xp Xq Xr Ll,b,C,d

(A1)

d*q T( —(p/2—q) +my P12+ q +my )
(2m)* g (p/2 = q)? —m? +ie (p/2 + q)* — m; + ie ’
where p = p; + p,. We have used here that the center of mass energies are much lower than
my and, for clarity during the calculation, we will neglect the couplings. This is equivalent
to calculating . In writing this, we use the identity v = CHT, which is easy enough to prove
just by writing the spinors explicitly. As in [28], we use a symmetrical distribution of the
momenta in the loop — there is no loss of generality. For the curious reader, appendix D
of [74] has a useful section on handling charge conjugate fields. For completeness the field
operators are given here (only writing out the creation and annihilation structure):

VY =cu +dv, =40, +cu, V°'=du, +cv, v°=co +du,. (A.2)

For example, the box diagram in fig. has the same kinematics, but a horrendous trace structure involving
six y matrices and the decay shown in fig. 4.2 has a three body on shell intermediate state and final state.
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Evaluating the traces, we get

32i dtq (ExEi+pp, — mym) 1
Xrp = ———(EE; +p2, — mm, 2./ P ,
rt mipmggqmir( I Pine Piin 2m)* (p/2 - q)* —m? +ie (p/2+q)> — m; + ie

(A.3)
It is now time to implement the Cutkosky rules stated in section we replace the propa-
gators of the loop particles m — —27id6(p* — m?). In this case there is only one way to cut
the loop propagators, straight down the middle. This gives us 2i times the imaginary part
of Xr-r. Unfortunately the integral over k* makes it difficult to evaluate despite the Dirac
deltas. To fix this, we will make the change:

/ d'q > / d'p,d*p,6*(py + p2 — ), (A4)
where p/l =p-k P;_ = p + k. Altogether, we now have:
-16
ImX7p =—————(EiE; + P = Mil)Pi,
x, 1t x, M,
pd4p'qd4p'2 (A.5)
X / G ERE + Plogy = mimo(py’ = mi)o(p;’ = mi)d(py + p; = p)

The Cutkosky Dirac deltas remove the time integral, putting the loop particles on shell:

—4 d3p' d3pl EkEl + plzoo — Mmy , ,
ImX7p = ————(E:E; + p2., — mm;)p L -2 i 54, + 1, — p1 — o).
MmATL m?{p %{qn/%(r ( j T Pine =M m])pfm (277)2 EkEl (pl P> —P1 pZ)
(A.6)
The 4E(E; on the denominator is due to the Dirac delta being written in terms of the square

of the energy. Using the 3-momentum part of the remaining delta functional, one of the
integrals over 3-momentum can be removed,

—4 ) , [ dp,dQ Pfoop(EkEl + Pfoop — mymy)
wi i, (ESEj+ Pl = mitmpi, [ <553 LT O(Er+ Ex— Vs),

(A7)
where /s is the centre of mass energy and dQ is the usual differential solid angle. As we still
have a Dirac delta left to handle the momentum integral a simple change of variables is all
that is required to finish the calculation. Using the on shell condition, E? = p? + m?, to write

p in terms of E we get

ImXT*L =

-4
Im Xt = 5 pﬁnploop(EiEj + piznt — mym;)(ExE; + plzoop — mymy,). (A.8)
n \/mepqumxr

To relate this to the overall cross section, the usual two body kinematic factors are added,

3
-1 PgnPloop

16s3212m? m? m?> <
x,Mx, My, Pint

Im Iy = (EiE; + pi, — mim;)(ExE; + pfoop — mymy). (A.9)
While at first this does not look symmetric under interchange of the initial and loop particles,

that is because we have not velocity averaged the cross section yet. The offending factor
ploop

which ruins the symmetry is ; when the velocity average is taken, there will be an extra

int

factor of p?

2One factor of piy is hidden in E1Epvye.
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Appendix B

Cross sections of the Lepton Portal

For the sake of completeness, here we catalogue the cross sections of the case study in Chapter
@ We will not include the cross sections of the toy model as space does not permit. E;, Es,
E; and E, refer to the energies of the particles in the order listed. For the 2 — 2 scatterings,
we will denote the initial momentum p; and the final momentum p;. All cross sections
are written in the centre of mass frame, except when otherwise stated. It is important to
remember that the masses of the L, ¢, and H; are thermal and so have an implicit temperature
dependence.

B.1 Minimal Lepton Portal

Cross sections (CP conserving component)

We include some of the factors from to highlight the symmetry under interchange of
particles.

Y.L — Hyo
KK2AZ | )
piElEzﬁv = Wﬁzpf(ElEZ + pl) (Bl)
Hy
Lip — Y.H,
K2A2 |
piE1Eyov = W?iﬁf&&- (B.2)
H;
LH, — Y
K2A2 |
Pz’ElEZGU = WplprlEg (B3)
H>
YaLl‘ — YbLj
MszAiz“l 2 2 2.2
piE1Exov = pravamnd [(E1Ex + p?)(EsEs + p2) + E\E2EsEs + 1/2p%p7] . (B.4)
Ha
LiL; = Y,Y,
5,021+ 12, ) .
piErEa00 = —— oL |Er\E2EsEs + 172022 (B.5)
Hj

Cross sections (CP violating component)

YlLi b Hl(P

my,my, Im(A} A% ApA )i

pl‘ElEQ(G - E)U = — pipfploopEZEL-/ (B6)
: ]
]

26
167t sy,
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where E; is the energy of L; in the loop and pi,0p is the momentum of the particles in the loop.
The CP violation in Y1L; — H;¢ is simply the negative of this. CP violation in Y,L; — Y,L;
is similar but only leads to flavour violation and is so neglected.

Decays (CP conserving component)

To calculate the three body decays, we used the usual trick of decomposing N-body phase
space into a series of 2-body phase spaces. While there are other ways to handle three body
decays, this decomposition is particularly useful when dealing with the CP violation, which
has a three body intermediate state. All integrals are numerically integrated. The decay
rates appearing in section |4.5|are in fact thermally averaged [42]],

Ky (m/ T)
Kz(m/ T)

Since the relative masses of the particles changes with temperature, at different times the
Y, H; and ¢ can all decay depending on the thermal masses (in particular the choice of
A4). We will only write down the Y decays, as the others are similar and not particularly
important. In our example solutions we chose A4 so that at high temperatures Hy — L;Y,¢
occurs. Keeping this in mind we now catalogue the decays.

l-vthermal (B ) 7)

Y, — LH*gb
(my, —mp)? | 21 2|
r :( / )2 ds 0 \/_m EL(S)(\/S+pL(S)+ \/m +pL(s))pL(5)p¢(s) (B.8)

where E(s) is the energy of L;, pr(s) [ps(s)] is the momentum of L; [¢] in the centre-of-
momentum frame [rest frame of the mediating particle H,] and s is p;‘ L PHu- When we say

the rest frame of H,, we mean a fictitious on-shell particle with mass Vs in place of H,. By
integrating over the mass squared of this fictitious particle, we take into account varying
kinetic energies of the final particles.

Y1 = LY.L,

(my, —mr)?

242 2
o / ds4(|/\]bAm|+|/\]u/\1h|)
(270)% Nsmy, m3,

ELO( 5+ 7O + 2 +12.6)) o, @) (B 6Fr© + 7. 6),

(g +my,)*

(B.9)

where E, ,(s) and py, , (s) are the energy and momentum of L; (;), respectively, and s is pipL/y.
Note that py, (s) is in the rest frame of H, and all others are in the rest frame of H,.

Decays (CP violating component)

To evaluate the CP violation in the decays can require some deft changing of Lorentz frames.
Fortunately the loop particles have the same energy running through them as the pair ¢ and
H1 and so can be dealt with naturally in the same reference frame as ¢ and H;.

— L:H "

() v, Im(A% A% A )i

— i1 1 12 2

r-T= / ds Z (271)453/27;1H p_~ Ey;,(s) (mf,1 —s— mi) pL(s)pL,(5)pe(s),  (B.10)
j 21

Low
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where s is pf,le wand Low = Max([(mg, +mpy, )2, (my, + ij])z_ The kinematics of L; were written
in the centre-of-momentum frame, and the other particles kinematics are in the rest frame of
H,.

B.2 Extended Lepton Portal

When a second inert Higgs doublet is added, H;, we get many more diagrams contributing
to the various processes. For most processes, these diagrams are simply allowing the in-
termediate particle to be H, or Hj, with some interference terms. Due to the lack of space,
and triviality of extension, we do not write these down. But there are important new con-
tributions to the CP violation in both the decays and coannihilation. The new cross section is:

YL, — HlCP

My, My, Im(Ajlp/\ AirA sk Ks)

piE1Ex(0 —0)v = —
;; 16nzsmH mH mH

Im(/\llpAllr/\er/\]zs KPKS)

+ Z 87'(25mH mH m%_l PiP fP1oop (ElEZ + pZZ) (EL].EY2 + plzoop) ,
jprs ' “Hy"""H

PiP fPioop E2E
(B.11)

where p, 1, s € 2, 3 and Ey, is the energy of Y, in the loop. We note that if all the masses and
couplings are the same for H, and Hj the second term cancels, and CP violation is reduced
to the minimal lepton portal. The contributions to the decays are given by:

Yl 4 LlHI(P*
(v, ) iy, TM(A%, A%, Ay Aok’ o)
_ Y, ilp”tj1r i2r/Vj2s phs
boh=- / * Z (270)*s3 2y g, iy iy, EL(©) (3, =5 = L) puOp, Ope(©)

Low Jprs 4 ! ’

(my —my)

ZIm(A i1 All?’A 21,A]25‘K)e KS)
¥ / dSZ (2n)4s;/zm n]1 i, ms, EL’(S)(\/S P+ \/m% +pi(s))

Low jprs

X (EL/EYz + ploop) PL; (S)pL;(S)p¢(S)'
(B.12)
Similar to the CP violation in the scatterings, in the limit of degenerate couplings and masses
the second term disappears. This completes the cataloguing of the cross sections used to
solve the Boltzmann equations in section
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